
Machine Learning Muchang Bahng Spring 2024

Machine Learning

Muchang Bahng

Spring 2024

Contents
1 Statistical Learning Theory 4

1.1 Decision Theory . 5
1.2 Function Classes . 7
1.3 Concentration of Measure . 12
1.4 Bias Variance Noise Decomposition . 17
1.5 Minimax Theory . 19

2 Low Dimensional Linear Regression 19
2.1 Ordinary Least Squares . 21

2.1.1 Bias Variance Decomposition . 24
2.1.2 Convergence Bounds . 26

2.2 Simple Linear Regression . 27
2.3 Weighted Least Squares . 28
2.4 Mean Absolute Error . 28
2.5 Significance Tests . 28

2.5.1 T Test . 28
2.5.2 F Test . 30

2.6 Bayesian Linear Regression . 31

3 High Dimensional Linear Regression 31
3.1 Ridge Regression . 31
3.2 Forward Stepwise Regression . 33

3.2.1 Stagewise Regression . 34
3.3 Lasso Regression . 34

3.3.1 Soft Thresholding and Proximal Gradient Descent . 36

4 Nonparametric Regression 36
4.1 K Nearest Neighbors Regression . 36
4.2 Kernel Regression and Linear Smoothers . 37
4.3 Local Polynomial Regression . 41
4.4 Regularized: Spline Smoothing . 42
4.5 Regularized: RKHS Regression . 42
4.6 Additive Models . 42
4.7 Nonlinear Smoothers, Trend Filtering . 42
4.8 High Dimensional Nonparametric Regression . 43
4.9 Regression Trees . 43

5 Cross Validation 43
5.1 Leave 1 Out Cross Validation . 44

5.1.1 Generalized (Approximate) Cross Validation . 44
5.1.2 Cp Statistic . 44

1/ 115

Machine Learning Muchang Bahng Spring 2024

5.2 K Fold Cross Validation . 44
5.3 Data Leakage . 44
5.4 Information Criterion . 44

6 Linear Classification 44
6.1 Empirical Risk Minimizer . 44
6.2 Perceptron . 45
6.3 Logistic and Softmax Regression . 46

6.3.1 Sparse Logistic Regression . 51
6.4 Support Vector Machines . 51
6.5 Functional and Geometric Margins . 53

6.5.1 Lagrange Duality . 54
6.6 Nonseparable Case . 55
6.7 Gaussian/Linear Discriminant Analysis . 55

6.7.1 Discriminative vs. Generative Models . 55
6.7.2 Construction . 56

6.8 Fisher Linear Discriminant . 57

7 Nonparametric Classification 57
7.1 K Nearest Neighbors . 57

7.1.1 Approximate K Nearest Neighbors . 59
7.2 Classification Trees . 59

7.2.1 Regularization . 63

8 Generalized Linear Models 65
8.1 Exponential Family . 67

8.1.1 Canonical Exponential Family . 69
8.2 Cumulant Generating Function . 72
8.3 Link Functions . 73

8.3.1 Canonical Link Functions . 74
8.4 Likelihood Optimization . 75

9 Ensemble Methods 76
9.1 Bagging . 76
9.2 Random Forests . 77
9.3 Boosting . 77

9.3.1 Adaptive Boosting (AdaBoost) . 78
9.3.2 Gradient Boosting . 80
9.3.3 XGBoost . 82

10 Clustering and Density Estimation 83
10.1 K Means Clustering . 83
10.2 Gaussian Mixture Models and EM Algorithm . 84

10.2.1 EM Algorithm for General Estimation Problems . 90
10.3 Kernel Density Estimation . 95
10.4 Density Based Clustering . 95
10.5 Hierarchical Clustering . 95
10.6 Spectral Clustering . 95
10.7 High Dimensional Clustering . 95

11 Graphical Models 95
11.1 Bayesian Networks . 95
11.2 Markov Random Fields . 95
11.3 Hidden Markov Models . 95

2/ 115

Machine Learning Muchang Bahng Spring 2024

12 Dimensionality Reduction 95
12.1 Principal Component Analysis . 95

12.1.1 Kernel PCA . 97
12.2 Multi-Dimensional Scaling . 97

12.2.1 Isomap . 98
12.3 Local Linear Embedding . 99
12.4 Factor Analysis . 100
12.5 Sparse Dictionary Learning . 102
12.6 Independent Component Analysis . 103
12.7 Slow Feature Analysis . 104
12.8 Latent Dirichlet Allocation . 105
12.9 UMAP . 105
12.10t-SNE . 105

13 Practical Methods 105
13.1 Model Selection . 105
13.2 Feature Engineering . 106
13.3 Data Preprocessing . 106

13.3.1 Feature Extraction . 106
13.3.2 Standardizing Data . 109

13.4 Data Augmentation . 111

14 Archive 111
14.1 Bayesian Probability . 111
14.2 Density Estimation . 112

14.2.1 Frequentist Approach . 112
14.2.2 Bayesian Approach . 112

14.3 Regression with Regularization . 113
14.3.1 Frequentist’s Maximum Likelihood Approach . 113
14.3.2 Bayesian Approach . 114

References 115

3/ 115

Machine Learning Muchang Bahng Spring 2024

Machine learning in the 1980s have been focused on developing rigorous theory of learning algorithms,
and the field has been dominated by statisticians. They strived to develop the theoretical foundation of
algorithms that can be implemented and applied to real-world data. These days, machine learning is more of
an engineering discipline than a science. With the advent of deep learning, the theory behind these black box
algorithms has slowed down, but their applications have exploded. It is now a field of trying out a bunch of
things and sticking to what works. These set of notes are for the former theory, while my deep learning notes
are for the latter. It is covered in a separate set of notes since a lot of space is needed to talk about recent
developments and architectures (e.g. RCNN, YOLO, LSTMs, Transformers, VAEs, GANs, etc.). We will
focus more on establishing the theoretical foundations of most learning algorithms and analyze interpretable
algorithms.

I’ve spent a good amount of time trying to create a map of machine learning, but after rewriting these notes
multiple times. I’ve come to the conclusion that it is impossible to create a nice chronological timeline.
Like math, you keep on revisiting the same topics over and over again, but at a higher level, and it’s not
as simple to organize everything into, say parametric vs nonparametric1, supervised vs unsupervised2, or
discriminative vs generative models.3 Therefore, I’ve settled (for now) on this map.

1. If you are new to machine learning, go over my notes on Stanford CS229, which simply covers basic
algorithms and their implementation.

2. Now you can learn the deeper theory of machine learning. This is what these notes are for.

You should know measure (probability) theory, a bit of functional analysis, and some statistics. I will
reintroduce all the necessary definitions in a way that is as general as possible, as we move along. Some
places where I got this information from

1. Larry Wasserman’s Statistical Machine Learning course at CMU.

2. Bishop’s Pattern Recognition and Machine Learning by Christopher Bishop.

3. Cynthia Rudin’s CS671 Machine Learning course at Duke.

4. Olivier Bousquet’s Introduction to Statistical Learning Theory notes at MPI.

1 Statistical Learning Theory
Unlike unsupervised learning, which comes in many different shapes and forms (anomaly detection, feature
extraction, density estimation, dimensionality reduction, etc.), supervised learning comes in a much cleaner
format. In supervised learning, we consider an input space X and an output space Y. We assume that there
exists some unknown measure P over X ×Y, making this some probability space. We then assume that some
data D = {(x(i), y(i))} is generated sampled independently and identically (iid) from P. Now this assumption
is quite strong and is almost always not the case, as different data can be correlated, but we will relax this
assumption later. Let’s formally construct this from the bottom up.

1. We start off with a general probability space (Ω,F ,P). This is our model of the world and everything
that we are interested in.

2. A measurable function X : Ω → X extracts a set of features, which we call the covariates and induces
a probability measure on X , say PX .

3. Another measurable function Y : Ω → Y extracts another set of features called the labels and induces
another probability measure on Y, the label set, say PY .

4. At this point the function X × Y is all we are interested in, and we throw away Ω since we only care
about the distribution over X × Y.

1K nearest neighbors is a nonparameteric model given that the data is not fixed. When the data is fixed, then our function
search space is finite.

2There are semi-supervised or weakly supervised models, and models like autoencoders use a supervised algorithm without
any labels.

3Using Bayes rule, we can always reduce generative models into discriminative models.

4/ 115

Machine Learning Muchang Bahng Spring 2024

5. We model the generation of data from Ω by sampling N samples from PX×Y , which we assume to be
iid (this assumption will be relaxed later). This gives us the dataset

D = {(x(i),y(i))}Ni=1

Now our goal is to construct a function f : X → Y that predicts Y from X, but we want to define some
measure of how good our function is. We can use a loss function L to talk about this.

Definition 1.1 (Risk)

The risk, or expected risk, of function f is defined as

R(f) = EX×Y [L(Y, f(X))] =

∫
X×Y

L(y, f(x)) dP(x, y) (1)

Clearly, we don’t know what this risk is since we don’t know the true measure P, so we try to approximate
it with the empirical risk.

Definition 1.2 (Empirical Risk)

The empirical risk of function f is defined as

R̂n(f) =
1

n

n∑
i=1

L(y(i), f(x(i))) (2)

Definition 1.3 (Generlize)

A function f is said to generalize if

lim
n→+∞

R̂n(f) = R(f) (3)

This gives us a way of computing with the actual data. Now two questions arise from this. First, how do we
even choose the loss function L? Second, how do we know that the empirical risk is a good approximation
of the true risk? The first question can be quite convoluted, but we introduce it with decision theory. The
second has a simple answer with concentration of measure.

1.1 Decision Theory
How can we choose our loss functions? There are two ways of doing this, either through model assumptions
or with domain knowledge. When talking about model assumptions, we assume that the residual distribution
is of certain form, and the maximum likelihood formulation leads to a certain loss function. For example,
assuming that the residuals are normally distributed leads to the squared loss or Laplacian residuals leads
to the absolute value loss. These are just modeling assumptions, and if there are no specific assumptions,
we are lost. The other way is through domain expertise which allows us to construct our own loss functions.
Fortunately, there is a deeper theory behind the choice of loss functions, known as decision theory, which
allows us to define loss functions from the get go rather than assume distributions taking particular forms.4

4Credits to Edric for telling me this.

5/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 1.4 (Misclassification Loss)

The misclassification loss is defined as

L(y, ŷ) =

{
0 if y = ŷ

1 if y ̸= ŷ
(4)

Example 1.1 (Misclassification Risk)

Substituting the misclassification loss function into the risk gives the misclassification risk.

R(f) = E[1{Y ̸=f(X)}] = P(Y ̸= f(X)) (5)

and therefore our empirical risk is

R̂(f) =
1

n

n∑
i=1

1{y(i) ̸=f(x(i))} (6)

which is just the number of misclassifications over the total number of samples.

However, depending on the context, the loss for misclassification one one label can be quite different from
that of another label. Consider the medical example where you’re trying to detect cancer. Falsely detecting
a non-cancer patient as having cancer is not as bad as falsely detecting a cancer patient as not having cancer.

Definition 1.5 (Weighted Misclassification Loss)

The loss matrix K defines the loss that we incur when predicting the ith class on a sample with
true label j.

L(y, ŷ) =

{
0 if y = ŷ

Kij if y = i ̸= j = ŷ
(7)

Definition 1.6 (Squared Loss)

The squared loss is defined as
L(y, ŷ) = (y − ŷ)2 (8)

Example 1.2 (Mean Squared Risk)

Substituting the squared loss function into the risk gives the mean squared risk.

R(f) = E[(Y − f(X))2] (9)

and therefore our empirical risk is

R̂(f) =
1

n

n∑
i=1

(y(i) − f(x(i))2 (10)

Definition 1.7 (Absolute Loss)

The absolute loss is defined as
L(y, ŷ) = |y − ŷ| (11)

6/ 115

Machine Learning Muchang Bahng Spring 2024

1.2 Function Classes
Now that we’ve defined the risk and empirical risk, the true function that we want to find is the one that
minimizes the empirical risk.

f∗ = argmin
f∈F

R̂(f) (12)

However, this depends on the function space F that we are minimizing over. If we chose f to be the space of
all functions, then we just interpolate (fit perfectly over) the data5, which is not good since we’re overfitting.
This is a problem especially in nonparametric supervised learning, and there are generally two ways to deal
with this. The first is to use localization, which deals with local smoothing methods. The second is with
regularization. The third is to restrict our class of functions to a smaller set. Perhaps we assume that
nature is somewhat smooth and so naturally we want to work with smooth functions. There are two ways
that we define smoothness, through Holder spaces that focus on local smoothness and Sobolev spaces that
focus on global smoothness.

Definition 1.8 (Lp Space)

The Lp(µ) space is the normed vector space of all functions from f : X → R such that

||f ||p =
(∫

|f(x)|p dµ
)1/p

<∞ (13)

Theorem 1.1 (Countable Basis)

You can construct a countable orthonormal basis in L2(µ) space.

There are a lot of well known orthonormal bases. For example, the Fourier basis, Legendre polynomials,
Hermite polynomials, or wavelets. Therefore, every function can be expressed as a linear combination of this
basis, and you can calculate coefficients by taking the inner product with the basis functions.

f(x) =

∞∑
i=1

αiϕi(x) and αi = ⟨f, ϕi⟩ (14)

Now we can define Holder spaces. Holder spaces are used whenever we want to talk about local smoothness.
For example, when we want to talk about local smoothing methods for regression and classification, talking
about this smoothing is not quite possible if we don’t have certain assumptions on the function. To make
theory easier, we assume that the function has basic smoothness properties and this property is Holder
smoothness. But note that these are ultimately assumptions.

Definition 1.9 (Holder Space)

For some β ∈ N and L ∈ R+, the H(β, L) Holder space is the set of all functions f : X ⊂ R → R
such that

|f (β−1)(y)− f (β−1)(x)| ≤ L||y − x|| (15)
for all x, y. If we want X to be d-dimensional, then we want to bound the higher order total derivatives,
and soH(β, L) becomes all functions f : X ⊂ Rd → R such that for all s = (s1, . . . , sd) with |s| = β−1,

|Dsf(x)−Dsf(x)| ≤ L||y − x|| (16)

for all x, y ∈ X , where

Ds =
∂|s|

∂xs11 . . . ∂xsdd
(17)

The higher β is, the more smoothness we’re demanding.

5unless there were two different values of Y for the same X

7/ 115

Machine Learning Muchang Bahng Spring 2024

If β = 1, then this reduces to the set of all Lipschitz functions. It is most common to assume that β = 2,
which means that the derivative is Lipschitz. This is not rigorously true, but by dividing both sides by
||y − x|| and taking the limit to 0, we can say that it implies that there exists some finite second derivative
bounded by L.

Definition 1.10 (Sobolev Space)

The Sobelov space Wm,p is the space of all functions f ∈ Lp(µ) such that

||Dmf ||p ∈ Lp(µ) (18)

This is slightly stronger than the usual definition of Sobolev spaces since we requiring the derivative
rather than the weak derivative. So m tells us how many derivatives we want well behaved and p
tells us under which norm are the derivatives well behaved.

Now there is a related definition of a Sobelov ellipsoid that we’ll be working with.

Definition 1.11 (Sobelov Ellipsoid)

Let θ = (θ1, θ2, . . .) be a sequence of real numbers. Then the set

Θm =

{
θ |

∞∑
j=1

a2jθ
2
j < C2

}
(19)

where a2j = (π · j)2m. Note that since aj is exploding, to stay finite the θj must be decaying.

This is useful because of the following theorem.

Theorem 1.2 (Conditions for Function being in Sobelov Space)

Given a function f ∈ L2(µ) expanded in some orthonormal basis ϕj , then f ∈Wm,2 if and only if the
coefficients αj die off fast enough in the sense that it is in the Sobelov ellipsoid.

Now let’s talk about RKHS. Let’s take the L2(µ) space of functions f : [0, 1] → R with ||f || =
∫
f2 dµ <∞

and inner product ⟨f, g⟩ =
∫
f(x)g(x) dµ. It is known that if fn converges to f in L2, then it is not necessarily

true that f converges pointwise since it can diverge on a sequence of sets that converge to measure 0. You
probably don’t want to work with functions that look like this, and that’s what a RKHS is for. It gives you
a nice class of functions that have good statistical properties but also are easy to compute with.

Definition 1.12 (Mercer Kernels)

A Mercer kernel is a function K : R× R → R that is symmetric and positive definite in the sense
that for any collection x1, . . . , xn of arbitrary size n,∑

i

∑
j

cicjK(xi, xj) ≥ 0 (20)

which is equivalent to saying that the matrix formed by evaluating these kernels at the pairs of points
is positive semi-definite.

8/ 115

Machine Learning Muchang Bahng Spring 2024

Example 1.3 (Gaussian Kernel)

The Gaussian kernel is defined

K(x, y) = exp

(
− ||x− y||2

σ2

)
(21)

Now this kernel should tell us roughly how similar two points x and y are. Using this kernel, we want to
build a function space. For this, we need Mercer’s theorem.

Theorem 1.3 (Mercer’s Theorem)

If we have a kernel K that is bounded

sup
x,y

K(x, y) <∞ (22)

we can define a new operator TK that maps functions to functions

TKf(x) =

∫
K(x, y)f(y) dy =

∫∫
K(x, y)f(x)f(y) dx dy (23)

This operator is linear, meaning that it has an eigendecomposition and therefore there exists eigen-
functions ϕi s.t.

TKϕi(x) =

∫
K(x, y)ϕi(y) dy = λiϕi(x) (24)

Then these eigenvalues are bounded and we can write the kernel as a sum of the eigenfunctions.

∑
i

λi <∞, K(x, y) =

∞∑
i=1

λiϕi(x)ϕi(y) (25)

These ϕi’s are the implicit high-dimensional features.

What do these eigenfunctions ϕi look like? Well, they tend to look like functions that tend to get wigglier
and wigglier as i increases, indicating that λi must decrease in such a way that it still keeps the function
smooth.

Now, we can fix the first term in the kernel and it will be function of the second term Kx(·) = K(x, ·). We
do this for all x ∈ R, which form the basis of our RKHS, and it consists of all functions that are linear
combinations of these Kx’s. For example, the functions

f =
∑
i

αiKxi
and g =

∑
j

βjKxj
(26)

can consist of a finite number of perhaps different basis functions. Now this is clearly a vector space, and to
upgrade this to a Hilbert space, we must define an inner product. This inner product (with respect to some
kernel K) is defined as

⟨f, g⟩K =
∑
i,j

αiβjK(xi, xj) (27)

Exercise 1.1 (Inner Product of RKHS)

Show that the inner product of the RKHS is indeed an inner product.

The inner product induces a norm, and so by taking the completion of all linear combinations of the kernel
basis functions we get our RKHS. Now since Kx is itself in the RKHS, we can take the inner product of f
and Kx, which just gives us back the evaluation of f at x.

9/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 1.13 (Reproducing Kernel Hilbert Space)

Given a kernel K, the reprducing kernel Hilbert space H is the Hilbert space of all functions
f : X → Y that can be expressed as a linear combination of the functions {Kx = K(x, ·)}. It has the
inner product

⟨f, g⟩H =
∑
i,j

αiβjK(xi, xj) (28)

and also includes all of its limit points under this norm, making it a complete space.

Theorem 1.4 (Reproducing Property of RKHS)

An RKHS satisfies the reproducing property, which means that taking the inner product of a
function f and a kernel Kx gives you the evaluation of f at x.

⟨f,Kx⟩H = f(x) (29)

and therefore it also means that ⟨Kx,Kx⟩H = K(x, x). This also means that Kx is the evaluation
functional in the dual space of H and this evaluation functional δx is continuous, which is not always
true in functional analysis.

Proof.

We can evaluate from the inner product

f =
∑
i

αiKxi
=⇒ ⟨f,Kx⟩K =

∑
i

αi⟨Kxi
,Kx⟩K =

∑
i

αiK(xi, x) = f(x) (30)

This reproducing property tends to be very useful, especially in the corollary below.

Corollary 1.1 (Convergence in RKHS)

Convergence in norm implies pointwise convergence in RKHS.

Proof.

Given that fn → f in norm, we have that ||fn − f || → 0. Then for all points x ∈ X ,

|fn(x)− f(x)| = |⟨fn − f,Kx⟩H| ≤ ||fn − f || · ||Kx|| → 0 (31)

Theorem 1.5 (Moore-Aronszajn)

Any positive definite function K is a reproducing kernel for some RKHS.

Proof.

We won’t be too rigorous about this since this is not a functional analysis course. Assume that we
have a positive definite kernel K : X ×X → R, where X is some measurable set, and we will show
how to make a RKHS Hk such that K is the reproducing kernel on H. It turns out that Hk is
unique up to isomorphism. Since X exists, let us first define the set S = {kx | x ∈ X} such that
kx(y) := K(x, y). Now let us define the vector space V to be the span of S. Therefore, each element

10/ 115

Machine Learning Muchang Bahng Spring 2024

v ∈ V can be written as
v =

∑
i

αikxi

Now we want to define an inner product on V . By expanding out the vectors w.r.t. the basis and the
properties of bilinearity, we have

⟨kx, ky⟩V =

〈∑
i

αikxi ,
∑
i

βikyi

〉
=
∑
i,j

αiβjK(xi, yj)

At this point, V is not necessarily complete, but we can force it to be complete by taking the limits
of all Cauchy sequences and adding them to V . In order to complete the construction, we need to
ensure that K is continuous and doesn’t diverge, i.e.∫∫

K2(x, y) dx dy < +∞

which is a property known as finite trace.a

Now at first glance, this abstract construction makes it hard to determine what kind of functions there are
in a RKHS generated by some kernel. Conversely, given some RKHS, it’s not always easy to know which
kernel it came from.

Example 1.4 (Fourier Basis)

Let us take the vector space of all real functions f for which its Fourier transform is supported on
some finite interval [−a, a]. This is a RKHS with the kernel function

K(x, y) =
sin(a(y − x))

a(y − x)
(32)

with the inner product ⟨f, g⟩ =
∫
f(x)g(x) dx.

Example 1.5 (Some Sobelov Spaces are RKHS)

Let us take the Sobelov space W1,2 of all functions f : [0, 1] → R satisfying∫
(f ′(x))2 dx <∞ (33)

This is a RKHS with the kernel function

K(x, y) =

{
1 + xy + xy2

2 − y3

6 if 0 ≤ y ≤ x ≤ 1

1 + xy + x2y
2 − x3

6 if 0 ≤ x ≤ y ≤ 1
(34)

Finally, remembering Mercer’s theorem, we can decompose the Kernel into its eigenfunctions

K(x, y) =

∞∑
j=1

λjϕj(x)ϕj(y) (35)

When you talk about feature maps (e.g. in support vector machines), you’re really just creating the map
from x ∈ X into the infinite dimensional vector space

x 7→ Φ(x) =
(√

λ1ϕ1(x),
√
λ2ϕ2(x), . . .

)
(36)

aToo much to write down here at this point, but for further information look at thearticlehere.

11/ 115

http://users.umiacs.umd.edu/~hal/docs/daume04rkhs.pdf

Machine Learning Muchang Bahng Spring 2024

and the inner product between two functions is actually the inner product between their feature maps.
Therefore, you can either just work with x in the RKHS or work with the features Φ in a higher dimensional
Euclidean space. Therefore, we can either work with f as a combination of kerenels or a linear combination
of the eigenfunctions. The eigenfunctions are easier conceptually, but when we actually do computations,
the kernel expansion is much easier.

f(x) =
∑
i

αiK(xi, x) =
∑
j

βjϕj(x) (37)

When you’re expanding with the eigenfunctions, you can just compute the inner product as

⟨f, g⟩ =
∑
i

αiβi
λi

(38)

and because f, g must satisfy some smoothness constraints, the αi and βi must die off quickly, making the
sum finite. But we’re never going to be actually computing this way since it’s much easier to compute with
the kernel expansion. This means that the ϕi’s, which get wigglier (think of sine and cosine eigenbases) as i
increases, must have decreasing coefficients.

When working with function classes, we tend to divide them into two broad categories.

Definition 1.14 (Parametric Models)

A parametric model is a set of functions Mθ that can be parameterized by a finite-dimensional
vector. The elements of this model are hypotheses functions hθ, with the subscript used to emphasize
that its parameters are θ. We have the flexibility to choose any form of h that we want, and that is
ultimately a model assumption that we are making.

Example 1.6 (Examples of Parametric Models)

1. If we assume h : RD → R to be linear, then h lives in the dual of RD, which we know to be
D-dimensional.

2. If we assume h to be affine, then this just adds one more dimension.
3. If we assume h : R → R to be a kth degree polynomial, then g can be parameterized by a k+1

dimensional θ.

However, parametric models may be limited in the way that we are assuming some form about the data.
For certain forms of data, where we may have domain knowledge, it is reasonable to use parametric models,
but there are cases when we will have absolutely no idea what the underlying distribution is. For example,
think of classifying a 3×N ×N image as a cat or a dog. There is some underlying distribution in the space
[255]3N

2 × {cat, dog}, but we have absolutely no idea how to parameterize this. Should it be a linear model
or something else? This is when nonparametric models come in. They are not restricted by the assumptions
concerning the nature of the population from which the sample is drawn.

Definition 1.15 (Nonparametric Models)

Nonparametric models are ones that cannot be expressed in a finite set of parameters. They may
be countably or uncountably infinite.

1.3 Concentration of Measure
Concentration of measure is a tool used to prove a lot of theorems in statistical machine learning. I have
another series of notes on this, but we’ll stick to the key points.

12/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 1.16 (Hoeffding’s Inequality)

Given X1, . . . , Xn are iid random variables with a ≤ Xi ≤ b, then for any ϵ > 0,

P
(∣∣∣∣ 1n

n∑
i=1

Xi − E[X]

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2nϵ2

(b− a)2

)
(39)

Therefore, if we apply it to some binary classifier f : X → {0, 1}, then we can say that the probability that
the empirical risk deviates from the true risk is exponentially small.

P(|R̂(f)−R(f)| ≥ ϵ) ≤ 2e−2nϵ2 (40)

But when we do empirical risk minimization (ERM), we not given a classifier, but we must choose it. So
given our space of classifiers f , we can plot the true risk and the noisy empirical risk. The equation above
states that at any given point the probability of it deviating by more than ϵ is exponentially small. But
we want something stronger: we want to bound the probability of the supremum of the difference over the
whole class F .

Figure 1: True risk of functions over F and its noisy empirical risk. We want to bound the maximum deviation of
these two over the whole class.

P
(
sup
f∈F

|R̂(f)−R(f)| ≥ ϵ
)

(41)

This bound will depend on how complex the function class F is, and to measure this complexity, we introduce
some definitions.

Definition 1.17 (Rademacher Complexity)

Given Rademacher random variables σ1, . . . , σn with P(σi = 1) = P(σi = −1) = 1
2 , the

Rademacher complexity of a function class F is defined

Radn(F) = E
[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σif(Zi)

∣∣∣∣] (42)

where the expectation is across the random σi’s and the Zi’s, which are independent.

To get some intuition of what this is, let’s consider a function class of a single function f . Then, the sup
disappears and the term inside the absolute value sign becomes a 0-mean random variable. Now if we have a
very complex function class F with a lot of “wiggly” functions, then this value should be large. In this case,
imagine a game where you pick generate some random variables σi and the Zi. Then, I pick a function that
maximizes this value. How can I do that? If I can find a function f that matches the sign of the σi’s (+1 or

13/ 115

Machine Learning Muchang Bahng Spring 2024

−1) at each of the values of Zi, then this would be maximized. Therefore, if I have a sufficiently complex
class, then I can pick a function that tracks your σi’s. Another way of looking at it is given noise variables σ
and Z, we’re looking at the correlation between σ and f(Z). If we can maximize this correlation, then this
is a complex class.

Now this is the most natural way of defining the complexity of the class, and in some cases it can be explicitly
computed. However, in most cases it cannot be, but it can be bounded be something that is computable,
like the VC dimension.

Lemma 1.1 (Bigger Class, Bigger Complexity)

If F ⊂ G, then Radn(F) ≤ Radn(G).

Lemma 1.2 (Convex Hull)

If F is a convex set, then Radn(F) = Radn(conv(F)), where conv(F) is the convex hull of F .

This lemma is quite useful since if we have a certain finite set of functions, then their convex hull can
encompass quite a bit, and we can also easily compute that convex hull’s Rademacher complexity. Since
the extremes haven’t changed, the complexity doesn’t change, and this might suggest that the Rademacher
complexity is a good measure.

Lemma 1.3 (Change of Complexity with Lipschitz Functions)

Consider a L-Lipschitz function g with g(0) = 0 and consider the class F , then we can bound the
class of functions g ◦ F = {g ◦ f | f ∈ F}.

Radn(g ◦ F) ≤ 2LRadn(F) (43)

This constant multiplicative bound is also useful.

Definition 1.18 (Projection of Function Class onto Points)

Given a binary function class F with functions f : X → {0, 1}, let us denote the projection of F onto
a set of points z1, . . . , zn ∈ X to be

Fz = Fz1,...,zn = {(f(z1), . . . , f(zn)) | f ∈ F} (44)

This projection determines the set of all possible binary labels that can be perfectly classified by some
function f .

Definition 1.19 (Shattering Number)

The shattering number of F is defined

sn(F) = s(F , n) = sup
z1,...,zn

|Fz1,...,zn | (45)

The highest number that this can be is 2n, since this is the number of possible binary vectors of
length n. Given a set of n points z1, . . . , zn, we say that the function class F shatters this set if
Fz1,...,zn = |2n|. That is, for every one of the 2n labels on the points, there exists a function that can
perfectly classify them.

14/ 115

Machine Learning Muchang Bahng Spring 2024

Example 1.7 (Binary Functions)

Consider the function class F of all binary functions of the form

f(x) =

{
1 if x > t

0 if x ≤ t
(46)

Then, the projection of F onto some n = 3 points is the set

{(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)} (47)

and this is true no matter how I pick the z1, z2, z3, and so the Shattering number is sn(F) = 4.

Definition 1.20 (VC Dimension)

We know that the shattering number is bounded above by 2n. For n = 1, it is reasonable that it
achieves this bound, but as n grows, the Shattering number may die off. The point at which it dies
off is the VC dimension.

Figure 2: The Shattering number of F will grow exponentially until it reaches the VC dimension, at which
point it will grow polynomially.

That is, it is the largest n number of points that can be shattered by the function class without
misclassification.

nVC := sup
n
{sn(F) = 2n} (48)

It turns out that there are very interesting properties about the VC dimension. One such fact is Sawyer’s
lemma, which states that if the VC dimension is finite, then the rate of growth of the shattering number
suddenly changes from exponential 2n to polynomial nVC, and this is what makes a lot of machine learning
work.

Definition 1.21 (Subgaussian Random Variables)

A random variable X is subgasussian if

E[eλX] ≤ e
λ2σ2

2 (49)

Gaussians and bounded random variables are subgaussian.

15/ 115

Machine Learning Muchang Bahng Spring 2024

Lemma 1.4 (Bound on Subgaussian Random Variables)

Given a set of iid subgaussian random variables X1, . . . , Xn

E
[
max
1≤i≤d

Xi

]
≤ σ

√
2 log d (50)

Theorem 1.6 (Bound of Rademacher Complexity with Shattering Number)

The Rademacher complexity of a binary function class F is bounded by

Radn(F) ≤
√

2 log sn(F)

n
(51)

Proof.

Given the projection Fz1,...,zn , we can use the law of iterated expectations on the Rademacher com-
plexity.

Radn(F) = E
[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σif(Zi)

∣∣∣∣] (52)

= EZ
[
Eσ
[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σif(Zi)

∣∣∣∣ | Z1, . . . Zn

]]
(53)

Note that in the inner expectation, since f(Zi) is now fixed, then are bounding a linear combination
of a bunch of σi’s, which are subgaussian. Using the bound above, we can reduce it to

EZ
[√

2 log |Fz1,...,zn |
n

]
≤
√

2 log sn(F)

n
≤
√

2d log n

n
(54)

However, this is not the best possible bound, and in cases such as K means clustering in high dimensions,
this VC bound is terrible. Now we move onto the big VC theorem which now bounds the supremum of the
difference between the empirical risk and the true risk. To prove this, we need a few tricks, the first being
the symmetrization trick using ghost samples.

Lemma 1.5 (Symmetrization Lemma)

Given a set of random variables Z1, . . . , Zn and a function class F , we can define ghost samples
Z ′
1, . . . , Z

′
n that are iid copies of Z1, . . . , Zn. Then, we can bound the Rademacher complexity of the

function class F by

P
(
sup
f∈F

|R̂(f)−R(f)| ≥ ϵ

)
≤ 2P

(
sup
f∈F

|R̂(f)− R̂′(f)| ≥ ϵ/2

)
(55)

where R̂, R̂′ is the empirical risk over the original and ghost samples, respectively.

Proof.

Assume that we have a function f that achieves this minimum. By the triangle inequality,

|R̂(f)−R(f)| > t and |R̂′(f)−R(f)| < t

2
=⇒ |R̂(f)− R̂′(f)| > t

2
(56)

16/ 115

Machine Learning Muchang Bahng Spring 2024

We write this again as an indicator function.

1(|R̂(f)−R(f)| > t, |R̂′(f)−R(f)| < t

2
) =⇒ 1(|R̂(f)− R̂′(f)| > t

2
) (57)

and since the samples and the ghost samples are independent, we can take the probability over the
ghost samples to get

1(|R̂(f)−R(f)| > t)PZ′(|R̂′(f)−R(f)| < t

2
) =⇒ PZ′(|R̂(f)− R̂′(f)| > t

2
) (58)

and the rest of the proof can be found online.

The reason we want this is that it removes the R(f), which is some unknown true mean that can be hard to
deal with since it takes infinite values. It’s easier to work with two empirical risks than deal with the true
risk.

Theorem 1.7 (VC Theorem/Inequality)

Given a binary function class F , we have

P
(
sup
f∈F

|R̂(f)−R(f)| ≥ ϵ

)
≤ 2S(F , n)e−nϵ

2/8 ≈ nde−nϵ
2/8 (59)

You can see that the exponential term is from Hoeffding but there is an extra cost of taking the
supremum over the whole function class, which is the shattering number.

Proof.

Given Z1, . . . , Zn ∼ P, we take a new set of random variables Z ′
1, . . . , Z

′
n that are iid copies of

Z1, . . . , Zn, called ghost samples.

Therefore, for some classes of sets with finite VC dimension, the shattering term will grow polynomially in
n but the exponential term decays faster, which is what makes this work. That’s why as n grows, we can
get a good bound on the supremum of this difference.

Theorem 1.8 ()

With probability ≥ 1− δ, we have

sup
f∈F

|R̂(f)−R(f)| ≤ 2Radn(F) +

√
log(2/δ)

2n
(60)

1.4 Bias Variance Noise Decomposition
Let’s do some further analysis on this. When you take a supremum over a function class, it decomposes into
3 terms.

1. One of which quantifies how big the function class is (more variance).

2. One of which quantifies the distance between the truth and the function class (bias).

3. One is the noise term, which is the irreducible error.

17/ 115

Machine Learning Muchang Bahng Spring 2024

Example 1.8 (Bias and Variance Tradeoff in Polynomial Regression)

Let’s motivate this by trying to fit a polynomial on some data.

Figure 3: A sample of |D| = 15 data points are generated from the function f(x) = sin(2πx) + 2 cos(x− 1.5)
with Gaussian noise N(0, 0.3) on the interval [0, 1].

If we try to fit a polynomial function, how do we know which degree is best? Well the most simple
thing is to just try all of them. To demonstrate this even further, I generated 10 different datasets
D of size 15 taken from the same true distribution. The best fitted polynomials for each dataset is
shown below.

(a) 1st Degree (b) 3rd Degree (c) 5th Degree

(d) 7th Degree (e) 9th Degree (f) 11th Degree

Figure 4: Different model complexities (i.e. different polynomial degrees) lead to different fits of the data
generated from the true distribution. The lower degree best fit polynomials don’t have much variability in
their best fits but have high bias, while the higher degree best fit polynomials have very high variability in
their best fits but have low bias. The code used to generate this data is here.

We already know that the 5th degree approximation is most optimal, and the lower degree ones are
underfitting the data, while the higher degree ones are overfitting. As mentioned before, we can
describe the underfitting and overfitting phenomena through the bias variance decomposition.

1. If we underfit the data, this means that our model is not robust and does not capture the
patterns inherent in the data. It has a high bias since the set of function it encapsulates is

18/ 115

code/polynomial_fitting.ipynb

Machine Learning Muchang Bahng Spring 2024

not large enough to model E[Y | X]. However, it has a low variance since if we were to take
different samples of the dataset D, the optimal parameters would not fluctuate.

2. What overfitting essentially means is that our model is too complex to the point where it starts
to fit to the noise of the data. This means that the variance is high, since different samples
of the dataset D would cause huge fluctuations in the optimal trained parameters θ. However,
the function set would be large, and thus it would be close to E[Y | X], leading to a low bias.

Example 1.9 (Polynomial Regression Continued)

Another way to reduce the overfitting problem is if we have more training data to work with. That
is, if we were to fit a 9th degree polynomial on a training set of not N = 15, but N = 100 data points,
then we can see that this gives a much better fit. This makes sense because now the random variable
D, as a function of more random variables, has lower variance. Therefore, the lower variance in the
dataset translates to lower variance in the optimal parameter.

(a) M = 9, N = 15 (b) M = 9, N = 100

Figure 5: Increasing the number of data points helps the overfitting problem. Now, we can afford to fit a 9th
degree polynomial with reasonable accuracy.

1.5 Minimax Theory

2 Low Dimensional Linear Regression
In introductory courses, we start with linear predictors since it is easy to understand. We still start with
linear predictors because in high-dimensional machine learning, even linear prediction can be hard as we will
see. Low dimensional linear regression is what statisticians worked in back in the early days, where data
was generally low dimensional.6 Generally, we had d < n, but these days, we are in the regime where d > n.
For example, in genetic data, you could have a sample of n = 100 people but each of them have genetic
sequences at d = 106. When the dimensions become high, the original methods of linear regression tend to
break down, which is why I separate low and high dimensional linear regression. The line tends to be fuzzy
between these two regimes, but we will not worry about strictly defining that now.

In here, we start with multiple linear regression, which assumes that we have several covariates and one
response. If we extend this to multiple responses (i.e. a response vector), this is called multivariate linear
regression. The simple case for one response is called simple linear regression, and we will mention
some nice formulas and intuition that come out from working with this.

6Quoting Larry Wasserman, even 5 dimensions was considered high and 10 was considered massive.

19/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 2.1 (Linear Regression Model)

Given a dataset D = {(x(i), y(i))}ni=1, where x(i) ∈ Rd with x1 = 1 (which is what we do in practice
to include an intercept term) and y(i) ∈ R, the multiple linear regression model is

y = βTx+ ϵ (61)

with the following assumptions:
1. Weak exogeneity : the covariates are observed without error.
2. Linearity : the mean of the variate is a linear combination of the parameters and the covariates.
3. Gaussian errors: the errors are Gaussian.a
4. Homoscedasticity : the errors (the observations of Y) have constant variance.
5. Independence of errors: The errors are uncorrelated.
6. No multicollinearity : more properly, the lack of perfect multicollinearity. Assume that the

covariates aren’t perfectly correlated.b

In order to check multicollinearity, we compute the correlation matrix.

Definition 2.2 (Correlation Matrix)

The correlation matrix of random variables X1, . . . , Xd is

Cij = Corr(Xi, Xj) =
Cov(Xi, Xj)

σXi
σXj

given that σXiσXj > 0. Clearly, the diagonal entries are 1, but if there are entries that are very close
to 1, then we have multicollinearity.

Assume that two variables are perfectly correlated. Then, there would be pairs of parameters that are
indistinguishable if moved in a certain linear combination. This means that the variance of β̂ will be very
ill conditioned, and you would get a huge standard error in some direction of the βi’s. We can fix this
by making sure that the data is not redundant and manually removing them, standardizing the variables,
making a change of basis to remove the correlation, or just leaving the model as it is.

If these assumptions don’t hold,

1. Weak exogeneity : the sensitivity of the model can be tested to the assumption of weak exogeneity
by doing bootstrap sampling for the covariates and seeing how the sampling affects the parameter
estimates. Covariates measured with error used to be a difficult problem to solve, as they required
errors-in-variables models, which have very complicated likelihoods. In addition, there is no universal
fitting library to deal with these. But nowadays, with the availability of Markov Chain Monte Carlo
(MCMC) estimation through probabilistic programming languages, it is a lot easier to deal with these
using Bayesian hierarchical models (or multilevel models, or Bayesian graphical models—these have
many names).

2. Linearity : the linear regression model only assumes linearity in the parameters, not the covariates.
Therefore you could build a regression using non-linear transformations of the covariates, for instance,

Y = X1β1 +X2
1β2 + log(X1)β3 (62)

If you need to further relax the assumption, you are better off using non-linear modelling.

3. Constant variance: the simplest fix is to do a variance-stabilising transformation on the data. Assuming
a constant coefficient of variation rather than a constant mean could also work. Some estimation
libraries (such as the glm package in R) allow specifying the variance as a function of the mean.

aWe can relax this assumption when we get into generalized linear models, and in most cases we assume some closed form
of the error for computational convenience, like when computing the maximum likelihood.

bThis is the assumption that breaks down in high dimensional linear regression.

20/ 115

Machine Learning Muchang Bahng Spring 2024

4. Independence of errors: this is dangerous because in the financial world things are usually highly
correlated in times of crisis. The most important thing is to understand how risky this assumption is
for your setting. If necessary, add a correlation structure to your model, or do a multivariate regression.
Both of these require significant resources to estimate parameters, not only in terms of computational
power but also in the amount of data required.

5. No multicollinearity : If the covariates are correlated, they can still be used in the regression, but nu-
merical problems might occur depending on how the fitting algorithms invert the matrices involved.
The t-tests that the regression produces can no longer be trusted. All the covariates must be included
regardless of what their significance tests say. A big problem with multicollinearity, however, is over-
fitting. Depending on how bad the situation is, the parameter values might have huge uncertainties
around them, and if you fit the model using new data their values might change significantly.7 Mul-
ticollinearity is a favourite topic of discussion for quant interviewers, and they usually have strong
opinions about how it should be handled. The model’s intended use will determine how sensitive it
is to ignoring the error distribution. In many cases, fitting a line using least-squares estimation is
equivalent to assuming errors have a normal distribution. If the real distribution has heavier tails, like
the t-distribution, how risky will it make decisions based on your outputs? One way to address this
is to use a technique like robust-regression. Another way is to think about the dynamics behind the
problem and which distribution would be best suited to model them—as opposed to just fitting a curve
through a set of points.

2.1 Ordinary Least Squares
If we use a squared loss function, this is called ordinary least squares. It is a well known fact that the
true regressor that minimizes this loss is

f∗(x) = E[Y | X = x] (63)

which is the conditional expectation of Y given X. This is the true regressor function, which is the best
approximation of Y over the σ-algebra generated by X. This may or may not be linear.

Theorem 2.1 (Least Squares Solution For Linear Regression)

Given the design matrix X, we can present the linear model in vectorized form:

Y = Xβ + ϵ, ϵ ∼ N(0, σ2I) (64)

The solution that minimizes the squared loss is

β = (XTX)−1XTY ∈ Rd

Var(β̂) = σ̂2(XTX)−1 ∈ Rd×d

Proof.

The errors can be written as ϵ = Y −Xβ, and you have the following total sum of squared errors:

S(β) = ϵT ϵ = (Y −Xβ)T (Y −Xβ)

We want to find the value of β that minimizes the sum of squared errors. In order to do this,
remember the following matrix derivative rules when differentiating with respect to vector x.

1. xTA 7→ A
2. xTAx 7→ 2Ax

7I suggest reading this Wikipedia article on multicollinearity, as it contains useful information: https://en.wikipedia.org/
wiki/Multicollinearity

21/ 115

https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Multicollinearity

Machine Learning Muchang Bahng Spring 2024

Now this should be easy.

S(β) = YTY − βTXTY −YTXβ + βTXTXβ

= YTY − 2YTXβ + βTXTXβ

∂

∂β
S(β) = −2XTY + 2XTXβ

and setting it to 0 gives

2XTXβ − 2XTY = 0 =⇒ XTXβ = XTY

and the variance of β, by using the fact that Var[AX] = AVar[X]AT , is

Var(β̂) = (X′X)−1X′ σ2I X(X′X)−1 = σ2(X′X)−1(X′X)(X′X)−1 = σ2(X′X)−1

But we don’t know the true σ2, so we estimate it with σ̂2 by taking the variance of the residuals.
Therefore, we have

β = (XTX)−1XTY ∈ Rd

Var(β̂) = σ̂2(XTX)−1 ∈ Rd×d

Example 2.1 (Copying Data)

What happens if you copy your data in OLS? In this case, our MLE estimate becomes((
X
X

)T (
X
X

))−1(
X
X

)T (
Y
Y

)
=

= (XTX +XTX)−1(XTY +XTY) = (2XTX)−12XTY = β̂

and our estimate is unaffected. However, the variance shrinks by a factor of 2 to

σ2

2
(XTX)−1 (65)

A consequence of that is that confidence intervals will shrink with a factor of 1/
√
2. The reason is

that we have calculated as if we still had iid data, which is untrue. The pair of doubled values are
obviously dependent and have a correlation of 1.

Another way to solve the solution is through likelihood estimation.

Theorem 2.2 (Maximum Likelihood Estimation of Linear Regression)

Given a dataset D = {(x(i), y(i))}Ni=1, our likelihood is

L(θ;D) =

N∏
i=1

p(y(i) | x(i); θ) =
N∏
i=1

1√
2πσ2

exp

(
− (y(i) − θTx(i))2

2σ2

)

22/ 115

Machine Learning Muchang Bahng Spring 2024

We can take its negative log, remove additive constants, and scale accordingly to get

ℓ(θ) = −N
2
lnσ2 − N

2
ln(2π) +

1

2σ2

N∑
i=1

(
y(i) − θTx(i)

)2
=

1

2

N∑
i=1

(
y(i) − θTx(i)

)2
which then corresponds to minimizing the sum of squares error function.

Theorem 2.3 (Gradient Descent for Linear Regression)

Taking the gradient of this log likelihood w.r.t. θ gives

∇θℓ(θ) =

N∑
i=1

(y(i) − θTx(i))x(i)

and running gradient descent over a minibatch M ⊂ D gives

θ = θ − η∇θℓ(θ)

= θ − η
∑

(x,y)∈M

(y − θTx)x

This is guaranteed to converge since ℓ(θ), as the sum of convex functions, is also convex.
Note that since we can solve this in closed form, by setting the gradient to 0, we have

0 =

N∑
n=1

y(n)ϕ(x(n))T −wT

(N∑
n=1

ϕ(x(n))ϕ(x(n))T
)

which is equivalent to solving the least squares equation

wML = (ΦTΦ)−1ΦTY

Note that if we write out the bias term out explicitly, we can see that it just accounts for the
translation (difference) between the average of the outputs ȳ = 1

N

∑N
n=1 yn and the average of the

basis functions ϕ̄j = 1
N

∑N
n=1 ϕj(x

(n)).

w0 = ȳ −
M−1∑
j=1

wj ϕ̄j

We can also maximize the log likelihood w.r.t. σ2, which gives the MLE

σ2
ML =

1

N

N∑
n=1

(
y(n) −wT

MLϕ(x
(n))
)2

Code 2.1 (MWE for OLS Linear Regression in scikit-learn)

Here is a minimal working example of performing linear regression with scikit-learn. Note that the
input data must be of shape (n, d).

23/ 115

Machine Learning Muchang Bahng Spring 2024

1 import numpy as np
2 from sklearn.linear_model import LinearRegression
3

4 X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
5 y = np.dot(X, np.array([1, 2])) + 3
6

7 model = LinearRegression()
8 model.fit(X, y)
9 print(X)

10 print(y)
11 print(model.score(X, y))
12 print(model.intercept_)
13 print(model.coef_)
14 print(model.predict(np.array([[3, 5]])))

1 [[1 1]
2 [1 2]
3 [2 2]
4 [2 3]]
5 [6 8 9 11]
6 1.0
7 3.0000000000000018
8 [1. 2.]
9 [16.]

10 .
11 .
12 .
13 .
14 .

2.1.1 Bias Variance Decomposition

We can use what we have learned to prove a very useful result for the mean squared loss.

Theorem 2.4 (Pythagorean’s Theorem)

The expected square loss over the joint measure PX×Y can be decomposed as

EX×Y [(Y − h(X))2] = EX×Y [
(
Y − E[Y | X]

)2
] + EX [

(
E[Y | X]− h(X)

)2
] (66)

That is, the squared loss decomposes into the squared loss of E[Y | X] and g(X), which is the intrinsic
misspecification of the model, plus the squared difference of Y with its best approximation E[Y | X],
which is the intrinsic noise inherent in Y beyond the σ-algebra of X.

Proof.

We can write

EX×Y [L] = EX×Y
[(
Y − g(X)

)2]
= EX×Y

[(
(Y − E[Y | X]) + (E[Y | X]− g(X))

)2]
= EX×Y [

(
Y − E[Y | X]

)2
] + EX×Y [{Y − E[Y | X]} {E[Y | X]− g(X)}]

+ EX [
(
E[Y | X]− g(X)

)2
]

= EX×Y [
(
Y − E[Y | X]

)2
] + EX [

(
E[Y | X]− g(X)

)2
]

where the middle term cancels out due to the tower property.

We also proved a second fact: Since E[
(
E[Y | X] − g(X)

)2
] is the misspecification of the model, we cannot

change this (positive) constant, so E
[(
Y − g(X)

)2] ≥ E[(Y − E[Y | X])2], with equality achieved when
we perfectly fit g as E[Y | X] (i.e. the model is well-specified). Therefore, denoting F as the set of all
σ(X)-measurable functions, then the minimum of the loss is attained when

argmin
g∈F

E[L] = argmin
g∈F

E
[(
Y − g(X)

)2]
= E[Y | X] (67)

Even though this example is specific for the mean squared loss, this same decomposition, along with the bias
variance decomposition, exists for other losses. It just happens so that the derivations are simple for the

24/ 115

Machine Learning Muchang Bahng Spring 2024

MSE, which is why this is introduced first. However, the derivations for other losses are much more messy,
and sometimes may not hold rigorously. However, the general intuition that more complex models tend to
overfit still hold true.

Now if we approximate E[Y | X] with our parameterized hypothesis hθ, then from a Bayesian perspective
the uncertainty in our model is expressed through a poseterior distribution over θ. A frequentist treatment,
however, involves making a point estimate of θ based on the dataset D and tries instead to interpret the
uncertainty of this estimate through the following thought experiment: Suppose we had a large number of
datasets each of size N and each drawn independently from the joint distribution X × Y . For any given
dataset D, we can run our learning algorithm and obtain our best fit function h∗θ;D(x). Different datasets
from the ensemble will give different functions and consequently different values of the squared loss. The
performance of a particular learning algorithm is then assessed by taking the average over this ensemble of
datasets, which we define ED[hθ;D(x)] = E(X×Y)N [hθ;D(x)]. We are really taking an expectation over all
datasets, meaning that the N points in each D must be sampled from (X × Y)N .

Consider the term
(
E[Y | X] − hθ(X)

)2 above, which models the discrepancy in our optimized hypothesis
and the best approximation. Now, over all datasets D, there will be a function hθ;D, and averaged over all
datasets D is ED[hθ;D]. So, the random variable below (of D and X) representing the stochastic difference
between our optimized function hθ;D(X) and our best approximation E[Y | X] can be decomposed into

(
E[Y | X]− hθ:D(X)

)2
=
[(
E[Y | X]− ED[hθ;D(X)]

)
+
(
ED[hθ;D(X)]− hθ:D(X)

)]2
=
(
E[Y | X]− ED[hθ;D(X)]

)2
+
(
ED[hθ;D(X)]− hθ:D(X)

)2
+ 2
(
E[Y | X]− ED[hθ;D(X)]

)(
ED[hθ;D(X)]− hθ:D(X)

)
=
(
E[Y | X]− ED[hθ;D(X)]

)2
+
(
ED[hθ;D(X)]− hθ:D(X)

)2
Averaging over all datasets D causes the middle term to vanish and gives us the expected squared difference
between the two random variables, now of X.

Theorem 2.5 (Bias Variance Decomposition)

Therefore, we can write out the expected square difference between hθ and E[Y | X] as the sum of
two terms.

ED
[(
E[Y | X]− hθ(X)

)2]
=
(
E[Y | X]− ED[hθ;D(X)]

)2︸ ︷︷ ︸
(bias)2

+ED
[(
ED[hθ;D(X)]− hθ;D(X)

)2]︸ ︷︷ ︸
variance

(68)

Let us observe what these terms mean:
1. The bias E[Y | X]−ED[hθ;D(X)] is a random variable of X that measures the difference in how

the average prediction of our hypothesis function ED[hθ;D(X)] differs from the actual prediction
E[Y | X].

2. The variance ED
[(
ED[hθ;D(X)] − hθ;D(X)

)2] is a random variable of X that measures the
variability of each hypothesis function hθ(X) about its mean over the ensemble ED[hθ;D(X)].

Therefore, we can substitute this back into our Pythagoras decomposition, where we must now take the
expected bias and the expected variance. Therefore, we get

Expected Loss = (Expected Bias)2 + Expected Variance + Noise (69)

where

(Bias)2 = EX
[(
E[Y | X]− ED[hθ;D(X)]

)2]
Variance = EX

[
ED
[(
ED[hθ;D(X)]− hθ;D(X)

)2]]
Noise = EX×Y [

(
Y − E[Y | X]

)2
]

25/ 115

Machine Learning Muchang Bahng Spring 2024

2.1.2 Convergence Bounds

Let’s get a deeper understanding on linear regression by examining the convergence of the empirical risk
minimizer to the true risk minimizer. We can develop a naive bound using basic concentration of measure.

Theorem 2.6 (Exponential Bound)

Let P be the set of all distributions for X × Y supported on a compact set. There exists constants
c1, c2 s.t. that the following is true. For any ϵ > 0,

sup
P∈P

Pn
(
r(β̂n) > r(β∗(P) + 2ϵ)

)
≤ c1e

−nc2ϵ2 (70)

Hence

r(β̂n)− r(β∗) = OP

(√
1

n

)
(71)

Proof.

However, this is not a very tight bound, and we can do better. Though the proof is very long and will be
omitted.

Theorem 2.7 (Gyorfi, Kohler, Krzyzak, Walk, 2002 [1])

Let σ2 = supxVar[Y | X = x] <∞. Assume that all random variables are bounded by L <∞. Then

E
∫

|β̂Tx−m(x)|2 dP(x) ≤ 8 inf
β

∫
|βTx−m(x)|2 dP(x) + Cd(log(n) + 1)

n
(72)

You can see that the bound contains a term of the form

d log(n)

n
(73)

and under the low dimensional case, d is small and bound is good. However, as d becomes large, then we
don’t have as good of theoretical guarantees.

Theorem 2.8 (Central Limit Theorem of OLS)

We have √
n(β̂ − β)

d−→ N(0,Γ) (74)

where
Γ = Σ−1E

[
(Y −XTβ)2XXT

]
Σ−1 (75)

The covariance matrix Γ can be consistently estimated by

Γ̂ = Σ̂−1M̂ Σ̂−1 (76)

where

M̂(j, k) =
1

n

n∑
i=1

Xi(j)Xi(k)ϵ̂
2
i (77)

and ϵ̂i = Yi − β̂TXi.

26/ 115

Machine Learning Muchang Bahng Spring 2024

2.2 Simple Linear Regression
The simple linear regression is the special case of the linear regression with only one covariate.8

y = α+ xβ (78)

which is just a straight line fit. Interviewers like this model for its aesthetically pleasing theoretical properties.
A few of them are described here, beginning with parameter estimation. For n pairs of (xi, yi),

yi = α+ βxi + ϵi (79)

To minimize the sum of squared errors ∑
i

ϵ2i =
∑
i

(yi − α− βxi)
2 (80)

Taking the partial derivatives w.r.t. α and β and setting them equal to 0 gives∑
i

(yi − α̂− β̂xi) = 0∑
i

(yi − α̂− β̂xi)xi = 0

From just the first equation, we can write

nȳ = nα̂+ nβ̂x̄ =⇒ y = α̂+ β̂x̄ =⇒ α̂ = ȳ − β̂x̄ (81)

The second equation gives ∑
i

xiyi = α̂nx̄+ β̂
∑
i

x2i (82)

and substituting what we derived gives∑
i

xiyi = (ȳ − β̂x̄)nx̄+ β̂
∑
i

x2i

= nx̄ȳ + β̂

((∑
i

x2i

)
− nx̄2

)
and so we have

β̂ =

(∑
i xiyi

)
− nx̄ȳ(∑

x2i
)
− nx̄2

=

∑
i xiyi − x̄yi∑
x2i − x̄xi

=

∑
i(xi − x̄)yi∑
i(xi − x̄)xi

(83)

Now we can use the identity∑
i

(xi − x̄)(yi − ȳ) =
∑
i

yi(xi − x̄) =
∑
i

xi(yi − ȳ)

to substitute both the numerator and denominator of the equation to

β̂ =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
=

cov(x, y)

var(x)
= ρxy

sy
sx

where ρxy is the correlation between x and y, and the variance and covariance represent the sample variance
and covariance (indicated in lower case letters). Therefore, the correlation coefficient ρxy is precisely equal
to the slope of the best fit line when x and y have been standardized first, i.e. sx = sy = 1.

8I’ve included a separate section on this since this was especially important for quant interviews.

27/ 115

Machine Learning Muchang Bahng Spring 2024

Example 2.2 (Switching Variables)

Say that we are fitting Y onto X in a simple regression setting with MLE β1, and now we wish to fit
X onto Y . How will the MLE slope change? We can see that

β1 = ρ
sy
sx
, β2 = ρ

sx
sy

and so
β2 = ρ2

1

ρ

sx
sy

= ρ2
1

β1
= β1

var(x)

var(y)

The reason for this is because regression lines don’t necessarily correspond to one-to-one to a casual
relationship. Rather, they relate more directly to a conditional probability or best prediction.

The coefficient of determination R2 is a measure tells you how well your line fits the data. When you
have your yi’s, their deviation around its mean is captured by the sample variance s2y =

∑
i(yi − ȳ)2. When

we fit our line, we want the deviation of yi around our predicted values ŷi, i.e. our sum of squared loss∑
i(yi − ŷi)

2, to be lower. Therefore, we can define

R2 = 1− MSELoss

var(y)
= 1−

∑
i(yi − ŷi)

2∑
i(yi − ȳ)2

In simple linear regression, we have
R2 = ρ2yx

An R2 of 0 means that the model does not improve prediction over the mean model and 1 indicates perfect
prediction. However, a drawback of R2 is that it can increase if we add predictors to the regression model,
leading to a possible overfitting.

Theorem 2.9 ()

The residual sum of squares (RSS) is equal to the a proportion of the variance of the yi’s.

RSS =
∑

(yi − ŷi)
2 = (1− ρ2)

∑
(yi − ȳ)2 (84)

2.3 Weighted Least Squares

2.4 Mean Absolute Error

2.5 Significance Tests
This is not as emphasized in the machine learning literature, but it is useful to know from a statistical point
of view.9

2.5.1 T Test

Given some multilinear regression problem where we must estimate β ∈ RD+1 (D coefficients and 1 bias), we
must determine whether there is actually a linear relationship between the x and y variables in our dataset
D. Say that we have a sample of N points D = {(xn, yn)}Nn=1. Then, for each ensemble of datasets D that
we sample from the distribution (X×Y)N , we will have some estimator β for each of them. This will create
a sampling distribution of β’s where we can construct our significance test on.

9This is also asked in quant interviews.

28/ 115

Machine Learning Muchang Bahng Spring 2024

So what should our sampling distribution of β̂ be? It is clearly normal since it is just a transformation of
the normally distributed Y : β̂ ∼ N(β, σ2(XTX)−1). Therefore, only considering one element βi here,

β̂i − βi

σ
√

(XTX)−1
ii

∼ N(0, 1)

But the problem is that we don’t know the true σ2, and we are estimating it with σ̂2. If we knew the true σ2

then this would be a normal, but because of this estimate, our normalizing factor is also random. It turns
out that the residual sum of squares (RSS) for a multiple linear regression∑

i

(yi − xTi β)
2

follows a χ2
n−d distribution. Additionally from the χ2 distribution of RSS we have

(n− d)σ̂2

σ2
∼ χ2

n−d

where we define σ̂2 = RSS
n−d which is an unbiased estimator for σ2. Now there is a theorem that says that

if you divide a N(0, 1) distribution by a χ2
k/k distribution (with k degrees of freedom), then it gives you a

t-distribution with the same degrees of freedom. Therefore, we divide

β̂i−βi√
(XTX)−1

ii

σ̂
=

σ ∼ N(0, 1)

σχ2
n−d/(n− d)

=
∼ N(0, 1)

χ2
n−d/(n− d)

= tn−d

where the standard error of the distribution is

SE(β̂i) = σβ̂i
= σ

√
(XTX)−1

ii

In ordinary linear regression, we have the null hypothesis h0 : βi = 0 and the alternative ha : βi ̸= 0 for a
two sided test or ha : βi > 0 for a one sided test. Given a certain significance level, we compute the critical
values of the t-distribution at that level and compare it with the test statistic

t =
β̂ − 0

SE(β̂)

Now given our β, how do we find the standard error of it? Well this is just the variance of our estimator
β, which is σ̂2(XTX)−1, where σ̂2 is estimated by taking the variance of the residuals ϵi. When there is a
single variable, the model reduces to

y = β0 + β1x+ ϵ

and

X =

1 x1
1 x2
...

...
1 xn

 , β =

(
β0
β1

)

and so
(X′X)−1 =

1

n
∑
x2i − (

∑
xi)2

(∑
x2i −

∑
xi

−
∑
xi n

)
and substituting this in gives√

V̂ar(β̂1) =
√
[σ̂2(X′X)−1]22 =

√
σ̂2∑

x2i − (
∑
xi)2

=

√
σ̂2∑

(xi − x̄i)2

29/ 115

Machine Learning Muchang Bahng Spring 2024

Example 2.3 ()

Given a dataset
Hours Studied for Exam 20 16 20 18 17 16 15 17 15 16 15 17 16 17 14
Grade on Exam 89 72 93 84 81 75 70 82 69 83 80 83 81 84 76

The hypotheses are h0 : β = 0 and ha : β ̸= 0, and the degrees of freedom for the t-test is df =
N − (D+1) = 13, where N = 15 is the number of datapoints and D = 1 is the number of coefficients
(plus the 1 bias term). The critical values is ±2.160, which can be found by taking the inverse CDF
of the t-distribution evaluated at 0.975.
Now we calculate the t score. We have our estimate β1 = 3.216, β0 = 26.742, and so we calculate

σ̂2 =
1

15

15∑
i=1

(
yi − (3.216xi + 26.742)

)
= 13.426∑

i

(xi − x̂i)
2 = 41.6

and therefore, we can compute

t =
β1√

σ̂2/
∑
i(xi − x̂i)2

=
3.216√

13.426/41.6
= 5.661

and therefore, this is way further than our critical value of 2.16, meaning that we reject the null
hypothesis.

Note that when multicolinearity is present, then
∑
i(xi− x̂i)

2 will be very small causing the denominator to
blow up, and therefore you cannot place too much emphasis on the interpretation of these statistics. While
it is hard to see for the single linear regression case, we know that some eigenvalue of (XTX)−1 will blow up,
causing the diagonal entries (XTX)−1

ii to be very small. When we calculate the standard error by dividing
by this small value, the error blows up.

Theorem 2.10 ()

We can compute this t-statistic w.r.t. just the sample size n and the correlation coefficient ρ as such.

t =
β̂ − 0

SE(β̂)

and the denominator is simply

SE(β̂) =

√
1

n−1

∑
(yi − ŷ)2∑

(xi − x̄)2
=⇒ t =

β̂
√∑

(xi − x̄)2
√
n− 1√∑

(yi − ŷ)2
=

β̂
√∑

(xi − x̄)2
√
n− 1√

(1− ρ2)
√∑

(yi − ȳ)2

=
ρ√

1− ρ2

√
n− 1

where the residual sum of squares on the top can be substituted according to our theorem. Therefore

t =
ρ√

1− ρ2

√
n− 1 (85)

2.5.2 F Test

Given that you have n data points that have been fit on a linear model, the F -statistic is based on the ratio
of two variances.

30/ 115

Machine Learning Muchang Bahng Spring 2024

2.6 Bayesian Linear Regression

3 High Dimensional Linear Regression
Now supposed that d > n, then the first problem is that we can no longer use least squares since XTX is
no longer invertible and the same problem happens with maximum likelihood. This is known as the high
dimensional or large p, small n problem. The most straightforward way is simply to reduce the covariates
to a dimension smaller than n. This can be done with three ways.

1. We perform PCA on the X and use the first k principal components where k < n.

2. We cluster the covariates based on their correlation. We can use one feature from each cluster or take
the average of the covariates within each cluster.

3. We can screen the variables by choosing the k features that have the largest correlation with Y .

Once this is done, we are back in the low dimensional regime and can use least squares. Essentially, this is
a way to find a good subset of the covariates, which can be formalized by the following. Let S be a subset
of [d] and let XS = (Xj : j ∈ S). If the size of S is not too large, we can regress Y on XS instead of X.

Definition 3.1 (Best Subset Regression)

Fix k < d and let Sk denote all subsets of size k. For a given S ∈ Sk, let βS be the best linear
predictor for the subset S. We want to find the best subset S that minimizes the loss

E[(Y − βTSXS)
2] (86)

which is equivalent to finding

argmin
β

E[(Y − βTX)2] subject to ||β||0 ≤ k (87)

where ||β||0 is the number of non-zero entries in β.

There will be a bias variance tradeoff. As k increases, the bias decreases but the variance increases. We can
approximate the risk with the training error, but the minimization is over all subset of size k, and so this is
NP-hard. Therefore, best subset regression is infeasible, but we can approximate best subset regression in
two different ways.

1. A greedy approximation leads to forward stepwise regression.

2. A convex relaxation of the problem leads to the LASSO regression.

It turns out that the theoretical guarantees and computational time for both are the same, but the Lasso is
much more popular. It may be due to a cleaner form or that it’s easier to study, but who knows.

A completely separate way is to use all the covariates, but instead of least squares, we shrink the coefficients
towards 0. This is called ridge regression and is an example of a shrinkage model.

3.1 Ridge Regression
Ridge regression is used both in the high dimensional case or when our function space is too large/complex,
which leads to overfitting. In the overfitting case, we have seen that either decreasing our function space or
getting more training data helps. Another popular way is to add a regularizing term to the error function
in order to discourage the coefficients from reaching large values, effectively limiting the variance over D.

31/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 3.2 (Ridge Regression)

In ridge regression, we minimize

L(β) = ||Y −Xβ||2 + λ||β||2 (88)

where we penalize according to the L2 norm of the coefficients.

Figure 6: Even with a slight increase in the regularization term λ, the RMS error on the testing set heavily decreases.

Theorem 3.1 (Least Squares Solution for Ridge Regression)

The minimizer of the ridge loss is

β̂ = (XTX + λI)−1XTY (89)

Proof.

TBD

Theorem 3.2 (Bias Variance Decomposition of Ridge Regression)

TBD

From a computational point of view, we can see that by adding the λI term, it dampens the matrix so
that it does become invertible (or well conditioned), allowing us to find a solution. The higher the λ term,
the higher the damping effect. The next theorem compares the performance of the best ridge regression
estimator to the best linear predictor.

Theorem 3.3 (Hsu, Kakade, Zhang, 2014 [2])

Suppose that ||Xi|| ≤ r and let βTx be the best linear approximation to m(x). Then, with probability
at least 1− 4e−t, we have

r(β̂)− r(β) ≤
(
1 +O

(
1 + r2/λ

n

))
λ||β||2

2
+
σ2

n

Tr(Σ)

2λ
(90)

32/ 115

Machine Learning Muchang Bahng Spring 2024

We can see that the λ term exists in the numerator on λ||β||2
2 and in the denominator on Tr(Σ)

2λ . This is the
bias variance tradeoff. The first term is the bias term, which is the penalty for not being able to fit the
data as well. The second term is the variance term, which is the penalty for having a more complex model.
So our optimal λ in the theoretical sense would be the one that minimizes the sum of these two terms. In
practice, it’s not this clean since we have unknown quantities in the formula, but just like how we did cross
validation over the model complexity, we can also do cross validation over the λ. The decomposition above
just gives you a theoretical feeling of how these things trade off.

Code 3.1 (MWS of Ridge Regression in scikit-learn)

1 import numpy as np
2 from sklearn.linear_model import Ridge
3

4 X = np.random.randn(10, 5)
5 y = np.random.randn(10)
6 # regularization parameter
7 model = Ridge(alpha=1.0)
8 model.fit(X, y)
9 print(model.score(X, y))

10 print(model.intercept_)
11 print(model.coef_)
12 print(model.predict(np.array([[1, 2, 3, 4, 5]])))

1 0.8605535024325397
2 -0.28291076492665157
3 [-0.10400521 -0.7587073

-0.05116735 1.16236649
-0.0401323]

4 [2.39097184]
5 .
6 .
7 .
8 .
9 .

10 .

Question 3.1 (To Do)

Bayesian interpretation of ridge regression.

3.2 Forward Stepwise Regression
Forward stepwise regression is a greedy algorithm that starts with an empty set of covariates and adds the
covariate that most improves the fit. It avoids the NP-hardness of the best subset regression by adding
covariates one by one.

Definition 3.3 (Greedy Forward Stepwise Regression)

Given your data D, let’s first standardize it to have mean 0 and variance 1.a You start off with a set
Q = {} and choose the number of parameters K.

1. With each covariate X = (X1, . . . , Xn), we compute the correlation between it and the Y , which
reduces to the inner product (since we standardized).

ρj = ⟨Y,X:,j⟩ =
1

n

n∑
i=1

YiXji (91)

2. Then, we take the covariate index that has the highest empirical correlation with Y , add it to
Q and regress Y only on this covariate.

q1 = argmax
j

ρj , Q = {q1}, β̂q1 = argmin
β

1

n
||Y −X:,q1β||2 (92)

3. Then you repeat the process. You take the residual values r = Y −X:,q1 β̂q1 ∈ Rn compute the
correlation between r and the remaining covariates, and pick our the maximum covariate index

33/ 115

Machine Learning Muchang Bahng Spring 2024

q2. Then, you repeat the regression from start with these two covariates

q2 = argmax
j

⟨r,X:;j⟩, Q = {q1, q2}, β̂q1,q2 = argmin
β

1

n
||Y −X:,[q1,q2]β||

2 (93)

Note that you’re not going to get the same coefficient for β̂q1 as before since you’re doing two
variable regression.

4. You get out the residual values r = Y − X:,[q1,q2]β̂q1,q2 ∈ Rn and keep repeating this process
until you have K covariates in Q.

Again, there is a bias variance tradeoff in choosing the number of covariates K, but through cross-validation,
we can find the optimal K. It is also easy to add constraints, e.g. if we wanted to place a restriction that
two adjacent covariates can’t be chosen, we can easily add this to the algorithm.

Theorem 3.4 (Rate of Convergence for Stepwise Regression)

Let f̂K be the optimal regressor we get from K covariates in stepwise regression. Then, we have
something like

||f − f̂ ||2 ≤ c||f − fK ||2 + log n√
n

(94)

3.2.1 Stagewise Regression

Stagewise regression is a variant of forward stepwise regression where we add the covariate that most improves
the fit, but we only take a small step in that direction. This is useful when we have a lot of covariates and
we don’t want to overfit.

3.3 Lasso Regression
The Lasso approximates the best subset regression by using a convex relaxation. In particular, the norm
||β||0 is not convex, but the L1 norm ||β||1 is. Therefore, we want relax our constraint equation as such:

argmin
||β||0≤L

r(β) 7→ argmin
||β||1≤L

r(β) (95)

This gives us a convex problem, which we can then solve. In fact, it turns out that optimizing the risk given
the L1 restriction on the norm is equivalent to minimizing the risk plus a L1 penalty, as this is the Lagrangian
form of the original equation (this is in convex optimization). Therefore, there exists a pair (L, λ) for which
the two problems are equivalent

argmin
||β||1≤L

r(β) = argmin
β

r(β) + λ||β||1 (96)

Definition 3.4 (LASSO Regression)

In lasso regression, we minimize the loss defined

R̂(β) =
1

n

n∑
i=1

(y(i) − βTx(i))2 + λ||β||1 (97)

where we penalize according to the L1 norm of the coefficients.

aThis may or may not be a good idea, since the variance of each covariate can tell you a lot about the importance of the
covariate.

34/ 115

Machine Learning Muchang Bahng Spring 2024

A question arises: Why use the L1 norm? The motivation behind this is that we want to model the L0 norm
as much as possible but at the same time we want it to be convex. This turns out to be precisely the L1
norm. Unfortunately, there is no closed form solution for this estimator, but in convex optimization, we can
prove that this estimator is sparse. That is, for large enough λ, many of the components of β̂ are 0. The
classical intuition for this is the figure below, where the equipotential lines have “corners.” In fact for any
0 < p < 1, there are also corners, but the problem with using these p-norms is that they are not convex.

Figure 7: The ridge regularizer draws equipotential circles in our parameter space. The lasso draws a diamond,
which tends to give a sparser solution since the loss is most likely to “touch” the corners of the contour plots of the
regularizer. The elastic net is a linear combination of the ridge and lasso regularizers.

To motivate this even further, let us take the two vectors

a =

(
1√
d
, . . . ,

1√
d

)
b = (1, 0, . . . , 0) (98)

Then the L0, L1, and L2 norms of a are d,
√
d, 1 and those of b are 1, 1, 1. We want to choose a norm that

capture the sparsity of b and distinguishes it from b., The L0 norm clearly does this, but the L2 norm does
not. The L1 norm is a good compromise between the two.

This now raises the question of how to determine a suitable regularization parameter λ. The next theorem
shows a nice concentration property of the Lasso for bounded covariates.

Theorem 3.5 (Concentration of Lasso)

Given (X,Y), assume that |Y | ≤ B and maxj |Xj | ≤ B. Let

β∗ = argmin
||β||1≤L

r(β) (99)

be the best sparse linear predictor in the L1 sense, where r(β) = E[(Y − βTX)2]. Let our lasso
estimator be

β̂ = argmin
||β||1≤L

r̂(β) = argmin
||β||1≤L

1

n

n∑
i=1

(Yi − βTXi)
2 (100)

which minimizes the empirical risk. Then, with probability at least 1− δ,

r(β̂) ≤ r(β∗) +

√
16(L+ 1)4B2

n
log

(√
2d√
δ

)
(101)

35/ 115

Machine Learning Muchang Bahng Spring 2024

Proof.

Code 3.2 (MWS of Lasso Regression in scikit-learn)

1 from sklearn.linear_model import Lasso
2

3 X = np.random.randn(10, 5)
4 y = np.random.randn(10)
5 # regularization parameter
6 model = Lasso(alpha=1e-1)
7 model.fit(X, y)
8 print(model.score(X, y))
9 print(model.intercept_)

10 print(model.coef_)
11 print(model.predict(np.array([[1, 2, 3, 4, 5]])))

1 0.47590269719236045
2 -0.8861298412689853
3 [0. 0.10767647

0.24172197 0.7427863 0.
]

4 [3.02553422]
5 .
6 .
7 .
8 .
9 .

3.3.1 Soft Thresholding and Proximal Gradient Descent

4 Nonparametric Regression

4.1 K Nearest Neighbors Regression
When we want to do nonparametric regression, i.e. when dealing with nonlinear functions, we can construct
a function that uses local averaging of its nearby points.

Example 4.1 (Local Averaging)

Say that we want to fit some function through a series of datapoints in simple regression (one covari-
ate). Then, what we can do is take some sliding window and our vale of the function at a point x is
the average of all values in the window [x− δ, x+ δ].

Figure 8: K means smoother

36/ 115

Machine Learning Muchang Bahng Spring 2024

Code 4.1 (MWS of K Nearest Neighbor Regression in scikit-learn)

Local averaging is implemented as the K nearest neighbor regressor in scikit learn. It is slightly
different in the way that it doesn’t use the points within a certain δ away but rather the K nearest
points. Either way, a minimal working example of this is

1 X = [[0], [1], [2], [3]]
2 y = [0, 0, 1, 1]
3 from sklearn.neighbors import KNeighborsRegressor
4 neigh = KNeighborsRegressor(n_neighbors=2)
5 neigh.fit(X, y)
6 print(neigh.predict([[1.5]]))

Note that since f̂ is a combination of step functions, this makes it discontinuous at points.

4.2 Kernel Regression and Linear Smoothers
K nearest neighbor regression puts equal weights on both near and far points, as long as they are in the
window. This may not be ideal, so a simple modification is to weigh these points according to their distance
from the middle x. We can do this with a kernel, as the name suggests. Now this is not the same thing as a
Mercer kernel in RKHS, so to distinguish that I will call it a local averaging kernel.

Definition 4.1 (Local Averaging Kernel)

A kernel is any smooth, symmetric, and non-negative function K : R → R.

Definition 4.2 (Kernel Regression)

Given some datapoints, X, our fitted regressor is of form

f̂(X) =

∑
i YiK

(
||X−Xi||

h

)
∑
iK

(
||X−Xi||

h

) (102)

where h is the bandwidth and the denominator is made sure so that the coefficients sum to 1. To
get a clearer picture, we are really taking the weighted average of the Yi’s.

f̂(X) =
∑
i

Yiℓi(X) where
∑
i

ℓi(X) = 1 (103)

Denoting Y = (Y1, . . . , Yn) ∈ Rn and the vector f(X) = (f(X1), . . . , f(Xn)), if we can write the
kernel function as Ŷ = f̂(X) = SY , which in matrix form, isŶ1...

Ŷn

 =

f̂(X1)
...

f̂(Xn)

 =

ℓ1(X1) · · · ℓn(X1)
...

. . .
...

ℓ1(Xn) · · · ℓn(Xn)

Y1...
Yn

 (104)

then we say that we have a linear smoother, with stochastic matrix S being our smoothing
matrix.

The reason we’d like to have the weights to sum to 1 is that if we had data that was constant (i.e. all Yi’s
are the same), then the fitted function should be constant at that value as well. Furthermore, the theme of

37/ 115

Machine Learning Muchang Bahng Spring 2024

linearity is important and will be recurring. The kernel estimator is defined for all X, but it’s important to
see its behavior at the training points Xi. The estimator Ŷ = f̂(X) is a linear combination of the Yi’s, and
the coefficients ℓi(Xj) depend on the values of Xj . Therefore, we have Ŷ = SY , which is very similar to the
equation Ŷ = HY in linear regression, where H is the hat matrix that projects Y onto the column space of
X. Nonparametric regression has the same form, but rather than being a projection, it is a linear smoothing
matrix. Therefore, this theme unifies both linear regression and nonparametric regression. Linear smoothers,
spline smoother, Gaussian processes, are all just different choices of the smoothing matrix S. However, not
all nonparametric estimators are linear smoothers, as we will see later.

Here are some popular kernels.

Definition 4.3 (Gaussian Kernel)

The Gaussian kernel is defined as

K(x) =
1√
2π
e−x

2/2 (105)

Figure 9: Gaussian kernel.

Definition 4.4 (Box-Car Kernel)

The Box-Car kernel is defined as
K(x) =

1

2
1(|x| ≤ 1) (106)

38/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 10: Boxcar kernel.

Definition 4.5 (Epanechnikov Kernel)

The Epanechnikov kernel is defined as

K(x) =
3

4
(1− x2)1(|x| ≤ 1) (107)

Figure 11: Epanechnikov kernel.

It turns out that from a theoretical point of view, the choice of the kernel doesn’t really matter. What
really matters is the bandwidth h since that is what determines the bias variance tradeoff. To see why, if
h = 0, then it will simply interpolate the points and variance is extremely high, and if h = ∞, then the
fitted function will be constant at Ȳ , leading to high bias. The following theorem formalizes this.

Theorem 4.1 (Bias Variance Tradeoff of Kernel Regression)

Suppose that d = 1 and that m′′ is bounded. Also suppose that X has a nonzero, differentiable

39/ 115

Machine Learning Muchang Bahng Spring 2024

density p and that the support is unbounded. Then, the risk is

Rn =
h4n
4

(∫
x2K(x)

)2 ∫ (
m′′(x) + 2m′(x)

p′(x)

p(x)

)2

dx (108)

+
σ2
∫
K2(x) dx

nhn

∫
dx

p(x)
+ o

(
1

nhn

)
+ o(h4n) (109)

The first term is the squared bias and the second term is the variance.

Proof.

We first denote

f̂(X) =

1
nh

∑n
i=1K

(
X−Xi

h

)
Yi

1
nh

∑n
i=1K

(
X−Xi

h

) (110)

where the denominator is the kernel density estimator p̂(X). Therefore, we rewrite

f̂(x)− f(x) =
â(x)

p̂(x)
− f(x) (111)

=

(
â(x)

p̂(x)
− f(x)

)(
p̂(x)

p(x) + 1− p̂(x)
p(x)

)
(112)

=
â(x)− f(x)p̂(x)

p(x)
+

(f̂(x)− f(x))(p(x)− p̂(x))

p(x)
(113)

as n → ∞ both f̂(x) − f(x) and p(x) − p̂(x) going to 0, and since they’re multiplied in the second
term, it will go to 0 very fast. So the dominant term is the first term, and we can write the above as
approximately

f̂(x)− f(x) ≈ â(x)− f(x)p̂(x)

p(x)
(114)

TBD continued. Wasserman lecture 6, 10:00.

From the theorem above, we can see that if the bandwidth is small, then h4 is small and the bias decreases.
However, there is a h term in the denominator of the variance term, which also trades it off. We can
furthermore see that the bias is sensitive to p′/p(x). This means that if the density is steep, then the bias
will be high. This is known as design bias, which is an underlying weakness in smoothing kernel regression.
Another problem that is not contained in the theorem is the boundary bias, which states that if you’re near
the boundary of the distribution (i.e. near the boundary of its support), then the bias also explodes. This
happens to be very nasty especially in high dimensions where most of the data tends to be near the boundary.
It turns out that this can be easily fixed with local polynomial regression, which gets rid of this term in the
bias without any cost to variance. This means that this is unnecessary bias.

Then you can apply regularization on this to get kernel ridge regression.

Code 4.2 (MWS of Kernel Ridge Regression in scikit learn)

1 from sklearn.kernel_ridge import KernelRidge
2 import numpy as np
3 n_samples, n_features = 10, 5
4 rng = np.random.RandomState(0)
5 y = rng.randn(n_samples)

40/ 115

Machine Learning Muchang Bahng Spring 2024

6 X = rng.randn(n_samples, n_features)
7 krr = KernelRidge(alpha=1.0)
8 krr.fit(X, y)

4.3 Local Polynomial Regression
Now another way to think about the kernel estimator is as such. Suppose that you’re doing linear regression
on a bunch of points and you want to choose a c that minimizes the loss.∑

i

(Yi − c)2 (115)

You would just pick c = Ŷ . But if you are given some sort of locality condition, that the value of c should
depend more on the values closer to it, you’re really now minimizing∑

i

(Yi − c(x))2K

(
Xi − x

h

)
(116)

Minimizing this by setting the derivative equal to 0 and solving gives us the kernel estimator. Therefore
you’re fitting some sort of local constant at a point X. But why fit a local constant, when you can fit a local
line or polynomial? This is the idea behind local polynomial regression.

Figure 12: Rather than using a local constant, we can use a local linear estimator.

Therefore, we can minimize the modified loss.

Definition 4.6 (Local Polynomial Estimator)

The local polynomial estimator is a local linear kernel smoother that estimates the function f̂
that minimizes the following loss.

argmin
β

∑
i

K

(
Xi − x

h

)(
Yi − (β0(x)− β1(x)(x−Xi) + . . .+ βk(x)(x−Xi)

k)
)

(117)

So we can fit a line
f(µ) ≈ β̂0(x) + β̂1(x)(µ− x) (118)

and simply remove the intercept term to get the local linear estimator.

f̂(x) = β̂0(x) (119)

41/ 115

Machine Learning Muchang Bahng Spring 2024

Note that this is not the same as taking the constant estimate. We are extracting the fitted intercept term
and so β̂0(x) ̸= c(x).

Theorem 4.2 (Weighted Least Squares)

The solution to the local linear estimator is similar to the weighted least squares solution.

β̂(x) =

(
β̂0(x)

β̂1(x)

)
= (XTWX)−1XTWY (120)

where

X =

1 X1 − x
...

...
1 Xn − x

 W =

K

(
X1−x
h

)
0 · · · 0

0 K

(
X2−x
h

)
· · · 0

...
...

. . .
...

0 0 · · · K

(
Xn−x
h

)

(121)

Computationally, it’s similar to kernel regression and it gets rid of both the boundary and design bias.

4.4 Regularized: Spline Smoothing
This is not local, but it’s a linear smoother.

4.5 Regularized: RKHS Regression
This is not local, but it’s a linear smoother.

4.6 Additive Models
In the most general case, we want to create nonparametric regression functions of the form

Y = f(x1, . . . , xd) + ϵ (122)

We’ve done this for one dimensional case, but we can extend this to multiple dimensions through additive
models of the form

Y =
∑
j

fj(xj) + ϵ (123)

This gives us very interpretable models where we can clearly see the effect of each covariate on Y . Clearly,
this is not as flexible as the previous model since they can’t capture dependencies, but we can create sub-
dependency functions and replace the form above to something like

Y =
∑
i,j

fi,j(xi, xj) + ϵ (124)

giving us more flexible models.

4.7 Nonlinear Smoothers, Trend Filtering
Tough example of the Dobbler function (like topologists sine curve). It’s a pretty good fit but it’s not too
good since it’s using a linear smoother (homogeneous). So we might need to fit it with nonlinear smoothers.

42/ 115

Machine Learning Muchang Bahng Spring 2024

4.8 High Dimensional Nonparametric Regression

4.9 Regression Trees

5 Cross Validation
We have understood the theoretical foundations of overfitting and underfitting with the bias variance de-
composition. But in practice, we don’t have an ensemble of datasets; we just have one. Therefore, we don’t
actually know what the bias, the variance, or the noise is at all. Therefore, how do we actually know in
practice when we are underfitting or overfitting? Easy. We just split our dataset into 2 different parts: the
training set and testing sets.

D = Dtrain ⊔ Dtest (125)

What we usually have is a training set that allows us to train the model, and then to check its performance
we have a test set. We would train the model on the training set, where we will always minimize the loss,
and then we would look at the loss on the test set. Though we haven’t made a testing set, since we know the
true model let us just generate more data and use that as our testing set. For each model, we can calculate
the optimal θ, which we will denote θ∗, according to the root mean squared loss

hθ∗ = argmin
hθ

√√√√ 1

N

N∑
i=1

(
y(i) − hθ(x(i))

)2 (126)

where division of N allows us to compare different sizes of datasets on equal footing, and the square root
ensures that this is scaled correctly. Let us see how well these different order models perform on a separate
set of data generated by the same function with Gaussian noise.

Figure 13: We can see that the RMS decreases monotonically on the training error as more complex functions become
more fine-tuned to the data. However, when we have a 9th degree polynomial the RMS for the testing set dramatically
increases, meaning that this model does not predict the testing set well, and performance drops.

Now we know that a more complex model (i.e. that captures a greater set of functions) is not necessarily the
best due to overfitting. Therefore, researchers perform cross-validation by taking the training set (X ,Y).
We divide it into S equal pieces

S⋃
s=1

Ds = (X ,Y) (127)

Then, we train the model M on S − 1 pieces of the data and then test it across the final piece, and do this
S times for every test piece, averaging its perforance across all S test runs. Therefore, for every model Mk,
we must train it S times, for all K models, requiring KS training runs. If data is particularly scarce, we
set S = N , called the leave-one-out technique. Then we just choose the model with the best average test
performance.

43/ 115

Machine Learning Muchang Bahng Spring 2024

The following result shows that cross-validation (data splitting) leads to an estimator with risk nearly as
good as the best model in the class.

Theorem 5.1 (Gyorfi, Kohler, Krzyak, Walk (2002))

Let M = {mh} be a finite class of regression estimators indexed by a parameter h, with m being the
true risk minimizer, mĥ being the empirical risk minimizer over the whole dataset D, and mH being
the empirical risk minimizer over the test set Dtest for ordinary least squares loss.

mH = argmin
mh

1

N

∑
i∈Dtest

(yi −mh(xi))
2 (128)

mĥ = argmin
mh

1

N

∑
i∈D

(yi −mh(xi))
2 (129)

If the data Yi and estimators are bounded by L, then for any δ > 0, we have

E
∫

|mH(x)−m(x)|2 dP(x) ≤ (1 + δ)E
∫

|mĥ(x)−m(x)|2 dP(x) + C(1 + log |M |)
n

(130)

where c = L2(16/δ + 35 + 19δ).

Code 5.1 (Minimal Example of Train Test Split in scikit-learn)

To implement this in scikit-learn, we want to use the train_test_split class. We can also set a
random state parameter to reproduce results.

1 from sklearn.model_selection import train_test_split
2

3 # Split into training (80\%) and test (20\%) data
4 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,

random_state=66)

However, this process requires a lot of training runs and therefore may be computationally infeasible. There-
fore, various information criterion has been proposed to efficiently select a model.

5.1 Leave 1 Out Cross Validation
5.1.1 Generalized (Approximate) Cross Validation

5.1.2 Cp Statistic

5.2 K Fold Cross Validation

5.3 Data Leakage

5.4 Information Criterion

6 Linear Classification

6.1 Empirical Risk Minimizer
You literally just try to build a hyperplane to minimize the number of misclassifications, but this is not really
differentiable and is hard. It’s just a stepwise function. Therefore, you use a surrogate loss function to
approximate the 0-1 loss function. The logistic uses some function, and the SVM uses the smallest convex
function to approximate the 0-1 loss function. Here are some examples:

44/ 115

Machine Learning Muchang Bahng Spring 2024

6.2 Perceptron

Definition 6.1 (Perceptron Model and Loss)

The simplest binary classification model is the perceptron algorithm. It is a discriminative para-
metric model that assigns

fw(x) =

{
1 if wTx+ b ≥ 0

−1 if wTx+ b < 0
(131)

where we have chosen to label class C1 = 1 and C2 = −1. Note that unlike linear regression (and
logistic regression, as we will see later), the perceptron is not a probabilistic model. It is a discrim-
inant function, which just gives point estimates of the classes, not their respective probabilities.
Like logistic regression, however, it is a linear model, meaning that the decision boundary it creates
is always a linear (affine) hyperplane.

To construct the surrogate loss function, we would want a loss that penalizes not only if there is a misclas-
sification, but how far that misclassified point is from the boundary. Therefore, if y and ŷ = fw(x) have
the same sign, i.e. if yfw(x) > 0, then the penalty should be 0, and if it is < 0, then the penalty should be
proportional to the orthogonal distance of the misclassified point to the boundary, which is represented by
−wTxy (where the negative sign makes this cost term positive).

Definition 6.2 (Surrogate Loss for Perceptron)

Therefore, our cost functions would take all the points and penalize all the terms by 0 if they are
correctly classified and by −wTϕ(n)y(n) if incorrectly classified.

L(y, ŷ) =
∑
n=1

[−wTϕ(n)y(n)]+ where [f(x)]+ :=

{
f(x) if f(x) > 0

0 else
(132)

Note that this is a piecewise linear function and convex.

Code 6.1 (Perceptron in scikit-learn)

Let’s implement this in scikit-learn, using two pipelines with different data standardization techniques
to see the differences in the perceptron boundary.

45/ 115

Machine Learning Muchang Bahng Spring 2024

1 from sklearn.pipeline import Pipeline
2 from sklearn.linear_model import Perceptron
3 from sklearn.preprocessing import QuantileTransformer, StandardScaler
4

5 pipe1 = Pipeline([
6 ("scale", StandardScaler()),
7 ("model", Perceptron())
8])
9

10 pipe2 = Pipeline([
11 ("scale", QuantileTransformer(n_quantiles=100)),
12 ("model", Perceptron())
13])

Figure 14

Figure 15: Perceptron Trained on Different Standardized Data

6.3 Logistic and Softmax Regression
We can upgrade from a discriminant function to a discriminative probabilistic model with logistic regres-
sion. In practice, we usually deal with probabilistic models where rather than giving a point estimate ŷ,
we attempt to model the distribution PY |X=x̂. Even though in the end, we will just output the mean µ of this
conditional distribution, modeling the distribution allows us to quantify uncertainty in our measurements.

Definition 6.3 (Logistic Regression)

The logistic regression model is a linear model of the form

fw(x) = σ(wTx) =
1

1 + e−wT x
, where σ(x) :=

1

1 + ex
(133)

It is different from linear regression in two ways:
1. In linear regression, we assumed that the targets are linearly dependent with the covariates

as y = wTx + b. However, this means that the hypothesis fw is unbounded. Since we have
two classes (say with labels 0 and 1), we must have some sort of link function σ that takes
the real numbers and compresses it into the domain [0, 1]. Technically, we can choose any
continuous, monotinically increasing function from R to (0, 1). However, the following property

46/ 115

Machine Learning Muchang Bahng Spring 2024

of the sigmoid makes derivation of gradients very nice.

σ′(x) = σ(x)
(
1− σ(x)

)
(134)

2. Once this is compressed, we assume that the residual distribution is a Bernoulli.

Definition 6.4 (Binary Cross Entropy Loss as Surrogate Loss for Logistic Regression)

The surrogate loss for logistic regression is the binary cross entropy loss, which is defined as

L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ) (135)

One important observation to make is that notice that the output of our hypothesis is used as a parameter
to define our residual distribution.

1. In linear regression, the fw was used as the mean µ of a Gaussian.

2. In logistic regression, the fw is used also as the mean p of a Bernoulli.

The reason we want this sigmoid is so that we make the domains of the means of the residuals match the
range of the outputs of our model. It’s simply a manner of convenience, and in fact we could have really
chose any function that maps R to (0, 1).

Some questions may arise, such as “why isn’t the variance parameter of the Gaussian considered in the linear
model?" or “what about other residual distributions that have multiple parameters?" This is all answered by
generalized linear models, which uses the output of a linear model as a natural parameter of the canonical
exponential family of residual distributions.

Unfortunately, there is no closed form solution for logistic regression like the least squares solution in linear
regression. Therefore, we can only resort to maximum likelihood estimation.

Theorem 6.1 (Maximum Likelihood Estimation for Logistic)

Given a dataset D = {(x(i), y(i))}Ni=1, our likelihood is

L(θ;D) =

n∏
i=1

p(y(i) | x(i); θ) =
N∏
i=1

(
hθ(x

(i))
)y(i) (

1− hθ(x
(i))
)1−y(i)

We can equivalently minimize its negative log likelihood, giving us the binary cross entropy loss
function

ℓ(θ) = − logL(θ)

= −
n∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x

(i)))

Now taking the gradient for just a single sample (x(i), y(i)) gives

∂ℓ

∂θ
=

(
y(i)

σ(θTx(i))
− 1− y(i)

1− σ(θTx(i))

)
∂

∂θ
σ(θTx(i))

=
σ(θTx(i))− y(i)

σ(θTx(i))
(
1− σ(θTx(i))

)σ(θTx(i)) (1− σ(θTx(i))
)
x(i)

=
(
hθ(x

(i))− y(i)
)
x

47/ 115

Machine Learning Muchang Bahng Spring 2024

and summing it over some minibatch M ⊂ D gives

∇θℓM =
∑

(x,y)∈M

(y − hθ(x))x

Therefore, the stochastic gradient descent algorithm is

θ = θ − η∇θℓ(θ)

= θ − η
∑

(x,y)∈M

(y − hθ(x))x

We would like to extend this to the multiclass case.

Definition 6.5 (Softmax Function)

The softmax function is defined

o(x) =
ex

||ex||
=

1∑
j e
xj

e
x1

...
exD

 (136)

What makes the softmax so popular is that the total derivative turns out to simplify functions a lot. The
total derivative of the softmax can be derived as such.

Lemma 6.1 (Derivative of Softmax)

The derivative of the softmax is

Do(x) = diag(o(x))− o(x)⊗ o(x) (137)

where ⊗ is the outer product. That is, let yi be the output of the softmax. Then, for the 4 × 4
softmax function, we have

Do(x) =

y1(1− y1) −y1y2 −y1y3 −y1y4
−y2y1 y2(1− y2) −y2y3 −y2y4
−y3y1 y3y3 y3(1− y3) −y3y4
−y4y1 −y4y2 −y4y3 y4(1− y4)

 (138)

Proof.

We will provide a way that allows us not to use quotient rule. Given that we are taking the partial
derivative of yi with respect to xj , we can use the log of it to get

∂

∂xj
log(yi) =

1

yi

∂yi
∂xj

=⇒ ∂yi
∂xj

= yi
∂

∂xj
log(yi)

48/ 115

Machine Learning Muchang Bahng Spring 2024

Now the partial of the log term is

log yi = log

(
exi∑
l e
xl

= xi − log

(∑
l

exl

)
∂

∂xj
log(yi) =

∂xi
∂xj

− ∂

∂xj
log

(∑
l

exl

)
= 1i=j −

1∑
l e
xl
exj

and plugging this back in gives
∂yi
∂xj

= yi(1i=j − yj) (139)

It also turns out that the sigmoid is a specific case of the softmax. That is, given softmax for 2 classes, we
have

o

(
x1
x2

)
=

1

ex1 + ex2

(
ex1

ex2

)
So, the probability of being in class 1 is

ex1

ex1 + ex2
=

1

1 + ex2−x1

and the logistic sigmoid is just a special case of the softmax function that avoids using redundant parameters.
We actually end up overparameterizing the softmax because the probabilities must add up to one.

Definition 6.6 (Softmax Regression Model)

The softmax regression of K classes assumes a model of the form

hθ(x) = o(Wx+ b) (140)

where W ∈ RK×D,b ∈ RD. Again, we have a linear map followed by some link function (the softmax)
which allows us to nonlinearly map our unbounded linear outputs to some domain that can be easily
parameterized by a probability distribution. In this case, our residual distribution is a multinomial
distribution

y ∼ Multinomial
(
hw(x)

)
= Multinomial

(
[hw(x)]1, . . . , [hw(x)]K

)
(141)

Definition 6.7 (Multiclass Cross Entropy Loss as Surrogate Loss for Softmax)

The surrogate loss for softmax regression is the multiclass cross entropy loss, which is defined as

L(θ;D) = −
N∑
i=1

K∑
k=1

y
(i)
k log

(
hθ(x

(i))
)
k

(142)

Theorem 6.2 (Maximum Likelihood Estimation for Softmax)

Since a closed form solution is not available for logistic regression, it is clearly not available for
softmax. Therefore, we one hot encode our target variables as y(i) and write our likelihood as

L(θ;D) =

N∏
i=1

K∏
k=1

p(Ck | x(i))y
(i)
k =

N∏
i=1

K∏
k=1

(
hW(x(i))

)y(i)
k

k
(143)

49/ 115

Machine Learning Muchang Bahng Spring 2024

Taking the negative logarithm gives us the cross entropy loss function

ℓ(θ) = −
N∑
i=1

K∑
k=1

y
(i)
k log

(
hθ(x

(i))
)
k
= −

N∑
i=1

y(i) ˙log
(
hθ(x

(i)
)

(144)

where · is the dot product. The gradient of this function may seem daunting, but it turns out to be
very cute. Let us take a single sample (x(i),y(i)), drop the index i, and write

x 7→ Wx+ b = z

ŷ = a = o(z)

L = −y · log(a) = −
K∑
k=1

yk log(ak)

We must compute
∂L

∂W
=
∂L

∂a

∂a

∂z

∂z

∂θ

We can compute ∂L/∂z as such, using our derivations for the softmax derivative above. We compute
element wise.

∂L

∂zj
= −

K∑
k=1

yk
∂

∂zj
log(ak)

= −
K∑
k=1

yk
1

ak

∂ak
∂zj

= −
K∑
k=1

yk
ak

ak(1{k=j} − aj)

= −
K∑
k=1

yk(1{k=j} − aj)

=

(K∑
k=1

ykaj

)
− yj

= aj

(K∑
k=1

yk

)
− yj

= aj − yj

and combining these gives
∂L

∂z
= (a− y)T (145)

Now, computing ∂z/∂W gives us a 3-tensor, which is not ideal to work with. However, let us just
compute this with respect to the elements again. We have

zk =

D∑
d=1

Wkdxd + bk

∂zk
∂Wij

=

D∑
d=1

xd
∂

∂Wij
Wkd

where
∂

∂Wij
Wkd =

{
1 if i = k, j = d

0 else
(146)

50/ 115

Machine Learning Muchang Bahng Spring 2024

Therefore, since d is iterating through all elements, the sum will only be nonzero if k = i. That is,
∂zk
∂Wij

= xj if k = i and 0 if else. Therefore,

Now computing

∂L

∂Wij
=
∂L

∂z

∂z

∂Wij
= (a− y)

∂z

∂Wij
=

K∑
k=1

(ak − yk)
∂zk
∂Wij

= (ai − yi)xj (147)

To get ∂L/∂Wij we want a matrix whose entry (i, j) is (ai − yi)xj . This is simply the outer product
as shown below. For the bias term, ∂z/∂b is simply the identity matrix.

∂L

∂W
= (a− y)xT ,

∂L

∂b
= a− y (148)

Therefore, summing the gradient over some minibatch M ⊂ [N] gives

∇WℓM =
∑
i∈M

(hθ(x
(i))− y(i))(x(i))T , ∇bℓM =

∑
i∈M

(hθ(x
(i))− y(i)) (149)

and our stochastic gradient descent algorithm is

θ =

(
W
b

)
=

(
W
b

)
− η

(
∇WℓM
∇bℓM

)
=

(
W
b

)
− η

(∑
i∈M (hθ(x

(i))− y(i))(x(i))T∑
i∈M (hθ(x

(i))− y(i))

)

6.3.1 Sparse Logistic Regression

6.4 Support Vector Machines

Definition 6.8 (Hinge Loss)

The hinge loss is a convex surrogate loss function for the 0-1 loss function. It is defined as

L(y, ŷ) = max(0, 1− y · ŷ) (150)

A support vector machine focuses only on the points that are most difficult to tell apart, whereas other
classifiers pay attention all of the points. A SVM is a discriminative, non-probabilistic model. Let us
first assume that our dataset D = {xi, yi} is linearly separable with yi ∈ {−1,+1}. Based on previous
algorithms like the perceptron, it will find some separating hyperplane. However, there’s an infinite number
of separating hyperplanes as shown in Figure 16a. What support vector machines want to do is to find the
best one, with the “best" defined as the hyperplane that maximizes the distance between either the closest
positive or negative samples, shown in Figure 16b.

51/ 115

Machine Learning Muchang Bahng Spring 2024

(a) Planes such as (1) and (4) are “too close" to the pos-
itive and negative samples.

(b) SVMs try to find the separating hyperplane with the
best minimum margin.

Figure 16: Motivating problem

We want to formalize the concepts of these margins that we wish to maximize. To do this, we will define
two terms.

Definition 6.9 (Geometric margin)

Given a point x0 and a hyperplane of equation w ·x+ b = 0, the distance from x0 to the hyperplane,
known as the geometric margin, can be computed with the formula

d =
|x0 ·w + b|

||w||
(151)

Therefore, the geometric margin of the ith sample with respect to the hypothesis f is defined

γi =
yi (w · xi + b)

||w||
(152)

We wish to optimize the parameters w, b in order to maximize the minimum of the geometric margins (the
distance between the closest point and the hyperplane).

argmax
w,b

min
i
γi = argmax

w,b

{
1

||w||
min
i

[
yi (w · xi + b)

]}
(153)

Direct solution of this optimization problem would be very complex, and so we convert this into an equivalent
problem that is much easier to solve. Note that the solution to the above term is not unique. If there was a
solution (w∗, b∗), then

yi(w · xi + b)

||w||
=
yi(λw · xi + λb)

||λw||
(154)

That is, the geometric margin is not sensitive to scaling of the parameters of the hyperplane. Therefore, we
can scale the numerator and the denominator by whatever we want and use this freedom to set

yi(w · xi + b) = 1

for the point that is closest to the surface. In that case, all data points will satisfy the constraints

52/ 115

Machine Learning Muchang Bahng Spring 2024

yn(w · xi + b) ≥ 1

In the case of data points for which the equality holds, the constraints are said to be active, whereas for the
remainder they are inactive. Therefore, it will always be the case that mini

[
yi (w · xi + b)

]
= 1, and the

constraint problem reduces to

argmax
w,b

1

||w||
= argmin

w,b

1

2
||w||2 subject to constraints yi(w · xi + b) ≥ 1

This final step is the most significant step in this derivation and may be hard to wrap around the first time.
So we dedicate the next subsubsection for this.

6.5 Functional and Geometric Margins
We could just work straight with this geometric margin, but for now, let’s try to extend what we did with
the perceptron into SVMs. We will find out that extending the concept of functional margins into SVMs
leads to ill-defined problems. In the perceptron, we wanted to construct a function f(x) = w · x + b such
that

yi f(xi) ≥ 0 for all i = 1, 2, . . . , N

Definition 6.10 (Functional Margin)

The value of yi f(xi) gives us our confidence on our classification, and in a way it represents a kind
of distance away from the separating hyperplane (if this value was 0, then we would be 50 50 split on
whether to label it positive or negative). Therefore, we shall define

γ̂i = yif(xi)

as the functional margin of (w, b) with respect to the training sample (xi, yi). Therefore, the
smallest of the function margins can be written

γ̂ = min
i
γi

called the function margin.

Note that the geometric margin and functional margin are related by a constant scaling factor. Given a
sample (xi, yi), we have

GeometricMargin =
yi (w · xi + b)

||w||2
=

FunctionalMargin

||w||2

As we can see, the perceptron works with the functional margin, and since it does not care about how large
the margin is (just whether it’s positive or negative), we are left with an underdetermined system in which
there exists infinite (w, b)’s. Now what we want to do is impose a certain minimum margin γ > 0 and solve
for (w, b) again, and keep increasing this γ until there is some unique solution. We can view this problem in
two ways:

1. Take a specific minimum margin γ and find a (w, b), which may not exist, be unique, or exist infinitely
that satisfies

yif(x) = yi(w · x+ b) ≥ γ for all i = 1, . . . , N

2. Take a specific (w, b) and calculate the maximum γ that satisfies the constraint equations above.

53/ 115

Machine Learning Muchang Bahng Spring 2024

They’re both equivalent problems, but both ill-posed if we look at (2). Since the samples are linearly
separable by assumption, we can say that there exists some ϵ > 0 such that yif(xi) ≥ ϵ for all i. Therefore,
if we just scale (w, b) 7→ (λw, λb) for some large λ, this leads to the solution for γ being unbounded. We can
see in Figure 17 that we can increased confidence at no cost. Looking at (1), we can also see that if (w, b)
does exist, then every other (λw, λb) for λ > 1 satisfies the property.

(a) f(x) = x1 + x2 + 1 (b) f(x) = 2x1 + 2x2 + 2 (c) f(x) = −2x1 + x2 − 3

Figure 17: From (a), you can see that simply multiplying everything by two automatically increases our confidence
by 2, meaning that the functional margin can be scaled arbitrarily by scaing (w, b). There are still too many degrees
of freedom in here and so extra constraints must be imposed.

6.5.1 Lagrange Duality

To minimize the equations with the constraint equations, we can use the method of Lagrange multipliers,
which leads to to Lagrangian

L(w, b,α) =
1

2
||w||2 −

∑
i

αi
[
yi(w · xi + b)− 1

]
We can take the gradients with respect to w and b and set them to 0, which gives the two conditions

w =
∑
i

αiyixi

0 =
∑
i

αiyixi

Now let’s substitute our evaluated w back into L, which gives the dual representation of the maximum
margin problem in which we maximize

L =
1

2

(∑
i

αiyixi

)(∑
j

αjyjxj

)
−
∑
i

αiyixi ·
[∑

j

αjyjxj

]
−
∑
i

αiyib+
∑
i

αi

=
∑
i

αi −
1

2

∑
i,j

αiαjyiyj xi · xj

The summation with the b in it is 0 since we can pull the b out and the remaining sum is 0 from before.
Now the optimization only depends on the dot product xi · xj of all pairs of sample vectors, which is very
interesting. We will see more of this when we talk about kernel methods. Now, we need to solve the dual
problem

max
α

L(α)

54/ 115

Machine Learning Muchang Bahng Spring 2024

which can be done using some generic quadratic programming solver or some other method to get the
optimum α∗, which gives us

w∗ =
∑
i

α∗
i yixi

6.6 Nonseparable Case

6.7 Gaussian/Linear Discriminant Analysis
6.7.1 Discriminative vs. Generative Models

Now we introduce our first example of a generative model, which introduces another division between models
(in addition to parametric vs nonparametric, frequentist vs bayesian). Generally, there are two ways to model
PY |X=x.

Definition 6.11 (Discriminative Models)

Discriminative models attempt to do this directly by modeling only the conditional probability
distribution PY |X=x. We don’t care about the underlying distribution of X, but rather we just want
to try and predict Y given X. Essentially, we are trying to approximate the conditional expectation
h(X) = E[Y | X], which is the best we can do. Given X = x, we use our model of PY |X=x, and our
hypothesis function will predict the its mean.

h(x) = E[Y | X = x] (155)

Definition 6.12 (Generative Models)

Generative models approximate this conditional probability by taking a more general approach.
They attempt to model the joint probability distribution PX×Y (also called inference), which essen-
tially gives everything we need about the data. Doing this allows us to generate more data (hence
the name), which may be useful.
One way to approximate the joint distribution is to model the conditional distribution PX|Y=y, which
gives the distribution of each labels. Now combined with the probability measure PY , we can get
the joint distribution. Usually in classification, the PY is easy to approximate (the MLE is simply
the fequencies of the labels), so conventionally, modeling PX×Y and modeling PX|Y=y are considered
the same thing. Once we have these, we can calculate the joint distribution, but in high-dimensional
spaces this tends to be computationally hard. Therefore, we usually resort to simply calculating
PX|Y=y and then using Bayes rule to approximate

PY |X =
PX|Y PY

PX
(156)

where the normalizing term is computed using Monte Carlo simulations.

This is the first example of a generative model. In GDA, we basically write the likelihood as
n∏
i=1

p(xi, yi) =
∏
i

p(xi | yi)p(yi) (157)

where each p(xi | yi) is Gaussian and p(yi) is Bernoulli. This specifies p(xi, yi) and therefore is called a
generative model. In logistic regression, we have∏

i=1

p(xi, yi) =

(∏
i

p(yi | xi)
)(∏

i

p(xi)

)
(158)

and the first term is the logistic function and the second term is unknown. We only use the first part to
classify, and this is a discriminative model. You can be agnostic about the data generating process and you

55/ 115

Machine Learning Muchang Bahng Spring 2024

can work with less data since there are less things to fit. Some people ask why should you model more unless
you have to, so people tend to try to model the minimum, which is why logistic regression is more popular.

6.7.2 Construction

GDA assumes that P(x |y) is distributed according to a multivariate Gaussian distribution. Let us assume
that the input space is d-dimensional and this is a binary classification problem. We set

y ∼ Bernoulli(π)
x | y = 0 ∼ Nd(µ0,Σ)

x | y = 1 ∼ Nd(µ1,Σ)

This method is usually applied using only one covariance matrix Σ. The distributions are

p(y) = πy(1− π)1−y

p(x | y = 0) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µ0)

TΣ−1(x− µ0)

)
p(x | y = 1) =

1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µ1)

TΣ−1(x− µ1)

)
Now, what we have to do is optimize the distribution parameters π ∈ (0, 1)R, µ0 ∈ Rd, µ1 ∈ Rd,Σ ∈
Mat(d × d,R) ≃ Rd×d so that we get the best-fit model. Assuming that each sample has been picked
independently, this is equal to maximizing

L(π, µ0, µ1,Σ) =

n∏
i=1

P
(
x(i), y(i) ; π, µ0, µ1,Σ

)
(159)

which is really just the probability that we get precisely all these training samples (x(i), y(i)) given the 4
parameters. This can be done by optimizing its log-likelihood, which is given by

l(π, µ0, µ1,Σ) = log

n∏
i=1

P(x(i), y(i);π, µ0, µ1,Σ)

= log

n∏
i=1

P(x(i) | y(i);µ0, µ1,Σ)P(y(i);π)

=

n∑
i=1

log

(
P(x(i) | y(i);µ0, µ1,Σ)P(y(i);π)

)
and therefore gives the maximum likelihood estimate to be

π =
1

N

N∑
n=1

1{y(n) = 1}

µ0 =

∑n
n=1 1{y(n)=0}x

(n)∑N
n=1 1{y(n)=0}

µ1 =

∑n
n=1 1{y(n)=1}x

(n)∑N
n=1 1{y(n)=1}

Σ =
1

N

N∑
n=1

(x(n) − µy(n))(x(n) − µY (i))T

A visual of the algorithm is below, with contours of the two Gaussian distributions, along with the straight
line giving the decision boundary at which P(y = 1 |x) = 0.5.

56/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 18: GDA of Data Generated from 2 Gaussisans centered at (−2.3, 0.4) and (1.4,−0.9) with unit covariance.
The decision boundary is slightly off since MLE approximates the true means.

6.8 Fisher Linear Discriminant

7 Nonparametric Classification

7.1 K Nearest Neighbors

Question 7.1 (To Do)

Maybe similar like a kernel regression?

Given a bunch of points in a metric space (X , d) that have classification labels, we want to label new
datapoints x̂ based on the labels of other points that already exist in our dataset. One way to look at it is
to look for close points within the dataset and use their labels to predict the new ones.

Definition 7.1 (Closest Neighborhood)

Given a dataset D = {x(i),y(i)} and a point x̂ ∈ (X , d), let the k closest neighborhood of x̂ be
Nk(x̂) ⊂ [N] defined as the indices i of the k points in D that is closest to x̂ with respect to the
distance metric dX .

Definition 7.2 (K Nearest Neighbors)

The K Nearest Neighbors (KNN) is a discriminative nonparametric supervised learning algorithm
that doesn’t have a training phase. Given a new point x̂, we look at all points in its k closest
neighborhood, and h(x̂) will be equal to whatever the majority class will be in. Let us one-hot
encode the labels y(i) into ei’s, and the number of data point in the ith class can be stored in the

57/ 115

Machine Learning Muchang Bahng Spring 2024

variable
ai =

∑
i∈Nk(x̂)

1{y(i)=ei} (160)

which results in the vector storing the counts of labels in the k closest neighborhood

a = (a1, a2, . . . , aK) =

(∑
i∈Nk(x̂)

1{y(i)=e1},
∑

i∈Nk(x̂)

1{y(i)=e2}, . . . ,
∑

i∈Nk(x̂)

1{y(i)=eK}

)
(161)

and take the class with the maximum element as our predicted label.

The best choice of K depends on the data:

1. Larger values of K reduces the effect of noise on the classification, but make boundaries between classes
less distinct. The number of misclassified data points (error) increases.

2. Smaller values are more sensitive to noise, but boundaries are more distinct and the number of mis-
classified data points (error) decreases.

Too large of a K value may increase the error too much and lead to less distinction in classification, while
too small of a k value may result in us overclassifying the data. Finally, in binary (two class) classification
problems, it is helpful to choose K to be odd to avoid tied votes.

This is an extremely simple algorithm that may not be robust. For example, consider K ≥ 3, and we are
trying to label a point x̂ that happens to be exactly where one point is on our dataset x(i). Then, we should
do h(x̂) = y(i), but this may not be the case if there are no other points with class y(i) in the k closest
neighborhood of x(i). Therefore, we want to take into account the distance of our new points from the
others.

Definition 7.3 (Weighted Nearest Neighbor Classifier)

Let us define a monotinically decreasing function ω : R+
0 7→ R+

0 . Given a point i ∈ Nk(x̂), we can
construct the weight of our matching label as inversely proportional to the distance: ωi[d(x̂,x(i))]
and store them as

a = (a1, a2, . . . , aK) =

(∑
i∈Nk(x̂)

ωi1{y(i)=e1},
∑

i∈Nk(x̂)

ωi1{y(i)=e2}, . . . ,
∑

i∈Nk(x̂)

ωi1{y(i)=eK}

)
(162)

and again take the class with the maximum element.

One caveat of KNN is in high dimensional spaces, as its performance degrades quite badly due to the curse
of dimensionality.

Example 7.1 (Curse of Dimensionality in KNN)

Consider a dataset of N samples uniformly distributed in a d-dimensional hypercube. Now given
a point x ∈ [0, 1]d, we want to derive the expected radius rk required to encompass its k nearest
neighbors. Let us define this ball to be Brk := {z ∈ Rd | ||z − x||2 ≤ rk}. Since thse N points are
uniformly distributed, the expected number of points contained in Brk(x) is simply the proportion
of the volume that Brk(x) encapsulates in the box, multiplied by N . Therefore, for some fixed x and
r, let us denote Y (x, y) as the random variable representing the number of points contained within
Br(x). By linearity of expectation and summing over the expectation for whether each point will be
in the ball, we have

E[Y (x, r)] = N · µ(Br(x) ∩ [0, 1]d)

µ([0, 1]d)

58/ 115

Machine Learning Muchang Bahng Spring 2024

where µ is the Lebesgue measure of Rd. Let us assume for not that we don’t need to worry about
cases where the ball is not fully contained within the cube, so we can just assume that Y is only
dependent on r: Y (r). Also, since the volume of the hypercube is 1, µ([0, 1]d) = 1 and we get

E[Y (r)] = N · Cd · rd

which we set equal to k and evaluate for r. Cd is a constant such that the volume of the hypersphere
of radius r can be derived as V = Cd · rd. We therefore get

N · Cd · rdk = k =⇒ rk =

(
k

NCd

)1/d

It turns out that Cd decreases exponentially, so the radius rk explodes as d grows. Another way of
looking at this is that in high dimensions, the ℓ2 distance between all the pairwise points are close in
every single dimension, so it becomes harder to distinguish points that are close vs those that are far.

7.1.1 Approximate K Nearest Neighbors

7.2 Classification Trees

Definition 7.4 (Decision Trees)

Like K nearest neighbors, decision trees are discriminative nonparametric classification algorithms
that involves creating some sort of tree that represents a set of decisions using a given set of input
data x(i) with its given classification y(i). When predicting the class of a new input x̂, we would look
at its attributes in some order, e.g. x̂1, x̂2, x̂3, and make a decision on which class it is in.

The decision tree tries to take advantage of some nontrivial covariance between X and Y by construct-
ing nested partitions of the dataset D, and within a partition, it predicts the label that comprises the
majority.

For now, let us assume that X is a Cartesian product of discrete sets, and we will extend them to continuous
values later. Let us look at an example to gain some intuition.

59/ 115

Machine Learning Muchang Bahng Spring 2024

Example 7.2 (Restaurant)

Consider the dataset

Let us denote D as the dataset, and say that F1, . . . , Fd were the features. This is a binary classification
problem, and we can count that there are 6 positives and 6 negative labels.

The simplest decision tree is the trivial tree, with one node that predicts the majority of the dataset. In this
case, the data is evenly split, so without loss of generality we will choose h0(x) = 1. We want to quantify
how good our model is, and so like always we use a loss function.

Just like how a linear model is completely defined by its parameter θ, a decision tree is completely defined
by the sequences of labels that it splits on. Therefore, training this is equivalent to defining the sequence,
but we can’t define this sequence unless we can compare how good a given decision tree is, i.e. unless we
have defined a proper loss function. Depending on the training, we can use a greedy algorithm or not, and
we have the flexibility to choose whether or not we can split on the same feature multiple times.

Definition 7.5 (Misclassification Error)

We will simply use the misclassification loss function.

L(h;D) =
1

N

N∑
i=1

1{y(i) ̸=h(x(i))} = 1− accuracy (163)

Minimizing this maximizes the accuracy, so this is a reasonable one to choose. How do we train this?
Unlike regression, this loss is not continuous, so the gradient is 0, and furthermore the model isn’t
even parametric, so there are no gradients to derive!

Fortunately, the nature of the decision tree only requires us to look through the explanatory variables
x1, . . . , xn and decide which one to split.

Let us take a decision tree h and model the accuracy of it as a random variable: 1{Y=h0(X)} ∼ Bernoulli(p),
where p is the accuracy. A higher accuracy of h corresponds to a lower entropy, and so the entropy of the
random variable is also a relevant indicator.

H(1{Y=h0(X)}) = p log p+ (1− p) log(1− p)

Therefore, when we are building a tree, we want to choose the feature xi to split based on how much it
lowers the entropy of the decision tree.

To set this up, let us take our dataset D and set Xi as the random variable representing the distribution (a

60/ 115

Machine Learning Muchang Bahng Spring 2024

multinomial) of the x(j)i ’s, and Y as the same for the y(j)’s. This is our maximum likelihood approximation
for the marginalized distribution of the joint measure X × Y = X1 × . . .×XD × Y .

Given a single node, we are simply going to label every point to be whatever the majority class is in D.
Therefore, we start off with the entropy of our trivial tree H(Y). Then, we want to see which one of the
Xd features to split on, and so we can compute the conditional entropy H(Y,Xd) to get the information
gain I(Y ;Xd) = H(Y)−H(Y | Xd) for all d = 1, . . . , D. We want to find a feature Xd that maximize this
information gain, i.e. decreases the entropy as much as possible (a greedy algorithm), and we find the next
best feature (with or without replacement), so that we have a decreasing sequence.

H(X) ≥ H(X;Y) ≥ H(X;Y, Z) ≥ H(X;Y, Z,W) ≥ . . . ≥ 0

Example 7.3 ()

Continuing the example above, since there are 6 labels of 0 and 1 each, we can model this Y ∼
Bernoulli(0.5) random variable, with entropy

H(Y) = E[− log2 p(Y)] =
1

2

(
− log2

1

2

)
+

1

2

(
− log2

1

2

)
= 1

Now what would happen if we had branched according to how crowded it was, Xcrowded. Then, our
decision tree would split into 3 sections:

In this case, we can define the multinomial distribution Xcrowded representing the proportion of the
data that is crowded in a specific level. That is, Xcrowded ∼ Multinomial(2

12 ,
4
12 ,

6
12

)
, with

P(Xcrowded = x) =

2/12 if x = none
4/12 if x = some
6/12 if x = full

Therefore, we can now compute the conditional entropy of this new decision tree conditioned on how
crowded the store is

H(Y | Xcrowded) =
∑
x

P(Xcrowded = x)H(Y | Xcrowded = x)

=
2

12
H(Bern(1)) +

4

12
H(Bern(0)) +

6

12
H(Bern(1/3)) = 0.459

I(Y ;Xcrowded) = 0.541

We would do this for all the features and greedily choose the feature that maximizes our information
gain.

61/ 115

Machine Learning Muchang Bahng Spring 2024

Example 7.4 ()

The Ferrari F1 team hired you as a new analyst! You were given the following table of the past race
history of the team. You were asked to use information gain to build a decision tree to predict race
wins. First, you will need to figure out which feature to split first.

Rain Good Strategy Qualifying Win Race
1 0 0 0
1 0 0 0
1 0 1 0
0 0 1 1
0 0 0 0
0 1 1 1
1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

Let X ∼ Bernoulli(1/2) be the distribution of whether a car wins a race over the data. Then its
entropy is

H(X) = E[− log2 p(x)] =
1

2

(
− log2

1

2

)
+

1

2

(
− log2

1

2

)
= 1

Let R ∼ Bernoulli(4/10), G ∼ Bernoulli(2/10), Q ∼ Bernoulli(6/10) be the distribution of the features
rain, good strategy, and qualifying over the data, respectively. Then, the conditional entropy of X
conditioned on each of these random variables is

H(X | R) = P(R = 1)H(X | R = 1) + P(R = 0)H(X | R = 0)

=
4

10
· −
(
1 · log2 1 + 0 · log2 0

)
+

6

10
· −
(1
6
· log2

1

6
+

5

6
· log2

5

6

)
≈ 0.390

H(X | G) = P(G = 1)H(X | G = 1) + P(G = 0)H(X | G = 0)

=
2

10
· −
(
1 · log2 1 + 0 · log2 0

)
+

8

10
· −
(3
8
· log2

3

8
+

5

8
log2

5

8

)
≈ 0.763

H(X | Q) = P(Q = 1)H(X | Q = 1) + P(Q = 0)H(X | Q = 0)

=
6

10
· −
(4
6
· log2

4

6
+

2

6
· log2

2

6

)
+

4

10
· −
(1
4
log2

1

4
+

3

4
log2

3

4

)
≈ 0.875

Therefore, the information gain are

I(X;R) = 1− 0.390 = 0.610

I(X;G) = 1− 0.763 = 0.237

I(X;Q) = 1− 0.875 = 0.125

And so I would split on R, the rain, which gives the biggest information gain.

Finally, we can use the Gini index of X ∼ Bernoulli(p), defined

G(X) = 2p(1− p) (164)

Example 7.5 (Ferrari Example Continued)

We do the same as the Ferrari example above but now with the Gini reduction. Let X ∼
Bernoulli(1/2) be the distribution of whether a car wins a race over the data. Then its Gini in-
dex, which I will label with G, is

G(X) = 2 · 1
2
· 1
2
=

1

2

62/ 115

Machine Learning Muchang Bahng Spring 2024

Let R ∼ Bernoulli(4/10), G ∼ Bernoulli(2/10), Q ∼ Bernoulli(6/10) be the distribution of the features
rain, good strategy, and qualifying over the data, respectively. Then we compute the conditional
expectation

E[G(X | R)] = P(R = 1)G(X | R = 1) + P(R = 0)G(X | R = 0)

=
4

10

[
2 · 4

4
· 0
4

]
+

6

10

[
2 · 1

6
· 5
6

]
≈ 0.167

E[G(X | G)] = P(G = 1)G(X | G = 1) + P(G = 0)G(X | G = 0)

=
2

10

[
2 · 2

2
· 0
2

]
+

8

10

[
2 · 3

8
· 5
8

]
≈ 0.375

E[G(X | Q)] = P(Q = 1)G(X | Q = 1) + P(Q = 0)G(X | Q = 0)

=
6

10

[
2 · 4

6
· 2
6

]
+

4

10

[
2 · 1

4
· 3
4

]
≈ 0.417

Therefore, the Gini reduction, which I’ll denote as IG , is

IG(X;R) = 0.5− 0.167 = 0.333

IG(X;G) = 0.5− 0.375 = 0.125

IG(X;Q) = 0.5− 0.417 = 0.083

Since branching across the feature R, the rain, gives the biggest Gini reduction, we want to split on
the rain feature first.

7.2.1 Regularization

Given a dataset with D binary features, let g(H,D) be the number of binary trees with depth at most H
(including root node), with the restriction that the trees may not split on some variable multiple times within
a path to a leaf node. Then, g can be defined recursively.

1. First, if H = 1, then g(H,D) = 1 always since we are just creating the trivial binary tree of one node.

2. If D = 0, then there are no features to split on and therefore we just have the single node g(H,D) = 1.

3. If H > 1 and D > 0, then say that we start with a node. We can either make this a leaf node by not
performing any splitting at all, or split on one of the D variables. Then for each of the 2 nodes created
on the split, we are now working with D − 1 features and a maximum height of H − 1 for each of the
subtrees generated from the 2 nodes.

All this can be expressed as

g(H,D) =

{
1 +D

[
g(H − 1, D − 1)

]2 if H > 1, D > 0

1 if H = 1 or D = 0

which is extremely large (in fact, NP hard). Therefore, some tricks like regularization must be implemented
to limit our search space.

By defining the complexity of our decision tree Ω(h) as the number of nodes within the tree, we can modify
our objective function to

L(h;D) =
1

N

N∑
i=1

1{y(i) ̸=h(x(i))} + λΩ(h)

We can impose this constraint directly on the training algorithm, or we can calculate the regularized loss
after the tree has been constructed, which is a method called tree pruning.

63/ 115

Machine Learning Muchang Bahng Spring 2024

Given a large enough λ, we can in fact greatly reduce our search space by not considering any trees further
than a certain point.

Theorem 7.1 ()

We describe a tree as a set of leaves, where leaf k is a tuple containing the logical preposition satisfied
by the path to leaf k, denoted pk, and the class label predicted by the leaf, denoted ŷk. For a dataset
with d binary features, pk : {0, 1}d → {0, 1} is a function that returns 1 if a sample xi satisfies the
preposition, and 0 otherwise. That is, leaf k is (pk, ŷk), and a tree f with K leaves is described as
a set f = {(p1, ŷ1), . . . , (pK , ŷK)}. Assume that the label predicted by ŷk is always the label for
the majority of samples satisfying pk. Finally, let mk =

∑n
i=1 pk(xi) denote the number of training

samples “captured” by leaf k.
Given a (potentially optimal) tree

f = {(p1, ŷ1), . . . , (pκ, ŷκ), . . . , (pK , ŷK)},

the tree f ′ = {(p1, ŷ1), . . . , (pκ1 , ŷκ1), (pκ2 , ŷκ2), . . . , (pK , ŷK)} produced by splitting leaf (pκ, ŷκ) into
two leaves (pκ1

, ŷκ1
) and (pκ2

, ŷκ2
) and any tree produced by further splitting (pκ1

, ŷκ1
) or (pκ2

, ŷκ2
)

cannot be optimal if mκ < 2nλ.

Proof.

Let c be the number of misclassifications in leaf (pκ, ŷκ). Since a leaf classifies according to the
majority of mκ, we must have

c ≤ mκ

2
< nλ

By splitting leaf (pκ, ŷκ) into leaves (pκ1
, ŷκ1

) and (pκ2
, ŷκ2

), assume that we have reduced the number
of misclassifications by b ≤ c. Then, we have

ℓ(f ′,X,y) = ℓ(f,X,y)− b

n

However, we have increased the number of leaves by 1, and so

λs(f ′) = λs(f) + λ

Combining the last two equations, we have obtained

R(f ′,X,y) = R(f,X,y) + λ− b

n

However, we know that

b ≤ c =⇒ b

n
≤ c

n
<
nλ

n
= λ

=⇒ − b

n
> −λ

=⇒ λ− b

n
> λ− λ = 0

and so R(f ′,X,y) > R(f,X,y). This means that f ′ cannot be optimal according to our regularized
objective. We have also proved that further splitting (pκ1 , ŷκ1) or (pκ2 , ŷκ2) cannot be optimal since
we can just set f = f ′, and apply the same argument.

64/ 115

Machine Learning Muchang Bahng Spring 2024

8 Generalized Linear Models
Remember the linear model looked like this, where we use the conventional β notation to represent param-
eters.

Y = XTβ + ϵ, ϵ ∼ N(0, σ2I) (165)

which implies that Y | X ∼ N(XTβ, σ2I). Basically, given x, I assume some distribution of Y , and the
value of x will help me guess what the mean of this distribution is. Note that we in here assume that only
the mean depends on X. I could potentially have something crazy, like

Y | X ∼ N(XTβ, (XT γ)(XXT + I))

where the covariance will depend on X, too, but in this case we only assume that that mean is dependent
on X.

Y | X ∼ N(µ(X), σ2I)

where in the linear model, µ(X) = XTβ. So, there are three assumptions we are making here:

1. Y | X is Gaussian.

2. X only affects the mean of Y | X, written E[Y | X] = µ(X).

3. X affects the mean in a linear way, such that µ(X) = XTβ.

So the two things we are trying to relax are:

1. Random Component: the response variable Y | X is continuous and normally distributed with
mean µ = µ(X) = E[Y | X].

2. Link: I have a link that explains the relationship between the X and the µ, and this relationship is
µ(X) = XTβ.

So when talking about GLMs, we are not changing the fact that we have a linear function X 7→ XTβ. How-
ever, we are going to assume that Y | X now comes from a broader family of exponential distributions.
Second, we are going to assume that there exists some link function g

g(µ(X)) = XTβ

Admittedly, this is not the most intuitive way to think about it, since we would like to have µ(X) = f(XTβ),
but here we just decide to call f = g−1. Therefore, if I want to give you a GLM, I just need to give you two
things: the conditional distribution Y | X, which can be any distribution in the exponential family, and the
link function g.

We really only need this link function due to compatibility reasons. Say that Y | X ∼ Bern(p). Then,
µ(X) = E[Y | X] always lives in [0, 1], but XTβ always lives in R. We want our model to be realistic, and
we can clearly see the problem shown in Figure 19.

65/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 19: Fitting a linear model for Bernoulli random variables will predict a mean that is outside of [0, 1] when
getting new datapoints.

If Y | X is some exponential distribution, then its support is always positive and so µ(X) > 0. But if we
stick to the old form of µ(X) = XTβ, then Im(µ) = R, which is not realistic when we predict negative
values. Let’s take a couple examples:

Example 8.1 (Disease Epidemic)

In the early stages of a disease epidemic, the rate at which new cases occur can often increase
exponentially through time. Clearly, µ(X) = E[Y | X] should be positive and we should have some
sort of exponential trend. Hence, if µ(x) is the expected number of cases on data x, a model of the
form

µ(x) = γ exp(δx) (166)

seems appropriate, where γ and δ are simply scaling factors. Clearly, µ(X) is not of the form f(XTβ).
So what I do is to transform µ in such a way that I can get something that is linear.

log(µ(X)) = log(γ) + δX (167)

which is now linear in X, of form β0 + β1X. This will have some effects, but this is what needs to
be done to have a genearlized linear model. Note that what I did to µ was take the log of it, and
so the link function is g = log, called the log-link. Now that we have chosen the g, we still need
to choose what the conditional distribution Y | X would be. This is determined by speaking with
industry professionals, experience, and convenience. In this case, Y is a count, and since this must
be a discrete distribution. Since it is not bounded above, we think Poisson.

Example 8.2 (Prey Capture Rate)

The rate of capture of preys, Y , by a hunting animal, tends to increase with increasing density of
prey X, but eventually level off when the predator is catching as much as it can cope with. We want
to find a perhaps concave function that levels off, and suitable model might be

µ(X) =
αX

h+X
(168)

where α represents the maximum capture rate, and h represents the prey density at which the capture
rate is half the maximum rate. Again, we must find some transformation g that turns this into a

66/ 115

Machine Learning Muchang Bahng Spring 2024

linear function of X, and what we can do it use the reciprocal-link.

1

µ(X)
=
h+X

αX
=
h

α

1

X
+

1

α
(169)

The standard deviation of capture rate might be approximately proportional to the mean rate, sug-
gesting the use of a Gamma distribution for the response.

Example 8.3 (Kyphosis Data)

The Kyphosis data consist of measurements on 81 children following corrective spinal surgery. The
binary response variable, Kyphosis, indicates the presence or absence of a postoperative deforming.
The three covariates are: age of the child in months, number of the vertebrae involved in the operation,
and the start of the range of the vertebrae involved. The response variable is binary so there is no
choice: Y | X is Bernoulli with expected value µ(X) ∈ (0, 1). We cannot write µ(X) = XTβ because
the right hand side ranges through R, and so we find an invertible function that squishes R to (0, 1),
and so we can choose basically any CDF.

For clarification, when writing a distribution like Bernoulli(p), or Binomial(n, p), Poisson(λ), or N(µ, σ2),
the hyperparameters that we usually work with we will denote as θ, and the space that this θ lives in will
denote Θ. For example, for the Bernoulli, Θ = [0, 1], and for Poisson, Θ = [0,+∞).

Ultimately, a GLM consists of three steps:

1. The observed input X enters the model through a linear function βTX.

2. The conditional mean of response, is represented as a function of the linear combination

E[Y | X] = µ = f(βTX) (170)

3. The observed response is drawn from an exponential family distribution with conditional mean µ.

8.1 Exponential Family
We can write the pdf of a distribution as a function of the input x and the hyperparameters θ, so we can
write Pθ(x) = p(θ, x). For now, let’s think that both x, θ ∈ R. Think of all the functions that depend on
θ and x. There are many of them, but we want θ and x to interact in a certain way. The way that I want
them to interact with each other is that they are multiplied within an exponential term. Now clearly, this is
not a very rich family, so we are just slapping some terms that depend only on θ and only on x.

pθ(x) = exp(θx)h(x)c(θ)

But now if θ ∈ Rk and x ∈ Rq, then we cannot simply take the product nor the inner product, but what
we can do is map both of them into a space that has the same dimensions, so I can take the inner product.
That is, let us map θ 7→ η(θ) ∈ Rk and x 7→ T(x) ∈ Rk, and so our exponential distribution form would be
generalized into something like

pθ(x) = exp
[
η(θ) ·T(x)

]
h(x)c(θ)

We can think of c(θ) as the normalizing term that allows us to integrate the pdf to 1.∫
X
pθ(x) = c(θ)

∫
exp

[
η(θ) ·T(x)

]
h(x) dx

We can just push the c(θ) term into the exponential by letting c(θ) = e− log(c(θ))−1

to get our definition.

67/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 8.1 (Exponential Family)

A k-parameter exponential family is a family of distributions with pdf/pmf of the form

pθ(x) = exp
[
η(θ) ·T(x)−B(θ)

]
h(x)

The h term, as we will see, will not matter in our maximum likelihood estimation, so we keep it
outside the exponential.

1. η is called the canonical parameter. Given a distribution parameterized by the regular
hyperparameters θ, we would like to parameterize it in a different way η under the function
η : Θ → R

2. T(x) is called the sufficient statistic.
3. h(x) is a nonnegative scalar function.
4. B(θ) is the normalizing factor.

Let’s look at some examples.

Example 8.4 (Gaussian)

If we put the coefficient into the exponential and expand the square term, we get

pθ(x) = exp

(
µ

σ2
· x− 1

2σ2
· x2 − µ2

2σ2
− log(σ

√
2π)

)
where

η(θ) =

(
µ/σ2

−1/2σ2

)
, T (x) =

(
x
x2

)
, B(θ) =

µ2

2σ2
+ log(σ

√
2π), h(x) = 1

This is not a unique representation since we can take the log(
√
2π) out of the exponential, but why

bother to do this when we can just stuff everything into B and keep h simple.

Example 8.5 (Gaussian with Known Variance)

If we have known variance, we can write the Gaussian pdf as

pθ(x) = exp

[
µ

σ
· x
σ
− µ2

2σ2

]
· 1

σ
√
2π
ex

2/2σ2

where

η(θ) =
µ

σ
, T (x) =

x

σ
, B(θ) =

µ2

2σ2
, h(x) =

1

σ
√
2π
ex

2/2σ2

Example 8.6 (Bernoulli)

The pmf of a Bernoulli with θ is

pθ(x) = θx(1− θ)(1−x)

= exp
[
x log(θ) + (1− x) log(1− θ)

]
= exp

(
x log

[θ

1− θ

]
− log

[1

1− θ

])
where

η(θ) = log
[θ

1− θ

]
, T (x) = x, B(θ) = log

[1

1− θ

]
, h(x) = 1

68/ 115

Machine Learning Muchang Bahng Spring 2024

Example 8.7 (Binomial with Known Number of Trials)

We can transform a binomial with known N as

pθ(x) =

(
N

x

)
θx(1− θ)1−x

= exp

[
x ln

(θ

1− θ

)
+ ln(1− θ)

]
·
(
N

x

)
where

η(θ) = ln
(θ

1− θ

)
, T (x) = x, B(θ) = ln(1− θ), h(x) =

(
N

x

)

Example 8.8 (Poisson)

The pmf of Poisson with θ can be expanded

pθ =
θ−x

x!
e−θ

= exp
[
− θ + x log(θ)− log(x!)

]
= exp

[
x log(θ)− θ

] 1

x!

where
η(θ) = log(θ), T (x) = x, B(θ) = θ, h(x) =

1

x!

However, the uniform is not in here. In fact, any distribution that has a support that does not depend on
the parameter is not an exponential distribution.

Let us now focus on one parameter families where θ ∈ Θ ⊂ R, which do not include the Gaussian (with
unknown mean and variance, Gamma, multinomial, etc.), which has a pdf written in the form

pθ(x) = exp
[
η(θ)T (x)−B(θ)

]
h(x)

8.1.1 Canonical Exponential Family

Now a common strategy in statistical analysis is to reparamaterize a probability distribution. Suppose a
family of probability distributions {Pθ} is parameterized by θ ∈ Θ ⊂ R. If we have an invertible function
η : Θ → T ⊂ R, then we can paramaterize the same family with η rather than θ, with no loss of information.
Typically, it is the case that η is invertible for exponential families, so we can just reparameterize the whole
pdf and write

pη(x) = exp
[
η T (x)− ϕ(η)

]
h(x)

where ϕ = B ◦ η−1.

Definition 8.2 (Canonical One-Parameter Exponential Family)

A family of distributions is said to be in canonical one-parameter exponential family if its
density is of form

pη(x) = exp
[
η T (x)− ϕ(η)

]
h(x)

which is a subfamily of the exponential family. The function ψ is called the cumulant generating
function.

Before we move on, let us just provide a few examples.

69/ 115

Machine Learning Muchang Bahng Spring 2024

Example 8.9 (Poisson)

The Poisson can be represented as

pθ(x) = exp
[
x log θ − θ

] 1

x!

Now let η = log θ =⇒ θ = eη. So, we can reparamaterize the density as

pη(x) = exp
[
xη − eη

] 1

x!

where Pη = Poisson(eη) for η ∈ T = R, compared to Pθ = Poisson(θ) for θ ∈ Θ = R+.

Example 8.10 (Gaussian)

Recall that the Gaussian with known parameter σ2 and unknown θ = µ is in the exponential family,
since we can expand it as

pθ(x) = exp

[
µ

σ2
· x− µ2

2σ2

]
· 1

σ
√
2π
ex

2/2σ2

We can perform the change of parameter η = µ2/2σ2 =⇒ µ = σ2η, and substituting this in will give
the canonical representation

pη(x) = exp
[
ηx− σ2η2

2

]
· 1

σ
√
2π
ex

2/2σ2

where now Pη = N(σ2η, σ2) for η ∈ T = R, compared to Pθ = N(θ, σ2) for θ ∈ Θ = R, which is
basically the same space.

Example 8.11 (Bernoulli)

The Bernoulli has an exponential form of

pθ(x) = exp

[
x log

(θ

1− θ

)
+ log(1− θ)

]
Now setting η = log

(
θ

1−θ
)

=⇒ θ = 1
1+e−η , and so B(θ) = − log(1 − θ) = − log

(
e−η

1+e−η

)
=

log(1 + eη) = ψ(η), and so the canonical paramaterization is

pη(x) = exp
[
xη − log(1 + eη)

]
We present two useful properties of the exponential family.

Theorem 8.1 (Moments)

Let random variable X be in the canonical exponential family Pη

pη(x) = eηT (x)−ψ(η)h(x)

Then, the expectation and variance are encoded in the cumulant generating function in the following
way

E[T (X)] = ψ′(η) Var[T (X)] = ψ′′(η)

70/ 115

Machine Learning Muchang Bahng Spring 2024

Proof.

Example 8.12 ()

We show that this is consistent with the Poisson, normal, and Bernoulli distributions.
1. In the Poisson, ψ(η) = eη, and so ψ′(η) = eη = θ = E[X]. Taking the second derivative gives
ψ′′(η) = eη = θ = Var[X], too.

2. In the Normal with known variance σ2, we have ψ(η) = 1
2σ

2η2. So

E[X] = ψ′(η) = σ2η = µ

Var[X] = ψ′′(η) = σ2

3. In the Bernoulli, we have ψ(η) = log(1 + e−η). Therefore,

E[X] = ψ′(η) =
xη

1 + xη
=

1

1 + e−η
= θ

Var[X] = ψ′′(η) = −
(

1

1 + e−η

)2

e−η · −1 = θ2 · 1− θ

θ
= θ(1− θ)

Theorem 8.2 (Convexity)

Consider a canonical exponential family with density

pη(x) = eηT (x)−ψ(η)h(x)

and natural parameter space T . Then, the set T is convex, and the cumulant generating function ψ
is convex on T .

Proof.

This can be proven using Holder’s inequality. However, from the theorem above, note that
Var[T (X)] = ψ′′(η) must be positive since we are talking about variance. This implies that the
second derivative of ψ is positive, and therefore must be convex.

We will look at a subfamily of the exponential family. Now remember that we introduce the functions η and
T so that we can capture a much broader range of distributions, but if we have one parameter k = 1, then
we can just set η(θ) to be the new parameter θ. The canonical exponential family for k = 1, y ∈ R, is
defined to have the pdf

fθ(y) = exp

(
yθ − b(θ)

ϕ
+ c(y, ϕ)

)
(171)

where
h(y) = exp

(
c(y, ϕ)

)
(172)

If ϕ is known, this is a one-parameter exponential family with θ being the canonical parameter, and if ϕ
is unknown, the h(y) term will not depend on θ, which we may not be able to split up into the exponential
pdf form. In this case ϕ is called the dispersion parameter. For now, we will always assume that ϕ is
known.

We can prove this for all other classes, too. We can think of the c(y, ϕ) as just a term that we stuff every
other term into. What really differentiates the different distributions of the canonical exponential family is
the b(θ). The form of b will determine whether this distribution is a Gaussian, or a Bernoulli, or etc. This b
will capture information about the mean, the variance, the likelihood, about everything.

71/ 115

Machine Learning Muchang Bahng Spring 2024

8.2 Cumulant Generating Function

Definition 8.3 (Score)

The score is the gradient of the log-likelihood function with respect to the parameter vector. That
is, given that L(θ) is the likelihood, then

s(θ) :=
∂ logL(θ;x)

∂θ

which gives a row covector.

Now, remember that the score also depends on the observations x. If we rewrite the likelihood as a probability
density function L(θ;x) = f(x;θ), then we can say that the expected value of the score is equal to 0, since

E[s(θ)] =
∫
X
f(x;θ)

∂

∂θ
logL(θ;x) dx

=

∫
X
f(x;θ)

1

f(x;θ)

∂f(x;θ)

∂θ
dx

=
∂

∂θ

∫
X
f(x;θ) dx

=
∂

∂θ
1 = 0

where we take a leap of faith in switching the derivative and integral in the penultimate line. Furthermore,
we can get the second identity

E
[
∂2ℓ

∂θ2

]
+ E

[
∂ℓ

∂θ

]2
= 0

We can apply these two identities as follows. Since

ℓ(θ) =
Y θ − b(θ)

ϕ
+ c(Y ;ϕ)

therefore
∂ℓ

∂θ
=
Y − b′(θ)

ϕ

which yields

0 = E
[
∂ℓ

∂θ

]
=

E[Y]− b′(θ)

ϕ
=⇒ E[Y] = µ = b′(θ)

On the other hand, we have
∂2ℓ

∂θ2
+

(
∂ℓ

∂θ

)2

= −b
′′(θ)

ϕ
+

(
Y − b′(θ)

ϕ

)2

and from the previous result, we get
Y − b′(θ)

ϕ
=
Y − E[Y]

ϕ

together with the second identity, yields

0 = −b
′′(θ)

ϕ
+

Var(Y)

ϕ2
=⇒ Var(Y) = ϕ ′′(θ)

Since variance is always positive, this implies that b′′ > 0 and therefore b must be convex.

72/ 115

Machine Learning Muchang Bahng Spring 2024

8.3 Link Functions
Now let’s go back to GLMs. In linear models, we said that the conditional expectation of Y given X = x
must be a linear function in x

E[Y | X = x] = µ(x) = xTβ

But if the conditional distribution takes values in some subset of R, such as (0, 1), then it may not make sense
to write this as a linear function, since XTβ has an image spanning R. So what we need is a link function
that relates, i.e. transforms the restricted subset of µ, onto the real line, so that now you can express it of
the form XTβ.

g
(
µ(X)

)
= XTβ

Again, it is a bit more intuitive to talk about g−1, which takes our XTβ and transforms it to the values that
I want, so we will talk about both of them simultaneously. If g is our link function, we want it to satisfy 3
requirements:

1. g is continuously differentiable

2. g is strictly increasing

3. Im(g) = R, i.e. it spans the entire real line

This implies that g−1 exists, which is also continuously differentable and is strictly increasing.

Example 8.13 ()

If I have a conditional distribution...
1. that is Poisson, then we want our µ to be positive, and so we need a link function g : R+ → R.

One choice would be the logarithm

g(µ(X)) = log
(
µ(X)

)
= XTβ

2. that is Bernoulli, then we want our µ to be in (0, 1) and we need a link function g : (0, 1) → R.
There are 2 natural choices, which may be the logit function

g(µ(X)) = log

(
µ(X)

1− µ(X)

)
= XTβ

or the probit function
g(µ(X)) = Φ−1

(
µ(X)

)
= XTβ

where Φ is the CDF of a standard Gaussian. The two functions can be seen in Figure 20.

Figure 20: Logit and Probit Functions

73/ 115

Machine Learning Muchang Bahng Spring 2024

Now there are many choices of functions we can take. In fact, if µ lives in (0, 1), then we can really just
take our favorite distribution that has a density that is supported everywhere in R and take the inverse cdf
as our link. So far, we have no reason to prefer one function to another, but in the next section, we will see
that there are more natural choices.

8.3.1 Canonical Link Functions

Now let’s summarize what we have. We assume that the conditional distribution Y | X = x follows a
distribution in the exponential family, which we can completely characterize by the cumulant generating
function ψ. For different values of x, the conditional distribution will be paramaterized by different η(x),
and the resulting distribution Pη will have some mean µ(x), which is usually not the natural parameter η.
Now, let’s forget about our knowledge that ψ′(η) = µ, but we know that there is some relationship between
η ↔ µ.

Given an x, I need to use the linear predictor xTβ to predict µ(x), which can be done through the link
function g.

g
(
µ(x)

)
= xTβ

Now what would be a natural way of choosing this g? Note that our natural parameter η for this canonical
family takes value on the entire real line. I must construct a function g that maps µ onto the entire real line,
and so why not make it map to η. Therefore, we have

η(x) = g
(
µ(x)

)
= xTβ

Definition 8.4 (Canonical Link)

The function g that links the mean µ to the canonical parameter θ is called the canonical link.

g(µ) = θ

Now using our knowledge that ψ′(η) = µ, we can see that

g = (ψ′)−1

This is indeed a valid link function.
1. ψ′′ > 0 since it models the variance, and so ψ′ is strictly increasing and so g = (ψ′)−1 is also

strictly increasing.
2. The domain of ψ′ is the real line since it takes in the natural parameter η which exists over R,

so Im(g) = R.

So, given our cumulant generating function ψ and our link function g, both satisfying

ψ′(η) = µ and g(µ) = xTβ

we can combine them to get
(g ◦ ψ′)(η) = g(µ) = xTβ

and so, even though the mean of the response variable is not linear with respect to x, the value of (g ◦ψ′)(η)
is indeed linear. In fact, if we choose the canonical link, then the equation

η = xTβ

means that the natural parameter of our conditional distribution in the exponential family is linear with
respect to x! From this we can find the conditional mean µ(x).

The reason we focus on canonical link functions is because, when the canonical link is used, the components
of the model (the parameters of the linear predictor) have an additive effect on the response variable in the

74/ 115

Machine Learning Muchang Bahng Spring 2024

transformed (linked) scale, which makes the interpretation of the results easier. It’s also worth noting that
while using the canonical link function has some desirable properties, it is not always the best or only choice,
and other link functions may be used if they provide a better fit for the data or make more sense in the
context of the problem at hand.

Let us evaluate some canonical link functions.

Example 8.14 ()

The Bernoulli has the canonical exponential form of

pη(x) = exp
[
xη − log(1 + eη)

]
where η = log

(
θ

1−θ
)
. Since we have prior knowledge that θ = µ (i.e. the expectation of a Bernoulli

is the hyperparameter θ itself), we have a function that maps µ 7→ η.

η = g(µ) = log

(
µ

1− µ

)
which gives us our result. We can also take the inverse of ψ′ = eη

1+eη to get our result

g(µ) = (ψ′)−1(µ) = log

(
µ

1− µ

)

8.4 Likelihood Optimization
Now let us have a bunch of data points {(xn, yn)}Nn=1. By our model assumption, we know that the conditional
distribution Y | X = xn is now of an exponential family with parameter ηn = η(xn) and density

pηn(yn) = exp
[
ynηn − ψ(ηn)

]
h(yn)

Now we want to do likelihood optimization on β (not η or µ), and to do this, we must rewrite the density
function in a way so that it depends on β. Given a link function g, note the following relationship between
β and η:

ηn = η(xn) = (ψ′)−1(µ(xn))

= (ψ′)−1
(
g−1(xTnβ)

)
= h(xTnβ)

where for shorthand notation, we define h := (g ◦ ψ′)−1. Subtituting this into the above likelihood, taking
the product of all N samples, and logarithming the equation gives us the following log likelihood to optimize
over β.

ℓ(β) = log

N∏
n=1

pηn(yn) =

N∑
n=1

ynh(x
T
nβ)− ψ(h(xTnβ))

where we dropped the h(yn) term at the end since it is a constant and does not matter. If g was the canonical
link, then h is the identity, and we should have a linear relationship between η(xn) = xTnβ. This means that
the ηn reduces only to xTnβ, which is much more simple to optimize.

ℓ(β) = log

N∏
n=1

pηn(yn) =

N∑
n=1

ynx
T
nβ − ψ(xTnβ)

Note that the first term is linear w.r.t β, and ψ is convex, so the entire sum must be concave w.r.t. β. With
this, we can bring in some tools of convex optimization to solve.

75/ 115

Machine Learning Muchang Bahng Spring 2024

9 Ensemble Methods
The bias variance noise decomposition gives us a very nice way of explaining overfittting. That is, the
bias (expectation of the squared difference between the true E[Y | X] and the expected trained hypothesis
function hθ;D) reduces, but the variance in this overfitted model increases. Therefore, if we had a slightly
different dataset D sampled from (X × Y)N , then we might have a very different trained hypothesis since
it’s so sensitive to the data.

A way to treat this is through ensemble learning, where we train multiple models over slightly different
datasets, and then average their predictions to get a better model. What do we mean by a better model?
Well, we know that a too complex model has low bias but large variance, and a too simple model has high
bias but low variance.

1. Bagging refers to taking a complex model and decreasing its variance. Even though each model is
trained over a smaller dataset, resulting it being more noisy, the average of all these slightly more
noisy models will hopefully bring down the variance more than what we have added.10

2. Boosting refers to taking a simple model and decreasing its bias. Each simple model, usually a weak
learner, has relatively small search space, but by taking the aggregate of them, we can hopefully
increase it whilst bounding the variance in some way. Usually, the dataset is reweighted such that the
weak learner in the next iteration will correct the previous weak learner.

9.1 Bagging
Let’s start off with the simpler of the two.

Definition 9.1 (Bootstrap Aggregating)

Given a dataset D of N samples and a model M, bagging is an ensemble method done with two
steps:

1. Bootstrap. Sample Ñ data points with replacement from D to get a dataset D1, and do this M
times to get

D1,D2, . . . ,DM ⊂ D

2. Aggregate. For each sub dataset Dm, train our model to get the optimal hypothesis h∗Dm
. We

should have M different hypothesis functions, each trained on each sub dataset.

h∗D1
, h∗D2

, . . . , h∗DM

To predict the output on a new value x̂, we can evaluate all the h∗Dm
(x̂) .

Note that the bootstrapping step could be expanded to different types of subsampling.

Definition 9.2 (Pasting)

If random subsets (without replacement) are sampled from the original dataset D, then this method
is known as pasting.

Definition 9.3 (Random Subspaces)

When random subsets of the data are drawn as random subsets of the features, then this is known
as random subspaces.

10This is why random forests have underlying trees that are somewhat as large as possible.

76/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 9.4 (Random Patches)

When random subsets of both the data and the features are chosen, then this is known as random
patches.

Since the whole point of this algorithm is to reduce variance, bagging does not really overfit.

9.2 Random Forests

Definition 9.5 (Random Forests)

A random forest is a (random patch) bagging algorithm where the component models are decision
trees.

9.3 Boosting
Now we delve more into the applied and computational aspects of machine learning. It’s had a lot of
empirical success and is more interesting from a theoretical perspective. It starts off with the weak learning
assumption, which we introduce in the context of classification with the misclassification loss function. It is
actually a specific case of PAC learners.

Definition 9.6 (Probability Approximately Correct Learner)

A PAC learning is an algorithm that learns a function class H with parameter δ > 0 if there exists
an ϵ > 0 and the algorithm can find a f ∈ H with probability at least 1− δ s.t.

R(f) ≤ ϵ (173)

i.e.
P[R(f) ≤ ϵ] ≥ 1− δ (174)

This is quite a strong requirement, since it says that with probability at least 1− δ you must find an model
f that is correct with a probability of 1− ϵ, i.e. ϵ-good.

Definition 9.7 (Weak Learner)

A weak learner is an algorithm that learns a function class H with parameter δ > 0 if there exists
an γ > 0 and the algorithm can find a f ∈ H s.t.

P[R(f) < 1/2− γ] ≥ 1− δ (175)

for some δ > 0, where γ is considered our edge. Another way to write it is that with probability of
at least 1− δ, we can find a function f s.t.

Px,y∼X×Y [f(x) ̸= y] < 1/2− γ (176)

This essentially means that given some γ that measures how good our target predictor is compared to
random guessing, the probability that we can find such a predictor with this edge is 1−δ. Furthermore,
this case must hold true for all distributions P ∼ X × Y.

Therefore, a weak learner just means some algorithm that learns a model that is a bit better than random.
For example, learning decision stumps may be a weak learner. Colloquially, a weak learner can be thought of
as an algorithm that cannot get your training error to 0 and a strong learner can. The question is then, can
we make a strong learner out of a bunch of weak learners? The general idea is that we want to iteratively

77/ 115

Machine Learning Muchang Bahng Spring 2024

find a bunch of weak learners and slowly add them up to get a strong learner.

f =

n∑
i=1

fi (177)

where f is strong, fi weak.

9.3.1 Adaptive Boosting (AdaBoost)

Let’s start with Adaboost for binary classification.

Definition 9.8 (Adaboost for Binary Classification)

Given data {(xi, yi)} ∈ X × Y, with Y = {−1,+1}, we implement the following greedy algorithm.
1. You first set an n-vector weighting your samples, where the weight of the ith sample is Wt(i).

W1 =
(1
n
, . . . ,

1

n

)
(178)

2. For t = 1, . . . , T , we do the following.
(a) You run your weak learning algorithm, which will return your hypothesis ht with proba-

bility 1 − δ which is slightly better than random. We define its empirical error over the
distribution Wt to be

ϵt = RWt
(ht) = Pxi∼Wt

[ht(xi) ̸= yi] =

n∑
i=1

Wt(i) · 1ht(xi) ̸=yi (179)

This may be done differently by actually sampling n samples from this distribution and
then computing proportion of misclassifications.

(b) This new weak learner provides some information on the new weighted distribution. We
would like to weight this weak learner ht with some scale αt to determine how important
its vote is in the ensemble. We define this weighting to be

αt =
1

2
ln

(
1− ϵt
ϵt

)
(180)

Note the following important properties. If 0 < ϵt < 0.5, then this does indeed mean that
ht is slightly better than random, so it would have a positive weighting. If ϵt = 0.5, then it
is random so no weighting. Finally, if 0.5 < ϵ < 1.0, then it is an extremely poor classifier
and we are better off looking at the opposite of its prediction, meaning that αt will be
negative. This is also seen with the facts that as ϵt → 0, 1, then αt → +∞,−∞.a

(c) Then we set

Wt+1(i) ∝Wt(i) exp{−αtyiht(xi)} =

{
e−αt if ht(xi) = yi

e+αt if ht(xi) ̸= yi
(181)

meaning that the new weights go up for incorrect labels and down for correct labels. We
show proportional to since it is not normalized, but we can normalize it with the constant
Zt.

3. Your final strong classifier is then

f(x) = sign

(T∑
t=1

αtht(x)

)
(182)

which indeed is a sequential sum of these classifiers.

78/ 115

Machine Learning Muchang Bahng Spring 2024

In this way, by weighting the incorrect labels higher, I am telling successive weak learner to give me a new
weak hypothesis that tells me something new. This makes it so that the actual sequence of learned weak
models are important, since the next ht+1 tries to fix the errors that the ht makes.

Algorithm 9.1 (AdaBoost Algorithm)

The full algorithm for brevity is shown below.

Require: Training data {(xi, yi)}ni=1 where xi ∈ X , yi ∈ {−1,+1}
Require: Number of iterations T
Require: Weak learning algorithm A
1: Initialize weights W1(i) =

1
n for i = 1, . . . , n

2: for t = 1 to T do
3: Train weak learner ht = A({(xi, yi)},Wt)
4: Calculate weighted error:
5: ϵt =

∑n
i=1Wt(i) · 1ht(xi) ̸=yi

6: if ϵt ≥ 1
2 then

7: break
8: end if
9: Calculate importance weight:

10: αt =
1
2 ln(

1−ϵt
ϵt

)
11: Update sample weights:
12: for i = 1 to n do
13: Wt+1(i) =Wt(i) · exp(−αtyiht(xi))
14: end for
15: Normalize weights:
16: Zt =

∑n
i=1Wt+1(i)

17: Wt+1(i) =
Wt+1(i)
Zt

for all i
18: end for
19: return Final classifier f(x) = sign

(∑T
t=1 αtht(x)

)
We now actually show that this is a strong learner by showing that the training error goes to 0.

Theorem 9.1 (Exponential Decay of Training Error in AdaBoost)

Support that γ ≤ (1/2)− ϵt for all t. Then our empirical risk decays exponentially with T .

R̂(h) ≤ e−2γ2T (183)

and hence, the training error goes to 0 quickly.

Proof.

Can be shown with the lemma.
Zt = 2

√
ϵt(1− ϵt) (184)

Sure, the training error goes to 0, but what we really care about is the generalization error. It turns out
that we can prove things about this, but omitted for now.

aIn practice, ϵ cannot be 0 or 1 due to numerical reasons, so a small constant is added to prevent this from happening.

79/ 115

Machine Learning Muchang Bahng Spring 2024

Example 9.1 (AdaBoost with Stumps)

We can define our weak learning algorithm to be a decision stump with only 1 split. Doing adaboost
gives something similar to a random forest (but not quite since its a bagging algorithm) with great
generalization error.

Surprisingly, Adaboost has a tendency not to overfit, i.e. the variance does not explode. There is a lot of
theory that tries to explain why this is the case, such as margin theory.

There are a lot of different ways to analyze AdaBoost. For many years, researchers did not think of it as
having any connection to gradient descent or loss functions, but it actually does. AdaBoost can be viewed
as optimizing the exponential loss

L(x, y) = e−yf(x) (185)

so that the full empirical objective function is

L =
∑
i

exp

(
− 1

2
yi

T∑
t=1

αtft(xi)

)
(186)

which must be optimize w.r.t. the weights αt and the parameters of each weak classifier ft. This stepwise
optimization is greedy and sequential, where we add one weak classifier at a time, choosing its parameters
and αt to be optimal w.r.t. L and then never change it again. It turns out that if we actually do keep
things constant and solve the optimal parameters, it must be the case that αt = ln 1−ϵt

ϵt
, which is why it is

in the algorithm.11 Furthermore, the exponential loss is an upper-bound on the misclassification loss, so if
an exponential loss of 0 is achieved, then all training points are correctly classified.

9.3.2 Gradient Boosting

Gradient boosting can deal with both regression and classification problems, and so we will present it in full
generality.

Definition 9.9 (Gradient Boosting)

Let us have data {(xi, yi)} ∈ X × Y and a differentiable loss function

L(y, ŷ) =

n∑
i=1

L(yi, ŷi) (187)

with also a constant stepsize η.
1. We first initialize the model with a constant value that minimizes the loss. So we have a single

leaf as in our decision tree ensemble.

F0 = argmin
γ

n∑
i=1

L(yi, γ) (188)

If we’re doing regression with the MSE loss, then γ = ȳ, the average. This is our first predictor,
which predicts F0(x) = γ for all x, and so F0 is really just the constant n-vector (ȳ, . . . , ȳ).
If we’re doing binary classification, we can focus on the logits and initialize γ as the log-odds
log(C+

C−
)

2. For t = 1, . . . , T , we do the following.
(a) We have the predicted values Ft−1(xi) for each sample xi. We compute the negative

gradient of the loss function w.r.t. the predicted value.

rt = −∂L(y, ŷ)
∂ŷ

∣∣∣∣
ŷ=Ft−1(x)

= −
(
∂L(y1, ŷ1)

∂ŷ1

∣∣∣∣
ŷ1=Ft−1(x1)

, . . . ,
∂L(yn, ŷn)

∂yn

∣∣∣∣
ŷn=Ft−1(xn)

)
(189)

11Derivation here

80/ 115

https://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/AdaBoost.pdf

Machine Learning Muchang Bahng Spring 2024

Note that the vector above is a n-vector, and when we use the MSE loss, then the gradient
just simplifies to the residual.

(b) We use our weak learning algorithm to train a weak model ft on the residual values rt.
(c) We update

Ft = Ft−1 + η · ft (190)

3. In the end, we have
Ft = F0 + ηf1 + ηf2 + . . .+ ηfT (191)

consisting of a bunch of weak learners to make a strong learner.

In a way, we can think of this as an optimization problem in Rn (not Rd!). We can think of ŷ representing
the actual function f , and we’re really doing gradient descent on the “function space” Rn by updating Ft.

Algorithm 9.2 (Gradient Boosting)

Here is the full algorithm for brevity.

Require: Training data {(xi, yi)}ni=1 where xi ∈ X , yi ∈ Y
Require: Differentiable loss function L(y, ŷ)
Require: Number of iterations T
Require: Learning rate η
Require: Weak learning algorithm A
1: // Initialize model with optimal constant value
2: F0 = argminγ

∑n
i=1 L(yi, γ)

3: // For regression (MSE): F0 = 1
n

∑n
i=1 yi

4: // For binary classification: F0 = log(C+

C−
)

5: for t = 1 to T do
6: // Compute negative gradient vector
7: for i = 1 to n do
8: rt,i = −∂L(yi,ŷi)

∂ŷi

∣∣
ŷi=Ft−1(xi)

9: end for
10: // Train weak learner on pseudo-residuals
11: ft = A({(xi, rt,i)}ni=1)
12: // Update model with scaled weak learner
13: for i = 1 to n do
14: Ft(xi) = Ft−1(xi) + η · ft(xi)
15: end for
16: end for
17: return Final model FT (x) = F0(x) + η

∑T
t=1 ft(x)

18: // Special cases for common loss functions:
19: // For MSE: rt,i = yi − Ft−1(xi) (actual residual)
20: // For LogLoss: rt,i = yi − σ(Ft−1(xi)) where σ is sigmoid

Example 9.2 (Regression Trees)

If we have regression trees as our weak learners (pratically the max depth is 8 to 32 rather than
stumps) with the L2 loss function.

1. The initial model will just constantly predict the average of the yi’s.
2. The rt are just the pseudoresiduals

rt = −
(
y1 − ft−1(x1), . . . , yn − ft−1(xn)

)
(192)

81/ 115

Machine Learning Muchang Bahng Spring 2024

3. In case where there are multiple samples running to the same leaf node, the predicted values of
the terminal nodes are the average of the y’s of those samples.

Example 9.3 (Gradient Boosting Classification)

If we have classification trees as our weak learners, then
1. The initial model will just constantly predict the log odds log(C+/C−), where C± is the number

of ones and zeros in the whole dataset. For multiclass there is probably a softmax variant of
this.

2. In case where there are multiple samples running to the same leaf node, the predicted values of
the terminal nodes are decided by majority.

The general ideas are pretty much the same between AdaBoost and gradient boost. We iteratively build a
strong learner from weak learners. A few differences, however,

1. AdaBoost dynamically weighs the importance of each weak model, while gradient boost weak learners
are equally weighted by η.

2. AdaBoost actively focuses on the samples where the previous weak learner got wrong, but gradient
boost reduces the whole loss in general.

3. Gradient boost usually uses trees larger than stumps.

9.3.3 XGBoost

The final mainstream boosting algorithm is XGBoost. In regression, XGBoost fits to the residuals just like
gradient boosting, but it uses unique regression trees. It is designed for large, complex datasets.

Definition 9.10 (XGBoost for Regression)

Let us have the same data {(xi, yi)} ∈ X × Y and the MSE loss

L(y, ŷ) =
1

2

n∑
i=1

(yi − ŷi)
2 (193)

with a constant stepsize ε (by default 3).
1. We first initialize the model with a constant value that minimizes the loss, which is just the

average. So we have a single leaf as in our decision tree ensemble.

F0 = ȳ (194)

2. For t = 1, . . . , T , we do the following.
(a) We have the predicted values Ft−1(xi) for each sample. We first compute the residuals,

denoted r0. To build our next tree, we start off with a single node “containing” this set of
residuals representing each data point.

(b) We want to grow the decision tree, and we do this by splitting on the maximum gain in
similarity score, defined for a collection of residuals r to be

s(r) =

∑
ri

dim(r) + λ
(195)

This score determines how well the set is clustered, and we would like well clustered
residuals to be close together.λ is a regularization parameter used to decrease the score’s
sensitivity when splitting. Therefore, we first compute the score for the root node, and let
us define the score of a tree as the sum of the scores of all its leaves. We want to split

82/ 115

Machine Learning Muchang Bahng Spring 2024

greedily on this metric. We can keep on splitting until it reaches a certain number of levels
(6), and then we can prune it based on whether the increase in score surpasses a threshold,
called the gain. Note that as λ increases, it is easier to prune the tree.

(c) With our trained tree ft, we add it to our cluster to iteratively build our final predictor.

Ft = Ft−1 + ε · ft (196)

10 Clustering and Density Estimation

10.1 K Means Clustering
The simplest type of unsupervised learning is clustering. In the clustering problem, we are given a training
set of unlabeled data

{x(1),x(2), . . . ,x(n)} (197)

and want to group the data into a few cohesive “clusters.”

1. Determine the number of clusters that we want to find and set it as k (this can be a disadvantage if
we do not know how many clusters we are looking for beforehand).

2. We initialize the cluster centroids µ1,µ2, . . . ,µk ∈ Rd randomly or by some other method.

3. The next part takes the centroids and moves them to the center of each cluster accordingly. The
following two steps are repeated until convergence (and convergence is guaranteed):

(a) We assign each training sample x(i) to the closest cluster centroid µj . That is, for every i =
1, . . . , n, set

c(i) ≡ arg min
j

||x(i) − µj ||2 (198)

where this argmin function returns the input to a function that yields the minimum (in this case,
the number j that yields the minimum value of ||x(i) − µj ||2 for each i).

(b) We move each training cluster centroid µj to the mean of the points assigned to it. That is, for
each j = 1, . . . , k, set

µj ≡
∑n
i=1 1{c(i) = j}x(i)∑n
i=1 1{c(i) = j}

(199)

83/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 21: The steps can be visualized for a set of unlabeled data (green points) in R2 clustered into k = 2 groups
(red and blue). The crosses represent the cluster centroids.

We can interpret this algorithm in another equivalent way. k-means is precisely coordinate descent on the
cost function called the distortion function:

L(µ1, . . . ,µk) ≡
n∑
i=1

min
k

||x(i) − µk||2 (200)

but since L is not necessarily convex, it might be susceptible to local extrema.

10.2 Gaussian Mixture Models and EM Algorithm
Given a training set x(i)n

i=1 (without the y-labels and so in the unsupervised setting), there are some cases
where it may seem like we can fit multiple Gaussian distributions in the input space X . For example, the
points below seem like they can be fitted well with 3 Gaussians.

84/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 22: Example of data that can be fitted with 3 Gaussians

Therefore, we can construct a best-fit model as a composition of a multinomial distribution (to decide which
one of the Gaussians x should follow) followed by a Gaussian. That is, to find the distribution of x and get
the density function p(x), we condition it on the random variable Z. More specifically, we let

Z ∼ Multinomial(ϕ), ϕ =
(
ϕ1 ϕ2 . . . ϕk

)
such that

k∑
i=1

ϕi = 1

and define the conditional distributions as

X | Z = 1 ∼ N (µ1,Σ1)

X | Z = 2 ∼ N (µ2,Σ2)

. . . ∼ . . .

X | Z = j ∼ N (µj ,Σj)

. . . ∼ . . .

X | Z = k ∼ N (µk,Σk)

Therefore, our model says that each x(i) was generated by randomly choosing z(i) from 1, . . . , k according to
some multinomial, and then the x(i) was drawn from one of the k Gaussians depending on z(i). This model
is called the mixture of Gaussians model. The parameters of our model are:

• The vector ϕ ∈ Rk (which really has k − 1 parameters) characterizing the multinomial distribution.

• The set of vectors µ1,µ2, . . . ,µk representing the mean vectors of each multivariate Gaussian. For
simplicity, we’ll denote this set of vectors as µ.

• The set of symmetric, positive-definite matrices Σ1,Σ2, . . . ,Σk representing the covariance matrices
of each multivariate Gaussian. For simplicity, we’ll denote this set of matrices as Σ.

We can write down the log-likelihood of the given data x(i)’s as a function of all the parameters above as:

l(ϕ,µ,Σ) =

n∑
i=1

log, p
(
x(i);ϕ,µ,Σ

)
=

n∑
i=1

log

(k∑
j=1

p
(
x(i) | z(i) = j;µ,Σ

)
, p
(
z(i) = j;ϕ

))

This equation above tells us the (log-) likelihood of the data landing on the x(i)’s given that we have
parameters ϕ,µ,Σ. Note that since we only know that the final value of the ith sample is x(i) and not

85/ 115

Machine Learning Muchang Bahng Spring 2024

anything at all about which value z(i) the ith sample had, there is an extra unknown in this model. That
is, we do not know which one of the k Gaussians the x(i) was generated from. These values z(i) are called
the hidden/latent variables.

If we did know the values of the hidden variables z(i) (i.e. if we knew which of the k Gaussians each x(i)

was generated from), then our log likelihood function would be much more simple since now, our givens will
be both x(i) and z(i). Therefore, we don’t have to condition on the z(i) and can directly calculate the log of
the probability of us having sample values (z(1),x(1)), (z(2),x(2)), . . . , (z(n),x(n)).

l(ϕ,µ,Σ) =

n∑
i=1

log, p
(
x(i);ϕ,µ,Σ

)
=

n∑
i=1

log, p
(
x(i), z(i);ϕ,µ,Σ

)
=

n∑
i=1

log, p
(
x(i) | z(i);µ,Σ) p

(
z(i);ϕ

)

This model, with known z(i)’s, is basically the GDA model, which is easy to calculate. That is, the maximum
values of ϕ,µ,Σ are:

ϕj =
1

n

n∑
i=1

1z(i)=j

µj =

∑n
i=1 1z(i)=jx

(i)∑n
i=1 1z(i)=j

Σj =
1∑n

i=1 1z(i)=j

n∑
i=1

1z(i)
(
x(i) − µj

)
,
(
x(i) − µj

)T
for j = 1, . . . , d. But since we do not know the values of z(i), we first try to "guess" the values of the z(i)’s
and then update the parameters of our model assuming our guesses are correct. Let us clarify some notation:

• The distribution that we will iteratively reassign over and over again is Z, with density pZ(z) that
maps z 7→ ϕz, where ϕ is a vector that represents the density. The algorithm will initialize pZ and
have it converge to the true multinomial density. Note that Z in this context could represent the true
multinomial distribution Z or could represent the distributions iteratively produced by the algorithm
that should converge onto the true Z (usually the latter).

• The k Gaussian distributions that we will iteratively reassign over and over again is N1,N2, . . . ,Nk,
with densities pN1(x), . . . , pNk(x) that maps x 7→ pN j(x).

• The distribution of the entire random variable X will have density pX(x). Since we are iteratively
reassigning the densities pZ and pNj , this joint distribution of X will also get modified.

Definition 10.1 (EM Algorithm)

The Expectation-Maximization (EM) Algorithm has the following steps:
1. We initialize our values of θ, which can be chosen randomly or by K-means initialization

(not explained here).
• We can randomly assign our values of µj ’s and the Σj ’s in Rd.

86/ 115

Machine Learning Muchang Bahng Spring 2024

• We can randomly assign the density of our guess multinomial pZ(z), represented by vector

ϕ =

ϕ1...
ϕk

 with
k∑
j=1

ϕj = 1

where pZ(z) ≡ ϕz for z = 1, . . . , k.
2. (E Step) Now that we have our prior guess of what Z and its density function pZ is, we can

calculate its posterior density function by taking one observed example x(i) and modifying pZ to
p
(i)
Z . This superscript (i) on the distribution pZ indicates that this is a posterior density created

from observing x(i). (The motivation for this construction is explained more specifically in the
next section involving Jensen’s inequality.) Using Bayes’ rule, we should calculate n density
functions

p
(i)
Z (z) ≡ pZ(z |x(i);ϕ, µ,Σ) for i = 1, . . . , n

For easier notation, we let ϕ(i) be the vector representation of the density p(i)Z . That is,

ϕ(i) =

ϕ
(i)
1
...
ϕ
(i)
k

 with
k∑
j=1

ϕ
(i)
j = 1

where p(i)Z (z) ≡ ϕ
(i)
z for z = 1, . . . , k and 0 otherwise. Then, we can calculate ϕ(i) (and therefore

p
(i)
Z) component-wise by calculating each ϕ

(i)
j (which is the probability of a point being in the

jth cluster, given that we observe example x(i)):

ϕ
(i)
j = p

(i)
Z

(
z = j; ϕ, µ,Σ

)
= pZ

(
z = j |x(i); ϕ, µ,Σ

)
=
pNj

(
x(i) | z(i) = j; µ,Σ

)
pZ
(
z(i) = j; ϕ

)
pX
(
x(i); ϕ, µ,Σ

)
=

pNj

(
x(i) | z(i) = j; µ,Σ

)
pZ
(
z(i) = j; ϕ

)∑k
l=1 pNj

(
x(i) | z(i) = l; µ,Σ

)
pZ
(
z(i) = l; ϕ

)
Note that we have everything we need to calculate the posterior probability distribution p(i)Z (z)
of a point being in any cluster.

• pNj
(x(i) | z(i) = j) represents the conditional Gaussian density, which is completely defined

because the parameters µj ,Σj are already defined in initialization.
• pZ(z

(i) = j;ϕ) is really just the probability ϕj that a given point is in the jth cluster,
which we’ve also defined in initialization.

• pX(x(i)) represents the distribution of the entire random variable X of the entire training
set. Knowing the first two and taking the sum gives this density function pX .

Therefore, we should end up with n different k-vectors ϕ(1), ϕ(2), . . . , ϕ(n), each representing our
best guess of what multinomial density p(i)Z each x(i) had followed in order to be at the given
points.
Let us elaborate further on the intuition of this step. In the normal GDA with given values of
z(i), we have

ϕj =
1

n

n∑
i=1

1{z(i) = j} =
1

n

(
Number of Samples in jth Gaussian

)
which is a sum of "hard" guesses, meaning that each x(i) is undoubtedly in cluster j or not, and
so to find out our best guess for the true vector ϕ, all we have to do is find out the proportion

87/ 115

Machine Learning Muchang Bahng Spring 2024

of all examples in each of the k groups and we’re done (without needing to iterate). However,
in our EM model, we do not know the z(i)’s, and so the best we can do is give the probability
ϕ
(i)
j that x(i) is in cluster j.

Figure 23

So for each point x(i), the model has changed from it being undoubtedly in group z(i) = j to it
having a probability of being in ϕ(i)j for j = 1, . . . , k.

3. (M Step) With these n separate posterior estimates of Z for each observation x(i), we can
simply average all of them and say that our best estimate of ϕ is

ϕ =
1

n

n∑
i=1

ϕ(i)

We can interpret the vectors ϕ(i) as tuples where ϕ(i)j describes the expected "portion" of each
sample x(i) to be in group j. So, we are adding up all the "portions" of the points that are
expected to be in cluster j to get ϕj =

∑n
i=1 ϕ

(i)
j .

Now, given the jth Gaussian cluster, we would like to compute its mean µj . Since each x(i)

has probability ϕ
(i)
j of being in cluster j, we can weigh each of the n points by ϕ

(i)
j (which

determines how "relevant" x(i) is to cluster j) and average these (already weighted) points to
get our "best-guess" of the mean µj .

µj =

∑n
i=1 ϕ

(i)
j x(i)∑n

i=1 ϕ
(i)
j

88/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 24

With this logic of weighted points, we finally update the covariance matrices Σj as below:

Σj =
1∑n

i=1 ϕ
(i)
j

n∑
i=1

ϕ
(i)
j

(
x(i) − µj

)(
x(i) − µj

)T
4. Now, we have new values of ϕ, µ1, . . . , µk,Σ1, . . . ,Σk that we can work with. With these new

values, repeat steps 2 and 3 until convergence.
All in all, this entire algorithm results from modifying the "hard" data of each point x(i) being
undoubtedly in one cluster to a model containing points x(i) that have been "smeared" around
different clusters, with a probability ϕ(i)j being in cluster j.

Definition 10.2 (Mixture of Gaussians Algorithm: Summary)

Given a training set {x(i)}ni=1 ∈ Rd, let us assume that the random variable X that these examples
follow can be modeled by specifying a joint distribution of a multinomial and Gaussians. That is, it
follows a Gaussian mixture model (GMM) of k Gaussian clusters. Let

• Z be the multinomial distribution representing which Gaussian cluster each example x falls in,
with density represented by vector ϕ ∈ Rk so that P(Z = j) ≡ ϕj .

• The set of conditional distributions

X |Z = j ∼ N (µj ,Σj) for j = 1, 2, . . . , k

are multivariate Gaussian, with mean vectors µ1, . . . , µk and covariance matrices Σ1, . . . ,Σk.
Let all the parameters be denoted as θ. Then, the EM algorithm is as such:

1. Initialize the multinomial vector ϕ, the µj ’s, and the Σj ’s.
2. (E Step) Calculate the n vectors

ϕ(i) =

ϕ
(i)
1
...
ϕ
(i)
k

 for all i = 1, . . . , n

89/ 115

Machine Learning Muchang Bahng Spring 2024

that represent the posterior distribution of Z given observed x(i) by computing

ϕ
(i)
j = p

(i)
Z

(
z = j; ϕ, µ,Σ

)
= pZ

(
z = j |x(i); ϕ, µ,Σ

)
=
pNj

(
x(i) | z(i) = j; µ,Σ

)
pZ
(
z(i) = j; ϕ

)
pX
(
x(i); ϕ, µ,Σ

)
=

pNj

(
x(i) | z(i) = j; µ,Σ

)
pZ
(
z(i) = j; ϕ

)∑k
l=1 pNj

(
x(i) | z(i) = l; µ,Σ

)
pZ
(
z(i) = l; ϕ

)
3. (M Step) Reassign the value of θ as

ϕ =
1

n

n∑
i=1

ϕ(i)

µj =

∑n
i=1 ϕ

(i)
j x(i)∑n

i=1 w
(i)
j

for j = 1, . . . , n

Σj =
1∑n

i=1 ϕ
(i)
j

n∑
i=1

ϕ
(i)
j

(
x(i) − µj

)(
x(i) − µj

)T for j = 1, . . . , n

4. Repeat steps 2 and 3 until convergence.

10.2.1 EM Algorithm for General Estimation Problems

Recall Jensen’s Inequality: Given a convex function f : R −→ R (meaning that f ′′(x) ≥ 0 for all x) and
a random variable X, we have

E
(
f(X)

)
≥ f

(
E(X)

)
Moreover, if f is strictly convex, then E

(
f(X)

)
= f

(
E(X)

)
holds true if and only if X = E(X) with

probability 1 (i.e. if X is a constant).

Suppose we have an estimation problem given the training set {x(i)}ni=1. We have latent variable model
p(x, z; θ) with z being the latent variable of discrete, finite random variable Z, with density pZ(z). Let us
denote the density of X as pX . Then, the random variable X can be interpreted as us first generating z
from Z, and then computing X |Z = z.

Compute X = Compute Z and then

Compute X |Z = 1

Compute X |Z = 2

. . .

Compute X |Z = k

Let us clarify some notation:

• The distribution that we will iteratively reassign over and over again is Z, with density pZ that maps
z 7→ ϕz, where ϕ is a vector that represents the density.

• The k conditional (not necessarily Gaussian) distributions that we will iteratively reassign over and
over again is X1, X2, . . . , Xk, with densities pX1

(x), . . . , pXk
(x) that maps x 7→ pXj

(x).

• The distribution of the entire random variable X will have density pX(x). Since we are iteratively
reassigning the densities pZ and pXj

, this joint distribution of X will also get modified.

The EM algorithm in the general case has the following steps:

90/ 115

Machine Learning Muchang Bahng Spring 2024

1. We initialize the value of θ in some way. Note that within this θ are the parametizations of the initial
multinomial density pZ , which is our initial "guess" of the distribution of Z.

2. (E Step) The log likelihood of the given data {x(i)}ni=1 with respect to the parameter θ (which encodes
all parameters of distribution Z and all X |Z) is

l(θ) =

n∑
i=1

log pX
(
x(i); θ

)
It turns out that explicitly finding the maximum likelihood estimates of the parameters θ is hard
because it results in a difficult, non-convex optimization problem. So, we tackle this another way.

To start, we can see that the summation isn’t too crucial, so we can focus on minimizing each
log pX

(
x(i); θ

)
and summing in the end. We can calculate this by conditioning over all j = 1, . . . , k

generated from Z (which we have guessed to have an initial density of pZ). That is, we must find for
each i = 1, 2, . . . , n

max
θ

log pX
(
x(i); θ

)
= max

θ
log

(k∑
j=1

pX
(
x(i), Z = j; θ

))

= max
θ

log

(k∑
j=1

pX
(
x(i) |Z = j; θ

)
pZ
(
j; θ
))

= max
θ

log

(k∑
j=1

pXj

(
x(i); θ

)
pZ
(
j; θ
))

To find this maximum value, we can focus on the first equality and see that by Jensen’s inequality
(with conCAVE, not convex, f(x) = log x over domain x ∈ R+), the following holds true for all θ and
more importantly, for any arbitrary density function p∗iZ .

log pX
(
x(i); θ

)
= log

(k∑
j=1

pX
(
x(i), Z = j; θ

))

= log

(k∑
j=1

p∗iZ
(
j
) pX(x(i), Z = j; θ

)
p∗iZ
(
j
))

= log

(
Ej∼p∗iZ

(
p(x(i), Z = j; θ)

p∗iZ
(
j
)))

≥ Ej∼p∗iZ

(
log

(
p(x(i), Z = j; θ)

p∗iZ
(
j
)))

=

k∑
j=1

p∗iZ (j) log

(
p(x(i), Z = j; θ)

p∗iZ (j)

)
= ELBO

(
x(i); p∗iZ , θ

)
The final term, called the evidence lower bound (ELBO), is just the expectation of log p(x(i),Z=j; θ)

p∗iZ (j)

with respect to j drawn from density p∗iZ , which is denoted with Ej∼p∗iZ .

Summing over all n examples, we have a lower bound for the entire log likelihood for any set of density
functions p∗1Z , p

∗2
Z , . . . , p

∗n
Z :

l(θ) =

n∑
i=1

log p(x(i); θ) ≥
n∑
i=1

ELBO(x(i); p∗iZ , θ)

=

n∑
i=1

k∑
j=1

p∗iZ (j) log

(
p(x(i), Z = j; θ)

p∗iZ (j)

)

91/ 115

Machine Learning Muchang Bahng Spring 2024

Our job now is to choose the correct density functions p∗iZ ’s such that the lower bound is maximized.
It turns out that we can do even better: equality is satisfied if and only if we set

p∗iZ (j) ≡ pZ
(
j |x(i); θ

)
≡ p

(i)
Z

(
j; θ
)

for all i = 1, 2, . . . , n

which is simply the posterior distribution of the multinomial given the observed sample x(i), which we
can easily calculate using Bayes’ rule. Substituting this into p∗iZ leads to the equality

l(θ) =

n∑
i=1

log p(x(i); θ) =

n∑
i=1

ELBO
(
x(i); p

(i)
Z , θ

)
=

n∑
i=1

k∑
j=1

p
(i)
Z

(
j; θ
)
log

(
p(x(i), Z = j; θ)

p
(i)
Z

(
j; θ
))

=

n∑
i=1

k∑
j=1

pZ
(
j |x(i); θ

)
log

(
p(x(i), Z = j; θ)

pZ
(
j |x(i); θ

))

In summary, this E step has taken the log-likelihood function l(θ) (representing (the log of) the prob-
ability of all the x(i)’s landing where they are given the parameters θ), which is abstract and hard-to-
optimize, and converted it into an equivalent form as the sum of a bunch of ELBO functions optimized
with the density parameters begin assigned p∗iZ = p

(i)
Z .

But remember that these optimal densities p∗iZ = p
(i)
Z make the right and left hand side equivalent only

for a fixed value of θ! So, the right hand side is only equivalent to l(θ) only for that one value of θ,
but as soon as we set θ to something else, the right hand side evaluated with p∗iZ = p

(i)
Z are not equal.

3. (M Step) Since we have found some equivalent form of l(θ) for the fixed θ that was initialized, we
can now just maximize the right hand side with respect to θ, while fixing the p∗iZ = p

(i)
Z ’s. Therefore,

we find and set the value of θ as

θ = arg max
θ

n∑
i=1

ELBO
(
x(i); p

(i)
Z , θ

)
= arg max

θ

n∑
i=1

k∑
j=1

p
(i)
Z (j) log

(
p(x(i), Z = j; θ)

p
(i)
Z (j)

)

= arg max
θ

n∑
i=1

k∑
j=1

pZ
(
j |x(i); θ

)
log

(
p(x(i), Z = j; θ)

pZ
(
j |x(i); θ

))
In the case where the parameter θ consist of ϕ, µ1, . . . , µk,Σ1, . . . ,Σk like in the GMM model, it happens
so that the maximum is found by computing ϕ to be the average of the ϕ(i)’s, each µj to be the weighed
averages of the points, and each Σj as the equation above. For other distributions, the formula for the
maximum must be mathematically found (or algorithmically computed) with respect to parameter θ.

4. We have now reassigned the entire value of θ, meaning that the parameters representing our guess
of density pZ of Z has also been modified. With this new value of θ, we repeat steps 2 and 3 until
convergence.

For some intuition, we can visualize l as a function of θ. For the sake of visuals, we will assume that θ ∈ R
and l : R −→ R. On the contrary to what a visual is supposed to do, we want to point out that we cannot
just visualize l as a curve in R×R. This can be misleading since then it implies that the optimal θ value is
easy to find, as shown in the left. Rather, we have no clue what the whole curve of l looks like, but we can
get little snippets (right).

92/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 25

Rather, all we can do is hope to take whatever easier-to-visualize, lower-bound functions and maximize them
as much as we can in hopes of converging onto l. Let us walk through the first two iterations of the EM
algorithm. We first initialize θ to, say θ0. This immediately induces the lower-bound ELBO-sum function∑
i ELBO(x(i); p∗iZ , θ), which takes in multinomial density functions p∗iZ = p1, p2, . . . and outputs different

functions of θ that are valid lower bounds. Two of these possible lower-bound functions are shown (in green)
for when we input some arbitrary density p1, p2. However, there exists a density p(i)Z that produces not only
the maximum possible lower-bound (called max ELBO, shown in red) but is equal to l(θ) for that density
input p(i)Z . We maximize this function with respect to θ to get θ1 as our next assignment of θ.

Figure 26

The next step is identical. Now that we have a new value of θ = θ1, this induces the lower-bound ELBO-sum
function

∑
i ELBO(x(i); p∗iZ , θ) that also takes in multinomial densities p∗iZ and outputs different functions

of θ that are valid lower-bounds. Two possible lower bounds are shown (in green), but the maximum lower-
bound (in blue) is produced when we input density p(i)Z . Since this max ELBO function is equal to θ for this
fixed density input p(i)Z , we maximize this function with respect to θ to get θ2 as our next assignment of θ.

93/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 27

Definition 10.3 (EM Algorithm for General Estimation Problems)

Given a training set {x(i)}ni=1 ∈ Rd, let us assume that the random variable X that these exam-
ples follow can be modeled by specifying a joint distribution of a multinomial and some arbitrary
distributions. Let there be k clusters, and let

• Z be the multinomial distribution representing which Gaussian cluster each example x falls in,
with density pZ(j) and represented by vector ϕ ∈ Rk so that P(Z = j) = ϕj . Let the parameters
of ϕ be encoded in θ.

• The set of conditional distributions

X |Z = j ∼ Xj for j = 1, 2, . . . , k

are arbitrary distributions with some parameters, also all encoded in θ.
The EM algorithm is described as such:

1. Initialize θ.
2. (E Step) Since l(θ) is bounded below for all p∗1Z , . . . , p

∗n
Z as

l(θ) ≡
n∑
i=1

log p
(
x(i); θ

)
≥

n∑
i=1

ELBO
(
x(i); p∗iZ , θ

)
setting p∗iZ (j) = p

(i)
Z (j) = pZ

(
j |x(i); θ

)
for all i = 1, . . . , n would put l into a new form for these

specific fixed values of p∗iZ .

l(θ) =

n∑
i=1

ELBO
(
x(i); p

(i)
Z , θ

)
3. (M Step) We maximize this equivalent form of l(θ) with respect to θ whilst fixing the choice

94/ 115

Machine Learning Muchang Bahng Spring 2024

of p(i)Z . That is, we set the value of θ as

θ = arg max
θ

n∑
i=1

ELBO
(
x(i); p

(i)
Z , θ

)
= arg max

θ

n∑
i=1

k∑
j=1

p
(i)
Z (j) log

(
p(x(i), Z = j; θ)

p
(i)
Z (j)

)

= arg max
θ

n∑
i=1

k∑
j=1

pZ
(
j |x(i); θ

)
log

(
p(x(i), Z = j; θ)

pZ
(
j |x(i); θ

))
4. We have successfully updated θ. Now, we repeat steps 2 and 3 until convergence. Step 2 can

bring improvements because we have changed the θ, which means that there is a new sum of
ELBO functions of the θ that serves as a new lower bound.

10.3 Kernel Density Estimation

10.4 Density Based Clustering

10.5 Hierarchical Clustering

10.6 Spectral Clustering

10.7 High Dimensional Clustering

11 Graphical Models

11.1 Bayesian Networks

11.2 Markov Random Fields

11.3 Hidden Markov Models

12 Dimensionality Reduction
Dimensionality reduction is used for many purposes, such as preprocessing data, visualizing it, or encoding
it in a sparser, more efficient way.

12.1 Principal Component Analysis
PCA finds low dimensional approximations to the data by projecting the data onto linear subspaces.

Definition 12.1 (Principal Component Analysis)

Let X ∈ Rd and Lk denote all k-dimensional linear subspaces. The kth principal subspace is

ℓk = argmin
ℓ∈Lk

E
(
min
y∈ℓ

||X̃ − y||2
)

(201)

where X̃ = X−µ and µ = E[X]. To parse this, let’s fix a subspace ℓ. Then, the normalized data X̃ is
a random vector and the minimum distance of X̃ onto the subspace ℓ is the inner min term. Taking
the expectation of that gives us the expected distance of the data onto the subspace. The principal
subspace is the subspace that minimizes this expected distance. The dimension reduced version of X
is then Tk(X) = µ+ projℓkX.

95/ 115

Machine Learning Muchang Bahng Spring 2024

Note that this is in fact different from linear regression as it minimizes the expected orthogonal distance to
the subspace, rather than the residual distance to the subspace as in linear regression.

(a) PCA minimizes the orthogonal dis-
tance to the subspace.

(b) Linear regression minimizes the
residual distance to the subspace.

Figure 28: PCA vs Linear Regression

There is a very nice way to calculate this principal subspace.

Theorem 12.1 (Calculating the Principal Subspace)

Given our data matrix X ∈ Rn×d, we take the SVD of it.

X = UΣV T (202)

where Σ contains the singular values of X in decreasing order. Then ℓk is the subspace spanned by
the columns v1, v2, . . . , vk of V . Furthermore,

Tk(X) = µ+

k∑
j=1

βjvj , where βj = ⟨X − µ, vj⟩ (203)

Note that this is really just equivalent to calculating the eigendecomposition of Σ̂ = XTX.

Now a question arises: how do we know that this sample decomposition is a good approximation to the true
decomposition? It comes from the fact that the sample covariance Σ̂ is a good approximation of the true
covariance Σ, which we will later prove using concentration of measure.

Theorem 12.2 (Risk)

The risk satisfies

R(k) = E[||X − Tk(X)||2] =
d∑

j=k+1

λj (204)

It is essential that you plot the spectrum in decreasing order. This allows you to analze how well PCA is
working. People often use the “elbow” technique to determine where to choose K, and we value∑k

j=1 λj∑d
j=1 λj

(205)

accounts for the variance explained, which should be high with K low. If you have to go out to dimension
K = 50 to explain 90% of the variance, then PCA is not working. It may not work because of many reasons,

96/ 115

Machine Learning Muchang Bahng Spring 2024

such as there being nonlinear structure within the data.

It turns out that the elements of Σ̂ are close entry-wise to those of Σ. But if this is true, then does it
mean that the eigenvalues of the sample covariance matrix are close to the true eigenvalues of the covariance
matrix? It turns out that the answer is no, and we need a proper metric to satisfy this assumption. The
metric, as we can guess from linear algebra, is the operator norm, and we will show some results from matrix
perturbation theory.

Definition 12.2 (Operator Norm)

The operator norm of a matrix A is defined as

||A|| = sup
x ̸=0

||Ax||
||x||

(206)

Lemma 12.1 ()

It turns out that
||Σ̂− Σ|| = Op

(
1√
n

)
(207)

Theorem 12.3 (Weyl’s Theorem)

If Σ̂ and Σ are close in the operator norm, then their eigenvalues are close.

||Σ̂− Σ|| = Op

(
1√
n

)
=⇒ |λ̂j − λj | = Op

(
1√
n

)
(208)

This only talks about their eigenvalues, but this does not necessarily imply that the eigenvalues are close.
We need an extra condition.

Theorem 12.4 (David-Kahan Theorem)

If Σ̂ and Σ are close in the operator norm, and if the eigenvectors of Σ are well-conditioned, then the
eigenvectors of Σ̂ are close to the eigenvectors of Σ. More specifically,

||v̂j − vj || ≤
23/2||Σ̂− Σ||
λj − λj+1

(209)

12.1.1 Kernel PCA

Definition 12.3 (Kernel PCA)

Let Ni be the neighborhood around Xi. Then, we want to find a mapping W : Rn → Rk that
minimizes

min
W

n∑
i=1

∣∣∣∣∣∣∣∣Xi −
∑
j∈Ni

WijXj

∣∣∣∣∣∣∣∣2 where
∑
j

Wij = 1 (210)

We can constrain the weights in W so that anything that is not in the neighborhoods are 0.

12.2 Multi-Dimensional Scaling
Again, we want to reduce our dimension, but the goal is slightly different from PCA.

97/ 115

Machine Learning Muchang Bahng Spring 2024

Definition 12.4 (Multi-Dimensional Scaling)

Given our data X ∈ Rd, we want to construct a linear map T : Rd → Rk such that it preserves the
pairwise differences between the data points. That is, we want to minimize the following loss function

min
T

∑
i ̸=j

(
dRk(T (xi), T (xj))− dRd(xi, xj)

)
(211)

where dV is a distance metric in the space V .

Note that we can easily modify this formulation to preserve other structures, such as dot products, weights
between distances, or different types of metrics in each space. It turns out that when the distance metric is
the Euclidean L2 distance, then the solution to this linear map turns out to be PCA. This may be a more
intuitive way to think about PCA, since we’re trying to preserve the pairwise distances between the data
points.

Theorem 12.5 (Equivalence of Classical MDS and PCA)

If the distance metric is the Euclidean L2 distance, then the solution to the MDS problem is equivalent
to PCA. That is,

Tk = argmin
T

∑
i ̸=j

(
||T (xi)− T (xj)||2 − ||xi − xj ||2

)
(212)

Generally, if you don’t use classical MDS, then you will get a different answer than PCA and there doesn’t
exist a closed form solution, so you’ll have to minimize this numerically.

Example 12.1 (Non Classical MDS)

The loss ∑
i ̸=j

(
||T (xi)− T (xj)|| − ||xi − xj ||

)2 (213)

does not give the same solution as PCA.

12.2.1 Isomap

Isomap is a bit different in the way that it tries to capture more of the global structure of the data, which
brings advantages and disadvantages. It is simply a modification of MDS but with geodesic distances.

Definition 12.5 (Isomap)

You start off with the point cloud, but with every point, Xi, you find the local neighborhood Ni
and you make a weighted graph over the whole dataset in the high dimensional space. Then, the
distance between any two arbitrary points is the weighted sum of the path between them, calculated
by Dijkstra’s algorithm. Intuitively, this is an approximation of the geodesic distance between these
two points on a manifold. Call this distance dG. Then, we simply do MDS by minimizing

min
T

∑
i ̸=j

(
dRk(T (xi), T (xj))− dG(xi, xj)

)
(214)

98/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 29: The classical example is the spiral manifold. The data lies in this manifold, and the geodesic
distance helps us gain an accurate distance metric within this data.

The problem with this is that it is very sensitive to noise. For example, if we had a few points lying between
the spirals, then the geodesic distance between the two spirals would be very small, and so the MDS would
try to bring them closer together.

Figure 30: With extra noisy points (red), the geodesic distance can get corrupted.

To fix this, we use diffusion maps, which looks at all possible paths between two points and looks at some
average of them, which increases robustness.

12.3 Local Linear Embedding
PCA and MDS are linear embedding methods. Let’s move onto nonlinear ones. The first nonlinear models
that we work with again use the idea of locality (remember kernel regression). You have data that is globally
nonlinear, but if you look at a point and its local neighborhood around it, then it is approximately linear
since we assume that it lives in some smooth manifold.

99/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 31: Local linear embedding assumes that the data is locally linear.

The concept of neighborhood can be defined in two ways. You can either just fix an ϵ and take the ϵ-ball
around each point xi. Or you can fix a k and take the k nearest neighbors of each point. The general idea of
using kernel PCA is to take a local neighborhood of the data and construct some linear approximation of it.

12.4 Factor Analysis
Factor analysis is very similar to PCA since it looks for a small number of hidden features within the data.
Say that we want to do density estimation for the probability distribution of the covariates x, a random
variable. We can try to model it directly, but this may be infeasible. Rather, what we do is “add" a
latent distribution h, creating the joint distribution (x,h). This may look more complicated, but make two
simplifying assumptions: we hope that we can model the latent h in a simple form (like a Gaussian), and
we can model the conditional probability p(x | h) as some function fθ parameterized by θ. We can therefore
marginalize and find that

p(x) =

∫
p(x | h) p(h) dh = Eh[p(x | h)] (215)

Like we do with everything else in math, we take a look at the simplest example: linear functions.

In linear factor models, we start with the unknown covariate distribution x ∈ Rd, and we create a latent
variable h ∈ Rk (k is to be chosen). We first assume that

h ∼ p(h)

comes from some predefined distribution, with the only constraint being that it is factorable (i.e. is the
product of its marginal distributions: p(h) =

∏
i p(hi)) so that it is easy to sample from. Occasionally, the

stronger assumption of the hi’s being iid is made. Then, we assume that

x = Wh+ b+ ϵ

where the noise ϵ is typically Gaussian and diagonal (but not necessarily the same component-wise variances).
Finally, we can use techniques like MLE to estimate W,b, and the parameters of ϵ.

The entire reason we want to do this is that we are hoping that h ∈ Rk and x ∈ Rd, and d >> k.
Therefore, W is a d× k matrix, and the latent variables h give a more compact (parsimonious) explanation
of dependencies between the components of the observations x. We will look at 3 specific cases of linear
factor models: Probabilistic PCA, Factor Analysis, and Independent Component Analysis.

Example 12.2 (Factor Analysis)

Factor analysis is a specific case of a linear factor model where

x =Wh+ b+ ϵ, where h ∼ N(0, I), ϵ ∼ N(0, σ2)

100/ 115

Machine Learning Muchang Bahng Spring 2024

It should be clear to us that x should be Gaussian and that E[x] = b, with

Var[x] = E[(x− b)(x− b)T]

= E[(Wh+ ϵ)(hTWT + ϵT)]

= E[WhhTWT] + E[ϵϵT]
=WE[hhT]WT + E[ϵϵT]
=WWT + diag(σ2

1 , . . . , σ
2
d)

The W,b, and σ can be estimated using MLE methods. Unfortunately, no closed form exists, so
iterative methods are commonly applied.

Note that in here, we do not assume that the variances of the hi’s are the same, though they are independent.
This means that the subspace generated by the MLE estimate of W will not necessarily correspond to the
principal subspace of the data. But we can make this happen with one more assumption. Before we get into
probabilistic PCA, let’s review regular PCA.

Example 12.3 (PCA)

Example 12.4 (Probabilistic PCA)

In PPCA, we assume everything we did for factor analysis, but now also that σ1 = . . . = σk = σ. In
this case,

x ∼ N(b,WWT + σ2I)

and the MLEs for W,b, σ have a closed form, and model parameter estimation can be performed
iteratively and efficiently. We define. It is pretty clear that

b̂MLE =
1

N

N∑
i=1

x(i)

and setting

V̂arMLE(x) = S =
1

N

N∑
i=1

(x(i) − b)(x(i) − b)T

which is the biased, but MLE estimator of the variance, let us derive the MLE of W. Say that W∗

is an MLE, then, for any unitary U ∈ Rk×k, we have

W∗W∗T = (W∗U)(W∗U)T

which means that the MLE is not unique. We can find the MLE estimate of σ first by taking a look at
C = Var[x] = WWT +σ2I. It is the sum of positive semidefinite patrices that are also symmetric, so
by the spectral theorem it is diagonalizable and has full rank d. But WWT is rank k, so d− k of the
eigenvalues of WWT is 0, indicating that the same d− k smallest eigenvalues of C is σ2. Therefore,
we can take the smallest d− k eigenvalues of our MLE estimator of C, which is S, and average them
to get our MLE for σ.

σ̂2
MLE =

1

d− k

d∑
j=k+1

λj

We can approximate WWT = C − σ2I ≈ S − σ̂2
MLEI, and by further taking the eigendecomposition

C = UΣUT =⇒ WWT = U(Σ − σ2I)UT and cutting off the last d − k smallest eigenvalues and

101/ 115

Machine Learning Muchang Bahng Spring 2024

their corresponding eigenvectors, we can get

WML = Uq(Λd − σ̂2
MLEId)

1/2R

where the R just accounts for any unitary matrix.

Now as σ → 0, the density model defined by PPCA becomes very sharp around these d dimensions spanned
by the columns of W. At 0, our MLE of W is simplified and we have

x = WMLEh+ bMLE + ϵ = UqΛ
1/2
q h+ bMLE

which essentially reduces to regular PCA. That is, the conditional expected value of h given x becomes an
orthogonal projection of x− b onto the subspace spanned by the columns of W.

12.5 Sparse Dictionary Learning
What we want to do in sparse coding is that for each input x(t), we want to find a latent representation
h(t) s.t. 1) it is sparse (i.e. has many 0s) and 2) we can reconstruct the original input x(t) well. We have
basically two things to optimize: the latent representations h and the decoding mechanism, which we can
do with a dictionary matrix D. Therefore, we want to perform the joint optimization

min
D

1

T

T∑
t=1

min
h(t)

1

2
||x(t) −Dh(t)||22︸ ︷︷ ︸

reconstruction error

+ λ||h(t)||1︸ ︷︷ ︸
sparsity penalty

To break this term down, let’s just assume that we have a fixed dictionary D. Then, we just need to minimize
with respect to each h(t). Now we can add the dictionary parameter back again.

Note that the reconstruction, or decoding, of x′ = Dh is linear and explicit, but if we want to encode x 7→ h,
we need to substitute the x into the term above and minimize it w.r.t. D and h to solve it. Therefore, this
encoder is an implicit and nonlinear function of x.

For example, we can reconstruct an image of a seven as a linear combination of a set of images. Note that
each of the images of strokes are columns of W and the coefficients make up the sparse vector h.

Let’s think about how we can optimize the objective function w.r.t. h, keeping D constant. We can do
stochastic gradient descent, which gives us the steps

∇h(t)L(x(t)) = DT (Dh(t) − x(t)) + λ sign(h(t))

but this wouldn’t achieve sparsity since it overshoots the 0 all the time. Therefore, we can clip it, or we can
use proximal gradient descent/ISTA to take a step, and shrink the parameters according to the L1 norm.

h(t) = h(t) − αDT (Dh(t) − x(t))

h(t) = shrink(h(t), αλ)

102/ 115

Machine Learning Muchang Bahng Spring 2024

where shrink(a,b) = [. . . , sign(ai) max(|ai| − bi, 0), . . .]. This is guaranteed to converge if 1/α is bigger than
the largest eigenvalue of DTD.

12.6 Independent Component Analysis
Another special case of linear factor model is ICA. In our setting, let us just assume that b = 0 and ϵ = 0.
That is, we have the simple model

x = Wh

In here, x ∈ Rd is a mixture vector and W ∈ Rd×d is a mixing matrix. Note that the hidden h has the
same dimensions as x, but this can be generalized to rectangular matrices. Both W and h are unknown,
and we need to recover them given x. In linear ICA, we have two strong assumptions:

1. Each component of h is independent (not just uncorrelated). This is an easy enough assumption to
intuit.

2. Independent components of h must not be Gaussian. This is needed for us to be able to “unmix"
the signals. To see why, just suppose h was Gaussian, and so the vector Rh is also Gaussian for any
invertible R. Therefore, we could find an infinite number of solutions of form

x = WR−1Rh

and I have no way to separate them.

There are further ambiguities with ICA.

1. Estimating the latent components up to a scaling factor.

x = (αW)(
1

α
h) for some α > 0

We can fix this by forcing E[h2i] = 1. However, there is still an ambiguity for the sign of hidden
components, but this is insignificant in most applications.

2. Estimating the components up to permutation. We have

x = WP−1Ph

for some permutation matrix P.

Now let’s see how linear ICA actually estimates W and h. Once W is estimated, the latent components of
a given test mixture vector, x∗ is computed by h∗ = W−1x∗. So now all there’s left to do is to estimate W,
which we want to estimate so that W−1x is far from Gaussian. The reason for this is that given a bunch
of independent non-Gaussian hi’s, if we mix them with a matrix that is not ±I , then by CLT, a linear
combination of random variables will tend to be Gaussian, and so for an arbitrary W we would expect x to
be Gaussian. Therefore, what we want to do is guess some matrix A, and compute

Ax = AWh

and if we get things right, A ≈ W−1, and the result of Ax would look pretty non-Gaussian. If it it not
the case, then AW will still be some mixing matrix, and so Ax would look Gaussian. So now the question
reduces to how do we choose this A? There are multiple ways to measure non-Gaussianity:

1. The absolute or squared kurtosis, which is 0 for Gaussians. This is a differentiable function w.r.t. W,
so we can try maximizing it. This is done for the sample kurtosis, of course.

2. Another measure is by maximizing the neg-entropy.

We can perform this on three mixed signals with additive noise, and ICA does very well, though again some
recovered signals are scaled or permuted weirdly.

103/ 115

Machine Learning Muchang Bahng Spring 2024

12.7 Slow Feature Analysis
Slow feature analysis also another special case of a linear factor model that uses information from time signals
to learn invariant features. It is motivated by a general principle called the slowness principle. The idea
is that the important characteristics of scenes change very slowly compared to the individual measurements
that make up a description of a scene. For example, in computer vision, individual pixels can change very
rapidly. If a zebra moves from left to right across the image, an individual pixel wil rapidly change from
black to white. By comparison, the feature indicating whether a zebra is in the image will not change at
all, and the feature describing the zebra’s position will change slowly. Therefore, we want to regularize our
model to learn features that change slowly over time.

We can apply the slowness principle to any differentiable model trained with gradient descent. That is, we
can add the following term to the loss function:

λ
∑
i

d
(
f(x(t+1)), f(x(t))

)
where λ is a hyperparameter determining the strength of the slowness regularization term, t is the time
index, f is the feature extractor to be regularized, and d is the distance between f(x(t)) and f(x(t+1)). A
common choice for d is the mean squared difference.

Essentially, given a set of time-varying input signals x(t), SFA learns a nonlinear function f that transforms
x into slowly-varying output signals y. Obviously, we can’t just take some trivial function like f = 0, so we
have the following constraints

Et[f(x(t))i] = 0

Et[f(x(t))2i] = 1

104/ 115

Machine Learning Muchang Bahng Spring 2024

We can restrict the nonlinear f to some subspace of functions, and this becomes a standard optimization
problem where we solve

min
θ

Et
[(
f(x(t+1))i − f(x(t))i

)2]
12.8 Latent Dirichlet Allocation

12.9 UMAP

12.10 t-SNE

13 Practical Methods

13.1 Model Selection
We’ve talked about the theory and implementation behind all these models, but in practice, how do we even
use them? If we are trying to predict lung cancer in a patient, do we use linear regression, a nonparametric
model, or something else? It’s not clear at all what to do with the data. Unfortunately, this just comes with
domain expertise and experience with data, but we can provide some general pointers.

As stated before, we have the flexibility to choose whatever model to train on. So how do we choose which
form is the best? Well this is just an assumption that most researchers make, and this is called model
selection.

Example 13.1 (Polynomial Regression)

The number of terms M , i.e. the degree M − 1 of the polynomial

hθ(x) = w0 + w1x+ w2x
2 + . . .+ wM−1x

M−1

in polynomial regression gives us models with different complexities, where MM determines the model
with a M − 1th degree polynomial.

Example 13.2 ()

Suppose I have data sampled data x(1), . . . , x(N) on age at death for N people from an unknown
distribution X. Then, possible models that model the distribution are

1. M1: the exponential distribution p(x | λ) = λe−λy with parameter θ = λ.
2. M2: the gamma distribution p(y | a, b) = (ba/Γ(a))ya−1e−by with parameter θ = (a, b).
3. M3: the log-normal distribution with X ∼ N(µ, σ2) where θ = (µ, σ2).

Example 13.3 ()

A mixture of Gaussians model

p(y) =

M∑
m=1

πmN(y | µm,Σm)

has submodels where we must determine the number of Gaussians M .

Now if we assume that the actual true distribution X or the true regressor E[Y | X] is contained within
our model M, then we say our model is well-specified. But since researchers have no idea what the data
generating process is, so E[Y | X] ̸∈ M. Hence there is the saying that saying that “all models are wrong,"
since we never know what the true data generating process is, and thus the quantity

E[Y | X]− h∗θ(X)

105/ 115

Machine Learning Muchang Bahng Spring 2024

where h∗θ(X) is the optimized hypothesis functions within M, will always be nonzero. How close we can
get this quantity to 0 determines how useful the model is, and a misspecified model is fundamentally a
convenient (or even necessary) assumption on the distribution underlying the data, which may only be a
reasonable approximation.

13.2 Feature Engineering
This is also very domain specific.

13.3 Data Preprocessing
13.3.1 Feature Extraction

The simplest linear function for regression is simply

hw(x) = w0 + w1x1 + . . .+ wDxD

This is called linear regression not because h is a linear function of x. It is a linear function of w. Therefore,
we can fix nonlinear functions ϕj(x) and consider linear combinations of them.

hw(x) = w0 +

M−1∑
j=1

wjϕj(x)

We usually choose a dummy basis function ϕ0(x) = 1 for notational convenience, so that if ϕ is the vector
of the function ϕj , then we can write hw(x) = wTϕ(x). This mapping from the original variables x ∈ RD
to the basis functions {ϕj(x)}, which span a linear function space of dimension M , is called preprocessing
or feature extraction of the data.

Example 13.4 ()

Here are some examples of how we can extract features.
1. The mapping from a single variable x to its powers

x 7→ (1, x, x2, . . . , xM−1) (216)

2. The mapping from a configuration of K atoms with their momenta in R6K to their atomic
cluster expansion polynomials.

3. The Legendre polynomials, which form an orthonormal basis in the space of polynomials.
4. Using equally spaced Gaussian basis functions over the dataset.

106/ 115

Machine Learning Muchang Bahng Spring 2024

Figure 32: Gaussian basis functions over the interval [−1, 1] with standard deviation of 0.3

Changing the input space from D dimensions to M dimensions (i.e. extracting our M features) gives the
design matrix

X =

x(1)

x(2)

x(3)

...
x(n)

 =⇒ Φ =

— ϕ(x(1)) —
— ϕ(x(2)) —
...

...
...

— ϕ(x(n)) —

 (217)

We have shown that the PolynomialFeatures transformer converts our features to a polynomial basis. We
can do this for an arbitrary number of features, for example if we map D = 2 to a second degree polynomial,
we would have the transformation

(x1, x2) 7→ (1, x1, x2, x
2
1, x1x2, x

2
2)

1 >>> import numpy as np
2 >>> from sklearn.preprocessing import PolynomialFeatures
3 >>> X = np.arange(6).reshape(3, 2)
4 >>> X
5 array([[0, 1],
6 [2, 3],
7 [4, 5]])
8 >>> poly = PolynomialFeatures(2)
9 >>> poly.fit_transform(X)

10 array([[1., 0., 1., 0., 0., 1.],
11 [1., 2., 3., 4., 6., 9.],
12 [1., 4., 5., 16., 20., 25.]])

Sometimes, we are only worried about the interaction terms among features, so we can set the parameter
interaction_only=True, which would, in the third degree case, transform the features

(x1, x2, x3) 7→ (1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3)

Spline transformers are piecewise polynomials, which is also built in. We notice that it is cumbersome to
transform the dataset X with the transformer, store it into another variable, and train the model on that.

107/ 115

Machine Learning Muchang Bahng Spring 2024

We can “combine" the transforming (even multiple layers of transformers) and the model by implementing a
“pipeline," which is initialized by inputting a list of tuples (name and the object) and has the same methods
as the model.

1 from sklearn.pipeline import Pipeline
2 model = Pipeline([("poly_transform", PolynomialFeatures(degree=2)),
3 ("lin_regression", LinearRegression())
4])
5 model.fit(X, y)

Now, let’s talk about how we can implement a custom transformer. We basically have to create a new subclass
that implements the fit (which always returns self) and the transform (which returns the transformed
matrix) methods. Here we show for Gaussian basis functions.

1 from sklearn.base import BaseEstimator, TransformerMixin
2

3 class GaussianFeatures(BaseEstimator, TransformerMixin):
4 """Uniformly spaced Gaussian features for one-dimensional input"""
5

6 def __init__(self, N, width_factor=2.0):
7 self.N = N
8 self.width_factor = width_factor
9

10 def fit(self, X, y=None):
11 # create N centers spread along the data range
12 self.centers_ = np.linspace(X.min(), X.max(), self.N)
13 self.width_ = self.width_factor * (self.centers_[1] - self.centers_[0])
14 return self
15

16 def transform(self, X):
17 transformed_rows = []
18 for mu in self.centers_:
19 transformed_rows.append(stats.norm.pdf(X, mu, self.width_))
20

21 return np.hstack(tuple(transformed_rows))
22

23 model = Pipeline([("gauss_transform", GaussianFeatures(20)),
24 ("lin_regression", LinearRegression())
25])
26

27 N = 60
28 X = np.random.uniform(-1, 1, size=(N, 1))
29 Y = true_func(X) + np.random.normal(0, 0.3, size=(N, 1))
30

31 model = Pipeline([("gauss_transform", GaussianFeatures(10)),
32 ("lin_regression", LinearRegression())
33])
34 model.fit(X, Y)

If we would like to impelment the fourier expansion of a function of form

f(x) =
1

2
a0 +

N∑
n=1

an cos(nx) +

N∑
n=1

bn sin(nx)

Then we would create the basis functions according to

108/ 115

Machine Learning Muchang Bahng Spring 2024

1 class FourierFeatures(BaseEstimator, TransformerMixin):
2 "Fourier Expansion for one-dimensional input"
3

4 def __init__(self, N):
5 self.N = N
6

7 def fit(self, X, Y=None):
8 return self
9

10 def transform(self, X):
11 transformed_columns = []
12 transformed_columns.append(np.ones(shape=X.shape))
13

14 for n in range(self.N):
15 transformed_columns.append(np.sin(n * X))
16 transformed_columns.append(np.cos(n * X))
17

18 print(np.hstack(tuple(transformed_columns)).shape)
19 return np.hstack(tuple(transformed_columns))

and both of them would give the following fits to our original function f(x) = sin(2πx) + 2 cos(x− 1.5).

(a) Fitting with 10 Gaussian basis functions. (b) Fitting with 10 Fourier basis functions.

Figure 33

13.3.2 Standardizing Data

Standardizing typically meanss that our featuers will be rescaled to have the properties of a standard
normal distribution with mean of 0 and a standard deviation of 1. Here are a few methods to scale our data,
with their results shown on a dataset of 30 points in R2.

1. StandardScaler: This is probably the most used method for standardizing data. It standardizes
features by removing the mean and scaling to unit variance. The standard score of a sample x(n) is
(x− x̄)/S where x̄ is the mean of the training samples and S is the standard deviation of the training
samples.

1 from sklearn.preprocessing import StandardScaler
2 scaler = StandardScaler()
3 scaled_data = scaler.fit_transform(data)

109/ 115

Machine Learning Muchang Bahng Spring 2024

2. MinMaxScaler: While not technically "standardization," MinMaxScaler is another preprocessing
method for scaling. It transforms features by scaling each feature to a given range, typically between
zero and one, or so that the maximum absolute value of each feature is scaled to unit size.

1 from sklearn.preprocessing import MinMaxScaler
2 scaler = MinMaxScaler()
3 scaled_data = scaler.fit_transform(data)

3. MaxAbsScaler: This scaler works similarly to the MinMaxScaler but scales in a way that the training
data lies within the range [−1, 1] by dividing through the largest maximum value in absolute value. It
is meant for data that is already centered at zero or sparse data.

1 from sklearn.preprocessing import MaxAbsScaler
2 scaler = MaxAbsScaler()
3 scaled_data = scaler.fit_transform(data)

4. RobustScaler: This scaler removes the median and scales the data according to the quantile range
(defaults to IQR: Interquartile Range). It’s robust to outliers, which makes it a good choice if you have
data with possible outliers.

1 from sklearn.preprocessing import RobustScaler
2 scaler = RobustScaler()
3 scaled_data = scaler.fit_transform(data)

5. QuantileTransformer: Note that the presence of outliers messes with our scaling. More generally for
skewed distributions (like an exponential), a linear transformation does not take care of these outliers,
so we would like some nonlinear preprocessing algorithm. One common one is the QuantileTransformer,
which takes the quantiles (percentiles) of the dataset and transforms then so that those are equidistant
from each other. By default, it divides up the data into 1000 quantiles.

1 from sklearn.preprocessing import QuantileTransformer
2 transformer = QuantileTransformer(n_quantiles = 100, output_distribution=’normal’)
3 transformed_data = transformer.fit_transform(data)

Let’s talk about how these scalers will work on some data. We take a wine data with the two variables
representing fixed acidity and volatile acidity.

110/ 115

Machine Learning Muchang Bahng Spring 2024

(a) Original Data (b) StandardScaler (c) MinMaxScaler

(d) MaxAbsScaler (e) RobustScaler (f) QuantileTransformer

Figure 34: The StandardScaler simply standardizes the data to have 0 mean and unit variance.

It’s important to note that whether you should standardize your data and how you should do it depends on
the specific characteristics of your data and the machine learning algorithm you’re using. For example, some
algorithms, like many in deep learning, assume that all features are on the same scale. Others, like Decision
Trees and Random Forests, do not require feature scaling at all.

13.4 Data Augmentation

14 Archive

14.1 Bayesian Probability
Now this book puts a heavy emphasis on Bayesian probabilistic models. For now, we will denote p(X) to be
the distribution of a random variable X. We capture our assumptions about the model parameter w with a
prior distribution p(w). Our likelihood p(D | w) is the conditional distribution of getting the data D from
our model with parameter w. Therefore, Bayes theorem is expressed

p(w | D) =
p(D | w) p(w)

p(D)

The denominator p(D) is a normalizing term equal to
∫
p(D | w) p(w) dw, and for high dimensional W it

may not be feasible to compute this integral without monte carlo sampling. Therefore, we focus on the
numerator terms and remember the rule

posterior ∝ likelihood × prior

For clarification, D can represent different things depending on the problem:

1. In a density estimation problem, where we have a single dataset X, D = X since this data tells us
information about which distribution it could come from.

111/ 115

Machine Learning Muchang Bahng Spring 2024

2. In a regression problem, D = Y, that is, D will always be the output data, not the input data X. We
can think of the input data X as always being fixed, and it is upon observation of the outputs Y on
these inputs that gives us information.

In both the frequentist and Bayesian settings, the likelihood p(D | w) plays a central role. In the frequentist
setting, the process is divided into two steps:

1. We optimize w with some estimator, with a popular one being the maximum likelihood estimator.
A popular estimator is maximum likelihood, which seeks to maximize p(D | w) w.r.t. w.

2. We optimize w with some estimator, with a popular one being the maximum likelihood estimator.
A popular estimator is maximum likelihood, which seeks to maximize p(D | w) w.r.t. w.

3. We fix the optimized w∗ and error bars on this estimate are obtained by considering the distribution
of possible datasets D. One approach is bootstrapping, which goes as follows. Given our original
dataset X = {x(1), . . . , x(N)}, we can create a new dataset X′ by sampling N points at random from
X, with replacement, so that some points in X may be replicated in X′, whereas other points in X
may be absent in X′. This process is repeated L times to generate L different datasets. Then, we can
look at the variability of prediction between the different bootstrap data sets.

In a Bayesian setting, there is only a single dataset D and the uncertainity in the parameters is expressed
through a probability distribution over w. It also includes prior knowledge naturally in the form of prior
distributions.

14.2 Density Estimation
14.2.1 Frequentist Approach

As a start, let us have a dataset of observations X = {x(1), . . . , x(n)} assuming that they are all iid from
X ∼ N(0, 1) distribution. Since this is iid, we can look at the joint distribution XN on RN and get the
likelihood of form

p(X | µ, σ2) =

N∏
n=1

pX(x(n) | µ, σ2)

which in turn gives the log-likelihood as

ln p(X | µ, σ2) = − 1

2σ2

N∑
n=1

(xn − µ)2 − N

2
lnσ2 − N

2
ln(2π)

This is a function of two variables, µ and σ2 and we can optimize it to get the maximum likelihood estimates
of

µML =
1

N

N∑
n=1

xn and σ2
ML =

1

N

N∑
n=1

(xn − µML)
2

However, as we saw in the previous section, the estimate for σ2 is biased by a factor of (N − 1)/N , and this
is an intrinsic flaw in the frequentist approach.

14.2.2 Bayesian Approach

In the Bayesian approach, we want to model

p(x | D) =

∫
p(x | w) p(w | D) dw

112/ 115

Machine Learning Muchang Bahng Spring 2024

14.3 Regression with Regularization
14.3.1 Frequentist’s Maximum Likelihood Approach

Now given the hypothesis function hw, researchers assume that the relationship between the X and Y values
are captured by

Y = hw(X) + ϵ

where ϵ is some residual noise, also a random variable. Researchers assume that this random variable has
a nice form. One popular choice is that ϵ ∼ N(0, σ2) since if we assume that this error is due to a large
number of weakly dependent unknown factors, then by CLT we can assume that their sum is Gaussian. But
ultimately this is just another assumption. With this Gaussian assumption, we can assume that each input
output pair (x(n), y(n)) is generated by form y(n) = hw(x(n)) + ϵ and so the conditional distribution of y(n)
given X(n) is

Y | X = x(n) ∼ N(hw(x(n)), σ2)

and therefore, the probability of getting y(n) given x(n) is modeled by the conditional pdf

pY |X=x(n)(y(n)) =
1√
2πσ2

exp

(
− [y(n) − hw(x(n))]2

2σ2

)
Extending this to the dataset D = Y coming from the N -fold joint distribution of X, by independence this
distribution is a multivariate Gaussian

Y n | Xn = X ∼ N(hw(X), σ2I)

where by abuse of notation, hw(X) is hw operated element-wise on the vector X, and I is the N×N identity
matrix. The pdf is

pY n|Xn=X(Y) =

N∏
n=1

pY |X=x(n)(y(n))

=

N∏
n=1

1√
2πσ2

exp

(
− [y(n) − hw(x(n))]2

2σ2

)
The two parameters of interest here that we would like to maximize are w and σ2. We can take the log of
this function to maximize this, which gives us

ℓ(w, σ2) = − 1

σ2
ED(w)− N

2
lnσ2 − N

2
ln(2π)

and here we can see that maximizing the likelihood w.r.t. w is equal to minimizing the sum-of-squares
error function ED(w) = − 1

2

∑N
n=1[y

(n) − hw(x(n))]2. Therefore, a maximum likelihood estimation under a
Gaussian residual assumption implies minimization of the sum-of-squares error function! To maximize with
respect to both w and σ2, we can use the fact that this function is C1 (continuously differentiable), and so
we just need to find where the partials are 0. Ultimately, we can just optimize for w first and then solve for
σ2. If hw was linear (not necessarily in x, but with w), then we can transform the xd values, get the proper
design matrix Φ, and compute

wML = (ΦTΦ)−1ΦTY

If we add a ridge penalty term to get E(w) = ED(w) + λ
2 ||w||22, then this results in solving the matrix

equation
wML = (ΦTΦ+ λI)−1ΦTY

With these optimized parameters, we have a probabilistic model in which given a new value x̂, we can
predict the conditional distribution of ŷ to be

p(y′ | x̂,wML, σ
2
ML) = N(ŷ | hWML

(x′), σ2
ML)

113/ 115

Machine Learning Muchang Bahng Spring 2024

14.3.2 Bayesian Approach

We will now demonstrate how having a normal αI prior around the origin in a Bayesian setting is equivalent
to having a ridge penalty of λ = σ2/α2 in a frequentist setting. If we have a Gaussian prior of form

p(w | α2) = N(w | 0, α2I) =

(
1

2πα2

)M/2

exp

(
− 1

2α2
||w||22

)
We can use Bayes rule to compute

p(w | X,Y, α2, σ2) ∝ p(Y | w,X, α2, σ2) p(w | X, α2, σ2)

=

[N∏
n=1

p(y(n) | w,x(n), α2, σ2)

]
p(w | X, α2, σ2)

=

[N∏
n=1

1√
2πσ2

exp

(
− (y(n) − hw(x(n)))2

2σ2

)]
·
(

1

2πα2

)M/2

exp

(
− 1

2α2
||w||22

)
and taking the negative logarithm gives us

ℓ(w) =
1

2σ2

N∑
n=1

(
y(n) − hw(x(n))

)2
+
N

2
lnσ2 +

N

2
ln(2π)− M

2
ln(2πα2) +

1

2α2
||w||22

taking out the constant terms relative to w and multiplying by 2σ2 (which doesn’t affect optima) gives us
the ridge penalized error with a penalty term of λ = σ2/α2.

E(w) =
1

2

N∑
n=1

(
y(n) − hw(x(n))

)2
+
σ2

α2
||w||22

But minimizing this still gives a point estimate of w, which is not the full Bayesian treatment. In a Bayesian
setting, we are given the training data (X,Y) along with a new test point x′ and want to evaluate the
predictive distribution p(y | x′,X,Y). We can do this by integrating over w.

p(y | x′,X,Y) =

∫
p(y | x′,w,X,Y) p(w | x′,X,Y) dw

=

∫
p(y | x′,w) p(w | X,Y) dw

where we have omitted the irrelevant variables, along with α2 and σ2 to simplify notation. By substituting
the posterior p(w | X,Y) with a normalized version of our calculation above and by noting that

p(y | x′,w) = N(y | hw(x′), σ2) =
1√
2πσ2

exp

(
−
(
y − hw(x′)

)2
2σ2

)
Now this integral may or may not have a closed form, but if we consider the polynomial regression with the
hypothesis function of form

hw(x) = w0 + w1x+ w2x
2 + . . .+ wM−1x

M−1

then this integral turns out to have a closed form solution given by

p(y | x′,X,Y) = N
(
y | m(x′), s2(x′)

)
where

m(x′) =
1

σ2
ϕ(x′)TS

(N∑
n=1

ϕ(x(n))y(n)
)

s2(x′) = σ2 + ϕ(x′)TSϕ(x′)

S−1 = α−2I+
1

σ2

N∑
n=1

ϕ(x(n))ϕ(x′)T

and ϕ(x) is the vector of functions ϕi(x) = xi from i = 0, . . . ,M − 1.

114/ 115

Machine Learning Muchang Bahng Spring 2024

References
[1] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression.

Springer Series in Statistics. Springer New York, 2002.

[2] Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge regression, 2014.

115/ 115

	Statistical Learning Theory
	Decision Theory
	Function Classes
	Concentration of Measure
	Bias Variance Noise Decomposition
	Minimax Theory

	Low Dimensional Linear Regression
	Ordinary Least Squares
	Bias Variance Decomposition
	Convergence Bounds

	Simple Linear Regression
	Weighted Least Squares
	Mean Absolute Error
	Significance Tests
	T Test
	F Test

	Bayesian Linear Regression

	High Dimensional Linear Regression
	Ridge Regression
	Forward Stepwise Regression
	Stagewise Regression

	Lasso Regression
	Soft Thresholding and Proximal Gradient Descent

	Nonparametric Regression
	K Nearest Neighbors Regression
	Kernel Regression and Linear Smoothers
	Local Polynomial Regression
	Regularized: Spline Smoothing
	Regularized: RKHS Regression
	Additive Models
	Nonlinear Smoothers, Trend Filtering
	High Dimensional Nonparametric Regression
	Regression Trees

	Cross Validation
	Leave 1 Out Cross Validation
	Generalized (Approximate) Cross Validation
	Cp Statistic

	K Fold Cross Validation
	Data Leakage
	Information Criterion

	Linear Classification
	Empirical Risk Minimizer
	Perceptron
	Logistic and Softmax Regression
	Sparse Logistic Regression

	Support Vector Machines
	Functional and Geometric Margins
	Lagrange Duality

	Nonseparable Case
	Gaussian/Linear Discriminant Analysis
	Discriminative vs. Generative Models
	Construction

	Fisher Linear Discriminant

	Nonparametric Classification
	K Nearest Neighbors
	Approximate K Nearest Neighbors

	Classification Trees
	Regularization

	Generalized Linear Models
	Exponential Family
	Canonical Exponential Family

	Cumulant Generating Function
	Link Functions
	Canonical Link Functions

	Likelihood Optimization

	Ensemble Methods
	Bagging
	Random Forests
	Boosting
	Adaptive Boosting (AdaBoost)
	Gradient Boosting
	XGBoost

	Clustering and Density Estimation
	K Means Clustering
	Gaussian Mixture Models and EM Algorithm
	EM Algorithm for General Estimation Problems

	Kernel Density Estimation
	Density Based Clustering
	Hierarchical Clustering
	Spectral Clustering
	High Dimensional Clustering

	Graphical Models
	Bayesian Networks
	Markov Random Fields
	Hidden Markov Models

	Dimensionality Reduction
	Principal Component Analysis
	Kernel PCA

	Multi-Dimensional Scaling
	Isomap

	Local Linear Embedding
	Factor Analysis
	Sparse Dictionary Learning
	Independent Component Analysis
	Slow Feature Analysis
	Latent Dirichlet Allocation
	UMAP
	t-SNE

	Practical Methods
	Model Selection
	Feature Engineering
	Data Preprocessing
	Feature Extraction
	Standardizing Data

	Data Augmentation

	Archive
	Bayesian Probability
	Density Estimation
	Frequentist Approach
	Bayesian Approach

	Regression with Regularization
	Frequentist's Maximum Likelihood Approach
	Bayesian Approach

	References

