
Image and Video Processing Muchang Bahng Fall 2023

Image and Video Processing

Muchang Bahng

Fall 2023

Contents
1 Introduction to Image and Video Processing 2

1.1 Human Visual System . 2
1.2 Image Formation: Sampling and Quantization . 3

2 Image and Video Compression 4
2.1 Frontend: N x N Block Division of Image . 5
2.2 Forward Transform: DCT . 5
2.3 Quantization . 5
2.4 Huffman Coding . 5
2.5 JPEG-LS and MPEG . 6

3 Spatial Processing 7
3.1 Image Enhancement . 7
3.2 Histogram Equalization and Matching . 10
3.3 Local Neighborhood Operations . 11
3.4 Non Local Means . 13
3.5 Laplacian and Unsharp Masking . 13

4 Image Restoration 15
4.1 Types of Noise . 15
4.2 Estimating Noise . 17
4.3 Estimating Degradation Function . 17
4.4 Weiner Filtering . 18

5 Image Segmentation 19
5.1 Hough Transform . 19
5.2 Otsu’s Segmentation . 21
5.3 Interactive Image Segmentation . 22
5.4 Graph Cuts . 24
5.5 Mumford Shah . 24
5.6 Active Contours . 24

6 PDEs in Image Processing 25
6.1 Curve Evolution . 26
6.2 Calculus of Variations . 27
6.3 Anistropic Diffusion . 28

7 Image and Video Inpainting 28
7.1 Inpainting via PDEs . 28

1/ 28

Image and Video Processing Muchang Bahng Fall 2023

1 Introduction to Image and Video Processing
Image and video processing has applications in outer space, medical procedures, and consumer brands. The
spectrum of light for which we can see with our naked eye is a very small portion of the entire spectrum.
Therefore, image processing goes much beyond what we can see with our eyes, and in some cases, we would
take multiple images from multiple wavelengths of the same scene to discern different types of information
from them.

1.1 Human Visual System
The human eye has cones (used for eyeing details and good at seeing in high light) and rods (used for eyeing
general scenes and good at seeing in low light). The light comes in through out cornea and lens, and projects
it into our retina. There is a blind spot where there are no receptors. With the cones and rods, we can see
in a very broad range of light intensities.

There are certain laws of the human visual system:

1. Weber law says that we have a harder time distinguishing objects that are very dark (slight changes
in brightness in a dark environment will not be perceived) than objects in light conditions. Therefore,
brightness adaptation is needed when adjusting to new environments.

2. Mach bands is an optical illusion that exaggerates the contrast between edges of slightly differing
shades of gray, as soon as they contact on another, by triggering edge-detection in the human visual
system.

2/ 28

Image and Video Processing Muchang Bahng Fall 2023

1.2 Image Formation: Sampling and Quantization
Now when we have a scene, which is a continuous image, we need to make sure that the image fits the
resolution. This is done in two ways:

1. Discretization, or sampling, in the spatial domain, i.e. fitting everything into a N ×M resolution.
This tells you how fine the sampling is within the continuous image.

2. Quantization in the color, i.e. quantizing the values into [255] for grayscale (by representing colors in
8 bits, so 28 colors) and [255]3 for RGB color. Another thing to note is that when you take an image
which has 8 bits per pixel, so 256 values, you can use further quantization to compress it into say 7
bits by doing the operation

⌊x/2⌋ × 2

which maps 2x, 2x+1 7→ 2x. However, too much quantization may lead to too many pixel colors being
pushed to 255 and leaving large chunks of white in the image, called saturation.

For high quality cameras, they store all 3 separate channels for RGB: 3 images.

However, mosaic cameras alternate between RGB in the images, storing 1/3 R 1/3 B 1/3 G in one image
for better compression, called a bayer filter.

3/ 28

Image and Video Processing Muchang Bahng Fall 2023

Now at this point, we can interpret an image as a matrix or a 3-tensor Therefore, we can do simple operations
like addition, subtraction, inverse, etc. We could rotate them too.

2 Image and Video Compression
Now let’s talk about how these are stored. If we have a resolution of N ×M , along with a quantization of
B bits, then for each pixel in the image, we can take a total of 2B different values. Therefore,

1. For an grayscale image, the total number of bits that we would need to store it is NMB.

2. If we are working with color images, then there are three channels, so we need 3NMB bits.

3. When looking at a video that records at F frames per second, that is S seconds long, then have a total
of FS images, and so for a colored video we need 23NMB × FS bits.

This is clearly a lot of bits and can easily exceed many gigabytes. Therefore, the vast majority of images are
compressed using different standards (JPEG, JPEG-LS, JPEG-2000), along with videos (MPEG). It follows
the structure:

We describe the steps below, but focus specifically on the JPEG standard.

1. Before any of this happens, JPEG actually takes the image and constructs n × n subimages that are
each put through the pipeline. It is usually n = 8.

2. The mapper takes in the array and transforms it in a way that is more friendly to compression. In
JPEG, we use the discrete cosine transform (DCT).

3. After the mapping, we do quantization on the image. This is the main source of error, but it transforms
the image into something that is more friendly for symbol decoding. More specifically, the quantization
makes sure that the distribution of pixel values are very concentrated so that we can use Huffman coding
to compress the image by a lot.

4. The symbol encoder then encodes each pixel into shorter lengths. Huffman encoding is used.

4/ 28

Image and Video Processing Muchang Bahng Fall 2023

2.1 Frontend: N x N Block Division of Image
For color images, JPEG transforms every RGB 3-pixels into Y CBCR (where Y represents the luminance),
which is represented by a linear map: Y

CB

CR

 =

 A

R
G
B

and then it divides into the 8× 8 blcoks. So, we have a bunch of 8× 8 blocks of pixels in Y CBCR format.

2.2 Forward Transform: DCT
Imagine you have an N × N image with pixels labeled f(x, y). Then, we want to get a new image T with
the following transform.

T (u, v) =

n−1∑
x=0

n−1∑
y=0

f(x, y) r(x, y, u, v)

This can be inverted with the inverse transform

f(x, y) =

n−1∑
u=0

n−1∑
v=0

T (u, v) s(x, y, u, v)

To specify the transform, I just need to tell you r and s s.t. it minimizes some mean squared error. In DCT,
we have

r(x, y, u, v) = s(x, y, u, v) = α(u)α(v) cos

[
(2x+ 1)uπ

2n

]
cos

[
(2y + 1)vπ

2n

]
where

α(u) =

{√
1/n if u = 0√
2/n if v = 0

is a normalization term. It is clear that r and s are some basis functions, and you are representing your
image into a linear combination of simple “cosine" images. For every fixed (u, v), we have (x, y) ∈ [u]2 which
forms an image, and this basis is always fixed.

There are two reasons we prefer DCT:

1. It has a nice periodicity assumption that is more applicable.

2. Under Markovian assumptions, DCT coincides with the Kosambi–Karhunen–Loève transform.

2.3 Quantization

2.4 Huffman Coding
To do Huffman coding, imagine you have an image with just 4 different pixel colors.

5/ 28

Image and Video Processing Muchang Bahng Fall 2023

The length of every pixel is 8 bits, so the expected length of each pixel is 8. However, if we do Huffman
encoding, we are basically creating a binary tree by taking the two pixels with the lowest proportion and
summing them up to get a new proportion, and simply repeating these steps. This creates a prefix free code.

1. We start with the 2 smallest probabilities

2. Add them to the root node and then look for the next 2 smallest.

Therefore, the expected number of bits needed now is

0.25 · 2 + 0.47 · 1 + 0.25 · 3 + 0.03 · 3 = 1.81

which is a lot less than 8. Note that Huffman coding is not unique, so in case the proportions are equal
between more than two nodes, we can use any two of them. In general, to know how much you can compress
the code, you can compute the entropy of the random variable X representing the distribution of the codes:

H(X) = E[− logP(X)] = −
∑
x∈X

P(X = x) log2 P(X = x)

2.5 JPEG-LS and MPEG
Another way to compress an image is through predictive coding, which is a form of lossless compression.
Let us think of an image as a simple one-dimensional array X. It just has to be sequential in some sense. Now
that we have compressed up to X[:n], we want predict the value of the next pixel X[n] from some subset of
the pixels in X[:n].

Say for simplicity that we are only using the previous pixel to get the next one. What we are betting on
is that within some local neighborhood of an image, the pixels are relatively uniform, meaning that the
differences will be concentrated around 0. That is, we want to store the differences, called the prediction
errors

X1 −X0, X2 −X1, X3 −X2, . . .

and we are hoping that the values of most of these will be close to 0 since there will be small changes between
neighboring pixels for the most part. There may be large changes (e.g. going from white to black) when
there is an edge in the image, but usually, this will happen very rarely. Now we can simply just use Huffman
encoding on the differences to compress them by a lot, essentially storing the pixel differences with much
less memory.

6/ 28

Image and Video Processing Muchang Bahng Fall 2023

For example, consider the image below, which has the pixel distribution (top). Now, if we just took the
distribution of the prediction errors, then we have a much more concentrated distribution.

3 Spatial Processing

3.1 Image Enhancement
If we have an image that is very dark, we would like to transform it so that we can see it better. More
generally, we can take every pixel value r in the image and transform it with a one-dimensional function T
to a new value s. Two examples are shown below.

1. The left function shows that moderately dark or moderately light pixels will be pushed to their thresh-
olds, becoming very dark and very light.

2. The right function is a thresholding function, pushing every pixel value less than 128 to 0 (black) and
all pixel values at least 128 to 255 (white).

In general, we can have the following operations.

7/ 28

Image and Video Processing Muchang Bahng Fall 2023

For example, the identity is that s = t, but we can have other functions such as s = c× log(t+ 1), where c
is some constant and we have to add 1 to prevent logarithm of 0. The inverse function is s = 255 − t and
the exponential function is s = c · tγ . You can more closely see how the different γ’s give different functions,
and this is called gamma correction.

This is used in monitors a lot to balance the brightness so that many places do not become dark.

8/ 28

Image and Video Processing Muchang Bahng Fall 2023

Example 3.1 (Contrast Stretching)

One way we can construct a function is to do contrast stretching, which transforms mid-pixel
values and stretches them out, while compressing the extreme pixel values. This results from the top
right image to the bottom left image. Then, we can do a thresholding function to further get these
contrasts (bottom right).

Example 3.2 ()

Intensity transformations highlights an intensity range [A,B] and reduces all other intensities to
a lower level or preserves them.

9/ 28

Image and Video Processing Muchang Bahng Fall 2023

3.2 Histogram Equalization and Matching
In general, we have

1. If the image is very dark, the color histogram will be concentrated towards 0.

2. If the image is bright, the color histogram will be concentrated towards 255.

3. If the image is low-contrast, the histogram will just be concentrated somewhere.

4. If the image is high-contrast, the histogram will be roughly uniform.

Our goal is to take an arbitrary distribution R over [L− 1] and transform it into a uniform distribution S.
It is well known from probability that if we have a transformation s = T (r) over a discrete state space, then

P(S = s) = P(R = r) ·
∣∣∣∣∂r∂s

∣∣∣∣
Now let us write our transformation as

s = T (r) = (L− 1)

∫ r

0

pR(w) dw

That is, if I want to find where I should transform r to, I want to count all the pixel probabilities up until
r, and normalize it by L− 1. To prove this, we compute

∂s

∂r
= (L− 1)

∂

∂r

∫ r

0

pR(w) dw = (L− 1) · pR(r)

For single variable functions, ∂r
∂s = 1/∂s

∂r , and so using that and substituting it in gives

pS(s) = pR(r)
1

(L− 1) pR(r)

1

L− 1

which is what we want. Note that T will always be monotonic. However, due to us working in discrete
spaces, it will not always be perfectly uniform since all pixels with the same value are mapped to the same
value.

Example 3.3 ()

Below we have an illustration of histogram equalization of a 3-bit (8 intensity levels) image. The
original histogram is on the left, the transform in the middle, and the equalized histogram on the
right.

10/ 28

Image and Video Processing Muchang Bahng Fall 2023

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

-1 0 1

-2 0 2

-1 0 1

20 30 40

45 55 65

70 80 90

Image Kernel

Figure 1: Convolution using a kernel on an image.

Now histogram matching is a generalization of equalization in the fact that we want to map to any
arbitrary distribution S, not just uniform, from our original R. But we already know how to do this. Given
our desired distribution S and our original distribution R. We know how to equalize R to a uniform U . That
is, we know U = T1(R). We also can do the same for U = T2(S) since S is an arbitrary distribution. Then
by taking the inverse of S (disregarding at the moment that it is not invertible in the mathematical sense),
we can construct the transformation

S = (T−1
2 ◦ T1)(R)

Now to take care of the inversion problem, say that R = 7 maps to U = 10, and S = [15, 20] maps to U = 10
also. Then R = 7 can map to any S ∈ [15, 20], and mainly it is the smallest one: 15.

Finally, sometimes we want higher contrast in different regions of the image, so we can split the image into
different sections and do histogram equalization on each section, improving contrast in every region of the
image.

3.3 Local Neighborhood Operations
Now a convolution is described by a kernel, also called a filter, which is simply a K×K matrix. It does not
have to be square but is conventionally so. It goes through a grayscale image at every point and compute
the dot product of the kernel with the overlapping portion of the image, creating a new pixel. This can be
shown in Figure 1.

Now if this was a color image, then the K×K kernel K would dot over all 3 layers, without changing over all
3 layers. This is equivalent to applying the kernel over all 3 channels separately, and then combining them
together into one. Another thing to note is that the output image of a kernel would be slightly smaller than
the input image, since the kernel cannot go over the edge. However, there are padding schemes to preserve
the original dimensions.

Note that the kernel matrix may have the property that all of its entries sum to 1, meaning that on average,
the expected value of the brightness of each pixel will be 0, and the values will be left unchanged on average.
However, this is not a requirement.

11/ 28

Image and Video Processing Muchang Bahng Fall 2023

Example 3.4 (Mean Blur, Gaussian Blur)

The mean and Gaussian blur is defined with kernels that are distributed uniformly and normally
across the entire matrix. You can see how this would blur an image since for every pixel, we take the
weighted average over all of its surrounding pixels.

mean =
1

25

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 , Gaussian =
1

273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

On a large scale, there really aren’t any discernable differences, as seen in the figure but the Guassian
blur is known to be a more realistic representation of how humans receive blur.

(a) Original image. (b) 5× 5 mean blur applied. (c) 5× 5 Gaussian blur applied.

Figure 2: Comparison of blurring kernels on image.

Note that given an image f(x, y), the mean blur simply picks the new pixel value of (x, y) as the one that
minimizes the least square error

argmin
k

∑
(x,y)∈M

(
f(x, y)− k

)2
which happens to be the average of the pixel values in the kernel region M . The Gaussian blurring can be
thought of as a convolution

f(x, y, σ) = f(x, y) ∗N(0, σ2)

which corresponds to the heat flow equation defined

∂f

∂t
= ∆f =

∂2f

∂x2
+

∂2f

∂y2

Example 3.5 (Median Filter)

The median filter acts like the mean filter but it doesn’t have as much blurring. This is great when
we need to reduce noise but still want some contrast between edges.

12/ 28

Image and Video Processing Muchang Bahng Fall 2023

It turns out that the median filter is the argmin of not the squared error, but the absolute value error

argmin
k

∑
(x,y)∈M

∣∣f(x, y)− k
∣∣

3.4 Non Local Means
The point of non local averaging is to take away the limitations of averaging over local neighborhoods, but
rather through many sections that may be far away from each other, yet still looks the same. For examples,
there are many sections in the image that are not next to each other, but are very similar.

Now it turns out that if we have a pixel value p0 and observe it many times, we expect it to be different
according to some noise ϵ, which is a random variable.

p1 = p0 + ϵ

p2 = p0 + ϵ

. . . = . . .

pN = p0 + ϵ

But it turns out that if we observe N variations of these, by averaging them out the noise reduces by a factor
of N2. We still haven’t specified two things:

1. How to look for neighborhoods that are similar to each other.

2. Once we have these neighborhoods, how do we average them? Or do some other operation?

3.5 Laplacian and Unsharp Masking
When we have a, say 1-dimensional image, the first derivative of the pixel intensities can be approximated
by the finite differences between adjacent values.

∂f

∂x
= f(x+ 1)− f(x)

We can define this similarly for the second derivative

∂2f

∂x2
= f(x+ 1) + f(x− 1)− 2f(x)

Note that the coefficients are 1,−2, 1. This second derivative gives us information on the curvature of the
pixel intensities. That is, if the curvature is high, then there may be an abrupt change intensity of the pixel

13/ 28

Image and Video Processing Muchang Bahng Fall 2023

values. Extending this to the two-dimensional image gives us the Laplacian of f :

∆f =
∂2f

∂x2
+

∂2f

∂y2

resulting in a kernel that looks like 0 1 0
1 −4 1
0 1 0

Which is actually the kernel that is used to sharpen images, and the diagram below gives an idea on how it
is done.

Given an image I and the transformation T , we can take T (I) and add it to I to generate a sharpened image.

14/ 28

Image and Video Processing Muchang Bahng Fall 2023

4 Image Restoration
When we take an image, there may be some source of degradation of it in the form of motion blur, along with
some noise. We can model the image as f(x, y), which can be convolved using the degradation function H,
and finally added with some noise η (usually assumed, but not always additive and could be multiplicative),
giving us

g(x, y) =
[
f(x, y) ∗H(x, y)

]
+ η(x, y)

One of the effects of multiplicative noise is that the amount of noise is dependent on the signal itself. If you
do have multiplicative noise, then we can just take the logarithm of the equation to get additive noise in the
log scale, and so the additive noise model is still applicable, albeit with some limitations. We would like to
restore this image to some approximation f̂(x, y) ≈ f(x, y).

4.1 Types of Noise
The additive noise η can be modeled by different probability distributions:

1. Gaussian noise is used a lot due to its nice mathematical properties and approximations, but there

15/ 28

Image and Video Processing Muchang Bahng Fall 2023

aren’t many natural processes that actual produce Gaussian noise.

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

2. The Raleigh distribution is defined

p(x) =

{
2
b (x− a)e−(x−a)2/b if x ≥ a

0 if z ≤ a

which has the mean and variance

E[X] = a+

√
πb

2
and Var[X] =

b(4− π)

4

3. The exponential noise

p(x) =

{
λe−λx if x ≥ 0

0 if x < 0

with
E[X] =

1

λ
and Var[X] =

1

λ2

4. The uniform noise

5. The impulse noise, also called the salt and pepper noise, is a Bernoulli random variable, since we are
either changing the pixel value to either white (salt) or black (pepper). It doesn’t act on every pixel,
but rather a very small random subset of pixels in the image. It is a good model for when you have a
broken sensor that doesn’t collect light at a certain point in the lens.

The following shows the distributions.

and given an image of 3 pixel values (say, white, grey, and black), the following color histograms are produced
after adding Gaussian, Rayleigh, and Gamma noise.

16/ 28

Image and Video Processing Muchang Bahng Fall 2023

4.2 Estimating Noise
Now, given a section of an image with a constant pixel value (as shown in the grey region in the blue box),
we assume that it will have some intrinsic noise η on top of it. The thing is we have no idea what the actual
distribution of η is. However, we do have samples from this region, and therefore, we can use a maximum
likelihood estimate (MLE) for a class of pre-given distributions.

For the picture above, taking samples from the uniform grey region above will give some distribution as a
histogram, and depending on the shape of it (more mathematically, by maximizing the likelihood), we can
approximate the η. Now if we have regions that aren’t guaranteed to be coming from one pixel value, such
as the larger blue box above, then it becomes harder since there is an extra layer of uncertainty. We can
split this into smaller regions and assume that a small region maintains a relatively constant pixel value, but
splitting it too much will lead to smaller samples.

Once we can estimate the best distribution that the noise came from, we can use the appropriate filtering
methods.

1. To remove uniform and Gaussian noise, we use the average filter (local or non local means).

2. To remove salt and pepper noise, we use the median filter.

4.3 Estimating Degradation Function
Now given the degraded image

g(x, y) = f(x, y) ∗ h(x, y) + η(x, y)

we have learned how to estimate the η, but estimating h is much harder. In a general sense, we can take the
Fourier transform of both sides to convert the convolution to a product in a different domain, and simply
divide to get F .

G(u, v) = F (u, v) ·H(u, v) =⇒ F (u, v) =
G(u, v)

H(u, v)

17/ 28

Image and Video Processing Muchang Bahng Fall 2023

In fact, due to the commutativity of the convolution operator, it isn’t even clear whether f is the original
image of h. Additionally, it is very unstable since the Gaussian may be close to 0, and this isn’t a very good
way to filter.

Example 4.1 (Gaussian Blurring)

The blurring degradation effect can be observed by the convolution kernel h being a Gaussian function.

In fact, when we have a point of light, which is basically a delta function δ and put the Gaussian
filter G ∼ N(0, σ2) on it, we know that G = δ ∗ G, so use can actually use this calibrate cameras.
The camera can artificially create a point of light, and then estimate the variance of the Gaussian
that it actually detects, which estimates the blur.

Example 4.2 (Motion Blurring)

When we move the camera while taking a picture, the camera integrates the light that comes into
the sensor, and therefore we get motion blurring. Mathematically, the actual image is

g(x, y) =

∫ T

0

f
(
x− x(t), y − y(t)

)
dt

Clearly, getting the original function f from an integrated version of it is overdeterministic. That’s
like saying solve x + y = 5 for (x, y), which has an infinite number of solutions. But there are more
advanced methods.

4.4 Weiner Filtering
Now let’s talk about the restoration filter. Right now, given the original image, degraded into g, noise added,
and then restored into f̂ , i.e.

f 7→ g = f ∗ h 7→ g + η 7→ f̂

we can compute the error between our restored image and the original with the MSE

e2 = E[(f(x, y)− f̂(x, y))2]

18/ 28

Image and Video Processing Muchang Bahng Fall 2023

Now, what we want to do is do a Fourier transform on f̂ , and working in the Fourier domain and minimizing
the e2 (by taking the derivative and setting it to 0) gives

F̂ (u, v) =
H∗(u, v)

H2(u, v) + Sη/Sf︸ ︷︷ ︸
Weiner Filter

G(u, v)

Where H∗ is the complex conjugate of the Fourier transform of the original h. To compare the filters, we
can see that the top left is f , the top right is the degraded observation g, the bottom left is the inverse filter
G/H (followed by the inverse transform), and the bottom right is the Weiner filter H∗/(H2 +K).

5 Image Segmentation
The purpose of image segmentation is to identify certain objects and isolate them by drawing boundaries
around them. This can be done by detecting edges with gradients, as we can do with the flower below, but
this may not always be the case, as with the ball on the right.

5.1 Hough Transform
The simplest shapes to detect are lines, which we will start off with first. A line can be parameterized with
two parameters: ρ, the distance between the line and the origin (perpendicular to the line), and θ, which is
the angle that the segment connecting the origin to the line makes with the x-axis. It is the set of all (x, y)
that satisfies

ρ = x cos θ + y sin θ

19/ 28

Image and Video Processing Muchang Bahng Fall 2023

Now the set of all possible lines lives within the (ρ, θ) space, and is two dimensional. Now fix a point (x0, y0)
in the XY plane. Then, the set of lines that pass through (x0, y0) forms a one-dimensional curve in R2

(ρ,θ).
Now take another point (x1, y1) and do the same, forming another 1-dimensional curve. It turns out that
these curves are sinusoidal, and they will have an intersection somewhere, which is precisely the line that
passes through (x0, y0) and (x1, y1). Therefore, by drawing these curves, we can identify the line that passes
through these two points. since we’re working with computer systems, this is all discretized and we have a
certain max and min value for each (ρ, θ).

Now the Hough transform first does edge detection on the image, which gives us a collection of points
{(xi, yi)}, and for each point, we draw the sinusoidal curve of all possible lines going through that point.
This set of all parameterized curves is called the accumulator. We can see an example below, where we first
do edge detection (top right) on the original image (top left), and then we create the accumulator. We then
take the point (ρ∗, θ∗) or the set of points that passes a certain threshold on the number of votes.

To detect circles, note that a circle can be parameterized by 3 scalars: x0, y0, r, as

(x− x0)
2 + (y − y0)

2 = r2

and so for each point, the accumulator will be in a 3-dimensional space. We accumulate and identify the
circles with the maximal accumulated values.

20/ 28

Image and Video Processing Muchang Bahng Fall 2023

5.2 Otsu’s Segmentation
Let’s say we have an image that consists of just two pixel values. Then, we can simply set a thresholding
function that maps one value to 255 and the other to 0, which is basically segmentation. If there is noise,
then we have a bimodal color distribution, and Otsu’s method automatically identifies the threshold value
between 0 and 255 that we should threshold on. It works naturally well with the first two images, but if there
is a lot of noise (as in the 3rd image), then we can simply denoise it with the processes described previously
to get a bimodal distribution, and then perform Otsu’s after.

Otsu’s segmentation assumes that we have 2 classes, and we have to minimize the weighted within-class
variance. Intuitively, we want to determine a threshold such that all the values to the left are in one
distribution and all to the right are in another, and taking the weighted sum of the variances should be
minimized. Since the variance increases quadratically, we wouldn’t want far-tailed distributions.

1. First we normalize the histogram so that for i ∈ [255], P (i) is the probability of a random pixel being
color i.

2. Then for a given t, we set

q1(t) =

t∑
i=1

P (i) and q2(t) =

255∑
i=t+1

P (i)

21/ 28

Image and Video Processing Muchang Bahng Fall 2023

3. Then we calculate the mean and variance of these distributions.

µ1(t) =
1

q1(t)

t∑
i=1

iP (i)

µ2(t) =
1

q2(t)

255∑
i=t+1

iP (i)

σ2
1(t) =

1

q1(t)

t∑
i=1

[i− µ1(t)]
2P (i)

σ2
2(t) =

1

q2(t)

255∑
i=t+1

[i− µ1(t)]
2P (i)

4. Then minimize
σ2
w(t) = q1(t)σ

2
1(t) + q2(t)σ

2
2(t)

We can minimize the final term by brute force, i.e. checking for all t ∈ [255], but with a bit of algebra, we
can see that the total variance of the image can be decomposed to

σ2 = σ2
w(t) + q1(t)[1− q1(t)][µ1(t)− µ2(t)]

2

and now the problem reduces to maximizing q1(t)[1− q1(t)][µ1(t)−µ2(t)]
2, which is much easier to compute

and can even be computed in a recursive fashion.

Even if you have an image that is corrupted by a nonuniform background (and can lead to non-bimodal
histograms), performing Otsu’s algorithm on the whole image can lead to certain objects being blacked out,
as shown below. To fix this, uou can do Otsu’s algorithm on subblocks of the image or through moving
windows, which minimizes the variance of the background.

5.3 Interactive Image Segmentation
Interactive image segmentation allows the user to draw line segments that separate the foreground and the
background. The first step is to take the pixels across the foreground and background lines and compute
its histograms. Then, by going through every other pixel in the image, it uses Bayes rule to compute the
probability that a pixel is in the foreground or background class, given its color.

22/ 28

Image and Video Processing Muchang Bahng Fall 2023

The grayscale image of the cat now represents the posterior distribution of which class a pixel is in, where
the more white a pixel is, the higher the probability that it is in foreground. But notice that the eyes are
very dark, meaning that we classify it as the background. To fix this, we can implement a weighted distance
transform, which takes into account the distance between a certain pixel and the foreground/background
regions. Let the weighted geodesic distance between two points s1, s2 be

d(s1, s2) = min
Cs1:s2

∫
Cs1:s2

W ds

which basically looks at all paths Cs1:s2 from s1 to s2, finds the weighted distance across this path, and
compute the minimum path. In a discretized space, this is a variant of Dijkstra’s algorithm, which can be
computed in linear time. The idea is that given a pixel, we want to find the shortest weighted path to a
drawn segment, and if the probability of being in the foreground doesn’t change too much, it is likely a
foreground pixel. This indicates that we want the weight to be

W = |∇PF (x) · C ′
s1:s2(x)|

Therefore, we can see the heat map below, where for every point in the image, the distance from that point
to the foreground segment (green) is represented to be large if it is red, and small if it is blue. We also do
the same for the background segments.

Therefore, at a certain point, we compute the shortest weighted paths between the foreground and back-
ground segments and choose which ever one is shorter. Once you do this, you take the set of all point where
the probabilities of being in the foreground and background are equal, and we are done.

The final step is to refine this estimate. With our first order estimate, we can create a narrow band and
new scribbles, where the band boundaries serve as the new “user-inputted" scribbles, and do the same thing
over again. Since this new scribble is close to the boundary, it should have more information than our initial
guess. This can be done locally as well, with a sliding window that goes around each portion of the boundary.

23/ 28

Image and Video Processing Muchang Bahng Fall 2023

5.4 Graph Cuts
Another way to segment images is to construct an underlying graph between the pixels, which acts as nodes,
and are connected to their 4-neighbors. We add in a foreground source node and a background sink node,
and from the user input. We also want the weights between neighboring nodes to be a function of the
gradient between them, encouraging similar pixels to stay in the same group with high weights (and weights
between a foreground and background node to be weak). Now we want to partition the graph with a mincut
algorithm (which can be solved in polynomial time).

This method is actually implemented in MS office.

5.5 Mumford Shah
Mumford Shah is really just a regularized optimization algorithm. Given an image f , we want to create
another image g such that the MSE loss is minimized. However, this just means that g = f , but now we add
a penalty term that says if we have too many edges, this is penalized. So, doing edge detection on the original
image will give us a lot of edge pixels, which will penalize it highly, and so we want a lower dimensional
representation g of f such that when we do edge detection on g, there won’t be many edge pixels.

5.6 Active Contours
The purpose of active contours is that we want to draw a contour around an object in an image, and it will
“shrink" with a certain velocity until it detects a large change in the gradient of the pixel values, where it
will stop. Hyperparameters that determine the momentum can be implemented to get different contours.

24/ 28

Image and Video Processing Muchang Bahng Fall 2023

6 PDEs in Image Processing
Before, we considered images and videos as inherently discrete objects due to their representation in com-
puters. The PDE point of view says that images are continuous objects, and image processing is the result
of iterations of infinitesimal operations. We can also do differential geometry on images and then implement
them using numerical analysis.

Definition 6.1 ()

Define C : [0, 1] → R2 as a planar curve, which is closed if C(0) = C(1). Then, we can define the unit
tangent vector as

t(p) =
C ′(p)

||C ′(p)||
=

Cp|
||Cp||

= Cs

We know that ||Cs|| = 1, and so

∂

∂s
⟨Cs, Cs⟩ =

∂

∂s
1 = 0 =⇒ 2⟨Cs, Css⟩ = 0 =⇒ Css ⊥ Cs

where Css = C ′′(s) is the second derivative that describes how the tangent vector is moving, also
perpendicular to the curve. We define the curvature as

κ = ||C ′′(s)||

Now the arclength s 7→ C(s) is a parameterization of the curve C that gives us a constant unit tangent
vector when differentiating. At every point κ(s) is the curvature, and it is intuitive to see that the curvature
is preserved under any Euclidean transformation (rotation + translation). There are other differential
invariants, defined in Cartan’s theorem. To construct this arclength, you must make sure that the speed is
constant.

But in camera projections, we must take into account affine transformations that comes from tilting. An
affine transform that has unit determinant is called equi-affine. To create an arclength that preserves the
same differential invarants under affine transformations, you must create a parameterization that preserves
the area.

Definition 6.2 (Surface)

A surface
S(u, v) = {x(u, v), y(u, v), z(u, v)}

25/ 28

Image and Video Processing Muchang Bahng Fall 2023

has the normal vector
N =

Su × Sv

||Su × Sv||
the area element is dA = |Su × Sv|, with the total area being

A =

∫∫
|Su × Sv| du dv

Now given a point p ∈ R3 on S, we can take all paths C that go through p. The normal curvature is simply
⟨Css,N⟩, and the principal curvatures are

κ1 = max
θ

(κ)

κ2 = min
θ

(κ)

where κ represents all the possible curvatures of all paths at that point. The mean and Gaussian curvatures
are defined

H =
κ1 + κ2

2
K = κ1κ2

6.1 Curve Evolution
Given a curve C(p) parameterized by function p : [0, 1] → [0, 1], we can use a partial differential equation to
model how it evolves through time.

∂C(p)

∂t
= V(p, t) ⇐⇒ Ct = V

An important property is that tangential components do not affect the geometry of an evolving curve. Only
the normal component does. Therefore, we can project the original PDE to

Ct = ⟨V,n⟩n

1. The constant flow equation is
Ct = n

simply shrinks a curve by enveloping all disk of equal radius centered along the curve, and then it
offsets the curves with a constant motion. This can be interesting since it can change the topology of
a curve (a curve can split in two, or it can changes smooth points to sharp ones).

2. The Euclidean geometric heat equation is

Ct = Css = κn

This curvature flow takes any simple curve, turns it into a convex shape, and then vanishes at a circular
point.

3. The affine heat equation is
Ct = ⟨Cvv,n⟩n = κ1/3n

This curvature flow first becomes convex and then vanishes at an elliptical point.

26/ 28

Image and Video Processing Muchang Bahng Fall 2023

Now to look at geodesic active contours, we can define the PDE

Ct =
(
g(x, y)κ− ⟨∇g(x, y),n⟩

)
n

where the velocity v going in the normal direction is the coefficient of n.

Definition 6.3 (Level Sets)

We can also represent a closed planar curve as the level set

C = {(x, y) | ϕ(x, y) = 0}

for some function ϕ, where the interior of the curve is when ϕ > 0. Recall that the gradient is
normal to the tangent vector of this level set (and we can normalize it by convention). The level set
curvature is defined

κ = Div

(
∇ϕ

||∇ϕ||

The reasons we like to use the level set formulation is that

1. it handles changes in topology well (since we can just define a function with multiple peaks

2. numeric grid points never collide or drift apart

3. it is a natural philosophy for dealing with gray level images

Therefore, to implement a curve evolution of form

∂C

∂dt
= VN(t)

we can equivalently define for level sets a function ϕ that satisfies

∂ϕ

∂t
= V |∇ϕ|

6.2 Calculus of Variations

Definition 6.4 ()

Calculus of variations is a generalization of calculus that seeks to find a function for which a given
functional has a minimum or maxium, i.e. find extrema values of intergals of the form∫

F (u, ux) dx

It has an extremum only if the Euler Lagrange differential equation is satisfied(
∂

∂u
− d

dx

∂

∂ux

)
f(u, ux) = 0

Example 6.1 ()

Find the shape of the curve u(x) with the shortest length given u(x0), u(x1), i.e. that minimizes∫ x1

x0

√
1 + u2

x dx

27/ 28

Image and Video Processing Muchang Bahng Fall 2023

A differential equation that u(x) must satisfy is(
∂

∂u
− d

dx

∂

∂ux

)
f(u, ux) = 0

and evaluating it gives
uxx

(1 + u2
x)

3/2
=⇒ ux = a =⇒ u(x) = ax+ b

i.e. it must be a linear function.

6.3 Anistropic Diffusion
Remember that in Gaussian blurring, we have a symmetric kernel where we can do some blurring by mixing
in pixels across edges. Now, anisotropic smoothing tries to average pixel values within the boundaries.
Therefore, we can remove noise within objects and not have it corrupt the edges.

We want to find
min
I

∫
Ω

ρ(|∇I|) dΩ =⇒ ∂I(x, y, t)

∂t
= div

(
ρ′

∇I

|∇I|
For example, if

1. ρ(a) = a, then

min
I

∫
|∇I| =⇒ It = div

(
∇I

|∇I|

)
which is an isotropic diffusion which moves it in a way according to the curvature of the level lines.

2. ρ(a) = a2, then ρ′(a) = 2a

min
I

∫
|∇I|2 =⇒ It = div

(
2|∇I| ∇I

|∇I|

)
= Laplacian(I)

and so this is the equation for heat flow, which smooths it in an isotropic fashion.

7 Image and Video Inpainting
Image inpainting is a specific problem that refers to modifying an image in a non-detectable form. It can
refer to filling in damaged parts, color correcting, or removing objects. Inpainting is everywhere, in biological
animals that camoflague or done by ourselves when we fill in the blind spots in our visual systems.

7.1 Inpainting via PDEs
It turns out that professional conservators inpaint by continuing boundaries within the region of interest,
then filling in colors, and finally adding noise.

This sort of looks like some water that is filling up the regions, which we can emulate with a PDE.

28/ 28

	Introduction to Image and Video Processing
	Human Visual System
	Image Formation: Sampling and Quantization

	Image and Video Compression
	Frontend: N x N Block Division of Image
	Forward Transform: DCT
	Quantization
	Huffman Coding
	JPEG-LS and MPEG

	Spatial Processing
	Image Enhancement
	Histogram Equalization and Matching
	Local Neighborhood Operations
	Non Local Means
	Laplacian and Unsharp Masking

	Image Restoration
	Types of Noise
	Estimating Noise
	Estimating Degradation Function
	Weiner Filtering

	Image Segmentation
	Hough Transform
	Otsu's Segmentation
	Interactive Image Segmentation
	Graph Cuts
	Mumford Shah
	Active Contours

	PDEs in Image Processing
	Curve Evolution
	Calculus of Variations
	Anistropic Diffusion

	Image and Video Inpainting
	Inpainting via PDEs

