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We assume the reader is familiar with measure-theoretic probability, and unlike in introductory probability,
we throw away the convention that random variables are written with capital Latin letters (so x can also
denote a random variable, which is useful if samples are not fixed). Statistics and probability seem like the
same topic, but there are very fundamental differences. In probability, we are given some distribution and
must compute certain probabilities. In statistics, we are given the results (the data) and must infer what
distribution it came from.

1 Foundations

1.1 Sampling Distributions

Definition 1.1 (Population, Parameters)

When conducting a statistical study, there is a set of items or events which is of interest for some
experiment. This can be modeled with some probability space (Ω,F ,P). Usually, we are interested in
some numerical property of this population, and so we implicitly define a random variableX : Ω −→ R
that induces some distribution X ∼ P , which we call the population. A statistical population can
be a group of existing objects or a hypothetical and potentially infinite group of objects conceived as
a generalization from experience.
With this, we can interpret the population X ∼ P as a random variable, and we often call this the
parent distribution. We are often interested in its population parameters, which can be any
measured quantity of a population that summarizes or describes an aspect of it. In generality, the
parameter of population X is denoted θ, and it is a fixed value. The two most useful ones are:

1. the population mean µX

2. the population variance σ2
X

Example 1.1 (Populations)

Here are some examples of populations:
1. We let Ω be the discrete sample space of all hands in poker, and our random variable will assign

a numerical ranking to each hand 0 for no hand, 1 for pairs, 2 for two pairs, etc.
2. Ω is the sample space of all individuals in the U.S. and we can construct a random variable
X that assigns to each individual their height. Even though Ω is finite, we can interpret it as
continuous, which leads to a continuous distribution X ∼ P .

In general, the population is the total set of all relevant things that we are interested in. The specific quantity
of the actual population is called the population parameter, e.g. the true mean µ or the true variance σ2

of X, usually denoted with θ. But usually, these parameters are not known since the population is too big to
experimentally measure, so we must try and estimate it with samples. This is the entire point of statistics;
otherwise, we would already know everything we want to know.

Definition 1.2 (Samples)

From the population X ∼ P (which still has unknown distribution), we can take n samples by
considering iid x1, x2, . . . , xn ∼ P .

1. We should note that the samples xi are random variables themselves. Not fixing them yet
and still considering them in generality as random objects allows us to do more theoretical
calculations.

2. Once these samples have been realized (i.e. ω ∈ Ω is realized, and all xi’s are also realized), we
can treat them as fixed values.

Sometimes, we may not assume independence, but for most cases we do. A common rule is that if
the sample size n is less than 10% of the population size, then we can assume independence.
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Definition 1.3 (Empirical Distribution)

Now given that we have these iid samples, we can construct the empirical distribution X̂ ∼ P̂ ,
defined as the discrete distribution that assigns probability 1/n to each value xi for i ∈ [n]. In other
words, we have

P(X̂ = x) =
1

n
for x ∈ {x1, . . . , xn} (1)

We can write the CDF of the empirical distribution, called the empirical distribution function,
as the sum of indicators

FX(x) =
1

n

n∑
i=1

I[xi,+∞)(x) (2)

As expected, we would expect the empirical distribution to converge to the actual distribution.

Theorem 1.1 (Glivenko–Cantelli theorem)

The empirical distribution of iid samples x1, . . . , xn ∼ Pn converges almost surely to X ∼ P as
n→ ∞. More specifically, given that the CDF of X is F and the CDF of Pn is the step function Fn,
we have

||Fn − F ||∞ = sup
x∈R

|Fn(x)− F (x)| → 0 (3)

almost surely as n→ ∞.

Example 1.2 (Empirical Distribution of Standard Gaussian)

We expect the empirical distribution of the standard Gaussian to converge. Indeed, numerical results
show that for 10 and 100 samples, the empirical CDF does converge to the true CDF.

1.2 Concentration of Measure
Now let’s move on to concentration inequalities, which say that the probability that a random variable
is greater than something is bounded by something. These probability bounds are extremely useful in of
themselves. It allows us to talk about convergence theory, which tells us what happens to a statistic, such
as X, as I get more and more data. The first inequality exploits the fact that the tails of a Gaussian RV
decay very quickly, and a lot of concentration inequalities attempt to mimic this exponential bound but for
non-Gaussian distributions.

4/ 28



Frequentist Statistics Muchang Bahng December 2022

Theorem 1.2 (Gaussian Tail Inequality)

Given X ∼ N (0, 1), the inequality says that the probability of X taking values past a certain t decays
exponentially.

P
(
|X| > t

)
≤ 2e−t2/2

t

If we have x1, . . . , xn ∼ N (0, 1), then

P
(
|X| > t

)
≤ 2√

nt
e−nt2/2

We can assume that the coefficient is less than 1 if n is large. The above tells us that this bound
exponentially decays with t but also with the number of samples n.

Theorem 1.3 (Markov’s Inequality)

Given a nonnegative random variable X > 0, we have

P(X > t) ≤ E[X]

t

Proof.

We have

E[X] =

∫ ∞

0

xpX(x) dx

≥
∫ ∞

t

xpX(x) dx

= t

∫ ∞

t

pX(x) dx

= tP(X > t)

Theorem 1.4 (Chebyshev’s Inequality)

Given a random variable X with mean µ = E[X], we have

P
(
|x− µ| > t

)
≤ Var(X)

t2

Theorem 1.5 (Hoeffding’s Inequality)

Let x1, x2, . . . , xn be independent (not necessarily identical) random variables s.t. ai ≤ Xi ≤ bi
almost surely. Consider the random variable X = 1

n (x1 + . . .+ xn). Then, for all t > 0,

P
(∣∣X − E[X]

∣∣ ≥ t
)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)

Now in addition to bounding probabilities, we would like to bound expectations.
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Theorem 1.6 (Cauchy-Schwartz)

Given random variables X,Y , it is often hard to compute the expectation of XY since it is hard to
compute the distribution of it (sums are easy). But we can bound it as

|E[XY ]| ≤ E[|XY |] ≤
√

E[X]E[Y ]

Theorem 1.7 (Jensen’s Inequality)

Given g a convex function and X a random variable, we have

E[g(X)] ≥ g(E[X])

1.3 Kullback Leibler Divergence
Now a popular metric between PMFs/PDFs is the KL divergence.

Definition 1.4 (Kullback-Leibler Divergence)

Given random variable X and Y ,
1. If they are discrete with PMFs P and Q, the KL-divergence is defined

DKL(P || Q) :=
∑
x

P (x) log

(
P (x)

Q(x)

)
= E

[
log

P (x)

Q(x)

]
where we can interpret the expectation as X ∼ p.

2. If they are continuous with PDFs p and q, the KL-divergence is defined

DKL(p || q) :=
∫
p(x) log

(
p(x)

q(x)

)
dx = E

[
log

P (x)

Q(x)

]
where we can interpret the expectation as X ∼ p.

We should prove that this is indeed a metric.

1. The fact that DKL(p | p) = 0 is obvious.

2. To prove that DKL(p | q) ≥ 0, we use Jensen’s inequality

−DKL(p | q) = E log
q(X)

p(X)
≤ logE

q(X)

p(X)
= log

∫
q(x)

p(x)
p(x) dx = log(1) = 0

It is a common trick to switch the log and the expectation using Jensen’s.

1.4 Bounding Maximum of Random Variables
Given that we have n samples x1, . . . , xn ∼ P , it is conventional to index them with open brackets to denote
order

X(1) ≤ X(2) ≤ . . . ≤ X(n)

Our goal is now to find the distribution of X(n) = maxiXi. If we know the distribution of P , P(X(n) ≤ x)
is just the probability that all the Xi’s are less than x, and by independence we can product out the CDFs,
differentiate to get the PDF, and compute. So it’s not too hard to do this theoretically, but in practice this
is hard to do since we don’t exactly know P .

So if you didn’t know the Xi’s, the best you can assume is that

Emax{x1, . . . , xn}
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is going to grow like n. But if we can bound the MGF with EetX ≤ et
2σ2

2, then we can show that EmaxXi

doesn’t grow like n, but rather like log n.

EmaxXi ≤ σ
√
2 log n

1.5 Big-O, Little-O Notation
Going back to calculus, if we have a function f : X −→ R, we can say that

1. f(x) = O(g(x)) if f is of the same order as g. That is, they grow at the same rate

f(x)

g(x)
→ c as x→ ∞

for some constant c.

2. f(x) = o(g(x)) if f is negligible w.r.t. g. That is, f is infinitesimal w.r.t. g.

f(x)

g(x)
→ 0 as x→ ∞

for some constant c.

Now there is a probabilistic notation as well. The concept of boundedness translates to being able to
capture most of the mass of the random variable within some interval, and infinitesimality translates to the
probability mass concentrating around 0.

Definition 1.5 (Op, op Notation)

Let x1, x2, . . . be a sequence of random variables.
1. xn = op(1) if

P(|Yn| > ϵ) → 0 as n→ ∞

for all ϵ > 0. This means that xn gets more and more concentrated around 0.
2. xn = Op(1) if for all ϵ > 0, then there exists a C s.t.

P(|xn| > C) ≤ ϵ

for all large n. That is, we can always trap the majority of the probability mass of xn within the
interval [−C,C]. This must hold for all xn with n > N , so the mass can’t "escape" to infinity.
We can think of it as the distribution is "settling down" and not shooting off to somewhere.

3. xn = op(an) means that
xn
an

= op(1)

4. xn = Op(an) means that
xn
an

= Op(1)

Theorem 1.8 ()

Given Y1, . . . Yn ∼ Bernoulli(p), let p̂ = 1
n

∑
Yi. Then

p̂n − p = op(1)

which is also written p̂n = p + op(1), which means that the random variable p̂n is some constant p
plus a random variable that is going to 0.
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Proof.

By Hoeffding’s inequality,
P(|p̂n − p| > ϵ) ≤ 2e−2nϵ2

which goes to 0 as n→ ∞.

Example 1.3 ()

Given Y1, . . . Yn ∼ Bernoulli(p), let p̂ = 1
n

∑
Yi. Then,

p̂− p = Op

( 1√
n

)

2 Point Estimation

Definition 2.1 (Sample Statistic, Estimators and Estimates)

Now given a population X, we would like to use the n iid samples x1, . . . , xn to estimate a parameter
θ of interest with our own random variable/value θ̂n, called a sample statistic. We must note the
dual nature of the sample statistic as a random variable and a value is similar to that of samples.

1. The statistic θ̂n is a random variable itself, referred to as the estimator. More specifically, it
is a function θ̂n : Rn −→ R of the n samples, i.e. a transformation of random variables

θ̂n = θ̂n(x1, x2, . . . , xn) (4)

This makes θ̂n also a random variable, which attempts to estimate the true θ, which is some
unknown fixed value. Since θ̂n is a random variable, it has its own distribution, called the
sampling distribution of θ̂n.

2. Once these samples xi have been realized, the estimator realizes and the value realized is now
called the estimate.

This sampling distribution is a distribution of the statistic θ̂n, and this forms a separate distribution
with its own mean and variance.

1. the mean of the sampling distribution is denoted µθ̂n

2. the standard deviation of the sampling distribution is denoted σ2
θ̂n

, also called the standard
error.

We would want these estimators to have three properties:

1. unbiasedness

2. consistency

3. efficiency

We would like the sampling distribution of our statistic to give us good estimate in two ways. θ̂n should not
be too far off from the actual parameter θ (bias is small), and θ̂n should not fluctuate too widely (variance
of θ̂n should be small).

Definition 2.2 (Bias, Variance of Estimator)

Given an estimator θ̂ of a sample x1, . . . , xn estimating population parameter θ, the sampling bias
refers to

Bias(θ̂) =
∣∣E[θ̂]− θ

∣∣ (5)
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and the sampling variance refers to

Var(θ̂) = E
[
(θ̂ − E[θ̂])2

]
(6)

A good rule of thumb to remember is that statistics is about replacing expectations with averages.

E 7→ 1

n

∑
i

(7)

This is really the fundamental quality of statistics. Then after that we can do some fancy things, like
minimizing something or manipulating another, but every single time we see an expectation just replace it
with an average.

Definition 2.3 (Sample Mean)

Given a population X with µ = E[X] and σ2 = Var(X), our estimator for µ is simply the average of
the n samples x1, . . . , xn, called the sample mean or the sampling distribution of the sample
mean.

xn = µ̂n =
1

n
(x1 + . . .+ xn) (8)

This gives us the sampling distribution of the sample means. The mean and standard deviation (i.e.
standard error) of xn is denoted µxn

and σxn
.

1. The mean of xn is µ.
µxn = µ (9)

because

E[xn] = E
[
1

n

n∑
i=1

xi

]
=

1

n

n∑
i=1

E[xi] = E[x] = µ (10)

2. The variance of xn is σ2/n, i.e. the standard error of xn is σxn
= σ/

√
n.

σxn
=

σ√
n

(11)

because

σ2
xn

=
1

n2

n∑
i=1

Var(xi) =
1

n
Var(x) =

σ2

n
(12)

Practically, this tells us that when trying to estimate the value of a population mean, due to
the factor of 1/

√
n, reducing the error on the estimate by a factor of 2 requires acquiring 4

times as many observations in the sample. But realistically, the true standard deviation σ is
unknown, and so the standard error of the mean is usually estimated by replacing σ with the
sample standard deviation S instead.

σxn
≈ S√

n
(13)

3. By CLT, xn converges to N (µ, σ2/n) in distribution as n→ +∞ (but in practicality, we assume
this for n ≥ 30). The fact that its mean and variance is µ and σ2/n isn’t that impressive. What
is really impressive is that no matter what the distribution of x is, the sampling distribution of
the mean will be Gaussian.

Example 2.1 (Sample Means)

Here are some figures of sample means. Note that with a uniform parent distribution, the sampling
distribution of its mean looks like a Gaussian even without a large n. However, this is not necessarily
true for different parent distributions, such as the exponential.
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(a) We plot the PDF of an X ∼ Uniform[0, 2] ran-
dom variable by taking 100k samples. We also take
100k samples from the sampling distribution of the mean
X3, X10, X30. We can see that the standard deviation
decreases by a factor of

√
n.

(b) We plot the PDF of an X ∼ Exponential(1.5) ran-
dom variable by taking 100k samples. We also take
100k samples from the sampling distribution of the mean
X3, X10, X30.

Figure 1

If the parent distribution is normal, then we don’t even need CLT to claim that the sampling distribution
of the sample mean is normal, since sums of normals are normal.

Now the variance of the population is defined to be σ2 = E[(X − E[X])2], and by our rule of thumb, we can
replace the expectations with sample means, by first setting E[X] = µ̂ and averaging out the values (X− µ̂)2.

Definition 2.4 (Sample Variance)

Given a population X, our estimator for σ2 = E[(X − E[X])2] is simply the average of the squared
distances of the n samples {(xi − µ̂)2}ni=1.

S2
n = σ̂2

n =
1

n

n∑
i=1

(xi − xn)
2 (14)

The mean and standard deviation of S2
n is denoted µS2

n
and σS2

n
. Note that there is a small difference

that the sum for variance is divided by n− 1 rather than n, since we want it to be unbiased, but we
will correct this later.

While the CLT states that the sampling distribution of the sample mean will look approximately Gaussian,
we do not have this luxury when looking at the sampling distribution of sample variance.

Example 2.2 (Sample Variance)

Take a look at the following sampling distributions of the sample variance. There does not seem to
be strong signs of convergence to a Gaussian. Their means do not align either.
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(a) (b)

Figure 2

2.1 Sampling from Gaussians
Now if we assume that the parent distribution is Gaussian, then we can conclude some extra things and
more kinds of distributions arise. Let x1, . . . , xn ∼ N (µ, σ2), with xn the sample mean and S2

n the sample
variance. Say that we want to find the distribution of xn.

1. In the unrealistic case where we know the true σ2, we don’t even need to consider the sample variance.
From the basic property of Gaussians, we know that xn ∼ N (µ, σ2/n), or after standardizing,

xn − µ

σ/
√
n

∼ N (0, 1) (15)

2. In the realistic case where we don’t know the true σ2, we should replace it with our sample variance
S2, and it turns out that because of this extra uncertainty in the variance, our sampling distribution
follows the student-t distribution, which can be interpreted as a mixture of Gaussians with differing
variances.

xn − µ

S/
√
n

∼ StudentT(n− 1) (16)

Now if we are interested in finding the distribution of S2
n:

1. In the unrealistic case where the know the true µ, we don’t need to consider the sampling distribution
of xn. We have

S2
n =

1

n

n∑
i=1

(xi − µ)2 ∼ Gamma
(n
2
,
n

2σ2

)
(17)

2. In the realistic case where we don’t know µ, we have

n− 1

σ2
S2
n =

1

σ2

n∑
i=1

(xi − xn)
2 ∼ χ2(n− 1) (18)
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2.2 Method of moments

2.3 Maximum likelihood estimation

2.4 Least squares estimation

3 Confidence Intervals
Recall that the central limit theorem says that given a sequence of iid random variables x1, . . . , xn coming
from a random variable with true mean µ and variance σ2, the sample mean is similar to a N (µ, σ2/n)
random variable. That is, the sample mean converges in distribution

Xn
dist−−→ N

(
µ,
σ2

n

)
(19)

as n→ ∞. Another way to state it is that the normalized sample mean is similar to a standard Gaussian.

xn − µ

σxn

=
xn − µ

σ/
√
n

dist−−→ N (0, 1) (20)

So, given that we have enough samples, I will perfectly understand its fluctuations. Now let’s introduce some
definitions that will allow us to unify some ideas into simpler notation: the realized value x, the number of
standard deviations it is away from the mean, and the probability that it takes that value (or more extreme).

Definition 3.1 (z-score)

Given a N (µ, σ2) distribution, the z-score of a number x ∈ R is defined to be the number of standard
deviations away from the mean.

z =
x− µ

σ
(21)

Definition 3.2 (Percentile)

Given X ∼ N (0, 1) and significance level α ∈ [0, 1], let us define qα ∈ R as the point where

P(X ≥ qα) = α (22)

i.e. the 100αth percentile of the standard normal. Note that given X ∼ N (0, 1), we have

P(|X| > qα/2) = α (23)

Now given x1, . . . , xn from a population X with mean µ and standard deviation σ, let xn be the sampling
distribution of the mean. By virtue of the central limit theorem, we can write

P
(∣∣∣∣Xn − µ

σ/
√
n

∣∣∣∣ ≥ qα/2

)
≈ α ⇐⇒ P

(∣∣∣∣Xn − µ

σ
√
n

∣∣∣∣ ≤ qα/2

)
≈ 1− α (24)

which implies that with probability 1− α, we have

Xn ∈
[
µ− qα/2

σ√
n
, µ+ qα/2

σ√
n

]
⇐⇒ µ ∈

[
Xn − qα/2

σ√
n
,Xn + qα/2

σ√
n

]
(25)

This is how we construct a confidence interval. In other words, as n becomes large (ideally at least 30), the
probability that an interval around our sample mean contains the actual mean µ can be approximated by a
Gaussian. But note that CI requires to know the actual standard deviation σ. There are three ways to deal
with this:

1. This may actually be known from the start, especially if we are working with calibrated devices with
standard devices that have been experimentally verified.

12/ 28



Frequentist Statistics Muchang Bahng December 2022

2. We can simply bound σ, depending on what kind of random variable we are working with. For example,
given X ∼ Bernoulli(p), its standard deviation is bounded by σ =

√
p(1− p) ≤ 1

2 , so we can create a
confidence interval that is larger than any other confidence interval we can make if we had known the
true σ.

p ∈
[
Xn − qα/2

1

2
√
n
,Xn + qα/2

1

2
√
n

]
(26)

3. We can approximate σ with the sample standard deviation S, which turns out to be an unbiased
estimator.

Example 3.1 (Proportion of Right-Side Kissers)

We have observed 80 out of 124 right-side kisses, resulting in a sample estimate of p̂ = 0.645. Given
that we want a confidence interval of 95%, we want an α = 0.05, implying a the value qα/2 = q0.025 =
1.96. So, with probability 0.95, we have

p ∈
[
0.645− 1.96

2
√
124

, 0.645 +
1.96

2
√
124

]
= [0.56, 0.73] (27)

If we had, say 3 observations, rather than 124, we would have a 95% confidence interval of p ∈
[0.10, 1.23], which is terrible, but in this case even CLT is not valid.

Example 3.2 (Proportion of Voters)

Given that we sample n = 100 people from a city’s population to ask whether they support candidate
A or B, we have 54 people who support candidate A, so p̂ = 0.54. Say that we want a 95% confidence
interval, which leads to qα/2 = q0.025 = 1.96. So, with probability 0.95, we have

p ∈
[
0.54− 1.96

σ√
100

, 0.54 + 1.96
σ√
100

]
(28)

and by substituting σ for S =
√
0.54(1− 0.54) ≈ 0.5, we get

p ∈
[
0.54− 1.96

0.284√
100

, 0.54 + 1.96
0.284√
100

]
= [0.44, 0.64] (29)

An interpretation of confidence intervals is that if you keep on sampling x or p̂ and construct 95% CIs, then
95% of the time these intervals will contain the true mean µ or proportion p (or more if we had bounded the
CI with a bigger interval).

Example 3.3 ()

We survey 6250 teachers to ask whether they think computers are essential for teaching. 250 were
randomly selected and 142 felt that they were essential. Let’s construct a 99% confidence interval for
the proportion of teachers who felt that computers were essential. We would like to construct a CI
for the true µ = p, and we have x = 142/250 = 0.568.

1. 99% confidence corresponds to α = 0.01, which corresponds to a z-score of qα/2 = 2.576.
2. The parent distribution is Bernoulli(p), with µ = p and σ =

√
p(1− p). The sampling distri-

bution of x has µx = p also and σx = σ/
√
n.

3. We need to know the details of the sampling distribution, but we don’t know σ, which is
needed to calculate σx. However, we can estimate it using the sample standard deviation
S =

√
0.568(1− 0.568) = 0.5.

4. Our sampling distribution has standard deviation σx ≈ S/
√
n = 0.5/

√
250 = 0.031, and our

z-score was 2.576, so our 99% confidence interval is 2.576 standard deviations from our mean.
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That is, with probability 0.99,

p ∈
[
0.568− 2.576 · 0.031, 0.568 + 2.576 · 0.031

]
=

[
0.488144, 0.647856

]
(30)

3.1 CIs for means, proportions, and variances

3.2 Bootstrap confidence intervals

4 Hypothesis Testing
A significance test is a method used to decide whether the data at hand sufficiently supports a particular
hypothesis. The hypothesis to be tested is called the alternative hypothesis, denoted H1 or Ha, and the
status quo is called the null hypothesis, denoted H0. Assuming that H0 is true, we compute the likelihood
of the data happening. If the sample is not too unlikely (past some significance level), we fail to reject H0,
and if there is strong evidence, we reject H0. H0 and Ha can be devised in countless ways.

Example 4.1 ()

There are countless test statistics we can build, but here are some common examples,
1. Proportion: Company A produces circuit boards, but 10% of them are defective. Company B

claims that they produce fewer defective circuit boards.

H0 : p = 0.10 versus Ha : p < 0.10 (31)

2. Means: It is known that the average height of boys in KIS is 176cm. Ben claims that the
average height is lower than this.

H0 : µ = 176 versus Ha : µ < 176 (32)

3. Difference of Means: If µ1 and µ2 denote the true average breaking strengths of the same type
of twine produced by two different companies. Jenny claims that the µ1 − µ2 > 5.

H0 : µ1 − µ2 = 0 versus Ha : µ1 − µ2 > 5 (33)

4.1 One Sample Z and T Tests
Let us have some population X ∼ P and a null hypothesis that claims H0 : µ = θ0. Since we are interested
in the mean, we would like to use CLT or some other theorem to determine what the distribution of the
mean of n samples xn looks like (either Normal or Student T centered around θ0 and scaled down by factor
of

√
n). When we actually sample, the value xn = θ̂ is realized, and we would like to see if sampling θ̂ from

the distribution centered around θ0 is likely, usually after normalizing. If it isn’t, then we reject H0.

How do we decide whether to use the z-test or the t-test? It is known that StudentT(n − 1) converges
to N (0, 1) in distribution as n → +∞. Therefore, depending on the context of the problem, at a certain
point N (usually N = 30 or perhaps higher for skewed distributions), the difference between these two are
negligible.

1. Z-test: if we know the population variance σ2, but it is rarely the case that we actually know σ2.

2. T-test: if we do not know the population variance σ2, which we then substitute for the sample variance
S2.

3. Z-test: if we do not know the population variance (which we substitute for S2), but our sample size is
greater than N , then we can approximate the t-distribution with our normal, allowing us to use the
Z-test again.
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In general, the alternative to the null hypothesis H0 : θ = θ0 will looks like one of the following three
assertions:

1. Two-Sided Test: Ha : θ ̸= θ0

2. One-Sided Test: Ha : θ > θ0 (in which case the null hypothesis is θ ≤ θ0)

3. One-Sided Test: Ha : θ < θ0 (in which case the null hypothesis is θ ≥ θ0)

Now we must still quantify how unlikely our sample mean θ must be compared to θ0 in order to reject the null
hypothesis. This is where we specify our significance level, denoted by α (common values 0.10, 0.05, 0.01).
This specifies the tail-regions in which θ will land in with probability α. Usually, working with general
normal/t distributions is tedious, so we can rescale them and use their z/t-scores.

Definition 4.1 (Z-score)

Given a value x sampled from distribution X ∼ N (µ, σ2), its z-score is defined to be the number of
standard deviations away from the mean.

z :=
x− µ

σ
(34)

Now given a significance level α ∈ [0, 1], let zα be the value such that the measure of a standard
normal distribution past zα is 1− α (i.e. the 100α percentile). zα is called the critical z-value.

Definition 4.2 (T-score)

Given a value x sampled from distribution X ∼ StudentT(n), its t-score is defined to be the number
of standard deviations away from the mean.

Example 4.2 ()

A factory has a machine that dispenses 80mL of fluid in a bottle. An employee believes the average
amount of fluid is not 80mL. Using 40 samples, he measures the average amount dispensed by the
machine to be 78mL with a sample standard deviation of 2.5.

1. Let the true mean be µ and true standard deviation be σ. The null hypothesis is H0 : µ = 80
and the alternative is H1 : µ ̸= 80, making this a two-sided test.

2. We don’t know the true standard deviation σ, so we must use the sample standard deviation
S. This requires us to use the t-test, but since n > 30, we can invoke CLT and state that x40 is
(approximately) Gaussian with mean µ and standard deviation S/

√
n. So, we use the z-test.

3. At a 95% confidence level, we have α = 0.05, and our rejection region is (−∞, z0.025] ∪
[z0.975,+∞). Since we are looking at a standard Gaussian, we have by symmetry z0.025 = −1.96
and z0.975 = 1.96, and our critical z-value is z∗ = 1.96.

4. So the z-score for 78 is
z =

x− µ0

s/
√
n

=
78− 80

2.5/
√
40

= −5.06 (35)

which is definitely in the reject region. So this tells us that we can reject the null hypothesis
with a 95% level of confidence.

Example 4.3 ()

A company manufactures car batteries with an average life span of 2 or more years. An engineer
believes this value to be less. Using 10 samples, he measures the average life span to be 1.8 years
with a standard deviation of 0.15.

1. Let the true mean be µ and true standard deviation be σ. The null hypothesis is H0 : µ ≥ 2
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and the alternative is H1 : µ < 2, making this a one-sided test.
2. We don’t know the true standard deviation σ, so we must use the sample standard deviation
S. This requires us to use the t-test, especially since n = 10 is not large enough for us to invoke
CLT.

3. At a 99% confidence level, we have α = 0.01, and our rejection region is (−∞, t0.01] =
(−∞,−2.82].

4. The t-score for the observed mean value is

t =
x− µ0

s/
√
n

=
1.8− 2

0.15/
√
10

= −4.22 (36)

which is definitely in the reject region. So this tells us that we can reject the null hypothesis
with a 99% level of confidence.

We may have to account for errors. There is always a chance that our evidence leads us to an incorrect
conclusion, and we have names for this.

Definition 4.3 (Errors)

Given a hypothesis test where we look for evidence supporting our alternative claim,
1. A type 1 error is when the null hypothesis is rejected, but it is true (false positive).
2. A type 2 error is when we fail to reject the null hypothesis, when it is false (false negative).

4.2 Power of a test

4.3 Common tests (t-test, z-test, chi-square test, F-test)

4.4 Multiple testing problem

5 Regression Analysis
Now we will talk about regression analysis from a statistical point of view. Regression can be used to
approximate the relationship between two random variables (through a smooth function) and can be used
for casual inference. Essentially, linear regression attempts to model the conditional distribution Y | X.

5.1 Ordinary Least Squares
If we use a squared loss function, this is called ordinary least squares. It is a well known fact that the
true regressor that minimizes this loss is

f∗(x) = E[Y | X = x] (37)

which is the conditional expectation of Y given X. This is the true regressor function, which is the best
approximation of Y over the σ-algebra generated by X. This may or may not be linear.

Theorem 5.1 (Least Squares Solution For Linear Regression)

Given the design matrix X, we can present the linear model in vectorized form:

Y = Xβ + ϵ, ϵ ∼ N(0, σ2I) (38)

The solution that minimizes the squared loss is

β = (XTX)−1XTY ∈ Rd

Var(β̂) = σ̂2(XTX)−1 ∈ Rd×d
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Proof.

The errors can be written as ϵ = Y −Xβ, and you have the following total sum of squared errors:

S(β) = ϵT ϵ = (Y −Xβ)T (Y −Xβ)

We want to find the value of β that minimizes the sum of squared errors. In order to do this,
remember the following matrix derivative rules when differentiating with respect to vector x.

1. xTA 7→ A
2. xTAx 7→ 2Ax

Now this should be easy.

S(β) = YTY − βTXTY −YTXβ + βTXTXβ

= YTY − 2YTXβ + βTXTXβ

∂

∂β
S(β) = −2XTY + 2XTXβ

and setting it to 0 gives

2XTXβ − 2XTY = 0 =⇒ XTXβ = XTY

and the variance of β, by using the fact that Var[AX] = AVar[X]AT , is

Var(β̂) = (X′X)−1X′ σ2I X(X′X)−1 = σ2(X′X)−1(X′X)(X′X)−1 = σ2(X′X)−1

But we don’t know the true σ2, so we estimate it with σ̂2 by taking the variance of the residuals.
Therefore, we have

β = (XTX)−1XTY ∈ Rd

Var(β̂) = σ̂2(XTX)−1 ∈ Rd×d

Note that we have assumed that XTX was invertible in order for such a solution to be unique, i.e. X must
be full rank. This process breaks down when it isn’t invertible, e.g. if there are repetitions in the features
(one feature is a linear combination of the others and hence not full column rank). We will talk more about
this soon.

Definition 5.1 (Hat Matrix)

For convenience of notation, let’s call

H = X(XTX)−1XT (39)

the n× n hat matrix, which is essentially a projection of the observed yi’s to the predictions.

ŷ = Hy (40)

Lemma 5.1 (Properties)

The hat matrix is an orthogonal projection matrix that projects to the column space of X.

Note that this parallels the orthogonal projection of conditional expectation to the true function onto the
subspace of X measurable functions. Except that we are not doing this in function space, but rather the
sample space Rn.
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We can also see that the residuals ϵ̂i = yi − ŷi has the property that

ϵ̂ = y − ŷ = (In −H)y (41)

Now if we look back to the derivative of the loss S, we really want to set

XT (y −Xβ̂) = XT ϵ̂ = 0 (42)

5.2 Gauss-Markov Theorem
At this point, we have only talked about the mathematical properties of the least squares regression, but
now let’s talk about some statistical properties. In machine learning, we talk about some assumptions
(homoscedacity, uncorrelated residuals, etc.), and we now formalize their need.

Theorem 5.2 (Gauss-Markov Theorem)

Given a dataset with
1. mean zero residuals E[ϵi] = 0, i.e. E[Y | X] = Xβ.
2. homoscedacity Var[ϵi] = σ2 <∞ for all i,
3. uncorrelated residuals Cov(ϵi, ϵj) = 0 for all i ̸= j. This and the previous assumption can be

combined into Cov[Y | X] = σ2In.
We were concerned with estimating the parameters β1, . . . , βd. Now let’s generalize this and consider
the problem of estimating, for some known constants c1, . . . , cd+1, the point estimator

θ = c1β1 + c2β2 + . . .+ cdβd + cd+1 (43)

Then the estimator
θ̂ = c1β̂1 + c2β̂2 + . . .+ cdβ̂d + cd+1 (44)

where β̂i is clearly an unbiased estimator of θ and it is a linear estimator of θ, i.e.

θ̂ =

n∑
i=1

biyi (45)

for some known (given X) constants bi. Then, the Gauss-Markov theorem states that the estimator
θ̂ has the smallest (best) variance among all linear unbiased estimators of θ, i.e. θ̂ is BLUE.

5.3 Analysis of variance (ANOVA)

6 Time Series Analysis
If we try sticking to linear algebra, we hope to model time series of the form

Xt = f(t) + wt (46)

so that we can decompose to a deterministic process followed by some white noise. There are several ways to
approach this, including kernel smoothing, moving average smoothing, or cubic spline smoothing. However,
this falls short when you look the residuals. They will follow some pattern that must be removed due to
autocorrelation.

In linear regression, one of the fundamental assumptions was independence of errors. Ideally, we would also
like independence of features, but this is usually not true (in fact, in extreme cases, multicollinearity can
screw us up). The relaxation of these assumptions helps us transition from linear regression to time series
analysis. Let’s go over some basic things with new terms.
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Definition 6.1 (Time Series)

A stochastic process
{X1, . . . , Xt, . . .} (47)

of random variables indexed by time t is a time series. The stochastic behavior of {Xt} is determined
by specifying the PDF/PMF

p(xt1 , . . . , xtm) (48)

for all finite collections of time indices

{(t1, . . . , tm),m <∞} (49)

i.e. all finite-dimensional distributions of Xt.

Definition 6.2 (White Noise)

White noise wt is a random variable indexed by time t satisfying
1. E[wt] = 0
2. Var[wt] = σ2

3. Cov[wt, ws] = 0 for s ̸= t. That is, they are uncorrelated but not necessarily independent.
Note that this third condition can be strengthened to independence or uncorrelated Gaussians, which
automatically imply independence.

6.1 Properties of Processes
Now let’s define some properties. We will start with the time series analogue of covariance and correlation.

Definition 6.3 (Autocovariance)

The autocovariance between two time steps t, s of process {Xt} is defined

KX(s, t) = Cov(Xt, Xs) (50)

Definition 6.4 (Autocorrelation)

The autocorrelation is
ρX(s, t) =

KX(s, t)√
KX(s, s)KX(t, t)

(51)

Definition 6.5 (Cross Covariance)

Given two stochastic processes {Xt}, {Yt}, the cross covariance is

KXY (t, s) = Cov(Xt, Ys) (52)

and the cross correlation is
ρXY (t, s) =

KXY (t, s)

KX(t, s)KY (s, s)
(53)

It is used to model the correlations between two related products with a certain time lag perhaps.
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Definition 6.6 (Stationarity)

There are two types of stationarity.
1. A weakly stationary or covariance stationary process means that its mean and autoco-

variance are invariant to time shifts. That is, for all r,

E[Xt] = E[Xt+r] = µ (54)

Var[Xt] = Var[Xt+r] = σ2
X (55)

KX(t, s) = KX(t+ r, s+ r) (56)
(57)

2. A strongly stationary process means that any joint distribution function of a finite set of
time steps is invariant to time shifts. That is, for any r > 0 and finite collection of time points
t1, . . . , tk,

F (Xt1 , . . . , Xtk) = F (Xt1+r, . . . , Xtk+r) (58)

where F is the joint pdf and equality means almost everywhere equality.
Clearly, weakly stationary implies strongly stationary, and the difference is that weakly stationary
has invariance in the first two moments while strongly stationary holds for all moments.

Theorem 6.1 ()

It immediately follows that for a stationary process Xt, the autocovariance function can be defined

KX(s, t) = KX(s− t, 0) = KX(τ) (59)

for some difference between the time points, called the lag. From this, we can see that Var[Xt] =
KX(0), so the autocorrelation can be defined as

ρX(τ) =
KX(τ)

KX(0)
(60)

Stationary time series are very desirable, since if we do parameter estimation, we don’t want to estimate
parameters that are always changing. For example, in stationary processes, we know that the mean never
changes, so we have a bunch of sample points to choose from, and if every wasn’t stationary, then every Xt

would have its own mean and we won’t be able to estimate it. Similarly, we also know that for some fixed
τ , the autocorrelation does not change, so we can estimate KX(τ) with a bunch of fixed intervals of length
τ . Therefore, if we want to test for stationary of a fixed time process, we want to conduct a test where we
want to find whether the autocovariance is relatively invariant. This gives us a bit of intuition.

Theorem 6.2 ()

Note the following properties.
1. KX(τ) = KX(−τ)
2. By Cauchy-Schwartz, KX(0)2 = Var[Xt] Var[Xt+r] ≥ Cov(Xt, Xt+r) = KX(r)2, so |KX(τ)| ≤
KX(0).

Therefore, we would like to decompose a general time series to a stationary component and a nonstationary
simple component, and do some statistics on the stationary one.
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Definition 6.7 (Joint Stationarity)

Two processes Xt, Yt, are said to be jointly stationary if both are individually stationary and also if
the cross covariance function is also stationary. That is, for all r,

KXY (t, s) = KXY (t+ r, s+ r) (61)

Definition 6.8 (Backshift Operator)

The backshift operator B acts on time series by

BXt = Xt−1 (62)

It can be iterated to get BkXt = Xt−k and can also be inverted to get a forward shift B−kXt = Xt+k.
We can just think of this as (not necessarily linear?) operators between the function space of X-
measurable functions.

6.1.1 Estimation

We should now try to estimate some parameters of a weakly stationary process.

Theorem 6.3 (Sampling Distribution of Mean)

We can already estimate the mean. We should get the mean of the mean and the variance of the
mean.

1. The mean is trivial, since by linearity of expectation we can get

µ̂ = X̄ =
1

T

T∑
t=1

Xt (63)

2. The variance is a bit more involved since there are covariance terms, so

Var[X̄] = Var

(
1

T

T∑
t=1

Xt

)
(64)

=
1

T 2

T∑
t=1

T∑
s=1

Cov(Xt, Xs) (65)

=
1

T 2

T∑
t=1

T∑
s=1

KX(|t− s|) (66)

=
1

T
KX(0) +

2

T

T−1∑
z=1

(
1− z

T

)
KX(z) (67)

In the unrealistic situation where theXt’s are uncorrelated, we haveKX(0) = σ2 andKX(z) = 0
for all z > 0, leaving us with σ2/T .
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Theorem 6.4 (Sampling Distribution of Autocovariance)

To estimate the autocovariance of a weakly stationary process, we can define the sample autocovari-
ance function to be

K̂X(h) =
1

T

T−h∑
t=1

(Xt+h − X̄)(Xt − X̄) (68)

Note that we divide by T rather than T −h so that this covariance is positive semidefinite. Note that
as h gets bigger, the number of terms in the sum decreases giving less accurate estimation. Similarly,
the sample autocorrelation function is

ρ̂(h) =
K̂X(h)

K̂X(0)
(69)

The sample cross covariance and cross correlation are

K̂XY (h) =
1

T

T−h∑
t=1

(Xt+h − X̄)(Yt − Ȳ ) and ρ̂XY (h) =
K̂XY (h)√
K̂X(0) K̂Y (0)

(70)

Note that even though we can just plug these formulas and get the sample estimators for any time series,
these don’t mean anything if they are not stationary.

6.1.2 Detecting White Noise

Ultimately, the main goal of time series analysis is to transform the data into a white noise process. We want
to first identify trends and patterns in the process, remove them, and hopefully get white noise. To actually
detect if we have white noise, one way to do this is to look at the estimated autocorrelation function across
h. Note that for white noise, we have a spike at h = 0 to be 1 (since it is just the correlation of a variable
with itself), and then it drops to 0 immediately (since by definition, ws, wt are uncorrelated). We would like
to see this behavior within a certain confidence interval.

6.2 Autoregressive (AR) Processes
The assumptions are:

1. the data must be stationary (though it is not always stationary as it may contain a unit root)

2. the relationship between the variables and their lagged values must be linear (nonlinear gives large
language models like LSTMs)

3. the error term should be white noise

Definition 6.9 (Autoregressive Process)

An AR(p) process encodes causalitya into the white noise process. It is a stochastic process with
mean 0 and of the form

Xt = wt +

p∑
i=1

ϕiXt−i (71)

where p is the hyperparameter of steps to look back, wt is white noise with variance σ2, and ϕi are
constants ̸= 0. Using the backshift operator B, we can write the AR(p) process as

Φ(B)Xt = wt (72)

where

Φ(B) =

(
1−

p∑
i=1

ϕiB
i

)
(73)
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In fact, we have already seen this process many times.

Example 6.1 (AR(p) Processes)

Consider the following.
1. AR(O) is simply a white noise process

Xt = wt (74)

2. AR(1) with θ = 1 gives us the formula

Xt = Xt−1 + wt (75)

which is a random walk. It is also a Markov process and a martingale.
3. AR(1) of the form

Xt = a+Xt−1 + wt (76)

is a random walk with drift.
4. AR(2) can be of form

Xt = Xt−1 − 0.2Xt−2 + wt (77)

5. AR(3) can be of form
Xt = Xt−1 − 0.2Xt−2 + 0.13Xt−3 + wt (78)

Occasionally, it may be hard to determine the difference between the difference of AR(p) processes.

Example 6.2 (AR(1) Processes)

Let’s focus on the AR(1) process. Later on in linear processes, we see that the AR(1) process has a
causal representation as a linear process.

Xt = ϕ1Xt−1 + wt =

∞∑
i=0

ϕi1wt−i (79)

This is stationary under certain conditions.
1. If ϕ < 1, then the series is stationary.
2. If ϕ = 1, this is a random walk which is not stationary.
3. If ϕ > 1, then this process grows exponentially fast.

Now to determine weak stationarity, let’s go back to the equation. Talk about unit root test.

Definition 6.10 (Augmented Dicky-Fuller Test)

The Augmented Dickey-Fuller (ADF) test is a statistical test used to determine whether a time series
is stationary or not. Here’s a step-by-step explanation of how the ADF test is typically implemented:

1. Model Specification. The ADF test is based on an autoregressive model. The general form
is:

∆Yt = α+ βt+ γYt−1 + δ1∆Yt−1 + · · ·+ δp−1∆Yt−p+1 + εt (80)

Where:
• ∆Yt is the first difference of the series at time t
• α is the constant term
• βt is the time trend term
• γ and δ are coefficients
• εt is the error term

aon how a random variable Y is caused by another RV X.

23/ 28



Frequentist Statistics Muchang Bahng December 2022

• p is the lag order
2. Determine the lag order (p):

• This can be done using information criteria like AIC or BIC
• Or by starting with a maximum lag and testing down

3. Estimate the model:

∆Xt = α+ βt+ γXt−1 +

p−1∑
i=1

δi∆Xt−i + εt (81)

Where ∆Xt = Xt −Xt−1 is the first difference of the series. To apply OLS, we rewrite this in
matrix form:

Y = Xβ + ε (82)

Where:
• Y is an (n− p)× 1 vector of ∆Xt values
• X is an (n− p)× (p+ 2) matrix of explanatory variables
• β is a (p+ 2)× 1 vector of coefficients (α, β, γ, δ1, . . . , δp−1)
• ε is an (n− p)× 1 vector of error terms
• n is the number of observations
• p is the lag order

The OLS estimator for β is given by:

β̂ = (X ′X)−1X ′Y (83)

This estimator minimizes the sum of squared residuals:

n∑
t=p+1

ε2t = (Y −Xβ)′(Y −Xβ) (84)

• Use Ordinary Least Squares (OLS) to estimate the coefficients of the model
4. Calculate the test statistic:

• The test statistic is the t-statistic for γ:

t =
γ̂ − 0

SE(γ̂)
(85)

Where γ̂ is the estimated coefficient and SE(γ̂) is its standard error
5. Determine the critical values:

• These depend on the sample size and the model specification (whether it includes a constant
and/or trend)

• They’re typically obtained from statistical tables or through simulation
6. Compare the test statistic to the critical values:

• If the test statistic is less than (more negative than) the critical value, reject the null
hypothesis

• The null hypothesis is that the series has a unit root (is non-stationary)
7. Interpret the results:

• If we reject the null, we conclude the series is stationary
• If we fail to reject the null, we cannot conclude the series is stationary

Once this is settled, our job is now to estimate the parameters. We can use MLE.

6.3 Moving Average (MA) Processes
The key assumptions are:
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1. The random shocks are white noise, mutually independent and coming from the same distribution with
mean 0 and constant variance.

Definition 6.11 (Moving Average Process)

The MA(q) process is a smoother type of noise than the white noise process. It is expressed by the
formula

Xt =

q∑
j=1

ϕjwt−j + wt (86)

for ϕj ∈ R. Compared to the AR formula, the MA formula averages over the noise terms wt. It
focuses on the ripples of the process; if there is a shock to the process wt−1, then that shock is still
felt at time t by the term ϕ1tt−1.
Alternatively, the MA model can be written as an overall average of both the past and future white
noise.

Xt =

q/2∑
j=−q/2

ϕjwt+j (87)

Theorem 6.5 ()

A nice property of MA(q) is that autocovariance vanishes beyond a certain point. More specifically,
it decays linearly and vanishes after q steps behind.

6.4 Linear Processes
Many time series fall under the category of linear processes.

Definition 6.12 (Linear Processes)

A linear process is defined as

Xt = µ+

+∞∑
j=−∞

θjwt−j (88)

which means that every Xt is a linear combination of the terms in the white noise process with some
mean µ added on. To ensure that this series doesn’t blow up, we add the constraint that∑

j

θ2j <∞ (89)

However, since we are more interested in causal inference, to use the past to predict the future, we
use the form

Xt = µ+

∞∑
j=0

θjwt−j (90)

In fact, some AR processes are linear processes.

Example 6.3 (AR(1) as a Linear Process)

Note that AR(1) has a causal representation as a linear process. We can use the formula Xt =
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θXt−1 + wt and recursively define

Xt = θ(θXt−2 + wt−1) + wt = . . . =

∞∑
j=0

θjwt−j (91)

Going back to analysis, infinite series are just limits.

lim
N→∞

N∑
j=0

θjwt−j (92)

So this sum may not converge. Letting SN (θ) be defined as above, we can compute that

E[SN (θ)] = 0 and Var[SN ] = σ2
N∑
j=0

θ2j = σ2

(
1− θ2N+2

1− θ2

)
(93)

Thus, if |θ| < 1, then Var[SN (θ)] → σ2/(1− θ2), and if wt is Gaussian noise, then

SN (θ)
d−→ N

(
0, σ2/(1− θ2)

)
(94)

If |θ| = 1, the series does not converge and is not stationary, and if |θ| > 1, then the random talk will
grow exponentially fast.

6.5 ARMA
We can combine both the AR and MA processes to make a more sophisticated model.

Definition 6.13 (ARMA)

The time series Xt is an ARMA(p, q) process if Xt has 0-mean and if we can write it as

Xt = wt +

p∑
i=1

ϕiXt−i +

q∑
j=1

θjwt−j (95)

where wt is white noise with variance σ2 and ϕ,θ do not have any zero elements. Using the backshift
operator, we can write it as

Φ(B)Xt = Θ(B)wt (96)

where

Φ(B) =

(
1 +

p∑
i=1

ϕiB
i

)
and Θ(B) =

(
1 +

q∑
j=1

θjB
j

)
(97)

6.6 ARIMA

6.7 Other

Theorem 6.6 (Wold Representation Theorem)

Any 0-mean covariance stationary time series {Xt} can be decomposed into two time series

Xt = Vt + St (98)

where
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1. Vt is a linear combination of past variables of Vt with constant coefficients.
2. St =

∑∞
i=0 ψiηt−i is an infinite moving average process of error terms, where

(a) ψ0 = 1,
∑∞

i=0 ψ
2
i <∞.

(b) {ηt} is linearly unpredictable white noise, i.e.

E[ηt] = 0 (99)

E[η2t ] = σ2 (100)
E[ηtηs] = 0 for s ̸= t (101)

and ηt is uncorrelated with {Vt}.

E[ηtVs] = 0 for all t, s (102)

Example 6.4 (Construction on Dataset)

Say that we have data {Xt}Tt=1 that we want to model and we have evidence that it is covariance
stationary. We can do the following.

1. Initialize a parameter p, the number of parameters in the linearly deterministic term of the
Wold decomposition of {Xt}.

2. By assumption we would like to estimate the linear projection of Xt on (Xt−1, Xt−2, . . . , Xt−p).
Therefore, let us index the n subseries of length p+ 1 by y and we can write the OLS equation

y =

y1...
yn

 , Z =


1 y0 y−1 . . . y−(p−1)

1 y1 y0 . . . y−(p−2)

...
...

...
. . .

...
1 yn−1 yn−2 . . . yn−p

 (103)

and we apply OLS to the problem y = Zβ to give

ŷ = Z(ZTZ)−1Zy (104)

= P̂ (Yt | Yt−1, . . . , Yt−p) (105)

= ŷ(p) (106)

We can compute the projection residuals

ϵ(p) = y − ŷ(p) (107)

and apply time series analysis to the sequence ϵ(p) = {ϵ(p)t } to specify a moving average model.

ϵ
(p)
t =

∞∑
i=0

ψiηt−i (108)

yielding {ψ̂j} and {η̂t} estimates of parameters and innovations. We then check these estimates and
see if they are consistent with the model assumptions. If not, we can add additional legs or modify p.

Theoretically, as we increase p, the projection of Yt over the past pth history should approach the true linear
projection Yt over the whole history.

lim
p→∞

p̂(p) = ŷ (109)

But if p is too large compared to n, you run out of freedom to estimate your models. You generally want to
have more data than the number of parameters.
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Definition 6.14 (Lag Operator)

The lag operator Lk simply maps
Lk(Xt) = Xt−k (110)

Inverses also exist, so L−k(Xt) = Xt+k.

Therefore, the Wold representation for a covariance stationary time series {Xt} can be expressed as

Xt =

∞∑
i=0

ψiηt−i + Vt (111)

=

∞∑
i=0

ψiL
i(ηt) + Vt (112)

= ψ(L)ηt + Vt (113)

where ψ(L) =
∑∞

i=0 ψiL
i.

6.8 Components of time series

6.9 Stationarity and tests for stationarity (including ADF test)

6.10 Autoregressive (AR) models

6.11 Moving average (MA) models

6.12 ARIMA models

6.13 Forecasting techniques

7 Advanced Topics

7.1 Generalized Linear Models

7.2 Survival analysis

7.3 Nonparametric methods

7.4 Resampling methods (jackknife, bootstrap)

8 Practical Considerations

8.1 Experimental design

8.2 Sample size and power analysis

8.3 Dealing with assumptions violations

8.4 Interpretation and reporting of results
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