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This requires you to know both the supervised and unsupervised learning notes, especially on generalized
linear models. We will use PyTorch.

1 Multi-Layered Perceptrons

1.1 Generalized Linear Models

Code 1.1 (PyTorch Basics)

Before we get into anything. You must be familiar with how to work with pytorch tensors. For a
primer, look here.

First, we transform the inputs into the relevant features xn 7→ ϕ(xn) = ϕn and then, when we construct
a generalized linear model, we assume that the conditional distribution Y | X = x is in the canonical
exponential family, with some natural parameter η(x) and expected mean µ(x) = E[Y | X = x]. Then, to
choose the link function g that related g(µ(x)) = xTβ, we can set it to be the canonical link g that maps µ
to η. That is,

g(µ(x)) = xTβ = η(x) (1)

such that the natural parameter is linearly dependent on the input. The inverse g−1 of the link function is
called the activation function, which connects the expected mean to a linear function of x.

hβ(x) = g−1(xTβ) = µ(x) = E[Y | X = x] (2)

Now, note that for a classification problem, the decision boundary defined in the ϕ feature space is linear,
but it may not be linear in the input space X . For example, consider the set of points in R2 with the
corresponding class in Figure 1. We transform the features to ϕ(x1, x2) = x2

1 + x2
2, which gives us a new

space to work with. Fitting logistic regression onto this gives a linear decision boundary in the space ϕ, but
the boundary is circular in X = R2.

4/ 92
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(a) Data in space X = R2. (b) Logistic fit to data in input space.

(c) Transformed data ϕ(x) = ||x||. (d) Logistic fit in transformed space.

Figure 1: A nonlinear feature transformation ϕ will cause a nonlinear decision boundary when doing logistic regression.

Example 1.1 (Tarokh, ECE685 2021 Midterm 1)

Let x ∈ R denote a random variable with the following cumulative distribution function

F (x) = exp

(
− exp

(
− x− µ

β

))
where µ and β > 0 denote the location and scale parameters, respectively. Let D = {x1, . . . , xn} be
a set of n iid observations of x.

1. Write an equation for a cost function L(µ, β | D) whose minimization gives the maximum
likelihood estimates for µ and β.

2. Compute the derivatives of L(µ, β | D) with respect to µ and β and write a system of equations
whose solution gives the MLEs of µ and β.

Solution 1.1

We can derive the PDF of the observation as

f(x;µ, β) =
dF (x)

dx
=

1

β
exp

{
−
(
x− µ

β
+ exp

(
− x− µ

β

))}
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and the likelihood is then

L(µ, β | D) =
N∏
i=1

1

β
exp

{
−

(
x(i) − µ

β
+ exp

(
− x(i) − µ

β

))}
Rather than maximizing this likelihood, we minimize the negative log of it, defined as

ℓ(µ, β | D) = − lnL(µ, β | D) = N lnβ +

∑
i x

(I) −Nµ

β
+

N∑
i=1

exp
(
− x(i) − µ

β

)
The derivatives of ℓ can be computed simply by using the derivative rules.

∂ℓ

∂µ
= −N

β
+

1

β

N∑
i=1

exp
(
− x(i) − µ

β

)
∂ℓ

∂β
=

N

β
−

∑
i x

(i) −Nµ

β2
+

1

β2

N∑
i=1

(x(i) − µ) exp
(
− x(i) − µ

β

)
and so the MLE estimates that minimizes ℓ can be found by setting the equations above equal to 0.

We would like to extend this model by making the basis functions ϕn depend on the parameters w and
then allow these parameters to be adjusted during training. There are many ways to construct parametric
nonlinear basis functions and in fact, neural networks use basis functions that are of the form ϕ(x) =
g−1(xTβ).

1.2 Architecture
A neuron basically takes in a vector x ∈ Rd and multiplies its corresponding weight by some vector ω, plus
some bias term b. It is then sent into some nonlinear activation function σ : R −→ R. Letting the parameter
be θ = (ω, b), we can think of a neuron as a function

hθ(x) = f(ωTx+ b)

A single neuron with the activation function as the step function

f(z) =

{
1 if z ≥ 0

0 if z < 0

is simply the perceptron algorithm. It divides Rd using a hyperplane ωTx+ b = 0 and linearly classifies all
points on one side to value 1 and the other side to value 0. This is similar to a neuron, which takes in a
value and outputs a “signal" if the function evaluated gets past a threshold. However, we would like to use
smooth activation functions for this, so we would use different activations. Hence we have a neuron.

Definition 1.1 (Neuron)

A neuron is a function (visualized as a node) that takes in inputs x and outputs a value y calculated

y = σ(wTx+ b)

where σ is an activation function. Activation functions are usually simple functions with a range of
[0, 1] or [−1, 1], and popular ones include:

1. the rectified linear unit
ReLU(z) = max{0, z}
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2. the sigmoid

σ(z) =
1

1 + e−z

3. the hyperbolic tangent

tanh(z) =
ez − e−z

ez + e−z

A visual of a neuron is shown in Figure 2.

Figure 2: Neuron.

If there does not exist any arrow from a potential input x to an output y, then this means that x is not
relevant in calculating y. However, we usually work with fully-connected neural networks, which means
that every input is relevant to calculating every output, since we usually cannot make assumptions about
which variables are relevant or not. We can stack multiple neurons such that one neuron passes its output as
input into the next neuron, resulting in a more complex function. What we have seen just now is a 1-layer
neural network.

Definition 1.2 (Multilayer Perceptron)

A L-layer MLP hθ : RD −→ RM is the function

hθ(x) := σ[L] ◦W[L] ◦ σ[L−1] ◦W[L−1] ◦ · · · ◦ σ[1] ◦W[1](x)

where σ[l] : RN [l] → RN [l]

is an activation function and W[l] : RN [l−1] → RN [l]

is an affine map. We
will use the following notation.

1. The inputs will be labeled x = a[0] which is in RN [0]

= RD.
2. We map a[l] ∈ RN [l] 7→W[l+1]a[l] + b[l+1] = z[l+1] ∈ RN [l+1]

, where z denotes a vector after an
affine transformation.

3. We map z[l+1] ∈ RN [l+1] 7→ σ(z[l+1]) = a[l+1] ∈ RN [l+1]

, where a denotes a vector after an
activation function.

4. We keep doing this until we reach the second last layer with vector a[L−1].
5. Now we want our last layer to be our predicted output. Based on our assumptions of the

problem, we construct a generalized linear model with some inverse link function g. We perform
one more affine transformation a[L−1] 7→W[L]a[L−1]+b[L] = z[L], followed by the link function
to get our prediction: a[L] = g(z[L]) = hθ(x) ∈ RM .

All the parameters of the neural net will be denoted θ.
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Figure 3: Multilayer neural network.

Ultimately, a neural net is really just a generalized linear model with some trained feature extractors,
which is why in practice, if researchers want to predict a smaller dataset, they take a pretrained
model on a related larger dataset and simply tune the final layer, since the second last layer most
likely encodes all the relevant features. This is called transfer learning.

Example 1.2 (Fully Connected 2-Layer Neural Network)

The fully-connected 2-layer neural network of d input features x ∈ Rd and one scalar output y ∈ R
can be visualized below. It has one hidden layer with m inputs values a1, . . . , am.

Figure 4: 2-layer neural network.

Conventionally, we account for every layer except for the final layer when talking about the number
of layers in the neural net.

Note that each layer corresponds to how close a neuron is to the output. But really any neuron can be a
function of any other neuron. For example, we can connect a neuron from layer 4 back to a neuron of layer
1. For now, we will consider networks that are restricted to a feed-forward architecture, in other words
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having no closed directed cycles.

Code 1.2 (Parameters and Neural Nets in PyTorch)

At this point, you have learned the theory of MLPs. To actually implement them in PyTorch, look at
this module here, which will tell you on how to construct linear maps and activations functions, and
more importantly see how you can look at the weights, modify them, and see how they are initialized.
You can then learn how to explore the weights and biases of a neural network.

1.3 Theoretical Properties
1.3.1 Stability and Lipschitz Continuity

Deep neural networks are known for being overparameterized and tends to predict data very nicely, known
as benign overfitting. In fact, it can be proved that a data set of any size, we can always fit a one-layer
perceptron that perfectly fits through all of them, given that the layer is large enough. In most cases, we
are interested in fitting the data smoothly in the sense that data extrapolations are stable, i.e. a small
perturbation of x should result in a small perturbation of h(x). It turns out that the more parameters it
has, the better this stability is and therefore the more robust the model.

Deep neural networks, despite their usefulness in many problems, are known for being very sensitive to
their input. Adversarial examples take advantage of this weakness by adding carefully chosen perturbations
that drastically change the output of the network. Adversarial machine learning attempts to study these
weaknesses and hopefully use them to create more robust models. It is natural to expect that the precise
configuration of the minimal necessary perturbations is a random artifact of the normal variability that arises
in different runs of backpropagation learning. Yet, it has been found that adversarial examples are relatively
robust, and are shared by neural networks with varied number of layers, activations or trained on different
subsets of the training data. This suggest that the deep neural networks that are learned by backpropagation
have intrinsic blind spots, whose structure is connected to the data distribution in a non-obvious way.

A metric to assess the robustness of a deep neural net hθ : Rn −→ Rm is its Lipshitz constant, which
effectively bounds how much h can change given some change in x.

Definition 1.3 (Lipshitz Continuity)

A function f : Rn −→ Rm is called Lipshitz continuous if there exists a constant L such that for
all x, y ∈ Rn

||f(x)− f(y)||2 ≤ L||x− y||2
and the smallest L for which the inequality is true is called the Lipshitz constant, denoted Lip(f).

Theorem 1.1 (Lipschitz Upper Bound with Operator Norm of Total Derivative)

If f : Rn −→ Rm is Lipschitz continuous, then

Lip(f) = sup
x∈Rn

||Dxf ||op

where || · ||op is the operator norm of a matrix. In particular, if f is scalar-valued, then its Lipschitz
constant is the maximum norm of its gradient on its domain

Lip(f) = sup
x∈Rn

||∇f(x)||2

The above theorem makes sense, since indeed the stability of the function should be equal to the stability of
its "maximum" linear approximation Dxf .
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Theorem 1.2 (Lipschitz Upper Bound for MLPs)

It has already been shown that for a K-layer MLP

hθ(x) := TK ◦ ρK−1 ◦TK−1 ◦ · · · ◦ ρ1 ◦T1(x)

the Lipshitz constant for an affine map Tk(x) = Mkx + bk is simply the operator norm (largest
singular value) of Mk, while that of an activation function is always bounded by some well-known
constant, usually 1. So, the Lipshitz constant of the entire composition h is simply the product of all
operator norms of Mk.

What about K-computable functions in general? That is, given a function f : Rn −→ Rm with

v0(x) = x

v1(x) = g1
(
v0(x)

)
v2(x) = g2

(
v0(x), v1(x)

)
. . . = . . .

vk(x) = gk
(
v0(x), v1(x), . . . , vk−1(x)

)
. . . = . . .

vK(x) = gK
(
v0(x), v1(x), . . . , vK−2(x), vK−1(x)

)
where vk : Rn −→ Rnk , with n0 = n and nK = m, and

gk :

k−1∏
i=0

Rni −→ Rnk

To differentiate vk w.r.t. x, we can use the chain rule, resulting in the total derivative

∂vk
∂x︸︷︷︸

nk×n

=

k−1∑
i=1

∂gk
∂vi︸︷︷︸

nk×ni

∂vi
∂x︸︷︷︸

ni×n

1.3.2 Parameter Symmetry

1.3.3 Universal Approximation Theorem

Neural networks have been mathematically studied back in the 1980s, and the reason that they are so
powerful is that we can theoretically prove the limits on what they can learn. For very specific classes of
functions, the results are easier, but for more general ones, it becomes much harder. We prove one of the
theorems below.

Let us think about how one would construct approximations for such functions. Like in measure theory, we
can think of every measurable function as a linear combination of a set of bump functions, and so we can
get a neural network to do the same.

Example 1.3 (Bump Functions in R)

Assuming the sigmoid activation function is used, the bump function

f(x) =

{
1 if a < x < b

0 if else

can be approximated by taking a linear combination of a sigmoid function stepping up and one
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stepping down. That is,

f(x) ≈ 1

2
σ
(
k(x− a)

)
− 1

2
σ
(
k(x− b)

)
where k is a scaling constant that determines how steep the steps are for each function. Therefore,
as k →∞, the function begins to look more like a step function.

Figure 5: Bump function approximated with a = 0.4, b = 0.6, with differing values of k.

Example 1.4 (Bump Functions in R2)

To do this for a 2-D step function, of the form

f(x1, x2) =

{
1 if a < x1 < b

0 if else

this is a simple extension of the first one. We just don’t need to make our linear combination
dependent on x2 and we’re done.

f(x) ≈ 1

2
σ
(
k(x1 − a)

)
− 1

2
σ
(
k(x1 − b)

)
Example 1.5 (Tower Functions in R2)

Now to construct a tower function of the form

f(x1, x2) =

{
1 if a1 < x1 < b1, a2 < x2 < b2

0 if else

i we need slightly more creativity. Now we can approximate it by doing

f(x) ≈ σ

(
k2
[
σ
(
k1(x1 − a1)

)
− σ

(
k1(x1 − b1)

)
+ σ

(
k1(x2 − a2)

)
− σ

(
k1(x2 − b2)

)
big]− b2

)

At this point, we can see how this would extend to Rn, and by isolating parts of the network we can have it
approximate tower functions that are completely separate from each other, at any height, and then finally
take a linear combination of them to approximate the original function of interest.

11/ 92



Deep Learning Muchang Bahng Summer 2023

Theorem 1.3 (CS671 Fall 2023 Problem Set 5)

Suppose you have a 2D, L-lipschitz function f(x1, x2) defined on a unit square (x1, x2 ∈ [0, 1]). You
want to approximate this with an arbitrary neural net f̃ such that

sup
x∈[0,1]2

|f(x)− f̃(x)| ≤ ϵ

If we divide the square into a checkerboard of K × K nonoverlapping squares, approximate the
restriction of f to each subsquare with a tower function, what is the least K we would need to ensure
that the error is less than ϵ?

1.4 Forward and Back Propagation
Back in the supervised learning notes, we have gone through the derivation for linear, logistic, and softmax
regression. It turns out that despite them having very different architectures, with a identity, sigmoid, and
softmax activation function, our choice of loss to be the mean squared loss, the binary cross-entropy, and
the cross-entropy loss, had given very cute formulas in computing the gradient of the loss. Unfortunately,
the formulas do not get cute when we differentiate neural networks, but they do come in a very structured
way. Let us go through a very simple example to gain intuition.

Exercise 1.1 (ECE 685 Fall 2021 Midterm 1)

The figure depicts a simple neural network with one hidden layer. The inputs to the network are
denoted by x1, x2, x3, and the output is denoted by y. The activation functions of the neurons in the
hidden layer are given by h1(z) = σ(z), h2(z) = tanh(z), and the output unit activation function is
g(z) = z, where σ(z) = 1

1+exp(−z) and tanh(z) = exp(z)−exp(−z)
exp(z)+exp(−z) are the logistic sigmoid and hyperbolic

tangent, respectively. The biases b1, b2 are added to the inputs of the neurons int he hidden layer
before passing them through the activation functions. let

w = (b1, b2, w
(1)
11 , w

(1)
12 , w

(1)
21 , w

(1)
31 , w

(1)
32 , w

(2)
1 , w

(2)
2 )

denote the vector of network parameters.
1. Write the input output relation y = f(x1, x2, x3;w) in explicit form.
2. Let D = {(x1,n, x2,n, x3,n)} denote a training dataset of N points where yn ∈ R are labels of

the corresponding data points. We want to estimate the network parameters w using D by
minimizing the mean squared error loss

L(w) =
1

2

N∑
n=1

(
f(x1,n, x2,n, x3,n;w)− yn

)2
Compute the gradient of L(w) with respect to the network parameters w.

3. Write pseudo code for one iteration for minimizing L(w) with respect to the network parameters
w using SGD with learning rate η > 0.

12/ 92



Deep Learning Muchang Bahng Summer 2023

Solution 1.2

We can write the computation graph as

z
(1)
1 = w

(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 + b1

z
(1)
2 = w

(1)
12 x1 + w

(1)
32 x3 + b2

a
(1)
1 = σ(z(1))

a
(1)
2 = tanh(z

(1)
2 )

z(2) = w
(2)
1 a

(1)
1 + w

(2)
2 a

(1)
2

y = a(2) = g(z(2))

and composing these gives

y = w
(2)
1 σ(w

(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 + b1) + w

(2)
2 tanh(w

(1)
12 x1 + w

(1)
32 x3 + b2)

The gradient of the network can be written as

∇wL(w) =
1

2

N∑
n=1

∇w

(
f(x1,n, x2,n, x3,n;w)− yn

)2
=

N∑
n=1

(f(x1,n, x2,n, x3,n;w)− yn)∇wf(x1,n, x2,n, x3,n)

where
∇wf(x1,n, x2,n, x3,n) =

∂f

∂w

∣∣∣∣
x=x(n)

Now we can take derivatives using chain rule, working backwards, and using the derivative identities
σ′(z) = σ(z)(1− σ(z)) and tanh′(z) = 1− tanh2(z).

∂f

∂w
(2)
1

=
∂f

∂z(2)
∂z(2)

∂w
(2)
1

= a
(1)
1

∂f

∂w
(2)
2

=
∂f

∂z(2)
∂z(2)

∂w
(2)
2

= a
(1)
2

∂f

∂w
(1)
11

=
∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
11

= w
(2)
1 a

(1)
1 (1− a

(1)
1 )x1

∂f

∂w
(1)
21

=
∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
21

= w
(2)
1 a

(1)
1 (1− a

(1)
1 )x2

∂f

∂w
(1)
31

=
∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
31

= w
(2)
1 a

(1)
1 (1− a

(1)
1 )x3

∂f

∂b1
=

∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂b1
= w

(2)
1 a

(1)
1 (1− a

(1)
1 )

∂f

∂w
(1)
12

=
∂f

∂z(2)
∂z(2)

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂w
(1)
12

= w
(2)
2 (1− (a

(1)
2 )2)x1

∂f

∂w
(1)
13

=
∂f

∂z(2)
∂z(2)

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂w
(1)
13

= w
(2)
2 (1− (a

(1)
2 )2)x3

∂f

∂b2
=

∂f

∂z(2)
∂z(2)

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂b2
= w

(2)
2 (1− (a

(1)
2 )2)
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To compute one step of SGD, we must first choose a minibatchM⊂ D and then compute

∇w;ML(w) =
∑

(x,y)∈M

(f(x;w)− y)∇wf(x)

where we compute the gradient simply over the minibatch. Then, we update the parameters according
to

w = w − η∇w;ML(w)

The following example is slightly harder since we are dealing with fully connected networks.

Exercise 1.2 (ECE 685 Fall 2021 Midterm 1)

Given the following neural network with 2 inputs (x1, x2), fully-connected layers and ReLU activa-
tions. The weights and biases of hidden units are denoted w and b, with h as activation units. For
example,

h1 = ReLU(x1w11 + x2w21 + b1)

The outputs are denoted as (y1, y2) and the ground truth targets are denoted as (t1, t2).

y1 = ReLU(h1w31 + h2w41 + b3)

The values of the variables are given as follows:

i1 i2 w11 w12 w21 w22 w31 w32 w41 w42 b1 b2 b3 b4 t1 t2
1 2 1 0.5 -0.5 1 0.5 -2 -1 0.5 -0.5 -0.5 1 1 2 4

1. Compute the output (y1, y2) of the input (x1, x2) using the network parameters as specified
above.

2. Compute the mean squared error of the computed output and the target labels.
3. Using the calculated MSE, update the weight w31 using GD with η = 0.01.
4. Do the same with weight w42.
5. Do the same with weight w22.

Note that the calculations above require us to compute all the z(i)’s and the a(i)’s, a process called forward
propagation, before we compute the gradients. Even in the backpropagation step, we can see that the
intermediate partial derivatives in the chain rule are repeatedly used.

Backpropagation is not hard, but it is cumbersome notation-wise. What we really want to do is just compute
a very long vector with all of its partials ∂E/∂θ.

To compute ∂En

∂w
[l]
ji

, it would be natural to split it up into a portion where En is affected by the term before
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activation z[l] and how that is affected by w
[l]
ji . The same goes for the bias terms.

∂En

∂w
[l]
ji

=
∂En

∂z[l]︸ ︷︷ ︸
1×N [l]

· ∂z
[l]

∂w
[l]
ji︸ ︷︷ ︸

N [l]×1

and
∂En

∂b
[l]
i

=
∂En

∂z[l]︸ ︷︷ ︸
1×N [l]

· ∂z
[l]

∂b
[l]
i︸ ︷︷ ︸

N [l]×1

It helps to visualize that we are focusing on

hθ(x) = g
(
. . . σ(W[l]a[l−1] + b[l]︸ ︷︷ ︸

z[l]

) . . .
)

We can expand z[l] to get

z[l] =


w

[l]
11 . . . w

[l]

1N [l−1]

...
. . .

...
w

[l]

N [l]1
. . . w

[l]

N [l]N [l−1]




a
[l−1]
1
...

a
[l−1]

N [l−1]

+


b
[l]
1
...

b
N

[l]

[l]


w

[l]
ji will only show up in the jth term of z[l], and so the rest of the terms in ∂z[l]

∂w
[l]
ji

will vanish. The same logic

applies to ∂z[l]

∂b
[l]
i

, and so we really just have to compute

∂En

∂w
[l]
ji

=
∂En

∂z
[l]
j︸ ︷︷ ︸

1×1

·
∂z

[l]
j

∂w
[l]
ji︸ ︷︷ ︸

1×1

= δ
[l]
j ·

∂z
[l]
j

∂w
[l]
ji

and
∂En

∂b
[l]
i

=
∂En

∂z
[l]
j︸ ︷︷ ︸

1×1

·
∂z

[l]
j

∂b
[l]
i︸ ︷︷ ︸

1×1

= δ
[l]
j ·

∂z
[l]
j

∂b
[l]
i

where the δ
[l]
j is called the jth error term of layer l. If we look at the evaluated jth row,

z
[l]
j = w

[l]
j1a

[l−1]
1 + . . . wjN [l−1]a

[l−1]

N [l−1] + b
[l]
j

We can clearly see that
∂z

[l]
j

∂w
[l]
ji

= a
[l−1]
i and

∂z
[l]
j

∂b
[l]
i

= 1, which means that our derivatives are now reduced to

∂En

∂w
[l]
ji

= δ
[l]
j a

[l−1]
i ,

∂En

∂b
[l]
i

= δ
[l]
j

What this means is that we must know the intermediate values a[l−1] beforehand, which is possible since
we would compute them using forward propagation and store them in memory. Now note that the partial
derivatives at this point have been calculated without any consideration of a particular error function or
activation function. To calculate δ[L], we can simply use the chain rule to get

δ
[L]
j =

∂En

∂z
[L]
j

=
∂En

∂a[L]
· ∂a

[L]

∂z
[L]
j

=
∑
k

∂En

∂a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

which can be rewritten in the matrix notation

δ[L] =

(
∂g

∂z[L]

)T(
∂En

∂a[L]

)
=


∂g1

∂z
[L]
1

. . .
∂g

N[L]

∂z
[L]
1

...
. . .

...
∂g1

∂z
[L]

N[L]

. . .
∂g

N[L]

∂z
[L]

N[L]


︸ ︷︷ ︸

N [L]×N [L]


∂En

∂a
[L]
1

...
∂En

∂a
[L]

N[L]

 (3)

Note that as soon as we make a model assumption on the form of the conditional distribution Y | X = x (e.g.
it is Gaussian), with it being in the exponential family, we immediately get two things: the loss function En

(e.g. sum of squares loss), and the canonical link function g
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1. If we assume that Y | X = x is Gaussian in a regression (of scalar output) setting, then our canonical
link would be g(x) = x, which gives the sum of squares loss function. Note that since the output is a
real-valued scalar, a[L] will be a scalar (i.e. the final layer is one node, N [L] = 1).

En =
1

2
(y(n) − a[L])2

To calculate δ[L], we can simply use the chain rule to get

δ[L] =
∂En

∂z[L]
=

∂En

∂a[L]
· ∂a

[L]

∂z[L]
= a[L] − y(n)

2. For classification (of M classes), we would use the softmax activation function (with its derivative next
to it for convenience)

g(z) = g

( z1
...

zM

)
=

 ez1/
∑

k e
zk

...
ezM /

∑
k e

zk

 ,
∂gk
∂zj

=

{
gj(1− gj) if k = j

−gjgk if k ̸= j

which gives the cross entropy error

En = −y(n) · ln
(
hθ(x

(n))
)
= −

∑
i

y
(n)
i ln(a

[L]
i )

where the y has been one-hot encoded into a standard unit vector in RM . To calculate δ[L], we can
again use the chain rule again

δ
[L]
j =

∑
k

∂En

∂a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

= −
∑
k

y
(n)
k

a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

=

(
−
∑
k ̸=j

y
(n)
k

a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

)
−

y
(n)
j

a
[L]
j

·
a
[L]
j

∂z
[L]
j

=

(
−
∑
k ̸=j

y
(n)
k

a
[L]
k

· −a[L]
k a

[L]
j

)
−

y
(n)
j

a
[L]
j

· a[L]
j (1− a

[L]
j )

= a
[L]
j

∑
k

y
(n)
k︸ ︷︷ ︸

1

−y(n)j = a
[L]
j − y

(n)
j

giving us
δ[L] = a

[L]
j − y[L]

Now that we have found the error for the last layer, we can continue for the hidden layers. We can again
expand by chain rule that

δ
[l]
j =

∂En

∂z
[l]
j

=
∂En

∂z[l+1]
· ∂z

[l+1]

∂z
[l]
j

=

N [l+1]∑
k=1

∂En

∂z
[l+1]
k

·
∂z

[l+1]
k

∂z
[l]
j

=

N [l+1]∑
k=1

δ
[l+1]
k ·

∂z
[l+1]
k

∂z
[l]
j

By going backwards from the last layer, we should already have the values of δ
[l+1]
k , and to compute the

second partial, we recall the way a was calculated

z
[l+1]
k = b

[l+1]
k +

N [l]∑
j=1

w
[l+1]
kj σ(z

[l]
j ) =⇒

∂z
[l+1]
k

∂z
[l]
j

= w
[l+1]
kj · σ′(z

[l]
j )
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Now this is where the “back" in backpropagation comes from. Plugging this into the equation yields a final
equation for the error term in hidden layers, called the backpropagation formula:

δ
[l]
j = σ′(z

[l]
j )

N [l+1]∑
k=1

δ
[l+1]
k · w[l+1]

kj

which gives the matrix form

δ[l] = σ′(z[l])⊙ (W[l+1])T δ[l+1] =


σ′(z

[l]
1 )

...
σ′(z

[l]

N [L])

⊙

w

[l+1]
11 . . . w

[l+1]

N [l+1]1
...

. . .
...

w
[l+1]

1N [l] . . . w
[l+1]

N [l+1]N [l]



δ
[l+1]
1
...

δ
[l+1]

N [l+1]


and putting it all together, the partial derivative of the error function En with respect to the weight in the
hidden layers for 1 ≤ l < L is

∂En

∂w
[l]
ji

= a
[l−1]
i σ′(z

[l]
j )

N [l+1]∑
k=1

δ
[l+1]
k · w[l+1]

kj

A little fact is that the time complexity of both forward prop and back prop should be the same, so if you
ever notice that the time to compute these two functions scales differently, you’re probably making some
repeated calculations somewhere.

Therefore, let us summarize what a MLP does:

1. Initialization: We initialize all the parameters to be

θ = (W[1],b[1],W[2], . . . ,W[L],b[L])

2. Choose Batch: We choose an arbitrary data point (x(n),y(n)), an minibatch, or the entire batch to
compute the gradients on.

3. Forward Propagation: Apply input vector x(n) and use forward propagation to compute the values of
all the hidden and activation units

a[0] = x(n), z[1],a[1], . . . , z[L],a[L] = hθ(x
(n))

4. Back Propagation:

(a) Evaluate the δ[l]’s starting from the back with the formula

δ[L] =

(
∂g

∂z[L]

)T(
∂En

∂a[L]

)
δ[l] = σ′(z[l])⊙ (W[l+1])T δ[l+1] l = 1, . . . , L− 1

where ∂g
∂z[L] can be found by taking the derivative of the known link function, and the rest of the

terms are found by forward propagation (these are all functions which have been fixed in value
by inputting x(n)).

(b) Calculate the derivatives of the error as

∂En

∂W[l]
= δ[l](a[l−1])T ,

∂En

∂b[l]
= δ[l]

5. Gradient Descent : Subtract the derivatives with step size α. That is, for l = 1, . . . , L,

W[l] = W[l] − α
∂En

∂W[l]
, b[l] = b[l] − α

∂En

∂b[l]

The specific optimizer can differ, e.g. Adam, SGD, BFGS, etc., but the specific algorithm won’t be
covered here. It is common to use Adam, since it usually works better. If we can afford to iterate over
the entire batch, L-BFGS may also be useful.
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Code 1.3 (Neural Net from Scratch)

Now it’s time to implement what most newcomers fear most: a neural net from scratch using only
numpy. Doing this will get you to understand the inner workings of a neural net, and you can find
the relevant code here.

Code 1.4 (Pytorch Implementation of Forward and Backward Propagation)

Once you have finished implementing from scratch, you can now use the PyTorch API to access the
same model weights. The code here shows how to look at the forward propagation and backpropa-
gation steps in PyTorch in intermediate layers and shows the backend behind storing gradients.

1.5 Optimizers
We have assumed knowledge of gradient descent in the back propagation step in the previous section, but
let’s revisit this by looking at linear regression. Given our dataset D = {x(n), y(n)}, we are fitting a linear
model of the form

f(x;w, b) = wTx+ b (4)

The squared loss function is

L(w, b) =
1

2

N∑
n=1

(
y − f(x;w, b)

)2
=

1

2

N∑
n=1

(
y − (wTx+ b)

)2 (5)

If we want to minimize this function, we can visualize it as a d-dimensional surface that we have to traverse.
Recall from multivariate calculus that the gradient of an arbitrary function L points in the steepest direction
in which L increases. Therefore, if we can compute the gradient of L and step in the opposite direction, then
we would make the more efficient progress towards minimizing this function (at least locally). The gradient
can be solved using chain rule. Let us solve it with respect to w and b separately first. Beginners might find
it simpler to compute the gradient element-wise.

∂

∂wj
L(w, b) =

∂

∂wj

(
1

2

N∑
n=1

(
f(x(n);w, b)− y(n)

)2
)

(6)

=
1

2

N∑
n=1

∂

∂wj

(
f(x(n);w, b)− y(n)

)2

(7)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
f(x(n);w, b)− y(n)

)
(8)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
wTx(n) + b− y(n)

)
(9)

=

N∑
n=1

(
f(x(n);w, b)− y(n)

)
· x(n)

j (for j = 0, 1, . . . , d) (10)

As for getting the derivative w.r.t. b, we can redo the computation and get

∂

∂wj
L(w, b) =

N∑
n=1

(
f(x(n);w, b)− y(n)

)
(11)

and in the vector form, setting θ = (w, b), we can set

∇L(w) = XT (ŷ − y) (12)
∇L(b) = (ŷ − y) · 1 (13)
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where ŷn = f(x(n);w, b) are the predictions under our current linear model and X ∈ Rn×d is our design
matrix. This can easily be done on a computer using a package like numpy. Remember that GD is really
just an algorithm that updates θ repeatedly until convergence, but there are a few problems.

1. The algorithm can be susceptible to local minima. A few countermeasures include shuffling the training
set or randomly choosing initial points θ

2. The algorithm may not converge if α (the step size) is too high, since it may overshoot. This can be
solved by reducing the α with each step, using schedulers.

3. The entire training set may be too big, and it may therefore be computationally expensive to update
θ as a whole, especially if d >> 1. This can be solved using stochastic gradient descent.

Rather than updating the vector θ in batches, we can apply stochastic gradient descent that works
incrementally by updating θ with each term in the summation. That is, rather than updating as a batch by
performing the entire matrix computation by multiplying over N dimensions,

∇L(w) = XT︸︷︷︸
D×N

(ŷ − y)︸ ︷︷ ︸
N×1

(14)

we can reduce this load by choosing a smaller subset M⊂ D of M < N elements, which gives

∇LM(w) = XT
M︸︷︷︸

D×M

( ˆyM − y︸ ︷︷ ︸
M

)M×1 (15)

The reason we can do this is because of the following fact.

Theorem 1.4 (Unbiasedness of SGD)

∇LM(w) is an unbiased estimator of the true gradient. That is, setting M as a random variable of
samples over D, we have

EM[∇LM(w)] = ∇L(w) (16)

Proof.

We use linearity of expectation for all M⊂ D of size M .

Even though these estimators are noisy, we get to do much more iterations and therefore have a faster net
rate of convergence. By using repeated chain rule, or a fancier term is automatic differentiation, as shown
before, SGD can be used to optimize neural networks.

Extending beyond SGD, there are other optimizers we can use. Essentially, we are doing a highly nonconvex
optimization, which doesn’t have a straightforward answer, so the best we can do is play around with some
properties. 0th order approximations are hopeless since the dimensions are too high, and second order
approximations are hopeless either since computing the Hessian is too expensive for one run. Therefore, we
must resort to some first order methods, which utilize the gradient. Some other properties to consider are:

1. Learning rate

2. Momentum

3. Batch Size

Now we list some of the most common optimizers and will compare their performance.

Definition 1.4 ()

Stochastic Gradient Descent TBD
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Definition 1.5 ()

Adam TBD

Definition 1.6 ()

RMSProp TBD

Definition 1.7 ()

Adagrad TBD

Definition 1.8 ()

Nesterov Momentum TBD

Definition 1.9 ()

L-BFGS TBD

1.6 Weight Initialization
The way that we initialize our weights can have a huge impact on our training performance. Imagine that
you are creating the first neural network and you want to decide how to initialize it. You may consider many
different cases.

Example 1.6 (Constant Initialization)

You may first think of initializing everything to 0 or 1, which is the simplest. Let’s run this, but we
can already see by epoch 15 that we have some problems.

Clearly, this is not good, and theoretically this makes sense since it means all our activations are
going to be the same, and thus all our gradients will be the same, meaning that are updates will be
the same for every weight, which is not good mixing. We can see this below:

Example 1.7 (Random Initialization with High Variance)

Okay, this didn’t work, so perhaps you think it would be a good idea have more randomness to
the initialization so that all the weights aren’t exactly one number. You could think of initializing
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everything with three distinct schemes:
1. Randomly initialize everything to be −1 or 1 with equal probability.
2. Randomly initialize everything to be a Gaussian random variable with standard deviation 1.
3. Randomly initialize everything to be a uniform random variable between −1 and 1.

Running the experiments give the following.

However, this is also not good since it means that the activations will be very large, and thus the
gradients will be very large, and so the updates will be very large. This is not good since it means
that the weights will be jumping around a lot, and we won’t be able to converge. Furthermore,
depending on what activations we choose, e.g. tanh or sigmoid, very large activations may saturate
the gradients and kill the learning.

Example 1.8 (Random Initialization with Low Variance)

This improves the next problem but now you want to fix the situation of the gradients being too big.
Therefore, you should initialize the parameters to be smaller values, but not so small that they are
zeros and we have the same problem as before. We use improved schemes:

1. Randomly initialize everything to be −0.1 or 0.1 with equal probability.
2. Randomly initialize everything to be a Gaussian random variable with standard deviation 0.1.
3. Randomly initialize everything to be a uniform random variable between −0.1 and 0.1.

Through out experiments, we have learned that a good rule of thumb for initializing weights is to make them
small and uniformly random without being too small. While it is harder to get better than this for MNIST,
a slightly better approach is Xavier initialization, which builds upon our same ideas.
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Definition 1.10 (Xavier Initialization)

The Xavier initialization simply initializes each weight as a uniform distribution, with its range
dependent on the size of the input.

w
[l]
ij ∼ U

(
− 1√

N [l−1]
,

1√
N [l−1]

)
where N [l−1] is the number of neurons in the previous layer. This is a good rule of thumb for the
weights, but the biases can be initialized to 0 (though they are also initialized uniformly by default).

Code 1.5 (Experimenting with Weight Initializations)

The code used for generating the figures can be found here.

1.7 Activation Functions
The choice of the activation function can have a significant impact on your training, and we will describe
a few examples below. The first thing to note is that we must ensure that there is a nonzero gradient
almost everywhere. If, for example, we had a piecewise constant activation function, the gradient is 0 almost
everywhere, and it would kill the gradient of the entire network. In the early days of deep learning, researchers
used the probability-inspired sigmoid and tanh functions as the main source of nonlinearity. Let’s go over
them below.

Definition 1.11 (Sigmoid)

Sigmoid activations are historically popular since they have a nice interpretation as a saturating “fire
rate" of a neuron. However, there are 3 problems:

1. The saturated neurons “kill" the gradients, since if the input at any one point in the layers is
too positive or negative, the gradient will vanish, making very small updates. This is known as
the vanishing gradient problem. Therefore, the more layers a neural network has, the more
likely we are to see this vanishing gradient problem.

2. Sigmoid functions are not zero centered (i.e. its graph doesn’t cross the point (0, 0) ). Consider
what happens when the input x to a neuron is always positive. Then, the sigmoid f will have
a gradient of

f

(∑
i

wixi + b

)
=⇒ ∂f

∂wi
= f ′

(∑
i

wixi + b

)
xi

which means that the gradients ∇wf will always have all positive elements or all negative
elements, meaning that we will be restricted to moving in certain nonoptimal directions when
updating our parameters.

Definition 1.12 (Hyperbolic Tangent)

The hyperbolic tangent is zero centered, which is nice, but it still squashes numbers to range [−1, 1]
and therefore kills the gradients when saturated.

It turns out that these two activations were ineffective in deep learning due to saturation. A less probability
inspired activation was the ReLU, which showed better generalization an speed of convergence.
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Definition 1.13 (Rectified Linear Unit)

The ReLU function has the following properties:
1. It does not saturate in the positive region.
2. It is very computationally efficient (and the fact that it is nondifferentiable at one point doesn’t

really affect computations).
3. It converges much faster than sigmoid/tanh in practice.
4. However, note that if the input is less than 0, then the gradient of the ReLU is 0. Therefore, if

we input a vector that happens to have all negative values, then the gradient would vanish and
we wouldn’t make any updates. These ReLU “dead zones" can be a problem since it will never
activate and never update, which can happen if we have bad initialization. A more common
case is when your learning rate is too high, and the weights will jump off the data manifold.

Unfortunately, the ReLU had some weaknesses, mainly being the dying ReLU, which is when the ReLU is
stuck in the negative region and never activates. This is a problem since the gradient is 0 in the negative
region, and so the weights will never update. Therefore, some researchers have proposed some modifications
to the ReLU.

Definition 1.14 (Leaky ReLU)

The leaky ReLU
σ(x) = max{0.01x, x}

does not saturate (i.e. gradient will not die), is computationally efficient, and converges much faster
than sigmoid/tanh in practice. We can also parameterize it with α and have the neural net optimize
α along with the weights.

σ(x) = max{αx, x}

Definition 1.15 (ELU)

The exponential linear unit has all the benefits of ReLU, with closer to mean outputs. It has a
negative saturation regime compared with leaky ReLU, but it adds some robustness to noise.

σ(x) =

{
x if x > 0

α
(
expx− 1

)
if x ≤ 0

Definition 1.16 (SELU)

The scaled exponential linear unit is a self-normalizing activation function, which means that it
preserves the mean and variance of the input. This is useful for deep networks, since the mean and
variance of the input will be preserved through the layers. Its formula is

σ(x) = λ

{
x if x > 0

α
(
expx− 1

)
if x ≤ 0

where λ and α are constants.

Later on, some further modifications were made, such as the Swish and the Mish [6] activation functions.
These functions have a distinctive negative concavity, unlike ReLU, which accounts for preservation of small
negative weights.
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Definition 1.17 (Swish)

The Swish activation function is defined as

σ(x) = x · σ(βx)

where β is a parameter that can be learned.

Definition 1.18 (Mish)

The Mish activation function is defined as

σ(x) = x · tanh(ln(1 + exp(x)))

Code 1.6 (Generating Graphs)

Code used to generate these graphs are here.

1.8 Datasets and Dataloaders
For here, we will go over some of the main datasets that are used in deep learning.

Definition 1.19 (MNIST and Fashion MNIST)

The MNIST dataset consists of 60k training images and 10k test images of handwritten digits. The
Fashion MNIST dataset consists of 60k training images and 10k test images of clothing items. These
are considered quite easy with the basic benchmarks:

1. Linear classifiers can reach past 90% accuracy.
2. A 2 layer MLP can reach up to 97% accuracy.
3. A CNN can reach up to 99% accuracy.

Definition 1.20 (CIFAR10 and CIFAR 100)

The CIFAR10 dataset consists of 60k 32x32 color images in 10 classes, with 6k images per class. The
CIFAR100 dataset consists of 60k 32x32 color images in 100 classes, with 600 images per class. These
are considered quite hard with the basic benchmarks:

1. Linear classifiers can reach past 40% accuracy.
2. A 2 layer MLP can reach up to 60% accuracy.
3. A CNN can reach up to 80% accuracy.

Definition 1.21 (ImageNet)

The ImageNet dataset, created at Stanford by Fei-Fei Li [3], consists of 1.2 million training images
and 50k validation images in 1000 classes. This is considered very hard with the basic benchmarks.

Creating your own custom dataset with spreadsheets or images is easy.1 Loading it to a dataloader that
shuffles and outputs minibatches of data is trivial. However, when doing so, you should pay attention to a
couple things.

1. Batch size: The dataloader stores the dataset (which can be several hundred GBs) in the drive, and
extracts batches into memory for processing. You should set your batch sizes so that they can fit into
the GPU memory, which is often smaller than the CPU memory.

1https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
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1.9 Diagnosing Neural Nets
We should learn how to diagnose neural nets by visualizing some of the information stored in it. In here, we
give three different ways:

1. Visualize the weights of the neural net with heatmap.

2. Visualize the outputs of a neural net with UMAP.

3. Visualize the gradients of the neural net with a heatmap.

2 Training and Control

2.1 Early Stopping
Since neural networks are overparameterized, it makes sense that given enough training time, they will overfit
to the training set. Therefore, you must stop training when the validation loss starts to decrease. This simple
method is known as early stopping.

2.2 L1 and L2 Regularization
Another way to regularize is by simply adding in a L1 or L2 regularization term.

Sometimes, it may not always be the best idea to regularize a neural net equally through all weights.
For example, weights which may be deeper down the forward pass may focus on more high level features
and therefore should be regularized differently than those that are close to the input. Other types of
regularization, such as Fiedler regularization [9] focuses on preserving the graph structure of the weights.

2.3 Dropout
Overfitting is always a problem. With unlimited computation, the best way to regularize a fixed-sized mdoel
is to average the predictions of all possible settings of the parameters, weighting each setting by its posterior
probability given the training the data. However, this is computationally expensive and cannot be done for
moderately complex models.

The dropout method introduced by [8], addresses this issue. We literally drop out some features (not the
weights!) before feeding them to the next layer by setting some activation functions to 0. Given a neural
net of N total nodes, we can think of the set of its 2N thinned subnetworks. For each training minibatch, a
new thinned network is sampled and trained.

At each layer, recall that forward prop is basically

z[l+1] = W[l+1]a[l] + b[l+1]

a[l+1] = σ(z[l+1])

Now what we do with dropout is

r
[l]
j ∼ Bernoulli(p)

ã[l] = r[l] ⊙ a[l]

z[l+1] = W[l+1]ã[l] + b[l+1]

a[l+1] = σ(z[l+1])

Basically we a sample a vector of 0s and 1s from a multivariate Bernoulli distribtion. We element-wise
multiply it with a[l] to create the thinned output ã[l]. In test time, we do not want the stochasticity of
having to set some activation functions to 0. That is, consider the neuron a[l] and the random variable ã[l].
The expected value of z[l+1] is

E[z[l+1]] = E[W[l+1]ã[l] + b[l+1]] = E[W[l+1]ã[l]] = pE[W[l+1]a[l]]
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and to make sure that the output at test time is the same as the expected output at training time, we want
to multiply the weights by p: W

[l]
test = pW

[l]
train. Another way is to use inverted dropout, where we can

divide by p in the training stage and keep the testing method the same.

Code 2.1 ()

The code here shows how to implement dropout in PyTorch, which uses dropout layers.

2.4 Data Augmentation
It is well known that having more training data helps with overfitting, and so we may be able to perform
basic transformations to our current data to artificially generate more training data. For example, if we have
images, then we can flip, crop, translate, rotate, stretch, shear, and lens-distort these images with the same
label.

2.5 Normalization Layers
Just like how we have to normalize our data before we input into a linear model, it may help to normalize
the outputs of one layer of a neural net before we input it into the next layer. This is an engineer’s method
to help with the training process. There are two ways that we can generally normalize data. First is to
normalize each sample, known as layer normalization, and the other way is to normalize the samples over
the batch.

Definition 2.1 (Layer Norm)

Given some batched output data X ∈ Rb×d, where b represents the batch size and d = d1×. . .×dk the
dimension of each sample, we can normalize each xi = Xi,: in the batch with layer normalization
by

xi 7→
xi − E[xi]√
Var[xi] + ε

⊙ γ + β (17)

where γ, β are learnable parameters that are the same shape as xi. If X is of dimension b × d, we
must use nn.LayerNorm(d) since these are the sizes of the learnable parameters.

Example 2.1 (Layer Norm)

The following example shows that each row (sample in batch) is normalized independently from one
another.

1 ln = nn.LayerNorm(5)
2 x = torch.Tensor(range(10)).reshape(2, 5)
3 print(x)
4 tensor([[0., 1., 2., 3., 4.],
5 [5., 6., 7., 8., 9.]])
6

7 print(ln(x))
8 tensor([[-1.4142, -0.7071, 0.0000, 0.7071, 1.4142],
9 [-1.4142, -0.7071, 0.0000, 0.7071, 1.4142]],

10 grad_fn=<NativeLayerNormBackward0>)

This also works for higher dimensions.

1 ln = nn.LayerNorm((5, 2))
2 x = torch.Tensor(range(20)).reshape(2, 5, 2)
3 print(x)
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4 tensor([[[ 0., 1.],
5 [ 2., 3.],
6 [ 4., 5.],
7 [ 6., 7.],
8 [ 8., 9.]],
9

10 [[10., 11.],
11 [12., 13.],
12 [14., 15.],
13 [16., 17.],
14 [18., 19.]]])
15 print(ln(x))
16 tensor([[[-1.5667, -1.2185],
17 [-0.8704, -0.5222],
18 [-0.1741, 0.1741],
19 [ 0.5222, 0.8704],
20 [ 1.2185, 1.5667]],
21

22 [[-1.5667, -1.2185],
23 [-0.8704, -0.5222],
24 [-0.1741, 0.1741],
25 [ 0.5222, 0.8704],
26 [ 1.2185, 1.5667]]], grad_fn=<NativeLayerNormBackward0>)

The tunable parameters γ, β are indeed the same size. They are initialized to 1s and 0s.

1 >>> for k, v in ln.state_dict().items():
2 ... print(k, v)
3 ...
4 weight tensor([[1., 1.],
5 [1., 1.],
6 [1., 1.],
7 [1., 1.],
8 [1., 1.]])
9 bias tensor([[0., 0.],

10 [0., 0.],
11 [0., 0.],
12 [0., 0.],
13 [0., 0.]])

Definition 2.2 (Batch Norm)

Batch normalization targets each feature over all batches rather than each sample (like columns
vs rows). Therefore, given some batched output data X ∈ Rb×d, where b represents the batch size
and d = d1 × . . .× dk the dimension of each output, we can normalize each feature xi = X:,i∈d by

xi 7→
xi − E[xi]√
Var[xi] + ε

⊙ γ + β (18)

where γ, β ∈ Rb are learnable parameters that are the same size as the batch. There are two types of
batch norms implemented in pytorch.

1. If X has hyperdimension 2 with b × d, we use BatchNorm1d(d) since we are normalizing over
the batch for each feature and we have d features to normalize.

2. If X has hyperdimension 3 with b× d1 × d2, we use BatchNorm1d(d_1).
3. If X has hyperdimension 4 with b× d1 × d2 × d3, we use BatchNorm2d(d_1).
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Example 2.2 (Batch Norm 1D)

We can see that each feature is normalized independently from one another. For 2D,

1 >>> bn = nn.BatchNorm1d(5)
2 >>> x = torch.Tensor(range(10)).reshape(2, 5)
3 >>> print(x)
4 tensor([[0., 1., 2., 3., 4.],
5 [5., 6., 7., 8., 9.]])
6 >>> print(bn(x))
7 tensor([[-1.0000, -1.0000, -1.0000, -1.0000, -1.0000],
8 [ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]],
9 grad_fn=<NativeBatchNormBackward0>)

For 3D inputs,

1 >>> bn = nn.BatchNorm1d(5)
2 >>> x = torch.Tensor(range(30)).reshape(2, 5, 3)
3 >>> print(x)
4 tensor([[[ 0., 1., 2.],
5 [ 3., 4., 5.],
6 [ 6., 7., 8.],
7 [ 9., 10., 11.],
8 [12., 13., 14.]],
9

10 [[15., 16., 17.],
11 [18., 19., 20.],
12 [21., 22., 23.],
13 [24., 25., 26.],
14 [27., 28., 29.]]])
15 >>> print(bn(x))
16 tensor([[[-1.1267, -0.9941, -0.8616],
17 [-1.1267, -0.9941, -0.8616],
18 [-1.1267, -0.9941, -0.8616],
19 [-1.1267, -0.9941, -0.8616],
20 [-1.1267, -0.9941, -0.8616]],
21

22 [[ 0.8616, 0.9941, 1.1267],
23 [ 0.8616, 0.9941, 1.1267],
24 [ 0.8616, 0.9941, 1.1267],
25 [ 0.8616, 0.9941, 1.1267],
26 [ 0.8616, 0.9941, 1.1267]]], grad_fn=<NativeBatchNo
27 rmBackward0>)

Example 2.3 (Batch Norm 2D)

Here is an example of batch norm 2d. There really isn’t a difference between these two methods
except the dimension that they take in. That is all.

1 >>> bn = nn.BatchNorm2d(5)
2 >>> x = torch.Tensor(range(60)).reshape(2, 5, 3, 2)
3 >>> print(x)
4 tensor([[[[ 0., 1.],
5 [ 2., 3.],
6 [ 4., 5.]],
7 ...
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8 [58., 59.]]]])
9 >>> print(bn(x))

10 tensor([[[[-1.1592, -1.0929],
11 [-1.0267, -0.9605],
12 ...
13 [ 1.0929, 1.1592]]]], grad_fn=<NativeBatchNormBack
14 ward0>)

2.6 Residual Connections

Figure 6: Resnet architecture.

Figure 7: Low-dimensional visual of loss with vs without residual connections.

Figure 8: Densenet architecture.
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2.7 Network Pruning
It can be computationally and memory intensive to train and utilize neural networks. This is where network
pruning comes in, which attempts to identify a subnetwork that performs as well as the original. Given a
neural net f(x,θ) where θ ∈ RM , a pruned neural network can be thought of as a subnetwork f(x,m⊙ θ),
where m is a mask, i.e. a vector in {0, 1}M that, when multiplied component-wise to θ, essentially “deletes"
a portion of the parameters.

This idea has been around for a long time, and the general method of pruning is as such:

1. We initialize the neural network f(x,θ0) and train it until we have f(x,θ).

2. We now prune the network. The most basic pruning scheme is to keep the top k% largest weights,
since smaller weights do not contribute much to the forward prop, and thus can be ignored.

These pruned networks have been shown to reach accuracies as high as the original network, with equal
training progress. Now, if we were to take only this pruned network and train it from the beginning, it will
perform as well as the original network, only under the condition that we start from the same initialization
m ⊙ θ. If we take this subnetwork and initialize it differently at θ′

0, then this subnetwork would not train
well. Therefore, the performance of the pruned network is dependent on the initialization!

If we had initialized the full network differently, trained it, and then pruned again, we may have a different
subnetwork that will only train well on its own given this new initialization. Therefore, a good initialization
is extremely important for training subnetworks. This fact doesn’t help much since we can’t just take some
arbitrary subnetwork and train it since we don’t know the good initialization. We must always train the full
network, then find the subnetwork, and then find its initialization.

This is essentially the lottery ticket hypothesis [4], which states that a randomly-initialized, dense neural
network contains a subnetwork that is initialized such that, when trained in isolation, it can match the test
accuracy of the original network after training for at must the same number of iterations.

This paper hints at why neural networks work at all. It first states that only a very small subnetwork
is responsible for the vast majority of its performance, but it must be initialized at the right position.
But by overparameterizing these neural nets so much (by a certain margin), they have so many different
combinations of subnetworks such that whatever initialization you throw at it, it is guaranteed that some
subnetwork within it will train well with this initialization. This subnetwork is called the winning ticket.

2.8 Summary
Here is a few steps you can take as a guide to training a neural network.

1. Preprocess the data.

2. Choose your neural net architecture (number of layers/neurons, etc.)

3. Do a forward pass with the initial parameters, which should be small, and check that the loss is
reasonable (e.g. log(1/10) ≈ 2.3 for softmax classification of 10 classes).

4. Now crank up the regularization term, and your loss should have gone up.
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5. Now try to train on only a very small portion of your data without regularization using SGD, which
you should be able to overfit and get the accuracy to 100%.

6. Now you can train your whole dataset. Start off with a small regularization (e.g. 1e-6) and find a
learning rate that makes the loss go down.

(a) Run for a few epochs to see if the cost goes down too slowly (step size is too small) or the cost
explodes (step size too big). A general tip is that if the cost is ever bigger than 3 times the original
cost, then this is an indication that the cost has exploded.

(b) We can run a grid search (in log space) over the learning rate and the regularization hyperparam-
eters over say 10 epochs each, and compare which one makes the most progress.

7. Monitor and visualize the loss curve.

If you see loss curves that are flat for a while and then start decreasing, then bad initialization is a
prime suspect.

8. We also want to track the ratio of weight updates and weight magnitudes. That is, we can take the
norm of the weights θ and the gradient updates ∇θ, and a rule of thumb is that the ratio should be
about

||∇θ||
||θ||

≈ 0.001 or 0.01

3 Convolutional Neural Networks
Convolutional networks work with images, so let’s introduce a nice way to represent them as vectors.

Definition 3.1 ()

An image is a vector in some tensor product space. More specifically, avoiding the technicality that
each pixel element is bounded and discrete,

1. A grayscale image of resolution of H ×W is a vector in RH ⊗ RW .
2. An image with C channels of the same resolution is an element of RC ⊗ RH ⊗ RW .
3. A video with C channels and of the same resolution is an element of RT ⊗ RC ⊗ RH ⊗ RW ,

where T is the time dimension which is usually represented in some discrete frames.
Since tensor product spaces are also vector space, there is nothing new we have to introduce. Every-
thing we talked about so far applies to images when treated as vectors. In fact, so far we have been
interpreting images of size (C,H,W ) through the isomorphism

ϕ : RC ⊗ RH ⊗ RW → RC×H×W
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that essentially “unravels" the image.

3.1 Convolutional and Pooling Layers
So far, we have seen the power of multilayer perceptrons and their predictive ability on moderately sized
vectors. In fact, if we process the MNIST with a simple MLP of 2 layers and 512 nodes each, we can easily get
95% accuracy within 10 epochs. However, these MNIST pictures are extremely low resolution, at 1×28×28,
and for even moderately sized images we can that there is a huge blowup of parameters needed. 2 Clearly,
this is not efficient, and so the only way to move on is to create a sparser representation of the network. This
is where convolutional kernels come in (note that this is completely different than the kernels mentioned in
supervised learning, with support vector machines and RKHS), introduced in [5].

Definition 3.2 (Convolutional Kernel)

A convolution operator on a vector space V representing an image space is simply a special type
of linear map that is parameterized by a much smaller set of numbers, stored within a kernel or
filter. In all honesty, it is much easier to go through examples to see how they work, so in this
definition I will focus more on describing the hyperparameters. Given an image of shape (C,H,W ),
the convolution is essentially a sliding window that computes a dot product between the kernel and
the window that the kernel covers over the image.

1. The sliding window size is (Wker, Hker), which is conventionally square but does not need to
be.

2. This sliding window must compute over all channels, so in fact it is of shape (Cin,Wker, Hker).
This would generate one output channel image.

3. Multiple kernels can be used concurrently to generate different channel images. Therefore, if
we want to have a collection of Cout outputs that are extracted from each kernel, our total
kernel would be a collection of Cout kernels of shape (Cin,Wker, Hker, Cout). Therefore, the
total equation is

(X ∗K)f,i,j :=
∑
c

∑
p,q

Xc,i+p,j+q ·Kc,p,q,f + bf,i,j

where c is the channel index, p, q are the location indices, f is the output channel index, and b
is some bias term.

4. The stride parameter s can also be set to determine the stride of the kernel K.
5. Another thing to note is that the output image of a kernel would be slightly smaller than the

input image, since the kernel cannot go over the edge. However, there are padding schemes to
preserve the original dimensions.

From the equation above, we can see that a convolutional layer, assuming that it has full padding, is
a linear map

K : RCin ⊗ RH ⊗ RW → RCout ⊗ RH ⊗ RW (19)

The vector space of linear maps mapping between these two spaces has CinH
2W 2Cout dimensions,

which is extremely large, but parameterizing K with this matrix reduces the set of relevant convolu-
tional maps to a subspace that is (1+CinHkerWker)Cout dimensional (with the +1 due to a bias term,
making this an affine map). This is essentially what a convolution is: sparse matrix multiplication,
and there is nothing else that makes it different from a classical feedforward neural network. It’s just
computationally efficient matrix multiplication for high-dimensional vectors.

Just to explicitly see what is actually computed, let’s do one computational example.

2For example, an RGB image that is 3× 1024× 1024 would have 3m parameters, and then defining a dense linear map to
even 1000 dimensions would take 3 billion parameters. Given that 32-bit floating point is 4 bytes, this already takes up 12GB
of memory just to load the network.
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Example 3.1 (Tarokh, Duke ECE685)

Consider an RGB image X = [X0, X1, X2] with three channels, and given as follows

X0 =


2 1 0 0
0 0 2 1
0 2 0 1
2 1 0 1

 , X1 =


2 2 0 0
0 0 2 1
0 0 2 0
0 1 0 1

 , X2 =


2 1 0 0
0 0 2 1
2 0 0 0
0 1 0 1

 (20)

The image is passed through the convolutional filter with the weights W = [W0,W1,W2] ∈ R3×3×3

and step size 1, and given as follows

W0 =

1 0 0
0 −2 0
0 0 −1

 , W1 =

1 2 0
2 0 −1
0 −1 1

 , W2 =

 0 0 −2
0 1 2
−2 2 0

 (21)

The output of the convolutional filter is given as

Y = ReLU

( 2∑
i=0

(X ′
i ∗Wi) + 2 · 14×4

)
where Y is the output image, X ′ is the input image after applying 0 padding around the edges,
and ∗ is the discrete convolution operator. Compute the output Y , and then apply max pooling
on nonoverlapping 2 × 2 submatrices, and then apply average pooling on non-overlapping 2 × 2
submatrices.

Solution 3.1

We can compute

X0 ∗W0 =


−4 −4 −1 0
−2 2 −4 −2
−1 −4 −1 0
−4 −2 2 −2



X1 ∗W1 =


−2 6 3 −1
4 6 −1 4
1 −3 5 7
−1 0 5 2



X2 ∗W2 =


4 1 4 −2
2 0 4 11
2 −2 −4 2
2 1 2 1


and so we get

Y =


0 5 8 0
6 10 1 5
4 0 2 11
0 1 11 3


Maxpooling and average pooling gives us

max(Y ) =

[
10 8
4 11

]
and avg(Y ) =

[
21/4 7/2
5/4 27/4

]

In addition to computational efficiency and weight sharing, convolutional operators capitalize on the principle
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of locality, i.e. that pixels are directly related to adjacent pixels. For example, a pixel representing a portion
of a dog’s ear would not be related to the background, but the color and positioning should be related to the
dog’s face, which may be within a certain neighborhood around. This has been shown to be similar to the
human visual system and is thus well motivated. Though this next topic has more to do with classical image
processing than computer vision, there are a surprising number of features that these convolutional filters
can extract from an image. By treating them as a discretized form of a partial derivative (as the vertical
and horizontal edge detection) or as the Hessian operator (sharpening), we can extract many features from
them.

Example 3.2 ()

Given the original image below, we show various convolutional filters applied on the image. Note that
the kernel matrix may have the property that all of its entries sum to 1, meaning that on average,
the expected value of the brightness of each pixel will be 0, and the values will be left unchanged on
average. However, this is not a requirement.

Original =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Mean =
1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Gaussian =
1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1


Sharpen =

 0 −1 0
−1 5 −1
0 −1 0

Horizontal =

−1 0 1
−2 0 2
−1 0 1

 Vertical =

−1 −2 −1
0 0 0
1 2 1


These filters visually output the following images. Note that these filters are each acting on the image
by acting individually on each channel and then combining the 3 outputs to create the new RGB
image.

(a) Original image. (b) 5× 5 mean blur applied. (c) 5× 5 Gaussian blur applied.

(d) Sharpening kernel. (e) Horizontal edge detection. (f) Vertial edge detection.

Figure 9: Different convolutional kernels acting on the same image. Several useful features like edges can be
detected with these simple linear maps.

We have seen in the example above that we can interpret each output channel of a convolution as a feature.
That is, our original input image with Cin = 3 channels may go through a convolution that has Cout = 10
output channels, producing 10 grayscale images. Each of these images may represent a feature that is
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extracted from the image through a custom kernel. When we stack convolutional layers together (with
nonlinearities in between, of course), we can produce more complicated transformations that extract more
abstract features. For example, while the first layer or two may extract certain edges within a dog, perhaps
the fourth or fifth convolutional layer will be able to detect the presence of ears. This is a hand-wavy
example, but if you actually visualize the outputs of these layers during forward prop, it is possible to see
this in action.

What we eventually hope for is that we can extract higher level features that can be encoded in moderate-
dimensional vectors. Unfortunately, the rate at which regular convolutional filters (especially when there is
padding and a stride of 1) does not shrink the resolution of the input images at a fast enough rate. For
example, having a 3× 3× 3× 3 kernel with no padding on a (3, 100, 100) image will decrease the dimensions
to only (3, 98, 98) only. Therefore, we do some very simple operations to reduce the resolution faster.

Definition 3.3 (Pooling Layers)

A pooling layer takes in an input image of dimension (C,H,W ) and essentially does downsampling
on it, involving some method of pooling local groups of pixels together into one value. There are
several ways to do this:

1. Max Pooling refers to dividing each channel of the image into a “checkerboard" of P × P
(where P is a hyperparameter and does not necessarily have to be a square) matrices and
simply choosing the maximum pixel value from it.

2. Average Pooling is the same as max pooling but we just take the average.
Clearly, these are not expensive operations and are an effective way to downsample. Therefore, the
same (3, 100, 100) image, after one convolutional layer followed by a pooling layer, will result in a
(3, 49, 49) image.

Ultimately, after a series of convolutions and pooling, we would want to reduce this image to a form of
(C,H,W ), where both H and W are small and C is large. This is because for each value of C, say C = 1,
the cross section {(1,W,H)} would encode the value of the feature identified by C. In fact, it could be the
fact that both H and W are 1, and C = 10. Then, we would essentially be looking at an array of 10 numbers,
which could encode the presence of some abstract features. For example, the first value C = 1 would encode
the presence of an eye, which in the end has a value of 0.9 (high probability), the second C = 2 could encode
the presence of an ear, and so on...

Perhaps the sparsity of these maps may not allow the convolutional layers alone to extract all the features
we need, so it is common to unwrap the features and then add a few fully connected layers at the end,
which is much more computationally feasible now that the convolutions and pooling layers have reduced
the dimensionality whilst extracting useful features with the concept of locality. This turns out to have
comparable performance to regular MLPs with a fraction of the computational cost, and can easily reach
98% validation accuracy on the MNIST dataset.
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3.2 Backpropagation
The fully connected layers are all taken care of, but now it’s the convolutional layers and the pooling layers.
The convolutional layers are also linear maps, so they can be treated the same way. However, the pooling
layers may be nonlinear.

1. Average pooling is linear, so no worries here.

2. Max pooling is not linear, but it is the next best thing: piecewise linear.

3.3 Visualizing Activation Maps

3.4 CAM and Grad-CAM

4 Recurrent Neural Networks
Let’s focus on what is lacking in the vanilla feedforward neural net architecture. In a vanilla feedforward
neural net architecture, we had a one to one map, where we take an input of fixed size and we map it to
an output of fixed size. Perhaps we would want a one-to-many model, which takes in an image for example
and outputs a variable-length description of the image. Or a many-to-many (e.g. machine translation from
a sequence of words to a sequence of words) or many-to-one. Just as a convolutional neural network is
specialized for processing a grid a values such as an image, a recurrent neural network is specialized for
processing a sequence of values (e.g. audio, video, text, speech, time series). It is not limited to a fixed size
of inputs and outputs.
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Now to build such a model where the input or output elements are unbounded, we must take advantage of
weight sharing (as seen in the CNN architecture) to control the size of our neural net. Furthermore, the fact
that we should take in a sequence of inputs means that we may want to introduce some recursive structure
in our neural net. Consider the classical form of a dynamical system driven by an external signal x as

st = f(st−1,xt; θ)

which defines a recurrent relationship. Similarly, we can write h to represent hidden neurons and write

ht = f(ht−1,xt; θ)

which indicates that the state of a hidden neuron is dependent on both the previous neuron and an input at
time t. Through recursion, the hidden state ht contains all information about the inputs x1, . . . ,xt in the
form of a complex function g.

ht = gt

(
xt,xt−1, . . . ,x1

)
= f(ht−1,xt; θ)

The fact that we can factorize gt into a repeated application of function f gives us two advantages:

1. Regardless of the sequence length, the learned model always has the same input size because it is
specified in terms of transition from one state to another state, rather than specified in terms of a
variable-length history of states.

2. It is possible to use the same transition function f with the same parameters at every time step. Since
we do not have a growing number of parameters to optimize as our sequential data grows, training an
RNN is still computationally feasible.

These two factors make it possible to learn a single model f that operates on all time steps and all sequence
lengths, rather than needing to learn a separate model gt for all possible time steps.

4.1 Unidirectional RNNs
A single layer unidirectional RNN is a direct application of the idea mentioned in the previous section. We
can first look at its computational graph
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The activation functions that map to the hidden nodes and the outputs will be labeled σh and σy, re-
spectively. In general the W will represent the left and right mappings between hidden nodes, the U will
represent the map going up from the input or hidden node to a hidden node, and V is the final mapping
from a hidden node to an output. We only label the arrows with the matrices, though a bias term and the
nonlinear activation function are still there. That is, we can summarize our network as

ht = f(ht−1,xt; θ) = σh

(
Wht−1 +Uxt + bh

)
yt = σy

(
Vht + by

)
for t = 1, . . . , τ , where h0 is initialized to be zeroes or some small vector. The dimensions of the maps and
the variables are listed for clarification:

1. xt ∈ Rd for all t

2. ht ∈ Rh for all t

3. bh ∈ Rh

4. U ∈ Rh×d

5. W ∈ Rh×h

As we can see, the hidden node from the previous time step provides a form of memory, or context, that
encodes earlier processing and informs the decisions to be made at later points in time. Adding this temporal
dimension makes RNNs appear to be more complex than non-recurrent architectures, but in reality, they’re
not all that different. Consider the rearranged architecture of an RNN below.

4.1.1 Loss Functions

The form of the loss for a RNN will have to be slightly modified, since we can have multiple outputs. If
we have a given input-output pair x(n),y(n), and we are interested producing a single output, then this is
similar to what we already do with regular NNs. If we are interested in producing a sequence of outputs,
then we can average the loss functions individually so that equal weight is placed on the prediction at each
relevant timestep. This is called

L =
1

|T |
∑
t∈T

Lt
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Sometimes, even with single inputs it may be good to include other intermediate terms in the loss so that
we can direct the neural net to converge faster to what the correct answer should be.

Note that one problem is that the errors can build up as the RNN predicts outcomes. For example, if we
predicted x1 7→ ŷ1 we can compute the loss as L1(y1, ŷ1). However, there are two ways to compute the
second loss: with inputs L2(x1,x2) or with L2(x1, ŷ1). One just uses the ground truth while the other
uses the previous prediction for the next prediction, which can accumulate error. Both ways are feasible for
loss computation, but it is generally done in the former way, called teacher forcing. This is analogous to
a human student taking a multi-part exam where the answer to each part depends on the answer to the
preceding part. Rather than grading every answer in the end, with the risk that the student fails every single
part even though they only made a mistake in the first one, a teacher records the score for each individual
part and then tells the student the correct answer, to be used in the next part.

4.1.2 Backpropagation Through Time

Now if we wanted to backpropagate through this RNN, we can compute
∂Lt

∂W
=

∂Lt

∂ŷt

∂ŷt

∂ht

∂ht

∂W

where the first term depends on the specific form of the loss and the second is simply the matrix V. This
all looks the same as backpropagation for a MLP, but since Whh is used at multiple layers, we can reduce
the third term in the equation to

∂Lt

∂W
=

∂Lt

∂ŷt

∂ŷt

∂ht

( t∑
k=1

∂ht

∂hk

∂hk

∂W

)
where

∂ht

∂hk
=

t∏
i=k+1

∂hi

∂hi−1

is computed as a multiplication of adjacent time steps. Now this can be very problematic, since if we have
a lot of multiplications, then depending on the randomness of these matrices the gradient may be highly
unstable, causing the vanishing or exploding gradient problem. We can elaborate on this a little further.
Note that the hidden linear maps are known to be square matrices. We can expand out the derivative
without the constant terms on the left as such:

t∑
k=1

∂ht

∂hk

∂hk

∂W
=

t∑
k=1

∏
k<i≤t

∂hi

∂hi−1

∂hk

∂W
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and we can see if at some point one of the ∂hj

∂hj−1
tend to be small just from randomness, then their product

for all coefficients where k ≤ j will be small too. This means that all the information, or memory, from the
jth hidden state and before will vanish. In fact, if the spectrum (the set of eigenvalues and eigenvectors)
is less than 1, then the multiplication of these derivatives will converge to a 0 matrix, and so we have an
exponential memory loss throughout the network.

Furthermore, we can compute these gradients in batches by splitting up the corpus into several sentences,
and sampling the sentences for gradient computation. Therefore, a forward or backward pass has a runtime
complexity of O(τ) and cannot be reduced by parallelization because the forward propagation graph is
inherently sequential. Each time step may only be computed after the previous one. States computed in
the forward pass must be stored until they are reused during the backward pass, so the memory cost is also
O(τ).

4.1.3 Stacked Unidirectional RNNs

Note that since we really have three matrices to optimize in the regular RNN, this may not be so robust.
Therefore, we would like more hidden layers to capture further nonlinearities in an RNN, which is why we
introduce a stacked RNN as shown below:

Now in this case, there are more layers of hidden nodes that an input must go through before it reaches the
output node. We can expand out the computations as such, for t = 1, . . . , τ , l = 2, . . . L:

h
[1]
t = σh

(
W[1]h

[1]
t−1 +U[1]xt + b

[1]
h

)
h
[l]
t = σh

(
W[l]h

[l]
t−1 +U[l]xt + b

[l]
h

)
yt = σy

(
Vh

[L]
t + b[L]

y

)
or we could get rid of the first equation all together if we set xt = h

[0]
t . Note that the hidden nodes h

[l]
t for

all t and all l ̸= 0 are all in Rh, i.e. all hidden nodes will be h-dimensional. Therefore, most of the parameter
matrices that we work with are square: W[l] ∈ Rh×h and U[l] ∈ Rh×h except for U[1] ∈ Rh×d.
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4.2 Bidirectional RNNs
4.2.1 PyTorch Implementation

The implementation in PyTorch actually uses two bias terms b
[l]
hW and b

[l]
hU rather than just b

[l]
h . This is

technically not needed since the bias terms will just cancel out, but this is just how cuDNN (Cuda Deep
Neural Network) is implemented.

h
[l]
t = σh

(
W[l]h

[l]
t−1 + b

[l]
hW +U[l]xt + b

[l]
hU

)
Let us look at a 2 layer RNN of sequence length 5. The input features will be set to 10, meaning that each
x ∈ R10. The hidden nodes will all be in R20.

input_features = 10
hidden_features = 20
num_layers = 2
sequence_length = 5

rnn = nn.RNN(input_features, hidden_features, num_layers)
input = torch.randn(sequence_length, input_features)
h0 = torch.randn(num_layers, hidden_features)
print(input.size(), h0.size())
# torch.Size([5, 10]) torch.Size([2, 20])

print([weight.data.size() for weights in rnn.all_weights for weight in weights])
# [torch.Size([20, 10]), torch.Size([20, 20]), torch.Size([20]), torch.Size([20]),
torch.Size([20, 20]), torch.Size([20, 20]), torch.Size([20]), torch.Size([20])]

output, hn = rnn(input, h0)
print(output.size(), hn.size())
# torch.Size([5, 20]) torch.Size([2, 20])

The corresponding diagram is shown below.

As we expect, there are 8 vectors/matrices we must optimize: W[1],W[2],U[1],U[2],b
[1]
hU ,b

[1]
hW ,b

[2]
hW ,b

[2]
hU .
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4.3 Long Short Term Memory (LSTMs)
In theory, RNNs are very beautiful and can be applied in all cases, but in practice they do not perform very
well, mainly due to the vanishing/exploding gradient problem.

1. An exploding gradient is easy to fix, since we can just use the max-norm regularization, i.e. gradient
clipping, to just set a max vamlue for the gradients if they grow too large.

2. The truncated backpropagation through time (TBPTT) simply limits the number of times steps
the signal can backpropagate after each forward pass, e.g. even if the sequence has 100 time steps, we
may only backpropagate through 20 or so.

3. The LSTM model uses a memory cell for modeling long-range dependencies and avoids the vanishing
gradient problems.

Historically LSTMs were used in achieving state-of-the-art results in 2013 through 2015, in taks susch as
handwriting recognition, speech recognition, machine translation, parsing, and image captioning, as well as
language models. They became to dominant approach for most NLP tasks, but in 2021, they have been
overshadowed by transformer models, which we will talk about next.

LSTMs have a much more complicated unit to work with, so let’s go through it slowly. Note that so far, a
one-layer RNN consisted of recursive mappings of the form

(xt,ht−1) 7→ (ht, ŷt)

We can interpret the vector ht−1 as the short term memory, or hidden state, that contains information
used to predict the next output value. However, this can be corrupted (e.g. forgetting information from
many steps ago), so we add an additional long term memory, or cell state, vector ct that should be
preserved. Therefore, we have two arrows coming out of each hidden layer, as shown below in the one-layer
LSTM.

The mechanisms of the cell is quite complex, but the three basic steps are: (1) we forget a portion of the long
term memory, (2) we add new long term memory, (3) we add new short term memory. Let us demonstrate
this step by step. We are given three inputs: the previous long-term memory ct−1, the previous short-term
memory ht−1, and the input at current time xt. In LSTMs, we only use the sigmoid and tanh activation
functions, so we will denote them explicitly as σ and tanh. For clarity, we will not write the matrix operations
in the diagram anymore.

1. The forget gate (denoted by f) takes an affine combination of ht−1 and xt and puts it through the
sigmoid activation function to generate a vector ft that has every element in (0, 1). Then it element-wise
multiplies it with ct−1, which essentially “forgets" a portion of the long-term memory.

ft = σ(Wfht−1 +Ufxt + bf )
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2. The input gate (denoted by i) consists of two activations with the following operations.

it = σ(Wiht−1 +Uixt + bi)

c̃t = tanh(Wcht−1 +Ucxt + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

The layer i can be seen as the filter that selects which information can pass through it and what
information to be discarded. To create this layer, we pass the short-term memory and current input
into a sigmoid function, which will transform the values to be between 0 and 1, indicating which
information is unimportant. The second layer c̃ takes the short term memory and current input and
uses the tanh to transform the elements to be in (−1, 1), which allows us to add or subtract the
necessary information from the long term memory.

3. The output gate (denoted by o) consists of two activations with the following operations. This again
creates a separate filter that selects the relevant information needed for the short term memory.

ot = σ(Woht−1 +Uoxt + bo)

ht = ot ⊙ tanh(ct)

ŷt = σy(Vht + by)
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That is it! Now focusing on the cell state in the diagram above. Note that in order to go from cell state
ct−1 to ct, there was not a whole lot done to it. We really just multiply it once, which potentially deletes
some content, and add it once, which adds new content, and we are done. The magic is this addition, since
unlike multiplication, which can result in an exponential decay of knowledge, you are just constantly adding
new numbers to update the storage, allowing the cell state to behave much more like RAM of a computer.

The LSTM architecture also makes it easier for the RNN to preserve information over many timesteps. For
example, if the forget gate ft is set to 1 and the input gate set to 0, then the information of that cell is
preserved indefinitely. In contrast, it’s harder for a vanilla RNN to learn a recurrent weight matrix W that
preserves information in the hidden state. In practice, a vanilla RNN would preserve memory up to maybe
7 timesteps (and increasing this is extremely difficult) while a LSTM would get about 100 timesteps, so in
practice you should almost always just use a LSTM.

Unfortunately, LSTM doesn’t guarantee that there is no vanishing or exploding gradients, but it does provide
an easier way for the model to learn long-distance dependencies. Note that the gradient problem is not just
a problem for RNNs; any neural architecture (including a feed-forward or convolutional) with very deep
layers with multiple compositions of functions may suffer. Due to the chain rule and choice of nonlinearity
function, these gradients can become vanishingly small and lower layers are learned very slowly. However,
we can still implement residual connections to allow for more gradient flow such as ResNet, DenseNet, and
HighwayNet.

4.3.1 Multilayer LSTMs

We can extend this architecture in the exactly same way for multilayer LSTMs. Note that we should be
careful of the transformations each arrow represents. For the arrows going from h

[l]
t 7→ h

[l+1]
t , there is no

further transformation since we are just pushing this vector as an input to the next LSTM node. However,
the arrow pushing from c

[L]
t 7→ ŷt does have an extra affine transformation with V and by, followed by some

link function σy before we have the true prediction.
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This follows the recursive equations, with xt = h
[0]
t .

Forget Gate
{
f
[l]
t = σ(W

[l]
f h

[l]
t−1 +U

[l]
f h

[l−1]
t + b

[l]
f )

Input Gate


i
[l]
t = σ(W

[l]
i h

[l]
t−1 +U

[l]
i h

[l−1]
t + b

[l]
i )

c̃
[l]
t = tanh(W

[l]
c h

[l]
t−1 +U

[l]
c h

[l−1]
t + b

[l]
c )

c
[l]
t = f

[l]
t ⊙ c

[l]
t−1 + i

[l]
t ⊙ c̃

[l]
t

Output Gate

{
o
[l]
t = σ(W

[l]
o h

[l]
t−1 +U

[l]
o h

[l−1]
t + b

[l]
o )

h
[l]
t = o

[l]
t ⊙ tanh(c

[l]
t )

Output
{
ŷt = σy(Vh

[L]
t + by)

where

1. xt ∈ Rd for all t

2. f
[l]
t , i

[l]
t ,o

[l]
t ∈ (0, 1)h

3. h
[l]
t , c̃

[l]
t ∈ (−1, 1)h

4. c
[l]
t ∈ Rh

and we must optimize the parameters

(W
[l]
f ,U

[l]
f ,b

[l]
f ), (W

[l]
i ,U

[l]
i ,b

[l]
i ), (W[l]

c ,U[l]
c ,b[l]

c ), (W[l]
o ,U[l]

o ,b[l]
o )

for l = 1, . . . , L. The fact that a LSTM uses the long term memory, in addition to the short term memory
and the input, allows each cell to regulate the information to be kept or discarded at each time step before
passing on the long-term and short-term information to the next cell. They can be trained to selectively
remove any irrelevant information.

4.4 Gated Recurrent Units

5 Encoder-Decoder Models
Encoder decoder models refer to a model consisting of two neural nets: the encoder that takes in the input
and maps it to some lower-dimensional vector. Then, the decoder takes in this encoded vector and attempts
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to use it to decode what we’re trying to get. The type of neural network can be any: MLP, CNN, or RNN,
depending on what problem you’re trying to achieve.

Now, why would we want to do something like encode the input into some lower dimensional setting, and
then have the decoder neural net extract what we want? It seems like we’re making the problem harder.
There are two reasons:

1. The input vector may not be in the correct form that we want. This is the motivation for the seq2seq
model, where we are working with sequences of vectors that suffer from the problem of locality in RNNs.
Therefore, it is necessary to encode this entire sequence into one vector, at the loss of dimension.

2. The input vector may be noisy or too high-dimensional itself. In CNNs, we saw that convolutional layers
or pooling layers allow us to reduce the dimension to extract meaningful features from it. Likewise, we
can train the encoder to extract useful features into a lower dimensional space, and then the decoder
can efficiently work with this representation. This motivates the use of autoencoders, which can be
done with MLPs, CNNs, or even RNNs.

Note that while these two algorithms fall in the paradigm of encoder-decoder networks, the seq2seq model
is supervised while the autoencoder is unsupervised. In the seq2seq model, which deals with things like
machine translation, we have a labeled dataset of sentences in language A corresponding with sentences in
language B. However, in autoencoders, what we do is take a sample x from our dataset and use it both as the
input and output to train our network. Since there is no additional labeling required, this is an unsupervised
learning technique.

5.1 Autoencoders
Autoencoders are a type of unsupervised learning. We only use the inputs xt for learning. We want to
automatically extract meaningful features for the data and leverage the availability of unlabeled data. It can
be used for visualization and compression. We can also build generative models with autoencoders.

Definition 5.1 (Autoencoder)

An autoencoder is a feed-forward neural net whose job is to take an input x and output x̂. It consists
of an encoder Eϕ : X → Z and decoder Dθ : Z → X , where X is the input/output space and Z is
the latent feature space.

1. The encoder model transforms x to a latent feature representation z. It is a feed-foward,
buttom-up neural net.

2. The decoder model maps z to a reconstruction x̂. It is generative, top-down.
I want to train the whole neural network such that the error between x and x̂ is minimized. We can
consider a squared-error, for example.

L(x, x̂) = 1

2
||x− x̂||22

In the totally linear case, we have PCA. Some input x ∈ X = Rd is mapped to a smaller-dimensional Z = Rk.

x
V−−→ z

U−−→ x̂

and so the “network" essentially computes x̂ = UV x. Obviously the fact that k < d is essential, since if
k ≥ d then we can choose U and V such that UV = I, which is trivial.

This can be used for the following problem: Given m points x1, . . . ,xm ∈ Rd and target dimension k < d, find
the best k-dimensional subspade approximating the data. Formally, we want to find the matrices U ∈ Rd×k

and V ∈ Rk×d that minimizes

f(U, V ) =

m∑
i=1

||xi − UV xi||22

46/ 92



Deep Learning Muchang Bahng Summer 2023

where V is the compressor and U is the decompressor. Now unfortunately, this loss f is not convex, though
f(U, ·) and f(·, V ) are both convex.

Theorem 5.1 ()

We claim that the optimal solution is achieved when U = V T and UTU = I.

Proof.

For any U, V , the linear map x 7→ UV x has a range R that forms a subspace of dimension k. Let
w1, . . . , wk be an orthonormal basis for R, which we arrange into columns of W . Hence, for each xi

there is zi ∈ Rk such that UV xi = Wzi. Note that by construction,WTW = I. Now we want to find
out which z minimizes f(xi, z) = ||xi −Wz||22. We know that for all x ∈ Rd, z ∈ Rk,

f(x, z) = ||x||22 + zTWTWz − 2zTWTx = ||x||22 + ||z||22 − 2zTWTx

We want to minimize w.r.t. to z, so by taking the derivative and setting to 0, we get z = WTx. This
means that

m∑
i=1

||xi − UV xi||2 ≥
m∑
i=1

||xi − UV xi||2 ≥
m∑
i=1

||xi −WWTxi||2

and since U, V are optimal, equality is achieved and so instead of U, V , we can take W,WT , with
WWTx being the orthogonal projection of x onto R.

One application of PCA is eigenfaces, which assumes that the set of all faces (projected onto an image)
approximately lies in a hyperplane.

Now let’s go back to autoencoders, the nonlinear generalization of PCA. We can have several architectures,
with none, one, or both the encoder/decoder having nonlinear activitation functions. Here is one architecture.

where we have

Encoder : h(x) = g(a(x)) = σ(b+Wx)

Decoder : â(x) = σ(c+W∗h(x))

The parameter gradients are obtained by backpropagating the gradient ∇θL like a regular network, but if
we force tied weights (i.e. W ∗ = WT ), then ∇WL is the sum of two gradients. This is because W is present
both in the encoder and decoder.
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There are three things we can do to extract meaningful hidden features:

1. Undercomplete Representation: Make the latent dimension small. It compresses the input, but it
may only be good for the training distribution and may not be robust to other types of input. If it is
overcomplete, there is no guarantee that we will extract meaningful features.

2. Denoising Autoencoder: Injecting noise to the input. The idea is that the representation should
be robust to the introduction of noise. We take the original input x and we randomly assign a subset
of the inputs to 0, with probability ν, similar to dropout, to get our noisy input x̃. Then we train the
autoencoder with the loss comparing the output x̂ to the original, un-noisy input x. We can do this
for Gaussian additive noise too. As the visual below suggests, we are essentially “pushing" out inputs
away from the manifold and training the autoencoder to denoise it, pulling it back.

3. Contractive Autoencoder: If we have the latent dimension greater than the input, then we can just
add an explict term in the loss that penalizes that solution (e.g. promoting sparsity). For example, we
can have the loss be

L(f(x(t)) + λ||∇x(t)h(x(t))||2F
where

||∇x(t)h(x(t))||2F =
∑
j,k

(
∂h(x(t))j

∂x
(t)
k

)2

which forces the encoder to throw away information. If one of the elements are 0, then we know that
the kth element of the input has no effect on the jth element of the encoded output. Therefore, it tries
to throw away as many elements of x as possible since the identity matrix will have a large Frobenius
norm, essentially contracting the input representation.

We can also promote sparsity by adding a L1 penalty, forcing the feature space to be sparse.

The predictive sparse decomposition shows that the loss should be

min
W,W∗,z

||W ∗z− x||22 + λ|z|1 + ||σ(Wx)− z||22

where the first term tells the decoder to reconstruct the original input well, the second tells the latent vector
to be sparse, and the third tells us that we shouldn’t lose too much information when we encode.

We could also have stacked autoencoders, with each layer of latent features having some desired sparsity.

5.2 Sequence to Sequence
We have mentioned that RNNs and LSTMs have the advantage of mapping from variable length inputs to
variable length outputs. This can be done for any length input and any length output.
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However, the RNN has the problem of locality, that the words next to the current word have a greater
effect, and we are trying to generate sequences on the fly by reading in each word. Even for bidirectional
RNNs, where we go through the whole sentence first, the effects of adjacent words have a greater effect when
generating outputs. It would be wiser to read the whole sentence and then start to generate a sequence. This
is the motivation for the encoder-decoder model. It is conventionally divided into a two-stage network.

1. The encoder neural net would convert a sequence into a single latent space representation z = f(x).
This latent representation z essentially refers to a feature (vector) representation, which is able to
capture the underlying semantic information of the input that is useful for predicting the output.

2. The decoder neural net would decode this feature vector, called the context vector, into a sequence
of the desired output y = g(z) by using it as the initial hidden state. It uses the previous output as
the next input for decoding.

Note that the encoder and decoder are two completely separate neural networks with their own parameters.
This is important, since the fact that these are two completely separate networks allows us to work in
different “paradigms" within either the feature or target space. For example, if we want to perform machine
translation from English to Spanish, our encoder RNN parameters have been tuned to the English syntax
and language, while the decoder RNN parameters are tuned to the Spanish language. Since we are modeling
different languages, it makes sense to have different sequence models for each one.

We will talk about a specific type of encoder-decoder model called seq2seq, which maps sequences to
sequences using RNN encoders and decoders. Conventionally, the hidden nodes of the encoder are denoted
with h, and those of the decoder are denoted with s.

1. For the encoder, we take in the inputs xt and generate the hidden states as

ht = f(xt,ht−1) = Weht−1 +Uext + be

In general, the encoder transforms the hidden states at all time steps into a context variable through
the composition of functions q

C = q(h1,h2, . . . ,hT )

In the figure below, the context variable is just C = hT .

2. Now, given the target output sequence ŷ1, . . . , ŷt′+1 for each timestep t′ (we use t′ to differentiate
from the input sequence time steps), the decoder assigns a predicted probability to each possible token
occurring at step ŷt′+1 conditioned on both the previous tokens ŷ1, . . . , ŷt′+1 and the context variable
C, i.e.

P(ŷt′+1 | ŷ1, . . . , ŷt′+1,C)

Therefore, to decode the subsequent token ŷt′+1, we calculate the hidden state st′+1 as a gated hidden
unit computed by

st′+1 = g(st′ , ŷt′ ,C)

with the math mentioned here.
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Again, note that this encoder-decoder model is comprised of two completely separate deep models with their
own parameters, and so it is not simply just one long RNN that starts generating outputs only after it takes
in all the inputs. Sometimes, the inputs to the decoder may not be shown in diagrams since it is assumed
that they are always the previous node’s outputs. Furthermore, we can also see that there is no clear-defined
first input for the decoder model, since this is the beginning of the sequence. We usually just put some
special “start" element in here to denote the beginning of the output.

Here is a diagram for a encoder-decoder model for a 2-layer LSTM which is the standard for practical use,
which encodes the sentence meaning in the vectors c[2]t ,h

[2]
t , c

[1]
t ,h

[1]
t . In practice, high performing RNNs are

usually multilayer (almost alway greater than 1, but diminishing performance returns as number of layers
increases), but are not as deep as convolutional or feed forward networks.

Again, to train this model, we do the same backpropagation algorithm on a normalized loss function with
teacher forcing over a parallel dataset. What is nice about the encoder-decoder seq2seq is that it can be
completely implemented end-to-end, so we can backpropagate through the entire decoder and encoder to
train the both models simultaneously.
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5.2.1 Decoding Schemes

Note that every sequential output of the decoder takes the output of the final layer hidden cell, multiplies it
by some matrix, and finally invokes some activation function on it. Consider a classification problem where
we have V classes, with a linear map mapping to RV , followed by a softmax activation. It seems most
natural to choose the class that has the maximum probability from the softmax, but this greedy algorithmic
approach may not be ideal since we may be giving up long term benefits for short term ones. What we really
want to do find the sequence y that maximizes

P(y | x) =
T∏

t=1

P(yt | y1, . . . , yt−1, x)

Clearly, computing the joint probability distribution over all sequences is too expensive, so we can do beam
search decoding. The main idea is that on each step of the decoder, we keep track of the k (in practice
around 5 to 10) most probable partial outputs. For example in the case of machine translation, given a beam
size of k = 2, we can keep track of the (log) probabilities of the sequences and only keep track of the top 2.

1. Given the START token, say that the k most probable next words were “he" (−0.7) and “I" (−0.9).

2. Now we look at the two most likely next words for each of “he" and “I" and out of the four possibilities,
we compute the two most likely ones, which is “he hit" (−1.7) and “I was" (−1.6).

3. We keep track of “he hit" and “I was" and find the two most likely next words for each, leading us to
another four possibilities. We compute the two most likely ones, which is “he hit me" (−2.5) and “he
hit a" (−2.8).
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4. We keep repeating this.

One more condition to mention is when to stop generating words. In greedy decoding, we usually decode
until the model produces an END token. In beam search decoding, different hypotheses may produce END
tokens on different timestamps, and so every time we have a complete hypothesis, we can place it aside
and continue exploring other hypotheses via beam search. We can continue beam searching until we reach
some predetermined cutoff timestep T or we have at least n completed hypotheses (where n is also some
predetermined cutoff). We have a slight problem that longer hypotheses will have lower log probabilities, so
we can choose the best output sequence by taking the average log probabilities (which corresponds to the
geometric mean of the probabilities).

score(yt+1, . . . , yT ) =
1

T − t
logPLM (y1, . . . , yt | x) =

1

T − t

T∑
k=t+1

logPLM (yk | yt+1, . . . , yk−1, x)

5.3 More Flexible Models
By combining these neural nets, we can essentially create image captioning (with a CNN encoder and RNN
decoder) and image generation (RNN encoder and CNN decoder).

Figure 10: Image captioning on various image prompts.

6 Linear Factor Models
So far, we have delved mainly in classification or regression problems. That is, we take a neural net and
input in a vector, picture, or sequence to try and determine what it is.3 The encoder-decoder models may
seem like it generated new words, but this does not make them truly generative since given the same input,
they will always output the same image, sequence of words, or whatever. The neural net is simply hardwired
to process the encoded vector in a deterministic way. Now, we will truly focus on generative models, which
model the distribution of data.

3Except the autoencoder, which simply just constructs a lower-dimensional latent representation of the inputs and is therefore
unsupervised.
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Throughout this course, neural networks have been used as feature extractors of some high-dimensional input.
We have trained the network to pick good features, which live in some vector space that is directly relevant to
what our prediction should be. Often, this vector space is not interpretable and can be seen as a latent space
of hidden/latent variables. In unsupervised learning, constructing a good latent representation of our data
can be extremely useful. Say that we want to do density estimation for the probability distribution of the
covariates x, a random variable. We can try to model it directly, but this may be infeasible. Rather, what we
do is “add" a latent distribution h, creating the joint distribution (x,h). This may look more complicated,
but make two simplifying assumptions: we hope that we can model the latent h in a simple form (like a
Gaussian), and we can model the conditional probability p(x | h) as some function fθ parameterized by θ.
We can therefore marginalize and find that

p(x) =

∫
p(x | h) p(h) dh = Eh[p(x | h)] (22)

Like we do with everything else in math, we take a look at the simplest example: linear functions.

In linear factor models, we start with the unknown covariate distribution x ∈ Rd, and we create a latent
variable h ∈ Rk (k is to be chosen). We first assume that

h ∼ p(h)

comes from some predefined distribution, with the only constraint being that it is factorable (i.e. is the
product of its marginal distributions: p(h) =

∏
i p(hi)) so that it is easy to sample from. Occasionally, the

stronger assumption of the hi’s being iid is made. Then, we assume that

x = Wh+ b+ ϵ

where the noise ϵ is typically Gaussian and diagonal (but not necessarily the same component-wise variances).
Finally, we can use techniques like MLE to estimate W,b, and the parameters of ϵ.

The entire reason we want to do this is that we are hoping that h ∈ Rk and x ∈ Rd, and d >> k.
Therefore, W is a d× k matrix, and the latent variables h give a more compact (parsimonious) explanation
of dependencies between the components of the observations x. We will look at 3 specific cases of linear
factor models: Probabilistic PCA, Factor Analysis, and Independent Component Analysis.

6.1 Factor Analysis and Probabilistic PCA

Example 6.1 (Factor Analysis)

Factor analysis is a specific case of a linear factor model where

x = Wh+ b+ ϵ, where h ∼ N(0, I), ϵ ∼ N(0, σ2)

It should be clear to us that x should be Gaussian and that E[x] = b, with

Var[x] = E[(x− b)(x− b)T ]

= E[(Wh+ ϵ)(hTWT + ϵT )]

= E[WhhTWT ] + E[ϵϵT ]
= WE[hhT ]WT + E[ϵϵT ]
= WWT + diag(σ2

1 , . . . , σ
2
d)

The W,b, and σ can be estimated using MLE methods. Unfortunately, no closed form exists, so
iterative methods are commonly applied.

Note that in here, we do not assume that the variances of the hi’s are the same, though they are independent.
This means that the subspace generated by the MLE estimate of W will not necessarily correspond to the
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principal subspace of the data. But we can make this happen with one more assumption. Before we get into
probabilistic PCA, let’s review regular PCA.

Example 6.2 (PCA)

Example 6.3 (Probabilistic PCA)

In PPCA, we assume everything we did for factor analysis, but now also that σ1 = . . . = σk = σ. In
this case,

x ∼ N(b,WWT + σ2I)

and the MLEs for W,b, σ have a closed form, and model parameter estimation can be performed
iteratively and efficiently. We define. It is pretty clear that

b̂MLE =
1

N

N∑
i=1

x(i)

and setting

V̂arMLE(x) = S =
1

N

N∑
i=1

(x(i) − b)(x(i) − b)T

which is the biased, but MLE estimator of the variance, let us derive the MLE of W. Say that W∗

is an MLE, then, for any unitary U ∈ Rk×k, we have

W∗W∗T = (W∗U)(W∗U)T

which means that the MLE is not unique. We can find the MLE estimate of σ first by taking a look at
C = Var[x] = WWT +σ2I. It is the sum of positive semidefinite patrices that are also symmetric, so
by the spectral theorem it is diagonalizable and has full rank d. But WWT is rank k, so d− k of the
eigenvalues of WWT is 0, indicating that the same d− k smallest eigenvalues of C is σ2. Therefore,
we can take the smallest d− k eigenvalues of our MLE estimator of C, which is S, and average them
to get our MLE for σ.

σ̂2
MLE =

1

d− k

d∑
j=k+1

λj

We can approximate WWT = C − σ2I ≈ S − σ̂2
MLEI, and by further taking the eigendecomposition

C = UΣUT =⇒ WWT = U(Σ − σ2I)UT and cutting off the last d − k smallest eigenvalues and
their corresponding eigenvectors, we can get

WML = Uq(Λd − σ̂2
MLEId)

1/2R

where the R just accounts for any unitary matrix.

Now as σ → 0, the density model defined by PPCA becomes very sharp around these d dimensions spanned
by the columns of W. At 0, our MLE of W is simplified and we have

x = WMLEh+ bMLE + ϵ = UqΛ
1/2
q h+ bMLE

which essentially reduces to regular PCA. That is, the conditional expected value of h given x becomes an
orthogonal projection of x− b onto the subspace spanned by the columns of W.
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6.2 Independent Component Analysis
Another special case of linear factor model is ICA. In our setting, let us just assume that b = 0 and ϵ = 0.
That is, we have the simple model

x = Wh

In here, x ∈ Rd is a mixture vector and W ∈ Rd×d is a mixing matrix. Note that the hidden h has the
same dimensions as x, but this can be generalized to rectangular matrices. Both W and h are unknown,
and we need to recover them given x. In linear ICA, we have two strong assumptions:

1. Each component of h is independent (not just uncorrelated). This is an easy enough assumption to
intuit.

2. Independent components of h must not be Gaussian. This is needed for us to be able to “unmix"
the signals. To see why, just suppose h was Gaussian, and so the vector Rh is also Gaussian for any
invertible R. Therefore, we could find an infinite number of solutions of form

x = WR−1Rh

and I have no way to separate them.

There are further ambiguities with ICA.

1. Estimating the latent components up to a scaling factor.

x = (αW)(
1

α
h) for some α > 0

We can fix this by forcing E[h2
i ] = 1. However, there is still an ambiguity for the sign of hidden

components, but this is insignificant in most applications.

2. Estimating the components up to permutation. We have

x = WP−1Ph

for some permutation matrix P.

Now let’s see how linear ICA actually estimates W and h. Once W is estimated, the latent components of
a given test mixture vector, x∗ is computed by h∗ = W−1x∗. So now all there’s left to do is to estimate W,
which we want to estimate so that W−1x is far from Gaussian. The reason for this is that given a bunch
of independent non-Gaussian hi’s, if we mix them with a matrix that is not ±I , then by CLT, a linear
combination of random variables will tend to be Gaussian, and so for an arbitrary W we would expect x to
be Gaussian. Therefore, what we want to do is guess some matrix A, and compute

Ax = AWh

and if we get things right, A ≈ W−1, and the result of Ax would look pretty non-Gaussian. If it it not
the case, then AW will still be some mixing matrix, and so Ax would look Gaussian. So now the question
reduces to how do we choose this A? There are multiple ways to measure non-Gaussianity:

1. The absolute or squared kurtosis, which is 0 for Gaussians. This is a differentiable function w.r.t. W,
so we can try maximizing it. This is done for the sample kurtosis, of course.

2. Another measure is by maximizing the neg-entropy.

We can perform this on three mixed signals with additive noise, and ICA does very well, though again some
recovered signals are scaled or permuted weirdly.
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6.3 Slow Feature Analysis
Slow feature analysis also another special case of a linear factor model that uses information from time signals
to learn invariant features. It is motivated by a general principle called the slowness principle. The idea
is that the important characteristics of scenes change very slowly compared to the individual measurements
that make up a description of a scene. For example, in computer vision, individual pixels can change very
rapidly. If a zebra moves from left to right across the image, an individual pixel wil rapidly change from
black to white. By comparison, the feature indicating whether a zebra is in the image will not change at
all, and the feature describing the zebra’s position will change slowly. Therefore, we want to regularize our
model to learn features that change slowly over time.

We can apply the slowness principle to any differentiable model trained with gradient descent. That is, we
can add the following term to the loss function:

λ
∑
i

d
(
f(x(t+1)), f(x(t))

)
where λ is a hyperparameter determining the strength of the slowness regularization term, t is the time
index, f is the feature extractor to be regularized, and d is the distance between f(x(t)) and f(x(t+1)). A
common choice for d is the mean squared difference.

Essentially, given a set of time-varying input signals x(t), SFA learns a nonlinear function f that transforms
x into slowly-varying output signals y. Obviously, we can’t just take some trivial function like f = 0, so we
have the following constraints

Et[f(x
(t))i] = 0

Et[f(x
(t))2i ] = 1
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We can restrict the nonlinear f to some subspace of functions, and this becomes a standard optimization
problem where we solve

min
θ

Et

[(
f(x(t+1))i − f(x(t))i

)2]
6.4 Sparse Coding
What we want to do in sparse coding is that for each input x(t), we want to find a latent representation
h(t) s.t. 1) it is sparse (i.e. has many 0s) and 2) we can reconstruct the original input x(t) well. We have
basically two things to optimize: the latent representations h and the decoding mechanism, which we can
do with a dictionary matrix D. Therefore, we want to perform the joint optimization

min
D

1

T

T∑
t=1

min
h(t)

1

2
||x(t) −Dh(t)||22︸ ︷︷ ︸

reconstruction error

+ λ||h(t)||1︸ ︷︷ ︸
sparsity penalty

To break this term down, let’s just assume that we have a fixed dictionary D. Then, we just need to minimize
with respect to each h(t). Now we can add the dictionary parameter back again.

Note that the reconstruction, or decoding, of x′ = Dh is linear and explicit, but if we want to encode x 7→ h,
we need to substitute the x into the term above and minimize it w.r.t. D and h to solve it. Therefore, this
encoder is an implicit and nonlinear function of x.

For example, we can reconstruct an image of a seven as a linear combination of a set of images. Note that
each of the images of strokes are columns of W and the coefficients make up the sparse vector h.

Let’s think about how we can optimize the objective function w.r.t. h, keeping D constant. We can do
stochastic gradient descent, which gives us the steps

∇h(t)L(x(t)) = DT (Dh(t) − x(t)) + λ sign(h(t))

but this wouldn’t achieve sparsity since it overshoots the 0 all the time. Therefore, we can clip it, or we can
use proximal gradient descent/ISTA to take a step, and shrink the parameters according to the L1 norm.

h(t) = h(t) − αDT (Dh(t) − x(t))

h(t) = shrink(h(t), αλ)

where shrink(a,b) = [. . . , sign(ai) max(|ai| − bi, 0), . . .]. This is guaranteed to converge if 1/α is bigger than
the largest eigenvalue of DTD.

7 Boltzmann Machines

7.1 Graphical Models
Graphical models allow a nice way to represent complex probability distributions with some dependence
relationship.
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7.1.1 Directed Graphical Models

Definition 7.1 (Directed Probability Graph)

A probability graph is a directed acyclic graph of M nodes representing a joint probability distri-
bution of M scalar random variables. An edge pointing A → B means that the B is conditionally
dependent on A, and that there is a very clear casual relationship coming from A to B.

graphics need to be added
The parents of a node xi is denoted pai, and the entire joint distribution can be broken up as such:

p(x) =

M∏
m=1

p(xm | xpam)

Example 7.1 (Relay Race)

TBD

Bayesian modelling with hierarchical priors.

Definition 7.2 (Ancestral Sampling)

We can sample from the joint distribution by sequentially sampling starting from the parents to the
final children, and discarding the ones (marginalizing) that we don’t wish to sample.

Example 7.2 ()

We first provide some motivation from a computational complexity perspective. Given a joint distri-
bution of 2 random variables x1,x2, say which are multinomial with K classes, their joint distribution
p(x1,x2) is captured by K2− 1 parameters. For a general M random variables, then we have to keep
a total of KM − 1 parameters, and this increases exponentially.

TBD
By building a directed graph with say r maximum number of variables appearing on either side of
the conditioning bar in a single probability distribution, then the computational complexity scales as
O(Kr), which may save a lot of effort if r << M .

Extending upon this example, we can see that we want to balance two things:

1. Fully conncted graphs have completely general distributions and have O(KM−1) number of parameters
(too complex).

2. If there are no links, the joint distribution fully factorizes into the product of its marginals and has
M(K − 1) parameters (too simple) .

Graphs that have an intermediate level of connectivity allow for more general distributions compared to the
fully factorized one, while requiring fewer parameters than the general joint distribution. One model that
balances this out is the hidden markov model.

Example 7.3 (Chain Graph)

Consider an M -node Markov chain. The marginal distribution p(x1) requires K − 1 parameters, and
the remaining conditional distributions p(xi | xi−1) requires K(K − 1) parameters. Therefore, the
total number of parameters is

K − 1 + (M − 1)(K − 1)K ∈ O(MK2)
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which scales relatively well, and we have

p({xm}) = p(x1)

M∏
m=2

p(xm | xm−1)

TBD
We can turn this same graph into a Bayesian model by introducing priors for the paramters. Therefore,
each node requires an additional parent representing the distribution over parameters (e.g. prior can
be Dirichlet)

p({xm, µm}) = p(x1 | µ1)p(µ1)

M∏
m=2

p(xm | xm−1, µm)p(µm)

with p(µm) = Dir(µm | αm) for some predetermined fixed hyperparameter αm.

We could also choose to share a common prior over the parameters, trading flexibility for computa-
tional feasibility.

Another way to make more compact representations is through parameterized models. For example, if we
have to compute p(y = 1 | x1, . . . ,xM ), this in general has O(KM ) parameters. However, we can obtain a
more parsimonious form by using a logistic function acting on a linear combination of the parent variables

p(y = 1 | x1, . . . ,xm) = σ

(
w0 +

M∑
i=1

wixi

)
= σ(wTx)

We can look at an example how this is applied to sampling from high-dimensional Gaussian with linear
Gaussian models.

Example 7.4 (Multivariate Gaussian)

Consider an arbitrary acyclic graph over D random variables, in which eachnode represents a single
continuous Gaussian distribution with its mean given by a linear function of its parents.

p(xi | pai) = N

(
xi

∣∣∣∣wijxj + bj , vi

)
Given a multivariate Gaussian, let us try to decompose it into a directed graph. The log of the joint
distribution takes form

ln p(x) =

D∑
i=1

ln p(xi | pai) = −
D∑
i=1

1

2vi

(
xi −

∑
j∈pai

wijxj − bi

)2

+ const
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To compute the mean, we can see that by construction, every xi is dependent on its ancestors, so

xi =
∑
j∈pai

wijxj + bi +
√
viϵi, ϵi ∼ N(0, 1)

so by linearity of expectation, we have

E[xi] =
∑
j∈pai

wijE[xj ] + bi

So again, we can start at the top of the graph and compute the expectation. To compute covariance,
we can obtain the i, jth element of Σ with a recurrence relation:

Σij = E[(xi − E[xi])(xj − E[xj ])]

= E
[
(xi − E[xi])

( ∑
k∈paj

wjk(xk − E[xk]) +
√
viϵj

)]
=

∑
k∈paj

wjkΣik + Iijvj

If there were no links in the graphs, then the wij ’s are 0, and so E[x] = [b1, . . . , bD], making the
covariance diagonal.If the graph is fully connected, then the total number of parameters is D +
D(D − 1)/2, which corresponds to a general symmetric covariance matrix.

Example 7.5 (Bilinear Gaussian Model)

Consider the following model

u ∼ N(0, 1)

v ∼ N(0, 1)

r ∼ N(uv, 1)

where the mean of r is a product of 2 Gaussians. This is also a parameterized model.

Definition 7.3 (Conditional Independence in Directed Graphs)

We say that a is independent of b given c if

p(a | b, c) = p(a | c)

or equivalently,
p(a, b | c) = p(a | b, c) p(b | c) = p(a | c) p(b | c)

Conveniently, we can directly read conditional independence properties of the joint distribution from
the graph without any analytical measurements.
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Example 7.6 ()

We can demonstrate conditional independence with iid data. Consider the problem of density esti-
mation of some dataset D = {xi} with some parameterized distribution of µ. As shown below, if we
condition on µ and considered the joint over the observed variables, the variables are independent,
but if we integrate out µ, the observations are no longer independent.

The example above identifies a node (the parent µ) where, if observed, causes the rest of the nodes to become
independent. We can extend on this idea by taking an arbitrary xi and finding a set of nodes such that if
they are observed, then xi is indepedent from every other node.

Definition 7.4 (Markov Blanket)

The Markov blanket of a node is the minimal set of nodes that must be observed to make this node
independent of all other nodes. It turns out that the parents, children, and coparents are all in the
Markov blanket.

One final interpretation is that we can view directed graphs as distribution filters. We take the joint
probability distribution, will starts off as fully connected, and the directed graphs “filters" away the edges
that are not needed. Therefore, the joint probability distribution p(x) is only allows through the filter if and
only if it satisfies the factorization property.

7.1.2 Undirected Graphical Models

As the name implies, undirected models use undirected graphs, which are used to model relationships that go
both ways rather than just one. Unlike directed graphs, which are useful for expressing casual relationships
between random variables, undirected graphs are useful for expressing soft constraints between random
variables.
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Definition 7.5 (Conditional Independence in Undirected Graphs)

Fortunately, conditional independence is easier compared to directed models. We can say A is con-
ditionally independent to B given C if C blocks all paths between any node in A and any node in
B.

Definition 7.6 (Markov Blanket in Undirected Graphs)

The Markov blanket of a node, which is the minimal set of nodes that must be observered to make
this node independent of the rest of the nodes, is simply the nodes that are directly connected to that
node.

Therefore, the conditional distribution of xi conditioned on all the variables in the graph is dependent
only on the variables in the Markov blanket.

Now, let us talk about how we can actually define a probability distribution with this graph.

Definition 7.7 (Clique)

In an undirected graph, a clique is a set of nodes such that there exists a link between all pairs of
nodes in that subset. A maximal clique is a clique such that it is not possible to include any other
nodes in the set without it ceasing it to be a clique.

Given a joint random variable x represented by an undirected graph, the joint distribution is given by the
product of non-negative potential functions over the maximal cliques

p(x) =
1

Z

∏
C

ϕC(xC)

where
Z =

∫
p(x) dx

is the normalizing constant, called the partition function. That is, each xC is a maximal clique and ϕC is
the nonnegative potential function of that clique.

This assignment looks pretty arbitrary. How do we know that any arbitrary joint distribution of x, which
has a undirected graphical representation, can be represented as the product of a bunch of functions over
the maximum cliques? Fortunately, there is a mathematical result that proves this.
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Theorem 7.1 (Hammersley-Clifford)

The joint probability distribution of any undirected graph can be written as the product of potential
functions on the maximal cliques of the graph. Furthermore, for any factorization of these potential
functions, there exists an undirected graph for which is the joint.

Example 7.7 ()

For example, the joint distribution of the graph below

factorizes into
p(A,B,C,D) =

1

Z
ϕ(A,C)ϕ(C,B)ϕ(B,D)ϕ(A,D)

Note that each potential function ϕ is a mapping from the joint configuration of random variables in a clique to
non-negative real numbers. The choice of potential functions is not restricted to having specific probabilistic
interpretations, but since they must be nonnegative, we can just represent them as an exponential. The
negative sign is not needed, but is a remnant of physics notation.

p(x) =
1

Z

∏
C

ϕC(xC) =
1

Z
exp

{
−

∑
C

E(xC)

}
=

1

Z
exp

{
− E(x)

}︸ ︷︷ ︸
Boltzmann
distribution

Any distribution that can be represented as the form above is called a Boltzmann distribution. So
far, all we stated is that the joint probability distribution can be expressed as the product of a bunch of
potential functions, but besides the fact that it is nonnegative, there is no probabilistic interpretation of
these potentials (or equivalently, the energy functions). While this does give us greater flexibility in choosing
potential functions, we must be careful in choosing them (e.g. choosing something like x2 may cause the
integral to diverge, making the joint not well-defined).

Clearly, these potential functions over the cliques should express which configuration of the local variables are
preferred to others. It should assign higher values to configurations that are deemed (either by assumption
or through training data) to be more probable. That is, each potential is like an “expert" that provides some
opinion (the value) on a configuration, and the product of the values of all the potential represents the total
opinion of all the experts. Therefore, global configurations with relatively high probabilities are those that
find a good balance in satisfying the (possibly conflicting) influences of the clique potentials.

Example 7.8 (Transmission of Colds)

Say that you want to model a distribution over three binary variables: whether you or not you, your
coworker, and your roommate is sick (0 represents sick and 1 represents healthy). Then, you can
make simplifying assumptions that your roommate and your coworker do not know each other, so it
is very unlikely that one of thme will give the other an infection such as a cold directly. Therefore,
we can model the indirect transmission of a cold from your coworker to your roommate by modeling
the transmission of the cold from your coworker to you and then you to your roommate. Therefore,
we have a model of form

hr hy hc
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One max clique contains hy and hc. The factor for this clique can be defined by a table and might
have values resembling these.

hy = 0 hy = 1
hc = 0 2 1
hc = 1 1 10

Table 1: States and Values of hy and hc

This table completely describes the potential function of this clique. Both of you are usually healthy,
so the state (1, 1) gets the maximum value of 1. If one of you are sick, then it is likely that the other
is sick as well, so we have a value of 2 for (0, 0). Finally, it is most unlikely that one of you is sick
and the other healthy, which has a value of 1.

7.2 Boltzmann Machines
Now that we’ve learned about graphical models, let’s put them to use. We have some unknown joint
distribution x, and we want to represent it in a graph such that it is not too computationally hard to
calculate probabilities and sample from them, but at the same time not so simple such that it doesn’t richly
capture a broad family of probability distributions. One architecture is to use Markov Random Fields,
which represent these joint distributions with undirected graphs satisfying the Markov properties.

The Hammersley-Clifford theorem states that the joint PDF of any MRF can be written a a Boltzmann
distribution. For now, we will limit outselves to parwise MRFs, which only capture dependencies between
cliques of maximum size 2. For example, a MRF can be represented with the graph G(V,E) below.

Definition 7.8 (Bernoulli Pairwise Markov Random Fields)

MRFs with binary variables are sometimes Ising models in statistical mechanics, and Boltzmann
machines in machine learning. By Hammersley-Clifford, we don’t even need to specify the individual
functions over the maximal cliques, and rather we can just specify the energy function E(x) of the
Boltzmann distribution that the MRF encodes. We define it to capture the interactions between
random variables xi up to order 2.

pθ(x) =
1

Z
exp

( ∑
ij∈E

xixjθij +
∑
i∈V

xiθi

)
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Now let’s check its conditional distribution.

p(xk = 1 | x−k) =
p(xk = 1,x−k)

p(x−k)

=
p(xk = 1,x−k)

p(xk = 0,x−k) + p(xk = 1,x−k)

=
exp

(∑
kj∈E xjθkj + xkθk

)
exp(0) + exp

(∑
kj∈E xjθkj + xkθk

)
= σ

{
− θkxk −

∑
kj∈E

xjθkj

}
where the penultimate step comes from evaluating

p(xk = 1,x−k) =
1

Z(θ)
exp

( ∑
ij∈E,k ̸=i,j

xixjθij +
∑

ij∈E,k=i,j

xixjθij +
∑

i∈V,i ̸=k

xiθi + xkθk

)

=
1

Z(θ)
exp

( ∑
ij∈E,k ̸=i,j

xixjθij +
∑
kj∈E

xjθkj +
∑

i∈V,i̸=k

xiθi + θk

)

p(xk = 0,x−k) =
1

Z(θ)
exp

( ∑
ij∈E,k ̸=i,j

xixjθij +
∑

i∈V,i̸=k

xiθi

)
and canceling out like terms in the numerator and denominator. This tells us that MRFs are related
to logistic function.

We have given our first example of a Boltzmann machine. Let’s generalize this a little bit by removing the
restriction that there can only be pairwise connections. Then, we can model the second order interactions
with the slightly more generalized energy function

E(x) = −xTUx− bTx

Now this slightly expands the coverage of probability distributions given our model, and we can see that this
allows us to model Gaussian distributions.

Example 7.9 (Gaussian Markov Random Fields)

If we assume that pθ(x) folows a multivariate Gaussian distribution, we have

p(x | µ,Σ) =
1

Z
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
Since the Gaussian distribution reprsents at most second-order relationships, it automatically encodes
a pairwise MRF. Therefore, we can rewrite

p(x) =
1

Z
exp

(
− 1

2
xTJx+ gTx

)
where J = Σ−1 and µ = J−1g.

Let’s review what we had so far. There is a random vector x for which we would like to model the probability
distribution of.

x1 x2 xD...
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What we can do is model the dependencies between these random elements with linear parameters W and
b, which essentially gives us a Markov Random Field.

However, this is still quite a limited model. For one, due to the linearity of the weight matrix, it always turns
out that the probability of xk = 1 is always given by a linear model (logistic regression) from the values of
the other units. This family of distributions parameterized by θ = {W,b} may not be broad enough to
capture the true p(x). Therefore, we can add latent variables that can act similarly to hidden uits in a MLP
and model higher-order interactions among the visible units. Just as the addition of hidden units to convert
logistic regression into MLP results in the MLP being a universal approximator of functions, a Boltzmann
machine with hidden units is not longer limited to modeling linear relationships between variables. Instead,
the Boltzmann machine becomes a universal approximator of probability mass functions over discrete random
variables.

Definition 7.9 (Boltzmann Machine)

The original Boltzmann machine has the energy function

E(v,h) = −vTRv − vTWh− hTSh− bTv − cTh

It can represent the undirected graph that has connections within the x, within the h, and between
the x and h.

Therefore, by adding latent variables and connecting everything together, this gives us a very flexible
model that can capture a lot of distribtions.

7.2.1 Restricted Boltzmann Machines

Definition 7.10 (Restricted Boltzmann Machine)

Now, if we put a restriction saying that there cannot be any intra-connections in the x and h, then
we get the restricted Boltzmann machine, which has a slightly more resticted form of the energy
function than the general BM. The probability distributions that it can model has a graph that looks
like

with connections only allowed between xi’s and hj ’s, known as a bipartite graph, implying that
the maximum clique length is 2. This model allows the elements of x to be dependent, but this
architecture allows for conditional independence, and not just for x given h, but also h given x.
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Therefore, we already have the extremely nice property that

p(x | h) =
D∏

k=1

p(xk | h)

p(h | x) =
F∏

j=1

p(hj | x)

The fact that we can calculate p(h | x) means that inferring the distribution over the hidden variables is
easy. Keep in mind that there are three architectures we’ve talked about:

1. Markov Random Fields, which model just the original x.

2. Restricted Boltzmann machines, which models x,h and not allowing intra-connections.

3. Boltzmann machines, which models x,h. Boltzmann machines without latent variables are just MRFs.

Definition 7.11 (Bernoulli-Bernoulli RBM)

For now, let us assume that we are trying to estimate the distribution of a Bernoulli random vector
x ∈ {0, 1}D with Bernoulli latent variables h ∈ {0, 1}F . Then, the energy of the joint configuration
is

E(v,h;θ) = −
∑
ij

Wijvihj −
∑
i

bivi −
∑
j

ajhj = −vTWh− bTv − aTh

where θ = {W,a,b} are the model parameters. So we have

pθ(v,h) =
1

Z
exp

(
− E(v,h;θ)

)
=

1

Z

∏
ij

eWijvihj

∏
i

ebivi
∏
j

eajhj

Z =
∑
h,v

exp
(
− E(v,h;θ)

)
where we can think of the exp(hTWx) as encoding the cliques of length 2 and the others as cliques
of length 1.

Let’s get some calculations out of the way.

Lemma 7.1 (Conditional Distributions)

For the Bernoulli RBM, we have

p(hj = 1 | x) = σ(bj +Wj,:x)

p(xk = 1 | h) = σ(ck + hTW:,k)

Proof.

Just use the definition of conditional probability and substitute the result below in the denominator.
The terms will cancel out.
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Lemma 7.2 (Free Energy)

For the Bernoulli RBM, we want to compute the marginal p(x) as

p(x) =
exp(−F (x))

Z

=
1

Z
exp

(
cTx+

H∑
j=1

log
(
1 + exp(bj +Wj,:x)

))

=
1

Z
exp

(
cTx+

H∑
j=1

softplus(bj +Wj,:x)

)

where F is called the free energy. Therefore, p(x) is calculated by taking the product of these
terms, which is why it’s known as a product of experts model.

Proof.

We have

p(x) =
∑

h∈{0,1}H

exp
(
hWx+ cTx+ bTh

)
/Z

= exp(cTx)
∑

h1=0,1

. . .
∑

hH=0,1

exp

(∑
j

hjWj,:x+ bjhj

)
/Z

= exp(cTx)

( ∑
h1=0,1

exp(h1W1,:x+ b1h1)

)
. . .

( ∑
hH=0,1

exp(hHWH,:x+ bHhH)

)
/Z

= exp(cTx)
(
1 + exp(b1 +W1,:x)

)
. . .

(
1 + exp(bH +WH,:x)

)
/Z

= exp(cTx) exp
{
log

(
1 + exp(b1 +W1,:x)

)}
. . . exp

{
log

(
1 + exp(bH +WH,:x)

)}
/Z

=
1

Z
exp

(
cTx+

H∑
j=1

log
(
1 + exp(bj +Wj,:x)

))

Now that we’ve done this, we can finally get to training the model. Now, essentially this is density estimation
problem given dataset D = {x(t)} of iid random variables, we want to maximize the likelihood of pθ, which
is really just equivalent to optimizing Eθ. So, let’s take the average negative log-likelihood and take the
derivative of it

∂

∂θ

1

T

∑
t

− log pθ(x
(t)) =

1

T

∑
t

− log pθ(x
(t))

There’s a lot of computation to do here, so let’s focus on one sample x(t) and claim that the gradient
ultimately ends up as the following.
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Theorem 7.2 ()

It turns out that

∂

∂θ
− log p(x(t)) =

∑
h

p(h | x(t))
∂E(x(t),h)

∂θ
−

∑
x,h

p(x,h)
∂E(x,h)

∂θ

= Eh

[
∂E(x(t),h)

∂θ

∣∣∣∣ x(t)

]
− Ex,h

[
∂E(x,h)

∂θ

]
The derivative of E is easy since we already know the bilinear form by construction. In the left
term, we are taking the expectation w.r.t. p(h | x(t)), which we can factorize out due to conditional
independence, so this is easy. However, the right term requires us to integrate over the joint p(x,h),
which is intractable, and so we just approximate this with a Monte Carlo sample.

Proof.

As a lemma, we first see that ln(Z) = ln
(∑

x,h exp
(
− E(x,h)

))
, and so

∂ ln(Z)

∂θ
= − 1

Z

∑
x,h

exp
(
− E(x,h)

) E(x,h)

∂θ
= −

∑
x,h

p(x,h)
∂E(x,h)

∂θ

We have

− ln p(x) = − ln

{∑
h

exp
(
− E(x,h)

)}
+ ln(Z)

and so we can apply chain rule and multiply both numerator and denominator by 1/Z to get

− ∂

∂θ
ln p(x) =

∑
h exp

(
− E(x,h)

) ∂E(x,h)
∂θ /Z∑

h exp
(
− E(x,h)

)
/Z

+
∂ ln(Z)

∂θ

=

∑
h p(x,h) ∂E(x,h)

∂θ

p(x)
+

∂ ln(Z)

∂θ

=
∑
h

p(h | x) ∂E(x,h)

∂θ
−
∑
x,h

p(x,h)
∂E(x,h)

∂θ

So to calculate the second expectation, we can use a Gibbs sampler to do some numerical integration, but
before we do that, let’s just find the partial of E, which should be simple.

∂E(x,h)

∂Wjk
=

∂

∂Wjk

(
−
∑
jk

Wjkhjxk −
∑
k

ckxk −
∑
j

bjhj

)
= hjxk

and so
Eh

[
∂E(x,h)

∂Wjk

∣∣∣∣x] = Eh[−hjxk | x] =
∑

hj=0,1

−hjxk p(hj | x) = −xkp(hj = 1 | x)

where the final term is a sigmoid. Hence, we have

Eh[∇WE(w,h) | x] = −h(x)xT , where h(x) :=

 p(h1 = 1 | x)
...

p(hH = 1 | x)

 = σ(b+Wx)
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Now we can substitute what we solved into the second expectation, but again this is infeasible to calculate

Ex,h

[
∂E(x,h)

∂θ

]
=

∑
x,h

h(x)xT p(x,h)

The way we do this is through contrastive divergence, which estimates the expectation through Gibbs
sampling. Since we know p(x | h) and p(h | x) easily, we can start sampling the chain for some predetermined
K steps (actually 2K since we are sampling the x and h back and forth), and whatever x̄ you sample at the
end is your estimate. So, once you should update your gradient, you start at the sample x(t), run Gibbs for
k steps, and use that to estimate your gradient, and then move onto the next sample. We can tweak this
procedure, such as persistent CD, where instead of initializing the chain to x(t), we can initialize the chain
to the negative sample of the last iteration.

Therefore, for updating W, we get the following

W = W − α
(
∇W(− log p(x(t)))

)
= W − α

(
Eh[∇WE(x(t),h) | x(t)]− Ex,h[∇WE(x,h)]

)
= W − α

(
Eh[∇WE(x(t),h) | x(t)]− Eh[∇WE(x̄,h) | x̄]

)
= W + α

(
h(x(t))(x(t))T − h(x̄)x̄T

)
and doing this over all three parameters leads to

W←W + α
(
h(x(t))(x(t))T − h(x̄)x̄T

)
b← b+ α

(
h(x(t))− h(x̄)

)
c =← c+ α

(
x(t) − x̂

)
Therefore, contrastive divergence with k iterations gives us the CD-k algorithm. In general, the bigger k
is, the less biased the estimate of the gradient will be, and in practice k = 1 works well for learning good
features. The reason this is called contrastive divergence is that in the gradient update step, we have a
positive sample and a negative sample that both approximates the expected gradient, which constrasts to
each other.

7.2.2 Gaussian Bernoulli RBMs

Now we can talk about Gaussian Bernoulli RBMs.

Definition 7.12 (Gaussian-Bernoulli RBM)

If we assume that v is a real-valued (unbounded) input that follows a Gaussian distribution (with h
still Bernoulli), then we can add a quadratic term to the energy function

E(x,h) = −hTWx− cTx− bTh− 1

2
xTx (23)
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In this case, p(x | h) becomes a Gaussian distribution N(c+WTh, I). The training process is slightly
harder for this, so what we usually do is normalize the training set by subtracting the mean off each
input and dividing the input by the training set standard deviation to get

E(v,h;θ) =
∑
i

(vi − bi)
2

2σ2
i

−
∑
ij

Wijhj
vi
σi
−
∑
j

ajhj (24)

You should also use a smaller learning rate α compared to Bernoulli RBM.

8 Variational Autoencoders
Variational autoencoders are very good at generating fake data/images. The general construction of VAEs,
which bridges graphical models and deep learning, is based on generative probability models and does not
really need to be implemented using neural nets. VAEs based on deep learning were proposed in 2013.

We start off by stating a fundamental problem with autoencoders. The latent space where the encoded
vectors lie may not be contiguous or allow easy interpretation. For example, training an autoencoderon
MNIST and then visualizing the encodings from a 2D latent space shows the formation of distinct clusters,
but there are huge empty spaces (e.g. between 1 and 7) where the labeling may be ambiguous and not allow
us to interpolate effectively.

Ideally, we want the encodings to be close to being contiguous while still being distinct. This allows smooth
interpolation and enables construction of new samples. If the space has discontinuities and you sample a
variation from there, the decoder will simply generate an unrealistic output.
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The general idea here is to replace all the “point-estimates" into distributions in a regular autoencoder. In
a way, we have done this already in softmax classification. In a classification neural network, it takes in
an input x and outputs a softmax vector NN(x) = (p1, . . . , pK)T . This basically means that NN(x) = θ
parameterizes the conditional distribution (in this case, multinomial) of y given x.

Y | X = x ∼ Multinomial(θ = NN(x))

This is a much more efficient way to store conditional distributions than a dim(X)(K − 1) lookup table.

8.1 Deep Latent Variable Models
Latent variable models that uses some deep learning architecture is pretty much what DLVMs are. This is
essentially what we want to extend. We take a latent model (x, z) and want to approximate p(x, z). There
are essentially 2 things we’re interested in:

1. Generation: Computing p(x | z).

2. Inference: Computing p(z | x).

Given a latent sample z we want to find the conditional probability distribution of x given z. We can also
assume a simple prior p(z) and calculate

p(x, z) = p(x | z) p(z)

That is, we generate a latent variable from p(z) and want to use this value to get the parameters of x ∼
pθ(x | z) with some decoder neural network Dθ that parameterizes the distribution. Clearly put, Dθ(z) are
the parameters of X | Z = z.

Example 8.1 (Bernoulli Random Vector)

We would like to approximate a D-dimensional Bernoulli vector x with a latent variable z ∈ RK . We
will assume a prior p(z) ∼ N(0, I), and let us have a neural net Dθ that parameterizes the random
vector x, where xi ∼ Bernoulli(pi) for pi. Then,

p(x | z) =
D∏

d=1

p(xd | z) =
D∏

d=1

pxd

d (1− pd)
1−xd =

D∏
d=1

[Dθ(z)]
xd

d

(
1− [Dθ(z)]d

)1−xd

and we can see that since p has the flexibility of whatever vector in [0, 1]D it can be captured by the
neural net D. It encompasses a broad family of Bernoulli probability distributions.

From the example above, we can see that we have some method to compute p(x | z). We train a neural
net (somehow) and do forward prop on it to generate the correct parameters modeling the distribution of x.
However, computing

p(x) =

∫
p(x, z) dz =

∫
pθ(x | z) p(z) dz

is computationally intractable (note that in RBMs the conditional independence allowed us to integrate over
z easily). To see why, in the example above, the integral becomes

p(x) =
∑

z∈{0,1}K

D∏
d=1

[Dθ(z)]
xd

d

(
1−Dθ(z)]d

)1−xd

︸ ︷︷ ︸
complex

p(z) dz

and integrating over all z’s for more complex spaces is not feasible. Now let’s focus on p(z|x). By Bayes
rule, we can calculate

p(z | x) = p(x | z)p(z)
p(x)
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Where we have established the intractability of the denominator. The first thing that comes to mind is to
just do MCMC since p(z | x) ∝ p(x | z)p(z), but the forward propagation is too slow to sample efficiently.
So, we must use our other trick in the book: variational Bayes/inference.

To do this, we construct another family of probability distributions parameterized by λ: {qλ(z | x)}, and we
want to find a λ such that qλ(z | x) ≈ pθ(z | x). Just like the generation model, we can build another neural
network Eϕ such that λ = Eϕ(x) parameterizes the conditional distribution of z. Essentially we are trying to
construct an encoder and a decoder, which can be represented by the diagram below.

If qλ = pθ, then the diagram commutes, i.e. p(z)pθ(x | z) = p(x)pθ(z | x) = pθ(x, z).

Example 8.2 ()

If λ = (µ,σ), where σ is just the vector representing variances of independent Gaussians, then we
can use the neural network E to get

λ = EncoderNNϕ(x) = Eϕ(x)

In the example, λ = (µ, logσ2) since we want to allow negative values, and qλ(z | x) = N(z | Eϕ(x)) =
N(z; µ,σ2).

Now, just like in RBMs and really any density estimation problem, our job is to maximize the log likelihood
of the training set: ∑

t

log p(x(t))

In order to do this for this problem, we need a little fact to help us:

Theorem 8.1 ()

We have

KL
(
qλ(z | x) || pθ(z | x)

)
= Eqλ(z|x)[log qλ(z | x)] + log pθ(x)− Eqλ(z|x)[log pθ(x, z)]

and hence

log p(x) = KL
(
qλ(z | x) || pθ(z | x)

)
+ Eqλ(z|x)[log pθ(x, z)]− Eqλ(z|x)[log qλ(z | x)]
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Proof.

TBD

So I have to maximize log p(x) with what we have derived just now, but the KL divergence part is intractable,
since pθ(z | x) is intractable. That is the entire reason we chose qλ! Using the fact that the KL divergence is
always greater than or equal to 0, we can drop the term and set a lower bound on the log likelihoods. This
lower bound is called the variational lower bound.

N∑
i=1

log pθ(x
(i)) ≥

N∑
i=1

Eqλ(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eqλ(z|x(i))[log qλ(z | x(i))] = ELBO

If we assume that no two data points share their latent variables with each other, then ELBO decomposes
into the sum of

ELBO =

N∑
i=1

ELBOi

=

N∑
i=1

Eqλ(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eqλ(z|x(i))[log qλ(z | x(i))]

= Eqλ(z|x(i))[log pθ(x
(i) | z)]︸ ︷︷ ︸

likelihood term
(reconstruction part)

−KL(qλ(z | x(i)) || p(z))︸ ︷︷ ︸
closeness of encoding to p(z)

(typically Gaussian)

Typtically, p(z) is chosen to be standard normal. This process is true regardless of it model classes pθ(x(i) | z)
and qλ(z | x) are given by deep neural nets or not. If it is a deep neural net, then it’s called a deep latent
model.

Now to compute gradients, let us denote the ELBO w.r.t. the decoder and encoder paramters as Lθ,λ(x).
Then, we can obtain the unbiased gradient w.r.t. θ as such:

∇θLθ,λ(x) = ∇θ

{
Eqλ(z|x)[log pθ(x, z)]− Eqλ(z|x)[log qλ(z | x)]}

= Eqλ(z|x)
[
∇θ{log p[θ(x, z)− log qλ(z | x)}

]
≈ ∇θ

{
log pθ(x, z)− log qθ(z | x)

}
= ∇θ log pθ(x, z)

where the step with the ≈ just indicates that we approximate the expectation with a sample of size 1 over
some minibatch. However, taking the gradient w.r.t. λ is more complicated since we cannot put the gradient
in the expectation (since we are deriving and integrating w.r.t. λ). Fortunately, for continuous RVs, the
unbiased estimator of the gradient can be obtained through the reparamaterization trick, which is some
change of variable.

8.1.1 Reparameterization Trick

8.2 Variational Autoencoders
In a VAE, the qλ(z | x) is the encoder and the pθ(x | z) is the decoder.

1. Encoding Neural Network: Upon observing x, the neural network E outputs parameters λ.

2. Decoding Neural Network: Upon observing z, the neural network D outputs parameters θ.

We want to optimize (θ, λ). To generate new samples, we just sample from p(z) (usually standard Gaussian)
and use the decoder to sample from x.

This can be extended to deep layers.
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8.3 Conditional VAEs

8.4 Importance Weighted Autoencoders

9 Generative Adversarial Networks
To introduce this topic, let’s go back to the fundamentals talk about what the goal of modeling in general
is. There exists in the real world a true distribution of the data we’re interested in, and a generative model
attempts to copy this distribution so that we can generate new synthetic observations. That is, density
estimation really boils down to making sure that

Pobservations ≈ Psyntheticobs.

The simplest types of densities can be analytically written and can be sampled from directly (e.g. Gaussian
with inverse CDF or Box-Muller transform). More complicated models such as the RBM and VAE cannot
be analytically written, but can still be directly sampled from with probabilities. GANs are implicit in the
way that you can’t estimate the probabilities but you can still sample from them. You essentially want to
take some simple latent distribution and construct a differentiable a Generator model that maps it to a
more complicated distribution in the observable space.

The problem with VAEs is that they tend to generate blurry images, which is the result of optimizing a
variational lower bound rather than the true objective. This makes it easy to identify whether a given image
is from the true dataset or has been artifically generated. In contrast, GANs generate high-resolution images
by optimizing a pair of generator and disciminator neural networks, which play a game where one tries to
bea the other.

1. The generator tries to generate fake samples to fool the discriminator. We sample from a latent space
z and run that through the neural network to get x = Gθg (z).i It should be differentiable, but does not
have to be invertible.

2. The discriminator tries to distinguish between real and fake samples, like a critic which can tell from
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real from fake. It should also be differentiable, and its output is essentially 0 ≤ Dθd(x) ≤ 1, with a
value of 1 if real, 0 if fake.

We want to train these two models against each other, and in the end, we throw D away, since it’s only role
is to force Gθg to work harder, which leaves us with a really good generative Dθg .

Now each of these networks will have its own set of parameters which we have to optimize. We want to
optimize them by maximizing the likelihood such that the model says “real" to the samples from the world
and “fake" to the generated samples. This leads to

L(θd, θg) = V (D,G) = Ex∼real

[
logDθd(x)

]︸ ︷︷ ︸
log-prob that D correctly
predicts real data as real

+Ez

[
log

(
1−Dθd(Gθg (z))

)]︸ ︷︷ ︸
log−probthatD correctly

predicts generated data as fake

Therefore, the discrimiator is trying to maximize its reward (to get max value of 0), and the generator is
trying to minimize the disciminator’s reward (pulling this log probability down to −∞). This is known as a
minimax optimization problem, and we have to find

min
θg

max
θd

V (Dθd ,Gθg )

which is some saddle point. Note that the generator has no effect on the probability of D correctly identifying
real images, so it only focuses on the latter term. The idea is to train both models simultaneously via SGD
using mini-batches consisting of some generated samples and some real-world samples, which is called the
alternative gradient descent algorithm.
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It is usually the case that the generator does better than the disciminator, so we sometimes make k > 1 to
allow more steps for training.

There is a vanishing gradient problem in GANs. For instance, assume that the model Gθg has very bad
parameters, and it generates very bad samples that the disciminator can detect very well. Then, Ez

[
log

(
1−

Dθd(Gθg ))
)]

will be very close to 0, and the generator’s cost will be very flat. Therefore, the gradient would
die out and the generator can’t improve! For example, if D was just a sigmoid function, then we can
approximate the gradient of the expectation with a sample of the gradient, which would die out.

∇θgV (D,G) = ∇θgEz∼q((z)

[
log

(
1−D(G(z))

)]
≈ ∇a log

(
1− σ(a)

)
= −

σ(a)
(
1− σ(a)

)
1− σ(a)

= −σ(a) = −D(G(z))

and so the gradient goes to 0 if D is confident, i.e. D(G(z))→ 0. Therefore, we can modify the cost for the
generator term by changing the cost to

Ez log
(
1−Dθd(Gθg (z))

)
and trying to minimize it.

Theorem 9.1 (Nash Equilibrium)

Given the minimax loss above, for a fixed G, the optimal discriminator D∗
G is given by

D∗
G(x) =

p(x | real)
p(x | real) + p(x | synthesized)

Therefore, the global minimum of the training criterion, maxD V (D,G) is achieved if and only if

p(x | real) = p(x | synthesized)

Proof.

We first have
V (D,G) = Ex∼real logDθd(x) + Ez log

(
1−Dθd(Gθg (‡))

)
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Since G is fixed (i.e. θg is fixed) and acting, we can write the second expectation with respect to the
probability measure induced by G.

V (D,G) = Ex∼real logDθd(x) + Ew∼fake log
(
1−Dθd(w)

)
=

∫
p(x | real) logDθd(x) dx+

∫
p(x | fake) log

(
1−Dθd(x)

)
dx

where the x in the second integral is a dummy variable. Taking the derivative w.r.t. x and setting
equal to 0 gives

p(x | real)
1

Dθd(x)
+ p(x | fake) · −1

1−Dθd(x)
= 0

implies that

Dθd(x) =
p(x | real)

p(x | real) + p(x | fake)

If the discriminator D is optimal, then the generator is minimizing the Jensen-Shannon divergence
between the real and generated (model distributions). However, D is not optimal in practice since we have
limited computational resources, the loss is non-convex, etc.

10 Attention Models
We have seen the power of encoder decoder models, which can be used with a combination of RNNs or
CNNs. Since we can plug and play different architectures, we can process and output different types of
data.4 CNNs were quite strong and have really no problem with scaling ever since the ResNet architecture,
but historically, RNNs had two main problems.

1. They compute sequentially, since the hidden states must be a function of previous hidden states. This
results in a linear time complexity, which is not ideal.

2. By encoding the entire sequence in a hidden latent space of dimension h, we are essentially trying to
compress a possibly very long sequence into a single vector of predetermined dimension. This causes a
bottleneck problem and words that are further away may be “forgotten.”

We will see that attention solves the second bottleneck problem, and self-attention solves the sequential
problem.

In general, feed forward networks treat features as independent, convolutional networks focus on relative
location and proximity, and RNNs have tend to read in one direction. This may not be the most flexible
way to process data, and we have some other problems.

1. When processing images, we may want our CNN to focus on a specific part of the image. For example,
when we see a cat in the corner, other parts of the image does not matter, and we can have our CNN
focus on the specific portion of the image containing the cat.

2. When reading sentences, different words may be interdependent, even if they are not next to each
other, and so we may want to focus on different portions of a sentence (e.g. words 1 3, plus 10 15
which describes an object).

This is where attention comes in to the rescue. Attention is, to some extent, motivated by how we pay visual
attention to different regions of an image or correlate words in one sentence. Human attention allows us
to focus on certain regions or portions of our data with “high resolution" while perceiving the surrounding
data in “low resolution." In a nutshell, attention in deep learning can be broadly interpreted as a vector of
importance weights. First, we will introduce attention in the general setting, then move onto its specific
implementation in RNNs through the seq2seq attention model, and finally its application in CNNs through
Vision transformers.

4CNNs can be used to encode or output images and RNNs can be used to encode or output sequential data.
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10.1 Seq2Seq with Attention
The idea of attention provides a solution to this bottleneck problem. Basically, we want to establish
connections from the decoder to not just the last hidden state of the encoder, but to all of its nodes. Each
encoder node represents some information about each word, and by taking some weighted sum of these
nodes, we can choose which one to put this attention on.

Definition 10.1 (Score Function)

Before we begin, let’s define a metric, called a score function, to determine how similar two words
(more specifically, their embeddings) are. The two simplest ways to do this are:

1. the standard dot product.
score(x,y) = x · y (25)

2. cosine similarity.
score(x,y) =

x · y
||x|| ||y||

(26)

Now that we have the score defined, the heart of attention comes with the query, key, value model. The
general idea is this: for every prediction we want to make (whether it is classifying something or generating
a new output word/token), we want to get its respective query vector and use it to look through key-value
dictionary in order to get the most relevant information from it. With this information, combined with the
query and whatever other information we have, we can make a prediction.

Let’s go through this step by step. What we want to do is associate every input hidden node ht with a
2-tuple consisting of a key-value pair.

ht 7→ (kt,vt) (27)

and associate every hidden output node st with a query value.

sT 7→ qt (28)

Definition 10.2 (Seq2Seq with Vanilla Attention)

Eventually, we would like to learn these key, value, queries, but for now let’s focus on the forward
propagation.

1. The input has been sequentially encoded and we have a special start token s0.
2. For t′ = 0 until the sT ′ is the end token, do the following.

(a) Take the query si and compute the attention score score(si,ht) for all t = 1, . . . , T . This
determines which encoder hidden state we should pay attention to.

et
′
=

[
score(st′ ,h1), . . . , score(st′ ,hT )

]
∈ RT (29)

(b) We take its softmax to get the attention distribution αt′ for this step (a discrete prob-
ability distribution)

αt′ = softmax(et
′
) ∈ RT (30)

(c) We use αt′ to take a weighted sum of the encoder hidden states to get the attention output
at

at′ =

T∑
t=1

αt′

t ht ∈ Rh (31)

which acts as our context vector Ct′ that we can now use in our vanilla seq2seq model.a
Note that this context vector is different for every st′ , so at every step we can choose which
encoder states/words to focus on. b
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Another trick to improve performance is that these attention context vectors can be concatenated
with the previous decoder hidden state to get more information in the already decoded part of the
sentence.

Overall, attention is extremely useful in improving all performance, and it is intuitive with how humans
analyze things, too. It significantly improves neural machine translation by allowing the decoder to focus on
certain parts of the source. It also provides more “human-like" model of the machine translation process (you
can look back at the source sentence while translating, rather than needing to remember it all). It solves the
bottleneck problem and helps with the vanishing gradient problem with these pseudo-residual connections
through the context vector.

Finally, it provides some interpretability, as we can inspect the attention distribution to see what the decoder
was focusing on (which again, we’ve never set explicitly but was learned by the model).

aThis weighted sum is a selective summary of the information contained in the values, where the query determines which
values to focus on. Attention is a way to obtain a fixed size representation of an arbitrary set of representations (the values),
dependent on some other representation (the query).

bThis is similar to a hash map where you have a set of key-value pairs. When you have a query, you want to search through
the keys to see if it matches the query, and then it returns the value of the matched key. In our case, we have a query, and
rather than looking for exact matches, we want to return a similarity score of the query qi across all ki’s and provide a weighted
sum of the corresponding values.
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Code 10.1 ()

For an implementation of this in PyTorch, look here.

Now let’s talk about how these parameters are already learned. The parameters of the model are.

1. The encoding matrices for the usual seq2seq model: We,Ue.

2. Generating key, value, and query vectors for every possible embedding is not practical.5 A more
compact way to represent them are through linear maps, so we are learning matrices Q,K,V such
that

qt′ = Qst′

kt = Kht

vt = Vht

3. We should now have the decoding matrices Wd that takes in the attention context vector (plus maybe
the previous hidden decoder state) and the original matrix Ud.

Therefore, this problem reduces to learning the matrices We,Ue,Q,K,V,Wd,Ud.

Example 10.1 (Score Functions)

Having additional flexibility with the score functions can also improve learning. We provide more
examples here, which give more parameters to learn as well.

1. The general attention model allows us to train a shared-weight matrix, allowing for s ̸= h.

et
′

t = score(st′ ,ht) = sTt′Waht ∈ R

However, it may seem like there are too many parameters in Wa, having to learn sh values.
2. The reduced rank multiplicative attention uses low rank matrices, allowing us to learn only

ks+ kh parameters for matrices Ua ∈ Rk×s,Va ∈ Rk×h where k << s, h.

et
′

t = score(st′ ,ht) = sTt′(U
T
aVa)ht = (Uast′)

T (Vaht) ∈ R

3. Additive attention uses a neural net layer defined

et
′

t = vT
a tanh(Waht +Vast′) ∈ R

where Wa ∈ Rr×h,Va ∈ Rr×s are weight matrices, va ∈ Rr is a weight vector, and r (the
attention dimensionality) is a hyperparameter.

This can be naturally extended to other architectures, as we will explore later.

Example 10.2 (Images)

Given an image of size 224× 224, we can make patches of size 16× 16, and then flatten them to get
a 196 × 768 matrix with a 2-dimensional positional encoding scheme. We can then apply a linear
transformation to get the query, key, and value vectors.

10.2 Self-Attention Layer
While we have solved the bottleneck problem, this entire process is still sequential since every hidden decoder
node requires us to know the previous hidden node. There are two sequential processes in the regular seq2seq

5You would need three dembedding × |V| matrices, where V is the set of our vocabulary, which can go easily past 500,000
elements.
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attention model.

1. The sequential encoding of the input sentence.

2. The sequential decoding of the output sentence. This unfortunately is not possible in transformers to
parallelize.

We will focus on parallelizing the first part by temporarily forgetting about encoder-decoder models and
just thinking about how to incorporate a good encoder with attention that is parallelizable. This extension
is quite simple. Let w1:n be a sequence of words in vocabulary V. The key here is that rather than inputs
having key-values and outputs having queries, all words are associated with a 3-tuple of key, value, query.

xi 7→ (qi,ki,vi) (32)

Definition 10.3 (Standard Scaled Dot-Product Attention)

If we keep the score function to be the dot-product, the derivations become quite simple.
1. For each wi, let xi = Ewi be the word embedding (with E ∈ Rd×|V| the embedding matrix).
2. We transform each word embedding with the (learned) weight matrices Q,K,V.

qi = Qxi =⇒ Q = QX

ki = Kxi =⇒ K = KX

vi = Vxi =⇒ V = VX

where X = [x1, . . . , xn] ∈ Rd×n.
3. We compute pairwise similarities between keys and queries and normalize with the softmax to

get the attention distribution for each word.

eij = qT
i kj , αij =

exp(eij)∑
j′ exp(eij′)

(33)

4. Compute the output for each word as a weighted sum of values.

oi =
∑
j

αijvj (34)

Ultimately, this can be parallelized into one matrix operation.a

Attention(Q,K, V ) = softmax

(
QKT

√
Ek

)
V (35)

where the softmax is done to each row.bc
Therefore, when you do a forward pass on an attention layer with input x, you first get the query
vector q, extract the attention-weighted values from the key-value dictionary, and then return the
weighted sum of the values. To give explicit parameterizations using the query, key, value encoding
matrices, we can write this as

Attention(x ; Q,K,V) = softmax

(
(Qx)(Kx)T√

Ek

)
(Vx) (36)

This will give us a vector o1:n consisting of the encoded vectors for each word in the sentence, and
best of all, this is parallelizable!

aNote that in order to even do such a thing, we must know n beforehand. This can be solved by simply fixing some maximum
length, padding everything to be some null token after the end token, and masking all the null tokens to be 0. More on masking
later.

bWe divide by
√
Ek to stabilize the gradients since as dimensionality increases, the dot product between random vectors
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There are three problems however.

1. This self-attention encoding does not account for the position/order of the words. Therefore, some
positional embedding is needed.

2. Our plan is to stack this layer multiple times on top of each other. However, we are just composing
linear maps ultimately, so some nonlinearity is needed.

3. To use self-attention in decoders, as we will see later on, we don’t want to have any attention on later
parts of a sentence, so we need some way to mask future words.

We will deal with the first two problems and address the third problem in the transformer archictecture.

10.2.1 Tokenization and Positional Embeddings

Given an input (or an output) x, it must be tokenized into a sequence of tokens. This is a general prepro-
cessing step that is done for any input, whether it be a sequence of words, a sequence of regions in an image,
or a sequence of anything. The raw token data will be denoted wi for i = 1, . . . , n.We can then embed these
tokens into a vector space xi ∈ Rd.

As we will see later, attention does not have a way to discern the order of the input sequences. Therefore, we
must add this positional information to the encoding. The most obvious way would be to simply concatenate
the position of the token to the end with an index.

xi 7→ [xi, i] (37)

However, this is not ideal since this tends to corrupt the embedding of the token. Instead, we can think of
adding certain vectors representing components to the original embedding.

xi 7→ xi + pi (38)

Certain ways come to mind, such as simply letting pi be the vector of all i’s. This tends not to work in
progress since the values of i get too large and corrupts the embeddings too much.6 Normalizing the values
of i to be in [0, 1] is disadvantageous because now the positional embedding pi is dependent on the length of
the total input sequence. Therefore, we need two properties:

1. The positional encoding should be independent of the input sequence length.

2. The positional encoding shouldn’t be too large that it corrupts the semantic meaning behind the
original embedding.

It turns out that the sinusoidal function satisfies these properties.

Definition 10.4 (Sinusoidal Position Embedding)

Given the embeddings xi ∈ Rd, we can add a positional encoding to it by

xi 7→ xi + pi

where the positional encoding is given by the vector where each component is defined as

(pi)j =

{
sin

(
i

100002j/d

)
if j is even

cos
(

i
100002j/d

)
if j is odd

(39)

where i iterates through the tokens and j iterates through the dimensions of the embedding.

tend to get large, leading to large softmax inputs. You can simply compute the variance of two d-dimensional Gaussian vectors
and see that their variances scales linearly with d.

cYou can see that if we have simple dot-product similarity scores, then Ek = Ev , but this need not be true in general. We
will explore other similiarity score in the next subsection.

6A helpful Medium article here
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10.2.2 Stacked Attention Layers and Multi-Head Attention

The second problem of introducing nonlinearities is quite simple. Once we have the output of the first self-
attention layer o1:n = [o1, . . . ,on], we can just input each oi through a small MLP to introduce nonlinearity
before inputting it into the next self-attention layer.

Boom, problem solved.

Going back, if we want to look at the attention for token xi, we want to look through all qTi kj for all j and
find out where it is high. But perhaps we want to focus on different j for different reasons. The following
example may illustrate why.

Example 10.3 (Semantic and Syntactic Attention)

Given the sentence I went to the bank and got some money., one type of attention may look at the
semantic meaning of the words, such as associating bank with money. However, we may also want
to look at the syntactic meaning of the words, such as associating went with bank. When we read
sentences, we have different types of attention for different reasons, and so having multiple heads of
attention may be useful.

Definition 10.5 (Multi-Head Attention)

Therefore, let us construct multiple attention heads by defining multiple triplets of (Q,K, V ) matrices.
This may be more computationally inefficient, so we simply scale down the size of these matrices from

Q ∈ REq×d,K ∈ REk×d, V ∈ REv×d

to
Qℓ ∈ REq×d/h,Kℓ ∈ REk×d/h, Vℓ ∈ REv×d/h

where h is the number of heads. We are essentially decreasing the size of the token embedding
dimension in order to get more heads. We can then do attention on each head separately.

Attentionℓ = Attention(Qℓ,Kℓ, Vℓ) = softmax

(
QℓK

T
ℓ√

Ek/h

)
Vℓ (40)

and we can simply concatenate them together to get the final output.

MultiHead(Q,K, V ) = Concat(Attention1, . . . ,Attentionh)W
O
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where WO ∈ Rd×Ev is a learnable weight matrix that mixes these heads together with a final linear
transformation.a This entire process is shown in Figure 11.

Figure 11: Diagram of multi head attention.

10.3 Transformers
With self-attention out of the way, the transformer architecture becomes quite simple. An overview of it is
shown in Figure 12.

aThere is a valid concern that these heads may all end up learning the same thing and may just converge onto the same
thing. However, this is not what happens in practice.

85/ 92



Deep Learning Muchang Bahng Summer 2023

Figure 12: Transformer architecture.

The encoder is quite simple. You take the input embedding and add the positional embeddings to get
{xi ∈ Rd}ni=1. You then pass it through a multi-head self-attention layer, which has outputs of shape
Ev × n, and then pass it through a feed forward network, adding residual connections and normalization
layers to help with training. You then repeat this process N times, which gives out the encoded sequence
h1:n = [h1, . . . ,hn], now ready to be fed into the decoder.7

The decoder has two different self-attention layers. First, we run the generated output sequence through a
masked self-attention layer, which generates the hidden nodes z1:n = [z1, . . . , zn] representing the state of
the currently decoded sentence. Again, we have some maximum output length to ensure that we are working
with a fixed size, and manually mask all tokens after the current one to be 0.

Then, another cross-attention layer takes both h1:n and z1:n and with its trained (K,V,Q), computes the
key, value, and query matrices as

K = Kh1:n, V = Vh1:n, Q = Qz1:n, (41)

now ready to be plugged into to the self-attention formulas, integrating both the inputs and the current
output to generate the result. This again outputs another list of vectors, which are run through an MLP
and then have another set of (K,V,Q) matrices waiting for them. This makes sense, since we want to use
the output sequence to query the input key-values and attend to the correct set of tokens.

The output of this is then passed through a feed forward network, with some residual connections and
normalization, and finally a linear layer transforms the output dimensions to whatever is needed (e.g. size
of the vocabulary, or number of classes). Once this is done, a new word is generated,8 and this word (along
with all previous words) is now used as the new input to the decoder in place of the start token. This process

7You can see that to support iterating through n times, Ev should equal d.
8Note that we have not specified how to get the corresponding word given an embedding vector. This is not within the scope

of these notes and are covered in my natural language processing notes.
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is done until the stop token is generated by the decoder. Notice that we encode with a bidirectional model
(no masking) and generated the target with a unidirectional model (masking).

Note that again, parallelization of the decoder is not possible in the transformer architecture. Additionally,
you can see that more normalization layers and residual connections are needed to train efficiently. This is
very important in practice.

Despite all its advantages, self-attention has quadratic runtime complexity with respect to the sequence
length since we need to compute attention for all pairs of words. This is worse than the linear runtime
complexity in RNNs.

10.3.1 Masking

The final aspect we did not address is the masking. When we are training the transformer on a corpus of
data, the decoder first computes self-attention on all the previous outputs first to get the query, and then
takes in the output of the encoder self-attention layer as the keys and values. Then it does self-attention
once more over these triplets, essentially doing a self-attention layer over the entire input and all tokens up
to the current decoded output.

When training this model, we have access to the entire decoded output, and we want to make sure that we
do not perform self-attention on any future words since it will most likely attend 100% to the next word to
generate the next word! This does not learn anything, so we artificially set the attention distribution for all
future output words to be 0. This is usually done by setting the attention scores to −∞ (or more practically,
a very negative number) which will result in 0 after softmaxing.9

10.4 Practical Implementation
In here we go over the nitty gritty details that comes into implementing a transformer in pytorch==2.3.0.

10.4.1 Key, Value, Query Matrices and In Projections

The first thing is that these key, value, query does not have to necessarily equal to the dimension embedding,
which we will denote as E. One flexibility is that we don’t necessarily need to set the dimensions of the keys,
values, and queries the same. We can see in the constructor of the torch.nn.MultiheadAttention module
that you can input your own dimensions for the keys and values, but queries must be the same as E.

1 def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
add_zero_attn=False,

2 kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
3 ...
4 self.embed_dim = embed_dim
5 self.kdim = kdim if kdim is not None else embed_dim
6 self.vdim = vdim if vdim is not None else embed_dim
7 self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

In fact, K ∈ Rdk×E , V ∈ Rdv×E , then QKT ∈ RE×dk . Since this obviously leads to dimension mismatch
problem when we multiply it with the matrix V , what we do is have an in projection layer that maps
everything to dimension E. We can check this for the following.

Kproj ∈ RE×dk , Vproj ∈ RE×dv , Qproj ∈ RE×E (42)

There are two ways to store these projection matrices, as shown in the constructor.

1 # in the constructor
2 ...
3 self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

9Here is a nice explanation here.
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4

5 if not self._qkv_same_embed_dim:
6 self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
7 self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
8 self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
9 self.register_parameter(’in_proj_weight’, None)

10 else:
11 self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
12 self.register_parameter(’q_proj_weight’, None)
13 self.register_parameter(’k_proj_weight’, None)
14 self.register_parameter(’v_proj_weight’, None)

1. If these shapes are different, then we store them in separate matrices as above.

1 att = nn.MultiheadAttention(embed_dim=50, num_heads=1, bias=False, kdim=30, vdim=40)
2 att.q_proj_weight.shape # torch.Size([50, 50])
3 att.k_proj_weight.shape # torch.Size([50, 30])
4 att.v_proj_weight.shape # torch.Size([50, 40])

2. If these shapes are the same, then we just store them in a 3E × E matrix by concatenation them.

1 att = nn.MultiheadAttention(embed_dim=50, num_heads=1, bias=False)
2 att.in_proj_weight.shape # torch.Size([150, 50])

These conditions are asserted throughout the forward pass as well.

10.4.2 Masking

We multiply by a masking matrix.

10.4.3 Computing Attention

First we reshape them so that they are batch first.

If needs_weights = True, we also output the attention weights in addition to the output, but it is said
that this degrades performance. It is by default true but should be set to false for small tasks.

10.4.4 Forward Pass of MultiheadAttention

First, we should look at the main function that computes self-attention. We omit a large part of the code
to focus on the relevant details.

1 # torch.nn.functional
2 def multi_head_attention_forward(
3 query: Tensor,
4 key: Tensor,
5 value: Tensor,
6 embed_dim_to_check: int,
7 num_heads: int,
8 in_proj_weight: Optional[Tensor],
9 in_proj_bias: Optional[Tensor],

10 bias_k: Optional[Tensor],
11 bias_v: Optional[Tensor],
12 add_zero_attn: bool,
13 dropout_p: float,
14 out_proj_weight: Tensor,
15 out_proj_bias: Optional[Tensor],
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16 training: bool = True,
17 ...
18 ):
19 # first unsqueezes the input if it is not batched.
20

21 # look at the input dimensions and check that multiheads divide it evenly
22 #
23 assert embed_dim == embed_dim_to_check, \
24 f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
25 if isinstance(embed_dim, torch.Tensor):
26 # embed_dim can be a tensor when JIT tracing
27 head_dim = embed_dim.div(num_heads, rounding_mode=’trunc’)
28 else:
29 head_dim = embed_dim // num_heads
30 assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads

{num_heads}"
31 if use_separate_proj_weight:
32 # allow MHA to have different embedding dimensions when separate projection weights are

used
33 assert key.shape[:2] == value.shape[:2], \
34 f"key’s sequence and batch dims {key.shape[:2]} do not match value’s {value.shape[:2]}"
35 else:
36 assert key.shape == value.shape, f"key shape {key.shape} does not match value shape

{value.shape}"
37

38 # Computes in-projection, which is an affine map before doing attention.
39 # in_proj_weight = [W_q, W_k, W_v], in_proj_bias = [b_q, b_k, b_v]
40 # computes q = q * W_q + b_q, k = k * W_k + b_k, v = v * W_v + b_v
41 if not use_separate_proj_weight:
42 q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
43 else:
44 if in_proj_bias is None:
45 b_q = b_k = b_v = None
46 else:
47 b_q, b_k, b_v = in_proj_bias.chunk(3)
48 q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight,

b_q, b_k, b_v)
49

50 # prepare attention mask
51 # add bias along batch dimension
52 # more preparation with mask
53 ...
54 # Now calculate attention
55 if need_weights:
56 # scale q_scale for the sqrt(E) division factor
57 B, Nt, E = q.shape
58 q_scaled = q * math.sqrt(1.0 / float(E))
59

60 if attn_mask is not None:
61 # torch.baddbmm is a pybinded C function implementing matrix multiplication
62 # of form attn_mask + q_scaled @ k^T
63 attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
64 else:
65 # torch.bmm is also a pybinded C function q_scaled + k^T
66 attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
67 ...
68 # softmax it and then multiply it by V.
69 attn_output_weights = softmax(attn_output_weights, dim=-1)
70 attn_output = torch.bmm(attn_output_weights, v)
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71

72 # final linear layer for more weightings.
73 attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
74 attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
75 attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
76

77 # optionally average attention weights over heads
78 attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
79 if average_attn_weights:
80 attn_output_weights = attn_output_weights.mean(dim=1)
81

82 if not is_batched:
83 # squeeze the output if input was unbatched
84 attn_output = attn_output.squeeze(1)
85 attn_output_weights = attn_output_weights.squeeze(0)
86 return attn_output, attn_output_weights

This is precisely the function that is called in the forward method of the MultiheadAttention module.

10.4.5 Transformer

In the transformer, we can see that if we peek at the state dictionary, it composes of an encoder and a
decoder, each with a certain number of attention layers. There are 6 attention layers each by default.

1 transformer = nn.Transformer()
2 transformer.state_dict
3 # output
4 <bound method Module.state_dict of Transformer(
5 (encoder): TransformerEncoder(
6 (layers): ModuleList(
7 (0-5): 6 x TransformerEncoderLayer(
8 (self_attn): MultiheadAttention(
9 (out_proj): NonDynamicallyQuantizableLinear(in_feat

10 ures=512, out_features=512, bias=True)
11 )
12 (linear1): Linear(in_features=512, out_features=2048,
13 bias=True)
14 (dropout): Dropout(p=0.1, inplace=False)
15 (linear2): Linear(in_features=2048, out_features=512,
16 bias=True)
17 (norm1): LayerNorm((512,), eps=1e-05, elementwise_aff
18 ine=True)
19 (norm2): LayerNorm((512,), eps=1e-05, elementwise_aff
20 ine=True)
21 (dropout1): Dropout(p=0.1, inplace=False)
22 (dropout2): Dropout(p=0.1, inplace=False)
23 )
24 )
25 (norm): LayerNorm((512,), eps=1e-05, elementwise_affine=T
26 rue)
27 )
28 (decoder): TransformerDecoder(
29 (layers): ModuleList(
30 (0-5): 6 x TransformerDecoderLayer(
31 (self_attn): MultiheadAttention(
32 (out_proj): NonDynamicallyQuantizableLinear(in_feat
33 ures=512, out_features=512, bias=True)
34 )
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35 (multihead_attn): MultiheadAttention(
36 (out_proj): NonDynamicallyQuantizableLinear(in_feat
37 ures=512, out_features=512, bias=True)
38 )
39 (linear1): Linear(in_features=512, out_features=2048,
40 bias=True)
41 (dropout): Dropout(p=0.1, inplace=False)
42 (linear2): Linear(in_features=2048, out_features=512,
43 bias=True)
44 (norm1): LayerNorm((512,), eps=1e-05, elementwise_aff
45 ine=True)
46 (norm2): LayerNorm((512,), eps=1e-05, elementwise_aff
47 ine=True)
48 (norm3): LayerNorm((512,), eps=1e-05, elementwise_aff
49 ine=True)
50 (dropout1): Dropout(p=0.1, inplace=False)
51 (dropout2): Dropout(p=0.1, inplace=False)
52 (dropout3): Dropout(p=0.1, inplace=False)
53 )
54 )
55 (norm): LayerNorm((512,), eps=1e-05, elementwise_affine=T
56 rue)
57 )
58 )>

10.5 Vision Transformers
We have hinted at attention being applicable in other architectures, and the most popular is in computer
vision. Historically, CNNs were very useful because they take into account the locality and translational-
invariance of objects in images inherently in the convolutions. This is a great strength of convolutional
networks.

Can transformers beat this? These assumptions are not built into the architecture, and researchers were
quite unsuccessful in passing the benchmarks set by CNNs, but it turned out that in 2020, with enough
training and a large enough architecture, vision transformers in fact did surpass CNNs.

11 Learning Methodologies

11.1 Student Teacher Models

11.2 Curriculum Learning

12 Adversarial Learning

13 Semi Supervised Learning
There has been good stream of work done at Google Brain that first came up with MixMatch in 2019 [2],
which combined the state of the art semi supervised methods. This model was then improved the next year
with ReMixMatch [1], and then improved again with a much more simple model called FixMatch [7].

13.1 Pseudo Label Learning
Generating psuedo labels on unlabeled datasets and training on them.
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13.2 Consistency Regularization
Ensuring that the model is consistent with its predictions on certain inputs and neighbors of the inputs. It
relies on the assumption that perturbed versions of the same input should have the same output. When
wanting to make sure that the outputs are consistent with augmentations of the input, this is called aug-
mentation anchoring. There are ways in which we use a combination of weak augmentation and strong
augmentation to achieve this.

13.3 Distribution Alignment

13.4 Weak Supervision

14 Deep Reinforcement Learning
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