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1 Introduction

Ordinary differential equations model deterministic systems that can be solved exactly through integration.
For example, consider the population model determined by a linear DEQ

dN

dt
= α(t)N(t)

where N is the population size and α is a growth rate. Then, we can solve with analysis by integrating the
following with a change of basis

ˆ
1

N(t)

dN

dt
dt =

ˆ
α(t) dt ⇐⇒

ˆ
1

N
dN =

ˆ
α(t) dt

⇐⇒ N(t) = C exp

(ˆ
α(t) dt

)
This classical exponential growth model is not only continuous, but smooth, and it is this smoothness that
allows us to do calculus on it. But more realistic models will have noise, which can be modeled by a random
variable. Let α = r+ η, where r is the deterministic term and η is the random term. Then, integrating gives
us

dN

dt
=

(
r(t) + η(t)

)
N(t) ⇐⇒

ˆ
1

N

dN

dt
dt =

ˆ
r(t) dt+

ˆ
η(t) dt

The first integral can be evaluated, but classical calculus does not allow us to integrate the random part.
This is where stochastic calculus is needed. Now recall from probability that a random variable over a
probability space (Ω,F ,P) is simply a F-measurable function X. As some warm up exercises, let us prove
a few examples.

Example 1.1 (Class 1).

Example 1.2 (Class 2).

Definition 1.1 (Stochastic Process). A stochastic process is a collection of random variables indexed by
time {Xt}t∈T with their respective measures ρt.

1. If T is countable (usually integers), then it is called a discrete-time stochastic process.

2. If T is continuous, then it is called a continuous-time stochastic process.

It is also good to think of it as a probability distribution over a space of paths.

We first start off with Markov processes. We can divide them into four kinds, depending on whether we are
using discrete or continuous time, and whether we are using discrete or continuous state space. Since process
over continuous state space is a natural generalization of those in a discrete one, we only distinguish between
the times. When talking about continuous time, there are additional operators we must introduce, such as
generators. Before we go any further, I would like to mention that these set of notes will write down the
transition matrices of Markov chains as left-stochastic matrices, as they are usually written in convention.
Therefore, a transition matrix would look like

P =

P (1, 1) . . . P (d, 1)
...

. . .
...

P (1, d) . . . P (d, d)


where P (i, j) represents the probability of transition from state i to state j. Therefore, the rows must sum to
1. I use this notation because it is consistent with when we are working with Markov processes over general
measurable state spaces. Note that we will denote in math font general objects and operators (Xt, ρt, Ps, π)
and their realization as vectors and matrices in bold font (ρt,Ps,π).
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1.1 Transitioning from Discrete to Continuous State Space

Let us remind ourselves of the definitions involving Markov chains over a discrete state space. Let Xt

be the state at time t. The discrete distribution of Xt can be represented as a column vector ρt, where
ρt(i) = P(Xt = i), and we can calculate the distribution of Xt+s as

ρt+s
T = ρt

TPs

where Ps is a stochastic matrix. Note that representing a discrete measure on discrete S = {1, . . . , d} with
a vector really just a notational convenience for computations. We must properly distinguish the three:

1. the actual state Xt

2. the probability distribution ρt, which is a measure

3. the PMF vector ρt, which is just a convenient representation of ρt in the way that

ρt(i) = ρt({i}) = P(Xt = i)

That is, the ith element is just the measure on the singleton set {i} ∈ S = 2S .

The PMF vector ρt is really just a way to describe Xt and its distribution, which is redundant. Furthermore,
when we try to describe states Xt in general measure spaces (S,S), we cannot think of it as a vector anymore.
This is not a problem in even countable spaces since we can just assign ρt(i) = P(Xt = i) in a finite space,
but for uncountably infinite spaces we cannot do this. Therefore, we must have some measurable function
f : S → R that extracts this kind information from Xt. Therefore, we must really work with the following:

1. the actual state Xt : (Ω,F ,P) −→ (S,S)

2. the probability distribution ρt of the state Xt

3. a collection of S-measurable functions f : S −→ R that describes the state

At this point, we are not sure what f is since it seems quite arbitrary. But if we fix some A ∈ S and take
f = 1A, then 1A(Xt) encodes the information of whether Xt is in A or not. This is quite nice, since now we
can think of the PMF vector ρt as having components defined by the functions

ρt(i) = 1{i}(Xt) = P(Xt = i)

The following theorem formalizes this concept.

Theorem 1.1. Two random variables X,Y : (Ω,F ,P) → (S,S) have the same distribution if

E[f(X)] = E[f(Y )]

for all F-measurable f : S → R, which can be seen by setting f = 1A for any A ∈ F .

E[1A(X)] = E[1A(Y )] =⇒ P(X ∈ A) = P(Y ∈ A)

=⇒ PX(A) = PY (A)

and so the measure that X and Y pushes forward to (S,S) is precisely the same. This does not mean that
they are the same random variable.

Let’s talk more about f in the discrete case setting. We know that the discrete distributions are represented
by a column vector. It is true that every measurable function can be written as a linear combination of
simple (indicator) functions, and so in a discrete space S = {1, . . . , d}, we can write every f as

f =
∑
i∈S

fi1{i}
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which outputs fi if its input is i. We can interpret it as a column vector f = (f1, . . . , fd)
T . We can see that

ρt
T f =

(
ρt(1) . . . ρt(d)

)f1
...
fd

 = E[f(Xt)]

and if f is any standard unit vector, say (1, 0, 0) with d = 3, then

ρt
T f =

(
ρt(1) ρt(2) ρt(3)

)1
0
0

 = E[1{1}(Xt)] = P(Xt = 1)

Therefore, every time we compute E[f(Xt)], we can think of it in the discrete case as dotting ρt with a
function vector f to extract whatever we want from the vector Xt. And as we will find out later, the
linearity of the stochastic matrix Ps is analogous to the linearity of the Markov semigroup Ps.
Therefore, our Markov process is really just some stochastic process {Xt}t≥0 over some measurable space
(S,S) with the property that

P(Xt+s ∈ A | {Xr ∈ Br}r≤t) = P(Xt+s ∈ A | Xt ∈ Bt)

where A ∈ S, and this captures the discrete case by setting A = {j} ∈ 2S which gives

P(Xt+s = j | {Xr = ir}r≤t) = P(Xt+s = j | Xt = it)

This basically says that the probability that Xt+s lying in A is only dependent on its present state Xt ∈ Bt,
not the history {Xr ∈ Br}r≤t. In fact, by using the identity E[1A] = P(A) and setting f = 1A, we can
capture this effect for all measurable f : (S,S) → (R,R). Thus, the Markov property now looks like

E[f(Xt+s) | {Xr ∈ Br}r≤t] = E[f(Xt+s) | Xt ∈ Bt]

We don’t need to fix the Xr’s into sets Br’s and so we can write

E[f(Xt+s) | {Xr}r≤t] = E[f(Xt+s) | Xt]

Now let’s talk about this Markov property. It is true that σ-algebra σ({Xr}r≤t) is bigger than σ(Xt); the
Markov property does not imply that they are the same size. Rather, we should interpret this as the extra
information introduced by the bigger σ({Xr}r≤) is irrelevant. This is analogous to trying to approximate
a function with a pointlessly large σ-algebra. For example, given a piecewise function X defined on the
unit interval Ω = [0, 1], let G be the σ-algebra generated by [0, 0.5), [0.5, 1] and H be that generated by
[0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1].

Then, we can see that

E[X | G] = E[X | H]
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That is, the two random variables are exactly equal, even though H has more information than G. Note that
this is not the law of iterated expectations. This rule does not say that E[E[X | G]] = E[E[X | H]]; this law
is true regardless. Rather, this property is a special property of the function X, and therefore the Markov
property is a special property of the stochastic process {Xt}t≥0.

2 Discrete-Time Markov Processes

Definition 2.1 (DTMP). Let (Ω,F ,P) be a probability space and (S,S) a measurable space. Then, a
homogeneous discrete-time Markov process is a stochastic process {Xn}n∈N which takes values in S (i.e.
Xn : Ω → S) satisfying the Markov property: for every bounded measurable f and n ≥ 1,

E[f(Xn+m) | {Xr}nr=0] = E[f(Xn+m) | Xn] = (Pmf)(Xn)

Since this is true for all n, this process is time-homogeneous. Note that both sides are random variables,
and it says that the best estimate of f(Xn+m) as a function of {Xr}nr=0 can be simply expressed as as a
function of the current Xn. Notice also that we have given a specific label Pmf to the conditional expectation
on the right hand side.

Since every Xn has distribution ρn, we can describe the entire distribution of Xn by ”extracting” our desired
information f with

E[f(Xn)] =

ˆ
S

f ρn

Now, if we wanted to extract information f from Xn+m, we may not know its distribution ρn+m, but the
Markov property allows us to condition Xn (which we know the distribution of) by integrating over the
measure ρn, which we do know:

E[f(Xn+m] = E[E[f(Xn+m) | Xn]] = E[(Pmf)(Xn)] =

ˆ
S

Pmf ρn

So, Pm is an operator that allows us to compute anything about the distribution of Xn+m from the measure
of Xn. That is, ρn+m(f) = ρn(Pmf).

E[f(Xn+m)] =

ˆ
S

f ρn+m =

ˆ
S

Pmf ρn = E[(Pmf)(Xn)]

for all measurable f . Let us now show how P1 = P realizes as a matrix in the discrete state space case.

Example 2.1 (Transition Operator as a Matrix in Discrete Space). Given S = {1, . . . , d}, let us construct
a column vector ρn representing the distribution of Xn. Then,

ρn+1(j) = P(Xn+1 = j)

= E[1{j}(Xn+1)]

= E[E[1{j}(Xn+1) | Xn]] = E[(P1{j})(Xn)]

=

ˆ
S

E[1{j}(Xn+1) | Xn] dρn =

ˆ
S

P1{j}(Xn) dρn

=
∑
i∈S

P[Xn+1 = j | Xn = i]P(Xn = i) =
∑
i∈S

P1{j}(i)P(Xn = i)

which can be summarized as

ρn+1(j) =

d∑
i=1

P1{j}(i)ρn(i) =

d∑
i=1

P(Xn+1 = j | Xn = i)ρn(i)

We can compactly organize the probabilities of these internode travel inside a d×d right stochastic transition
matrix
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Pt =

P1{1}(1) . . . P1{1}(d)
...

. . .
...

P1{d}(1) . . . P1{d}(d)

 =

P(Xn+1 = 1 | Xn = 1) . . . P(Xn+1 = d | Xn = 1)
...

. . .
...

P(Xn+1 = 1 | Xn = d) . . . P(Xn+1 = d | Xn = d)


and compactly write the above equation as

ρn+1
T = ρn

TPt

It immediately follows from computation that Pm is realized as Pm, the mth power of matrix P, which can
also be shown by the Chapman-Kolmogorov equation below.

Therefore, this linear operator Pm can be seen as analogous to the probability transition matrix Pm of a
Markov chain. We know that since they are matrices, from first glance we would guess that Pm is linear.
This is indeed trivial by linearity of conditional expectation.

Lemma 2.1. Pm is a linear operator. That is, for α, β ∈ R, and bounded measurable functions f, g,

Pm(αf + βg) = αPmf + βPmg

Proof. By linearity of conditional expectation,

(Pm(αf + βg))(Xn) = E[(αf + βg)(Xn+m) | Xn]

= E[(αf)(Xn+m) | Xn] + E[(βg)(Xn+m) | Xn]

= α(Pf)(Xn) + β(Pg)(Xn)

■

We can now interpret linearity and the Markov property in the discrete space.

Example 2.2 (Markov Property in Discrete Space). If we wanted to extract information from Xn with
function f (i.e. compute E[f(Xn)]), we can calculate

E[f(Xn)] = ρn
T f =

(
ρn(1) . . . ρn(d)

)f1
...
fd


Now, say that m units of time later, we want to extract information f from Xn+m by computing

E[f(Xn+m)] = ρn+m
T f =

(
ρn+m(1) . . . ρn+m(d)

)f1
...
fd


The problem is that we don’t know what the distribution of Xn+m is (i.e. don’t know ρn+m(i)), so we get
its expectation by conditioning it on Xn, which realizes as taking the expectation of a different function
Pmf with respect to ρn.

E[f(Xn+m)] = E[E[f(Xn+m) | Xn]] = E[(Pmf)(Xn)] =
(
ρn(1) . . . ρn(d)

)(Pmf)1
...

(Pmf)d


It turns out that this transformation f 7→ Pmf (from row vector to row vector) is linear, and so we can
interpret Pm as f that has been left-multiplied by some transformation matrix Pm.
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(
ρn(1) . . . ρn(d)

)(Pmf)1
...

(Pmf)d

 =
(
ρn(1) . . . ρn(d)

) Pm


f1

...
fd


︸ ︷︷ ︸

Pmf

It turns out that this Pm acts linearly on f through left multiplication, but we can also right-multiply ρn

by Pm to get the new distribution of Xn+m!

(
ρn(1) . . . ρn(d)

)(Pmf)1
...

(Pmf)d

 =
(
ρn(1) . . . ρn(d)

) Pm


︸ ︷︷ ︸

ρn
TPm=ρn+m

T

f1
...
fd


Therefore, it turns out that the linearity of Pm on f implies linearity of it on the vector ρn.

Now focusing on f = 1A, we can define the following.

Definition 2.2 (Transition Probability). Let us have Markov process (Xn) with operator Pm. The function
pm : S × S → R defined

pm(x,A) := Pm1A(x) = E[1A(Xn+m) | Xn = x] = P(Xn+m ∈ A | Xn = x)

is the transition probability, or transition kernel, of this chain. Note that

1. For each x ∈ S, A 7→ pm(x,A) is a probability measure on (S,S). This means that if we are in some
place x at time n, then the probability that we will land in some subset A ∈ S of S at time n+m is
pm(x,A).

2. For each A ∈ S, Pm1A = pm(·, A) is a measurable function.

p(x,A) =

ˆ
A

p(x, y) dy

Note that by the law of total probability, we must have

ˆ
S

dp(x) = 1 and

ˆ
S

dp(m)(x) = 1

Given that we have an initial distribution X0 ∼ µ0, we can see that the distribution X1 ∼ µ1 is defined as

P(X1 ∈ A1) =

ˆ
A0

P(X1 ∈ A1 | X0 = x)P(X0 = x) dx

=

ˆ
A0

p(x0, A1)µ0(dx0)

Note that in the matrix realization of the example above, it looks like Pm acts on the distribution ρn to get
a new distribution ρn+m, but this is not strictly the case since Pm is an operator on f . However, for the
sake of intuitiveness, we can interpret Pm in two ways:

1. It operates on the measure ρn by pushing it forward in time to get ρn+m. This operator is defined as

ρn 7→ ρn+m(·) = pm(Xn, ·)

which corresponds to the matrix multiplication ρn
T 7→ ρn+m

T = ρn
TPm
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2. It operates on the function f (at Xn+m) by pulling it back to Pmf that operates on Xn. This operation
f 7→ Pmf corresponds to the matrix multiplication f 7→ Pmf .

Either way, we can think of the order of operations as either (ρn
TPm)f or ρn

T (Pmf).
Just like stochastic transition matrices, we can also deduce a semigroup property of the collection (Pm)m∈N.

Lemma 2.2 (Chapman-Kolmogorov Equation). Given the operator P , we have

Pm+k = PmPk

which indicates

pm+k(x,A) =

ˆ
S

pk(x, y) pm(y,A) dy

Proof. We can compute

Pm+kf(Xn) = E[f(Xn+m+k) | Xn]

= E[E[f(Xn+m+k) | Xn+m, Xn] | Xn]

= E[E[f(Xn+m+k) | Xn+m] | Xn]

= E[Pfk(Xn+m) | Xn]

= PmPkf(Xn)

■

Example 2.3 (Chapman-Kolmogorov in Discrete Space). By conditioning on intermediate nodes, we can
compute that

Pm+k(i, j) =
∑
s∈S

Pm(i, s)Pk(s, j) =⇒ Pm+k = PmPk

which can be seen by setting x = i and A = {j} ∈ 2S in the transition probability above.

Pm+k(i, j) = pm+k(i, {j}) =
ˆ
S

pm(i, {s}) pk(s, {j}) ds =
∑
s∈S

pm(i, {s}) pk(s, {j}) =
d∑

s=1

Pm(i, s)Pk(s, j)

and summing this for each entry gives Pm+k = PmPk. By setting k = 1, an immediate consequence of this
is that the m step transition probability P(Xn+m = j | Xn = i) is simply Pm(i, j), the kth power of the
transition matrix P.

We give one more property.

Lemma 2.3 (Conservativeness). {Pm} satisfies

Pm1 = 1

for all m ≥ 0, where 1 = 1S is the constant function of 1.

Proof. This is trivial since it is just the law of total probability. That is, 1S(Xn) = 1, and

(Pm1S)(Xn) = E[1S(Xn+m) | Xn]

and note that σ(Xn) is a finer σ-algebra than that generated by 1S(Xn+m), meaning that the right hand
side is equal to 1S(Xn+m) itself, which equals 1. ■
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In discrete spaces, this property realizes into the fact that the transition matrix is stochastic, since the
constantly 1 function f =

∑
i∈S 1{i} realizes into the (1, . . . , 1) vector, and Pm


1
...
1

 =

1
...
1


if and only if Pm is stochastic. But this is quite redundant for discrete spaces since the fact that Pm acts
on the indicator functions as Ps1{j}(i) = P(Xt+s = j | Xt = i) already implies that it should be stochastic
(by law of total probability).
We provide with a variety of examples.

Example 2.4 (Random Walks). A random walk on the integers S = Z where a point has equal probability
of moving right or left can be modeled with the probability transition matrix.

P(i, j) = P(Xn+1 = j |Xn = i) =


1
2 j = i+ 1
1
2 j = i− 1

0 otherwise

This can be generalized to multiple dimensional random walks on graphs with probability function

P(i, j) =
1

deg(i)

where deg(i) is the number of adjacent nodes to node i. In this way, the point hops randomly from node to
node, and if the graph is connected, then the walker can visit any vertex in the graph.

Example 2.5 (Discrete Moran Model). Consider a population of size N . Each individual is one of two
types (say, red or blue). At each time step, the system evolves in the following way: First, one of the
individuals is chosen uniformly at random to be eliminated from the population; and another individual
is chosen uniformly at random to produce one offspring identical to itself. These two choices are made
independently. So, if a red individual is chosen to reproduce, and a blue one is chosen for elimination, then
the total number of red particles increases by one and the number of blue particles decreases by one. If a red
is chosen for reproduction and a red is chosen for elimination, then there is no net change in the number of
reds and blues. Let Xn be the number of red individuals at time n. The transition matrix for this chain is

P(j, i) =



i
N

(
N−i
N

)
j = i− 1, i ̸= 0(

N−i
N

)
i
N j = i+ 1, i ̸= N

1− 2

(
N−i
N

)
i
N j = i

0 otherwise

Note that the states Xn = 0 and Xn = N are absorbing states, which represents a phenomenon called
fixation.

2.1 Classification of States

2.1.1 Stopping Time and Strong Markov Property

Definition 2.3 (Stopping Time). Given a stochastic process {Xn}, a nonnegative integer random variable
T is called a stopping time if for all integers k ≥ 0, T ≤ k depends only on X0, . . . , Xk.

Example 2.6 (Coin Toss). Let {Xn} be a stochastic process with Xn −Xn−1 be iid standard Gaussians,
with X0 = 0. Then,
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1. Let T = min{n ≥ 1 | Xn > 10} be the first time that we surpass 10. This is a stopping time since

P(T = k) = P(X0 ≤ 10, X1 ≤ 10, . . . , Xk−1 ≤ 10, Xk > 10)

2. Let T = min{n ≥ 1 | Xn+1 − Xn < 0} be the time of the first peak. This is not a stopping time
because you can’t determine whether we have peaked at time k by looking at the Xn’s up to k. You
need information on Xn+1.

3. Let T = min{n ≥ 1 | Xn − Xn−1 < 0} be the first time we have gone down from a peak. This is a
stopping time since

P(T = k) = P(X0 < X1 < X2 < . . . < Xk−1 > Xk)

Definition 2.4 (Time of Return). Given a stochastic process, let the stopping time

TA := min{n ≥ 1 | Xn ∈ A}

be the random variable defined as the time of first return to A (being there at time t = 0 doesn’t count).
Let Let T 1

A = TA and for k ≥ 2,

T k
A := min{n > T k−1

A | Xn ∈ A}

be the stopping time of the kth return to A.

Since stopping at time k depends only on the values X0, . . . , Xk, and in a Markov chain the distribution
of the future only depends on the past through the current state, it should not be hard to believe that the
Markov property holds at stopping times.

Theorem 2.4 (Strong Markov Property). Suppose T is a stopping time. Then, for natural k ≥ 1,

P(XT+k = j | XT = i, . . . ,X0 = i) = P(Xk = j | X0 = i)

2.1.2 Irreducibility

Definition 2.5 (Closed Set, Absorbing State). A set A ⊂ S is closed if it is impossible to get out.

P(Xn+1 ∈ A | Xn ∈ A) = 1

If A = {i} is a singleton set in some discrete state space, then i is said to be an absorbing state.

P(Xn+1 ̸= i | Xn = i) = 0

Definition 2.6 (Recurrence, Transience). A state x ∈ S is called recurrent if

ρxx = P(Tx < ∞ | X0 ∈ A) = 1

i.e. if the chain returns to x infinitely many times. x is said to be transient if ρxx < 1, and so eventually
the Markov chain does not find its way back to x ever again.

Definition 2.7 (Communication). We say that x ∈ S communicates with y ∈ S, denoted x → y, if

ρxy := P(Ty < ∞ | X0 = y) > 0

That is, there is a positive probability that we will jump from x to y in a finite amount of steps. We can
also see this as there existing an m > 0 such that P(Xm = y | X0 = x)pm(x, y) > 0.

Lemma 2.5. The following hold.

1. If x → y and y → z, then x → z.
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2. If ρxy > 0 but ρyx = 0, then x is transient.

3. If x is recurrent and ρxy > 0, then ρyx = 1.

Definition 2.8 (Irreducible Set). A set B ⊂ S is called irreducible if for all i, j ∈ B, i communicates with
j.

Theorem 2.6. If C is a finite closed and irreducible set, then all states in C are recurrent.

Theorem 2.7 (Decomposition). If the state space S is finite, then S can be written as a disjoint union

T ∪R1 ∪ . . . ∪Rk

where T is a set of transient states and Ri are closed irreducible sets of recurrent states.

Lemma 2.8. If x is recurrent and x → y, then y is recurrent.

Lemma 2.9. In a finite closed set there has to be at least one recurrent state.

2.1.3 Periodicity

Definition 2.9 (Period). For any state x ∈ S, the period of x is defined to be

d(x) ≡ gcd{n ≥ 1 | P (n)(x, x) > 0}

Lemma 2.10. If p(x, x) > 0 (not ρxx > 0!), then x has period 1.

Theorem 2.11. If two states x and y communicate, then they must have the same period

d(x) = d(y)

It naturally follows that if B ⊂ S is irreducible, then all states must have the same period.

Definition 2.10. If an irreducible chain has period 1, the chain is said to be aperiodic. Otherwise, the
chain is periodic with period d > 1.

2.2 Stationary Measures

Recall that a discrete time Markov process (Xn)n∈N evolves, and this evolution can be described by the
sequence of measures (ρn)n≥0 for each Xn. If we would like to measure Xn+m with function f , we can
calculate E[f(Xn+m)] = Eρn+m

[f ], but we don’t know ρn+m. Fortunately, we can ”pull back” the f to
compute the equivalent

Eρn+m [f ] = E[f(Xn+m)] = E[E[f(Xn+m) | Xn]] = E[Pmf(Xn)] = Eρn [Pmf ]

which essentially measuresXn+m with f by measuringXn with Pmf . Now, we want to construct a stationary
measure µ that captures the fact that if a certain state Xn ∼ ρn = µ, then the measure of future Xn+m ∼
ρn+m = µ also. If µ is stationary, then both ρn+m = ρn = µ, and this is equivalent to

Eµ[f ] = Eµ[Pmf ]

for all measurable f and m ≥ 0. This will be the definition that we will work with. To help with the
interpretation, we can restrict the case to f = 1A to get P(Xn ∈ A) = P(Xn+m ∈ A) for all A ∈ S, which
means that the probability of Xn+m realizing in A is equal to the probability of Xn realizing in A. In
summary, stationary measures describe the equilibrium or steady-state behavior of the Markov process.

Definition 2.11 (Stationary Measure). A probability measure µ is called stationary or invariant if

Eµ[f ] = Eµ[Pmf ], conventionally written as µ(f) = µ(Pmf)

for all m ≥ 0 and bounded measurable f . This is a property of the measure.
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To give a pictorial interpretation, imagine an initial distribution X0 ∼ ρ0 as some amount of sand placed on
the state space S (either as a continuous mass or mounds on discrete nodes). After one step, the distribution
will evolve to X1 ∼ ρ1, where a different mound of sand will form on S. If ρ0 = µ, then the flow of sand
between the nodes will balance each other out, and we still have the same amount of sand ρ1 = µ after each
step. The discrete case is simpler, since we can just imagine there being π(i) of sand at node i, and P(i, j)
of its proportion of sand flowing from node i to j at each step. Therefore, all the sand flowing out of i, which
is

∑d
j=1 P (i, j)π(i) = 1, balances out with the flow of sand into i, which is

∑d
j=1 P (j, i)π(j).

1 =

d∑
i=1

P (i, j)π(i) =

d∑
j=1

P (j, i)π(j)

and doing this for all i realizes into the matrix equation π = πP.

Example 2.7 (Stationary Distribution in Discrete Space). Given discrete state space S = {1, . . . , d}, our
stationary measure µ can be represented by the all familiar vector

π =
(
π(1) . . . π(d)

)
=

(
µ({1}) . . . µ({d})

)
Given the PMF vectors ρn = π and ρn+m = π and some measurable function f = (f1, . . . , fd)

T , the
stationary distribution property says that

E[f(Xn+s)] = E[(Pmf)(Xn)] ⇐⇒ πf = πPmf

which means that Pmf will act on π the same way that f does (though Pmf ̸= f). We can also interpret π
as the eigenvector of P with eigenvalue 1, so that it is invariant.

Example 2.8 (Two Node System). Let us have a two node system with nodes labeled L and R. That is,
S = {L,R}. Consider a chain on this state space with transition probability matrix.

P =

(
1− a a
b 1− b

)
which can be visualized in the following diagram below.

RL1-a

a

1-b

b

Then, the stationary distribution is

π =
( b

a+ b
,

a

a+ b

)
Notice that if a = b = 0, then this definition is ill-defined, and any probability distribution is invariant since
P = I2, the identity matrix.

This is also stationary since with certain conditions, the limiting behavior of the chain converges to π, but
we will prove that later.

Definition 2.12 (Doubly Stochastic Chains). A transition matrix P is said to be doubly stochastic if its
columns also sum to 1.

Theorem 2.12. Given a Markov chain with state space S = {1, . . . , d}, its transition probability matrix P
is doubly stochastic if and only if its stationary distribution is the uniform distribution

π =

(
1

d
,
1

d
, . . . ,

1

d

)
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Proof. We prove the only if part. Let π(i) = 1/N for all i = 1, . . . , N . Then, for j = 1, . . . , N ,

(πP)(i) =

N∑
j=1

π(j)P(j, i) =
1

N

N∑
j=1

P(j, i) =
1

N
= π(i)

The if part is very similar. ■

2.2.1 Uniqueness

TBD TBD

2.2.2 Reversed Markov Process

From now, given the state space (S,S) we can put a measure µ on it to get a measure space (S,S, µ). The
Banach space of all µ-measurable functions f : (S,S, µ) → (R,R) (i.e. for every Borel B ∈ R, f−1(B) ∈ S)
will be denoted Lp(µ), equipped with the norm

||f ||Lp(µ) := Eµ[f
p]1/p =

(ˆ
S

|f |p dµ
)1/p

If p = 2, then we can define the inner product

⟨f, g⟩µ := Eµ[fg] =

ˆ
S

fg dµ

Lemma 2.13 (Contraction of Stationary Measure). Let µ be a stationary measure. Then,

||Ptf ||Lp(µ) ≥ ||f ||Lp(µ) = Eµ[f
p]1/p

Now, we can construct reversed Markov processes.

Definition 2.13 (Reversed Markov Process). Let {Xn}Nn=0 be a discrete time Markov process with transition
operator P = P1 (and semigroup (Pm = Pm)) and stationary distribution µ. Then, fixN and let Yn = XN−n.
Then, Yn is a discrete time Markov process with the dual transition operator P ∗, the adjoint of P
satisfying

⟨f, Pg⟩µ = ⟨P ∗f, g⟩µ
for all bounded measurable f, g ∈ L2(µ).

Though we have given the reversed Markov process as a definition above, we can prove that this satisfies the
Markov property.

Proof. ■

We can see how this definition realizes in a discrete space.

Example 2.9. Given S = {1, . . . , d} and function vectors f ,g,

⟨f, g⟩µ =

ˆ
S

fgdµ =

d∑
i=1

figiπ(i)

and by definition of the adjoint, we must have

⟨f, Pg⟩µ =

d∑
i=1

fi(Pg)iπ(i) =

d∑
i=1

fi

( d∑
j=1

P(i, j)gj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

P∗(i, j)fj

)
π(i) =

d∑
i=1

(P∗f)i gi π(i) = ⟨P ∗f, g⟩µ

13/ 32



Stochastic Processes Muchang Bahng Spring 2023

A bit of computation will show us that

P∗(i, j) =
P(j, i)π(j)

π(i)

and we can indeed check that

⟨P ∗f, g⟩µ =

d∑
i=1

gi

( d∑
j=1

P∗(i, j)fj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

fj
P(j, i)π(j)

π(i)

)
π(i)

=

d∑
j=1

d∑
i=1

gi fjP(j, i)π(j)

=

d∑
j=1

fj

( d∑
i=1

giP(j, i)

)
π(j)

=

d∑
j=1

fj(Pg)jπ(j) = ⟨f, Pg⟩µ

Note that P∗ also satisfies P∗(i, j) ≥ 0 and by definition of the stationary distribution π,

d∑
j=1

P∗(i, j) =

d∑
j=1

P(j, i)π(j)

π(i)
=

1

π(i)

d∑
j=1

P(j, i)π(j) =
π(i)

π(i)
= 1

Note that the transition probability is computed using Bayes rule

P∗(i, j) = P(Ym+1 = j | Ym = i)

=
P(Ym = i | Ym+1 = j)P(Ym+1 = j)

P(Ym = i)

=
P(Xn−m = i | Xn−m−1 = j)P(Xn−m−1 = j)

P(Xn−m = i)

=
P(j, i)π(j)

π(i)

and {Ym} also satisfies the Markov property.

P(Ym+1 = j | Ym = i, Ym−1 = im−1, . . . , Y0 = i0)

=
P(Y0 = i0, . . . , Ym−1 = im−1, Ym = i, Ym+1 = j)

P(Y0 = i0, . . . , Ym−1 = im−1, Ym = i)

=
P(Xn = i0, . . . , Xm−n+1 = im−1, Xn−m = i,Xn−m−1 = j)

P(Xn = i0, . . . , Xm−n+1 = im−1, Xn−m = i)

=
P(Xn = i0, ., Xm−n+1 = im−1 | Xn−m = i,Xn−m−1 = j)P(Xn−m = i | Xn−m−1 = j)P(Xn−m−1 = j)

P(Xn = i0, . . . , Xm−n+1 = im−1 | Xn−m = i)P(Xn−m = i)

=
P(Xn = i0, . . . , Xm−n+1 = im−1 | Xn−m = i)p(j, i)π(j)

P(Xn = i0, . . . , Xm−n+1 = im−1 | Xn−m = i)p(i)

=
p(j, i)π(j)

p(i)

Thus, {Ym} is a Markov chain with the indicated transition probability.
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2.3 Reversibility (Detailed Balance)

Note that reversibility of a Markov process and a reversed Markov process are two entirely different things.
There is always a reveresed Markov process, but the fact that it is reversible is a much stronger condition.

Definition 2.14 (Reversibility). The Markov semigroup {Pm} with stationary measure µ is called re-
versible (or in the physics literature, is said to satisfy detailed balance) if Pm is self-adjoint for every
f, g,∈ L2(µ). That is,

⟨f, Pmg⟩µ = ⟨Pmf, g⟩µ
By the properties of the adjoint and the Chapman-Kolmogorov equation, we only need to check if P is
adjoint.

Note that if the Markov property is reversible, then assuming X0 ∼ µ, then

⟨Pmf, g⟩µ = ⟨f, Pmg⟩µ = E[f(Xn)E[g(Xn+m) | Xn]]

= E[f(Xn) g(Xn+m)] = E[E[f(Xn) | Xn+m)] g(Xn+m]

for every f, g ∈ L2(µ). So that in particular,

Pmf(x) = E[f(Xn+m | Xn = x] = E[f(Xn) | Xn+m = x]

Example 2.10 (Detailed Balance in Finite State Space). We know that if P is self adjoint, then its transition
probability matrix will satisfy

P(i, j) =
P(j, i)π(j)

π(i)
=⇒ P(j, i)π(j) = P(i, j)π(i)

which is the familiar detailed balance condition that we are used to. To see that this is a stronger condition
than Pπ = π, we sum over j on each side to get∑

j

P(i, j)π(i) = π(i)
∑
j

P(i, j) = π(j)

Remember that we could interpret π(i) as the amount of water at x, and we send P(j, i)π(i) water from
node i to j in one step. The detailed balance condition tells us that the amount of sand going from i to j
in one step is exactly balanced by the amount going back from j to i. In contrast, the condition πP = π
says that after all the transfers are made, the amount of water that ends up at each node is the same as the
amount there.

Many chains do not have stationary distributions that satisfy the detailed balance condition.

Example 2.11. Consider the chain with

P =

.5 .5 0
.3 .1 .6
.2 .4 .4


There is no stationary distribution with detailed balance since π(1)π(1, 3) = 0 but P(1, 3) > 0 so we must
have π(3) = 0. But this would imply that π(3)P(3, i) = π(i)P(i, 3) for all i so we conclude all π(i) = 0,
which doesn’t make sense. In fact, the stationary distribution is (1/3, 1/3, 1/3) since P is doubly stochastic.
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2.3.1 Metropolis-Hastings Algorithm

A huge application of Markov chains are in monte carlo algorithms, specifically the Metropolis-Hastings.
We begin with a Markov chain with transition probability q(x, y) that is the proposed jump distribution. A
move is accepted with probability

r(x, y) = min

{
π(y)q(y, x)

π(x)q(x, y)
, 1

}
so the transition probability becomes

p(x, y) = q(x, y)r(x, y)

Why do we do this? Multiplying by r guarantees that π now satisfies detailed balance under p. Without
loss of generality, we can assume π(y)q(y, x) > π(x)q(x, y), and so we have

π(x)p(x, y) = π(x)q(x, y) 1

π(y)p(y, x) = π(y)q(y, x)
π(x)q(x, y)

π(y)q(y, x)
= π(x)q(x, y)

which satisfies detailed balance.

2.3.2 Kolmogorov Cycle Condition

Let us take a motivating example.

Example 2.12. Consider the chain with transition probability

p =

1− (a+ d) a d
e 1− (b+ e) b
c f 1− (c+ f)


and suppose that all entries are positive. To satisfy detailed balance, we must have π(x)p(x, y) = π(y)p(y, x)
for all x, y. So we must have

eπ(2) = aπ(1) fπ(3) = bπ(2) dπ(1) = cπ(3)

Multiplying the three equations gives abc = def , or in other words,

p(1, 2) p(2, 3) p(3, 1)

p(2, 1) p(3, 2) p(1, 3)
=

abc

def
= 1

Definition 2.15 (Kolmogorov Cycle Condition). Given a finite irreducible Markov chain with state space S.
We say that the cycle condition is satisfied if given a cycle of states x0, x1, . . . , xn = x0 with p(xi−1, xi) > 0
for 1 ≤ i ≤ n, we have

n∏
i=1

p(xi−1, xi) =

n∏
i=1

p(xi, xi−1)

Theorem 2.14. Given a Markov chain S with transition probability p, there exists a stationary distribution
π that satisfies detailed balance if and only if the cycle condition holds.
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2.4 Ergodicity

Now, we want to talk about ”well-behaved” Markov processes that have a limiting distribution that is the
stationary measure, i.e. the process will eventually end up in its steady state ρn → µ as n → +∞ even if it
is not started there. That is, given some fixed initial condition X0 = x, is it true that

E[f(Xn) | X0 = x] → Eµ[f ] as n → ∞

Definition 2.16 (Ergodicity). The Markov semigroup (Pn) is called ergodic if

Pnf → µ(f) = Eµ[f ]

as n → +∞ for every f ∈ L2(µ) (i.e. converges to the constant function µf = µ(f)). That is, if we would
like to measure Xn ∼ ρn with f , then far enough in time this measurement converges to measuring X ∼ µ
with f . Since this applies to all f (think f = 1A), we can determine that ρn → µ as n → +∞.

The following theorem determines whether a chain is ergodic, but note that we don’t know anything about
the rate of convergence to the stationary measure.

Theorem 2.15. If Markov process {Xn} with stationary measure µ and semigroup (Pn) is irreducible, then
(Pn) is ergodic.

Theorem 2.16. Suppose |S| < ∞. If the chain is irreducible and all states positive recurrnent, then there
always exists a unique stationary distribution π. If the chain is also aperiodic, then for any initial distribution
ν,

lim
k→∞

νP k = π

Hence

lim
k→∞

P (k)(x, y) = π(y)

for all x, y ∈ S. Furthermore, for any measurable function f : S −→ R, the limit

lim
N→∞

1

N

N∑
n=1

f(Xn) =
∑
x∈S

f(x)π(x) = E
(
f(x)

)
holds with probability 1. In particular, the limit does not depend on the initial distribution.

Proof. The Frobenius Extension to Perron’s theorem (Linear Algebra, Theorem 7.31) combined with its
applications to stochastic matrices (Linear Algebra, Theorem 7.30) proves this statement. ■

The next result describes the limiting fraction of time we spend in each state.

Theorem 2.17 (Asymptotic Frequency). Suppose we have a finite Markov chain with p irreducible and all
states recurrent. Then, let

Nn(y) =

n∑
i=1

1Xi=y

be the number of visits to y up to time n. Then,

Nn(y)

n
→ 1

Ey[Ty]

If the chain is aperiodic, then we also have

π(y) =
1

Ey[Ty]
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Theorem 2.18. Suppose that a chain is irreducible and there exists stationary distribution π. Then,

1

n

n∑
m=1

pm(x, y) → π(y)

Thus while the sequence pm(x, y) will not converge in the periodic case, the average of the first n values will.

3 Poisson Processes

3.1 Exponential Distribution

Let us do some review. The exponential distirbution of rate λ is a random variable T ∼ Exponential(λ)
with CDF

FT (t) = P(T ≤ t) = 1− e−λt

and the PDF

fT (t) =

{
λe−λt t ≥ 0

0 t < 0

We have

E[T ] =
1

λ
, Var(T ) =

1

λ2

Lemma 3.1 (Memoryless Property). The Exp(λ) distribution has the property that for all t, s ≥ 0,

P(W > t+ s | W > t) = P(W > s)

which is called the memoryless property. We can interpret this in the following way. Let W be the time you
have to wait for the first arrival. Given that you already waited t units of time, the probability that you
have the wait s additional units of time is just the probability that you wait at least s from the beginning.
That is, knowing that t units of time have elapsed does not affect the distribution of the remaining waiting
time.

Theorem 3.2. Let W be a continuously distributed random variable. Then W ∼ Exp(λ) for some λ > 0 if
and only if W satisfies the memoryless property.

Theorem 3.3. Let Ti ∼ Exponential(λi) for i = 1, . . . n. Then,

min{T1, . . . , Tn} ∼ Exponential(λ1 + . . .+ λn)

and the random variable I which takes the index of min{T1, . . . , Tn} has the PMF

P(I = i) =
λi

λ1 + . . .+ λn

3.2 Defining the Poisson Process

We first describe a limiting behavior of binomial random variables.

Theorem 3.4 (Poisson Limit Theorem). Let Xn ∼ Bernoulli(n, pn), where {pn}n∈N is a sequence of reals
in [0, 1] such that

lim
n→∞

npn = λ

Letting Y ∼ Poisson(λ)
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Xn
D−→ Y

That is, the CDFs, and since this is a discrete distribution, the PMFs, converge.

Proof. We will show that limn→∞ P(Xn = k) = P(Y = k), which shows that the CDFs converge and
therefore convergence in distribution.

lim
n→∞

P(Xn = k) = lim
n→∞

(
n

k

)
pkn(1− pn)

k

= lim
n→∞

n(n− 1) . . . (n− k + 1)

k!

(
λ

n

)k(
1− λ

n

)n−k

= lim
n→∞

nk +O(nk−1)

k!

λk

nk

(
1− λ

n

)n−k

= lim
n→∞

λk

k!

(
1− λ

n

)n−k

=
λk

k!
lim

n→∞

(
1− λ

n

)n

lim
n→∞

(
1− λ

n

)−k

=
λk

k!
eλ 1 =

λkeλ

k!

■

Note that this is different from CLT because in CLT, we just assume that the pn’s are constant and take the
limiting behavior of Xn ∼ Bernoulli(n, p) as n → ∞.
This result justifies the following model. A Poisson Arrival Process with rate λ > 0 on the interval [0,∞) is
a model for the occurrence of some events which may have at any time. We can interpret the process as a
collection of random points in [0,∞) which are the times at which the arrivals occur. Suppose that we would
like to model the arrival of events that happen completely at random at a rate λ per unit time. At time
t = 0, we have no arrivals yet, so N(0) = 0. Let us fix some T , and now divide [0, T ) into n tiny subintervals
of length δ.

Assume that in each time slot, we assign a Xk ∼ Bernoulli(λδ) random variable that determines whether
there was an arrival within the interval ((k− 1)δ, kδ]. So with probability λδ, there will be an arrival within
it, and as the time interval gets smaller, this probability also gets smaller too. Since every n subinterval is
Bernoulli(λδ), the number of arrivals in the interval [0, T ), defined as the random variable Nn(T ), is

Nn(T ) ∼ Binomial(n, λδ) = Binomial
(
n,

λT

n

)
As we increase the n (equivalently, decrease δ), we divide [0, T ) into smaller and smaller subintervals, resulting
in finer and finer Nn(T ) Binomial distributions. Since npn = nλT

n = λT is finite, we can invoke the Poisson
limit theorem and say

Nn(T )
D−→ Poisson(λT )

Note that the starting point 0 does not matter, and this works for any interval of length T . Therefore, we
can model the arrival times on any interval of length T as a Poisson(λT ) random variable.

Definition 3.1 (Poisson Process). Let λ > 0 be fixed, representing the rate of arrival in some unit time.
The stochastic counting process {N(t)}t≥0, where N(t) represents the number of arrivals by time t, is called
a Poisson process with rate λ if

1. N(0) = 0
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2. The number of arrivals in any interval of length s > 0 is N(t+ s)−N(t) ∼ Poisson(λs)

3. N(Tt) has independent increments, i.e. if t0 < t1 < . . . , < tn, then

N(t1)−N(t0), . . . , N(tn)−N(tn−1)

are independent.

3.3 Constructing the Poisson Process

Now we have modeled this process using random variables N(t) that counts the number of arrivals up to
time t. Now, we can interpret it using random variables that represent the time in which they arrive.

Definition 3.2. Set T0 = 0. The arrival times are random variables 0 < T1 < T2 < T3 < . . . such that the
inter-arrival waiting times

τk = Tk − Tk−1, k ≥ 0

have the property that {Wk}∞k=1 are independent Exp(λ) random variables. Define

N(s) := max{k | Tk ≤ s}

Now we prove that this process is equivalent to the Poisson process defined before.

Theorem 3.5 (Equivalent Interpretations). Let {Tn} be defined as above and N(s) := max{k | Tk ≤ s}.
Then,

1. N(0) = 0

2. N(s) ∼ Poisson(λs)

3. N(t+ s)−N(t) ∼ Poisson(λs) independent of N(r) for 0 ≤ r ≤ s.

4. N(t) has independent incremements.

N(s) := max{k | Tk ≤ s} is a Poisson distribution with mean λs.

4 Continuous-Time Markov Processes

As the name suggests, in a continuous time Markov process Xt, the time parameter is continuous (t ≥ 0).
As before, the system jumps randomly between states in S, but now the jumps may occur at any time and
they occur randomly. This implies that there are two sources of randomness:

1. where the system jumps, which is determined by the transition probabilities, and

2. when the system jumps, which is called the holding time

Definition 4.1 (CTMP). Let (Ω,F ,P) be a probability space and (S,S) a measurable space. Then, a
homogeneous continuous-time Markov chain is a stochastic process {Xt}t≥0 taking values in S (i.e.
Xt : Ω → S) satisfying the Markov property: for every bounded measurable f and and t, s ≥ 0,

E[f(Xt+s) | {Xr}r≤t] = E[f(Xt+s) | Xt] = (Psf)(Xt)

This again says that the probability of Xt+s does not depend on the history {Xr = ir}r≤t, but on the current
value of Xt.
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Just like the discrete-time case, to describe random variable Xt+s with function f , we can pull back the
function to compute

E[f(Xt+s)] = E[E[f(Xt+s) | Xt]] = E[(Psf)(Xt)] =

ˆ
S

Psf dρt

which integrates a new function Psf over the measure ρt.

Example 4.1 (Transition Operator as a Matrix in Discrete Space). Let us have a discrete space S =
{1, . . . , d} with indicators 1{i} for i = 1, . . . , d. Let xt represent the column vector of the PMF of Xt.
From the same work as shown for discrete time Markov processes, we can let f = 1{j} and compute the
probability of Xt+s landing in each point j ∈ S, since that is what we’re interested in for discrete probability
distributions.

ρt+s(j) = P(Xt+s = j)

= E[1{j}(Xt+s)]

= E[E[1{j}(Xt+s) | Xt]] = E[Ps1{j}(Xt)]

=

ˆ
S

E[1{j}(Xt+s) | Xt]dρt =

ˆ
S

Ps1{j}(Xt) dρt

=
∑
i∈S

P[Xt+s = j | Xt = i]P(Xt = i) =
∑
i∈S

Ps1{j}(i)P(Xt = i)

which can be summarized as

ρt+s(j) =

d∑
i=1

Ps1{j}(i)ρt(i) =

d∑
i=1

P(Xt+s = j | Xt = i)ρt(i)

We can compactly organize the probabilities of these internode travel inside a d×d right stochastic transition
matrix

Ps =

Ps1{1}(1) . . . Ps1{1}(d)
...

. . .
...

Ps1{d}(1) . . . Ps1{d}(d)

 =

P(Xt+s = 1 | Xt = 1) . . . P(Xt+s = d | Xt = 1)
...

. . .
...

P(Xt+s = 1 | Xt = d) . . . P(Xt+s = d | Xt = d)


and compactly write the above equation as

ρt+s
T = ρt

TPs

Lemma 4.1. Pt is linear. That is, for t, s ≥ 1, α, β ∈ R, and bounded measurable functions f, g,

Pt(αf + βg) = αPtf + βPtg

Proof. By linearity of conditional expectation,

(Ps(αf + βg))(Xt) = E[(αf + βg)(Xt+s) | Xt]

= E[(αf)(Xt+s) | Xt] + E[(βg)(Xt+s) | Xt]

= α(Psf)(Xt) + β(Psg)(Xt)

■

We can now interpret linearity and the Markov property in the discrete space.

Example 4.2 (Markov Property in Discrete Space). If we wanted to extract information from Xt with
function f (i.e. compute E[f(Xt)]), we can calculate
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E[f(Xt)] = ρt
T f =

(
ρt(1) . . . ρt(d)

)f1
...
fd


Now, say that s units of time later, we want to extract information f from Xt+s by computing

E[f(Xt+s)] = ρt+s
T f =

(
ρt+s(1) . . . ρt+s(d)

)f1
...
fd


The problem is that we don’t know what the distribution of Xt+s is (i.e. don’t know ρt+s(i)), so we get its
expectation by conditioning it on Xt, which realizes as taking the expectation of a different function Psf
with respect to ρt.

E[f(Xt+s)] = E[E[f(Xt+s) | Xt]] = E[(Psf)(Xt)] =
(
ρt(1) . . . ρt(d)

)(Psf)1
...

(Psf)d


It turns out that this transformation f 7→ Psf (from row vector to row vector) is linear, and so we can
interpret Ps as f that has been left-multiplied by some transformation matrix Ps.

(
ρt(1) . . . ρt(d)

)(Psf)1
...

(Psf)d

 =
(
ρt(1) . . . ρt(d)

) Ps


f1

...
fd


︸ ︷︷ ︸

Psf

It turns out that this Ps acts linearly on f through left multiplication, but we can also right-multiply ρt by
Ps to get the new distribution of Xt+s!

(
ρt(1) . . . ρt(d)

)(Psf)1
...

(Psf)d

 =
(
ρt(1) . . . ρt(d)

) Ps


︸ ︷︷ ︸

ρt
TPs=ρt+s

T

f1
...
fd


Therefore, it turns out that the linearity of Ps on f implies linearity of it on the vector ρt.

Now focusing on f = 1A, we can define the following.

Definition 4.2 (Transition Probability). Let us have Markov process (Xt) with operator Ps. The function
ps : S × S → R defined

ps(x,A) := Ps1A(x) = E[1A(Xt+s) | Xt = x] = P(Xt+s ∈ A | Xt = x)

is the transition probability, or transition kernel, of this chain. Note that

1. For each x ∈ S, A 7→ ps(x,A) is a probability measure on (S,S). This means that if we are in some
place x at time t, then the probability that we will land in some subset A ∈ S of S at time t + s is
ps(x,A).

2. For each A ∈ S, Ps1A = ps(·, A) is a measurable function.

The transition kernel density is simply the pdf of the measure ps(x, ·).

ps(x,A) =

ˆ
A

ps(x, y) dy
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Note that in the matrix realization of the example above, it looks like Ps acts on the distribution ρt to get
a new distribution ρt+s, but this is not strictly the case since Ps is an operator on f . However, for the sake
of intuitiveness, we can interpret Ps in two ways:

1. It operates on the measure ρt by pushing it forward in time to get ρt+s. This operator is defined as

ρt 7→ ρt+s(·) = ps(Xt, ·)

which corresponds to the matrix multiplication ρt
T 7→ ρt+s

T = ρt
TPs

2. It operates on the function f (at Xt+s) by pulling it back to Psf that operates on Xt. This operation
f 7→ Psf corresponds to the matrix multiplication f 7→ Psf .

Either way, we can think of the order of operations as either (ρt
TPs)f or ρt

T (Psf).
Just like stochastic transition matrices, we can also deduce a semigroup property of the collection (Ps)s≥0.

Lemma 4.2 (Chapman-Kolmogorov). {Pt} satisfies

Pt+sf = PtPsf

for all t, s,≥ 1, with P0 = I, the identity.

Proof. We can easily see that (P0f)(Xt) = E[f(Xt) | Xt] = f(Xt), and

(Pt+sf)(Xn) = E[f(Xn+t+s) | Xn]

= E[E[f(Xn+t+s | Xn+t)] | Xn]

= E[(Psf)(Xn+t) | Xn]

= (Pt(Psf))(Xn)

= (PtPsf)(Xn)

■

We give one final condition.

Lemma 4.3 (Conservativeness). {Pt} satisfies

Pt1 = 1

for all t ≥ 0, where 1 = 1S is the constant function of 1.

Proof. This is trivial since it is just the law of total probability. That is, 1S(Xt) = 1, and

(Ps1S)(Xt) = E[1S(Xt+s) | Xt]

and note that σ(Xt) is a finer σ-algebra than that generated by 1S(Xt+s), meaning that the right hand side
is equal to 1S(Xt+s) itself, which equals 1. ■

Example 4.3. Given the transition matrix

Ps =

Ps1{1}(1) . . . Ps1{1}(d)
...

. . .
...

Ps1{d}(1) . . . Ps1{d}(d)


note that by linearity of Ps and the fact that {j} forms a partition of S, we have a∑

j∈S

(Ps1{j})(i) =

[
Ps

(∑
j∈S

1{j}

)](
i
)
= (Ps1S)(i) = 1S(i) = 1

which means that the columns must sum to 1.

Example 4.4 (Markov Chain with Continuous Jumps). Let N(t), t ≥ 0 be a Poisson process with rate
λ and let Yn be a discrete time Markov chain with transition probability u(i, j). Then, Xt = YN(t) is a
continuous time Markov chain that takes one jump according to u(i, j) at each arrival time N(t).
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4.1 Generator

In the discrete time case, we had Pt = (p1)
t for t ∈ N, and from the Chapman-Kolmogorov equation, knowing

p1 allows us to compute pt for all t ∈ N. Likewise, if we know the transition probability for some t < t0
for any t0 > 0, we know it for all t. This observation suggests that the transition probabilities pt can be
determined from their derivatives at 0.
We now define the analogous operator to the transition rate matrix in continuous-time chains with a finite
state space. This is a natural extension, since we are just taking the right-derivative of Pt at t = 0.

Definition 4.3 (Generator). The generator L is defined as

L f := lim
t↓0

Ptf − f

t

for every f ∈ L2(µ) for which the above limit exists in L2(µ). Intuitively, L f represents the instantaneous
rate of change of the measurement f . The set of f for which L f is defined is called the domain Dom(L )
of the generator, and L defines a linear operator from Dom(L ) ⊂ L2(µ) to L2(µ).

We have defined the generator L from the Markov semigroup {Pt}t≥0. Now, let’s try to define the semigroup
in terms of the generator L . Given that we have some map L ), can we define some semigroup {Pt} satisfying
the definition? We know that by the semigroup property, we can split Pt+h into PtPh and PhPt, from which
we get the Kolmogorov backward equation and the forward equation, respectively.

d

dt
Pt = lim

h↓0

Pt+h − Pt

h
= lim

h↓0

Pt(Ph − I)

h
= Pt

(
lim
h↓0

Ph − I

h

)
= PtL

d

dt
Pt = lim

h↓0

Pt+h − Pt

h
= lim

h↓0

(Ph − I)Pt

h
=

(
lim
h↓0

Ph − I

h

)
Pt = LPt

From which we see that the generator L is commutes with the semigroup

LPt = PtL

and solving this differential equation gives
Pt = etL

Let’s observe how this generator acts on the indicator functions f = 1A. Note that Ps1A(i) = P(Xt+s ∈ A |
Xt = i).

(L 1A)(i) =

(
lim
h↓0

Ph1A − 1A
h

)
(i) = lim

h↓0

Ph1A(i)− 1A(i)

h

and so (L 1A)(i) represents the infinitesimal rate of change of the probability that Xt will be in A given that
it is at 1.
Now, how does the generator realize into the finite state space?

Example 4.5 (Transition Rate Matrix). We know that the semigroup operator Pt is equivalent to the
transition matrix

Pt =

Pt(1, 1) . . . Pt(1, d)
...

. . .
...

Pt(d, 1) . . . Pt(d, d)


Let’s say that we have the function f =

∑
i∈S ci1{i}, which realizes as the function vector f , and we

have generator L . We know that Ptf realizes as the matrix multiplication Ptf , and so we can define the
transition rate matrix Q satisfying the equation

Qf = lim
h→0

Phf − f

h
=⇒ Q = lim

h→0

Ph − I

h

This derivatives has entries
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Q(i, j) =
d

dt

∣∣∣∣
t=0

Pt(i, j) = lim
h→0

Ph(i, j)−P0(i, j)

h
=


lim
h→0

Ph(i, j)

h
if i ̸= j

lim
h→0

Ph(i, i)− 1

h
if i = j

representing the flow of probability from i 7→ j. Note that by the law of total probability,∑
j

Pt(i, j) = 1 =⇒ d

dt

∣∣∣∣
t=0

∑
j

Pt(i, j) =
∑
j

d

dt

∣∣∣∣
t=0

Pt(i, j) =
∑
j

Q(i, j) = 0

So the diagonal entries is simply Q(i, i) = −
∑

j ̸=i Q(i, j). This realization Q is consistent with the way L
operates. Given f =

∑
i fi1{i}, and not worrying about whether we evaluate a limit of functions or the limit

of evaluations, we can get

(L f)(i) =

[
L

( d∑
j=1

fj1{j}

)]
(i) =

( d∑
j=1

fjL 1{j}

)
(i) =

d∑
j=1

fj(L 1{j})(i)

=

d∑
j=1

fj

(
lim
h↓0

Ph1{j}(i)− 1{j}(i)

h

)
=

d∑
j=1

fj

(
lim
h↓0

Ph(i, j)−P0(i, j)

h

)

=

d∑
j=1

Q(i, j)fj = (Qf)i

and therefore, setting f = 1{j}, we get

L 1{j}(i) = Q(j, i)

Example 4.6. Given a two-state Markov chain, {0, 1}, with some λ ≥ 0. Then, we can model our transition
probability matrix as

Ps =

(
1
2 + 1

2e
−2λt 1

2 − 1
2e

−2λt

1
2 − 1

2e
−2λt 1

2 + 1
2e

−2λt

)
Its generator matrix is

Q =

(
−λ λ
λ −λ

)
4.2 Classification of States

4.2.1 Holding Times and Jumping Times

Now, we would like to find how long a chain stays at a state x ∈ S.

Definition 4.4 (Holding Time). Let {Xt}t≥0 be a continuous time Markov chain, and define Tx to be the
holding time at x.

Xt = x, Tx = inf{s ≥ t,Xs ̸= x}

We can characterize the distribution of Tx, but first we define the following.

Definition 4.5 (Memoryless Property). A random variable X has the memoryless property if it satisfies
for all t, s ≥ 0

P(X > s+ t | X > t) = P(X > s)

which is just abuse of notation for the following: We know that (t,∞), (s,∞), and (s + t,∞) are all in R
and so they are events. So it really translates to the probability of an outcome landing in (s + t,∞) given
that it lands in (t,∞) is equal the probability of it landing in (s,∞).
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PX

(
(s+ t,∞) | (t,∞)

)
=

PX

(
(s+ t,∞) ∩ (t,∞)

)
PX

(
(t,∞)

) =
PX

(
(s+ t,∞)

)
PX

(
(t,∞)

) = PX

(
(s,∞)

)
The exponential random variable is memoryless because the LHS just reduces to

PX

(
(s+ t,∞)

)
PX

(
(t,∞)

) =
1− FX(s+ t)

1− FX(t)
=

e−λ(s+t)

e−λt
= e−λs = 1− FX(s) = PX

(
(s,∞)

)
Theorem 4.4. The only continuous random variable having the memoryless property is the exponential
random variable.

Theorem 4.5. Tx has the memoryless property.

Proof. We can show that

P(Tx > t+ s | Tx > t) = P(Xu = x, u ∈ [t, t+ s] | Xu = x, u ∈ [0, t])

= P(Xu = x, u ∈ [t, t+ s] | Xt = x)

= P(Tx > s)

■

Therefore, we know that Tx must have the exponential distribution, and for each x, we have Tx ∼ Exp(λx).

4.2.2 Irreducibility

Definition 4.6 (Irreducibility). The Markov chain Xt is irreducible if for any two states i, j ∈ S, it
is possible to get from i to j in a finite number of steps. To be precise, there is a sequence of states
k0 = i, k1, . . . , kn = j s.t.

Q(km−1, km) > 0

Lemma 4.6. If Xt is irreducible and t > 0, then Pt(i, j) > 0 for all i, j ∈ S.

4.3 Stationary Measures

Recall that the Markov process (Xt)t≥0 evolves, and this evolution can be described by the sequence of
measures (ρt)t≥0 for eachXt. If we would like to measureXt+s with function f , we can calculate E[f(Xt+s)] =
Eρt+s

[f ], but we don’t know ρt+s. Fortunately, we can ”pull back” the f to compute the equivalent

Eρt+s
[f ] = E[f(Xt+s)] = E[E[f(Xt+s) | Xt]] = E[Psf(Xt)] = Eρt

[Psf ]

which essentially measures Xt+s with f by measuring Xt with Psf . Now, we want to construct a stationary
measure that captures the fact that if a certain state Xt ∼ ρt = µ follows a stationary measure, then the
measure of future Xt+s ∼ ρt+s = µ also. If µ is stationary, then both ρt+s = ρt = µ, and this is equivalent
to

Eµ[f ] = Eµ[Psf ]

for all measure f and s ≥ 0. This will be the definition that we will work with. To help with the interpretation,
we can restrict the case to f = 1A to get P(Xt ∈ A) = P(Xt+s ∈ A) for all A ∈ S, which means that the
probability of Xt+s realizing in A is equal to the probability of Xt realizing in A. In summary, stationary
measures describe the equilibrium or steady-state behavior of the Markov process.
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Definition 4.7 (Stationary Measure). A probability measure µ is called stationary or invariant if

Eµ[f ] = Eµ[Ptf ], conventionally written as µ(f) = µ(Ptf)

for all t ≥ 0 and bounded measurable f . This is a property of the measure. We can describe the way it
operates on the measure as if ρt = µ, then

ρt+s(·) = ps(Xt, ·) = ρt

To give a pictorial interpretation, imagine an initial distribution X0 ∼ ρ0 as some amount of sand placed on
the state space S (either as a continuous mass or mounds on discrete nodes). As time flows continuously, the
distribution will evolve to Xt ∼ ρt, where a different mound of sand will form on S. If ρ0 = µ, then the flow
of sand between the nodes will balance each other out, and we still have the same amount of sand ρt = µ
after each step. The discrete case is simpler, since we can just imagine there being π(i) of sand at node i,
and Pt(i, j) of its proportion of sand flowing from node i to j after time t. Therefore, all the sand flowing

out of i, which is
∑d

j=1 Pt(i, j)π(i) = 1, balances out with the flow of sand into i, which is
∑d

j=1 P (j, i)π(j).

1 =
d∑

i=1

P (i, j)π(i) =

d∑
j=1

P (j, i)π(j)

and doing this for all i realizes into the matrix equation π = πPt.

Example 4.7 (Stationary Distribution in Discrete Space). Given discrete state space S = {1, . . . , d}, our
stationary measure µ can be represented by the all familiar row vector

π =
(
π(1) . . . π(d)

)
=

(
µ({1}) . . . µ({d})

)
Given the PMF vectors ρt = π and ρt+s = π and some measurable function f = (f1, . . . , fd), the stationary
distribution property says that

E[f(Xn+m)] = E[(Pmsf)(Xn)] ⇐⇒ πf = πPmf

which means that Psf will act on π the same way that f does (though Psf ̸= f). We can also interpret π
as the eigenvector of Ps with eigenvalue 1 since ρt+s(·) = ps(Xt, ·) = ρt(·).

Theorem 4.7. If µ is a stationary measure of a continuous-time Markov process with generator L , then

µ(L f) = 0

for every f ∈ L2(µ).

Proof. Not worrying about interchanging limits and integrals, we have

µ(L f) = Eµ[L f ] =

ˆ
S

lim
t↓0

Ptf − P0f

t
dµ

= lim
t↓0

ˆ
S

Ptf − P0f

t
dµ

= lim
t↓0

1

t

(
Eµ[Ptf ]− Eµ[f ]

)
= lim

t↓0

1

t
· 0 = 0

■

For a finite state space, this theorem reduces to the following.

Corollary 4.7.1. π is a stationary distribution of a continuous time Markov chain if and only if

πQ = 0
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Proof. To prove the if, we have

πQ = 0 =⇒ πPt = πetQ = π

(
I + tQ+

t2Q2

2!
+ . . .

)
= π + 0 + . . . = π

To prove the only if, we have

πPt = π =⇒ 0 =
d

dt
πPt = π

d

dt
Pt = πQPt =⇒ πQ = 0

■

Theorem 4.8. If a continuous-time Markov chain Xt is irreducible and has a stationary distribution π,
then

lim
t→∞

Pt(i, j) = π(j)

4.3.1 Uniqueness

TBD TBD

4.3.2 Reversed Markov Process

From now, given the state space (S,S) we can put a measure µ on it to get a measure space (S,S, µ). The
Banach space of all µ-measurable functions f : (S,S, µ) → (R,R) (i.e. for every Borel B ∈ R, f−1(B) ∈ S)
will be denoted Lp(µ), equipped with the norm

||f ||Lp(µ) := Eµ[f
p]1/p =

(ˆ
S

|f |p dµ
)1/p

If p = 2, then we can define the inner product

⟨f, g⟩µ := Eµ[fg] =

ˆ
S

fg dµ

Lemma 4.9 (Contraction of Stationary Measure). Let µ be a stationary measure. Then,

||Ptf ||Lp(µ) ≥ ||f ||Lp(µ) = Eµ[f
p]1/p

Now, we can construct reversed Markov processes.

Definition 4.8 (Reversed Markov Process). Let {Xt}0≤t≤T be a continuous time Markov process with
semigroup (Pt)t≥0 and stationary distribution µ. Then, fix T and let Yt = XT−t. Then, Yt is a discrete time
Markov process with the dual transition operator P ∗

t , the adjoint of Pt satisfying

⟨f, Ptg⟩µ = ⟨P ∗
t f, g⟩µ

for all bounded measurable f, g ∈ L2(µ).

Though we have given the reversed Markov process as a definition above, we can prove that this satisfies the
Markov property.

Proof. ■

We can see how this definition realizes in a discrete space.
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Example 4.8. Given S = {1, . . . , d} and function vectors f ,g,

⟨f, g⟩µ =

ˆ
S

fgdµ =

d∑
i=1

figiπ(i)

and by definition of the adjoint, we must have

⟨f, Ptg⟩µ =

d∑
i=1

fi(Ptg)iπ(i) =

d∑
i=1

fi

( d∑
j=1

Pt(i, j)gj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

P∗
t(i, j)fj

)
π(i) =

d∑
i=1

(P∗
t f)i gi π(i) = ⟨P ∗

t f, g⟩µ

A bit of computation will show us that

P∗
t(i, j) =

Pt(j, i)π(j)

π(i)

and we can indeed check that

⟨P ∗
t f, g⟩µ =

d∑
i=1

gi

( d∑
j=1

P∗
t(i, j)fj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

fj
Pt(j, i)π(j)

π(i)

)
π(i)

=

d∑
j=1

d∑
i=1

gi fjPt(j, i)π(j)

=

d∑
j=1

fj

( d∑
i=1

giPt(j, i)

)
π(j)

=

d∑
j=1

fj(Ptg)jπ(j) = ⟨f, Ptg⟩µ

Note that P∗
t also satisfies P∗

t(i, j) ≥ 0 and by definition of the stationary distribution π,

d∑
j=1

P∗
t(i, j) =

d∑
j=1

Pt(j, i)π(j)

π(i)
=

1

π(i)

d∑
j=1

Pt(j, i)π(j) =
π(i)

π(i)
= 1

Note that the transition probability is computed using Bayes rule

P∗
s(i, j) = P(Yt+s = j | Yt = i)

=
P(Yt = i | Yt+s = j)P(Yt+s = j)

P(Yt = i)

=
P(XT−t = i | XT−t−s = j)P(XT−t−s = j)

P(XT−t = i)

=
Ps(j, i)π(j)

π(i)
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4.4 Reversibility (Detailed Balance)

Note that reversibility of a Markov process and a reversed Markov process are two entirely different things.
There is always a reveresed Markov process, but the fact that it is reversible is a much stronger condition.

Definition 4.9 (Reversibility). The Markov semigroup {Ps} with stationary measure µ is called reversible
(or in the physics literature, said to satify detailed balance) if Ps is self-adjoint for every f, g,∈ L2(µ).
That is,

⟨f, Psg⟩µ = ⟨Psf, g⟩µ
Since Ps = esL , this condition is equivalent to L being self-adjoint.

Note that if the Markov property is reversible, then assuming X0 ∼ µ, then

⟨Psf, g⟩µ = ⟨f, Psg⟩µ = E[f(Xt)E[g(Xt+s) | Xt]]

= E[f(Xt) g(Xt+s)] = E[E[f(Xt) | Xt+s)] g(Xt+s]

for every f, g ∈ L2(µ). So that in particular,

Psf(x) = E[f(Xt+s | Xt = x] = E[f(Xt) | Xt+s = x]

which means that the reversed process follows the same law as the forwrad process.

Example 4.9 (Detailed Balance in Finite State Space). We know that if Ps is self adjoint, then its transition
probability matrix will satisfy

Ps(i, j) =
Ps(j, i)π(j)

π(i)
=⇒ Ps(j, i)π(j) = Ps(i, j)π(i)

which is the familiar detailed balance condition that we are used to. To see that this is a stronger condition
than πPt = π, we sum over j on each side to get∑

j

Ps(i, j)π(i) = π(i)
∑
j

Ps(i, j) = π(j)

Remember that we could interpret π(i) as the amount of water at x, and we send Ps(j, i)π(i) water from
node i to j in one step. The detailed balance condition tells us that the amount of sand going from i to j
in one step is exactly balanced by the amount going back from j to i. In contrast, the condition πPs = π
says that after all the transfers are made, the amount of water that ends up at each node is the same as the
amount there.

4.5 Ergodicity

Now, given a Markov semigroup Pt with generator L and stationary measure µ, we know that X0 ∼ µ
implies Xt ∼ µ for all times t. It is natural to ask whether the Markov process will eventually end up in its
steady state even if it is not started there, but rather at some fixed initial condition. That is, given X0 = x,
is it true that

E[f(Xt) | X0 = x] → µf = Eµ[f ] as t → ∞
If this is the case, the Markov process is said to be ergodic.

Definition 4.10 (Ergodicity). The Markov semigroup (Pt) is called ergodic if

Ptf → µf = Eµ[f ]

as t → +∞ for every f ∈ L2(µ) (i.e. converges to the constant function µf = µ(f)). That is, if we would
like to measure Xt ∼ ρt with f , then far enough in time this measurement converges to measuring X ∼ µ
with f . Since this applies to all f (think f = 1A), we can determine that ρt → µ as t → +∞.

30/ 32



Stochastic Processes Muchang Bahng Spring 2023

The following theorem determines whether a chain is ergodic, but note that we don’t know anything about
the rate of convergence to the stationary measure.

Theorem 4.10. If Markov process {Xt} with stationary measure µ and semigroup (Pt) is irreducible, then
(Pt) is ergodic.

5 Martingales

Let us first start with the discrete-time martingale for simplicity. In introductory courses, a martingale
might be defined as a stochastic process satisfying

Xn = E[Xn+1 | X0, . . . , Xn]

for all n, which models a ”fair game.” They also may construct the random variables {Xn} first and then
define the filtration as the sequence of σ-algebras σ(X1, . . . , Xn). In here, we will construct the filtration
{Fn} first and then define the random variables to be adapted to the filtration if Xn is Fn-measurable for
each n ∈ N.

Definition 5.1 (Discrete-Time Martingale). Given a probability space (Ω,F ,P), let F = {Fn}n∈N be a
filtration (an increasing sequence of σ-algebras). A sequence {Xn} is said to be adapted to {Fn} if Xn is
Fn-measurable for all n. If the stochastic process {Xn}n∈N is a sequence with

1. E[Xn] < ∞ for all n,

2. Xn is adapted to Fn,

3. E[Xn+1 | X1, . . . , Xn] = E[Xn+1 | Fn] = Xn for all n,

then {Xn} is a martingale. If E[Xn+1 | Fn] ≤ Xn or E[Xn+1 | Fn] ≥ Xn, the {Xn} is said to be a
supermartingale or submartingale, respectively.

A martingale just represents a sequence of random variables that get finer and finer as the σ-algebra increases.
While they do get finer and finer, they do not change the ”average” of the function. For example, consider
the filtration generated by finer subsets of the unit interval Ω = (0, 1]. We have

1. F0 = {∅,Ω}

2. F1 = σ((0, 0.5], (0.5, 1])

3. F2 = σ((0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1])

Then, we would have

A supermartingale (and submartingale) just means that as we make the function finer and finer, its mean
goes down (or up).
Martingales are used to model lots of random walk events. In the following three examples, let ξ1, ξ2, . . .
be iid, and let Sn = S0 + ξ1 + . . . + ξn., where S0 is a constant. Let Fn = σ(ξ1, . . . , ξn) for n ≥ 1 and let
F0 = {∅,Ω}.
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Example 5.1 (Linear Martingale). Let µ = E[ξi] = 0. Then, {Sn} is a martingale with respect to Fn. We
show the three requirements:

1. E[Sn] = E[S0] + E[ξ1] + . . .+ E[ξn] = S0 < ∞.

2. By definition, we know that ξi is σ(ξ)-measurable for all i ∈ [n], so ξi is Fn = σ(ξ1, . . . , ξn)-measurable.
Since the set of Fn-measurable functions has a vector space structure, Sn is also Fn-measurable.

3. We can simply solve

E[Sn+1 | Fn] = E[Sn | Fn] + E[ξn+1 | Fn] = Xn + E[ξn+1] = Xn

where the first equality follows from linearity. For the second equality, note that Sn is Fn-measurable
from above, and so the best Fn-measurable approximation of X is X itself (i.e. we have complete
information). We know that ξn+1 is independent of the ξi’s, and so by definition their σ-algebras
are independent. This implies that σ(ξn+1) and Fn = σ(ξ1, . . . , ξn) are independent, and so due to
irrelevant information, E[ξn+1 | Fn] = E[ξn+1].

If µ ≤ 0 or µ ≥ 0, then the computation above shows that E[Sn+1 | Fn] ≤ 0 or E[Sn+1 | Fn] ≥ 0, making it
a supermartingale or submartingale, respectively.

Given a supermartingale or submartingale, we can change it to be a martingale.

Example 5.2. Given that µ = E[ξi] ̸= 0, then {Sn − nµ}is a martingale with respect to Fn. We can see
this because

E[Sn+1 − (n+ 1)µ | Fn] = E[Sn − nµ | Fn] + E[ξn+1 − µ | Fn]

= Sn − nµ+ E[ξn+1]− µ

= Sn − n

Example 5.3 (Quadratic Martingale). Say µ = E[ξi] = 0 and σ2 = Var(ξi) < ∞. Then, {S2
n − nσ2} is a

martingale.

E[S2
n+1 − (n+ 1)σ2 | Fn] = E[(Sn + ξn+1)

2 − (n1)σ
2 | Fn]

= E[S2 − nσ2 | Fn] + E[2Snξn+1 + ξ2n+1 − σ2 | Fn]

= E[S2 − nσ2 | Fn] + 2E[Snξn+1 | Fn] + E[ξ2n+1]− σ2

= E[S2 − nσ2 | Fn]

where we have used the fact that due to independence of ξn+1 with Fn, we have E[Snξn+1 | Fn] =
E[SnE[ξn+1 | Fn]] = E[Sn · 0] = 0.

This following result shows that martingales with bounded increments either converge or oscillate between
+∞ and −∞.

Theorem 5.1. Let {Xn}n∈N be a martingale with |Xn+1 −Xn| ≤ M < ∞. Let

C = { lim
n→∞

Xn exists and is finite}

D = { lim
n→∞

supXn = +∞ and lim
n→∞

infXn = −∞}

Then P(C ∪D) = 1.
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