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An introductory course in number theory. Much of the material introduced in this chapter can be found
in other sections, especially those about Euclidean and Integral domains which are generalizations of the
integers.
We begin by stating the well ordering principle of the natural numbers N.

Theorem 0.1 (Well-Ordering Principle). Every nonempty set S of nonnegative integers contains a least
element. That is, there exists some integer a ∈ S such that a ≤ b for all b ∈ S.

This leads to the following.

Theorem 0.2 (Archimedean Property). If a, b are any positive integers, there exists a positive integer
n such that na ≥ b.

0.0.1 Induction

We provide three methods of proof.

Proposition 0.3 (Induction Principle). Given P (n), a property depending on a positive integer n,

1. if P (n0) is true for some positive integer n0, and

2. if for every k ≥ n0, P (k) true implies P (k + 1) true,

then P (n) is true for all n ≥ n0.

Proposition 0.4 (Strong Induction Principle). Given P (n), a property depending on a positive integer
n,

1. if P (n0), P (n0 +1), ..., P (n0 +m) are true for some positive integer n0 and nonnegative integer m,
and

2. if for every k > n0 +m, P (j) true for all n0 ≤ j ≤ k implies P (k) true,

then P (n) is true for all n ≥ n0.

Proposition 0.5 (Infinite Descent). Given P (n), a property depending on a positive integer n, assume
that P (n) is false for a set of integers S. Let the smallest element of S be n0. If P (n0) false implies
P (k) false, where k < n0, then by contradiction, P (n) is true for all n.

Note that the method of infinite descent is based off of the well ordering principle.
In some cases (especially in the Putnam exam), sometimes a creative use of induction will be requied.
For example, you can first induct on a subset S of N, then induct backwards (proving P (n) true given
P (n+ 1) true), or use a double induction argument where you induct on two variables instead of one.

1 Divisibility Theory and Primes

A huge portion of number theory rests on the following theorem/algorithm.

Theorem 1.1 (Division Algorithm). Given integers a, b with b > 0, there exist unique integers q, r
satisfying

a = qb+ r, 0 ≤ r < b

The integers q and r are called the quotient and remainder in the division of a by b, respectively.

Proof. This statement can be quite obvious, but a rigorous proof requires the use of the well-ordering
principle and proof by contradiction. ■

Definition 1.1. Let a and b be given integers, with at least one of them different from zero. The greatest
common divisor of a and b, denoted by gcd(a, b), is the positive integer d satisfying

1. d|a and d|b

2. If c|a and c|b, then c ≤ d

Note that 0 is divisible by every number.
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Theorem 1.2. Given integers a, b not both of which are 0, there exist integers x and y such that

gcd(a, b) = ax+ by

Proof. Consider the set S of all positive linear combinations of a and b. Note that S is nonempty and is
a subset of N.

S ≡ {au+ bv | au+ bv > 0, u, v ∈ Z}

From the well-ordering principle, S must contain a smallest element d. Thus, from the definition of S,
there exist integers x and y for which d = ax+ by. We claim that d = gcd(a, b).
Using the division algorithm, we can obtain integers q, r such that a = qd+ r, where 0 ≤ r < d. Then,
r can be written in the form

r = a− qd = a− q(ax+ by)

= a(1− qx) + b(−qy)

If r > 0, then this representation of r above would simply mean that r ∈ S, contradicting the fact that d
is the smallest element in S. So, r = 0 =⇒ a = qd, which implies d|a. By similar reasoning, d|b, which
makes d a common divisor of a and b.
Now, if c is an arbitrary positive common divisor of the integers a and b, then c|(ax + by); that is, c|d.
Since d ≥ c for all c, d = gcd(a, b). ■

Corollary 1.2.1. If a and b are given nonzero integers, then the set

T ≡ {ax+ by | x, y ∈ Z}

is precisely the set of all multiples of d = gcd(a, b).

Definition 1.2. Two integers a and b, not both of which are zero, are said to be relatively prime
whenever gcd(a, b) = 1.

Theorem 1.3. Let a, b be nonzero integers. Then a and b are relatively prime if and only if there exist
x, y ∈ Z such that

1 = ax+ by

Proof. This is a direct result of the previous corollary. ■

This result directly leads to an observation that may be useful in some situations.

Corollary 1.3.1. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

Proof. Since it is possible to find integers x, y such that

d = ax+ by

Upon dividing the Diophantine equation by d, we obtain

1 =

(
a

d

)
x+

(
b

d

)
y

where a/d and b/d are integers. Using the previous theorem, the two are relatively prime. ■

1.1 The Euclidean Algorithm

Here we introduce an algorithm that finds the greatest common divisors of two arbitrary integers. With-
out loss of generality, we can assume that a, b > 0 when finding

gcd(a, b)

We will need to following lemma.

Lemma 1.4. If a = qb+ r, then gcd(a, b) = gcd(b, r).

Proof. If d = gcd(a, b), then the relations d|a and d|b together imply that d|(a− qb), or d|r. Thus, d is a
common divisor of both b and r. On the other hand, if c is an arbitrary common divisor of both b and
r, then c|(qb+ r), whence c|a =⇒ c is a common divisor of both a and b, so that c ≤ d. So, c ≤ d. ■
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Using the result of this lemma, we can calculate

a = q1b+ r1, 0 < r1 < b

b = q2r1 + r2, 0 < r2 < r1

r1 = q3r2 + r3, 0 < r3 < r2

..., ...

rn−2 = qnrn−1 + rn, 0 < rn < rn−1

rn−1 = qn+1rn + 0,

and find that
gcd(a, b) = gcd(b, r1) = ... = gcd(rn−1, rn) = gcd(rn, 0) = rn

Example 1.1. Let us calculate gcd(12378, 3054) using the Euclidean algorithm. The appropriate calcu-
lations produces the following:

12378 = 4 · 3054 + 162

3054 = 18 · 162 + 138

162 = 1 · 138 + 24

24 = 1 · 18 + 6

18 = 3 · 6 + 0

Therefore, gcd(12378, 3054) = 6. To represent 6 as a linear combination of the integers 12378 and 3054,
we start with the second to last equation and substitute in remainders.

6 = 24− 18

= 24− (138− 5 · 24)
= 6 · 24− 138

= 6(162− 138)− 138

= 6 · 162− 7 · 138
= 6 · 162− 7(3054− 18 · 162)
= 132 · 162− 7 · 3054
= 132(12378− 4 · 3054)− 7 · 3054
= 132 · 12378 + (−535) · 3054

Thus, we have
gcd(12378, 3054) = 6 = 12378x+ 3054y

where x = 132, y = −535.

Proposition 1.5 (Lame). The number of steps required in the Euclidean Algorithm is at most 5 times
the number of digits in the smaller integer.

Theorem 1.6. For positive integers a, b,

gcd(a, b) lcm(a, b) = ab

Proof. Let d = gcd(a, b). This allows us to express a = dr and b = ds for some r, s ∈ N. If

m =
ab

d

then m = as = rb, which makes m a positive common multiple of both a and b. Now, let c be a positive
integer that is a common multiple of a and b, say, c = au+ bv. Since there exist integers x, y satisfying
d = ax+ by, we get

c

m
=

cd

ab
=

c(ax+ by)

ab
=

c

b
x+

c

a
y = vx+ uy

This means that m|c and so m ≤ c. ■
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The significance of the previous theorem is that it makes the calculation of the least common multiple
dependent on the greatest common divisor, which can be calculated using the Euclidean algorithm. For
example,

lcm(3054, 12378) =
3054 · 12378

6
= 6300402

Corollary 1.6.1. For any choice of positive integers a, b, lcm(a, b) = ab if and only if gcd(a, b) = 1.

1.2 The Diophantine Equation ax+by=c

It is customary to call a Diophantine equation any equation in one or more variables that is to be solved
in the integers. The simplest type of Diophantine equation is

ax+ by = c

Theorem 1.7. The linear Diophantine equation ax+ by = c has a solution if and only if d|c, where d =
gcd(a, b). If x0, y0 is a particular solution to this equation, then the general solution can be paramaterized
as

x = x0 +
( b
d

)
t, y = y0 −

(a
d

)
t, t ∈ Z

To find a particular solution, we apply Euclidean’s algorithm to the coefficients a, b and work backwards
to find a linear combination of a and b to get gcd(a, b). Then we multiply it according to the proper
scalar to find the values of x, y.

Example 1.2. Consider the linear Diophantine equation.

172x+ 20y = 1000

We apply Euclidean’s algorithm to calculate gcd(172, 20).

172 = 8 · 20 + 12

20 = 1 · 12 + 8

12 = 1 · 8 + 4

8 = 2 · 4

So, gcd(172, 20) = 4. Since 4|1000, a solution to this equation exists. Moreover, by working backwards,
we have

4 = 12− 8

= 12− (20− 12)

= 2 · 12− 20

= 2(172− 8 · 20)− 20

= 2 · 172 + (−17) · 20

By multiplying both sides of 4 = 2 · 172 + (−17) · 20 by 250, we get

1000 = 500 · 172 + (−4250) · 20

So, x = 500, y = −4250 is one solution to the equation. All other solutions are expressed by

x = 500 +
20

4
t = 500 + 5t

y = −4250− 172

4
t = −4250− 43t

Corollary 1.7.1. If gcd(a, b) = 1, and if x0, y0 is a particular solution of the linear Diophantine equation
ax+ by = c, then all solutions are given by

x = x0 + bt, y = y0 − at

Systems of linear equations can also be solved accordingly with a bit of modification.
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Example 1.3. To solve the system

5x+ 3y +
1

3
z = 100, x+ y + z = 100

by eliminating one of the unknowns by substituting z = 100− x− y, we are left with the equation

5x+ 3y +
1

3
(100− x− y) = 100 =⇒ 7x+ 4y = 100

1.3 The Fundamental Theorem of Arithmetic

Definition 1.3. An integer p > 1 is called a prime number if its only positive divisors are 1 and p.

Theorem 1.8 (Fundamental Theorem of Arithmetic). Every positive integer n > 1 can be expressed as
a product of primes. This representation is unique up to the order in which the factors occur.

The process of putting a number into this form is called prime factorization.

Corollary 1.8.1. Any positive integer n > 1 can be written uniquely in a canonical form

n =

r∏
i=1

pki
i = pk1

1 pk2
2 ...pkr

r

where, for i = 1, 2, ..., r, each ki is a positive integer and each pi is a prime, with p1 < p2 < ... < pr.

We now present a method of identifying whether a certain number is prime or not.

Theorem 1.9 (Sieve of Eratosthenes). If an integer a > 1 is not divisible by any prime p ≤
√
a, then a

is prime.

Theorem 1.10 (Euclid). There is an infinite number of primes.

Proof. Assume that there are a fininte number of primes p1, ..., pn. Consider the number

P = p1p2...pn + 1

Clearly, P is not divisible by any of the pi’s ■

We can actually put an upper bound on the nth (smallest) prime.

Theorem 1.11. If pn is the nth prime number, then

pn ≤ 22
n−1

However, by 1854, a much better bound was formed.

Theorem 1.12.
pn ≤ 2n

Definition 1.4. A repunit is an integer written (in decimal notation) as a string of 1’s, such as
11, 111, 1111, .... Let Rn denote the repunit with n digits. Every repunit is in the form

Rn =
10n − 1

9

The first seven repunit primes are

R2, R19, R23, R317, R1031, R49081, R86453
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1.4 The Goldbach Conjecture

We now introduce some progress on identifying some pattern in primes. We have already established
our first claim: that there are an infinite number of primes. We can claim even further.

Theorem 1.13. The sum of the reciprocals of the primes diverges to infinity. That is, given the set of
all primes P ⊂ N, ∑

p∈P
p =∞

Definition 1.5. A twin prime is a pair of primes (p, q) such that q − p = 2.

Theorem 1.14 (Twin Prime Conjecture). There are an infinite number of twin primes.

Twin primes get much more scarce as numbers get bigger. The largest known twin prime in 2002 is

33219825 · 2169690 ± 1

with 51090 digits long.

Theorem 1.15 (Brun). The sum of the reciprocals of the twin primes converges to a sum, known as
Brun’s constant. Brun’s constant is approximately

1.902160583209± 0.000000000781

based on all twin primes less than 2× 1016.

Theorem 1.16 (Zhang, 2014). There are an infinite number of prime pairs differing by 246.

We now state one of the oldest and most well-known conjectures in number theory.

Theorem 1.17 (Goldbach Conjecture, 1742). Every even positive integer greater than 2 is the sum of
two prime numbers.

The numerical data supporting the Goldbach conjecture is overwhelming, and many mathematicians
believe that it is true. We provide more claims about primes.

Theorem 1.18. There are an infinite number of primes in the form 4n+ 3.

Theorem 1.19 (Dirichlet). If a and b are relatively prime positive integers, then the arithmetic progres-
sion

a, a+ b, a+ 2b, a+ 3b

contains infinite many primes.

For example, this theorem tells us that there are an infinite number of primes ending in 999, e.g.
1999, 100999, 1000999, . . ., since they appear in the arithmetic progression 1000n+ 999, where

gcd(1000, 999) = 1

Theorem 1.20. There exists arbitrarily long but finite arithmetic progressions consisting only of prime
numbers. The longest progression found to date is the 22 primes

11410337850553 + 4609098694200n, 0 ≤ n ≤ 21

The prime factorization of the common difference between the terms is

23 · 3 · 52 · 7 · 11 · 13 · 17 · 19 · 23 · 1033

which is divisible by 9699690, the product of the primes less than 22. This leads to the following theorem.

Theorem 1.21. If all the n > 2 terms of the arithmetic progression

p, p+ d, p+ 2d, ..., p+ (n− 1)d
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2 The Theory of Congruences

Definition 2.1. Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo
n, denoted

a ≡ b (mod n)

if n|(a− b); that is, if there exists an integer k such that a− b = kn.

The following is clearly a relation within the set of integers. That is,

1. a ≡ a (mod n)

2. a ≡ b (mod n) =⇒ b ≡ a (mod n)

3. a ≡ b (mod n), b ≡ c (mod n) =⇒ a ≡ c (mod n)

This furthermore partitions the integers into congruence classes.

Theorem 2.1. For arbitrary integers a and b, a ≡ b (mod n) if and only if a and b have the same
nonnegative remainder when divided by n.

Proof. Trivial. ■

Since the integers are naturally endowed with the operations of addition and multiplication, we can
conclude even further results about congruences.

Theorem 2.2. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then

1. a ≡ b (mod n), c ≡ d (mod n) =⇒ a+ c ≡ b+ d (mod n)

2. a ≡ b (mod n), c ≡ d (mod n) =⇒ ac ≡ bd (mod n)

3. a ≡ b (mod n) =⇒ ak ≡ bk (mod n) for any positive integer k

All three can be combined to get the following. Let

P (x) =

m∑
k=0

ckx
k

be a polynomial function of x with integral coefficients ck. If a ≡ b (mod n), then P (a) ≡ P (b) (mod n).

However, note that congruences do not hold when integers are divided! Note the example

2 ≡ 8 (mod 6) ≠⇒ 1 ≡ 4 (mod 6)

The following theorem must be used.

Theorem 2.3. If ca ≡ cb (mod n), then a ≡ b (mod n/d), where d = gcd(c, n).

This states that if gcd(c, n) = 1, then we can divide both sides by c without a change in modulus.

Corollary 2.3.1. If ca ≡ cb (mod n) and gcd(c, n) = 1, then a ≡ b (mod n).

Corollary 2.3.2. If ca ≡ cb (mod p) where p is a prime number, then a ≡ b (mod p).

Definition 2.2. A number in the digit form

anan−1...a0

in base m is calculated to be in the form

anan−1...a− =

n∑
i=0

aim
i = a0 + a1m

1 + a2m
2 + ...+ anm

n

With this, we can prove requirements of divisibility of numbers by 3, 9, and 11.

Theorem 2.4. Let N = anan−1...a0 be the decimal (base 10) representation of a the positive integer N .
Then
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1. 3|N if and only if 3
∣∣∑n

i=0 ai

2. 9|N if and only if 9
∣∣∑n

i=0 ai

3. 11|N if and only if 11
∣∣∑n

i=0(−1)iai

Proof. We can see that

anan−1...a0 =

n∑
i=0

ai10
i ≡

n∑
i=0

ai(1)
i (mod 3)

≡
n∑

i=0

ai(1)
i (mod 9)

≡
n∑

i=0

ai(−1)i (mod 11)

■

2.1 Linear Congruences

Definition 2.3. An equation of linear congruence is of form

ax ≡ b (mod n)

where the solutions are equivalence classes of integers [x]. Two integers in the same equivalence class are
counted as the same solution.

Theorem 2.5. The linear congruence ax ≡ b (mod n) has a solution if and only if d|b, where d =
gcd(d, n). If d|b, then it has d distinct solutions of equivalence classes.
Furthermore, if x0 is a particular solution, then the d = gcd(a, n) incongruent solutions are

x0, x0 +
n

d
, x0 + 2

(n
d

)
, ..., x0 + (d− 1)

(n
d

)
Corollary 2.5.1. If gcd(a, n) = 1, then the linear congruence ax ≡ b (mod n) has a unique solution
modulo n.

Example 2.1. Consider the equation 18x ≡ 30 (mod 42). Since gcd(18, 42) = 6 and 6|30, there are
exactly 6 solutions that are incongruent modulo 42. One solution is x = 4, so the rest of them are

x ≡ 4 +
42

6
t ≡ 4 + 7t (mod 42), t = 0, 1, 2, 3, 4, 5

which is the equivalence classes

x ≡ 4, 11, 18, 25, 32, 39 (mod 42)

Theorem 2.6 (Chinese Remainder Theorem). Let n1, n2, ..., nr be positive integers such that gcd(ni, nj) =
1 for i ̸= j. Then, the system of linear congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr)

has a simultaneous solution, which is unique modulo the integer n1n2...nr.

Proof. Define the product n = n1n2...nr. For each k = 1, 2, ..., r, let

Nk =
n

nk
= n1n2...nk−1nk+1...nr

10/ 51



Number Theory Muchang Bahng August 2021

By hypothesis, all ni are relatively prime, so, gcd(Nk, nk) = 1. According to the theory of a single
linear congruence, it is therefore possibly to solve the congruence Nkx ≡ 1 (mod nk); denote the unique
solution as xk. We claim that the integer

x̄ =

r∑
i=1

aiNixi

is a simultaneous solution of the given system. Since Ni ≡ 0 (mod nk) for i ̸= k, we have

x̄ =

r∑
i=1

aiNixi ≡ akNkxk (mod nk)

But since the integer xk was chosen to satisfy the congruence Nkx ≡ 1 (mod nk), this forces

x̄ ≡ ak (mod nk)

which shows that a solution exists. As for uniqueness, suppose that x′ is any other integer satisfying the
congruences. Then,

x̄ ≡ ak ≡ x′ (mod nk), k = 1, 2, ..., r

and so nk|x̄− x′ for each k. Since gcd(ni, nj) = 1, this implies that

( r∏
i=1

ni

)∣∣∣∣(x̄− x′)

which implies that x̄ ≡ x′ (mod n). ■

Example 2.2. Let us solve the system

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

We have n = 3 · 5 · 7 and so

N1 = 35, N2 = 21, N3 = 15

leading to the linear congruences

35x ≡ 1 (mod 3)

21x ≡ 1 (mod 5)

15x ≡ 1 (mod 7)

The solutions to these equations are x1 = 2, x2 = 1, x3 = 1, respectively. Thus, a solution of the original
system is given by

x = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 = 233

Taking modulo 105, we get the unique solution x = 233 ≡ 23 (mod 105).

Definition 2.4. A linear congruence equation in two variables is of the form

ax+ by ≡ c (mod n)

This congruence has a solution if and only if gcd(a, b, n)|c.

We briefly describe the process of solving the equation when either one of a or b is relatively prime to n.
Without loss of generality, let gcd(a, n) = 1. Then, we can express the congruence as

ax ≡ c− by (mod n)

and for each of the n incongruent values of y, we are guaranteed a unique solution for x.
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Example 2.3. Given the equation
7x+ 4y ≡ 5 (mod 12)

since gcd(7, 12) = 1, we change the equation to

7x ≡ 5− 4y (mod 12)

Using casework by substituting each of the 12 possible incongruent values of y, we can reduce the above
to a linear equation in one variable. For instance, leting y ≡ 5 (mod 12) produces the equation

7x ≡ −15 (mod 12) =⇒ −5x ≡ −15 =⇒ x ≡ 3 (mod 12)

Therefore, (x, y) ≡ (3, 5) is one out of the 12 solutions.

We now shift towards solving systems of these equations.

Theorem 2.7. The system of linear congruences

ax+ by ≡ r (mod n)

cx+ dy ≡ s (mod n)

has a unique solution modulo n whenever gcd(ad− bc, n) = 1.

Proof. Let us multiply the first congruence of the system by d, the second congruence by b, and subtract
the lower result form the upper. We then get

(ad− bc)x ≡ dr − bs (mod n)

Since by hypothesis, gcd(ad− bc, n) = 1, this ensures that the congruence

(ad− bc)z ≡ 1 (mod n)

has a unique solution; call it t. When we multiply this to the first equation, we get

x ≡ t(dr − bs) (mod n)

Similarly, we can get a value for y:
y ≡ t(as− cr) (mod n)

Since we have described an explicit formula for the solutions x, y, we are done. ■

Notice that we can interpret this system as(
a b
c d

)(
x
y

)
≡
(
r
s

)
(mod n)

For those with a bit of background in algebra, we can interpret the matrix of cofficients as a linear
endomorphism of the quotient space of lattices Z2/ ∼, where ∼ is the congruence relation.

Example 2.4. We use the formulas gotten in the previous proof to find the solutions of the system:

7x+ 3y ≡ 10 (mod 16)

2x+ 5y ≡ 9 (mod 16)

Since gcd(7 · 5− 2 · 3, 16) = gcd(29, 16) = 1, a solution exists. Multiplying the first congruence by 5, the
second by 3, and subtracting the second from the first gives the equation

29x ≡ 23 (mod 16) =⇒ 13x ≡ 7 (mod 6)

producing the solution x ≡ 3 (mod 16). When we eliminate the x variable, we get the equation

29y ≡ 43 (mod 16) =⇒ y ≡ 7 (mod 16)

So, the unique solution to the system is

x ≡ 3 (mod 16), y ≡ 7 (mod 16)
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2.2 Fermant’s Little Theorem and Pseudoprimes

Theorem 2.8 (Fermant’s Little Theorem). Let p be a prime and suppose that p ̸
∣∣ a. Then,

ap−1 ≡ 1 (mod p)

Proof. We consider the first p− 1 positive multiples of a.

a, 2a, 3a, ..., (p− 1)a

None of these numbers is congruent modulo p to any other, nor is any congruent to zero, since if any
were, then

ra ≡ sa (mod p), 1 ≤ r < s ≤ p− 1

then a could be canceled to give r ≡ s (mod p), which is impossible. Therefore, the previous set of
integers must be congruent modulo p to 1, 2, 3, ..., p−1, taken in some orer. Multiplying these congruences
together gives

ap−1(p− 1)! ≡ (p− 1)! (mod p)

Since p ̸
∣∣ (p− 1)!, we can divide both sides by (p− 1)! without changing the modulo to get

ap−1 ≡ 1 (mod p)

■

We can state this theorem in a slightly more general way by not requiring that p does not divide a.

Corollary 2.8.1. If p is prime, then ap ≡ a (mod p) for any integer a.

Ancient Chinese mathematicians conjectured that n is prime if and only if n|(2n−2), which held true up
to 340. However, n = 341 provides a counterexample to this claim, but numbers n that satisfy n|(2n−2)
are prime often enough to merit a name.

Definition 2.5. A composite integer n is called a pseudoprime if n|(2n − 2).

Theorem 2.9. If n is an odd pseudoprime, then

Mn = 2n − 1

is a larger one.

Corollary 2.9.1. There are an infinite number of pseudoprimes.

Proof. The previous theorem allows us to construct an infinite sequence of increasing odd pseudoprimes.
■

The first four are 341, 561, 645, and 1105.

Definition 2.6. More generally, a composite integer n for which

an ≡ a (mod n)

is called a pseudoprime to the base a. When a = 2, n is simply said to be a pseudoprime.

Proposition 2.10. There are infinitely many pseudoprimes to any given base.

Even though there are an infinite number of pseudoprimes, they are much rarer than regular primes.
Indeed, there are only 245 pseudoprimes and 78, 498 primes smaller than 1, 000, 000.

Definition 2.7. Composite numbers n that are pseudoprimes to every base a are called absolute pseu-
doprimes.

Lemma 2.11. 561 is an absolute pseudoprime.
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Proof. Note that 561 = 3 · 11 · 17, and notice that gcd(a, 561) = 1 gives

gcd(a, 3) = gcd(a, 11) = gcd(a, 17) = 1

Using Fermant’s little theorem, we get the congruences

a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11), a16 ≡ 1 (mod 17)

which implies

a560 ≡ (a2)280 ≡ 1 (mod 3)

a560 ≡ (a10)56 ≡ 1 (mod 11)

a560 ≡ (a16)35 ≡ 1 (mod 17)

So, we have a560 ≡ 1 (mod 561), where gcd(a, 561) = 1. So, a561 ≡ a (mod 561) for all a. ■

The next absolute pseudoprimes are

1105 = 5 · 13 · 17
2821 = 7 · 13 · 31
15841 = 7 · 31 · 73

... = ...

16046641 = 13 · 37 · 73 · 457

Now, we present a theorem that provides a means for producing absolute pseudoprimes.

Theorem 2.12. Let n be a composite square-free integer, say p1...pn, where the pi are distinct primes.
If

(pi − 1)
∣∣(n− 1) for i = 1, 2, ..., r

then n is an absolute pseudoprime.

Proof. Suppose that a is an integer such that gcd(a, n) = 1, so that gcd(a, pi) = 1 for all i. Then,
Fermant’s theorem yields

pi
∣∣api−1 − 1 =⇒ pi

∣∣(an − a)

for all a and for all i = 1, 2, ..., r. So, we end up with n
∣∣(an − a), making n an absolute pseudoprime. ■

There are 43 absolute pseudoprimes less than 1, 000, 000 and 105, 212 less than 1015.

Theorem 2.13 (Wilson’s Theorem). p is a prime number if and only if

(p− 1)! ≡ −1 (mod p)

Proof. (→) We can check by hand that the cases p = 2 and p = 3 are evident. Take p > 3. Suppose that
a is any one of the p− 1 positive integers

1, 2, 3, ..., p− 1

and consider the linear congruence ax ≡ 1 (mod p). Since gcd(a, p) = 1, there is a unique solution
modulo p, call it a′. So, there is a unique integer a′, with 1 ≤ a′ ≤ p− 1 satisfying aa′ ≡ 1 (mod p).
Now, note that because p is prime, a = a′ if and only if a = 1 or a = p− 1, since this would lead to the
congruence a2 ≡ 1 (mod p). If we omit the numbers 1 and p− 1, we claim that the remaining (p− 3)/2
numbers can be multiplied together to be congruent to 1. That is, we can group the remaining integers
2, 3, ..., p− 2 into pairs a, a′ where a ̸= a′, such that their product aa′ ≡ 1 (mod p). It is a fact that

2 · 3 · ... · (p− 2) ≡ 1 (mod p) ⇐⇒ (p− 2)! ≡ 1 (mod p)

We multiply by p− 1 to obtain the congruence

(p− 1)! ≡ p− 1 ≡ −1 (mod p)

(←) The converse will not be proven here. ■
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Example 2.5. Let us take p = 13. Then, we get

11! = (2 · 7)(3 · 9)(4 · 10)(5 · 8)(6 · 11) ≡ 1 · 1 · 1 · 1 · 1 ≡ 1 (mod 13)

which implies that
12! ≡ 12 ≡ −1 (mod 13)

Definition 2.8. A quadratic congruence is a congruence of the form

ax2 + bx+ c ≡ 0 (mod n), a ̸= 0 (mod n)

An application of Wilson’s theorem goes into the following claim.

Theorem 2.14. The quadratic congruence x2+1 ≡ 0 (mod p), where p is an odd prime, has a solution
if and only if p ≡ 1 (mod 4).

We finally end with a generalization of Fermant’s theorem by stating Euler’s theorem.

Theorem 2.15 (Euler’s Theorem). If n ≥ 1 and gcd(a, n) = 1, then

aφ(n) ≡ 1 (mod n)

Fermant’s theorem is then a corollary of Euler’s theorem.

Corollary 2.15.1 (Fermant’s Little Theorem). If p is prime and p does not divide a, then ap−1 ≡ 1
(mod p).

Proof. If p is prime, then φ(p) = p− 1. So,

ap−1 ≡ aφ(p) ≡ 1 (mod p)

■

2.3 Fermant-Kraitchik Factorization Method

3 Number Theoretic Functions

3.1 Sum and Number of Divisors

Definition 3.1. A number-theoretic (or arithmetic) function is a function whose domain is the set of
positive integers. That is, it is a function

F : Z −→ X

for arbitrary X (not necessarily Z).

Two of the most common arithmetic functions are defined below.

Definition 3.2. Given a positive integer n, let τ(n) denote the number of positive divisors of n and let
σ(n) denote the sum of these divisors.
We can also interpret τ and σ as ∑

d|n

f(d)

where the subscript on the summation denotes all divisors d of n and f is some function. For instance,∑
d|20

f(d) = f(1) + f(2) + f(4) + f(5) + f(10) + f(20)

With this, τ and σ can be expressed in the form

τ(n) =
∑
d|n

1, σ(n) =
∑
d|n

d

The following theorem provides a well known method to compute τ .
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Theorem 3.1. Given a positive integer n, let its prime factorization be

n =
∏
i

pki
i

Then, the divisors of n are precisely those integers d of the form

d =
∏
i

pai
i , 0 ≤ ai ≤ ki for i = 1, 2, ..., r

Corollary 3.1.1. If the prime factorization of n is n = pk1
1 pk2

2 ...pkr
r , then

τ(n) =
∏
i

(ki + 1)

σ(n) =
∏
i

pki+1
i − 1

pi − 1

Proof. The evaluation for τ(n) is trivial, since each divisor can be made by ”choosing” from the ki + 1
choices for the exponent ai. To evaluate σ(n), consider the product

∏
i

( ki∑
j=0

pji

)
=
∏
i

(
1 + pi + p2i + ...+ pki

i

)
and notice that each divisor of n appears once and only once as a term in the expansion of this product.
■

Proposition 3.2. The product of the positive divisors of a positive integer n is equal to nτ(n)/2. That
is,

nτ(n) =

(∏
d|n

d

)2

Note that given positive integer m,n,

τ(mn) ̸= τ(m) · τ(n) and σ(mn) = σ(m) · σ(n)

That is, τ and σ are not multiplicative in general! However, there is a certain circumstance when they
are multiplicative.

Definition 3.3. Within the context of number theory, a number theoretic function f is said to be
multiplicative if

f(mn) = f(m)f(n)

whenever gcd(m,n) = 1.

Proposition 3.3. τ and σ are multiplicative functions.

Proof. Since m and n are coprime, the prime factorization of m does not ”overlap” that of n in such a
way that none of the exponents are the same between m and n. ■

We can prove a more general results on multiplicative functions. T

Lemma 3.4. If gcd(m,n) = 1, then the set of positive divisors mn consists of all products d1d2, where
d1|m and d2|n, and gcd(d1, d2) = 1. Furthermore, these products are all distinct.

Theorem 3.5. If f is a multiplicative function and F is defined by

F (n) =
∑
d|n

f(d)

then F is also multiplicative.
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Proof. Let m,n be coprime. By the previous lemma, every divisor of mn can be written as d1d2. By
definition of a multiplicative function, f(d1d2) = f(d1)f(d2), which implies

F (mn) =
∑

d1|m,d2|n

f(d1)f(d2)

=

(∑
d1|m

f(d1)

)(∑
d2|n

f(d2)

)
= F (m)F (n)

■

From this result, we can see that since the corresponding f ’s in the summation representation of τ and
σ are multiplicative, the functions themselves are multiplicative.

3.2 The Mobius Inversion Formula

Definition 3.4. For a positive integer n, we define the Mobius µ-function as

µ(n) =


1 n = 1

0 p2|n for some prime p

(−1)r n = p1p2...pr, where pi are distinct primes

In words, this definition states that µ(n) = 0 if n is not a square-free integer, whereas µ(n) = (−1)r if n
is square-free with r prime factors.

Example 3.1. Say n = 30. Then µ(30) = µ(2 · 3 · 5) = (−1)3 = −1. The first few values of µ are

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1, µ(6) = (−1)2 = 1

Lemma 3.6. µ is a multiplicative function. (Note that multiplicative only applies to arguments that are
relatively prime)

What happens if we sum all of the divisors of n with µ applied to it?

Theorem 3.7. For each positive integer n ≥ 1,

∑
d|n

µ(d) =

{
1 n = 1

0 n > 1

Example 3.2. ∑
d|10

µ(d) = µ(1) + µ(2) + µ(5) + µ(10)

= 1 + (−1) + (−1) + 1 = 0

The significance of the Mobius function is shown in the following theorem.

Theorem 3.8 (Mobius Inversion Formula). Let F and f be two number theoretic functions related by
the formula

F (n) =
∑
d|n

f(d)

Then,

f(n) =
∑
d|n

µ(d)F
(n
d

)
=
∑
d|n

µ
(n
d

)
F (d)
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Example 3.3. Let us use n = 10. We see that∑
d|10

( ∑
c|(10/d)

µ(d) f(c)

)
= µ(1)

(
f(1) + f(2) + f(5) + f(10)

)
+ µ(2)

(
f(1) + f(5)

)
+ µ(5)

(
f(1) + f(2)

)
+ µ(10)f(1)

= f(1)
(
µ(1) + µ(2) + µ(5) + µ(10)

)
+ f(2)

(
µ(1) + µ(5)

)
+ f(5)

(
µ(1) + µ(2)

)
+ f(10)µ(1)

=
∑
c|10

( ∑
d|10/c

f(c)µ(d)

)

Lemma 3.9. If F is a multiplicative function and

F (n) =
∑
d|n

f(d)

then f is also multiplicative.

3.3 The Greatest Integer Function

Definition 3.5. For an arbitrary real number x, we denote as [x], called the floor function, the largest
integer less than or equal to x. That is, [x] is the unique integer satisfying

x− 1 < [x] ≤ x

Clearly, every real number x can be written as

x = [x] + θ, 0 ≤ θ < 1

Given an integer n, we now introduce a method in finding the highest power k of p prime such that pk

divides n!.

Theorem 3.10. If n is a positive integer and p a prime, then the highest power k of p that divides n! is

∞∑
k=1

[
n

pk

]
where the series is infinite, because [n/pk] = 0 for pk > n.

Example 3.4. The greatest power of 2 that can divide 50! is

[50/2] + [50/22] + [50/23] + [50/24] + [50/25]

= 25 + 12 + 6 + 3 + 1

= 47

So, 247 divides 50!, but 248 does not.

Lemma 3.11. If n and r are positive integers with 1 ≤ r < n, then the binomial coefficient(
n

r

)
=

n!

r! (n− r)!

is also an integer.

Proof. We prove this using the floor function. Note that for any real numbers a, b, we have [a + b] ≥
[a] + [b]. In particular, for each prime factor p of r!(n− r)!,[

n

pk

]
≥
[
r

pk

]
+

[
n− r

pk

]
, k = 1, 2, ...
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Summing them over k, we get ∑
k≥1

[
n

pk

]
≥
∑
k≥1

[
r

pk

]
+
∑
k≥1

[
n− r

pk

]
The left hand side gives the exponent of the highest power of the prime p that divides n!, while the
right hand side equals the highest power of this prime contained in r!(n − r)!. Hence, p appears in the
numerator at least as many times in the denominator. Since this holds true for all p, r!(n − r)! must
divide n!, making the binomial coefficient an integer. ■

Corollary 3.11.1. For a positive integer r, the product of any r consecutive positive integers is divisible
by r!.

Proof. The product of r consecutive integers, the largest of which is n, is

n(n− 1)(n− 2)...(n− r + 1)

Now, we have

n(n− 1)...(n− r + 1) =

(
n!

r!(n− r)!

)
r!

Since n!/r!(n− r)! is an integer, r! must divide the product n(n− 1)...(n− r + 1). ■

We incorporate the floor function into the topic of number theoretic functions.

Theorem 3.12. Let f and F be number theoretic functions such that

F (n) =
∑
d|n

f(d)

Then, for any positive integer N ,
N∑

n=1

F (n) =

N∑
k=1

f(k)

[
N

k

]
This allows us to compute τ and σ with the following corollaries.

Corollary 3.12.1. If N is a positive integer, then

N∑
n=1

τ(n) =

N∑
n=1

[
N

n

]
Corollary 3.12.2. If N is a positive integer, then

N∑
n=1

σ(n) =

N∑
n=1

n

[
N

n

]
Example 3.5. Consider the case when N = 6. Then,

6∑
n=1

τ(n) =

6∑
n=1

[
6

n

]
= 6 + 3 + 2 + 1 + 1 + 1 = 14

We also have
6∑

n=1

σ(n) =

6∑
n=1

n

[
6

n

]
= 1 · 6 + 2 · 3 + 3 · 2 + 4 · 1 + 5 · 1 + 6 · 1 = 33
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3.4 Euler’s Totient (Phi) Function

Definition 3.6. For n ≥ 1, let φ(n) denote the number of positive integers not exceeding n that are
relatively prime to n.

For example, φ(30) = 8, since there are a total of 8 integers. Explicitly listing them out gives

1, 7, 11, 13, 15, 19, 23, 29

Clearly, there is an upper bound for φ. That is,

φ(n) ≤ n− 1

with equality reaching if n is prime. That is, if we graph
(
n, φ(n)

)
, all points will be bounded in the

lower triangular region of the first quadrant.

Theorem 3.13. Algebraically, φ(n) gives the order for the multiplicative group of integer modulo n,
which is isomorphic to the multiplicative group Z/nZ. That is,

φ(n) = card

(
Z
nZ

)
Lemma 3.14. If p is prime and k > 0, then

φ(pk) = pk − pk−1 = pk
(
1− 1

p

)
Lemma 3.15. φ is a multiplicative function.

These two leads to the following theorem that describes a method to compute φ(n).

Theorem 3.16. If the integer n > 1 has the prime factorization

n = pk1
1 pk2

2 ...pkr
r

then

φ(n) =
(
pk1
1 − pk1−1

1

)(
pk2
2 − pk2−1

2

)
...
(
pkr
r − pkr−1

r

)
= n

(
1− 1

p1

)(
1− 1

p2

)
...

(
1− 1

pr

)
Example 3.6. To calculate φ(360), note that 360 = 23 · 32 · 5, so

φ(360) = 360

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 96

Notice that except for φ(1) and φ(2), the values of φ(n) are always even.

Theorem 3.17. For n > 2, φ(n) is an even integer.

Proof. In the case when n is a power of 2; that is, n = 2k, then

φ(n) = φ(2k) = 2k
(
1− 1

2

)
= 2k−1

If n is not a power of 2, then it is divisible by an odd prime p. So, we can write n = pkm for some k ≥ 1
and m, where gcd(pk,m) = 1. Using the multiplicative property of φ, we get

φ(n) = φ(pk)φ(m) = pk−1(p− 1)φ(m)

where p− 1 is even, so φ(n) is also even. ■

One interesting property of the totient function is that the sum of the values of φ(d) as d ranges over
the positive divisors of n is equal to n itself.
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Theorem 3.18 (Gauss). For each positive integer n ≥ 1,

n =
∑
d|n

φ(d)

which is the sum being added over all positive divisors of n.

Proof. The integers between 1 and n can be separated into classes as follows. If d is a positive divisor of
n, we put the integer m in the class Sd provided that gcd(m,n) = d. That is,

Sd = {m | gcd(m,n) = d, 1 ≤ m ≤ n}

Now, gcd(m,n) = d if and only if gcd(m/d, n/d) = 1. Thus, the number of integers in the class Sd is
equal to the number of positive integers not exceeding n/d that are relatively prime to n/d, which is just
equal to φ(n/d). Since each of the integers 1, 2, ..., n lies in exactly one class Sd, we get the formula

n =
∑
d|n

card(Sd) =
∑
d|n

φ

(
n

d

)

But as d runs through all positive divisors of n, so does n/d, implying that∑
d|n

φ

(
n

d

)
=
∑
d|n

φ(d)

■

Example 3.7. Let n = 10. Then the classes Sd are

S1 = {1, 3, 7, 9}
S2 = {2, 4, 6, 8}
S5 = {5}
S10 = {10}

These contain φ(10) = 4, φ(5) = 4, φ(2) = 1, φ(1) = 1 integers, respectively. Therefore,∑
d|10

φ(d) = φ(10) + φ(5) + φ(2) + φ(1)

= 4 + 4 + 1 + 1 = 10

Theorem 3.19. For n > 1, the sum of the positive integers less than n and relatively prime to n is

1

2
nφ(n)

Proof. Let a1, a2, ..., aφ(n) be the positive integers less than n and relatively prime to n. Because
gcd(a, n) = 1 if and only if gcd(n− a, n) = 1, the numbers

n− a1, n− a2, ..., n− aφ(n)

are equal in some order to a1, a2, ..., aφ(n). Thus,

a1 + a2 + ...+ aφ(n) = (n− a1) + (n− a2) + ...+ (n− aφ(n))

= nφ(n)− (a1 + a2 + ...+ aφ(n)

This implies that

2(

φ(n)∑
i=1

ai = nφ(n)

■
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Example 3.8. When n = 30, the φ(30) = 8 integers that are less than 30 and relatively prime to it are

1, 7, 11, 13, 17, 19, 23, 29

This is consistent with the theorem, since

1 + 7 + 11 + 13 + 17 + 19 + 23 + 29 =
1

2
· 30 · 8

Also, note the pairings:

1 + 29 = 30, 7 + 23 = 3−, 11 + 19 = 30, 13 + 17 = 30

This final theorem provides an application of the Mobius inversion formula.

Theorem 3.20. For any positive integer n,

φ(n) = n
∑
d|n

µ(d)

d

Proof. We apply the inversion formula to

F (n) = n =
∑
d|n

φ(d)

to get

φ(n) =
∑
d|n

µ(d)F

(
n

d

)
=
∑
d|n

µ(d)
n

d

■

4 Primitive Roots and Indices

With Euler’s theorem, we know that aφ(n) ≡ 1 (mod n), whenever gcd(a, n) = 1. However, there are
often powers smaller than aφ(n) that are congruent to 1 modulo n.

Definition 4.1. Let n > 1 and gcd(a, n) = 1. The order of a modulo n is the smallest positive integer
k such that ak ≡ 1.

Example 4.1. Consider the successive powers of 2 modulo 7.

21 ≡ 2, 22 ≡ 4, 23 ≡ 1, 24 ≡ 2, ...

So, the integer 2 has order 3 modulo 7.

Lemma 4.1. If two integers are congruent modulo n, then they have the same order modulo n. For if
a ≡ b (mod n) and ak ≡ 1 (mod n), then ak ≡ bk (mod n), implying that bk ≡ 1 (mod n).

Also note that our definition of order modulo n concerns only integers a for which gcd(a, n) = 1. Indeed,
if gcd(a, n) > 1, then we see that the linear congruence ax ≡ 1 (mod n) has no solution, meaning that
the relation ak ≡ 1 (mod n) cannot hold. With this in mind, one can deduce the following theorem.

Theorem 4.2. Let the integer a have order k modulo n. Then ah ≡ 1 (mod n) if and only if k|h; in
particular, k|φ(n).

Another basic result.

Theorem 4.3. If the integer a has order k modulo n, then ai ≡ aj (mod n) if and only if i ≡ j (mod k).

Corollary 4.3.1. If a has order k modulo n, then the integers a, a2, a3, ..., ak are incongruent modulo n.
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Proof. If ai ≡ aj (mod n) for 1 ≤ i ≤ j ≤ k, then the theorem ensures that i ≡ j (mod k). But this is
impossible unless i = j. ■

Theorem 4.4. If the integer a has order k modulo n and h > 0, then ah has order k/ gcd(h, k) modulo
n.

Corollary 4.4.1. Let a have order k modulo n. Then ah also has order k if and only if gcd(h, k) = 1.

Example 4.2. 2 has order 12 modulo 13. Calculations show that the orders of 22 and 23 are 6 and 4,
respectively, which is consistent with the result that

6 =
12

gcd(2, 12)
, 4 =

12

gcd(3, 12)

Moreoever, the integers that also have order 12 modulo 13 are

21 ≡ 2, 25 ≡ 6, 27 ≡ 11, 211 ≡ 7 (mod 13)

Definition 4.2. If an integer a has the largest order possible, then we call it a primitive root of n. That
is, if gcd(a, n) = 1 and a is of order φ(n) modulo n, then a is a primitive root of n.

Example 4.3. Listing out all the positive multiplies of 3, we can see that 3 is a primitive root of 7 since
it has an order of φ(7) = 6.

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1

Another primitive root of 7 is 5, since it also has an order of φ(7) = 6

51 ≡ 5, 52 ≡ 4, 53 ≡ 6, 54 ≡ 2, 55 ≡ 3, 56 ≡ 1 (mod 7)

However, no other primitive roots exist for 7. Try 4,

41 ≡ 4, 42 ≡ 2, 43 ≡ 1 (mod 7)

which has an order of 3 ̸= φ(7).

In fact, primitive roots exist for any prime modulus, since Euler’s theorem combined with the fact that
any number less than a prime is coprime with the prime itself. There are plenty of primitive roots for
composite numbers, though.

Example 4.4. 2 is a primitive root of 9. Note that φ(9) = 6

21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 7, 25 ≡ 5, 26 ≡ 1

However, it is more often the case that a number is not a primitive root.

Proposition 4.5. If the Fermant number Fn = 22
n

+1 with n ≥ 2 is a prime, then 2 is a not a primitive
root of Fn.

Proof. We factorize Fn+1 = 22
n+1

+ 1 = (22
n

+ 1)(22
n − 1), which implies that

22
n+1

≡ 1 (mod Fn)

This means that the order of 2 modulo Fn does not exceed 2n+1. But if Fn is assumed to be prime, then

φ(Fn) = Fn − 1 = 22
n

but we can prove (by induction) that 22
n

> 2n+1 whenever n > 1. Thus, the order of 2 modulo Fn is
smaller than φ(Fn) and by definition 2 cannot be a primitive root of Fn. ■

The following theorem is immensely useful.

Theorem 4.6. Let gcd(a, n) = 1 and let a1, a2, ..., aφ(n) be the positive integers less than n and relatively
prime to n. If a is a primitive root of n, then

a, a2, ..., aφ(n)

are congruent modulo n to a1, a2, ..., aφ(n) in some order.
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Proof. Since a is relatively prime to n the same holds for all the powers of a, meaning that each ak is
congruent modulo n to some one of the ai. But since the φ(n) numbers in the set {a, a2, ..., aφ(n)} are
incongruent, these powers must represent some permutation of the integers a1, a2, ..., aφ(n). ■

Corollary 4.6.1. If n has a primitive root, then it has exactly φ
(
φ(n)

)
of them.

Proof. Suppose that a is a primitive root of n. By the theorem, any other primitive root of n is found
among the members of the set {a, a2, ..., aφ(n)}. But the number of powers ak, 1 ≤ k ≤ φ(n), that have
order φ(n) is equal to the number of integers k for which gcd

(
k, φ(n)

)
= 1. There are φ

(
φ(n)

)
such

integers. ■

4.1 Primitive Roots for Primes

Theorem 4.7 (Lagrange). If p is prime and

f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0, an ̸≡ 0 (mod p)

is a polynomial of degree n ≥ 1 with integral coefficients, then the congruence

f(x) ≡ 0 (mod p)

has at most n incongruent solutions modulo p.

Corollary 4.7.1. If p is a prime number and d|(p− 1), then the congruence

xd − 1 ≡ 0 (mod p)

has exactly d solutions.

Theorem 4.8. If p is a prime number and d|(p − 1), then there are exactly φ(d) incongruent integers
having order d modulo p.

Corollary 4.8.1. If p is prime, then there are exactly φ(p− 1) incongruent primitive roots of p.

Definition 4.3. Let χ(p) denote the smallest positive primitive root of the prime p.

The first few values of χ is

χ(2) = 1 χ(3) = 2 χ(5) = 2 χ(7) = 3 χ(11) = 2 χ(13) = 2
χ(17) = 3 χ(19) = 2 χ(23) = 5 χ(29) = 2 χ(31) = 3 χ(37) = 2
χ(41) = 6 χ(43) = 3 χ(47) = 5 χ(53) = 2 χ(59) = 2 χ(61) = 2
χ(67) = 2 χ(71) = 7 χ(73) = 5 χ(79) = 3 χ(83) = 2 χ(89) = 3

The table suggests, although not proven, that there exist an infinite number of primes p for which
χ(p) = 2. Looking at the distribution of values more statistically, we can see that χ(p) ≤ 19 for all
p < 200. Additionally, among the first 19862 odd primes up to 223051, χ(p) ≤ 6 holds for about 80% of
these primes; χ(p) = 2 about 37% of the time and χ(p) = 3 about 23% of the time.

4.2 Primitive Roots for Composite Numbers

We state a few results.

Theorem 4.9. For k ≥ 3, the integer 2k has no primitive roots.

Proof. We start by showing that if a is an odd integer, then for k ≥ 3

a2
k−2

≡ 1 (mod 2k)

If k = 3, this congruence becomes a2 ≡ 1 (mod 8), which is true. For k > 3 we proceed by induction on
k. Assume that the congruence holds for some integer k. Then

a2
k−2

≡ 1 (mod 2k) =⇒ a2
k−2

= 1 + b2k
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where b ∈ Z. Squaring both sides, we get

a2
k−1

=
(
a2k−2

)2
= 1 + 2(b2k) + (b2k)2

= 1 + 2k+1(b+ b22k−1)

≡ 1 (mod 2k+1)

meaning that the congruence holds for n+ 1 and so for all n > 3. Now, the integers that are relatively
prime to 2k are precisely the odd integers, so φ(2k) = 2k−1, which is also equivalent to 2 · 2k−2. So, if a
is an odd integer and k ≥ 3, then by the congruence just proved,

aφ(2k)/2 ≡ 1 (mod 2k)

and consequently, there are no primitive roots of 2k. ■

Theorem 4.10. If gcd(m,n) = 1, where m > 2, n > 2, then the integer mn has no primitive roots.

Corollary 4.10.1. The integer n fails to have a primitive if either

1. n is divisible by two odd primes, or

2. n is of the form 2mpk, where p is an odd prime and m ≥ 2.

This allows us to reduce our search for primitive roots to the integers 2, 4, pk, and 2pk, where p is an odd
prime. The following theorem says the rest.

Theorem 4.11. An integer n > 1 has a primitive root if and only if

n = 2, 4, pk, or 2pk

where p is an odd prime.

4.3 The Theory of Indices

Definition 4.4. Let r be a primitive root of n. If gcd(a, n) = 1, then the smallest positive integer k
such that a ≡ rk (mod n) is called the index of a relative to r, denoted by indra.

Clearly, 1 ≤ indra ≤ φ(n), and
rindra ≡ a (mod n)

The notation indra is meaningless unless gcd(a, n) = 1.

Example 4.5. The integer 2 is a primitive root of 5, and

21 ≡ 2 22 ≡ 4 23 ≡ 3 24 ≡ 1 (mod 5)

If follows that
ind21 = 4 ind22 = 1 ind23 = 3 ind24 = 2

Note that the way the index operation behaves is very similar to the logarithmic function.

Theorem 4.12. If n has a primitive root r and indra denote the index of a relative to r, then the
following properties hold.

1. indr(ab) ≡ indra+ indrb (mod φ(n))

2. indra
k ≡ k indra (mod φ(n)) for k > 0

3. indr1 ≡ 0 (mod φ(n)), indr ≡ 1 (mod φ(n))

The theory of indices can be used to solve certain types of congruences. For example, the binomial
congruence

xk ≡ a (mod n), k ≥ 2

where n is a positive integer having a primitive root and gcd(a, n) = 1 is entirely equivalent to the linear
congruence

k indx ≡ ind a (mod φ(n))
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Theorem 4.13. Let n be an integer possessing a primitive root and let gcd(a, n) = 1. Then the congru-
ence xk ≡ a (mod n) has a solution if and only if

aφ(n)/d ≡ 1 (mod n)

where d = gcd
(
k, φ(n)

)
. If it has a solution, then there are exactly d solutions modulo n.

Corollary 4.13.1. Let p be a prime and let gcd(a, p) = 1. Then the congruence xk ≡ a (mod p) has a
solution if and only if

a(p−1)/d ≡ 1 (mod p)

where d = gcd(k, p− 1).

5 Introduction to Cryptography

The practice of encrypting and decrypting messages is called cryptography. Codes are called ciphers,
the information to be concealed is called plaintext, and after transformation to a secret form, a message
is called ciphertext.

5.1 Common Cipher Methods

We now describe one of the most ancient and simplest of all encryption techniques, named after the
Roman emperor Julius Caesar.

5.1.1 Caesar Cipher

Let us assign the English alphabet into digits from 00 to 25.

A B C D E F G H I J K L M
00 01 02 03 04 05 06 07 08 09 10 11 12
N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Then, if P is the digital equivalent of a plaintext letter and C is the digital equivalent of the corresponding
ciphertext letter, then

C ≡ P + d (mod 26)

where d is how much the alphabet ”shifts.”
The plaintext message CAESAR WAS GREAT can be digitized to

02 00 04 18 00 17 22 00 18 06 17 04 00 19

and using the congruence C ≡ P + 3 (mod 26), this becomes the ciphertext

05 03 07 21 03 20 25 03 21 09 20 07 03 22

which translates to FDHVDU ZDV JUHDW.
To recover the plaintext, the procedure is to simply reverse the means of the congruence

P ≡ C − 3 ≡ C + 23 (mod 26)

This cipher is extermely simple and therefore, insecure. This is an example of a monoalphabetic cipher, an
encryption scheme in which each letter of the original message is replaced by the same cipher substitute.
Such cipher systems are extremely vulnerable to statistical methods of attack because they preserve the
frequency (i.e. relative commonness) of individual letters.
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5.1.2 Vigenere Cipher

One of the simplest and most famous example of a polyalphabetic cipher (a cipher that transformed
a plaintext letter into more than one ciphertext equivalent) is the Vigenere cipher. In this case, the
standard alphabet is digitized with number 00 to 25, and the communicating parties agree on an easily
remembered word or phrase, called the keyword. The digitized version of the keyword is arranged below
the numerical plaintext of the message and added together to produce the ciphertext.
Let the plaintext be ATTACK AT ONCE, with the keyword READY. The numerical version of READY
is 17 04 00 03 24. We write the numerical plaintext on the top row and repeating sequences of the
numerical version of READY below.

00 19 19 00 02 10 00 19 14 13 02 04
17 04 00 03 24 17 04 00 03 24 17 04

When the columns are added modulo 26, we get

17 23 19 03 00 01 04 19 17 11 19 08

or, converted to letters, RXTDAB ET RLTI.
Note that a given letter of plaintext is represented by different letters in ciphertext. The double T in
the word ATTACK no longer appears as a double letter when ciphered.
In general, any sequence of n letters with numerical equivalents b1, b2, ..., bn (00 ≤ bi ≤ 25) can serve as
the keyword. The plaintext message can be expressed as successive blocks P1P2P3...Pn of n two-digit
integers Pi, and then converted to ciphertext blocks C1C2...Cn by means of the congruences

Ci ≡ Pi + bi (mod 26), 1 ≤ i ≤ n

Decryption is carried out by simply reversing it.

Pi ≡ Ci − bi (mod 26), 1 ≤ i ≤ n

A weakness in the Vigenere algorithm is that once the length of the keyword has been determined,
a coded message can be regarded as a number of separate monoalphabetic ciphers, each subject to
straightforward frequency analysis. Then rather than using a single word that is to be repeated, people
have used what is called a running key, which is a random assignment of ciphertext letters to plaintext
letters. A popular procedure for generating such keys is to use the text of a book, and the system was
thought to be secure until algorithms were generated that broke those codes.
However, a modification of using what is now called the autokey has made it more secure. This approach
makes use of the plaintext message itself in constructing the encryption key. The idea is to start the
keyword with a short seed or prime (generally a single letter) followed by the plaintext, whose ending is
truncated by the length of the seed. Conveniently, this only requires the two communicating groups to
remember the one letter key.
Assume that the message

ONE IF BY DAWN

is to be encrypted. Taking the letter K as the seed, the keyword becomes

KONEIFBYDAW

Now we can convert both to numerical form, obtaining the array

14 13 04 08 05 01 24 03 00 22 13
10 14 13 04 08 05 01 24 03 00 22

and adding them up modulo 26 gives

24 01 17 12 13 06 25 01 03 22 09

or changing back to letters,
YBR MN GZ BDWJ

We can decipher the message by first converting it to its numerical form. Suppose that the plaintext is
P1P2...Pn and the ciphertext is C1C2...Cn. If S indicates the seed, then the first letter of the plaintext
is gotten with

P1 = C1 − S (mod 26)
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For the following letters, we use

Pk ≡ Ck − Pk−1 (mod 26), 2 ≤ k ≤ n

Doing this recovers

P1 ≡ 24− 10 ≡ 14 (mod 26) =⇒ P1 = O

P2 ≡ 01− 14 ≡ 13 (mod 26) =⇒ P2 = N

P3 ≡ 17− 13 ≡ 04 (mod 26) =⇒ P3 = E

...

5.1.3 Hill’s Cipher

An even better security system is to divide the plaintext message into blocks of n letters (possibly filling
out hte last block by adding dummy letters such as Xs), and then encrypt block by block by using a
system of n linear congruences in n variables. In its simplest form, when n = 2, the procedure takes
two successive letters and transforms their numerical equivalents P1P2 into a block C1C2 of ciphertext
numbers via the pair of congruences.

C1 ≡ aP1 + bP2 (mod 26)

C2 ≡ cP1 + dP2 (mod 26)

In order to permit decipherment (that is, for the system to be solvable), the four coefficients a, b, c, d
must be selected so that gcd(ad− bc, 26) = 1.
For example, let us Hill encrypt the messages BUY NOW with blocks of 2 letters through the system

C1 ≡ 2P1 + 3P2 (mod 26)

C2 ≡ 5P1 + 8P2 (mod 26)

The first block BU is numerically equivalent to 01 20, which is encrpyted by

2(01) + 3(20) ≡ 62 ≡ 10 (mod 26)

5(01) + 8(20) ≡ 165 ≡ 09 (mod 26)

Doing this for the additional blocks YN and OW, we get the completed ciphertext

10 09 09 16 16 12

which can be expressed as KJJQQM. Deciphering the message requires solving the original system of
congruences for P1 and P2 in terms of C1 and C2. After calculation, we get

P1 ≡ 8C1 − 3C2 (mod 26)

P2 ≡ −5C1 + 2C2 (mod 26)

For the block 10 09 of ciphertext, we calculate

P1 ≡ 8(10)− 3(09) ≡ 53 ≡ 01 (mod 26)

P2 ≡ −5(10) + 2(09) ≡ −32 ≡ 20 (mod 26)

Indeed, the block 01 20 represents BU. Doing this for the rest of the numbers returns the plaintext.

5.1.4 Verman Cipher

Another way of representing the letters of the alphabet is with binary numbers.

A = 11000 J = 11010 S = 10100
B = 10011 K = 11110 T = 00001
C = 01110 L = 11110 U = 11100
D = 10010 M = 00111 V = 01111
E = 10000 N = 00110 W = 11001
F = 10110 O = 00011 X = 10111
G = 01011 P = 01101 Y = 10101
H = 00101 Q = 11101 Z = 10001
I = 01100 R = 01010
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For example, a plaintext message ACT NOW would be translated into a sequence of binary digits

110000111000001001100001111001

Then, both parties would have some type of encryption key of an arbitrary sequence of 0s and 1s with
the same length as that of the numerical plaintext. For example, a random key can be generated as

101001011100100010001111001011

Then, by adding the key onto the numerical unencrypted message modulo 2, we get the encrypted
message

011001100100101011101111110010

The security of this cipher is extremely high, especially if a new key is generated after every use (called
a one-time system).

5.1.5 RSA Encryption

In conventional cryptographic systems, the sender and receiver jointly have a secret key. The sender uses
the key to encrypt the plaintext to be sent, and the receiver uses the same key to decrypt the ciphertext
obtained.
Public-key cryptography differs from conventional cryptography in that it uses two keys: encryption
key and a decryption key. Although the two keys effect inverse operations and are therefore related,
there is no easily computed method of deriving the decryption key from the encryption key. Thus, the
encryption key can be made public without compromising the decryption key. That is, each user can
encrypt messages, but only the intended recipient (whose decryption key is kept secret) can decipher
them. A major advantage of a public-key cryptosystem is that it is unnecessary for senders and receivers
to exchange a key in advance of their decision to communicate with each other.
In 1977, R. Rivest, A. Shamir, and L. Adleman proposed a public key system called RSA, named after
their initials. Its security depends on the assumption that in the current state of computer technology,
the factorization of composite numbers with large prime factors is prohibitively time-consuming.
Each user of the RSA system chooses a pair of distinct primes p and q, large enough that the factorization
of their product n = pq, called the enciphering modulus, is beyond all current computational capabilities.
For instance, picking p and q with 200 digits each would produce a number n with approximately 400
digits. Having selected n, the user then chooses a random positive integer k, called the enciphering
exponent, satisfying

gcd
(
k, φ(n)

)
= 1

The pair (n, k) (but not the factors p, q of n) is placed in a public file as the user’s personal encryption
key. This allows anyone else in the communication network to encrypt and send a message to that
individual.
The encrpytion process begins with digitizing an alphabet. An example would be

A = 00 K = 10 U = 20 1 = 30
B = 01 L = 11 V = 21 2 = 31
C = 02 M = 12 W = 22 3 = 32
D = 03 N = 13 X = 23 4 = 33
E = 04 O = 14 Y = 24 5 = 34
F = 05 P = 15 Z = 25 6 = 35
G = 06 Q = 16 ,= 26 7 = 36
H = 07 R = 17 . = 27 8 = 37
I = 08 S = 18 ? = 28 9 = 38
J = 09 T = 19 0 = 29 ! = 39

and 99 indicating a space between words. For example, the message

The brown fox is quick

is transformed into the numerical string

M = 1907049901171422139905142399081899162008021027
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It is assumed that the plaintext number M < n, where n is, again, the enciphering modulus. Otherwise,
it would be impossible the distinguish M from any larger integer congruent to it modulo n. When the
message is too long to be handled as a single number M < n, then M is broken up into blocks of digits
M1,M2, ...,Ms of appropriate size, and each block is encrypted separately.
Looking up the intended recipient’s encryption key (n, k) in the public directory, the sender disguises
the plaintext number M as a ciphertext number r by raising M to the kth power and then reducing the
result modulo n. That is,

Mk ≡ r (mod n)

From this step, it is obvious why M < n; it is wasn’t, then it would be impossible to deduce M from
r. This encrpytion method is very fast on high speed computers. Since k can be any integer such that
gcd(k, φ(n)) = 1, a obvious recommended choice of k is to be any prime larger than both p and q.
At the other end, the authorized recipient deciphers the transmitted information by first determining
the integer j, the secret recovery exponent, for which

kj ≡ 1 (mod φ(n))

Because gcd(k, φ(n)) = 1, this linear congruence has a unique solution modulo φ(n). In fact, the
Euclidean algorithm produces j as a solution x to the equation

kx+ φ(n)y = 1

The recovery exponent can only be calculated by someone who knows both k and φ(n) = (p− 1)(q − 1)
and hence, knows the prime factors p and q. So, j is secure from a third party. Now, by calculating rj

modulo n and assuming that gcd(n,M) = 1 to use Euler’s theorem, the recipient can see that

rj ≡ (Mk)j ≡M1+φ(n)t

≡M
(
Mφ(n)

)t ≡M · 1t ≡M (mod n)

In other words, raising the ciphertext number to the jth power and reducing it modulo n recovers the
original plaintext number M .
In the unlikely even that M and n are not coprime, we can actually prove that

rj ≡M (mod p) and rj ≡M (mod q)

which yields the desired congruence rj ≡ M (mod n). Again, the major advantage to this encryption
system is that it does not require the knowledge of the two primes p and q; it only requires the product
n.
We work through an example with the RSA public-key algorithm. We first select two primes

p = 29, q = 53

of an unrealistically small size for example purposes. In reality, p and q would be large enough to
fill up a considerable portion of this page. Our enciphering modulus of n = 29 · 53 = 1537, and
φ(n) = 28 · 52 = 1456. Since gcd(47, 1456) = 1, we may choose k = 47 to be the enciphering exponent.
Then, the recovery exponent, the unique integer j satisfying the congruence kj ≡ 1 (mod φ(n)), is
j = 31. The encrypt the message

NO WAY =⇒ M = 131499220024

Now, since n = 1537, we want each block to be an integer less than 1537. Given this restriction, it seems
reasonable to split M into blocks of three digits each. The first block, 131 encrypts as the ciphertext
number

13147 ≡ 0570 (mod 1537)

At the other end, the authorized recipient, knowing that the recovery exponent is j = 31, begins to
recover the plaintext number by computing

57031 ≡ 131 (mod 1537)

The total ciphertext of our message is

0570 1222 0708 1341
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The security of the RSA system rests on what is known as the work factor, the expected amount of
computer time needed to factor the product of two large primes. Factoring is computationally more
difficult than distinguishing between primes and composites, so at least up to current times, this system
is secure. Even if computers get better, we can just choose larger primes.
In 1977, the three inventors of the system submitted a ciphertext message to Scientific American which
depended on a 129-digit enciphering modulus that was the product of two primes of approximately the
same length. The large number acquired the name RSA-129. Taking into account the most powerful
factoring methods and fastest computers available at that time, it was estimate that at least 40 quadrillion
years would be required to break down RSA-129, but with increasing computing power, it was broken
after 17 years in 1994.

5.2 The Merkle-Hellman Knapsack Cryptosystem

The Knapsack problem, or the subset sum problem, in combinatorics is as follows: Given a knapsack of
volume V and n items of various volumes a1, a2, ..., an, can a subset of these items be found that will
completely fill the knapsack? Slightly modified, for positive integers a1, a2, ..., an and a sum V , solve the
equation

V =
∑
i

aixi

where xi ∈ {0, 1} for i = 1, 2, ..., n.
There may be no, one, or multiple solutions, but finding a solution to a randomly chosen knapsack
problem is notoriously difficult. None of the known methods for attacking the problem are substantially
less time-consuming than bashing through all 2n possibilities for x1, x2, ..., xn.

Example 5.1. The knapsack problem

22 = 3x1 + 7x2 + 9x3 + 11x4 + 20x5

has no solution, but the problem

27 = 3x1 + 7x2 + 9x3 + 11x4 + 20x5

has two distinct solutions
x2 = x3 = x4 = 1, x1 = x5 = 0

and
x2 = x5 = 1, x1 = x3 = x4 = 0

However, if the sequence of integers a1, a2, ..., an happens to have some special properties, then the
knapsack problem becomes much easier to solve.

Definition 5.1. A sequence a1, a2, ..., an is superincreasing when each ai is larger than the sum of all
the preceding ones; that is,

ai >

i∑
j=1

aj , i = 2, 3, ..., n

A simple example of a knapsack problem with a superincreasing sequence is

V = x1 + 2x2 + 4x3 + ...+ 2nxn, V < 2n+1

Knapsack problems with superincreasing sequences are uniquely solvable if they are solvable at all. The
general algorithm goes as such: Suppose that we wish to solve the Knapsack problem

V = a1x1 + a2x2 + ...+ anxn

where a1, ..., an is superincreasing. Assume that V can be obtained by using some subset of the sequence
so that V is not larger than the sum a1 + ...an. Working from right to left in our sequence, we begin by
letting xn = 1. If V ≥ an and xn = 0 if V < an. Then, obtain xn−1, xn−2, ..., x1 in turn by choosing

xi =

{
1 if V − (ai+1xi+1 + ...+ anxn) ≤ ai

0 if V − (ai+1xi+1 + ...+ anxn) < ai
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Example 5.2. We have the superincreasing knapsack problem

28 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5

We start with the largest coefficient 41. Since 41 > 28, x5 = 0. The next largest coefficient is 20, with
20 < 28. The sum of the preceeding coefficients is 3+5+11 < 28, so that these cannot fill the knapsack.
Therefore 20 must be included in the sum and x4 = 1. Knowing the values of x4 and x5, the problem is
reduced to

8 = 3x1 + 5x2 + 11x3

Since 11 > 8, x3 = 0, meaning that x1 = x2 = 1 to sum up to 8. Therefore, the solution is

x1 = x2 = x4 = 1, x3 = x5 = 0

A public-key encryption system is based off of this knapsack problem. A typical user of the system starts
by choosing a superincreasing sequence a1, a2, ..., an. He or she also selects a modulus m > 2an and a
multiplier a, with 0 < a < m and gcd(a,m) = 1. This ensures that the congruence

ax ≡ 1 (mod m)

has a unique solution, say x ≡ c (mod m). Finally, we form the sequence of integers b1, b2, ..., bn, defined
by

bi ≡ aai (mod m), i = 1, 2, ..., n

where 0 < bi < m. Carrying out this last transformation generally destroys the superincreasing property
of the ai’s. The user keeps the original sequence a1, a2, ..., an and the numbers m and a, but publishes
b1, b2, ..., bn in a public directory. As the reader would expect, this sequence of bi’s serves as the encryption
key.
We will use the following binary representation of the alphabet.

A = 00000 J = 01001 S = 10010
B = 00001 K = 01010 T = 10011
C = 00010 L = 01011 U = 10100
D = 00011 M = 01100 V = 10101
E = 00100 N = 01101 W = 10110
F = 00101 O = 01110 X = 10111
G = 00110 P = 01111 Y = 11000
H = 00111 Q = 10000 Z = 11001
I = 01000 R = 10001

For example, the message First Place would be converted into the numerical representation

M = 00101 0100 10001 10010 10011 01111 01011 00000 00010 00100

The sender then splits this string into an arbitrary number of blocks of n binary digits (remember that
n is the length of the sequences ai and bi), with the last block being filled out with 1s at the end if
necessary. The public encrypting sequence b1, b2, ..., bn is used to transform the given plaintext block,
say

x1x2x3...xn

into the sum
S = b1x1 + b2x2 + ...+ bnxn

and the encryption is complete for that block. We do this for the rest of the blocks to encrypt the rest
of the message. Now, since because each xi is either 0 or 1, the problem of recreating the plaintext
block from S is equivalent to solving the apparently difficult knapsack problem (remember that the new
sequence b1, b2, ..., bn is not superincreasing anymore).
Once the authorized receiver receives this knapsack problem, he/she can change it into an easy one using
the private key. Knowing c and m, the recipient can compute

S′ ≡ cS (mod m), 0 ≤ S′ < m
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and by expanding, we get

S′ ≡ cb1x1 + cb2x2 + ...+ cbnxn (mod m)

≡ caa1x1 + caa2x2 + ...+ caanxn (mod m)

Now, ca ≡ 1 (mod m), so the previous congruence becomes

S′ ≡ a1x1 + a2x2...+ anxn (mod m)

But due to the conditions that m > 2an > a1 + ... + an and that 0 ≤ S′ < m, the congruence can be
simplified to the equality

S′ = a1x1 + a2x2 + ...+ anxn

Since S′ and the superincreasing ai’s are given, the solution to this superincreasing knapsack problem
can be easily computed, allowing us to recover the plaintext block x1x2...xn of n of the binary digits.
Doing this for all the blocks entirely decrypts the message.
We provide an example with low-level sequences. Suppose that a typical user of this cryptosystem selects
as a secret key the superincreasing sequences 3, 5, 11, 20, 41, the modulus 85, and the multiplier a = 44.
Each member of the superincreasing sequence is multiplied by 44 and reduced modulo 85 to yield

44 · 3 ≡ 47 (mod 85)

44 · 5 ≡ 50 (mod 85)

44 · 11 ≡ 59 (mod 85)

44 · 20 ≡ 30 (mod 85)

44 · 41 ≡ 19 (mod 85)

These five numbers 47, 50, 59, 30, 19 is submitted to the public directory. Someone who wants to send a
plaintext message to the user, such as

HELP US

first converts it into the following binary digits.

M = 00111 00100 01011 01111 10100 10010

Then, since the length of the sequence is 5, the entire string is broken up into blocks of digits of length
5. Using the listed public key to encrypt, the sender transforms the successive blocks into

108 = 47 · 0 + 50 · 0 + 59 · 1 + 30 · 1 + 19 · 1
59 = 47 · 0 + 50 · 0 + 59 · 1 + 30 · 0 + 19 · 0
99 = 47 · 0 + 50 · 1 + 59 · 0 + 30 · 1 + 19 · 1
158 = 47 · 0 + 50 · 1 + 59 · 1 + 30 · 1 + 19 · 1
106 = 47 · 1 + 50 · 0 + 59 · 1 + 30 · 0 + 19 · 0
77 = 47 · 1 + 50 · 0 + 59 · 0 + 30 · 1 + 19 · 0

Therefore, the transmitted ciphertext consists of the sequence of positive integers.

108 59 99 158 106 77

To read the message, the legitimate receiver first solves the congruence 44x ≡ 1 (mod 85) to get the
value of c, which is x ≡ 29 (mod 85). Then, each ciphertext number is multiplied by 29 and reduced
modulo 85 to produce a superincreasing knapsack problem.

29 · 108 ≡ 72 (mod 85)

29 · 59 ≡ 11 (mod 85)

29 · 99 ≡ 66 (mod 85)

29 · 158 ≡ 77 (mod 85)

29 · 106 ≡ 14 (mod 85)

29 · 77 ≡ 23 (mod 85)
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which produces six corresponding knapsack problems with superincreasing sequences for each calculation.
Each problem can be easily computed to get the corresponding solutions

72 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5 =⇒ (x1, x2, x3, x4, x5) = (0, 0, 1, 1, 1)

11 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5 =⇒ (x1, x2, x3, x4, x5) = (0, 0, 1, 0, 0)

66 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5 =⇒ (x1, x2, x3, x4, x5) = (0, 1, 0, 1, 1)

77 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5 =⇒ (x1, x2, x3, x4, x5) = (0, 1, 1, 1, 1)

14 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5 =⇒ (x1, x2, x3, x4, x5) = (1, 0, 1, 0, 0)

23 = 3x1 + 5x2 + 11x3 + 20x4 + 41x5 =⇒ (x1, x2, x3, x4, x5) = (1, 0, 0, 1, 0)

This cryptosystem aroused a great deal of interest because it was based on a provably difficult problem.
However in 1982, Shamir invented a reasonably fast algorithm for solving a knapsack problem. The
weakness of the system is that the public encryption key b1, b2, ..., bn is too special; that is, multiplying
by a and reducing modulo m does not completely disguise the sequence a1, a2, ..., an. The system can
be modified by iterating the modular multiplication method with different values of a and m so that the
public and private sequences differ by several transformations, but even this was successfully broken by
1985. Although most variations of the Merkle-Hellman scheme have been shown to be insecure, there
are a few that have resisted.

5.3 An Application of Primitive Roots to Cryptography

Most modern cryptography systems rely on the presumed difficulty of solving some particular number
theoretic problem within a reasonable length of time.

5.3.1 ElGamal Encryption

In 1985, Taher ElGamal introduced a method of encrypting messages based on a version of the discrete
logarithm problem, which is stated as follows: Find the integer 0 < x < φ(n), if it exists, that is the
solution to the congruence

rx ≡ y (mod n)

for given r, y, n. The exponent x is said to be the discrete logarithm of y to the base r, modulo n. By
requiring that the base r be a primitive root of prime number n, it is guaranteed that y will always have
a well-defined logarithm; that is, a solution x will always exist (by definition of the primitive root, and
x = φ(n)− 1 when n is prime, at the very least). Note that merely requiring n to be prime guarantees
that x = φ(n) to be a solution by Euler’s theorem, but there may exist no solutions that are less than
φ(n). The logarithm could be found by exhaustive search; that is, by calculating the successive powers
of r until y ≡ rx (mod n) is reached However, this would not be practical for large n.
A typical user begins by selecting a prime number p along with one of its primitive roots r. Then an
integer k with 2 ≤ k ≤ p− 2 is randomly chosen to serve as the secret key. Then, a is calculated as such.

a ≡ rk (mod p), 0 ≤ a ≤ p− 1

The triple of integers (p, r, a) becomes the person’s public key, but the value of the exponent k is not
revealed. It is also impractical for an unauthorized third party to calculate k since it would require them
to solve a discrete logarithm problem that would be nearly impossible for large values of a and p.

Example 5.3. An individual begins by picking the prime p = 113 and its smallest primitive root r = 3.
The choice k = 37 is then made for the integer satisfying 2 ≤ 37 ≤ 111. Then a ≡ 337 (mod 113) is
calculated

a ≡ 337 ≡ 31 · 34 · 337 ≡ 3 · 81 · 28 ≡ 24 (mod 113)

The triple (113, 2, 24) serves as the public key, while the integer 37 becomes the secret deciphering key.

Now, assume that a message is to be sent to someone who has a public key (p, r, a) and also the
corresponding private key k. We first convert the original message into a numerical equivalent with, say
the standard convention that

A = 00 B = 01 ... Z = 25

It is assumed that M < p. If M ≥ p, then M is split into successive blocks, each block containing the
same number of digits (which must be even since the numerical representation all have an even number
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of digits). Depending on how big the prime p is (which determines how big the blocks can get), it may be
necessary to add extra digits (sometimes 25 = z) to fill out the final block. Let B denote the first block.
Then, the sender, who is aware of the recipient’s public key, arbitrarily selects an integer 2 ≤ j ≤ p− 2
and computes two values:

C1 ≡ rj (mod p), C2 ≡ Baj (mod p), 0 ≤ C1, C2 ≤ p− 1

The encrypted ciphertext of the block B is the pair of integers (C1, C2). For greater security, it is possible
for the choice of j to be changed from block to block. The recipient of the ciphertext can then recover
the block B by using the secret key k using the following identity. The recipient first evaluates Cp−1−k

1

(mod p) and then P ≡ C2C
p−1−k
1 . Then the two values are multiplied together.

P ≡ C2C
p−1−k
1 ≡ (Baj)(rj)p−1−k

≡ B(rk)j(rj(p−1)−jk)

≡ B(rp−1)j

≡ B (mod p)

where the final congruence results from the Fermant identity rp−1 ≡ 1 (mod p). Therefore, the decryp-
tion can be carried out by someone who knows the value of k.
We work though an example with a reasonably small prime number for simplicity. Assume that the user
wishes the deliver the message

SELL NOW

to a receiver who has the secret key k = 15 and public encryption key (p, r, a) = (43, 3, 22), where
22 ≡ 315 (mod 43). The plaintext is first converted to the string of digits

M = 18 01 11 11 13 14 22

To create the ciphertext, the sender selects an integer j satisfying 2 ≤ j ≤ 41, say j = 23, and then
calculates

C1 = rj ≡ 323 ≡ 34 (mod 43) and aj ≡ 2223 ≡ 32 (mod 43)

So, the product C1B ≡ 32B (mod 43) is computed for each two-digit block B of M . Doing this for all
7 blocks modulo 43.

32 · 18 ≡ 17 32 · 04 ≡ 42 32 · 11 ≡ 08 32 · 11 ≡ 08
32 · 13 ≡ 29 32 · 14 ≡ 18 32 · 22 ≡ 16

We get the ciphertext

(34, 17) (34, 42) (34, 08) (34, 08) (34, 29) (34, 18) (34, 16)

The receiver, who knows that k = 15, decrypts it by first calculating

Cp−1−k
1 ≡ 3427 ≡ 39 (mod 43)

Then, this is multiplied modulo 43 to the second entry in the ciphertext pair.

39 · 17 ≡ 18 39 · 42 ≡ 04 39 · 08 ≡ 11 39 · 08 ≡ 11
39 · 29 ≡ 13 39 · 18 ≡ 14 39 · 16 ≡ 22

which produces the plaintext in numerical form.

5.3.2 Digital Signatures

To confirm the integrity of a message, that is to confirm that the incoming message was sent by an
authorized person, the sender must provide a digital signature. Fortunately, the ElGamal cryptosystem
allows for an efficient procedure for authenticating messages.
Consider a user (sender) of the system who has a public key (p, r, a), private key k, and encrypted
message M . The first step toward supplying a signature is to choose an integer 1 ≤ j ≤ p − 1 where
gcd(j, p − 1) = 1. Let B be the first block (and later blocks) of the ciphertext message. The user
computes

c ≡ rj (mod p), 0 ≤ j ≤ p− 1
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and then obtains a solution of the linear congruence

jd+ kc ≡ B (mod p− 1) =⇒ jd ≡ B − kc, 0 ≤ d ≤ p− 2

The solution d can be found using the Euclidean algorithm. The pair of integers (c, d) is the required
digital signature appended to the message. Note that while c can be made by anyone, the integer d
can be created only by someone who knows the private key k, the random integer j, and the encoded
message M . What really matters is that the sender knows k.
The recipient uses the sender’s public key (p, r, a) to confirm the purported signature. By calculating
the two values

V1 ≡ accd (mod p) and V2 ≡ rB (mod p), 0 ≤ V1, V2 ≤ p− 1

the signature is accepted as legitimate if V1 = V2, since (if the actual value of d is the solution to the
linear congruence jd+ kc ≡ B (mod p− 1)),

V1 ≡ accd ≡ (rk)c(rj)d

≡ rkc+jd

≡ rB ≡ V2 (mod p)

In other words, this signature verifies that the sender actually has the key k (which must be needed to
get the proper value of d). Note that this does not require the receiver to know the key.
For example, a sender having public key (43, 3, 22) and private key k = 15 wants to sign and reply to
the message SELL NOW. This is carried out by first choosing an integer 0 ≤ j ≤ 42 with gcd(j, 42) = 1;
say j = 25. If the first block of the encoded reply is B = 13, then the person calculates

c ≡ 325 ≡ 5 (mod 43)

and solves the congruence
25d ≡ 13− 5 · 15 (mod 42)

to get d ≡ 16 (mod 42). The digital signature is therefore (5, 16). On its arrival, the signature is
confirmed by checking the equality of integers V1 and V2.

V1 ≡ 225 · 516 ≡ 39 · 40 ≡ 12 (mod 43)

V2 ≡ 313 ≡ 12 (mod 43)

6 Perfect Numbers and Mersenne Primes

Definition 6.1. A proper divisor of an integer n are all of its divisors except n itself.

Definition 6.2. A positive integer n is said to be perfect if n is equal to the sum of its proper divisors.

We can also express it in the following way. Let σ(n) be the sum of all of its divisors. Then, a perfect
number is an integer n such that

σ(n) = 2n

Example 6.1. Some examples of proper divisors are:

σ(6) = 1 + 2 + 3 + 6 = 2 · 6
σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 2 · 28

Let Pk be the kth proper divisor, then

P3 = 496

P4 = 8128

P5 = 33550336

P6 = 8589869056

P7 = 137438691328

P8 = 2305843008139952128

P9 = 2658455991569831744654692615953842176
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It is not known whether there are a finite number or an infinite number of perfect numbers. We proceed
to find some patterns in the form of perfect numbers.

Theorem 6.1. If 2k − 1 is prime (k > 1), then

n = 2k−1(2k − 1)

is perfect and every even perfect number is of this form.

Therefore, the problem of finding even perfect numbers is reduced to the search of all primes of the form
2k − 1. That is, upon finding a Mersenne prime, we just multiply it by the corresponding multiple of 2
to get a perfect number.

Definition 6.3. Numbers of the form

Mn = 2n − 1, n ≥ 1

are called Mersenne numbers. Mersenne numbers that are also prime are called Mersenne primes.

Lemma 6.2. If ak − 1 is prime (a > 0, k ≥ 2), then a = 2 and k is prime.

Proof. Since
ak − 1 = (a− 1)(ak−1 + ak−2 + ...+ a+ 1)

where
ak−1 + ak−2 + ...+ a+ 1 ≥ a+ 1 > 1

the other factor of ak − 1 (which is assumed to be prime) must be 1. So, a− 1 = 1 =⇒ a = 2. To prove
k prime, assume that it is composite. Then, we can write k = rs, where r, s > 1. Then,

ak − 1 = (ar)s − 1

= (ar − 1)(ar(s−1) + ar(s−2) + ...+ ar + 1)

where both factors are clearly greater than 1. This violates that ak−1 must be prime, so our assumption
that k is composite is false. ■

We can write the first six Mersenne primes (also perfect numbers) as

P1 = 2(22 − 1)

P2 = 22(23 − 1)

P3 = 24(25 − 1)

P4 = 26(27 − 1)

P5 = 212(213 − 1)

P6 = 216(217 − 1)

P7 = 218(219 − 1)

P8 = 230(231 − 1)

P9 = 266(267 − 1)

This leads to the question of whether there are an infinite number primes of the type 2p − 1, where p is
a prime.

Theorem 6.3 (Conjecture). There exists an infinite number of Mersenne primes of form

2p − 1, p prime

If this conjecture is true, then this would imply that there exists an infinite number of (even) perfect
numbers. We can also prove results on the digits of even perfect numbers. So far, there are a total of 51
Mersenne primes found, with the largest being

282589933 − 1

with 24, 862, 048 digits when written in base-10. It is also the largest known prime as of November 2020.
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Theorem 6.4. An even perfect number n ends in the digit 6 or 8. That is,

n ≡ 6 (mod 10) or n ≡ 8 (mod 10)

Even better, every even perfect number ends in 6 or 28.

One property that was noticed was that substituting some Mersenne primes for n in the formula 2n − 1
produces a higher Mersenne prime. This works for the first four Mersenne primes 3, 7, 31, and 127.

22 − 1 = 3 =⇒ 23 − 1 = 7

It was conjectured that if the number Mn is prime, then MMn
is also prime, but this was shown to false

when
MM13

= 2M13 − 1 = 28191 − 1

was shown to be composite.
The final type of numbers is a Fermant number.

Definition 6.4. A Fermant number is an integer of the form

Fn = 22
n

+ 1, n ≥ 0

If Fn is prime, then it is said to be a Fermant prime.

The first five Fermant numbers are indeed prime, but F5 was shown to be composite.

F0 = 22
0

+ 1 = 3

F1 = 22
1

+ 1 = 5

F2 = 22
2

+ 1 = 17

F3 = 22
3

+ 1 = 257

F4 = 22
4

+ 1 = 65537

F5 = 22
5

+ 1 = 4294967297

Theorem 6.5. The Fermant number F5 is divisible by 641.

Proof. By letting a = 27 and b = 5, we have

1 + ab = 641

We can see that
1 + ab− b4 = 1 + (a− b3)b = 1 + 3b = 24

This implies that

F5 = 22
5

+ 1 = 232 + 1

= 24a4 + 1

= (1 + ab− b4)a4 + 1

= (1 + ab)a4 + (1− a4b4)

= (1 + ab)
(
a4 + (1− ab)(1 + a2b2)

)
which gives 641|F5. ■

It is not known whether there are an infinite number of Fermant primes, or even if there is at least
one Fermant prime beyond F4. But there is a useful property about Fermant numbers in that they are
relatively prime to each other.

Lemma 6.6. For distinct Fermant numbers Fn, Fm, where n,m ≥ 0,

gcd(Fm, Fn) = 1

One final result we have is about the divisors of Fermant numbers.

Theorem 6.7. Any prime divisor p of the Fermant number Fn = 22
n

+ 1, where n ≥ 2, is of the form

p = k · 2n+2 + 1
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7 Certain Nonlinear Diophantine Equations

Definition 7.1. A Pythagorean triple is a set of three integers x, y, z such that

x2 + y2 = z2

Theorem 7.1. All the solutions of the Pythagorean equation

x2 + y2 = z2

satisfying the conditions
gcd(x, y, z) = 1, 2

∣∣x, x, y, z > 0

are given by the formulas
x = 2st, y = s2 − t2, z = s2 + t2

for integers s > t > 0 such that gcd(s, t) = 1 and s ̸≡ t (mod 2).

Corollary 7.1.1. The radius of the inscribed circle of a Pythagorean triangel is always an integer.

7.1 Fermant’s Last Theorem

Theorem 7.2. The Diophantine equation

x4 + y4 = z2

has no solution in the positive integers x, y, z.

Proof. Assume that there exists a positive solution x0, y0, z0. Without loss of generality, suppose also
that gcd(x0, y0) = 1. Then, we express the equation as

(x2
0)

2 + (y20)
2 = z20

meaning that x2
0, y

2
0 , z0 must be a Pythagorean triple and must be (without loss of generality of the order

of x0 and y0)

x2
0 = 2st

y20 = s2 − t2

z0 = s2 + t2

where s > t > 0 are relatively prime integers and exactly one of s and t is even. Note that since y0 is
odd, y20 ≡ 1 (mod 4). If s is even, then

1 ≡ y20 = s2 − t2 ≡ 0− 1 ≡ 3 (mod 4)

which is an impossibility. Therefore, s must be odd and so t is even; denote t = 2r. Then, the equation
x2
0 = 2st becomes x2

0 = 4sr, which says that (
x0

2

)2

= sr

But note that since gcd(s, r) = 1 (due to gcd(s, t) = 1) and sr is a perfect square, this must imply that
each of the integers s and r are both perfect squares. Denote them by s = z21 , r = w2

1. Now, since

t2 + y20 = s2

and gcd(s, t) = 1, it follows that gcd(t, y0, s) = 1, making them a Pythagorean triple. With t even, we
get

t = 2uv

y0 = u2 − v2

s = u2 + v2
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for relatively prime integers u > v > 0. Now, the relation

uv =
t

2
= r = w2

1

implies that u and v are both squares, so denote u = x2
1, v = y21 . When these values are substituted in

the equation s = u2 + v2, we get
z21 = s = u2 + v2 = x4

1 + y41

and we are back at the same equation again. But now, consider the inequality

0 < z1 ≤ z21 = s ≤ s2 < s2 + t2 = z0

Therefore, starting with one solution x0, y0, z0, we have proved the existence of another solution x1, y1, z1
such that 0 < z1 < z0. Repeating the argument, this would lead to a third solution x2, y2, z2 and so
forth, which provides an infinite decreasing sequence of positive integers

z0 > z1 > z2 > ...

But since there is only a finite supply of positive integers less than z0, a contradiction occurs, so no
solution does exist. ■

An immediate result is the following corollary.

Corollary 7.2.1. The equation x4 + y4 = z4 has no solution in the positive integers.

Proof. (x0, y0, z0) being a positive solution implies that (x0, y0, z
2
0) is a solution of x4 + y4 = z2, which

contradicts the previous theorem. ■

If n > 2, then n is either a power of 2 or divisible by an odd prime p. In the first case, n = 4k and the
Fermant equation xn + yn = zn can be written as

(xk)4 + (yk)4 = (zk)4

which does not have a solution by the previous corollary. When n = pk, the Fermant equation is the
same as

(xk)p + (yk)p = (zk)p

So, if it could be shown that the equation xp + yp = zp has no solution, then, there would exist no
solutions for xn + yn = zn. After more than 300 years of effort, Fermant’s conjecture turned out to be
true (proved in 1995).

Theorem 7.3 (Fermant’s Last Theorem). There exist no solution to the Diophantine equation

xn + yn = zn

for all integers n > 2. For n = 1, 2, there is clearly an infinite number of solutions.

Theorem 7.4 (Fermant). The Diophantine equation

x4 − y4 = z2

has no solution in the positive integers x, y, z.

Theorem 7.5. The area of a Pythagorean triangle can never be equal to a perfect square.

Proof. Assume that a solution exists with side lengths x, y and hypotenuse length z such that x2+y2 = z2.
Then, the area of the triangle is 1

2xy and let it be equal to u2 for some u ∈ N. Then, 2xy = 4u2, and
adding/subtracting the equation into x2 + y2 = z2, we get

(x+ y)2 = z2 + 4u2, (x− y)2 = z2 − 4u2

When these last two equations are multiplied together, we get

(x2 − y2)2 = z4 − 16u4 = z4 − (2u)4

But this contradicts the fact that there exists solutions to the equation x4 − y4 = z2, so no such u can
exist. ■
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8 Representation of Integers as Sums of Squares

8.1 Sums of Two Squares

A common question is to find whether every integer can be expressed as a sum of squares, and if so,
what is the minimum number of squares (including 02) that one needs to express an integer? It turns
out to be 4 (e.g. 7 = 22 + 12 + 12 + 12), but we will first explore the necessary and sufficient conditions
that a positive integer be representable as the sum of two squares.

Lemma 8.1. If m and n are each the sum of two squares, then so it their product mn.

Proof. If m = a2 + b2 and n = c2 + d2, then

mn = (a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

■

Clearly, not every prime can be written as the sum of two squares, since if this were indeed true,
then by the previous lemma, every number can be written as a sum of squares (which contradicts our
counterexample that 7 = 22 + 12 + 12 + 12).

Theorem 8.2. No prime p of the form 4k + 3 is a sum of two squares.

Proof. a ≡ 0, 1, 2, 3 (mod 4) for all a ∈ N =⇒ a2 ≡ 0, 1 (mod 4). This means that

a2 + b2 ≡ 0, 1, 2 (mod 4)

■

Lemma 8.3 (Thue’s Lemma). Let p be a prime and let gcd(a, p) = 1. Then, the congruence

ax ≡ y (mod p)

admits a solution x0, y0, where

0 < |x0| <
√
p and 0 < |y0| <

√
p

Theorem 8.4 (Fermant). An odd prime p is expressible as a sum of two squares if and only if p ≡ 1
(mod 4).

Corollary 8.4.1. Any prime p of the form 4k + 1 can be represented uniquely, up to order of the
summands, as a sum of two squares.

The following is a statement about representing integers as the difference of two squares.

Theorem 8.5. A positive integer n can be represented as the difference of two squares if and only if n
is not of the form 4k + 2.

Proof. Because a2 ≡ 0, 1 (mod 2) for integers a, it follows that

a2 − b2 ≡ 0, 1, 3 (mod 4)

■

Corollary 8.5.1. An odd prime is the difference of two successive squares.

Proof. We can put p in the form

p =

(
p+ 1

2

)2

−
(
n− 1

2

)2

■

For example,
11 = 62 − 52, 17 = 92 − 82, 29 = 152 − 142
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8.2 Sums of More Than Two Squares

Expanding the allowed number of summands to three squares allows to broaden the amount of integers
expressible as sums of squares. For example,

14 = 32 + 22 + 12, 33 = 52 + 22 + 22, 67 = 72 + 32 + 32

But we can guarantee that there exists integers that are still not expressible as the sum of two squares.

Theorem 8.6. No positive integer of the form 4n(8m+7) can be represented as the sum of three squares.

Proof. For any integer a, a2 ≡ 0, 1, 4 (mod 8), which implies that

a2 + b2 + c2 ≡ 0, 1, 2, 3, 4, 5, 6 (mod 8)

for any integers a, b, c. So, there exist no solutions for a2 + b2 + c2 = 8m+ 7. Now, suppose that n ≥ 1
and solutions exist to the equation

a2 + b2 + c2 = 4n(8m+ 7)

Then, all three integers a, b, c must be even (choosing exactly one to be even leads to an inconsistency
when doing (mod 4)). So, substituting, a = 2a1, b = 2b1, c = 2c1, we get

a21 + b21 + c21 = 4n−1(8m+ 7)

We can do this until one of the ai, bi, or ci are odd or n = 1. In either case, this leads to a contradiction.
■

To prove that every number p can be written as the sum of four squares, we need the following two
lemmas.

Lemma 8.7 (Euler). If the integers m and n are each the sum of four squares, then mn is likewise
representable as sums of four squares.

Proof. A straightforward, yet tedious calculation shows this.

mn = (a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24)

= (a1b1 + a2b2 + a3b3 + a4b4)
2

+ (a1b2 − a2b1 + a3b4 − a4b3)
2

+ (a1b3 − a2b4 − a3b1 + a4b2)
2

+ (a1b4 + a2b3 − a3b2 − a4b1)
2

■

Lemma 8.8. If p is an odd prime, then the congruence

x2 + y2 + 1 ≡ 0 (mod p)

has a solution x0, y0 where
0 ≤ x0 ≤ (p− 1)/2, 0 ≤ y0 ≤ (p− 1)/2

This leads to the theorem we’ve been waiting for.

Theorem 8.9. Any prime p can be written as the sum of four squares.

By prime factorizing every number n > 1 and using Euler’s lemma, we get.

Corollary 8.9.1 (Lagrange). Any positive integer n can be written as the sum of four squares, some of
which may be 0.

These results have a natural extension to sums of higher powers. In fact, the minimum number of kth
powers needed to produce a representation of every natural number is denoted g(k).

Theorem 8.10. Every positive integer can be expressed as the sum of 9 cubes. That is, g(3) = 9.
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However, only the numbers

23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13

239 = 43 + 43 + 33 + 33 + 33 + 33 + 13 + 13 + 13

are the only integers that actually require as many as 9 cubes in their representation. We can claim
something even stronger.

Proposition 8.11 (Linnik). There are only a finite number of integers that require at least 8 cubes in
their represenations.

Theorem 8.12. Every positive integer can be expressed as the sum of 53 fourth powers. That is,
g(4) = 19. Furthermore, g(5) = 37.

For higher numbers n, the following result was proved.

Theorem 8.13. For all but a finite number of integers n ≥ 6, the following formula holds.

g(k) =

[(
3

2

)k]
+ 2k − 2

However, there is strong evidence that this theorem holds for all p.

9 Fibonacci Numbers

Definition 9.1. The Fibonacci sequence is defined recursively as

un =

{
1 n = 1, 2

un−1 + un−2 n ≥ 3

The first few Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...

Theorem 9.1. In the Fibonnaci sequence, gcd(un, un+1) = 1 for every n ≥ 1.

Proof. Suppose that d > 1 and that the integer d divides both un and un−1. Then, it divides un−2 =
un − un−1, and doing this recursively, this implies that d|u1, which is false since u1 = 1. ■

Proposition 9.2. Except u1, u2, u6, and u12, each Fibonacci number has a ”new” prime factor; that is,
a prime factor that does not occur in any Fibonacci number with a smaller subscript.

Theorem 9.3. For m,n ≥ 1, umn is divisible by um.

Theorem 9.4. The greatest common divisor of two Fibonacci numbers is also a Fibonacci number. In
fact,

gcd(um, un) = ud, where d = gcd(n,m)

Corollary 9.4.1. In the Fibonacci sequence, um |un if and only if m|n for n ≥ m ≥ 3.

The following theorem shows a result in expressing integers as sums of Fibonacci numbers.

Theorem 9.5 (Zeckendorf Representation). Any positive integer N can be expressed as a sum of distinct
Fibonacci numbers, no two of which are consecutive. That is,

N = uk1
+ uk2

+ ...+ ukr

where k1 ≥ 2 and kj+1 ≥ kj + 2 for j = 1, 2, ..., r − 1.

Using linear algebra, the explicit representation of Fibonacci numbers is evident.
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Theorem 9.6 (Binet’s Formula). For every Fibonacci number un,

un =
1√
5

((
1 +
√
5

2

)n

−
(
1−
√
5

2

)n
)

=⇒ un =
αn − βn

α− β

where

α =
1 +
√
5

2
, β =

1−
√
5

2

Proof. The first formula can be found using linear algebra. ■

One useful application of Binet’s formula is to produce new Fibonacci numbers from old ones.

Corollary 9.6.1. We claim that
u2
n+2 − u2

n = u2n+2

Proof. Since αβ = 1, we have (αβ)2k = 1,

u2
n+2 − u2

n =

(
αn+2 − βn+2

α− β

)2

−
(
αn − βn

α− β

)2

=
α2(n+2) − 2 + β2(n+2)

(α− β)2
− α2n − 2 + β2n

(α− β)2

=
α2(n+2) + β2(n+2) − α2n − β2n

(α− β)2

=
(α2 − β2)(α2n+2 − β2n+2)

(α− β)2

=
(
α+ β

)(α2n+2 − β2n+2

α− β

)
= 1 · u2n+2 = u2n+2

■

Another one.

Corollary 9.6.2. We claim that
u2n+1u2n−1 − 1 = u2

2n

Proof. We calculate

u2n+1u2n−1 =

(
α2n+1 − β2n+1

√
5

)(
α2n−1 − β2n−1

√
5

)
− 1

=
1

5

(
α4n + β4n − (αβ)2n−1α2 − (αβ)2n−1β2 − 5

)
=

1

5

(
α4n + β4n + (α2 + β2)− 5

)
Since α2 + β2 = 3, we have

1

5

(
α4n + β4n − 2

)
=

1

5

(
α4n + β4n − 2(αβ)2n

)
=

(
α2n − β2n

√
5

)2

= u2
2n

■

Corollary 9.6.3. Binet’s formula can be modified to

un =

[
αn

√
5
+

1

2

]
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Proof. Since 0 < |β| < 1, we see that

|βn| = |β|n < 1 for n ≥ 1

Therefore, we have ∣∣∣∣un −
αn

√
5

∣∣∣∣ = ∣∣∣∣αn − βn

√
5
− αn

√
5

∣∣∣∣
=
|βn|√

5
<

1√
5
<

1

2

Therefore, we can view un as the largest integer not exceeding αn
√
5
+ 1

2 , leading to the formula

un =

[
αn

√
5
+

1

2

]
■

We also introduce two final theorems concerning prime factors of Fibonacci numbers.

Theorem 9.7. For any prime p > 5, either

p |up−1 or p |up+1

but not both.

Theorem 9.8. Let p ≥ 7 be a prime for which p ≡ 2 (mod 5) of p ≡ 4 (mod 5). If 2p−1 is also prime,
then

(2p− 1)
∣∣up

Example 9.1. u19 = 37 · 113, where 19 ≡ 4 (mod 5). u37 = 73 · 330929, where 37 ≡ 2 (mod 5).

10 Continued Fractions

Definition 10.1. A partition of a positive integer n is a way of writing n as a sum of positive integers,
with order being irrelevant.. Let p(n) denote the total number of partitions of n.

Example 10.1. The

Theorem 10.1 (Hardy-Ramanujan). For large n, the partition function satisfies the relation

p(n) ≈ ec
√
n

4n
√
3
, c = π

√
2

3

Proposition 10.2 (Ramanujan). With the partition function p and any integer n, we have

p(5k + 4) ≡ 0 (mod 5) (1)

p(7k + 5) ≡ 0 (mod 7) (2)

p(11k + 6) ≡ 0 (mod 11) (3)

Proposition 10.3 (Ramanujan). The constant π can be calculated with the infinite series.

1

π
=

√
8

9801

∞∑
n=0

(4n)!

(n!)4
[1103 + 26390n]

3964n

Each successive term in the series adds roughly 8 more correct digits! The efficiency of this series has
made it possible to calculate millions of digits of π. Another series is

1

π
=

∞∑
n=0

(
2n

n

)3
42n+ 5

212n+4
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10.1 Finite Continued Fractions

Definition 10.2. A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

...+
...

an−1 +
1

an

where a0, a1, ..., an are all real numbers, all of which except possible a0 are positive. The ak’s are called
the partial denominators of this fraction. If the ak’s are all integers, then the fraction is called a simple
finite continued fraction.

Theorem 10.4. Any rational number can be written as a finite simple continued fraction with the
algorithm presented in the proof.

Proof. Let a/b, where b > 0 be an arbitrary rational number. Euclid’s algorithm for finding the greatest
common divisor of a and b gives us the equations

a = ba0 + r1 0 < r1 < b

b = r1a1 + r2 0 < r2 < r1

r1 = r2a2 + r3 0 < r3 < r2

... ...

rn−1 = rn−1an−1 + rn 0 < rn < rn−1

rn−1 = rnan + 0

We can rewrite it in the following way.

a

b
= a0 +

r1
b

= a0 +
1
b
r1

b

r1
= a1 +

r2
r1

= a1 +
1
r1
r2

r1
r2

= a2 +
r3
r2

= a2 +
1
r2
r3

... = ...
rn−1

rn
= an

Then by substituting the equations below to the one above it starting from the third equation, we can
get

a

b
= a0 +

1

a1 +
1

a2 +
1

r2

r3

Continuing in from the bottom equation, we get

a

b
= a0 +

1

a1 +
1

...+
...

an−1 +
1

an

■
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Example 10.2. We find the representation of 19/51 as a continued fraction. We use Euclid’s algorithm
to get

51 = 2 · 19 + 13 =⇒ 51

19
= 2 +

13

19

19 = 1 · 13 + 6 =⇒ 19

13
= 1 +

6

13

13 = 2 · 6 + 1 =⇒ 13

6
= 2 +

1

6

6 = 6 · 1 + 0 =⇒ 6

6
= 1

After the substitutions, we get

19

51
=

1
51
9

=
1

2 + 13
19

= ...

=
1

2 +
1

1 +
1

2 +
1

6

Definition 10.3. The continued fraction made from [a0; a1, a2, ...an] by cutting off the expansion after
the kth partial denominator ak is called the kth convergent of the given continued fraction and denoted
by Ck. That is,

Ck = [a0; a1, a2, ..., ak], 1 ≤ k ≤ n

Much of the labor of computing convergents of a finite continued fraction can be avoided by establishing
certain formulas for their numerators and denominators.

Theorem 10.5. Given a finite continued fraction [a0; a1, a2, ..., an], let

p0 = p0 q0 = 1

p1 = a1a0 + 1 q1 = a1

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2

for k = 2, 3, ..., n. Then, the kth convergent of the fraction has the value

Ck =
pk
qk

, k = 0, 1, ..., n

Proof. We can manually check that this is true for k = 0, 1, 2. Assume that it is true for k = m, where
2 ≤ m. Then,

Cm =
pm
qm

=
ampm−1 + pm−2

amqm−1 + qm−2

Note that the integers pm−1, qm−1, pm−2, qm−2 depend on the firstm−1 partial denominators a1, . . . , am−1

and there are independent of the value of am. The equation above therefore remains true if we replace
am with am + 1

am+1
.

[
a0; a1, a2, . . . , am +

1

am+1

]
=

(
am + 1

am+1

)
pm−1 + pm−2(

am + 1
am+1

)
qm−1 + qm−2

But this above mth convergent is really just equal to the (m+1)th convergent Cm+1 since the final term
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on the bottom of the continued fraction is replaced with one more continuation. This means that

Cm+1 =

(
am + 1

am+1

)
pm−1 + pm−2(

am + 1
am+1

)
qm−1 + qm−2

=
am+1(ampm−1 + pm−2) + pm−1

am+1(amqm + qm−2) + qm−1

=
am+1pm + pm−1

am+1qm + qm−1

Which is the desired formula for Cm+1. So, the equation is satisfied at k = m+ 1. ■

Theorem 10.6. If Ck = pk/qk is the kth convergent of the finite simple continued fraction [a0; a1, . . . , an],
then

pkqk−1 − qkpk−1 = (−1)k−1, 1 ≤ k ≤ n

Proof. We use induction on k. The base case for k = 1 holds true since

p1q0 − q1p0 = (a1a0 + 1) · 1− a1 · a0 = 1 = (−1)1−1

Now, assuming that the formula is true for some k = m, then

pm+1qm − qm+1pm = (am+1pm + pm−1)qm − (am+1qm + qm−1)pm

= −(pmqm−1 − qmpm−1)

= −(−1)m−1 = (−1)m

■

Corollary 10.6.1. For 1 ≤ k ≤ n, pk and qk are relatively prime.

Proof. If d = gcd(pk, qk) ̸= 1, then this implies that the left hand side has factor d, which must mean
that the right hand side also has factor d. But the right hand side is ±1, leading to a contradiction. ■

Example 10.3. Consider the continued fraction [0; 1, 1, ..., 1]. The first few convergents are

C0 = 0/1, C1 = 1/1, C2 = 1/2, C3 = 2/3, C4 = 3/5, ...

Because the numerator pk and denominator qk of the kth convergent is expressed

pk = 1 · pk−1 + pk−2 = pk−1 + pk−2

qk = 1 · qk−1 + qk−2 = qk−1 + qk−2

we can see that the numerator and denominator forms a Fibonacci sequence. That is,

Ck =
uk

uk+1
, k ≥ 2

where uk denotes the kth Fibonacci number.

Here is another useful property of convergents.

Lemma 10.7. If qk is the denominator of the kth convergent Ck of the simple continued fraction
[a0; a1, ..., an], then qk−1 ≤ qk for 1 ≤ k ≤ n, with strict inequality satisfied when k > 1.

Proof. We prove by induction. When k = 1,

q0 = 1 ≤ a1 = q1

Assume that it is true for k = m. Then,

qm+1 = am+1qm + qm−1 > am+1qm ≥ 1 · qm = qm

which implies that the inequality is true for k = m+ 1. ■
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Theorem 10.8. The convergents with even subscripts form a strictly increasing sequence.

C0 < C2 < C4 < ...

The convergents with odd subscripts form a strictly decreasing sequence.

C1 > C3 > C5 > ...

Every convergent with an odd subscript is greater than every convergent with an even subscript.

Proof. Using the previous theorems, we calculate that

Ck+2 − Ck = (Ck+2 − Ck+1) + (Ck+1 − Ck)

=

(
pk+2

qk+2
− pk+1

qk+1

)
+

(
pk+1

qk+1
− pk

qk

)
=

(−1)k+1

qk+2qk+1
+

(−1)k

qk+1qk

=
(−1)k(qk+2 − qk)

qkqk+1qk+2

Since qk > 0 for all k and by using the previous lemma that qk+2 − qk > 0, Ck+2 − Ck has the same
algebraic sign as (−1)k. So,

1. If k is even, then Ck+2 − Ck has the same sign as 1 and is thus positive, which means that

C0 < C2 < C4 < ...

2. If k is odd, then Ck+2 − Ck has the same sign as −1 and is thus negative, which means that

C1 > C3 > C5 > ...

To show that any odd numbered convergent C2r−1 is greater than any even numbered convergent C2s,
we divide the equation pkqk−1 − qkpk−1 = (−1)k−1 by qkqk−1 to get

Ck − Ck−1 =
pk
qk
− pk−1

qk−1
=

(−1)k−1

qkqk−1

This means that C2j < C2j−1. Therefore, we can put together various inequalities and combine our
results so far to get

C2s < C2s+2r < C2s+2r−1 < C2r−1

■

From this, we can see that subsequent convergents alternatingly underestimate and overestimate the true
value of the rational number n.

10.2 Infinite Continued Fractions

Definition 10.4. An infinite continued fraction is an expression of the form

a0 +
b1

a1 +
b2

a2 +
b3

a3 + ...

where a0, a1, a2, ... and b1, b2, b3, ... are real numbers. An infinite simply continued fraction has form

a0 +
1

a1 +
1

a2 +
1

a3 + ...

which, for compactness, is denoted [a0; a1, a2, a3, ...]. If a0, a1, ... is an infinite sequence of integers, all
positive except possibly a0, then the infinite simple continued fraction [a0; a1, a2, ...] has the value

lim
n→∞

[a0; a1, a2, ..., an]
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Proposition 10.9 (Brouncker). The infinite product

4

π
=

3 · 3 · 5 · 5 · 7 · 7 · ...
2 · 4 · 4 · 6 · 6 · 8 · ...

can be converted into the identity
4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 + ...

However, this calculation is not computationally efficient.

Proposition 10.10 (Ramanujan).

e2π/5
(√

5 +
√
5

2
− 1 +

√
5

2

)
=

1

1 +
e−2π

1 +
e−4π

1 +
e−6π

1 + ...

Definition 10.5. If an infinite simple continued fraction contains a block of partial denominators
a1, a2, ..., ar, then we can write it as

[a0; a1, a2, ..., an]

Theorem 10.11. The value of any infinite continued fraction is an irrational number.

Theorem 10.12. Two infinite continued fractions [a0; a1, a2, ...] and [b0; b1, b2, ...] are equal if and only
if ai = bi for i = 0, 1, 2, ....

Corollary 10.12.1. Two distinct infinite continued fractions represent two distinct irrational numbers.

Theorem 10.13. Every irrational number has a unique representation as an infinite continued fraction,
the representation being obtained from the continued fraction algorithm described in the following proof.

Proof. Given an arbitrary irrational number x0, we would want to identify it with a certain sequence
[a0; a1, a2, ...] such that the continued fraction determined by the sequence x0. We first define

x1 =
1

x0 − [x0]
, x2 =

1

x1 − [x1]
, x3 =

1

x2 − [x2]
, ...

and then take
a0 = [x0], a1 = [x1], a2 = [x2], a3 = [x3], ...

In general, the ak are given inductively by

ak = [xk], xk+1 =
1

xk − ak

Clearly, xk+1 is irrational if xk is irrational. Since x0 is irrational, every xk is irrational. Thus,

0 < xk − ak = xk − [xk] < 1 =⇒ xk+1 =
1

xk − ak
> 1

with ak+1 = [xk+1] ≥ 1 for all k ≥ 0. This leads to an infinite sequence of integers a0, a1, ..., all positive
except possibly for a0. Now, by defining xk in the form

xk = ak +
1

xk+1
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through successive substitutions, we get

x0 = a0 +
1

x1

= a0 +
1

a1 +
1

x2

= a0 +
1

a1 +
1

a2 +
1

x3

= ...

= [a0; a1, a2, ..., an, xn+1]

■

Corollary 10.13.1. If pn/qn is the n convergent to the irrational number x, then∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qn+1qn
<

1

q2n

Combining these results, we can see that the following map

ρ : Zω −→ R \ Z

that maps sequences to infinite continued fractions is bijective.

Example 10.4. To calculate the infinite fraction form of π = 3.141592..., we use the algorithm to get

x0 = π = 3 + (π − 3) a0 = 3

x1 =
1

x0 − [x0]
=

1

0.14159265...
= 7.06251330... a1 = 7

x2 =
1

x1 − [x1]
=

1

0.06251330...
= 15.99659440... a2 = 15

x3 =
1

x2 − [x2]
=

1

0.99659440...
= 1.00341723... a3 = 1

x4 =
1

x3 − [x3]
=

1

0.00341723...
= 292.63467... a4 = 292

... ...

Thus, the infinite continued fraction for π starts with

π = [3; 7, 15, 1, 292, ...]

But unlike most irrational numbers, there is no explicit pattern that gives a complete sequence of an.

Proposition 10.14 (Euler). Here are nice representations of e = 2.71828..., which does have a pattern
of even integers occurring in order and separated by two 1’s.

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...]

Moreover, the following representations have partial denominators that form an arithmetic progression.

e− 1

e+ 1
= [0; 2, 6, 10, 14, 18, ...]

e2 − 1

e2 + 1
= [0; 1, 3, 5, 7, 9, ...]
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