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Multivariate Calculus
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Coordinate-dependent calculus of vector-valued functions between Euclidean spaces, with their standard
topologies, metrics, norms, and inner products. We will denote scalars as unbolded x and vectors as
bolded x.

1 Multivariate Limits and Continuity

When computing the limit of a function f : D ⊂ Rn −→ R at a ∈ D, we have to consider all the multiple
paths that a point must travel to in order to get to a. If we can prove that for every path function
ℓ : [−1, 1] −→ D s.t. ℓ(0) = a, the limit

lim
t→0

(f ◦ ℓ)(t)

exists and are all equal to some K, then the limit

lim
x→a

f(x) = K

However, it is impossible to check for all paths, so we must use the ϵ-δ definition to get around this.

Definition 1.1 (Limit of Multivariate Function). Given a function f : D ⊂ Rn −→ R and an a ∈ D,
we say

lim
x→a

f(x) = K

if for every ϵ > 0, there exists a δ > 0 s.t.

||x− a|| < ϵ =⇒ |f(x)−K| < δ

Definition 1.2 (Continuity of Multivariate Function). Given a function f : D ⊂ Rn −→ R and an
a ∈ D, we say that f is continuous at a if for every ϵ > 0, there exists a δ > 0 s.t.

||x− a|| < ϵ =⇒ |f(x)− f(a)| < δ

The following lemma follows from the definitions.

Lemma 1.1 (Continuity w/ Limits). A function f : D ⊂ Rn −→ R is continuous at a ∈ D if

1. f(a) exists.

2. limx−→a f(x) exists.

3. limx−→a f(x) = f(a)

Therefore, when computing the multivariate limit of a function, these are some methods:

1. Directly use the ϵ-δ definition to compute limits, or somehow prove that f is continuous and
evaluate f(a). Either way, both use the ϵ-δ definition.

2. Use the squeeze theorem. That is, find two ”nice” functions g, h defined over some neighborhood
Ua ⊂ Rn s.t. g(x) ≤ f(x) ≤ h(x) for all x ∈ Ua, and try to bound the limit of f in between h and
g.

3. Try to prove that the limit of f doesn’t exist at a by selecting a path ℓ and show that the limit
under ℓ does not equal the other path limits.
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1.1 Affine Linear Subspaces and Hyperplanes

Let V be an n-dimensional vector space and U be a k-dimensional subspace. We can identify an affine
subspace translated by a vector x0 as S = x0 + V . That is, given some basis v1, . . . ,vk of U , we can
identify all vectors in S as the linear combination

x0 +

k∑
i=1

civi

We can also identify S by taking the orthogonal complement V ⊥. Given any vector x ∈ S, if we
translate it ”back to the origin” by −x0, then this vector should be orthogonal to V ⊥. Normally, this
representation is messy, but when k = n − 1, then dimV ⊥ = 1 with basis vn for example, and every
vector in S can now be described as

S = {x ∈ Rn | vn · (x− x0) = 0}

Definition 1.3 (Hyperplane). A hyperplane in Rn through the origin is the set

S = {x ∈ Rn | v · x = 0}

where v is the vector orthogonal to the hyperplane. If we would like to translate this hyperplane by a
vector x0, then this creates the equation of an affine hyperplane

S = {x ∈ Rn | v · (x− x0) = 0}

which will results in the equation v · x = c for some translation constant dependent on c = v · x0. With
a little algebra, |c|/||v|| represents the distance from the hyperplane to the origin. When c is positive,
the offset is in the direction of v and if negative, then in the direction of −v.

2 Total and Directional Derivatives

Recall that the derivative of a one variable function f : D ⊂ R −→ R at a point a ∈ D is

f ′(a) := lim
h→0

f(a+ h)− f(a)

h

We can interpret f ′(a) as the slope of the tangent line of the graph of f at the point (a, f(a)). We can
further see that f ′(a) defines a linear function

h 7→ f ′(a)h

that approximates f within a neighborhood of a. That is, the first order Taylor expansion gives

f(a+ h) ≈ f(a) + f ′(a)h

which is the term f(a) with some sort of linear approximation of h. This linear approximation concept
will be important later when we redefine differentiability.

Theorem 2.1 (Fundamental Increment Lemma). The existence of the limit f ′(a) defined above implies
the existance of a function φ satisfying

1. limh→0 φ(h) = 0

2. f(a+ h) = f(a) + f ′(a)h+ φ(h)h for sufficiently small nonzero h.

Proof. We can define

φ(h) =
f(a+ h)− f(a)

h
− f ′(a)

■
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The term f(a+h)−f(a)
h is the slope of the secant line from x = a to x = a+ h, while f ′(a) is the slope of

the tangent tangent line at x = a. Therefore, condition 2 states that φ(h) is the error term of the secant
approximation of the tangent slope, and condition 1 states that this error term must tend towards 0 as
h → 0. This may just sound like a stupidly convoluted way to restate the original limit definition of
differentiability at a point, but properly restating this allows us to define it for multivariate functions.
For suppose that there is a number m and a function φ defined on some deleted neighborhood of a such
that limh→0 φ(h) = 0 and f(a+ h) = f(a) +mh+ φ(h). Then, when h ̸= 0, we have

f(a+ h)− f(a)

h
=

mh+ φ(h)h

h
= m+ φ(h)

and it is clear that limh→0 m+ φ(h) = m. Thus, the existence of a number m and the function φ with
the above properties guarantees that f ′(a) exists and is m. Since h 7→ mh is a linear function, we can
state the following.

Theorem 2.2. A function f : D −→ R is differentiable at a ∈ D if and only if there is a linear function
M : R −→ R and a function φ defined in a deleted neighborhood of D s.t.

1. limh→0 φ(h) = 0

2. f(a+ h) = f(a) +Mh+ φ(h)h for all sufficiently small nonzero h.

Therefore, we can characterize the differentiability of a multivariate function at a by the existence of
some linear function that approximates the value of f near a.

Definition 2.1 (Differentiability). A function f : D ⊂ Rn −→ R is differentiable at a ∈ D if there exists
a linear function M : Rn −→ R and a function Φ : Rn −→ R s.t.

1. limh→0 Φ(h) = 0

2. f(a+ h) = f(a) +Mh+Φ(h) ||h|| for all sufficiently small nonzero vector h

When these conditions hold, then the linear function M is called the total derivative (or Jacobian
matrix) of f at a, written Dfa. Being differentiable at a point is amazing, since it shows that there
exists a simple linear map Dfa that can approximate f within a neighborhood of a! We can interpret
Dfa as a row matrix, and our approximation of f(a+ h) is the affine map

h 7→ f(a) +Dfah

This allows us to define a tangent plane in Rn ⊕ R in terms of the total derivative, since we know that
our linear approximation is of the form f(a) + Im(Dfa). This tangent plane is all vectors of the form{(

a
f(a)

)
+

(
h

Dfah

)
for all h ∈ Rn

}
i.e. all vectors of the form

(
a + h, f(a) +Dfah

)
for all h ∈ Rn. Rewriting a = x0 and h = x − x0, we

have
(
x, f(x0) +Dfx0

(x− x0)
)
for all x ∈ D, leading to the theorem below.

Theorem 2.3 (Tangent Plane on Surface). Given a function f : D ⊂ Rn −→ R, the tangent plane to
the surface {(x, y) ∈ Rn+1 | y = f(x)} at point (x0, f(x0)) is defined

S = {(x, y) ∈ Rn+1 | y = f(x0) +Dfx0(x− x0)}

The total derivative is a linear map defined almost always as a point, while the gradient, mentioned
further on, is a vector field. Note that if f is scalar-valued, since Dfa really takes in a vector v and
outputs a scalar, this makes the total derivative at a point really a linear functional, or a covector. If f
is vector-valued, then we just call Dfa a linear map from Rn to Rm. The definition for differentiability
can be restated as the following.

Definition 2.2 (Differentiability). A function f : D ⊂ Rn −→ R is differentiable at a ∈ D if and only
if there is a linear function M : Rn −→ R s.t.

lim
h→0

f(a+ h)− f(a)−Mh

||h||
= 0

For vector-valued functions, f : D ⊂ Rn −→ Rm is differentiable at a ∈ D if and only if there is a linear
function M : Rn −→ Rm s.t.

lim
h→0

||f(a+ h)− f(a)−Mh||Rm

||h||Rn

= 0

3/ 46



Multivariate Calculus Muchang Bahng August 2021

But how do we find this M? Fortunately, it turns out that if such M does exist, then we can first find
out how M acts on each basis vector of h (partial derivatives), and by linearity of M , this completely
characterizes M .

Definition 2.3 (Directional, Partial Derivative). The directional derivative of a multivariate function
f : D ⊂ Rn −→ R at a point a ∈ D in direction v ∈ Rn is the instantaneous rate of change of f when
moving along direction v at a. Formally,

∇vf(a) := lim
h→0

f(a+ hv)

h

When computing directional derivatives, it is convenient to normalize the directional vector v to be unit
length so that it coincides with the partial derivatives. We don’t technically need to set ||v|| = 1, but if
we have two vectors v and a scaled cv, then the directional derivatives will also be scaled (∇cvf(a) =
c∇vf(a)), so we will only work with unit directional vectors. Some say that this restriction is undesirable,
since it loses the linearity of the function v 7→ ∂vf(a).
If v is a unit basis vector ei, then we define this specific instance to be the partial derivative of f with
respect to argument xi.

∂xi
f(a) =

∂

∂xi

∣∣∣∣
a

f := lim
h→0

f(a+ hei)

h

which can be calculated by differentiating the function w.r.t. xi and fixing all other variables. The
partial derivative looks at the function as it is approaching a along an axis, while a directional derivative
looks at the function as it is approaching from any direction in the domain.

Sometimes, it is more convenient and clear to define directional derivatives using path functions.

Definition 2.4 (Directional Derivatives w/ Paths). Now, given that we have a function f : D ⊂ Rn −→
R, we can compute the derivative over a path by composing it with the path function p : [−1, 1] ⊂ R −→
D. Let p(0) = a. Then, by the chain rule,

(f ◦ p)′(0) = Dfa p
′(0) =

(
∂x1

f(a) . . . ∂xn
f(a)

)p′1(0)
...

p′n(0)


which is just the directional derivative ∇p′(0)f(a). If we normalize p′(0), then this is our normalized
directional derivative.

2.1 Differentiability vs Existence of Directional Derivatives vs Existence of
Partials

In summary, differentiability of a function f at a implies existence of all directional derivatives at a, which
implies existence of all partials at a. However, the existence of partials does not imply the existence of
all directional derivatives, and the existence of all directional derivatives does not imply differentiability.

Theorem 2.4. Let us have a function f : D ⊂ Rn −→ R and a point a ∈ D.

1. If f is differentiable at a ∈ D, then all of its directional derivatives exist. Furthermore, the total
derivative Dfa applied to the directional unit vector v is equal to the directional derivative at a in
direction v.

Dfav = ∇vf(a)

However, the converse is not true. The existence of all directional derivatives does not imply the
existence of a total derivative.

2. If all directional derivatives exist, then the partials exist (since we can just set the directional vectors
to be the unit vectors). However, the converse is not necessarily true.

Therefore, given that we have the total derivative Dfa, we can generate the directional derivative in
direction v by simply calculating Dfav, and given the directional derivative ∇vf(a), we can simply
calculate the partials by setting v = ei. This is extremely useful for computation.
We can visualize what these conditions will look like. Let us take a function f : R2 −→ R.
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1. If f = 1 on the line x1 = x2 and 0 everywhere else, then we can see that its partials along x1 and
x2 are 0. However, the directional derivative along ( 1√

2
, 1√

2
) is undefined. If f(0, 0) = 1, then only

the directional derivative along the line is defined, and undefined for all other directional vectors.

2. If all the directional derivatives exist but do not lie on some linear plane, then the total derivative
does not exist. We can imagine this as some ”crease” existing on the surface of f . For example, take
the function f(x1, x2) = x1 + x2 on the line x1 = x2 and 0 everywhere else. Then, its directional
derivative along the line is

∇( 1√
2
, 1√

2
)f(0, 0) =

√
2h

h
=

√
2

and 0 along every other directional vector. But this vector ( 1√
2
, 1√

2
,
√
2) does not lie in the flat

linear hyperplane z = 0 that every other directional derivative is on. So, a total derivative does
not exist.

2.1.1 Calculating Total Derivatives

Let’s look at the last paragraph and work backwards. Given a function f and point a, if we assume that
the total derivative Dfa exists, then its evaluation on the directional basis vectors must be equal to the
partials.

∂xi
f(a) = Dfaei

and therefore, we can explicitly compute

Dfa =
(
∂x1

f(a) ∂x2
f(a) . . . ∂xn

f(a)
)

This allows us to identify the only proper candidate for a total derivative of f at a, if it exists, and we
can build a framework on this.
To prove that a function f : Rn −→ R is differentiable at a, and if so, what its total derivative is, there
are essentially two steps.

1. We find a candidate for M by evaluating the partials.

M =
(
∂x1

f(a) ∂x2
f(a) . . . ∂xn

f(a)
)

2. We check to see if the limit is true.

lim
h→0

f(a+ h)− f(a)−Mh

||h||
= 0

If it is, then Dfa = M , and the ”tangent plane” of f at a is defined by the equation

y = f(a) +Mh

Example 2.1 (Computing Total Derivative). The function f(x1, x2) = x2
1+x2

2 is differentiable at (1, 1).
We let M =

(
∂x1

f(1, 1), ∂x2
f(1, 1)

)
=
(
2, 2
)
and see that

lim
h→0

f(a+ h)− f(a)−Mh

||h||
= lim

h→0

f(1 + h1, 1 + h2)− f(1, 1)− 2h1 − 2h2√
h2
1 + h2

2

= lim
h→0

(1 + h1)
2 + (1 + h2)

2 − 2− 2h1 − 2h2√
h2
1 + h2

2

= lim
h→0

√
h2
1 + h2

2 = 0

So, Df(1, 1) = (2, 2).

Example 2.2 (Computing Tangent Plane). Let us find the equation of the tangent plane to f(x, y) =
ln(2x+ y) at (−1, 3). Our total derivative, if it exists, is the covector of partials

Df =
(

∂f
∂x

∂f
∂y

)
=
( 2
2x+y

1
2x+y

)
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which is indeed continuous at a neighborhood of (−1, 3) (in fact, in every neighborhood not containing
0). By continuity of partials, f is differentiable at (−1, 3), with Df(−1,3) = (2, 1). The equation of the
plane is then

z = f(−1, 3) +Df(−1,3)

(
x+ 1
y − 3

)
= 2(x+ 1) + 1(y − 3) =⇒ z = 2x+ y − 1

Example 2.3 (Existence of Directional Derivatives ≠⇒ Differentiability). The function f : R2 −→ R,
defined

f(x1, x2) :=

{
0 for (x1, x2) = (0, 0)

x3
1

x2
1+x2

2
for (x1, x2) ̸= (0, 0)

is not differentiable at (0, 0), but all directional derivatives exist. That is, for any (conventionally) unit
v = (v1, v2), its directional derivative is always well defined to be

∇vf(0, 0) = lim
h→0

h3v3
1

h2(v2
1+v2)2

h
=

v31
v21 + v22

= v31

Now assuming that there is such a linear M , we can find the partials by setting v = (1, 0) and v = (0, 1),
giving

M =
(
∂x1

f(0, 0) ∂x2
f(0, 0)

)
=
(
1 0

)
But

lim
h→0

f(a+ h)− f(a)−Mh

||h||
= lim

h→0

f(h1, h2)− f(0, 0)− 1 · h1 − 0 · h2√
h2
1 + h2

2

= lim
h→0

h3
1

h2
1+h2

2
− h1√

h2
1 + h2

2

= lim
h→0

− h1h
2
2

(h2
1 + h2

2)
3/2

and taking along the path h = (k, k) gives

lim
(k,k)→0

− k3

(2k2)3/2
= − 1

23/2
̸= 0

Example 2.4 (Existence of Partials ≠⇒ Existence of Directional Derivatives). Consider the function

f(x1, x2) =

{
x1x2

x2
1+x2

2
if (x1, x2) ̸= (0, 0)

0 if (x1, x2) = (0, 0)

The partial derivatives exist everywhere. Away from the origin we can simply compute

∂f

∂x1
=

x2(x
2
1 + x2

2)− x1x2 · 2x1

(x2
1 + x2

2)
2

=
−x2

1x2 + x3
2

(x2
1 + x2

2)
2

∂f

∂x2
=

x1(x
2
1 + x2

2)− x1x2 · 2x2

(x2
1 + x2

2)
2

=
x3
1 − x1x

2
2

(x2
1 + x2

2)
2

As for the partials at the origin, we must compute using the limit rule.

∂x1
f(0) = lim

h→0

f(0+ he1)− f(0)

h
= lim

h→0

f(h, 0)

h
= 0

∂x2f(0) = lim
h→0

f(0+ he2)− f(0)

h
= lim

h→0

f(0, h)

h
= 0

However, the directional derivative taken in direction v = (1, 1) gives

∇(1,1)f(0, 0) = lim
h→0

f(0+ h(1, 1))− f(0)

h

= lim
h→0

f(h, h)

h

= lim
h→0

1

2h
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which does not have a limit as h → 0. To visualize this, let’s look at the values of f along various lines
in R2.

1. f = 0 at the line x1 = 0 and x2 = 0, which is why the partials are 0.

2. f = 1
2 at the line where x1 = x2, except for the point (0, 0), where f = 0, which is why the limit in

the direction doesn’t exist.

2.2 Deriatives as a Function

Given that a function f : D ⊂ Rn −→ R is differentiable on all points of D, we can imagine that
there exists a covector Dfa for every point a ∈ D. If we loosen the restriction on a and consider the
function Df : a 7→ Dfa, we can imagine that Df defines a bundle of covectors on every point of a.
Df : Rn −→ Rn∗ is what we call a covector, cotangent field, and it evaluated at a point is called a
cotangent vector.
Similarly, given the unit directional derivative ∇vf(a), we can loosen the restriction on a and consider
the function ∇vf : a 7→ ∇vf(a). Taking the directional derivative of f produces another function
∇vf : D ⊂ Rn −→ R, which we can also consider differentiability on. Therefore, the partial derivatives
are maps ∂xif : D ⊂ Rn −→ R.
An even stronger condition beyond differentiability is continuous partials, and we often prove continuity
of partials to prove differentiability.

Theorem 2.5 (Continuous Partials =⇒ Differentiability). Given a function f : D ⊂ Rn −→ R and a
point a ∈ D, if all the partials ∂xif exist and are continuous at a, then f is differentiable at a.

Example 2.5 (Differentiability ≠⇒ Continuous Partials). The function

g(x) ≡

{
x2 sin

(
1
x

)
x ̸= 0

0 x = 0

is differentiable, with derivative at x = 0 to be g′(0) = 0, since g(h) is bounded by h2.

lim
h→0

h2 sin
(
1
h

)
− 0

h
≤ lim

h→0

h2

h
= 0

which makes

g′(x) ≡

{
− cos

(
1
x

)
+ 2x sin

(
1
x

)
x ̸= 0

0 x = 0

But because cos( 1x ) oscillates at x → 0, g′(x) is not continuous at x = 0. Therefore g(x) is differentiable
but not in C1(R).

Definition 2.5 (C1 Space). The vector space of all functions f : D ⊂ Rn −→ R with continuous partials
is denoted C1(D;R) or C1(D). They are called continuously differentiable.

We can also visualize this theorem. Since the partials are continuous, then the tangent subspace, which
is determined by the span of the tangent vectors determined by the partials, also changes continuously,
and therefore the total derivative within a neighborhood of a exists. Note that from now, whenever we
talk about differentiating a function f , we will assume that it is C1. This is overkill, since the set of all
k-times differentiable functions is a subset of Ck, but it is conventional to work with Ck functions.

2.3 Derivative Rules

Just like single variable calculus, the total derivative behaves in predictable ways: it is linear, prod-
uct/quotient rules, and the chain rule.

Theorem 2.6 (Linearity of Total Derivatives). Let f, g : D ⊂ Rn −→ Rm be differentiable at a ∈ D.
Then, the total derivative at a is linear w.r.t. the function arguments.

1. D(f + g)a = Dfa +Dga

2. D(cf)a = cDfa
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Furthermore, if f and g are differentiable over D, then

1. D(f + g) = Df +Dg

2. D(cf) = cDf

Note that for the product and quotient rules, our scope is only for scalar valued functions.

Theorem 2.7 (Product Rule). Let f, g : D ⊂ Rn −→ R be differentiable at a. Then,

D(fg)a = Dfag(a) + f(a)Dga

If f, g are differentiable over D, then

D(fg) = Df · g + f ·Dg

Theorem 2.8 (Quotient Rule). Let f, g : D ⊂ Rn −→ R be differentiable at a with g(a) ̸= 0. Then,

D
(f
g

)
a
=

Dfag(a)− f(a)Dga
g(a)2

If f, g are differentiable over D and g never vanishes on D, then

D
(f
g

)
=

Df · g − f ·Dg

g2

Theorem 2.9 (Chain Rule). Let f : D ⊂ Rn −→ Rm and g : E ⊂ Rp −→ Rn be two functions such
that f ◦ g : E ⊂ Rp −→ Rm is defined on E. Suppose g is differentiable at a ∈ E and f is differentiable
at g(a) ∈ D. Then, f ◦ g is differentiable at a, and

D(f ◦ g)a = Dfg(a) ◦Dga

If g is differentiable over E and f over g(E) ⊂ D, then f ◦ g is differentiable over E, and

D(f ◦ g)(·) = Dfg(·) ◦Dg(·)

Therefore, given the composition of function f ◦ g, we have two methods of finding the derivative matrix
of f ◦ g at point x0. First is to explicitly compute f ◦ g and find its m×p derivative matrix D(f ◦ g), and
plug in a to get D(f ◦g)a. The second way is to use the chain rule to find the individual total derivatives
Dfg(a) and Dga, and multiply them together.

2.4 Gradients

Definition 2.6 (Gradient). The gradient of a C1 scalar-valued function f is the vector field ∇f : D ⊂
Rn −→ Rn defined

∇f(a) :=

∂x1
(a)
...

∂xn
(a)


The gradient at a point is a tangent vector.

Note that the gradient is a vector field (a bundle of vectors), while the total derivative is a covector field
(a bundle of covectors). Since Rn is an inner product space, we can invoke Riesz Representation theorem
and see that they are related in the way that

Dfav = ∇f(a) · v

where · represents the dot product. At this point, it’s a bit hard to see the difference between these two,
but in more abstract spaces the total derivative generalizes much better than the gradient, which exists
for inner product spaces. From this, we can write a coordinate independent definition of the gradient.

Definition 2.7 (Gradient). The gradient of a scalar valued function f ∈ C1 is the unique vector field
whose dot product with any vector v at each point is the directional derivative of f along v. That is,

∇fa · v = Dfav for all a ∈ D
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Theorem 2.10 (Gradient as Direction of Fastest Increase). Let f be a real-valued function such that
∇f(x) ̸= 0. Then, at the point x, ∇f(x) points in the direction along which f is increasing the fastest.
Equivalently, −∇f(x) points in the direction along which f is decreasing the fastest.

Proof. Note that this is a coordinate-independent proof. Given a directional vector v, we can normalize
it since we are only interested in direction. Evaluating it with the total derivative at x gives us Dafv.
But by definition,

∇fa · v = Dfav

which means that

sup
||v||=1

{Dfav} = sup
||v||=1

{∇fa · v}

= sup
||v||=1

{||∇fa|| ||v|| cos(θ)}

= sup{||∇fa|| cos(θ)}
= ||∇fa|| when θ = 0

Therefore, v must point in the direction of ∇fa. ■

Therefore, we can interpret the gradient evaluated at a point as the tangent vector that points in
the direction of fastest increase. We can also interpret the gradient ∇f itself as the vector field that
determines some sort of ”flow” in the domain Rn. Therefore, if we drop a point in this field, the point will
flow through Rn through a current determined by ∇f and will eventually end up at a local maximum.

Definition 2.8 (Del Operator). For convenience, we use the del operator to denote the gradient. The
del operator ∇ : f 7→ ∇f takes in a differentiable function and outputs the gradient of it.

2.5 Paths, Surfaces, and Sets

We can represent a K-dimensional subset S ⊂ RN in multiple ways, where K < N . There are three
conventional ways to do this.

1. We can parameterize it with a function f : D ⊂ Rk −→ Rn to create a parameterized set defined
as the image of an injective f under D. Letting x ∈ Rn and u ∈ Rk, the parameterization is defined

u 7→ f(u) =
(
f1(u), f2(u), . . . , fn(u)

)
2. A function f : Rn −→ Rm of the form y = f(x) creates an explicit representation by defining

all (x,y) ∈ Rn+m satisfying
y = f(x)

3. A level set of the form F(x) = 0 creates an implicit representation by defining all x ∈ Rn

satisfying
F(x) = 0

Now if F was scalar valued, then the equation F (x) = 0 defines a hypersurface in Rn with codi-
mension 1. If F is a k-vector valued function, then the implicit surface generally has codimension
k, since we can interpret F(x) = 0 as a system of k constraint equations.

Generally, the change of representations is simple only when the explicit representation y = f(x) is given.
The implicit form is F(x,y) = y − f(x) = 0, and the parameterized form is the map x 7→ (x, f(x)).
However, the explicit representation is very limited in usefulness, because it can only describe sets that
are graphs of functions that pass the vertical line test. The implicit function theorem, stated later, states
conditions under which an equation F(x) = 0 can be solved explicitly for any of the xi’s. The other two
representations are much more versatile, with the implicit representation being slightly more general, but
the parametric form being more useful, since we can directly compute points on the S. Some examples
are:

1. a 1-dimensional path/curve in Rn

2. a 2-dimensional surface in R3
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3. a k-dimensional set in Rn

If these surfaces are smooth enough, then there must exist geometric tangent vectors, geometric tangent
planes, and geometric orthogonal vectors on them. We say ”geometric” to distinguish them from the
vectors in the tangent space Tx0Rn. It is important to know how to derive them.

Theorem 2.11 (Explicit Representation). Let us have the surface S ⊂ Rn+1 defined by y = f(x) and a
point on the surface (x0, f(x0)).

1. To get the equation of the set of affine points forming the geometric tangent plane, we look at all
points (x, y) satisfying

y = f(x0) +Dfx0(x− x0)

and to get an arbitrary tangent vector protruding from x0, we look at all vectors (v, w) of form

w = Dfx0
v

i.e. all vectors of form (v, Dfx0
v).

2. To get the equation of the orthogonal vector, convert this to the implicit representation g(x, y) =
y−f(x) = 0, and see that the gradient is orthogonal to the tangent plane. So, the orthogonal vector
at x0 is

∇g(x0, f(x0)) =

(
−∇f(x0)

1

)
Note that indeed, dotting this with an arbitrary tangent vector of the form above gives(

−∇f(x0)
1

)
·
(

v
Dfx0

v

)
= −∇f(x0) · v +Dfx0

v = 0

Given a level set S = {x ∈ Rn | f(x) = c}, a vector v is a tangent vector of S at a if the directional
derivative (if it exists) satisfies

∇vf(a) = 0

If f is differentiable at a, then this condition is equivalent to

Dfav = 0

Intuitively, Dfav answers the question: ”If I move infinitesimally in the direction v, what happens to
f?” We would want this direction to preserve the value of f = c, and so the derivative should be 0.
Therefore, we look for the vectors v satisfying Dfav = 0, i.e. the annihilator (Dfa)

0 ⊂ Rn. This result
is precisely the well-known theorem that states that ”gradients are orthogonal to level sets.” It is intuitive
to claim that if we have some sort of directional vector v, then this v must be ”tangent” if the directional
derivative towards v must be 0, essentially staying within the level set of value c.

Theorem 2.12 (Implicit Representation). Let us have the surface S ⊂ Rn defined by F (x) = 0 and a
point a ∈ S.

1. The gradient ∇F (x0) is simply the orthogonal vector at x0.

2. The set of all directional tangent vectors protruding from x0 is defined by the set of directional
vectors v satisfying

∇F (x0) · v = 0

and the set of all affine points forming the geometric tangent plane are all x ∈ Rn satisfying

∇F (x0) · (x− x0) = 0

Proof. This is trivial since we can invoke Reisz representation theorem and see that

Dfav = 0 =⇒ ∇af · v = 0

■
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This theorem now simplifies our derivation of tangent planes of a function f : Rn −→ R. To find the
equation of a tangent plane of y = f(x) at x = a, we can simply write the one-line equation as

y = f(a) +Dfa(x− x0)

However, if we had an implicit function of the form g(x, y) = c, then separating this into an explicit
function of y is hard. Therefore, we can simply treat g itself as a function of the n+ 1 variables (x, y),
and treat g(x, y) = c as a level set.

Theorem 2.13 (Parametric Representation). Let us have f : D ⊂ Rk −→ Rn, with injective f defining
a surface f(D) ⊂ Rn. Let us have u0 ∈ D with f(u0) = x0 ∈ f(D). Our idea is this: we compute
k directional derivatives of f in k linearly independent direction vectors at u0, which will give us k
(linearly independent, due to injectiveness of f , but not necessarily orthogonal) geometric tangent vectors
protruding from x0 that span the tangent space Tx0

. If k = n− 1, then the orthogonal vector is uniquely
defined to be the vector spanning T⊥

x0
, and is k < n− 1, there is no unique orthogonal vector defined.

1. The set of all directional tangent vectors v protruding from x0 is represented by the set of all linear
combinations of the partials, aka the image of the Jacobian of f

{c1∂u1
f(u0) + . . .+ ck∂uk

f(u0) | c ∈ Rn} = Im

 | . . . |
∂u1f(u0) . . . ∂kf(u0)

| . . . |

 = ImDfu0

The tangent space is the space of all x ∈ Rn of the form

f(x0) +Dfx0u for all u ∈ Rk

2. If k = n − 1, the orthogonal vector is the unique vector that is orthogonal to all ∂uif(u0), which
can be computed using linear algebra techniques (e.g. kernel of Dfx0). If n = 3, k = 2, then this
can simply be computed using the cross product.

3 Higher Order Derivatives

3.1 Ck Functions

Since ∇vf : D ⊂ Rn −→ R, we can take the directional derivative (assuming it exists) of it again in
direction u to get a second derivative ∇u∇vf . We usually work with iterated partial derivatives, and we
can compute derivatives as many times as we want, given that they exist. Therefore, the second-order
iterated partial derivatives of f are

∂xixj
:= ∂xj

∂xi
f for i, j = 1, . . . n

Definition 3.1 (Ck Functions). A function f : D ⊂ Rn −→ R is said to be a Ck function if all k-times
iterated partial derivatives

∂xi1xi2 ...xik
f

exist and are continuous. The vector space of all Ck functions is denoted Ck(D;R), or Ck(D).

Whenever we want to get the kth iterated partial derivative of f , we will assume that f ∈ Ck. Again,
this is overkill, but it is conventional since we don’t really work with the set of functions with existing
partial derivatives.

Theorem 3.1 (Nested Ck and Dk Function Spaces). Let the space of all k-times differentiable functions
over Rn be denoted D(Rn). Then,

C0(Rn) ⊃ D1(Rn) ⊃ C1(Rn) ⊃ D2(Rn) ⊃ C2(Rn) . . .Dk(Rn) ⊃ Ck(Rn) . . . C∞(Rn)

Note that mathematicians throw around the word ”smooth” a lot. Usually, it means one of three things

1. it is of class C1

2. it is of class C∞
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3. it is of class Ck, where k is however high it needs to be to satisfy our assumptions. For example,
if I say let us differentiate smooth f two times, then I am assuming that f ∈ C2(Rn).

Visualizing Ck-functions is easy for low orders. A C0 function produces a graph that isn’t ”ripped”
or ”punctured,” since this is exactly what a discontinuity would look like. A C1 function requires the
surface to be smooth in such a way that there is a well defined affine tangent subspace at every point.
This means that there cannot be any sharp ”points” or ”edges” on the graph since a tangent subspace
cannot be well defined.

3.2 Iterated Partials

Theorem 3.2 (Clairut’s Theorem). Given f ∈ C2 at point a, its second iterated partials are equal.

∂xixj
f(a) = ∂xjxi

f(a) for i, j = 1, 2, . . . , n

Proof. For clarity, denote xi, xj as x, y and ignore the rest of the variables. Then, the partial derivatives
∂xyf and ∂yxf at a point (x0, y0) can be expressed as double limits:

∂xyf(x0, y0) = lim
y→y0

∂xf(x0, y)− ∂xf(x0, y0)

y − y0

where ∂xf : D ⊂ Rn −→ R. We can use the two limit definitions of partial derivatives

∂xf(x0, y) = lim
x→x0

f(x, y)− f(x0, y)

x− x0
and ∂xf(x0, y0) = lim

x→x0

f(x, y0)− f(x0, y0)

x− x0

and substitute them to get the two partials

∂xyf(x0, y0) = lim
y→y0

limx→x0

f(x,y)−f(x0,y)
x−x0

− limy→y0

f(x,y0)−f(x0,y0)
x−x0

y − y0

= lim
y→y0

lim
x→x0

(
f(x, y)− f(x0, y)− f(x, y0) + f(x0, y0)

(x− x0)(y − y0)

)
∂yxf(x0, y0) = lim

x→x0

limy→y0

f(x,y)−f(x,y0)
y−y0

− limy→y0

f(x0,y)−f(x0,y0)
y−y0

x− x0

= lim
x→x0

lim
y→y0

(
f(x, y)− f(x, y0)− f(x0, y) + f(x0, y0)

(y − y0)(x− x0)

)
Now invoking our assumption that f is C2, the two limits, which approach (x0, y0) along different paths,
both exist and are equal to

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y)− f(x, y0) + f(x0, y0)

(x− x0)(y − y0)

and therefore ∂xyf = ∂yxf . ■

Corollary 3.2.1. Given f ∈ Ck, its kth iterated partials are equal. That is, given any permutation σ,

∂xi1xi2 ...xik
f = ∂xσ(i1)xσ(i2)...xσ(ik)

f for i1, . . . , ik = 1, . . . , n

Definition 3.2 (Hessian Matrix). The n× n matrix of second iterated partials of f ∈ C2 at a is called
the Hessian matrix.

Hfa :=

∂x1x1
(a) . . . ∂x1xn

(a)
...

. . .
...

∂xnx1
(a) . . . ∂xnxn

(a)

 and Hf :=

∂x1x1
. . . ∂x1xn

...
. . .

...
∂xnx1

. . . ∂xnxn


By equality of mixed partials, it is symmetric.

Theorem 3.3. The Hessian matrix of a function f : D ⊂ Rn −→ R is the Jacobian matrix of the
gradient of f . That is, interpreting ∇f : D ⊂ Rn −→ Rn, we have

Hfa = D∇fa for all a ∈ D

which we can also write as Hf = D∇f . This theorem is very useful, especially for optimization and
sampling methods, since we can now interpret the Hessian as the rate of change of the gradient of f .
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3.3 Taylor Series

To talk about convergence, the big-O notation is very useful.

Definition 3.3 (Classes of Infinitesimal Functions). A function α : Rn −→ R is infinitesimal if α → 0
as x → x0. There are multiple ”levels” of infinitesimal functions, i.e. how fast they converge to 0. We
can classify them by comparing their limits to polynomials.

1. α is of class O(1) if

lim
x→x0

α(x)

1
= 0

This means that α(x) tends to 0 infinitely faster than 1 (which just means that it tends to 0).

2. α is of class O(h) if

lim
x→x0

α(x)

||x− x0||
= 0

This means that α(x) tends to 0 infinitely faster than the linear ||h||, where h = x− x0.

3. α is of class O(h2) if

lim
x→x0

α(x)

||x− x0||2
= 0

This means that α(x) tends to 0 infinitely faster than the quadratic ||h||2, where h = x− x0.

4. α is of class O(hk) if

lim
x→x0

α(x)

||x− x0||k
= 0

This means that α(x) tends to 0 infinitely faster than the kth-order ||h||k, where h = x− x0.

Clearly, O(hk) ⊃ O(hk+1).

Now given a f : D ⊂ Rn −→ R, we present some polynomial approximations of f at x0 ∈ D:

1. If f ∈ C0, the zeroth (constant) approximation is just

P0(x) = f(x0)

This is not interesting at all, since it is just constant. Furthermore, the error term ϵ0(x) =
f(x)− P0(x) is an infinitesimal function as x → x0 and is of class O(1), since

lim
x→x0

f(x)− P0(x)

1
= 0

2. If f ∈ C1, the first (linear) approximation requires us to use our total derivative:

P1(x) = f(x0) +Dfx0
(x− x0)

and we know that the error ϵ1(x) = f(x) − P1(x) is infinitesimal as x → x0 and is of class O(h),
since

lim
x→x0

f(x)− P1(x)

||x− x0||
= 0

3. If f ∈ C2, the second (quadratic) approximation requires us to use a quadratic term (i.e. a bilinear
form of h = x− x0) centered at x0. Call it Hx0

: Rn × Rn −→ R, and our estimation is

P2(x) = f(x0) +Dfx0
(x− x0) +

1

2
H(x− x0,x− x0)

which we would like the error term ϵ2(x) = f(x) − P2(x) to be O(h2), or in limit terms, P2 must
satisfy

lim
x→x0

f(x)− P2(x)

||x− x0||2
= 0

We show that this form H is precisely the Hessian matrix.

Theorem 3.4 (Hessian). The second order approximation of a C2-differentiable function f about a point
x0 is

f(x) = f(x0) +Dfx0(x− x0) +
1

2
(x− x0)

THfx0(x− x0) +O(h2)

where Dfx0
is the total derivative at x0 and Hfx0

is the Hessian matrix at x0.
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3.4 Optimization

Note that while the approximation isn’t exact, the kth-degree approximation of f ∈ Ck ”mimics” f
in the way that the iterated partial derivatives, up to the kth order, are the same as the iterated
partial derivatives of f at the point x0. Since every (iterated) directional derivative can be expressed
as a linear combination of the basis derivatives (i.e. the partials), all of the directional derivatives of
the approximation up to the kth order match those of f . This allows us to analyze the behavior of
the function f up to the kth order at x0 by looking only at the components of its kth degree Taylor
expansion. The most obvious application of this is to find the local extrema of f using the Hessian
matrix.

3.4.1 Extrema

Definition 3.4 (Local Extrema). Given a function f : D ⊂ Rn −→ R, a point x0 ∈ D is a local
minimum if there exists a neighborhood U of x0 such that

f(x) ≥ f(x0) for every x ∈ U

Similarly, x0 is a local maximum if there exists a neighborhood U of x0 such that

f(x) ≤ f(x0) for every x ∈ U

Theorem 3.5 (1st Derivative Test). If x0 is a local extremum of a differentiable function f , then
Dfx0

= 0. That is, x0 is a critical point of f , i.e. every directional derivative through x0 is 0.

Note that even though the converse of this theorem is not true, we can use the contrapositive to determine
that every point that has a nonzero derivative cannot be a extremum. A function may also have an infinite
amount of critical points (e.g. if they lie in a circle). In order to determine whether a critical point x0

is a relative maximum, minimum, or neither, we use the second derivative test.

Theorem 3.6 (2nd Derivative Test). Let x0 be a critical point of C2 function f : Rn −→ R. That is,
Dfx0

= 0. Then,

1. x0 is a local minimum if Hfx0
is positive definite.

2. x0 is a local maximum if Hfx0
is negative definite.

3. x0 is a saddle point if Hfx0
is not positive definite nor negative definite.

Visually, this makes sense since given a critical point x0, the derivative matrix would be 0, meaning that
the 2nd degree Taylor expansion of f near x0 would be in form

f(x) ≈ f(x0) +
1

2
(x− x0)

THfx0
(x− x0)

If Hfx0
is positive definite, then by definition 1

2 (x − x0)
THfx0

(x − x0) > 0 for all x near x0, and so f
would increase in every direction within the neighborhood of x0. The logic follows similarly for negative
definite matrix Hfx0 . If Hfx0 is not positive nor negative definite, then 1

2 (x− x0)
THfx0

(x− x0) could
be positive or negative, depending on which direction vector h = x − x0 we choose for computing the
directional derivative. Therefore, f will increase for certain h and decrease for other h.

Definition 3.5 (Global Extrema). Given f : D ⊂ Rn −→ R, a point x0 ∈ A is said to be an absolute,
or global, maximum if

f(x0) ≥ f(x) for all x ∈ D

and a global minimum if
f(x0) ≤ f(x) for all x ∈ D

Unfortunately, determining whether a point x0 is a local extremum requires us to define an open neigh-
borhood around x0. This means that we can only determine local extrema within open sets in Rn.
Therefore, we must modify our procedure when looking for extrema on functions defined over closed
bounded sets. We now describe a method of computing the global extrema. Let f : D ⊂ Rn −→ R be
a multivariable function defined on a closed and bounded set D ≡ U ∪ ∂U , where U is open and ∂U is
the boundary of D. To find the global extrema on D, we find all local extrema of
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1. f defined over the interior of U , which is open, by locating all points where Df = 0

2. f defined over ∂U , preferably defined as a composition of the path function p : I ⊂ R −→ ∂U and
f : ∂U −→ R. That is, find the values of t such that D(f ◦ p)(t) = 0 and identify p(t).

We take all these critical points and choose the largest to be the global maximum and the smallest to
be the global minimum.

3.4.2 Convexity and Curvature

Definition 3.6 (Convex Set). A subset D ⊂ Rn is a convex set if for any two points x,y ∈ D, the line
segment joining them is also in D. That is,

{θx+ (1− θ)y | 0 ≤ θ ≤ 1} ⊂ D

Definition 3.7 (Convex Function). Let D be a convex set. A function f : D ⊂ Rn −→ R is a convex
function if

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y)

We can visualize this as the graph of the function in D ⊕ R always being ”under” every line segment
connecting

(
x, f(x)

)
and

(
y, f(y)

)
.

If we assume that f is C1 or C2, we can use additional tools to prove convexity. The theorem for C1

functions is quite intuitive, since for a convex function, the tangent plane on its graph must never be
”above” the graph. In other words, the first order approximation must be a global underestimate of f .

Theorem 3.7 (Convexity of C1 Functions). Let D be a convex set and f : D ⊂ Rn −→ R be C1. Then,
f is convex over D if and only if

f(x0) +Dfx0
(x− x0) ≤ f(x)

for all x0,x ∈ D.

Theorem 3.8 (Convexity of C2 Functions). Let D be a convex set and f : D ⊂ Rn −→ R be C2.
Then, f is convex over D if and only if Hf is positive semidefinite over all interior points of D (i.e. all
eigenvalues of Hfa are nonnegative for all a ∈ D).

The computation of the Hessian now gives us much more information about the graph of the function
of interest.

Theorem 3.9. A function f : D ⊂ Rn −→ R defined on a convex set D is convex if and only if its
Hessian matrix Hf is positive semidefinite for all x ∈ D.

Once we have computed the Hessian, let’s take the eigendecomposition of it. Since Hfa is a real sym-
metric matrix, by the spectral theorem, it will have n real eigenvalues λ1, . . . , λn (in descending values)
and corresponding orthonormal eigenvectors v1, . . . ,vn. Now given the gradient ∇f(a) at a, we can
approximate ∇f(a+ h) at a+ h using its total derivative as

∇f(a+ h) ≈ ∇f(a) +D∇fah = ∇f(a) +Hf(a)h

The eigenvalues of Hf(a) will tell us how ”fast” the gradient changes at a. That is, given a small
displacement vector h, we can take an orthonormal decomposition of it in the form

h =
∑
i

hivi

and now the approximate gradient can be written as

∇f(a+ h) = ∇f(a) +
∑
i

hiλivi

Therefore, bigger λi’s will contribute to a greater change in f(a), and smaller ones will contribute less.
We can use this information to speed up convergence by scaling along different axes of h when sampling.
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3.5 Lagrange Multipliers

In many cases we are required to find the local extrema of a function f : D ⊂ Rn −→ R subject to
a system of equality constraints (i.e. subject to the condition that one of more equations have to be
satisfied exactly by the chosen values of the variables) of the form:

g1(x) = 0, g2(x) = 0, . . . , gc(x) = 0

which can be summarized into the constraint g : Rn −→ Rc

g(x) =

g1(x)
...

gc(x)

 = 0

which really just represents a level set of g at 0, i.e. a set described by an implicit representation.
In physics, these types of ”well-behaved” constraints are known as holonomic constraints. Here is an
example of a function f : R2 −→ R constrained to the unit circle, where g(x, y) = x2 + y2 − 1 = 0.

To solve this constraint problem, we use the method of Lagrange multipliers. The basic idea is to convert
a constrained problem into a form such that the derivative test of an unconstrained problem can still be
applied. The relationship between the gradient of the function and gradients of the constraints rather
naturally leads to a reformulation of the original problem, known as the Lagrangian function. That is,
in order to find the maximum/minimum of f subjected to the equality constraint g(x) = 0, we form the
Lagrangian function

L(x, λ) ≡ f(x)− λTg(x)

and find the stationary points of L considered as a function of x ∈ D and the Lagrange multiplier λ ∈ R.
The main advantage to this method is that it allows the optimization to be solved without explicit
parameterization in terms of the constraints.

Theorem 3.10 (Lagrange Multipliers Theorem). Let f : Rn −→ R be a C1 function and let g(x) = 0,
where g : Rn −→ Rc, be a system of C1 constraint equations: g := (g1, g2, . . . , gc). Let x∗ be an optimal
solution to the optimization problem of maximizing f(x) subject to the constraint g(x) = 0 such that
rankDgx∗ = c < n. Then, their exists a unique vector λ∗ of Lagrange multipliers λ∗

1, λ
∗
2, . . . , λ

∗
c s.t.

Dfx∗ = λ∗TDgx∗

where Dfx∗ can be interpreted as the 1× n Jacobian matrix of f and Dgx∗ as the c× n Jacobian of g.
Since both Dfx∗ and λ∗TDgx∗ are maps from Rn to R, we can invoke Riesz representation theorem to
turn this into gradients:

∇f(x∗) = ∇g(x∗)(λ∗)

which has a matrix realization of
∂f
∂x1

(x∗)
...

∂f
∂xn

(x∗)

 =


∂g1
∂x1

(x∗) . . . ∂gc
∂x1

(x∗)
...

. . .
...

∂g1
∂xn

(x∗) . . . ∂gc
∂xn

(x∗)


λ∗

1
...
λ∗
c



= λ∗
1


∂g1
∂x1

(x∗)
...

∂g1
∂xn

(x∗)

+ λ∗
2


∂g2
∂x1

(x∗)
...

∂g2
∂xn

(x∗)

+ . . .+ λ∗
c


∂gc
∂x1

(x∗)
...

∂gc
∂xn

(x∗)



16/ 46



Multivariate Calculus Muchang Bahng August 2021

This equation tells us that at any critical points x∗ of f evaluated under the equality constraints, the
gradient of f at x∗ can be expressed as a unique linear combination of the gradients of the constraints
∇gi(x

∗) (at x∗), with the Lagrange multipliers acting as coefficients. Therefore, finding the critical points
x∗ of f constrained with g is equivalent to solving the system of c + n equations for the n unknowns in
x and c unknowns in λ:

g(x) = 0

∇f(x) = ∇g(x)(λ)

which can be rewritten as

c constraint equations


g1(x) = 0

. . . = 0

gc(x) = 0

n Lagranaian equations


∂f
∂x1

(x∗) = λ∗
1
∂g1
∂x1

(x∗) + λ∗
2
∂g2
∂x1

(x∗) + . . .+ λ∗
c
∂gc
∂x1

(x∗)

. . . = . . .
∂f
∂xn

(x∗) = λ∗
1
∂g1
∂xn

(x∗) + λ∗
2
∂g2
∂xn

(x∗) + . . .+ λ∗
c
∂gc
∂xn

(x∗)

More abstractly, Dfx∗ is the linear functional in (Rn)∗, and Dgx∗ , which is a linear map from Rn to Rc,
can be interpreted as a map from (Rc)∗ to (Rn)∗ Since λ∗ ”lives” in (Rc)∗, Dgx∗(λ∗) ∈ (Rn)∗, which is
the same space that fx∗ lives in.
Let us introduce a visualization for when where is a single constraint g : Rn −→ R. From the properties
of the gradient, ∇f(x0) is orthogonal to the level set of points satisfying f(x) = f(x0) at point x0. Note
that the constraint function g also maps Rn −→ R, and so it has its own level surfaces. We can see that
the point where the contour line of g(x) = 0 tangentially touches the contours of f is the maximum.
Since it intersects it tangentially, the gradient vector at that point ∇g(x0) is parallel to ∇f(x0).

We can visualize this for multiple constraints as well, where ∇f(x0) (the gradient vector of f at x∗)
can be expressed as a linear combination of ∇g1(x0) and ∇g2(x0) (gradient vectors of the constraint
functions at x∗).

From the properties of the gradient introduced before, ▽f(x0) is orthogonal to the level set of points
satisfying f(x) = c at the point x0. But this level set f(x) = c actually intersects the level set determined
by g(x) = c at the point x0 and is indistinguishable from each other at x0. This means that ▽g(x0) is
normal the level set of g(x) = c at x0 ⇐⇒ it is normal to the level set of f(x) = c at x0. But ▽f(x0)
is also normal at that point, so ▽f(x0) must be parallel to ▽g(x0).
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4 Implicit, Inverse Function Theorem

4.1 Inverse Function Theorem

A special case of the general implicit function theorem is the inverse function theorem. It gives sufficient
condition for a function to be invertible in a neighborhood of a point in its domain.

Theorem 4.1 (Inverse Function Theorem for Single-Variable C1 Functions). If f : R −→ R is a C1

function with a nonzero derivative at point x0, then f is invertible in a neighborhood of x0, the inverse
is also C1, and the derivative of the inverse function at y0 = f(x0) is the reciprocal of the derivative of
f at x0. (

f−1
)′
(y0) =

1

f ′(x0)

This can be visualized easily by looking at the graph of any C1 function.

In high school mathematics, this theorem is informally presented as the horizontal line test.

This can be stated in an alternative form: If f : R −→ R is continuous and injective near x0, and
differentiable at x0 such that f ′(x0) ̸= 0, then f is invertible near x0 with an inverse that’s similarly
continuous and injective, and where the above formula would apply as well.

Corollary 4.1.1 (Inverse Function Theorem for Single-Variable Ck Functions). If f : R −→ R is a Ck

functions with a nonzero derivative at point x0, then f is invertible in a neighborhood of x0, the inverse
is also Ck, and the derivative of the inverse function at y0 = f(x0) is the reciprocal of the derivative of
f at x0.

Theorem 4.2 (Inverse Function Theorem for Multivariable Functions and its Matrix Realization). Let
f : Rn −→ Rn be a C1 function defined on an open neighborhood of x0 in the domain. If the total
derivative/Jacobian Dfx0 at x0 is invertible, an inverse function of f is defined on some neighborhood of
y0 = f(x0). Given that we are working with a fixed basis, f can be modeled by the set of n equations

f1(x1, x2, . . . , xn) = y1

. . . = . . .

f2(x1, x2, . . . , xn) = y2

This theorem says that this system of n equations has a unique solution for x1, x2, . . . , xn in terms of
y1, . . . , yn, provided that we restrict x and y to small enough neighborhoods of x0 and y0. This inverse
function f−1 : Rn −→ Rn is also C1, and its total derivative/Jacobian Df−1

y0
at y0 = f(x0) is the inverse

linear map of Dfy0
.

Df−1
y0

=
(
Dfx0

)−1

Example 4.1. Consider the vector-valued function f : R2 −→ R2 defined by

f(x1, x2) =

(
ex1 cos(x2)
ex1 sin(x2)

)

18/ 46



Multivariate Calculus Muchang Bahng August 2021

The total derivative/Jacobian matrix is

Jf(x1, x2) =

(
ex1 cos(x2) −ex1 sin(x2)
ex1 sin(x2) ex1 cos(x2)

)
=⇒ det Jf(x1, x2) = e2x1 cos2(x2) + e2x1 sin2(x2) = e2x1

Since the determinant e2x1 is nonzero everywhere, Dfx is nonsingular. Thus, the theorem guarantees
that for every point x0 ∈ R2, there exists a neighborhood about x0 over which f is invertible. However,
this does not mean f is invertible over its entire domain: in this case f isn’t even injective since it is
periodic: e.g. the preimage of (e, 0) contains (1, 0) and (1, 2π).

4.2 Implicit Function Theorem

Remember that given an explicit representation of a set y = f(x), we can easily find the implicit form
as F(x,y) = y− f(x) = 0. What about the other way around? That is, given an implicit representation
of some surface, what conditions must be met so that it can be represented as the graph of a function?
The implicit function theorem is a tool that allows relations between points in Rn to be converted to
functions of several real variables. That is, it states that for sufficiently ”nice” points on a n-dimensional
surface defined as F(x,y) = 0 (where F : Rn+m −→ Rm), we can locally pretend that this surface is a
graph of a function g : Rn −→ Rm whose graph

(
x,g(x)

)
is precisely the set of all (x,y) s.t. f(x,y) = 0.

When m = 1, it basically states that if an implicit surface suffices the vertical line test in a neighborhood,
then it can be written as a function.

Example 4.2 (Circle). Let f : R2 −→ R be defined by f(x, y) = x2 + y2 − 1. The level set at z = 0
would be the set of points satisfying

x2 + y2 − 1 = 0

the unit circle. The derivative of f with respect to y is 0 at the points (−1, 0) and (1, 0), meaning that
in any neighborhood of these points, we cannot define a function of y with respect to x. This is true,
indeed, since any such function would fail the vertical line test, which can be seen in the red neighborhood
around (1, 0). However, the blue neighborhood of the point (−

√
2/2,

√
2/2) does indeed define a function

of y with respect to x satisfying the vertical line test.

Theorem 4.3 (Implicit Function Theorem in R2). Let f : R2 −→ R be a C1 function with a point
a = (a1, a2) on the level set f(x) = 0. If

∂x2
f(a) ̸= 0

then there is an open neighborhood U around a1 such that we can make x2 a function of x1 within U
satisfying f(x1, x2(x1)) = 0. That is, we can find a x2 : R −→ R s.t. the graph of x2(x1) within U
coincides with the graph of f(x) = 0.

Theorem 4.4 (Implicit Function Theorem in R3). Let f : R3 −→ R be a C1 function with a point
a = (a1, a2, a3) on the level set f(x) = 0. If

∂x3
f(a) ̸= 0

then there is an open neighborhood U around (a1, a2) such that we can make x3 a function of x1 and
x2 within U satisfying f(x1, x2, x3(x1x2)) = 0. That is, we can find a x3 : R2 −→ R s.t. the graph of
x3(x1, x2) within U coincides with the graph of f(x) = 0.
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Note that for the 2D and 3D case, the level surface that we dealt with has a codimension of 1.

Definition 4.1 (Truncated Jacobian Matrix). Given a function f : Rn+m −→ Rm where the variables
are

x1, . . . , xn, y1, . . . , ym

the truncated Jacobian matrix of f can either refer to

1. the m× n matrix formed by the leftmost n columns of Df , which we will denote Dxf , or

2. the m×m matrix formed by the rightmost m columns of Df , which we will denote Dyf .

Df =
(
Dxf Dyf

)
=


∂f1
∂x1

. . . ∂f1
∂xn

∂f1
∂y1

. . . ∂f1
∂ym

...
. . .

...
...

. . .
...

∂fm
∂x1

. . . ∂fm
∂xn

∂fm
∂y1

. . . ∂fm
∂ym


Theorem 4.5 (Special Implicit Function Theorem). Let f : Rn+1 −→ R be a C1 function with a point
(a, b) ∈ Rn+1 on the level set f(x, y) = 0. If ∂yf(a, b), which can also be thought of as the 1×1 truncated
Jacobian matrix Dyf(a,b) = ∂yf(a, b) w.r.t. y, of

Df(a,b) =
(
Dxf(a,b) Dyf(a,b)

)
=
(
∂x1

f(a, b) . . . ∂xn
f(a, b) ∂yf(a, b)

)
is invertible (in this case nonzero), then there exists an open neighborhood Ua ⊂ Rn of a and a unique
C1 function y : U ⊂ Rn −→ R s.t. f

(
x, y(x)

)
= 0 for all x ∈ U . That is, we can find a y : U −→ R s.t.

the graph y(x) within U coincides with the graph of f(x, y) = 0. Moreover, the total derivative/Jacobian
of y : Rn −→ R in U is the 1× n matrix given by the matrix product

Dga = −(Dyfa)
−1Dxfa

Example 4.3 (Circle Example). Let n = m = 1 and f(x1, x2) = x2
1 + x2

2 − 1. We would like to find out
at which points a can this surface be explicitly represented by a function g : Ua ⊂ R −→ R defining x2

from x1. Its Jacobian is
Df =

(
∂x1

f ∂x2
f
)
=
(
2x1 2x2

)
The truncated Jacobian w.r.t. x2 is 2x2, which is invertible iff x2 ̸= 0. By the implicit function theorem,
we can locally write the circle in the form x2 = g(x1) for all points where x2 ̸= 0. This is easy to see.
For example, we can choose the point (0.8, 0.6) on the level set, and the appropriate explicit function is

x2 = g(x1) =
√
1− x2

1

within the neighborhood of x1 = 0.8. For (±1, 0), we cannot since every function defined within a
neighborhood of x1 = ±1 fails the vertical line test. The derivative of g, by the theorem, can be defined
implicitly as

Dg = −(∂x2
f)−1Dx1

f = −(2x2)
−1(2x1) = −x1

x2

which leads to the differential equation

g′(x1) = − x1

g(x1)
where we solve for g

If we would have liked to find a function h : Uax2
⊂ R −→ R defining x1 from x2, then we can redo

everything to find that the truncated Jacobian w.r.t. x1 is 2x1, which is invertible iff x1 ̸= 0, and the the
derivative is

Dh = −(∂x1
f)−1Dx2

f = −(2x1)
−1(2x2) = −x2

x1

which leads to the differential equation

h′(x2) = − x2

h(x2)
where we solve for h
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Theorem 4.6 (General Implicit Function Theorem). Let f : Rn+m −→ Rm be a C1 function with a
point (a,b) ∈ Rn+m on the level set f(x,y) = 0. If the m × m truncated Jacobian matrix Dyf(a,b)
w.r.t. y, of

Df(a,b) =
(
Dxf(a,b) Dyf(a,b)

)
is invertible, then there exists an open neighborhood Ua ⊂ Rn of a and a unique C1 function y : U ⊂
Rn −→ Rm s.t. f

(
x,y(x)

)
= 0 for all x ∈ U . That is, we can find a y : U −→ Rm s.t. the graph y(x)

within U coincides with the graph of f(x,y) = 0. Moreover, the total derivative/Jacobian of y is the
m× n matrix given by the matrix product

Dga = −(Dyfa)
−1Dxfa

5 Change of Basis

6 Divergence and Curl

6.1 Divergence

Colloquially, the divergence is an operator div that operates on a vector field and produces a scalar
field which provides the quantity of the vector field’s source at each point. Technically, the divergence
represents the volume density of the outward flux of a vector field from an infinitesimal volume around
a given point.
There is a very nice geometric interpretation for divergence. Imagine that the vector field F represents
fluid flow in Rn. Divergence is then the ”measure” of the net amount of fluid flowing in and out of an
infinitesimally small region, labeled at each point. If the net fluid flow is positive (i.e. more fluid is
flowing in than out) at point x0, then divF (x0) > 0. If the net fluid flow is negative (i.e. more fluid
is flowing out than in) at point x0, then divF (x0) < 0. This measure assigns a number to every point
in the space (creating a scalar field). Therefore, each point either acts as a ”source” of fluid emanating
from it or as a ”sink” that sucks in more fluid than it puts out.

Definition 6.1 (Divergence). The divergence of a vector field F : Rn −→ Rn is a scalar field defined

divF := ∇ · F =


∂

∂x1

...
∂

∂xn

 ·

F1

...
Fn

 =
∑
i

∂Fi

∂xi

When n = 1, F reduces to a regular function and divF reduces to the ordinary derivative. Some further
properties:

1. By linearity of partials, div is also a linear operator. That is, given two vector fields F,G and two
scalars α, β,

div(αF+ βG) = α divF+ β divG

2. Divergence satisfies the product rule: Given a vector field F : Rn −→ Rn and a scalar function
φ : Rn −→ R.

∇ · (φF) = ∇φ · F+ φ(∇ · F)
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Example 6.1. The divergence of the origin in the left graph is clearly negative since the net flow is out
of the point, while the divergence of the origin in the right graph is positive since the net fluid flow is in.
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Lemma 6.1 (Divergence in Cylindrical Coordinates). For vector field F : R3 −→ R3 expressed in
cylindrical coordinates as

F =

Fr

Fθ

Fz


the divergence is

divF = ∇ · F =
1

r

∂

∂r

(
rFr

)
+

1

r

∂Fθ

∂θ
+

∂Fz

∂z

Note that the condition of locality is important, since in general a global cylindrical coordinate system
would be inconsistent.

Lemma 6.2 (Divergence in Spherical Coordinates). For vector field F : R3 −→ R3 expressed in spherical
coordinates (r, θ, ϕ), the divergence is

divF = ∇ · F =
1

r2
∂

∂r

(
r2Fr) +

1

r sin θ

∂

∂θ

(
sin θFθ

)
+

1

r sin θ

∂Fϕ

∂ϕ

6.2 Curl

Colloquially, the curl is a vector operator that describes the infinitesimal circulation of a vector field in
3-dimensional Euclidean space, where the curl at each point is represented by a vector whose length and
direction denote the magnitude and axis as the maximum circulation. That is, if one drops a twig or a
ball with its center of mass at a certain point, the curl measures how much it will spin. In physics, the
rotation of a rigid body in 3-dimensions can be described by a vector ω along the axis of rotation. ω
is called the angular velocity vector, with ||ω|| denoting the angular speed of the body. The curl of this
vector field measured at the center of mass of the body is measured as 2ω. That is, the curl outputs twice
the angular velocity vector of any rigid body. Note that unlike the gradient and divergence operators,
curl does not generalize as simply to other dimensions.

Definition 6.2 (Curl). The curl of a 3-dimensional Ck vector field F : R3 −→ R3 is an operator

curl : Ck(R3;R3) −→ Ck−1(R3;R3)

defined

curlF ≡ ∇× F ≡

 ∂
∂x
∂
∂y
∂
∂z

 ≡

∂F3

∂y − ∂F2

∂z
∂F1

∂z − ∂F3

∂x
∂F2

∂x − ∂F1

∂y


Definition 6.3 (Irrotational Vector Fields). A vector field F is irrotational if

curlF = 0

Visually, this indicates that there are no ”whirlpools” everywhere, meaning that any rigid body placed
anywhere, while it may travel along a path, will not rotate around its own axis.

It has been shown that fluid draining from a tub is usually irrotational except for right at the center,
which is surprising since the fluid itself is ”rotating” around the drain.
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Theorem 6.3. For any C2 vector field F ,

div curlF = ∇ · (∇× F ) = 0

That is, the divergence of any curl is 0.

Proof. Proved by equality of mixed partials. ■

Definition 6.4. The Laplace operator, or Laplacian, of a function f : Rn −→ R is the divergence of the
gradient.

∇2f ≡ ∇ · (∇f) ≡
n∑

i=1

∂2f

∂x2
i

6.2.1 Conservative, Solenoidal Vector Fields

Definition 6.5 (Conservative Vector Fields). A vector field F : U ⊂ Rn −→ Rn is a conservative vector
field if and only if there exists a scalar field f : U ⊂ Rn −→ R such that

F = ∇f

on U .

Conservative vector fields appear naturally in mechanics: they are vector fields representing forces of
physical systems in which energy is conserved.

Theorem 6.4. Given a C2-function f : R3 −→ R,

∇× (∇f) = 0

That is, the curl of any gradient vector field is the zero vector.

Proof. ∇×∇f can be expanded to(
∂2f

∂y∂z
− ∂2f

∂z∂y
,

∂2f

∂z∂x
− ∂2f

∂x∂z
,

∂2f

∂x∂y
− ∂2f

∂y∂x

)
= (0, 0, 0)

by equality of mixed partials. ■

Definition 6.6 (Solenoidal Vector Fields). A solenoidal, or incompressible, vector field is a vector field
F : Rn −→ Rn such that

divF = ∇ · F = 0

at all point in the field. That is, the field has no sources or sinks.

Example 6.2. The vector field F : (x, y) 7→ (y,−x) is solenoidal.
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7 Matrix Calculus

Now we will take a look at functions that have either an input or output as matrices. Essentially, matrices
are also vectors, so there is nothing new here to learn, but having a concrete set of notation is useful.
First, note that when we talk about a total derivative Dfa, we can interpret this as a linear map that
takes in some small perturbation h and gives us the result Dfa(h). In our column-vector setting, this
just corresponded to left matrix multiplication:

Dfa(h) = Dfah

This is not the case in the matrix setting. Let us compare the following:

1. The derivative of f : R → R at a is a linear function Dfa : R −→ R satisfying f(a + h) ≈
f(a)+Dfa(h)+O(h2). But linearity reduces Dfa to simply a scalar, and so our condition reduces
to

f(a+ h) ≈ f(a) +Dfah+O(h2)

2. The derivative of a path function f : R → Rm is a linear function Dfa : R −→ Rm satisfying
f(a+h) = f(a)+Dfa(h)+O(h2). Linearity implies that Dfa is a rank-1 linear map, which reduces
to it being a column vector, and our condition reduces to

f(a+ h)︸ ︷︷ ︸
m×1

≈ f(a)︸︷︷︸
m×1

+Dfa︸︷︷︸
m×1

h︸︷︷︸
1×1

3. The derivative of a matrix function F : R → Rm×n is a linear map DFa : R −→ Rm×n satisfying
F(a + h) ≈ F(a) + DFa(h). This time, linearity does not reduce it to simple left-hand matrix
multiplication. We could just say that this is a left-hand scalar multiplication, but this doesn’t
generalize well, so we are stuck with just saying that DFa is a linear map.

F(a+ h)︸ ︷︷ ︸
m×n

≈ F(a)︸︷︷︸
m×n

+DFa(h)︸ ︷︷ ︸
m×n

Now let us take a look at when we have matrix inputs.

1. The derivative of f : Rm×n −→ R is a linear function DfA : Rm×n −→ R satisfying f(A +H) ≈
f(A)+DfA(H). We could let DfA be some linear map like M 7→ vTMu, where v,u is fixed. But
in generality, we just have the condition

f(A+H)︸ ︷︷ ︸
1×1

≈ f(A)︸ ︷︷ ︸
1×1

+DfA(H)︸ ︷︷ ︸
1×1

2. The derivative of f : Rm×n −→ Rd is some linear map DfA : Rm×n −→ Rd satisfying f(A+H) ≈
f(A)+DfA(H). Again, we could construct some form that would give us a linear map in terms of
some matrix multiplication, but in generality, we have the condition

f(A+H)︸ ︷︷ ︸
d×1

≈ f(A)︸ ︷︷ ︸
d×1

+DfA(H)︸ ︷︷ ︸
d×1

7.1 Simple Differentiation Rules

Now we present some theorems on basic differentiation. Proving these just requires us to expand the
function and compute the derivatives component-wise.

Theorem 7.1 (Derivative of Affine Map). Given f : Rn −→ Rm defined f(x) = Ax+ b (where A,b is
not dependent on x), its derivative is

Df = A
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Theorem 7.2. Given the scalar α defined by

α = yTAx

where y ∈ Rm×1,A ∈ Rm×n, and x ∈ Rn×1, then

∂α

∂x
= yTA : Rn −→ R

and
∂α

∂y
= xTAT : Rm −→ R

Rewritten in the total derivative notation, we can interpret α as a function of both x and y and write

Dα(x,y) =

(
yTA
xTAT

)
: Rn+m −→ R

Theorem 7.3. Given the scalar α defined by the quadratic form

α = xTAx

where x ∈ Rn×1 and A ∈ Rn×n, then
∂α

∂x
= xT

(
A+AT

)
or in the total derivative notation,

Dαa = aT
(
A+AT

)
: Rn −→ R

8 Integration

8.1 Geometric Interpretations of Integration

The concept of integration in one variable calculus limits the applicability of the operation to finding only
areas of functions under curves. We will replace the reader’s intuition of integration with the following
description. Given a function f : Rn −→ R, we interpret it as a scalar field that assigns a ”weight” to each
point in Rn. Now, given any ”shape” B in Rn that is closed (but not necessarily bounded), an integral
can calculate the ”weighed” volume of B by cutting B into infinitesimally small points, multiplying them
by their respective weights determined by f , and then summing up the weighed points. Integrating B
in R, R2, and R3 with a constant scalar field equal to 1 is equivalent to finding the length, area, and
volume of B, respectively. We deconstruct specific types of iterated integrals.

8.1.1 Single Integral as Weighed Length or Area

A single integral is calculated from a function f : R −→ R. Given some intervals (or a collection of
intervals) B ⊂ R, the integration notation is familiar to us.

ˆ
B

f(x) dx

We can interpret this integration in two ways. First, we imagine that the function f is a scalar field
in R. Therefore, every point x in R has a certain real number f(x) associated to it. Therefore, the
interval B ∈ R now consists of points that now have different densities each (which can be negative).
The entire B can now be thought of as a 1-dimensional ”rod” in R that has an uneven distribution of
mass determined by f . The total mass of the rod B is calculated by the integral. In the diagram below,
we use different ”thickness” to represent different densities.
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Secondly, we can visualize the entire graph of f in R ⊕ R. This represents a curve in the xy-axis that
most beginner calculus students are familiar with. Note that the interval B exists in the x-axis, and in
this case, the ”weight” of each point x in B is represented as the ”height” of the infinitesimally thin bar
at x. It is easy to see that the weight of the rod at point x and the height of the bar at point x are really
the same measure determined by f . Therefore, the density distribution in the rod is now modeled as the
height of the function at each point. Calculating the integral of this function now calculates the ”area”
under the curve.
It is important to point out that B does not necessarily need to be a length in the form of [a, b]. It can
be any union of disjoint lengths, too. However, adding a finite number of single points to B will not
affect the integral. It is also customary for B to be closed.

8.1.2 Double Integral as Weighed Area or Volume

The double integral is calculated from function f : R2 −→ R. Given a certain closed subset B ⊂ R2, the
integration notation is ¨

B

f(x, y) dA

Again, we can interpret double integration in two ways. First, we think of f as a scalar field assigning
a density to every point in R2. Then, the 2-dimensional shape B itself should have a certain density
distribution on it determined by f . The double integral above then determines the mass of B.
The second way to interpret this is to imagine the 2-dimensional shape B lying in the extended space
R2 ⊕ R. We then model the density distribution as merely the height of the infinitesimally thin bar at
each point x. Again, the height of this bar at x is precisely its density described in the first interpre-
tation. Therefore, integrating this shape is equivalent to finding the volume of the infinite union of the
infinitesimally thin bars at each point in B.
Note again that B need not be one solid region. It can be a union of multiple disjoint ones. However,
adding a single point p or a 1-dimensional path p to B will not affect the integral since they have an
area of 0.

8.1.3 Triple Integral as Weighed Volumes or Hyper-Volumes

The double integral is calculated from function f : R3 −→ R. Given a certain closed subset B ⊂ R3, the
integration notation is ˚

B

f(x, y, z) dV

Following the logic of the previous two examples, the function f , interpreted as a scalar field, assigns a
scalar at each point x in the solid B. Therefore, we can visualize B as a solid, 3-dimensional object in
R3 with a certain density distribution defined by f . The total mass of B is therefore determined by the
triple integral above.
Following similar logic, we can interpret this integral as the hypervolume of a 4 dimensional object, but
this is not often used.

8.2 Reduction to Iterated Integrals

We first state a basic condition of integration.

Theorem 8.1. Any function f : Rn −→ R that is continuous over a certain region B ⊂ Rn can be
integrated over B.

That is, if f is discontinuous at a certain subset D ⊂ B, then the infinitesimal neighborhoods around
each point d ∈ D is not well defined, since they would always contain two values of f that do not converge
to each other at d.
However, there are some discontinuous functions that are in fact integrable. Assuming B ⊂ Rn is the
region that we are integrating over,

1. Given that there is a subset N in B with volume 0 over which f is not defined, we can integrate
over B \N . In the one and two dimensional cases,ˆ

B\N
f(x)dx and

¨
B\N

f(x)dA

are well-defined. Visually,
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2. The function is defined for all values in the region, but there is a jump in the value of the function.

Informally, if we can visualize the Riemann sum converging to a well-defined area as the rectangles get
thinner and thinner, then a discontinuous function is integrable. Indeed, all continuous functions (over
a bounded set) are integrable since their Riemann sums are well defined.

8.2.1 Integration over Intervals, Rectangles, Boxes

The simplest region that we can integrate over is a single interval

B ≡ [a, b] ⊂ R

a rectangle
B ≡ [a, b]× [c, d] ⊂ R2

and a box
B ≡ [a, b]× [c, d]× [e, f ] ⊂ R3

Clearly, this extends to integration over any dimension.

B ≡
n∏

i=1

[αi, βi] ⊂ Rn

Solving these integrals are quite simple. However, to rigorously define the methodology, we must use the
following theorems.

Theorem 8.2 (Cavalieri’s Principle). Let S be a bounded n-dimensional solid in Rn (note that S can be
an interval in R). Define an n− 1 subspace P in Rn and given the quotient space Rn/P with elements
Px, let

S ⊂
⋂

a≤x≤b

Px

That is, S is ”in between” affine subspaces Pa and Pb. The cross section of S cut by Px is the intersection
of it with S

Cross Section at Px ≡ Px ∩ S
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Denote the area of this cross section as A(x). Then,

Volume of S =

ˆ b

a

A(x) dx

This theorem basically says that the volume of S is the sum of the areas of its infinitesimal cross sections.

This clearly works for an interval in R, which is computed by the sum of all its ”points” (rigorously
speaking, infinitesimally thin intervals). The integral works for a shape in R2, which is computed by the
sum of its ”line segments” (rigorously speaking, infinitesimally thin rectangles) that add up to the shape.
In R3, the solid is computed by the sum of its cross sections (infinitesimally thin ”molded” cylinders).
This analogy continues into higher dimensions.
Given a solid S ⊂ Rn, it is easy to see that no matter what subspace P we choose–that is, no matter
what orientation we choose to ”cut” the solid– the sum of all of its cross sections should be equal to the
true volume of S. In the case when S is a box in Rn, Fubini’s theorem states that whether we cut S up
along the x1-axis, x2-axis, ..., or the xn-axis, the symmetry in volume is always preserved. This theorem
is really just a specific case of this general symmetry in volume.

Theorem 8.3 (Fubini’s Theorem). Given a function f : Rn −→ R, let

B ≡
n∏

i=1

[αi, βi]

and let p be any permutation of the elements {x1, x2, ..., xn}. Then

ˆ
B

f dV =

ˆ βn

αn

...

ˆ β1

α1

f(x1, x2, ..., xn) dx1...dxn

=

ˆ p(βn)

p(αn)

...

ˆ p(β1)

p(α1)

f(x1, x2, ..., xn) dp(x1)...dp(xn)

In the two dimensional case, we have

¨
B

f dA =

ˆ d

c

ˆ b

a

f(x, y) dx dy =

ˆ b

a

ˆ d

c

f(x, y) dy dx
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In the three dimensional case, we have
˚

B

f dV =

ˆ f

e

ˆ d

c

ˆ b

a

f(x, y, z) dx dy dz =

ˆ f

e

ˆ b

a

ˆ d

c

f(x, y, z) dy dx dz

=

ˆ d

c

ˆ b

a

ˆ f

e

f(x, y, z) dz dx dy =

ˆ d

c

ˆ f

e

ˆ b

a

f(x, y, z) dx dz dy

=

ˆ b

a

ˆ f

e

ˆ d

c

f(x, y, z) dy dz dx =

ˆ b

a

ˆ d

c

ˆ f

e

f(x, y, z) dz dy dx

Computation of these integrals is simple. You do the innermost integral first with respect to the corre-
sponding variable, while treating the rest of the variables constant. Evaluating each integral outputs a
formula for a higher dimensional cross section of the solid S. It is clear that computing iterated integrals
is really just doing Cavalieri’s principle repeatedly.

8.2.2 Integration over Solids Bounded by Curves

We must first define the different types of elementary regions first.

Definition 8.1. A bounded region D in Rn is said to be xi-simple if it is bounded by the graphs of two
continuous functions u1, u2 : Rn−1 −→ R of the variables

x1, x2, ..., xi−1, xi+1, ..., xn

That is, D can be expressed in the form

{x ∈ Rn | u1(x1, ..., xi−1, xi+1, ..., xn) ≤ xi ≤ u2(x1, ..., xi−1, xi+1, ..., xn)}

If a region is simple in all of its variables, it is simply called simple. Note that n-dimensional boxes are
simple regions.

Example 8.1. In R2, the region on the left graph is an y-simple region and the region on the right is a
x-simple region.

x x

y y
u1

u2

v1 v2

a b

c

d

We now describe the method of calculating double integrals over elementary regions.

Theorem 8.4. The double integral over a y-simple region D bounded by functions u1 and u2 in R2 and
the x-values a and b (as shown in the left graph of example 2.1) is

¨
D

f(x, y) =

ˆ b

a

ˆ u1(x)

u2(x)

f(x, y) dy dx

The double integral over an x-simple region D bounded by functions v1 and v2 in R2 and the y-values c
and d (shown in the right of graph of example 2.1) is

¨
D

f(x, y) =

ˆ d

c

ˆ v1(y)

v2(y)

f(x, y) dx dy

Example 8.2. Integrating f(x, y) over the unit disk would have the form

ˆ 1

−1

ˆ √
1−x2

−
√
1−x2

f(x, y) dy dx or

ˆ 1

−1

ˆ √
1−y2

−
√

1−y2

f(x, y) dx dy

Note that the unit disk is both x and y simple.
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8.3 Change of Basis

Sometimes, integrating a region over a different basis would make the integral computation much more
simpler. In this case, we may be able to transform more complicated regions into elementary regions.
We first introduce a change of basis in 2 dimensions and then generalize it into higher dimensions.
Let R2 have the standard orthonomal basis e1, e2, commonly known as the x, y basis. Now, let us
construct new basis vectors of R2, denoted f1, f2 such that f1, f2 are functions of e1, e2. Since they are
both bases that span R2, we can equally represent e1, e2 as functions of f1, f2.

e1 = g(f1, f2)

e2 = h(f1, f2)

Note that this change of basis does not necessarily have to be linear, as in the context of passive
transformation in linear algebra. Then, every point (x, y) in the (e1, e2)-basis can be rewritten as

(x, y) = xe1 + ye2

= x g(f1, f2) + y h(f1, f2)

= uf1 + vf2

Note that it is customary to denote x, y as the coefficients in the e1, e2 basis and u, v as the coefficients
in the new f1, f2 basis. This way, we can not only write e1 and e2 as functions of f1 and f2, but we can
also write the coefficents x, y as functions of the coeffiecents u, v! That is,

x = x(u, v)

y = y(u, v)

which is really just a function

B : R2 −→ R2, B(u, v) =

(
x(u, v)
y(u, v)

)
Notice that B changes the u, v coordinates to the x, y coordinates, and B−1 changes the x, y coordinates
to the u, v coordinates.

B−1 : R2 −→ R2, B−1(x, y) =

(
u(x, y)
v(x, y)

)
Note that these coefficients actually change contravariantly, that is, they change inversely with respect
to how the basis vectors are changed. In vector calculus, it is conventional to represent a change of basis
with functions that relate the coefficients x, y with u, v, rather than the bases f1, f2 with e1, e2.

Theorem 8.5 (Integration over Change of Bases in R2). Let R2 have the standard orthonomal basis
e1, e2. Now, let us construct new basis vectors of R2, denoted f1, f2 such that the coefficients of the
vectors in R2 are related by the change of basis function

B =

(
x
y

)
=⇒ B(u, v) =

(
x(u, v)
y(u, v)

)
Given region D ⊂ R2 and S = B(D) is the region transformed by B, the integral of function f(x, y) over
region D can be expressed as

¨
D

f(x, y) dA =

¨
S

f
(
x(u, v), y(u, v)

) ∣∣JB(u, v)
∣∣ dĀ

where
∣∣JB(u, v)

∣∣ is the determinant of the Jacobian matrix of B. Expanding the Facobian determinant
gives ∣∣JB(u, v)

∣∣ = ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

Theorem 8.6 (Integration over Change of Bases in R3). Given that we have the change of basis function

B : R3 −→ R3, B(u, v, w) =

x(u, v, w)
y(u, v, w)
z(u, v, w)
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a region D ∈ R3 and S = B(D), the region transformed by B, the integral of f(x, y, z) over region D
can be expressed as

˚
D

f(x, y, z) dV =

˚
S

f
(
x(u, v, w), y(u, v, w), z(u, v, w)

)∣∣JB(u, v, w)
∣∣ dV̄

where
∣∣JB(u, v, w)

∣∣ is the Jacobian determinant of B.

Example 8.3. Given a real-valued function f defined over the region D ⊂ R2, we can perform a change
of basis of the x, y coordinates into polar ones within a new region S. The change of basis

x = r cos θ

y = r sin θ

S

1

2π

r

θ

T : (r, θ) 7→
(r cos θ, r sin θ) D

Theorem 8.7 (Integration over Change of Bases in Rn). Let Rn have the standard orthonormal basis
e1, e2, ..., en, and let us construct a new basis f1, f2, ..., fn such that the coefficients of the vectors in Rn

are related with the functions

B : Rn −→ Rn, B(u1, u2, . . . , un) =


x1(u1, . . . , un)
x2(u1, . . . , un)

...
xn(u1, . . . , un)


Given that the region D ⊂ Rn is transformed into a new region S = B(D) ⊂ Rn under this basis
transformation, the integral of function f(x1, . . . , xn) over region D can be expressed as

ˆ
D

f(x) dH =

ˆ
S

f
(
x1(u), x2(u), ..., xn(u)

)∣∣JB(u1, . . . , un)
∣∣ dH̄

where the integral on both the left and right hand side represents integration over an n-dimensional
region, x represents the n-tuple (x1, . . . , xn), u represents the n-tuple (u1, . . . , un), and

∣∣JB(u1, . . . , un)
∣∣

represents the Jacobian determinant of function B.

We now describe some common change of basis formulas for polar, cylindrical, and spherical coordinates.

Theorem 8.8 (Integration in Polar Coordinates).
¨

D

f(x, y) dx dy =

¨
S

f(r cos θ, r sin θ)r dr dθ

Definition 8.2 (Cylindrical, Spherical Coordinates). In R3, cylindrical coordinates have the following
relation to rectangular coordinates.

x = r cos θ

y = r sin θ

z = z
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In R3, spherical coordinates have the following relation to rectangular coordinates.

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

Corollary 8.8.1 (Integration in Cylindrical Coordinates).

˚
D

f(x, y, z) dx dy dz =

˚
S

f(r cos θ, r sin θ, z)r dr dθ dz

Corollary 8.8.2 (Integration in Spherical Coordinates).

˚
D

f(x, y, z) dx dy dz =

˚
S

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sin θ dρ dθ dϕ

Example 8.4 (Gaussian Integral). The following is the (un-normalized) probability distribution function
of the Gaussian distribution. ˆ ∞

−∞
e−x2

dx =
√
π

8.4 Average Values, Centers of Mass

Definition 8.3. The average value of a function defined over a region D ⊂ Rn is

[f ]av =

(ˆ
D

f(x) dV

)/( ˆ
D

dV

)
where both integrals represent integration over the n-dimensional region D. Informally, the integral
above represents the infinitesimal sum of all the values of the function f over D and divides it by the
hypervolume of D to average it out. More specifically, the average value of f : R −→ R in the interval
[a, b] is defined

[f ]av =

(ˆ b

a

f(x) dx

)/( ˆ b

a

dx

)
=

1

b− a

ˆ b

a

f(x) dx

For a function f : R2 −→ R over a two dimensional region D, we have

[f ]av =

(¨
D

f(x, y) dx dy

)/(¨
D

dx dy

)
For f : R3 −→ R over a three dimensional region V , we have

[f ]av =

(˚
V

f(x, y, z) dx dy dz

)/(˚
V

dx dy dz

)
It is quite easy to get the center of mass of a system of n-distinct points in Rn. We can solve each xi

coordinate for the center of mass by averaging out the xi coordinates scaled by their respective masses.
That is, given points x1, x2, ..., xn with respective masses m1, ...,mn, the center of mass is defined as

x̄ =

∑
mixi∑
mi

Definition 8.4. Given an n-dimensional continuous mass density distribution, denoted δ(x), defined
over a region D ⊂ Rn, the center of mass of D can be determined through coordinates.

x̄i =

(ˆ
D

xi δ(x)dV

)/( ˆ
D

δ(x)dV

)
, i = 1, 2, 3, ..., n

Note that δ must be continuous (in order for it to be integrable). More specifically, the center of mass
of a one dimensional interval I ⊂ R is

x̄ =

(ˆ
I

x δ(x) dx

)/( ˆ
I

δ(x) dx

)
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For a two dimensional region (which we can visualize as a ”disk” or ”plate,” the x and y coordinates for
the center of mass is

x̄ =

(¨
D

x δ(x, y) dx dy

)/(¨
D

δ(x, y) dx dy

)
ȳ =

(¨
D

y δ(x, y) dx dy

)/(¨
D

δ(x, y) dx dy

)
For a three dimensional mass, the x, y, z coordinates of the center of mass of volume V can be found
with

x̄ =

(˚
V

x δ(x, y, z) dx dy dz

)/(˚
V

δ(x, y, z) dx dy dz

)
ȳ =

(˚
V

y δ(x, y, z) dx dy dz

)/(¨
V

δ(x, y, z) dx dy dz

)
z̄ =

(˚
V

z δ(x, y, z) dx dy dz

)/(¨
V

δ(x, y, z) dx dy dz

)

8.5 Improper Integrals

There are generally two types of improper integrals.

1. The region D integrated over is unbounded.

2. The function f that is integrated is unbounded within the region D.

8.5.1 Single Variable Improper Integrals

These types of improper integrals are usually evaluated using a limiting process. When the interval I is
unbounded, say (1,∞), the integral can be evaluated as

ˆ ∞

1

1

x2
dx = lim

b→∞

ˆ b

1

1

x2
dx = lim

b→∞

(
1− 1

b

)
= 1

In case 2, we can add a limit at the point where the function f diverges as such.

ˆ 1

0

1√
x
dx = lim

a→0

ˆ 1

a

1√
x
dx = lim

a→0
(2− 2

√
a) = 2

We now describe how to integrate over a certain path p embedded in a higher dimensional space Rn,
possibly with a scalar or vector field f . We must first go over oriented paths.

8.5.2 Two Variable Improper Integrals

Extending the previous case, we use a multivariate limiting process in R2. We will first work with case
2, when f is unbounded within the region D. Let us define an elementary region D in R2; without loss
of generality, we will make it y-simple, meaning that D can be expressed as

D ≡ {(x, y) ∈ R2 | a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)}

We can actually assume that the region in which f is unbounded lies in the boundary ∂D. This is
because if it lied in the interior of D, we could split D into pieces across a path that intersects this region
with divergent values, evaluate the integrals over the pieces separately, and then sum the integrals. For
example, in the rectangular region below, let the dashed line represent the values where the function f
diverges. Then, we can split the region into two rectangular regions shown in the right.
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Therefore, assuming that f is unbounded in ∂D, we can construct a new region

Dη,δ ≡ {(x, y) ∈ R2 | a+ η ≤ x ≤ b− η, ϕ1(x) + δ ≤ y ≤ ϕ2(x)− δ}

for some arbitrarily small numbers η, δ > 0, meaning that the integral (reduced to iterated integrals
using Fubini’s theorem)

F (η, δ) ≡
¨

Dη,δ

f(x, y) dA =

ˆ b−η

a+η

ˆ ϕ2(x)−δ

ϕ1(x)+δ

f(x, y) dy dx

is well defined.

Dη,δ

D

Clearly, the function F (η, δ) is a function of two variables η and δ. So, if the limit

lim
(η,δ)→(0,0)

F (η, δ)

is well defined, then so is the improper integral. For it to exist, the iterated limits must both equal to a
well-defined real number L (and to each other). That is,

lim
η→0

lim
δ→0

F (η, δ) = lim
δ→0

lim
η→0

F (η, δ) = L =⇒ lim
(η,δ)→(0,0)

F (η, δ) = L

It is also worthwhile to note that functions unbounded at isolated points can be evaluated using the
methods above using a change of basis. Consider the example below.

Example 8.5. In the unit disk D ⊂ R2, let the function f be defined as

f(x, y) ≡ 1√
x2 + y2

Clearly, f is continuous at every point except 0 = (0, 0), meaning that¨
D\{0}

f(x, y) dA

is well-defined. In order to solve the integral over the entire disk, we convert to polar coordinates and
evaluate the limit ¨

D\{0}
f(x, y) dA = lim

δ→0

ˆ 1

δ

ˆ 2π

0

r f(r cos θ, r sin θ) dθ dr

1

2π

1

1

If we are given an unbounded region D ⊂ R2, we can first create a bounded region and expand that
region using a limit to cover all of D.
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8.6 Line Integrals

Definition 8.5 (Orientations, Simple Curves, Closed Curves). A path function p : [a, b] ⊂ R −→ Rn

determines a curve in Rn with endpoints p(a) and p(b). The direction the curve p takes, that is from
p(a) to p(b) in Rn is called the orientation of p. A path or a curve with a defined orientation is called
an oriented curve.
A simple curve C to be the image of an injective piecewise C1 map c : I ⊂ R −→ R3. Since it is inejctive,
it does not intersect itself, and C is piecewise smooth in Rn. If I = [a, b], then c(a) and c(b) are the
endpoints of the curve. A simple curve with an orientation is called an oriented simple curve.
A closed curve C is the image of piecewise C1 map c : [a, b] −→ Rn such that c(a) = c(b). That is, the
endpoints of C are equal. A simple closed curve is a closed curve that is injective over the interval [a, b).
Note that a closed curve has two possible orientations.

If C is an oriented simple curve or an oriented simple closed curve, then we can unambiguously define
line integrals along them.

Definition 8.6. Let h be an injective function that takes [α, β] ⊂ R to the interval [a, b] ⊂ R. Given an
oriented simple path function p : [a, b] ⊂ R −→ Rn, the composition

ρ = p ◦ h : [α, β] −→ Rn

is called a reparamaterization of p. Note that since h is injective, it takes endpoints to endpoints. If h
preserves the direction in which the path travels, that is, if

(p ◦ h)(α) = a and (p ◦ h)(β) = b

then h is orientation preserving. If

(p ◦ h)(α) = b and (p ◦ h)(β) = a

then h is orientation reversing. Note that a path c having the same image as p does not imply that c is
a reparamaterization of p, since c may not be injective.

Definition 8.7 (Scalar Line Integral). Let f : Rn −→ R, which can be interpreted as a scalar field. Now
define a C1 path function

c : [a, b] ⊂ R −→ Rn

such that the composition of functions

f ◦ c : [a, b] ⊂ R −→ Rn

is continuous. Then, the path integral, or scalar line integral, of f along the path c. is defined

ˆ
c

f ds =

ˆ b

a

f
(
c(t)
)
||c′(t)|| dt

=

ˆ b

a

f
(
x1(t), x2(t), ..., xn(t)

)
||c′(t)|| dt
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If c(t) is only piece-wise C1, we can define the path integral by breaking [a, b] into pieces over with
f
(
c(t)
)
||c′(t)|| is continuous and then summing the integrals over the pieces. That is,

ˆ b

a

f
(
c(t)
)
||c′(t)|| dt =

n−1∑
i=0

ˆ αi+1

αi

f
(
c(t)
)
||c′(t)|| dt

Note that since f is a scalar-valued function, we can interpret a path integral as the sum of infinitesmal
segments of the path c having a weight determined by f at each section. If f is a constant function
outputting 1 at every point, then the path integral just outputs the length of the path c in Rn.

L =

ˆ b

a

f
(
c(t)
)
||c′(t)|| dt =

ˆ b

a

||c′(t)|| dt

Definition 8.8 (Vector Line Integral). Let F : Rn −→ Rn be a vector field on Rn that is continuous on
the C1 oriented path c : [a, b] ⊂ R −→ Rn. The line integral of F along c is defined by the formula

ˆ
c

F · ds =
ˆ b

a

F
(
c(t)
)
· c′(t) dt

where · represents the dot product of F with c′ over the interval [a, b]. It is also commonly written in
differential notation,

ˆ
c

F · ds =
ˆ
c

F · (dx1, . . . , dxn) =

ˆ
c

F1dx1 + F2dx2 + . . . Fndxn

Similarly with path integrals, we can also define line integrals as the sum of integrals over piece-wise
continuous sections of c. That is, given an oriented curve C made up of several oriented component
curves Ci, i = 1, 2, ..., k, we can paramaterize C by paramaterizing the pieces Ci’s separately. Thus, we
can treat C = C1 + ...Ck and get ˆ

C

F · ds =
k∑

i=1

ˆ
Ci

F · ds

Note that a vector line integral is a generalization of scalar line integrals, so any results holding for vector
line integrals also holds for their scalar counterpart.

Example 8.6 (Work). In mechanics, work W is defined as

W = F · d

where F is force and d is displacement. With this knowledge, the reader can easily see that the work done
by vector field F on a particle traveling along a path c from time a to time b can be calculated by the line
integral

W =

ˆ b

a

F
(
c(t)
)
· c′(t) dt

=

ˆ
c

F1dx+ F2dy + F3dz
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Theorem 8.9 (Invariance of Path Paramaterizations on Vector Line Integrals). Let F be a vector field
and f be a scalar field, both continuous on the C1 path function p : [a, b] −→ Rn and let q : [α, β] −→ Rn

be a reparamaterization of p. Then,

q is orientation preserving =⇒
ˆ
p

F · ds =
ˆ
q

F · ds

q is orientation reversing =⇒
ˆ
p

F · ds = −
ˆ
q

F · ds

8.6.1 Conservative Vector Fields

We now introduce a fundamental theorem about line integrals over gradient fields. Recall the fundamental
theorem of calculus and it’s equivalent form.

Theorem 8.10 (Fundamental Theorem of Single Variable Calculus). Let function ∇g : R −→ R be the
gradient of the single variable C1 function g : R −→ R; that is, ∇g is a conservative vector field on R.
Then, ˆ b

a

∇g(x) dx = g(b)− g(a)

Note that in the single variable case,
d

dx
g(x) = ∇g(x)

This means that the value of the integral of ∇g only depends on the value of g at the endpoints of the
interval [a, b].

We can extend this to line integrals for functions mapping Rn to R.

Theorem 8.11 (Invariance of Line Integrals in Conservative Vector Fields). Given that F : Rn −→ Rn

is a C1 conservative vector field with ∇f = F for C2 function f : Rn −→ R and path function p :
[a, b] −→ Rn is a piecewise C1 path, then

ˆ
p

F · ds =
ˆ
p

∇f · ds = f
(
p(b)

)
− f

(
p(a)

)
That is, the line integral of any path in a conservative vector field is dependent on the value of f at the
endpoints p(a) and p(b).

In physics, calculating the work done by a force represented by a vector field requires us to know the
path that it travels through.

W =

ˆ
p

F · ds

However, in many cases F is assumed to be conservative, so it is only necessary that we find the
displacement of the particle from its endpoints, resulting in the simplification of the formula.

W =

ˆ
p

∇f · ds = f
(
p(b)

)
− f

(
p(a)

)
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Corollary 8.11.1 (Equivalent Conditions for Vector Field to be Conservative). The following conditions
are equivalent:

1. F : Rn −→ Rn is a conservative vector field.

2. The line integral of F : Rn −→ Rn in curve C is path independent; that is, if C1 and C2 are two
paramaterizations of C, ˆ

C1

F · ds =
ˆ
C2

F · ds

3. Given that C is a closed loop, the line integral of F : Rn −→ Rn across C is 0.

˛
C

F · ds = 0

4. The curl of F : R3 −→ R3 vanishes

curlF = ∇× F =

∂F
∂x
∂F
∂y
∂F
∂z

×

F1

F2

F3

 = 0

5. The following partial derivatives of F : R2 −→ R2 are equal

∂F1

∂y
=

∂F2

∂x

We can develop a bit of intuition to determine whether a vector field is conservative or not. If vector
field F is conservative, then there exists a smooth scalar field f such that ∇f = F . For each latitude and
longitude on a certain map, we can give it an altitude as a function of those coordinates (picture a map
with a bunch of hills and valleys). The gradient and thus the vector field is all the vectors that point
in the direction of highest ascent. he vector field is all the vectors that point in the direction of highest
ascent. Extending the metaphor the path integral is like starting on at a point and climbing the hills
and valleys, creating work as you go up a hill (proportional to the steepness and thus the dot product of
your motion vector with the gradient vector field in the path integral) and decreasing the work you put
in by going down a hill. Since the path is closed, it is like you are going up and down the same amount
overall, so the path integral is zero. Following this analogy, the vector field determined by this function
(marked as arrows in the x, y plane) is conservative.

If we can construct a closed loop around F where the line integral is nonzero, then it means that we
have ended up at a ”higher” or ”lower” (altitude) at the same point. This means that rather than being
a certain landscape, there exist different ”levels” of values at one point, like a spiraling staircase. For
example, look at the solenoidal vector field below, where we can construct a closed loop (a circle going
around the origin counterclockwise). There is no ”surface” that can be defined such that it contains the
solenoid.
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Clearly, as a particle travels through the vector field along the path, it does positive work while it has
zero displacement, and clearly, there exists no function that can output both these values as determined
by vector field F .

Theorem 8.12 (Helmholtz Decomposition). Let F : R3 −→ R3 be a C2 vector field. Then, F can
be decomposed into a curl-free component and a divergence-free component. That is, there exists vector
fields A and Φ

F = −∇ · Φ+∇×A

8.6.2 Curvature

Definition 8.9 (Curvature at a Point). Let c : [a, b] −→ C ⊂ R3 be a unit-speed paramaterization of
C, meaning that ||c′(t)|| = 1 for all t ∈ [a, b], and let p = c(t0) be a point in C. The curvature κ(p) at p
is a mapping defined

κ : C −→ R, κ(p) ≡ ||c′′(t0)||
Notice that since we require a unit speed paramaterization of C, we do not need to worry about how a
given curve is paramaterized.

Since the curvature is defined pointwise for each point in curve C, we can integrate over all the curvatures
in C to define the total curvature.

Definition 8.10 (Total Curvature). The total curvature of a curve c : [a, b] −→ C ⊂ R3 is the scalar
line integral ˆ

C

κ ds

We now present an important theorem in differential geometry.

Theorem 8.13 (Fary-Milnor Theorem). Given a unit speed paramaterization c : [a, b] −→ C ⊂ R3, if C
is closed (that is, c(a) = c(b)), then ˛

C

κ ds ≥ 2π

and equals 2π only when C is a circle. Furthermore, if C is a closed space curve with˛
C

κ ds ≤ 4π

then C is ”unknotted.” That is, C can be continuously deformed without every intersecting itself into a
planar circle. Therefore, for knotted curves C, we have˛

C

κ ds > 4π

8.7 Surface Integrals

Surface integrals are the 2-dimensional analogue, or the double integral version, of line integrals. It is
the integration of surfaces.

39/ 46



Multivariate Calculus Muchang Bahng August 2021

8.7.1 2-Dimensional Paramaterizations of Surfaces

Just like how we create path functions using a paramaterization function p : [a, b] ⊂ R −→ Rn, we can
parameterize surfaces by defining a function

φ : D ⊂ R2 −→ Rn, φ(u, v) ≡

x1(u, v)
...

xn(u, v)


The surface

S = φ(D)

corresponding to the function φ is its image. If φ is differentiable or is of class C1, then we call S a
differentiable or C1 surface, respectively.
For those that are familiar with differential geometry, this makes every paramaterized surface a 2-manifold
induced by the single homeormophism φ. In fact, it is more than just locally homeomorphic; it is globally
homeomorphic.

Definition 8.11 (Tangent Vectors of Surfaces Embedded in R3). Given surface paramaterization

φ : R2 −→ R3, φ(u, v) ≡

x(u, v)
y(u, v)
z(u, v)


it is visually clear that there can be up to two linearly independent tangent vectors at a point on the
surface S. We can calculate these two vectors by embedding two nonparallel paths in D ⊂ R2 and taking
the derivative with respect to a point traveling through these paths, which would give us a tangent vector
on S. To keep things simple, we take the partial derivatives with respect to u and v.

Clearly, these paths are functions

∂φ

∂u
≡

 ∂x
∂u
∂y
∂u
∂z
∂u

 : R2 −→ R3

∂φ

∂v
≡

∂x
∂v
∂y
∂v
∂z
∂v

 : R2 −→ R3

where
∂φ

∂u
(u0, v0),

∂φ

∂v
(u0, v0)

represent two vectors in R3 that are tangent to S at the point φ(u0, v0) ∈ R3.

We must make sure that the surface S is smooth in the sense that (informally) there aren’t any wrinkles,
points, folds, or self-intersections in such a way that the tangent plane to the surface is not well-defined.
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Definition 8.12 (Regular Surfaces). To formalize this concept, we say that S is regular, or smooth, at
point (u0, v0) if

∂φ

∂u
× ∂φ

∂v
̸= 0

where × is the Euclidean cross product. That is, if the vector that is orthogonal to the two tangent
vectors is well defined at a point, the surface is said to be smooth at that point. Note that ∂φ

∂u is parallel

to ∂φ
∂v if and only if their cross product is 0.

It is quite clear that (∂φ∂u × ∂φ
∂v )(u0, v0) ̸= 0 =⇒ ∂φ

∂u and ∂φ
∂v are linearly independent. This means that

an entire span of tangent vectors, i.e. a tangent plane, of the surface S at φ(u0, v0) exists. S is said to
be regular if it is regular at all points φ(u0, v0) ∈ S.

In fact, the tangent plane at φ(u0, v0) is the set of points

{φ(u0, v0) +
∂φ

∂u
(u0, v0)c1 +

∂φ

∂v
(u0, v0)c2 | c1, c2 ∈ R}

which is precisely the affine tangent plane spanned by Tu and Tv. Note also that the vector Tu × Tv, if
nonzero, is normal to this plane, which leads to this equivalent definition.

Definition 8.13 (Tangent Planes of Surfaces). Given a paramaterized surface φ : D ⊂ R2 −→ R3 that
is regular at φ(u0, v0), the tangent plane of the surface S at φ(u0, v0) = (x0, y0, z0) is defined

{(x, y, z) ∈ R3 | (x− x0, y − y0, z − z0) · n = 0}

where n = (∂φ∂u × ∂φ
∂v )(u0, v0).

We finally construct the concept of signed areas before defining surface integration. We have all the
tools we need to calculate surface areas, but remember that integration also covers the concept of signed
areas, which could be negative. In order to define this, we define the concept of orientation on surfaces.

8.7.2 Orientation of Surfaces

Definition 8.14 (Oriented Surfaces). An oriented surface is a two-sided surface with one side specified
as the outside/positive side and the other side as the inside/negative side. Note that an oriented surface
is not guaranteed to have two sides (e.g. a Mobius strip). To ensure that there exist two sides, S must
be regular.
Surprisingly, a paramaterization does not have an intrinsic orientation. Rather, we determine the ori-
entation ourselves by choosing a unit vector that generally points towards the outside of the surface S.
Again, this choice is arbitrary, but it is customary to choose a vector that generally points ”out.” Either
way, the orientation (unit) vector at every point φ(u, v) ∈ S, denoted as n, is

n
(
φ(u, v)

)
= ±

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
which can be visually calculated using the right hand rule.
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Definition 8.15 (Orientation Preserving, Reversing Paramaterizations). Given an oriented surface S
with its positive side determined by the direction of unit vector n

(
φ(u, v)

)
, the paramaterization φ is

said to be orientation preserving if

n
(
φ(u, v)

)
=

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
and orientation reversing if

n
(
φ(u, v)

)
= −

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
So, to find whether a paramaterization is orientation preserving or reversing, it suffices to find the cross
product Tu × Tv and see if it points in the same direction of the normal vector n (which should have
already been determined when deciding the orientation of S).
Given a paramaterization φ and an un-oriented surface S, we can also just construct φ to be orientation-
preserving (or reversing) by defining the normal vector n to be

n
(
φ(u, v)

)
=

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
(
or n

(
φ(u, v)

)
= −

∂φ
∂u × ∂φ

∂v∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣
)

So rather than finding out whether a paramaterization φ is orientation preserving or reversing by com-
paring Tu × Tv with n, we have defined n in a way such that φ must be orientation preserving (or
reversing). We can utilize these tools of paramaterization to now define the surface integral.

8.7.3 Scalar, Vector Surface Integrals

A physical interpretation of a scalar surface integral is the weighted surface area of a certain surface.

Definition 8.16 (Scalar Surface Integrals). Let f : R3 −→ R be a C1 scalar field defined on a parama-
terized surface S ⊂ R3 with paramaterization φ : D ⊂ R2 −→ R3. That is, φ(D) = S. We define the
integral f over S to be ¨

S

f dS =

¨
S

f(x, y, z) dS

=

¨
D

f
(
φ(u, v)

)∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ du dv
Note that this will require us to transform f , a function of x, y, z, into the function f ◦ φ of u, v.
Additionally, if the paramaterization of the surface S is not defined, then it one must be constructed. It
is also clear that if S is a union of surfaces Si, then its surface integral is the sum of the surface integrals
of the Si’s.

Letting the scalar field f be the constant field equal to 1, the scalar surface integral measures the surface
area of S.

A(S) =

¨
S

dS =

¨
D

∣∣∣∣∣∣∂φ
∂u

× ∂φ

∂v

∣∣∣∣∣∣ du dv
It is easy to see that the orientation of the paramaterization φ does not affect scalar surface integrals,
since the sign of the orientation gets nullified by the absolute value sign over ||∂φ∂u × ∂φ

∂v ||.
Its physical interpretation is to measure the rate at which a fluid (determined by a vector field F ) is
crossing a given surface S. It also has many applications in electromagnetism.
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Definition 8.17 (Vector Surface Integrals). Let F be a vector field defined on surface S, the image of
a paramaterized surface φ. The surface integral of F over S is defined below, which is equivalent to
summing up the dot product of the vector field and the normal vector to the surface.

It can be calculated with the following formulas by converting it into a scalar surface integral where the
scalar field is the value of the dot product of the vector field with the normal vectors of the surface.

¨
S

F · dS =

¨
S

(F · n) dS

=

¨
D

(
F
(
φ(u, v)

)
·

∂φ
∂u × ∂φ

∂v∣∣∣∣∣∣∂φ∂u × ∂φ
∂v

∣∣∣∣∣∣
) ∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ du dv
=

¨
D

F
(
φ(u, v)

)
·
(
∂φ

∂u
× ∂φ

∂v

)
du dv

Since we are now talking about vector fields, the orientation of the paramaterization is now significant.
Visually, if the orientation of the surface S generally aligns with the vector field F , then the integral
will be positive (since two vectors α, β generally pointing in the same direction implies that α · β > 0).
The orientation of the paramaterization, which is dependent on ∂φ

∂u × ∂φ
∂v , determines the direction of the

normal vector n (since it is defined to be (∂φ∂u × ∂φ
∂v )/

∣∣∣∣∂φ
∂u × ∂φ

∂v

∣∣∣∣. Therefore, changing the orientation
of φ will reverse the direction of n, which will then reverse the sign of the integral since n now points
in the opposite direction of the vector field F than it previously did (by reversing the sign of the dot
products). This is formalized in the theorem below.

Theorem 8.14 (Invariance of Surface Paramaterizations on Vector Surface Integrals). Let S be an
oriented surface and let φ1 and φ2 be two regular paramaterizations with F a continuous vector field
defined on S. Then, assuming φ1 is orientation preserving,

φ2 is orientation preserving =⇒
¨

φ1

F · dS =

¨
φ2

F · dS

φ2 is orientation reversing =⇒ −
¨

φ1

F · dS =

¨
φ2

F · dS

8.7.4 Surface Integrals over Graphs

Given that we have the graph of a function g : R2 −→ R rather than a general surface, we can parama-
terize it simply as

φ(u, v) ≡
(
u, v, g(u, v)

)
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This means that

∂φ

∂u
× ∂φ

∂v
=

− ∂g
∂u

−∂g
∂v
1

 =⇒
∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ =
√
1 +

(∂g
∂u

)2
+
(∂g
∂v

)2
So we can simplify the equation for the surface area S of the graph of g over the region D in the xy-plane,
as

A(S) =

¨
S

dS =

¨
D

∣∣∣∣∣∣∣∣∂φ∂u × ∂φ

∂v

∣∣∣∣∣∣∣∣ dA
=

¨
D

√
1 +

(∂g
∂u

)2
+
(∂g
∂v

)2
du dv

With the same g, we can find the weighed surface area of S over the scalar function f : R3 −→ R with
the formula ¨

S

f dS =

¨
D

f
(
u, v, g(u, v)

)√
1 +

(∂g
∂u

)2
+
(∂g
∂v

)2
du dv

Finally, with the same graph g, the surface integral over the vector field F is

¨
S

F · dS =

¨
D

F
(
φ(u, v)

)
·
(
∂φ

∂u
× ∂φ

∂v

)
du dv

=

¨
D

(
F1(u, v)

(
− ∂g

∂u

)
+ F2(u, v)

(
− ∂g

∂v

)
+ F3(u, v)

)
du dv

8.8 Integral Theorems

Recall the differential notation for writing line integrals. For 2 and 3 dimensions, it is written as

ˆ
C

F · ds =
ˆ
C

F · (dx, dy) =
ˆ
C

F1 dx+ F2 dy

ˆ
C

F · ds =
ˆ
C

F · (dx, dy, dz) =
ˆ
C

F1 dx+ F2 dy + F3 dz

8.8.1 Green’s Theorem

Green’s Theorem gives the relationship between a line integral around a simple closed curve C and a
double integral over the plane region D bounded by C.

Theorem 8.15 (Green’s Theorem in R2). Let there be a 2-dimensional C1 vector field F on R2 defined
on a simple oriented closed piecewise-smooth curve C and its bounded region D ⊂ R2 (that is, C = ∂D).
Let the orientation of the path of C be such that it is traveling counterclockwise, i.e. a point traveling
through C would see the region D to its left, denoted as C+ and the clockwise orientation as C−. Then,

˛
C+

F1 dx+ F2 dy =

¨
D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy
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By reversing the orientation, it is clear that we have

˛
C−

F1 dx+ F2 dy = −
¨

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy

Note that this theorem is expressed in terms of the components of the vector field F .

D

−4 −2 0 2 4

−4

−2

0

2

4

F = (F1, F2)

C+ = ∂D

Green’s theorem has many applications in physics. For example, in order to solve two-dimensional flow
integrals measuring the sum of fluid outflowing from a volume, Green’s theorem allows us to calculate
the total outflow summed about an enclosing area .

Corollary 8.15.1. Let D be a region for which Green’s theorem applies with positively oriented boundary
∂D. Then, the area of D can be computed with the formula

A(D) =
1

2

˛
∂D

x dy − y dx

Green’s theorem can be used to determine the area of centroid of plane figures solely by integrating over
the perimeter.

8.8.2 Stokes’ Theorem

Green’s theorem relates line integrals to double integrals. Stokes’ theorem generalizes Green’s theorem
by relating line integrals to surface integrals of 2-dimensional surfaces embedded in R3.

Theorem 8.16 (Stokes’ Theorem). Let S be an oriented regular surface defined by paramaterization
φ : D ⊂ R2 −→ R3, and let the image of the boundary ∂D under φ be the boundary ∂S of S. We can
interpret ∂S as a path mapping from R −→ S ⊂ R3.

The orientation unit vector n of S induces the positive orientation of ∂S, denoted ∂S+. Visually, if you
are walking along the curve with your head is pointing in the same direction as the unit normal vectors
while the surface is on the left then you are walking in the positive direction on ∂S.
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Given that F is a C1 vector field defined on S, then

¨
S

curlF · dS =

¨
S

(
∇× F

)
· dS =

˛
∂S+

F · ds

If S has no boundary, that is, if the image of p′ = ∂S is not a simple closed curve, then the integral is 0.

The above theorem implies that the vector surface integral of a surface without a boundary (i.e. a closed
graph, such as a sphere) is always 0 along the curl of any C1 field. Geometrically, this means that given
a closed solid S with field ∇× F , the rate of flow of the vector field into S is equal to the flow out of S.

8.8.3 Gauss’ Theorem

The divergence theorem relates the flux of a vector field through a closed surface to the divergence of
the field in the volume enclosed.

Theorem 8.17 (Gauss’ Divergence Theorem). Let V be a subset of R3. Denote by ∂V the oriented
closed surface that bounds V (with outward pointing normal orientation vectors), and let F be a C1

vector field defined on a neighborhood of V . Then,

˚
V

divF dV =

˚
V

(∇ · F ) dV =

‹
∂V

F · dS =

‹
∂V

(F · n) dS

where the two left-most integrals are volume integrals, and the two right-most integrals are surface inte-
grals. Intuitively, this makes sense; the volume integrals represent the total of the sources in volume V ,
and the right hand side represents the total flow across the boundary ∂V .
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