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1 Homotopy

Definition 1.1. Let X,Y be topological space and let F0, F1 : X −→ Y be continuous maps. A
homotopy from F0 to F1 is a continuous map (with respect to elements t ∈ [0, 1])

H : X × I −→ Y

where I = [0, 1], satisfying

H(x, 0) = F0(x)

H(x, 1) = F1(x)

for all x ∈ X. We can visualize this homotopy as a continuous deformation of (the images of) F0 to F1.
We can also think of the parameter t as a ”slider control” that allows us to smoothly transition from F0 to
F1 as the slider moves from 0 to 1, and vice versa. The figures below represents the homotopies between
the one-dimensional curves (left) and 2-dimensional surfaces (right), ImF0 and ImF1, with dashed lines.

F0

F1

If there exists a homotopy from F0 to F1, then we say that F0 and F1 are homotopic, denoted

F0 ≃ F1

Definition 1.2. If the homotopy satisfies

H(x, t) = F0(x) = F1(x)

for all t ∈ I and x ∈ S, which is a subset of X, then the maps F0 and F1 are said to be homotopic
relative to S.

This is clearly an equivalence relation defined on C0(X,Y ), the set of all continuous functions from X
to Y .

1. Identity. Clearly, F is homotopic to itself by setting H(x, t) ≡ F (x) for all t ∈ [0, 1].

2. Symmetry. Given homotopy H(x, t) from F0 to F1, the homotopy H−1(x, t) ≡ H(x, 1 − t) maps
from F1 to F0.

3. Transitivity. Given homotopy H1 from F1 to F2, and homotopy H2 from F2 to F3, the homotopy
defined

H3(x, t) ≡

{
H1(x, 2t) 0 ≤ t ≤ 1

2

H2(x, 2t− 1) 1
2 ≤ t ≤ 1

is indeed a homotopy from F1 to F3.

Definition 1.3. The space of homotopy classes from topological space X to Y is denoted

[X,Y ] ≡ C0(X,Y )

∼

where ∼ is the homotopy relation.
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Lemma 1.1. Homotopy is compatible with function composition in the following sense. If f1, g1 : X −→
Y are homotopic, and f2, g2 : Y −→ Z are homotopic, then f2 ◦ f1 and g2 ◦ g1 are homotopic. That is,
given the two homotopies

H1 : X × [0, 1] −→ Y

H2 : Y × [0, 1] −→ Z

we can naturally define a third homotopy

H3 : X × [0, 1] −→ Z, H(x, t) ≡ H2(x, t) ◦H1(x, t)

which is continuous since compositions of continuous functions are continuous.

Example 1.1. If f, g : R −→ R2 is defined as a

f(x) ≡ (x, x3), g(x) ≡ (x, ex)

then the map
H : R× [0, 1] −→ R2, H(x, t) ≡

(
x, (1− t)x3 + tex

)
is a homotopy between them.

Example 1.2. Let idB : Bn −→ Bn be the identity function on the unit n-disk, and let c0 : Bn −→ Bn

be the 0-function sending every vector to 0. Then, idB and c0 are homotopic, with homotopy explicitly
defined

H : Bn × [0, 1] −→ Bn, H(x, t) ≡ (1− t)x

Example 1.3. If C ⊆ Rn is a convex set and f, g : [0, 1] −→ C are paths with the same endpoints, then
there exists a linear homotopy given by

H : [0, 1]× [0, 1] −→ C, (s, t) 7→ (1− t)f(s) + tg(s)

We can extend this example. Let f, g : R −→ R be 2 continuous functions. Then f ≃ g, since we can
construct F : [0, 1]× R −→ R defined

F (x, t) ≡ (1− t)f(x) + tg(x)

(Note that the set of continuous functions from R to R is a convex set.)

This leads to our definition of path homotopies, which is just a specific type of homotopy.

Definition 1.4. Suppose X is a topological space. Two paths f0, f1 : I −→ X are said to be path
homotopic, denoted

f0 ∼ f1

if they are homotopic relative to {0, 1}. This means that there exists a continuous map H : I × I −→ X
satisfying

H(s, 0) = f0(s), s ∈ I

H(s, 1) = f1(s), s ∈ I

H(0, t) = f0(0) = f1(0), t ∈ I

H(1, t) = f1(1) = f0(1), t ∈ I

We can visualize two paths (sharing the same endpoints) being path homotopic if we can ”continuously
deform” one onto another.

p q
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We can notice that for any given points p, q ∈ X, path homotopy is an equivalence class on the set of all
paths from p to q.

Definition 1.5. The equivalence class of a path f is called a path class, denoted [f ]. Note that in the
diagram above, there is only one equivalence class of paths.

We can define a multiplicative structure on paths as such. This is the first step to create a group structure
on the set of certain paths.

Definition 1.6. Given two paths f, g such that f(1) = g(0), their product is the path defined

(f · g)(s) ≡

{
f(2s) 0 ≤ s ≤ 1

2

g(2s− 1) 1
2 ≤ s ≤ 1

It is easy to visualize the product of two paths as the longer path created by ”connecting” the two smaller
paths.

q

r

p

It is also easy to see that if f ∼ f ′ and g ∼ g′,

f · g ∼ f ′ · g′

We can also define the product of these equivalence classes as

[f ] · [g] ≡ [f · g]

Notice that multiplication of paths is not associative in general, but it is associative up to path homotopy.
That is,

([f ] · [g]) · [h] = [f ] · ([g] · [h])

Definition 1.7. If X is a topological space and q ∈ X, a ”loop” in X based at q is a path in X such
that

f : I −→ X, f(0) = f(1) = q

The set of path classes of loops based at q is denoted

π1(X, q)

Equipped with the product operation of paths defined before, (π1(X, q), ·) is called the fundamental group
of X based at q. The identity element of this group is the path class of the constant path cq(s) ≡ q, and
the inverse of [f ] is the path class of

f−1(s) ≡ f(1− s)

which is the reverse path of f .

Note that while the fundamental group in general depends on the point q, it turns out that, up to
isomorphism, this choice makes no difference as long as the space is path connected.

Lemma 1.2. Let X be a path connected topological space, with p, q ∈ X. Then,

π1(X, p) ≃ π1(X, q)

for all p, q.

Therefore, it is conventional to write π1(X) instead of π1(X, q) when X is path connected.
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Example 1.4. Consider the space X ≡ B2 \B1, which is the 2-disk without the unit disk in R2. Given
an arbitrary point p ∈ X, there exists an infinite number of path classes of X at p, denoted [pi], where
i corresponds to how many times the paths loop around the hole. The first three path classes are shown
below.

p p0

p1

p2

It is clear that [p0] is the identity, and the group operation rule is

[pi] · [pj ] = [pi+j ]

meaning that π1(X, p) is the infinite discrete group generated by [p0] and [p1].

Proposition 1.3. Let A be a convex subset of Rn, endowed with the subspace topology, and let X be
any topological space. Then, any 2 continuous maps f, g : X −→ A are homotopic.

Proof. Since A is convex, the homotopy defined

F (x, t) ≡ (1− t)f(x) + tg(x)

exists. ■

Proposition 1.4. If X is a path connected space, the fundamental groups based at different points are
all isomorphic. That is,

π1(X, p) ≃ π1(X, q)

for all p, q ∈ X.

Definition 1.8. If X is path connected and for some q ∈ X, the group π1(X, q) is the trivial group
consisting of [cq] alone, then we say that X is simply connected. By definition, this means that every
loop is path homotopic to a constant path.

Proposition 1.5. Let X be a path connected topological space. X is simply connected if and only if any
2 loops based on the same point are path homotopic.

We can also expect that since homotopy is clearly a topological property, it is preserved under continuous
maps. We state this result formally in the following lemma.

Lemma 1.6. If F0, F1 : X −→ Y and G0, G1 : Y −→ Z are continuous maps such that F0 ≃ F1 and
G0 ≃ G1, then

G0 ◦ F0 ≃ G1 ◦ F1

Similarly, if f0, f1 : I −→ X are path homotopic, and F : X −→ Y is a continuous map, then

F ◦ f0 ∼ F ◦ f1

Thus, if F : X −→ Y is a continuous maps, for each q ∈ X, we can construct a well-defined map

F∗ : π1(X, q) −→ π1

(
Y, F (q)

)
by setting

F∗([f ]) ≡ [F ◦ f ]

Lemma 1.7. If F : X −→ Y is a contiuous map, then the induced map

F∗ : π1(X, q) −→ π1

(
Y, F (q)

)
is a group homomorphism. x That is, F∗ preserves multiplicative structure of the loops.
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Theorem 1.8 (Properties of the Induced Homomorphism). 1. Let F : X −→ Y,G : Y −→ Z be
continuous maps. Then for any q ∈ X,

(G ◦ F )∗ = G∗ ◦ F∗ : π1(X, q) −→ π1

(
Z,G(F (q))

)
2. For any space X and any q ∈ X, the homomorphism induced by the identity map idX : X −→ X

is the identity map
id : π1(X, q) −→ π1(X, q)

3. If F : X −→ Y is a homeomorphism, then

F∗ : π1(X, q) −→ π1

(
Y, F (q)

)
is an isomorphism. That is, homeomorphic spaces have isomorphic fundamental groups.

Example 1.5. The fundamental group of S1 ⊂ C based at 0 is the infinite cyclic group generated by the
path class of the loop

α : I −→ S1, α(s) ≡ e2πis

Theorem 1.9. If F : X −→ Y is a homotopy equivalence, then for each p ∈ X,

F∗ : π1(X, p) −→ π1

(
Y, F (p)

)
is an isomorphism.

The following proposition will be revisited when studying manifolds.

Proposition 1.10. The fundamental group of any topological manifold is countable.

1.1 Homotopy Equivalence

Definition 1.9. Given two topological spaces X and Y , a homotopy equivalence between X and Y is a
pair of continuous maps f : X −→ Y and g : Y −→ X such that

g ◦ f ≃ idX and f ◦ g ≃ idY

The equivalence classes under ≃ are called homotopy types. If such a pair f, g exists, X and Y are said
to be homotopy equivalent, or of the same homotopy type.

Definition 1.10. Spaces that are homotopy equivalent to a point are called contractible. That is, X is
contractible if and only if

X ≃ {x0}

Visually, two spaces are homotopy equivalent if they can be transformed into one another by bending,
shrinking, and expanding operations.

Example 1.6. A solid disk is homotopy equivalent to a single point, since one can deform the disk along
radial lines to a point.

Example 1.7. A mobius strip is homotopy equivalent to a closed (untwisted) strip.

Notice from the visualization of homotopy equivalence the following proposition.

Proposition 1.11. X,Y homeomorphic =⇒ X,Y homotopy equivalent. However, the converse is not
true.

Proof. Just set f = f and g = f−1. ■

Example 1.8. A torus is not homotopy equivalent to Y , which also implies that they are not homeo-
morphic either.

̸≃
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Furthermore, like homeomorphisms, homotopy equivalence is a relation on the set of all topological
spaces.

1. Identity. Just set f, g = idX

2. Symmetricity. Given X ≃ Y with f : X −→ Y, g : Y −→ X, we set f ′ ≡ g and g′ ≡ f and use
these functions f ′, g′ to find out that Y ≃ X.

3. Transitivity. Let us have X ≃ Y with functions f1, g1 and Y ≃ Z with functions f2, g2. Then, we
define new functions

f3 ≡ f2 ◦ f1 : X −→ Z, g3 ≡ g1 ◦ g2 : Z −→ X

which follows to f3 ◦ g3 = idZ and g3 ◦ f3 = idX .

Proposition 1.12. Rn is homotopically equivalent to a point {0}.

Proof. We claim that the continuous maps (canonical injection and projection)

idRn : {0} −→ Rn, p0 : Rn −→ {0}

have the property that
idRn ◦ p0 ≃ idRn , p0 ◦ idRn ≃ id{0}

The right-hand homotopy is trivial since idRn ◦ p0 = idRn , and as for the left-hand homotopy, we can
explicitly define it as

H : [0, 1]× Rn −→ Rn

with
H(t, x) ≡ (t)(idRn ◦ p0)(x) + (1− t) idRn(x) = (1− t) idRn(x)

■

Example 1.9. S1 ≃ R2 \ {0}, and more generally, Sn−1 ≃ Rn \ {0}. We can see this with the canonical
injection and projections

idR2 : S1 −→ R2 \ {0}, πS1 : R2 \ {0} −→ S1

and find that
idR2 ◦ πS1 ≃ idR2 , πS1 ◦ idR2 ≃ idS1

where the right-hand homotopy is trivial, and the left hand homotopy is defined explicitly as

H(x, t) ≡ t(idR2 ◦ πS1)(x) + (1− t)(idR2)(x)

Definition 1.11. A function f is said to be null homotopic if it is homotopic to a constant function.
This is sometimes called a null-homotopy.

Example 1.10. Take a look at a function f : R2 −→ R, which represents an arbitrary surface in R2⊕R.
Now, observe the constant function c(x, y) ≡ c, which represents a plane parallel to the x, y-plane. Clearly,
we can imagine a deformation of the surface of f to the flat surface of c with the homotopy

H(x, t) ≡ t f(x) + (1− t)c(t)

which visually represents a linear deformation of c to f . Therefore, f is null-homotopic.

Example 1.11. A map f : S1 −→ X is null homotopic precisely when it can be continuously extended
to a map

f̃ : D2 −→ X

that agrees with f on the boundary ∂D2 = S1. Visually, the existence of f̃ allows us to continuously
deform the image of f in S1 ⊕X to a level curve f(x) = c existing in S1 ⊕X.

Proposition 1.13. A space X is contractible if any only if the identity map from X to itself, which is
always a homotopy equivalence, is null homotopic.

Example 1.12. Let Y be the following gray subset of the plane, and let X be the figure-8 shape.
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Then Y ≃ X, where the corresponding functions are

F : X −→ Y, the canonical inclusion

F : Y −→ X, the projection onto X

Then, G ◦ F = id and F ◦G is homotopic to the identity, with homotopy defined

H(x, t) ≡ t(F ◦G)(x) + (1− t)(idY )(x)

which can be visualized by H(x, s) being the point you get from x by moving a fraction s along the red
arrow towards X.

2 Homeomorphism Groups

Definition 2.1. The homeomorphism group of a topological space X is the group consisting of all
homeomorphisms from X to X, with function composition as the group operation.
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