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Before we do any coding, we must learn the theory behind how computer systems work, which all starts
from memory management and CPU architecture. We will use C with the gcc compiler, along with MIPS
and NASM assembler. It is imperative to learn these two since given that you know a high level language
pretty well (Python in my case), you want to learn C to appreciate the things Python does for you, and you
want to learn Assembly to appreciate the things C does for you.1.

To start off, we want a big overall picture of high a computer works. We introduce this with the simplest
model of the computer, the Von Nuemann architecture. It consists of a central processing unit (CPU),
memory, and an input/output (I/O) system. We show a diagram of this first for conciseness in Figure 1.

Figure 1: von Neumann Architecture

We will go through these one by one, touching on C and Assembly along the way, but the implementation
of these things can differ by the computer architecture, so let’s list some of the basic ones.

Definition 0.1 (Computer Architecture)

The computer architecture is the design of the computer, which includes the CPU, memory, and
I/O system. There are many different architectures, but we will focus on the most common ones.

We first go over some basic theoretical properties of basic data types, focusing on C, and then we cover all
the stuff about memory and then all the stuff about the CPU. This is a natural progression since to work
with data, you must first know where to store the data and how it is stored (the memory), and then you
want to know how data is manipulated (the CPU).

1 Encoding Schemes
In order to get into memory, it is helpful to know the theory behind how primitive types are stored in
memory.

Definition 1.1 (Collections of Bits)

There are many words that are used to talk about values of different data types:
1. A bit (b) is either 0 or 1.
2. A Hex (x) is a collection of 4 bits, with a total of 24 = 16 possible values, and this is used since

it is easy to read for humans.
3. A Byte (B) is a collection of 8 bits or 2 hex, with a total of 28 = 256 possible values, and most

computers will work with Bytes as the smallest unit of memory.

1https://www.youtube.com/watch?v=XlvfHOrF26M
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Definition 1.2 (Collections of Bytes)

Sometimes, we want to talk about slightly larger collections, so we group them by how many bytes they
have. However, note that these may not always be the stated size, depending on what architecture
or language you are using. This is more of a general term, and they may have different names in
different languages. If there is a difference, we will state it explicitly.

1. A word (w) is 2 Bytes.
2. A long (l) is 4 Bytes.
3. A quad (q) is 8 Bytes.

Try to know which letter corresponds to which structure, since that will be useful in both C and
Assembly.

1.1 Booleans and Characters

Definition 1.3 (Booleans in C)

The most basic type is the boolean, which is simply a bit. In C, it is represented as bool, and it is
either true (1) or false (0).

We can manually check the size of the boolean type in C with the following code.

1 #include<stdio.h>
2 #include<stdbool.h>
3

4 int main() {
5 printf("%lu\n", sizeof(bool));
6 return 0;
7 }

1 1
2 .
3 .
4 .
5 .
6 .
7 .

Figure 2: We can verify the size of various primitive data types in C with the sizeof operator.

1.2 Integer Family
The most primitive things that we can store are integers. Let us talk about how we represent some of the
simplest primitive types in C: unsigned short, unsigned int, unsigned long, unsigned long long.

Definition 1.4 (Unsigned Integer Types in C)

In C, there are several integer types. We use this hierarchical method to give flexibility to the
programmer on the size of the integer and whether it is signed or not.

1. An unsigned short is 2 bytes long and can be represented as a 4-digit hex or 16 bits, with
values in [0 : 65, 535]. Therefore, say that we have

2. An unsigned int is 4 bytes long and can be represented as an 8-digit hex or 32 bits, with
values in [0 : 4, 294, 967, 295].

3. An unsigned long is 8 bytes and can be represented as an 16-digit hex or 64 bits, but they
are only guaranteed to be stored in 32 bits in other systems.

4. An unsigned long long is 8 bytes and can be represented as an 16-digit hex or 64 bits, and
they are guaranteed to be stored in 64 bits in other systems.

4/ 130



Muchang Bahng Spring 2024

Theorem 1.1 (Bit Representation of Unsigned Integers in C)

To encode a signed integer in bits, we simply take the binary expansion of it.

Figure 3: Unsigned encoding of 4-bit integers in C.

Example 1.1 (Bit Representation of Unsigned Integers in C)

We can see for ourselves how these numbers are represented in bits. Printing the values out in binary
requires to make new functions, but we can easily convert from hex to binary.

1 int main() {
2

3 unsigned short x = 13;
4 unsigned int y = 256;
5

6 printf("%x\n", x);
7 printf("%x\n", y);
8

9 return 0;
10 }

1 d
2 100
3 .
4 .
5 .
6 .
7 .
8 .
9 .

10 .

So far, the process of converting unsigned numbers to bits seemed simple. Now let’s introduce signed integers.

Definition 1.5 (Signed Integer Types in C)

In C, there are several signed integer types. We use this hierarchical method to give flexibility to the
programmer on the size of the integer and whether it is signed or not.

1. A signed short is 2 bytes long and can be represented as a 4-digit hex or 16 bits, with values
in [−32, 768 : 32, 767].

2. A signed int is 4 bytes long and can be represented as an 8-digit hex or 32 bits, with values
in [−2, 147, 483, 648 : 2, 147, 483, 647].

3. A signed long is 8 bytes and can be represented as an 16-digit hex or 64 bits, but they are
only guaranteed to be stored in 32 bits in other systems.

4. A signed long long is 8 bytes and can be represented as an 16-digit hex or 64 bits, and they
are guaranteed to be stored in 64 bits in other systems.

To store signed integers, it is intuitive to simply take the first (left-most) bit and have that be the sign.
Therefore, we lose one significant figure but gain information about the sign. However, this has some
problems: first, there are two representations of zeros: −0 and +0. Second, the continuity from −1 to 0 is
not natural. It is best explained through an example, which doesn’t lose much insight into the general case.

5/ 130



Muchang Bahng Spring 2024

Example 1.2 (Problems with the Signed Magnitude)

Say that you want to develop the signed magnitude representation for 4-bit integers in C. Then, you
can imagine the following diagram to represent the numbers.

Figure 4: Signed magnitude encoding of 4-bit integers in C.

You can see that there are some problems:
1. There are two representations for 0, which is 0000 and 1000.
2. -1 (1001) plus 1 becomes -2 (1010).
3. The lowest number -7 (1111) plus 1 goes to 0 (0000) when it should go to -6 (1100).
4. The highest number 7 (0111) plus 1 goes to 0 (1000).

An alternative way is to use the two’s complement representation, which solves both problems and makes it
more natural.

Theorem 1.2 (Bit Representation of Signed Integers in C)

The two’s complement representation is a way to represent signed integers in binary. It is defined
as follows. Given that you want to store a decimal number p in n bits,

1. If p is positive, then take the binary expansion of that number, which should be at most n− 1
bits (no overflow), pad it with 0s on the left.

2. If p is negative, then you can do two things: First, take the binary expansion of the posi-
tive number, flip all the bits, and add 1. Or second, represent p = q − 2n, take the binary
representation of q in n− 1 bits, and add a 1 to the left.

If you have a binary number b = bnbn−1 · · · b1 then to convert it to a decimal number, you simply
calculate

q = −bn2
n−1 + bn−12

n−2 + · · ·+ b1 (1)
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Figure 5: Two’s complement encoding of 4-bit integers in C.

Example 1.3 (Bit Representation of Signed Integers in C)

We can see for ourselves how these numbers are represented in bits.

1 int main() {
2

3 short short_pos = 13;
4 short short_neg = -25;
5 int int_pos = 256;
6 int int_neg = -512;
7

8 printf("%x\n", short_pos);
9 printf("%x\n", short_neg);

10 printf("%x\n", int_pos);
11 printf("%x\n", int_neg);
12

13 return 0;
14 }

1 d
2 ffe7
3 100
4 ffffffe00
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .

1 #include<stdio.h>
2 #include<stdbool.h>
3

4 int main() {
5 printf("%lu\n", sizeof(bool));
6 printf("%lu\n", sizeof(short));
7 printf("%lu\n", sizeof(int));
8 printf("%lu\n", sizeof(long));
9 printf("%lu\n", sizeof(long long));

10 return 0;
11 }

1 1
2 2
3 4
4 8
5 8
6 .
7 .
8 .
9 .

10 .
11 .

Figure 6: Size of various integer types in C with the sizeof.
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1.2.1 Arithmetic Operations on Binary Numbers

Theorem 1.3 (Inversion of Binary Numbers)

Given a binary number p, to compute −p, simply invert the bits and add 1.

Theorem 1.4 (Addition and Subtraction of Binary Numbers)

Given two binary numbers p and q.
1. To compute p + q, simply add the numbers together as you would in base 10, but carry over

when the sum is greater than 1.
2. To compute p− q, you can invert q to −q and compute p+ (−q).

1.3 Float Family

Definition 1.6 (Floating Point Types in C)

In C, there are several floating point types. We use this hierarchical method to give flexibility to the
programmer on the size of the integer and whether it is signed or not.

1. A float is 4 bytes long and can be represented as an 8-digit hex or 32 bits, with values in
[1.2× 10−38 : 3.4× 1038].

2. A double is 8 bytes long and can be represented as an 16-digit hex or 64 bits, with values in
[2.3× 10−308 : 1.7× 10308].

3. A long double is 8 bytes and can be represented as an 16-digit hex or 64 bits, but they are
only guaranteed to be stored in 80 bits in other systems.

Theorem 1.5 (Bit Representation of Floating Point Types in C)

Floats are actually like signed magnitude. We have

(−1)n × 2e−127 × 1.s (2)

where

Doubles encode 64 bits, so not we have exponent having 11 bits (so bias is not 1023) and 52 bits for
mantissa.

2 Memory

Definition 2.1 (Memory)

The memory is where the computer stores data and instructions, which can be though of as a giant
array of memory addresses, with each containing a byte. This data consists of graphical things or
even instructions to manipulate other data. It can be visualized as a long array of boxes that each
have an address (where it is located) and contents (what is stored in it).
Memory simply works as a bunch of bits in your computer with each bit having some memory address,
which is also a bit. For example, the memory address 0b0010 (2) may have the bit value of 0b1 (1)
stored in it.
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Figure 7: Visualization of memory as a long array of boxes of bits.

However, computers do not need this fine grained level of control on the memory, and they really
work at the Byte level rather than the bit level. Therefore, we can visualize the memory as a long
array of boxes indexed by Bytes, with each value being a byte as well. In short, the memory is
byte-addressable. In certain arthitectures, some systems are word-addressable, meaning that
the memory is addressed by words, which are 4 bytes.a

Figure 8: Visualization of memory as a long array of boxes of bytes. Every address is a byte and its
corresponding value at that address is also a byte, though we represent it as a 2-digit hex.

aNote that in here the size of a word is 2 bytes rather than 4 as stated above. This is just how it is defined in some
x86 architectures.

In the examples above, I listed the memory addresses as a 3 hex character (1.5 bytes) for brevity. In reality,
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the number of bytes that a memory address takes is much longer.

Definition 2.2 (32 and 64 Bit Machines)

There are two types of machines that tend to format these boxes very differently: 32-bit and 64-bit
machines.

1. 32 bit machines store addresses in 32 bits, so they can have 232 addresses, which is about 4 GB
of memory.

2. 64 bit machines store addresses in 64 bits, so they can have 264 addresses, which is about 16 EB
of memory. This does not mean that the actual RAM is 16 EB, but it means that the machine
can handle that much memory.

1 ...
2 0x00007FFF7FBFF860 --> 0b000000000000000000000000011111111111
3 111101111111101111111111100001100000
4 0x00007FFF7FBFF861 --> 0b000000000000000000000000011111111111
5 111101111111101111111111100001100001
6 0x00007FFF7FBFF862 --> 0b000000000000000000000000011111111111
7 111101111111101111111111100001100010
8 0x00007FFF7FBFF863 --> 0b000000000000000000000000011111111111
9 111101111111101111111111100001100011

10 0x00007FFF7FBFF864 --> 0b000000000000000000000000011111111111
11 111101111111101111111111100001100100
12 ...

The numbers typically mean the size of the type that the machine works best with, so all memory
addresses will be 32 or 64 bits wide. Most machines are 64-bits, and so everything in this notes will
assume that we are working with a 64 bit machine. As we will later see, this is why pointers are 8
bytes long, i.e. 64 bits. This is because the memory addresses are 64 bits long, though all of them
are not used.

With this structure in mind and knowing the size of some primitive types, we can now focus on how declaring
them works in the backend.

Definition 2.3 (Declaration, Initialization)

Assigning a value to a variable is a two step process, which is often not distinguished in high level
languages like Python.

1. You must first initialize the variable by setting aside the correct number of bytes in memory.
2. You must then assign that variable to be some actual value.

The two step process is often called declaration.

This is the reason why C is statically, or strongly, typed. In order to set aside some memory for a variable,
you must know how big that variable will be, which you know by its type. This makes sense. We can first
demonstrate how to both initialize and declare a variable.
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1 int main() {
2 // declaring
3 int x = 4;
4 printf("%p\n", &x);
5

6 // initializing and assigning
7 int y;
8 printf("%p\n", &y);
9 y = 3;

10 printf("%p\n", &y);
11

12 return 0;
13 }

1 0x16d37ee68
2 0x16d37ee64
3 0x16d37ee64
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .

Figure 9: How to declare variables in C. As you can see, by initializing y, the memory address is already assigned
and it doesn’t change when you assign it. The address is only shown to be 9 hex digits long, but it is actually 16 hex
digits long and simply 0 padded on the left.

One question that may come to mind is, what is the value of the variable if you just initialize it? After all
the value at that address that is initialized must be either 0s or 1s. Let’s find out.

1 int main() {
2 int y;
3 printf("%d\n", y);
4 y = 3;
5 printf("%d\n", y);
6

7 return 0;
8 }

1 6298576
2 3
3 .
4 .
5 .
6 .
7 .
8 .

Figure 10: The value of an uninitialized variable is some random number.

It may be interesting to see how this random unititialized value is generated. It is simply the value that was
stored in that memory address before, and it is not cleared when you initialize it, so you should not use this
as a uniform random number generator.

2.1 Debugging and Object Dumping
Talk about gdb, lldb, objdump, etc. These are debugging tools that allow you to parse your code line by
line. However, to actually see the C code, you must compile it with the debugging flag. This adds a little
bit of overhead memory to the binary, but not a lot.

2.2 Endian Architecture
It is intuitive to think that given some multi-byte object like an int (4 bytes), the beginning of the int would
be the lowest address and the end of the int would be the highest address, like how consecutive integers are
stored in an array. However, this is not always the case (almost always not the case since most computers
are little-endian).
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Definition 2.4 (Endian Architecture)

Depending on the machine architecture, computers may store these types slightly differently in their
byte order. Say that we have an integer of value 0xA1B2C3D4 (4 bytes). Then,

1. A big-endian architecture (e.g. SPARC, z/Architecture) will store it so that the least sig-
nificant byte has the highest address.

2. A little-endian architecture (e.g. x86, x86-64, RISC-V) will store it so that the least signif-
icant byte has the lowest address.

3. A bi-endian architecture (e.g. ARM, PowerPC) can specify the endianness as big or little.

Figure 11: The big vs little endian architectures.

We can simply print out the hex values of primitive types to see how they are stored in memory, but it does
not provide the level of details that we want on which bytes are stored where. At this point, we must use
certain debuggers to directly look at the memory. For x86 architectures, we can use gdb and for ARM
architectures, we can use lldb. At this point, we need to understand assembly to look through debuggers,
so we will provide the example here.

Example 2.1 (Endianness of C Int in x86-64)

To do.

Example 2.2 (Endianness of C Int in ARM64)

To do.

2.3 Type Casting

2.4 Pointers
We have learned how to declare/initialize a variable, which frees up some space in the memory and possibly
assigns a value to it. One great trait of C is that we can also store the memory address of a variable in
another variable called a pointer. You access both the memory and the value at that memory with this
pointer variable.

Definition 2.5 (Pointer Variable)

A pointer variable/type is a variable that stores the memory address of another variable.
1. You can declare a pointer in the same way that you declare a variable, but you must add a

asterisk in front of the variable name.
2. The size of this variable is the size of the memory address, which is 8 bytes in a 64-bit archi-

tecture.
3. To get the value of the variable that the pointer points to, called dereferencing, you simply

put a asterisk in front of the pointer. This is similar to how you put a ampersand in front of a
variable to get its memory address.
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1 int main() {
2 // declare an integer
3 int x = 4;
4 printf("x = %d\n", x);
5 printf("&x = %p\n", &x);
6

7 // declare pointer
8 int *p = &x;
9 printf("p = %p\n", p);

10 printf("*p = %d\n", *p);
11

12 // initialize pointer
13 int *q;
14 q = &x;
15 printf("q = %p\n", q);
16 printf("*q = %d\n", *q);
17 return 0;
18 }

1 x = 4
2 &x = 0x16d49ae68
3 p = 0x16d49ae68
4 *p = 4
5 q = 0x16d49ae68
6 *q = 4
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .

Figure 12

Since the size of addresses are predetermined by the architecture, it may not seem like we need to know the
underlying data type of what it points to, so why do we need to write strongly type the underlying data
type? Remember that to do pointer arithmetic, you need to know how large the underlying data type is so
that you can know how many bytes to move when traversing down an array.

One of the reasons why pointers are so valuable is that they allow you to pass by reference, which is a way
to change the value of a variable in a function.

2.4.1 Call by Value vs Call by Reference

Definition 2.6 (Call by Value)

Definition 2.7 (Call by Reference)

2.4.2 Pointer Errors

Just like for regular variables, you may be curious on the value of an unassigned pointer. Let’s take a look.
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Example 2.3 (Uninitialized Pointers)

1 int main() {
2 int x = 4;
3 int *p;
4 printf("p = %p\n", p);
5 printf("*p = %x\n", *p);
6

7 return 0;
8 }

1 p = 0x10249ff20
2 *p = d100c3ff
3 .
4 .
5 .
6 .
7 .
8 .

Figure 13: The value of an uninitialized pointer is some random address and at a random address it would
be some random byte.

This is clearly not good, especially since the program compiles correctly and runs without any errors. This
kind of pointer that hasn’t been initialized is called a wild pointer.

Definition 2.8 (Wild Pointer)

A wild pointer is a pointer that has not been initialized to a known value.

To fix this, we must always initialize a pointer to a known value. This may come at a disadvantage, since
now we can’t reap the benefits of initializing first and assigning later. A nice compromise is to initialize the
pointer to a null pointer.

Definition 2.9 (Null Pointer)

A null pointer is a pointer that has been initialized to a known value, which is the address 0x0.
You can set the type of the pointer and then initialize it to NULL.

1 int main() {
2 int *p = NULL;
3 printf("p = %p\n", p);
4

5 // the code below gives seg fault
6 /* printf("*p = %d\n", *p); */
7

8 int x = 4;
9 p = &x;

10 printf("p = %p\n", p);
11 printf("*p = %d\n", *p);
12 return 0;
13 }

1 p = 0x0
2 p = 0x16da72e5c
3 *p = 4
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .

Figure 14: Initializing a null pointer. It is a good practice to initialize a pointer to a null value.

Therefore, the null pointer allows you to set the type of the underlying data type, but the actual address
will be 0x0. You cannot dereference a null pointer, and doing so will give you a segmentation fault. There
may be times when you do not even know the data type of the pointer, and for this you can use the void
pointer, which now doesn’t know the type of the variable that it points to but it does allocate address.
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Definition 2.10 (Void Pointer)

A void pointer is a pointer that does not know the type of the variable that it points to. We can
initialize it by simply setting the underlying type to be void. This initializes the address, which should
always be 8 bytes, but trying to access the value of the variable is not possible.

1 int main() {
2 void *p;
3 printf("p = %p\n", p);
4 int x = 4;
5 p = &x;
6 printf("%d", *((int*)p));
7 return 0;
8 }

1 p = 0x102553f54
2 4
3 .
4 .
5 .
6 .
7 .
8 .

Figure 15: Initialize a void pointer and then use typecasting to access the value of the variable that it points
to.

2.5 Pointer Arithmetic
With pointers out of the way, we can talk about how arrays are stored in memory.

Definition 2.11 (Array)

A C array is a collection of elements of the same type, which are stored in contiguous memory
locations. You can initialize and declare arrays in many ways, and access their elements with the
index, e.g. arr[i].

1. You declare an array of some constant number of elements n with the elements themselves.

1 int arr[5] = {1, 2, 3, 4, 5};

2. You declare an array with out its size n and simply assign them. Then n is automatically
determined.

1 int arr[] = {1, 2, 3, 4, 5};

3. You initialize an array of some constant size c, and then you assign each element of the array.

1 int arr[5];
2 for (int i = 0; i < 5; i++) {
3 arr[i] = i + 1;
4 }

Unfortunately, C does not provide a built-in way to get the size of the array (like len in Python), so
we must keep track of the size of the array ourselves. Furthermore, the address of the array is the
address of where it begins at, i.e. the address of the first element.

You can literally see that the elements of the array are contiguous in memory by iterating through each
element and printing out its address.
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1 int main(void) {
2 // initialize array
3 int arr[5];
4 for (int val = 1; val < 6; val++) {
5 arr[val-1] = val * val;
6 }
7

8 int* p = &arr[0];
9 for (int i = 0; i < 5; i++) {

10 printf("Value at position %d : %d\n", i,
arr[i]);

11 printf("Address at position %d : %p\n",
i, p + i);

12 }
13

14 return 0;
15 }

1 Value at position 0 : 1
2 Address at position 0 : 0x7ffd8636b0d0
3 Value at position 1 : 4
4 Address at position 1 : 0x7ffd8636b0d4
5 Value at position 2 : 9
6 Address at position 2 : 0x7ffd8636b0d8
7 Value at position 3 : 16
8 Address at position 3 : 0x7ffd8636b0dc
9 Value at position 4 : 25

10 Address at position 4 : 0x7ffd8636b0e0
11 .
12 .
13 .
14 .
15 .
16 .
17 .

Figure 16: Ints are 4 bytes long, so the address of the next element is 4 bytes away from the previous element, making
this a contiguous array.

The most familiar implementation of an array is a string in C.

Definition 2.12 (String)

A string is an array of characters, which is terminated by a null character \0. You can initialize them
in two ways:

1. You can declare a string with the characters themselves, which you must make sure to end with
the null character.

1 char str[6] = {’H’, ’e’, ’l’, ’l’, ’o’, ’\0’};

2. You can declare them with double quotes, which automatically adds the null character.

1 char str[] = "Hello";

Note that for whatever string we initialize, the size of the array is the number of characters plus 1.

To access elements of an array, you simply use the index of the element, e.g. arr[i], but in the backend,
this is implemented with pointer arithmetic.

Definition 2.13 (Pointer Arithmetic)

Pointer arithmetic is the arithmetic of pointers, which is done by adding or subtracting an integer to
a pointer.

1. If you add an integer n to a pointer p, e.g. p + n, then the new pointer will point to the nth
element after the current element, with the next element being sizeof(type) bytes away from
the pervious element.

2. If you subtract an integer n from a pointer, then the pointer will point to the nth element before
the current element.

This is why you can access the elements of an array with the index, since the index is simply the
number of elements away from the first element.
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Example 2.4 (Pointer Arithmetic with Arrays of Ints and Chars)

Ints have a size of 4 bytes and chars 1 byte. You can see that using pointer arithmetic, the
addresses of the elements of ints increment by 4 and those of the char array increment by 1.

1 int main() {
2 int integers[3] = {1, 2, 3};
3 char characters[3] = {’a’, ’b’, ’c’};
4 int *p = &integers[0];
5 char *q = &characters[0];
6

7 printf("Array of Integers\n");
8 for (int i = 0; i < 3; i++) {
9 printf("%p\n", integers+i); }

10

11 printf("Array of Characters\n");
12 for (int i = 0; i < 3; i++) {
13 printf("%p\n", characters+i); }
14 return 0;
15 }

1 Array of Integers
2 0x16d39ee58
3 0x16d39ee5c
4 0x16d39ee60
5 .
6 Array of Characters
7 0x16d39ee50
8 0x16d39ee51
9 0x16d39ee52

10 .
11 .
12 .
13 .
14 .
15 .

Therefore, we can think of accessing the elements of an array as simply pointer arithmetic.

Theorem 2.1 (Bracket Notation is Pointer Arithmetic)

The bracket notation is simply pointer arithmetic in the backend.

1 int main() {
2 int arr[3] = {1, 2, 3};
3 int *p = &arr[0];
4

5 for (int i = 0; i < 3; i++) {
6 printf("%d\n", arr[i]);
7 printf("%d\n", *(p+i));
8 }
9 return 0;

10 }

1 1
2 1
3 2
4 2
5 3
6 3
7 .
8 .
9 .

10 .

Figure 17: Accessing the elements of the list using both ways is indeed the same.

2.6 Global, Stack, and Heap Memory
Everything in a program is stored in memory, variables, functions, and even the code itself. However, we
will find out that they are stored in different parts of the memory. When a program runs, its application
memory consists of four parts, as visualized in the Figure 18.

1. The code is where the code text is stored.

2. The global memory is where all the global variables are stored.

3. The stack is where all of the functions and local variables are stored.

4. The heap is variable and can expand to as much as the RAM on the current system. We can specifically
store whatever variables we want in the heap.

We provide a visual of these four parts first, and we will go into them later.
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Figure 18: The four parts of memory in a C program.

Definition 2.14 (Code Memory)

This is where the code text is stored. It is read-only and is not modifiable.

In high level languages, we always talk about local and global scope. That is, variables defined within
functions have a local scope in the sense that anything we modify in the local scope does not affect the
global scope. We can now understand what this actually means by examining the backend. The global scope
variables are stored in the global memory, and all local variables (and functions) are stored in the stack.

Definition 2.15 (Global Memory)

This is where all the global variables are stored.

Definition 2.16 (Stack Memory)

This is where all of the functions and local variables are stored. As we will see later, the compiler
will always run the main function, which must exist in your file. By the main function is a function
itself, and therefore it has its own local scope.
Then, when you initialize any functions or local variables within those functions (which will be the
majority of your code), all these will be stored in the stack, which is an literally an implementation
of the stack data structure. It is LIFO, and the first thing that goes in is the main function and its
local variables, which is referred to as the stack frame. You can’t free memory in the stack unless
its in the top of the stack.

To see what happens in the stack, we can go through an example.

Example 2.5 (Going through the Stack)

Say that you have the following code:

1 int total;
2 int Square(int x) {
3 return x*x;
4 }
5 int SquareOfSum(int x, int y) {
6 int z = Square(x + y);
7 return z;
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8 }
9 int main() {

10 int a = 4, b = 8;
11 total = SquareOfSum(a, b);
12 printf("output = %d", total);
13 return 0;
14 }

The memory allocation of this program will run as such:
1. The total variable is initialized and is put into global memory.
2. main is called. It is put into the stack.
3. The local variables a=4 and b=8 are initialized and are put into the stack.
4. The SquareOfSum function is called and put into the stack.
5. The input local variables x=4, y=8, z are initialized and put into the stack.
6. x + y=12 is computed and put into the stack.
7. The Square function is called and put into the stack.
8. The x=12 local variable of Square is initialized and put into the stack.
9. The CPU computes x*x=144 and returns the output. The Square function is removed from the

stack.
10. We assign z=144 and SquareOfSum returns it. Now SquareOfSum is removed from the stack.
11. total=144 is assigned in the global memory still.
12. The printf function is called and put into the stack.
13. The printf function prints the output and is removed from the stack.
14. The main function returns 0 and is removed from the stack, ending our application.

One limitation of the stack is that its total available memory is fixed from the start, ranging from 1MB to
8MB, and so you can’t initialize arrays of billions of integers in the stack. It will cause a memory overflow.
In fact, the memory of the stack, along with the global and text memory, are assigned at compile time,
making it a static memory.

Since the stack is really just a very small portion of available memory, the heap comes into rescue, which is
the pool of memory available to you in RAM.

Definition 2.17 (Heap Memory)

The heap memory (nothing to do with the heap data structure) is a variable length (meaning it can
grow at runtime) and dynamically allocated (meaning that we can assign memory addresses during
runtime) memory that is limited to your computer’s hardware. Unlike simply initializing variables
to allocate memory as in the stack, we must use the malloc and free functions in C, and new and
delete operations in C++.

Definition 2.18 (malloc)

Definition 2.19 (free)

The stack can store pointer variables that point to the memory address in the heap. So the only way to
access variables in the heap is through pointer reference, and the stack provides you that window to access
that big pool of heap memory.

One warning: if you allocate another address, the previous address does not get deallocated off the memory.
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Definition 2.20 (Memory Leak)

On the other hand, if you free an address but have a pointer still pointing to that address, this is also a
problem called the dangling pointer.

Definition 2.21 (Dangling Pointer)

At this point, we might be wondering why we need both a stack and a heap. Well the benefits of heaps are
clearer since you can dynamically allocate memory, and you don’t have the LIFO paradigm that is blocking
you from deallocating memory that has been allocated in the beginning of your program. A problem with
just having heap is that stacks can be orders of magnitude times faster when allocating/deallocating from it
than the heap, and the sequence of function calls is naturally represented as a stack.

2.7 Dynamic Memory Allocation
Let’s talk about how malloc and free are implemented in C. If you make a for loop and simply print all
the addresses that you allocate to. You will find that they can be quite random. After a program makes
some calls to malloc and free, the heap memory can becomes fragmented, meaning that there are chunks
of free heap space interspersed with chunks of allocated heap space. The heap memory manager typically
keeps lists of different ranges of sizes of heap space to enable fast searching for a free extent of a particular
size. In addition, it implements one or more policies for choosing among multiple free extents that could be
used to satisfy a request.

The free function may seem odd in that it only expects to receive the address of the heap space to free
without needing the size of the heap space to free at that address. That’s because malloc not only allocates
the requested memory bytes, but it also allocates a few additional bytes right before the allocated chunk to
store a header structure. The header stores metadata about the allocated chunk of heap space, such as the
size. As a result, a call to free only needs to pass the address of heap memory to free. The implementation
of free can get the size of the memory to free from the header information that is in memory right before
the address passed to free.

3 Implementations of Memory Structures in C

3.1 Arrays

3.2 Strings

3.3 Structs

3.4 Functions

3.5 Classes (for C++)

3.6 Input Output
We have standard in, standard out, and standard error.

4 Central Processing Unit
Now let’s talk about how functions work on a deeper level. When we write a command, like int x = 4, we
are manually looking for an address (in the stack, global, or heap) and rewriting the bits that are at that
address. Functions are just an automated way to do this, and all these modifications and computations are
done by the CPU.
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Definition 4.1 (Central Processing Unit)

The CPU is responsible for taking instructions (data) from memory and executing them.
1. The CPU is composed of registers (different from the cache), which are small, fast storage lo-

cations. These registers can either be general purpose (can be used with most instructions) or
special purpose (can be accessed through special instructions, or have special meanings/uses,
or are simply faster when used in a specific way).

2. The CPU also has an arithmetic unit and logic unit, which is responsible for performing
arithmetic and logical operations.

3. The CPU also has a control unit, which is responsible for fetching instructions from memory
through the databus, which is literally a wire connecting the CPU and RAM, and executing
them.

It executes instructions from memory one at a time and executes them, known as the fetch-execute
cycle. It consists of 4 main operations.

1. Fetch: The program counter, which holds the memory address of the next instruction to be
executed, tells the control unit to fetch the instruction from memory through the databus.

2. Decode: The fetched data is passed to the instruction decoder, which figures out what the
instruction is and what it does and stores them in the registers.

3. Execute: The arithmetic and logic unit then carries out these operations.
4. Store: Then it puts the results back on the databus, and stores them back into memory.

The CPU’s clock cycle is the time it takes for the CPU to execute one instruction. More specifically,
the clock cycle refers to a single oscillation of the clock signal that synchronizes the operations of
the processor and the memory (e.g. fetch, decode, execute, store), and decent computers have clock
cycles of at least 2.60GHz (2.6 billion clock cycles per second).

Therefore, in order to actually do computations on the data stored in the memory, the CPU must first fetch
the data, perform the computations, and then store the results back into memory. This can be done in two
ways.

1. Load and Store Operations: CPUs use load instructions to move data from memory to registers (where
operations can be performed more quickly) and store instructions to move the modified data back into
memory.

2. If the data is too big to fit into the registers, the CPU will use the cache to store the data, and in
worse cases, the actual memory itself. Compilers optimize code by maximizing the use of registers for
operations to minimize slow memory access. This is why you often see assembly code doing a lot in
registers.

To clarify, let us compare registers and memory. Memory is addressed by an unsigned integer while registers
have names like %rsi. Memory is much bigger at several GB, while the total register space is much smaller
at around 128 bytes (may differ depending on the architecture). The memory is much slower than registers,
which is usually on a sub-nanosecond timescale. The memory is dynamic and can grow as needed while the
registers are static and cannot grow.

The specific structure/architecture of the CPU is determined by the instruction set architecture (ISA), which
can be thought of as a subset of the general computer architecture.

Definition 4.2 (Instruction Set Architecture)

The ISA or just architecture of a CPU is a high level description of what it can do. Some differences
are listed here:

1. What instructions it can execute.
2. The instruction length and decoding, along with its complexity.
3. The performance vs power efficiency.

ISAs can be classified into two types.
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1. The complex instruction set computer (CISC) is characterized by a large set of complex
instructions, which can execute a variety of low-level operations. This approach aims to reduce
the number of instructions per program, attempting to achieve higher efficiency by performing
more operations with fewer instructions.

2. The reduced instruction set computer (RISC) emphasizes simplicity and efficiency with a
smaller number of instructions that are generally simpler and more uniform in size and format.
This approach facilitates faster instruction execution and easier pipelining, with the philosophy
that simpler instructions can provide greater performance when optimized.

Just like how memory addressing is different between 32 and 64 bit machines, CPUs also use these schemes.
While 32-bit processors have 232 possible addresses in their cache, it turns out that 64-bit processors have a
48-address space. This is because CPU manufacturers took a shortcut. They use an instruction set which
allows a full 64-bit address space, but current CPUs just only use the last 48-bits. The alternative was wasting
transistors on handling a bigger address space which wasn’t going to be needed for many years (since 48-bits
is about 256TB). Just a bit of history for you. Finally, just to briefly mention, the input/output device, as
the name suggests, processes inputs and displays outputs, which is how you can see what the program does.

Example 4.1 (x86 Architecture)

The x86 architecture is a CISC architecture, which is the most common architecture for personal
computers. Here are important properties:

1. It is a complex instruction set computer (CISC) architecture, which means that it has a large
set of complex instructionsa.

2. Byte-addressing is enabled and words are stored in little-endian format.
3. In the x86_64 architecture, registers are 8 bytes long (and 4 bytes in x86_32) and there are 16

total general purpose registers, for a total of only 128 bytes (very small compared to many GB
of memory). Other special purpose registers are also documented in the wikipedia page, but it
is not fully documented.

ahttps://en.wikipedia.org/wiki/X86_instruction_listings

Example 4.2 (ARM Archiecture)

Mainly in phones, tablets, laptops.

Example 4.3 (MIPS Architecture)

MIPS is a RISC architecture, which is used in embedded systems such as digital home and networking
equipment.

Definition 4.3 (Input/Output Device)

The input device can read/load/write/store data from the outside world. The output device, which
has direct memory address, can display data to the outside world.

One final note to mention, there are many assembly languages out there and various syntaxes.

Example 4.4 (Assembly Syntax)

The two most popular syntaxes are AT&T and Intel.
1. Intel Syntax: Specifies memory operands without any special prefixes. Square brackets [] are

used to denote memory addresses. For example, mov eax, [ebx] means move the contents of the
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memory location pointed to by ebx into eax.
2. AT&T Syntax: Memory operands are denoted with parentheses () and include the % prefix

for registers. An instruction moving data from a memory location into a register might look
like movl (%ebx), %eax, with additional prefixes for immediate values and segment overrides.

Example 4.5 (Assembly Languages)

The various assembly languages are as follows:
1. x86 Assembly : The assembly language for Intel and AMD processors using the x86 architec-

ture. Both AT&T and Intel syntax are available. Tools or environments often allow switching
between the two, with AT&T being the default in GNU tools like GDB.

2. ARM Assembly : The assembly language for ARM processors. Has its own unique syntax,
not categorized as AT&T or Intel. ARM syntax is closely tied to its instruction set architecture
and is distinct from the x86 conventions.

3. MIPS Assembly : The assembly language for MIPS processors. MIPS uses its own assembly
language syntax, which is neither AT&T nor Intel. MIPS syntax is designed around the MIPS
instruction set architecture.

4. PowerPC Assembly : The assembly language for PowerPC processors. PowerPC has its own
syntax style, tailored to its architecture and instruction set, distinct from the AT&T and Intel
syntax models.

5. 6502 Assembly : Used in many early microcomputers and gaming consoles. Utilizes a syntax
unique to the 6502 processor, not following AT&T or Intel conventions.

6. AVR Assembly : The assembly language for Atmel’s AVR microcontrollers. AVR assembly
follows its own syntax style, designed specifically for AVR microcontrollers and not based on
AT&T or Intel syntax.

7. Z80 Assembly : Associated with the Z80 microprocessor, used in numerous computing devices
in the late 20th century. Z80 assembly language has its own syntax that does not adhere to
AT&T or Intel syntax guidelines.

The most common one is the x86_64, which is the one that we will be focusing on, with the AT%T syntax.

4.1 Circuits
Let’s go over some common logic gates since this is at the basis of how to construct arithmetic operations.

Definition 4.4 (AND, NOT, OR)

Definition 4.5 (XOR, NAND, NOR)

Definition 4.6 (NAND)

Talk about how to construct arithmetic operations with these gates such as adding two integers or multiplying
them, and not just that, but other operations that we may need in a programming language.

Theorem 4.1 (Implementation of Moving Data in Circuits)
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Theorem 4.2 (Implementation of Addition, Subtraction in Circuits)

Theorem 4.3 (Implementation of Multiplication in Circuits)

Theorem 4.4 (Implementation of Bitwise Operations in Circuits)

Theorem 4.5 (Implementation of Bitshift Operations)

We also want some sort of conditionals. This then can be used to implement loops by checking some
conditional.

Theorem 4.6 (Implementation of Conditionals in Circuits)

As a bonus, we talk about the difference between volatile and non-volatile memory. We already learned that
RAM is volatile, and this is simple to implement in a circuit since we can manually set all the bits to 0 or
just deplete all power. If this is the case, then how does non-volatile memory like SSDs maintain their state?

Theorem 4.7 (Implementation of Volatile Memory)

Theorem 4.8 (Implementation of Non-Volatile Memory)

4.2 Registers
To understand anything that the CPU does, we must understand assembly language. In here, everything
is done within registers, and we can see how the CPU fetches, decodes, and executes instructions. So what
exactly are these registers?

Definition 4.7 (Register)

A register is a small, fast storage location within the CPU. It is used to store data that is being used
immediately, and is the only place where the CPU can perform operations, which is why it must move
data from memory to registers before it can perform operations on it. Everything in a register is in
binary, at most 8 bytes, or 64 bits.
There are very specific types of registers that you should know. All of these registers are implemented
for all assembly languages and are integral to the workflow of the CPU.

1. parameter registers which store the parameters of a function.
2. Return registers which store return values of functions.
3. stack pointers which point to the top of the stack (at the top of the current stack frame).
4. frame pointers which point to the base of the current stack frame.
5. instruction pointers which point to the next instruction to be executed.
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4.2.1 x86 Assembly Registers

The specific type of registers that are available to a CPU depends on the computer architecture, or more
specifically, the ISA, but here is a list of common ones for the x86-64. We have %rax, %rbx, %rcx, %rdx,
%rsi, %rdi, %rbp, %rsp, %r8, %r9, %r10, %r11, %r12, %r13, %r14, %r15. Therefore, the x86-64 Intel CPU
has a total of 16 registers for storing 64 bit data. However, it is important to know which registers are used
for what.

Definition 4.8 (Parameter Registers)

Compilers typically store the first six parameters of a function in registers

%rdi, %rsi, %rdx, %rcx, %r8, %r9, (3)

respectively.

Definition 4.9 (Return Register)

The return value of a function is stored in the

%rax (4)

register.

Definition 4.10 (Stack and Frame Pointers)

The %rsp register is the stack pointer, which points to the top of the stack. The %rbp register is the
frame pointer, or base pointer, which points to the base of the current stack frame. In a typical
function prologue, %rbp is set to the current stack pointer (%rsp) value, and then %rsp is adjusted
to allocate space for the local variables of the function. This establishes a fixed point of reference
(%rbp) for accessing those variables and parameters, even as the stack pointer (%rbp) moves.

Definition 4.11 (Instruction Pointer)

The %rip register is the instruction pointer, which points to the next instruction to be executed.
Unlike all the registers that we have shown so far, programs cannot write directly to %rip.

Definition 4.12 (Notation for Accessing Lower Bytes of Registers)

Sometimes, we need a more fine grained control of these registers, and x86-64 provides a way to access
the lower bits of the 64 bit registers. We can visualize them with the diagram below.
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Figure 19: The names that refer to subsets of register %rax.

A complete list is shown below.

64-bit Register 32-bit Register Lower 16 Bits Lower 8 Bits
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl
%rdx %edx %dx %dl
%rdi %edi %di %dil
%rsi %esi %si %sil
%rsp %esp %sp %spl
%rbp %ebp %bp %bpl
%r8 %r8d %r8w %r8b
%r9 %r9d %r9w %r9b
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b

Table 1: Register mapping in x86-64 architecture

4.2.2 ARM Assembly Registers

4.3 Addressing Modes
Registers being 8 bytes mean that we can store memory addresses, and if we can store memory addresses,
we can access memory, i.e. the values at those memory addresses. There are 4 ways to do this, called
addressing modes: immediate, normal, displacement, and indexed. When we parse an instruction, its
operands are either

1. Constant (literal) values

2. Registers

3. Memory forms
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Definition 4.13 (Immediate Addressing)

Immediate addressing is when the operand is a constant value, used with a $ sign.

$val (5)

Definition 4.14 (Normal Addressing)

Normal addressing is when the operand is a register, used with a % sign and the following syntax.
The parentheses are used to dereference the memory address like dereferencing a pointer in C.

(R) = Mem[Reg[R]] (6)

where R is the register name, Reg[R] is the value in the register, and Mem[Reg[R]] is the value in the
memory address pointed to by the register.

Definition 4.15 (Displacement Addressing)

When we have a memory address stored in a register, we can add an offset to it to access a different
memory address.

D(R) = Mem[Reg[R] + D] (7)

where R is the register name and D is a constant displacement that specifies offset.

Definition 4.16 (Indexed Addressing)

Indexed addressing gives us more flexibility, allowing us to multiply the value in the register by a
constant and add it to the value in another register. The general formula is shown as the top, but
there are special cases:

D(Rb, Ri, S) = Mem[Reg[Rb] + S*Reg[Ri] + D]

D(Rb, Ri) = Mem[Reg[Rb] + Reg[Ri] + D]

(Rb, Ri, S) = Mem[Reg[Rb] + S*Reg[Ri]]

(Rb, Ri) = Mem[Reg[Rb] + Reg[Ri]]

(, Ri, S) = Mem[S*Reg[Ri]]

where D is a constant displacement of 1, 2, or 4 bytes, Rb is the base register (can be any of 8 integer
registers), Ri is the index register (can be any register except rsp), and S is the scale factor (1, 2, 4,
or 8).

4.3.1 x86 Assembly Addressing Modes

Example 4.6 (Immediate Addressing)

1 movq $0x4, %rax
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Example 4.7 (Normal Addressing)

The following example shows the source operand being a memory address, with normal addressing,
and the destination operand being a register.

1 movq (%rax), %rbx

Example 4.8 (Displacement Addressing)

The following example shows the source operand being a memory address and the destination operand
being a register. They are both addressed normally.

1 movq 8(%rdi), %rdx

Example 4.9 (Indexed Addressing)

The following shows the source operand being a memory address and the destination operand being
a register. Say that %rdx = 0xf000 and %rcx = 0x0100. Then

0x80(,%rdx,2) = Mem[2*0xF000 + 0x80] = Mem[0x1E080] (8)

We see that

1 movq 0x100(%rdi, %rsi, 8), %rdx

4.3.2 ARM Assembly Addressing Modes

4.4 Instructions
Now that we’ve gotten a sense of what these registers are and some commonalities between them, let’s do
some operations on them with instructions.

Definition 4.17 (Instruction)

An instruction is a single line of assembly code. It consists of some instruction followed by its (one
or more) operands. The instruction is a mnemonic for a machine language operation (e.g. mov, add,
sub, jmp, etc.). The size specifier can be appended to this instruction mnemonic to specify the size
of the operands.

1. b (byte) for 1 byte
2. w (word) for 2 bytes
3. l (long) for 4 bytes
4. q (quad word) for 8 bytes

Note that due to backwards compatibility, word means 2 bytes in instruction names. Furthermore,
the maximum size is 8 bytes since that is the size of each register in x86_64. An operand can be of
3 types, determined by their mode of access:

1. Immediate addressing is denoted with a $ sign, e.g. a constant integer data $1.
2. Register addressing is denoted with a % sign with the following register name, e.g. %rax.
3. Memory addressing is denoted with the hexadecimal address in memory, e.g. 0x034AB.

Like higher level programming languages, we can perform operations, do comparisons, and jump to different
parts of the code. Instructions can be generally categorized into three types:
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1. Data Movement: These instructions move data between memory and registers or between the reg-
istery and registery. Memory to memory transfer cannot be done with a single instruction.

1 %reg = Mem[address] # load data from memory into register
2 Mem[address] = %reg # store register data into memory

2. Arithmetic Operation: Perform arithmetic operation on register or memory data.

1 %reg = %reg + Mem[address] # add memory data to register
2 %reg = %reg - Mem[address] # subtract memory data from register
3 %reg = %reg * Mem[address] # multiply memory data to register
4 %reg = %reg / Mem[address] # divide memory data from register

3. Control Flow: What instruction to execute next both unconditional and conditional (if statements)
ones. With if statements, loops can then be defined.

1 jmp label # jump to label
2 je label # jump to label if equal
3 jne label # jump to label if not equal
4 jg label # jump to label if greater
5 jl label # jump to label if less
6 call label # call a function
7 ret # return from a function

Now unlike compiled languages, which are translated into machine code by a compiler, assembly code is
translated into machine code through a two-step process. First, we assemble the assembly code into an
object file by an assembler, and then we link the object file into an executable by a linker. Some common
assemblers are NASM (Netwide Assembler) and GAS/AS (GNU Assembler), and common linkers are ld
(GNU Linker) and lld (LLVM Linker), both installable with sudo pacman -S nasm ld.

4.4.1 Moving and Arithmetic

Again, it is more important to have a general feel of what instructions every assembly language should and
get the ideas down rather than the syntax. We list them here, beginning with simply moving.

Definition 4.18 (Moving)

Next we want to have some sort of arithmetic to do calculations and to compare values.

Definition 4.19 (Arithmetic Operations)

4.4.2 Conditionals

Definition 4.20 (Conditionals)

4.4.3 Control Transfer on Stack

These are really the three basic functions needed to do anything in assembly, but let’s talk about an important
implementation called the control transfer. Say that you want to compute a function.

1. Then we must retrieve the data from the memory.
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2. We must load it into our registers in the CPU and perform some computation.

3. Then we must store the data back into memory.

Let’s begin with a refresher on how the call stack is managed. Recall that %rsp is the stack pointer and
always points to the top of the stack. The register %rbp represents the base pointer (also known as the frame
pointer) and points to the base of the current stack frame. The stack frame (also known as the activation
frame or the activation record) refers to the portion of the stack allocated to a single function call. The
currently executing function is always at the top of the stack, and its stack frame is referred to as the active
frame. The active frame is bounded by the stack pointer (at the top of stack) and the frame pointer (at the
bottom of the frame). The activation record typically holds local variables for a function.

Figure 20: The current active frame belongs to the callee function (fname). The memory between the stack pointer
and the frame pointer is used for local variables. The stack pointer moves as local values are pushed and popped
from the stack. In contrast, the frame pointer remains relatively constant, pointing to the beginning (the bottom)
of the current stack frame. As a result, compilers like GCC commonly reference values on the stack relative to the
frame pointer. In Figure 1, the active frame is bounded below by the base pointer of fname, which is stack address
0x418. The value stored at address 0x418 is the "saved" %rbp value (0x42c), which itself is an address that indicates
the bottom of the activation frame for the main function. The top of the activation frame of main is bounded by
the return address, which indicates where in the main function program execution resumes once the callee function
fname finishes executing.

Once we have done this we are really done. Formally, this is called Turing complete (?).

Definition 4.21 (Control Transfers)

We list some.
1. Push
2. Pop
3. Call to call a function
4. Return to return from a function
5. Continue
6. Get out of stack with leave.

Example 4.10 (Control Transfer Example)

We show this with a minimal example with psuedocode.

4.4.4 Multiple Functions

Now what happens if there are multiple functions calling each other? Take a look at the following example
with two functions.
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Example 4.11 (Multiple Functions Example)

There is a bit of a concern here from the previous example. The main function had two functions that
returned two values. As the subfunction stack frame is removed from the stack, the return value is stored in
the %rax register. If another function is called right after, then the return value of the second function will
overwrite that of the previous one. This was not a problem in the previous example since the return value
of the assign function was not used. However, if it was, then the return value of the adder function would
have overwritten it. This is known as register saving.

1. For caller-saved registers, the caller function is responsible for saving the value of the register before
calling a function and restoring it after the function returns. The caller should save values in its stack
frame before calling the callee function, e.g. by pushing all the return values of each callee in the caller
stack frame. Then it will restore values after the call.

Therefore, if we have a set of registers {%reg}, the caller must take everything and push them in the
caller stack frame. Then it will restore them after the call.

2. For callee-saved registers, it is the callee’s responsibility to save any data in these registers before
using the registers.

Therefore, if we have a set of registers {%reg}, then inside the callee stack frame, the callee must take
everything and push them in the callee stack frame. Once it computes the final return value, then it
will restore all the saved register values from the callee stack frame back into the registers for the

caller to use.

Ideally, we want one calling convention to simply separate implementation details between caller and callee.
In general, however, neither is best. If the caller isn’t using a register, then caller-save is better, and if callee
doesn’t need a register, then callee-save is better. If we do need to save, then callee save generally makes
smaller programs, so we compromise and use a combination of both caller-save and callee-save.

4.4.5 x86-64 Instructions

Let’s talk about moving instructions first.

Definition 4.22 (mov)

Let’s talk about the mov instruction which copies data from the source to the destination (the data
in the source still remains!) and has the syntax

mov_ src, dest (9)

1. The source can be a register (%rsi), a value ($0x4), or a memory address (0x4).
2. The destination can be a register or a memory address.
3. The _ is defined to be one of the size operands, which determine how big the data is. For

example, we can call movq to move 8 bytes of data (which turns about to be the maximum size
of a register).

A good diagram to see is the following:
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Even with just the mov instruction, we can look at a practical implementation of a C program in Assembly.

Example 4.12 (Swap Function)

Let us take a look at a function that swaps two integers. Let’s see what they do.
1. In C, we dereference both xp and yp (note that they are pointers to longs, so they store 8 bytes),

and assign these two values to two temporary variables. Then, we assign the value of yp to xp
and the value of xp to yp.

2. In Assembly, we first take the registers %rdi and %rsi, which are the 1st and 2nd arguments of
the function, dereference them with the parantheses, and store them in the temporary registers
%rax and %rdx. Then, we store the value of %rdx into the memory address of %rdi and the
value of %rax into the memory address of %rsi. Note that the input values (the actual of )

1 void swap(long *xp, long *yp) {
2 long t0 = *xp;
3 long t1 = *yp;
4 *xp = t1;
5 *yp = t0;
6 }

1 swap:
2 movq (%rdi), %rax
3 movq (%rsi), %rdx
4 movq %rdx, (%rdi)
5 movq %rax, (%rsi)
6 ret

Definition 4.23 (movz and movs)

The movz and movs instructions are used to move data from the source to the destination, but with
zero and sign extension, respectively. It is used to copy from a smaller source value to a larger
destination, with the syntax

movz__ src, dest

movs__ src, dest

where the first _ is the size of the source and the second _ is the size of the destination.
1. The source can be from a memory or register.
2. The destination must be a register.

Example 4.13 (Simple example with movz)

Take a look at the code below.

1 movzbq %al, %rbx

The %al represents the last byte of the %rax register. It is 1 byte long. The %rbx register is 8 bytes
long, so we can fill in the rest of the 7 bytes with zeros.
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Example 4.14 (Harder example with movs)

Take a look at the code below.

1 movsbl (%rax), %ebx

You want to move the value at the memory address in %rax into %ebx. Since the source size is set to
1 byte, you take that byte, say it is 0x80, from the memory, and then sign extend it (by a size of 4
bytes!) into %ebx. Note that therefore, the first four bytes of %rbx will not be affected since it’s not
a part of %ebx. An exception to this is that in x86-64, any instruction that generates a 32-bit long
word value for a register also sets the high-order 32 bits of the register to 0, so this ends up clearing
the first 4 bytes to 0.

Now we can talk about control transfer. Say that you have the following C and Assembly code.

1 int add(int x) {
2 return x + 2;
3 }
4

5 int main() {
6 int a = 2;
7 int b = add(a);
8 return 0;
9 }

1 add:
2 movq %rdi, %rax
3 addq $2, %rax
4 ret
5 main:
6 movq $3, $rdi
7 call add
8 movq $0, %rax
9 ret

Figure 21: A simple function.

If you go through the instructions, you see that in main, you first move $3 into the %rdi register. Then, you
call the add function, and within it you also have the %rdi register. This is a conflict in the register, and we
don’t want to simply overwrite the value of %rdi in the main function. Simply putting it to another register
isn’t a great idea since we can’t always guarantee that it will be free. Therefore, we must use the memory
itself.

Recall the stack, which we can think of as a giant array in which data gets pushed and popped in a last-in-
first-out manner. The stack is used to store data and return addresses, and is used to manage function calls.
Visually, we want to think of the elements getting pushed in from the bottom (upside down) towards lower
memory addresses.
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Definition 4.24 (Stack Pointer)

Note that every time we want to push or pop something from the stack, we must know where to push
or pop it. This is where the stack pointer comes in. It is a special register that always points to
the top of the stack, and is used to keep track of the stack.

Definition 4.25 (Push and Pop)

The push and pop instructions are used to push and pop data onto and off the stack, respectively.

push_ src rsp = rsp - 8; Mem[rsp] = src

pop_ dest dest = Mem[rsp]; rsp = rsp + 8

1. When we push the source, we fetch the value at the source and store it at the memory address
pointed to by the stack pointer %rsp. Then, we decrement %rsp by 8.

2. When we pop from the stack, we fetch the value at the memory address pointed to by the stack
pointer %rsp and store it in the destination. Then, we increment %rsp by 8.

Note that no matter what the size of the operand, we always subtract 8 from the stack pointer. This
is because the stack grows downwards, and we want to make sure that the next element is pushed
into the next available space.

Note that the register %rsp is the stack pointer, which points to the top of the stack. The stack is used to
store data and return addresses, and is used to manage function calls.

Definition 4.26 (Push and Pop)

The push and pop instructions are used to push and pop data onto and off the stack, respectively.

push_ src rsp = rsp - 8; Mem[rsp] = src

pop_ dest dest = Mem[rsp]; rsp = rsp + 8

The _ is a size operand, which determines how big the data is.

Definition 4.27 (Call and Ret)

The call instruction pushes the return address onto the stack and jumps to the function. The ret
instruction pops the return address from the stack and jumps to it.

We also talked about how there is instruction code that is even below the stack that is stored. This is where
all the machine code/assembly is stored, and we want to find out where we are currently at in this code.
This is done with the program counter.

Definition 4.28 (Program Counter, Instruction Pointer)

The program counter, or instruction pointer, is a special register rip that points to the current
instruction in the program. It is used to keep track of the next instruction to be executed.

Let’s go through one long example to see in detail how this is calculated.

Example 4.15 (Evaluating a Function)

Say that we have the following C code.
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1 int adder2(int a) {
2 return a + 2;
3 }
4

5 int main() {
6 int x = 40;
7 x = adder2(x);
8 printf("x is: %d\n", x);
9 return 0;

10 }

When we compile this program, we can view its full assembly code by calling objdump -d a.out.
The output is quite long, so we will focus on the instruction for the adder2 function.

1 0000000000400526 <adder2>:
2 400526: 55 push %rbp
3 400527: 48 89 e5 mov %rsp,%rbp
4 40052a: 89 7d fc mov %edi,-0x4(%rbp)
5 40052d: 8b 45 fc mov -0x4(%rbp),%eax
6 400530: 83 c0 02 add $0x2,%eax
7 400533: 5d pop %rbp
8 400534: c3 retq

Figure 22: The output of objdump for the adder2 function. The leftmost column represents the addresses
(in hex) of where the actual instructions lie. The second column represents the machine code that is being
executed. The third column represents the assembly code.

Note some things. Since adder2 is taking in an integer input value, we want to load it into the lower
32 bits (4 bytes) of the %rdi register, which is the first parameter. So we use %edi. Likewise for the
return value, we want to output an int so we use %eax rather than %rax. Let’s go through some of
the steps.

1. By the time we get into calling adder2, we can take a look at the relevant registers.

(a) First, the %eax is filled with garbage, which are leftovers from previous programs that
haven’t been overwritten yet.

(b) Second, the %edi=0x28 since we have set x=40 in main, before calling adder2, so it lingers
on.

(c) %rsp=0xd28 since that is where the top of the stack is.
(d) %rbp=0xd40
(e) %rip=0x526 since that is where we are currently at in our instruction (we are about to do
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it, but haven’t done it yet).
2. When we execute the first line of code, we simply push the value at %rbp into the stack. The

top of the stack gets decremeneted by 8 and the value at %rbp is stored there. This means that
the top of the stack is at %rsp=0xd20 and the next instruction will be at %rip=0x527.

3. The reason we have pushed %rbp onto the stack is that we want to save it before it gets
overwritten by this next execution. We basically move the value of %rsp into %rbp, and the
%rip advances to the next instruction. %rip moves to the next instruction.

4. Now we want to take our first argument %edi and store it in memory. Note that since this is 4
bytes, we can move this value into memory that is 4 bytes below the stack (-0x4(%rbp)). Note
that the storing the value of %edi into memory doesn’t affect the stack pointer %rsp. As far as
the program is concerned, the top of this stack is still address 0xd20.
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5. The next instruction simply goes into memory 4 bytes below the stack pointer, takes the value
there, and stores it into %eax. This is the value of %edi that we just stored. This may seem
redundant since we are making a round trip to memory and back to ultimately move the value
of %edi into %eax, but compilers are not smart and just follow these instructions.

6. Finally, we add the value $0x2 to %eax and store it back into %eax.

7. Finally, we pop the value at the top of the stack and store it into %rbp. Note that this is not
the value 0x28. It is simply the value that is stored at %rsp=0xd20, which is (%rsp)=0xd40.
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8. Finally, we return the value with retq.

Note that the final values in the registers %rsp and %rip are 0xd28 and 0x534, respectively, which are the
same values as when the function started executing! This is normal and expected behavior with the call
stack, which just stores temporary variable sand data of each function as it executes a program. Once a
function completes executing, the stack returns to the state it was in prior to the function call. Therefore,
it is common to see the following two instructions at the beginning of a function:

1 push %rbp
2 mov %rsp, %rbp

and the following two at the end of a function

1 pop %rbp
2 retq

Now arithemtic operations are quite simple.

Definition 4.29 (Add, Subtract, Multiply)

The add and sub instructions are used to add and subtract data from the destination.

add_ src, dest dest = dest + src

sub_ src, dest dest = dest - src

The imul instruction is used to multiply data between the source and destination and store it in the
destination.

imul_ src, dest dest = dest * src

Again the _ is a size operand, which determines how big the data is.

Definition 4.30 (Increment, Decrement)

The inc and dec instructions are used to increment and decrement the value in the destination.

inc_ dest dest = dest + 1

dec_ dest dest = dest - 1
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Definition 4.31 (Negative)

The neg instruction is used to negate the value in the destination.

neg_ dest dest = -dest

Example 4.16 (Basic Arithmetic Function)

The following represents the same program in C and in assembly. Let’s go through each one:
1. In C, we first initialize a = 4, then b = 8, add them together to get c, and then return c.
2. In Assembly, we move the value 4 to the %rax register, then move the value 8 to the %rbx

register, add the two values together to store it into %rax, and then return the value in the %rax
register.

1 int main() {
2 int a = 4, b = 8;
3 int c = a + b;
4 return c;
5 }

1 main:
2 movq $4, %rax
3 movq $8, %rbx
4 addq %rbx, %rax
5 ret

It is slightly different in Assembly since rather than storing 4 in some intermediate register, we
immediately store it in the return register. In a way it is more optimized, and this is what the
compiler does for you so that as few registers are used.

A shorthand way to do this is with lea, which stands for load effective address.

Definition 4.32 (Load Effective Address)

The lea instruction is used to load the effective address of the source into the destination. For now,
we will focus on the arithmetic operations that it can do

lea_ (src1, src2), dest dest = src1 + src2

lea_ (src1, src2, scale), dest dest = src1 + src2*scale

lea_ const(src1, src2), dest dest = src1 + src2 + const

lea_ const(src1, src2, scale), dest dest = src1 + src2*scale + const

This is useful for doing arithmetic operations on the address of a variable.

Definition 4.33 (Bitwise)

The and, or, xor, and not instructions are used to perform bitwise operations on the source and
destination.

and src, dest dest = dest & src

or src, dest dest = dest | src

xor src, dest dest = dest ŝrc

neg dest dest = -dest

not dest dest = ∼dest
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Definition 4.34 (Arithmetic and Logical Bit Shift)

The sal arithmetic instruction is used to shift the bits of the destination to the left by the number
of bits specified in the source. The shr instruction is used to shift the bits of the destination to the
right by the number of bits specified in the source.

sal src, dest dest = dest « src

shr src, dest dest = dest » src

The sar instruction is used to shift the bits of the destination to the right by the number of bits
specified in the source, and fill the leftmost bits with the sign bit. The shl instruction is used to
shift the bits of the destination to the left by the number of bits specified in the source, and fill the
rightmost bits with zeros.

sar src, dest dest = dest » src

shl src, dest dest = dest « src

Example 4.17 (Harder Arithmetic Example)

The following two codes are equivalent.

1 long arith(long x, long y, long z) {
2 long t1 = x + y;
3 long t2 = z + t1;
4 long t3 = x + 4;
5 long t4 = y * 48;
6 long t5 = t3 + t4;
7 long rval = t2 * t5;
8 return rval;
9 }

10 .
11 .
12 .
13 .
14 .

1 arith:
2 # rax/t1 = x + y
3 leaq (%rdi, %rsi), %rax
4 # rax/t2 = z + t1
5 addq %rdx, %rax
6 #rdx = 3 * y
7 leaq (%rsi, %rsi, 2), %rdx
8 #rdx/t4 = (3*y) * 16
9 salq $4, %rdx

10 #rcx/t5 = x + t4 + 4
11 leaq 4(%rdi, %rdi), %rcx
12 # rax/rval = t5 * t2
13 imulq %rcx, %rax
14 ret

The final thing in our list is condition codes.

Sometimes, we want to move (really copy) some value to another register if some condition is met. This is
where we use conditional moves. These conditions are met by the flags register, which is a special register
that stores the status of the last operation. It is the value of these flags that determine whether all future
conditional statements are met in assembly.

Definition 4.35 (Condition Code Flags)

The flags register in the x86 CPU keeps 4 condition code flag bits internally. Think of these as status
flags that are implicitly set by the most recent arithmetic operation (think of it as side effects). Note
that condition codes are NOT set by lea or mov instructions!

1. Zero Flag: if the last operation resulted in a zero value.
2. Sign Flag: if the last operation resulted in a negative value (i.e. the most significant bit is 1).
3. Overflow Flag: if the last operation resulted in a signed overflow.
4. Carry Flag: if the last operation resulted in a carry out of the most significant bit, i.e. an

unsigned overflow.
Every operation may or may not changes these flags to test for zero or nonzero, positive or negative,
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or overflow conditions, and combinations of these flags express the full range of conditions and cases,
e.g. for signed and unsigned values.

Example 4.18 (Zero Flag)

If the code below was just run, then ZF would be set to 1.

1 movq $2, %rax
2 subq $2, %rax

Example 4.19 (Sign Flag)

If the code below was just run, then SF would be set to 1.

1 movq $2, %rax
2 subq $4, %rax

Example 4.20 (Overflow Flag)

If either code below was just run, then OF would be set to 1.

1 movq $0x7fffffffffffffff, %rax
2 addq $1, %rax

1 movq 0x8000000000000000, %rax
2 addq 0xffffffffffffffff, %rax

This is because in the left in signed arithmetic, we have a positive + positive = negative (result is
0x8000000000000000), which is a signed overflow. Furthermore, in the right we have negative +
negative = positive (result is 0x7fffffffffffffff).

Example 4.21 (Carry Flag)

If the code below was just run, then CF would be set to 1.

1 movq $0xffffffffffffffff, %rax
2 addq $1, %rax

This is because the result is 0x0, which is a carry out of the most significant bit and an unsigned
overflow.

It would be tedious to always set these flags manually, so there are two methods that can be used to explicitly
set these flags.

Definition 4.36 (Compare)

The cmp instruction is used to perform a subtraction between the source and destination, and set
the flags accordingly, but it does not store the result.

cmp_ src, dest dest - src

The following flags are set if the conditions are met:
1. ZF = 1 if dest == src
2. SF = 1 if dest < src (MSB is 1)
3. OF = 1 if signed overflow
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4. CF = 1 if unsigned overflow

Definition 4.37 (Test)

The test instruction is used to perform a bitwise AND operation between the source and destination,
and set the flags accordingly.

test_ src, dest dest & src

The following flags are set if the conditions are met. Note that you can’t have carry out (CF) or
overflow (OF) if these flags are set.

1. ZF = 1 if dest & src == 0
2. SF = 1 if dest & src < 0 (MSB is 1)

Example 4.22 (Compare)

Assuming that %al = 0x80 and %bl = 0x81, which flags are set when we execute cmpb %al, %bl?
Well we must first compute

%bl - %al = 0x81 - 0x80 = 0x81 + ∼ 0x80 + 1 = 0x81 + 0x7F + 1 = 0x101 = 0x01 (10)

1. CF=1 since the result is greater than 0xFF (i.e. larger than byte)
2. ZF=0 since the result is not 0
3. SF=0 since the MSB is 0, i.e. there is unsigned overflow
4. OF=0 since there is no signed overflow

For conditional moves and jumps later shown, it basically uses these explicit sets and always compares them
to 0. We will see what this means later.

Finally, we can actually set a byte in a register to 1 or 0 based on the value of a flag.

Definition 4.38 (Set)

We can then talk about conditional moves and jumps.

Definition 4.39 (Equality with 0)

The test instruction is used to perform a bitwise AND operation between the source and destination,
and set the flags accordingly.

test_ src, dest dest & src

The sete instruction is used to set the destination to 1 if the zero flag is set, and 0 otherwise.

sete_ dest dest = (ZF == 1) ? 1 : 0

The cmovne instruction is used to move the source to the destination if the zero flag is not set.

cmovne_ src, dest dest = (ZF == 0) ? src : dest
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Definition 4.40 (Jump)

There are several jump instructions, but essentially they are used to jump to another part of the
code. We can use the following mnemonic to jump to a label.

Letter Word
j jump
n not
e equal
s signed
g greater (signed interpretation)
l less (signed interpretation)
a above (unsigned interpretation)
b below (unsigned interpretation)

Table 2: Letter to Word Mapping

Figure 23: Mnemonic for Jump Instructions

For completeness, we include all the jump instructions.

Signed Comparison Unsigned Comparison Description
je (jz) jump if equal (==) or jump if zero
jne (jnz) jump if not equal (!=)
js jump if negative
jns jump if non-negative
jg (jnle) ja (jnbe) jump if greater (>)
jge (jnl) jae (jnb) jump if greater than or equal (>=)
jl (jnge) jb (jnae) jump if less (<)
jle (jng) jbe (jna) jump if less than or equal (<=)

Table 3: Comparison Instructions in Assembly

Figure 24: All jump instructions

Definition 4.41 (int)

The int instruction is used to generate a software interrupt. It is often used to invoke a system call.

Definition 4.42 (ret)

The ret instruction is used to return from a function. It returns the value in the %rax register.

Now we can have a basic idea of how if statements can be used as a sequence of conditionals and jump
operators. Let’s first look at the goto version of C.
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Definition 4.43 (Goto Syntax)

The goto version processes instructions sequentially as long as there is no jump. This is useful because
compilers translating code into assembly designate a jump when a condition is true. Contrast this
behavior with the structure of an if statement, where a "jump" (to the else) occurs when conditions
are not true. The goto form captures this difference in logic.

1 int getSmallest(int x, int y) {
2 int smallest;
3 if ( x > y ) { //if (conditional)
4 smallest = y; //then statement
5 }
6 else {
7 smallest = x; //else statement
8 }
9 return smallest;

10 }
11 .
12 .
13 .
14 .
15 .

1 int getSmallest(int x, int y) {
2 int smallest;
3

4 if (x <= y ) { //if (!conditional)
5 goto else_statement;
6 }
7 smallest = y; //then statement
8 goto done;
9

10 else_statement:
11 smallest = x; //else statement
12

13 done:
14 return smallest;
15 }

Figure 25: C vs GoTo code of the same function. While GoTo code allows us to view C more like assmebly, it is
generally not readable and is not considered best practice.

Now let’s see how if statements are implemented by taking a look at this function straight up in assembly.

1 int getSmallest(int x, int y) {
2 int smallest;
3 if ( x > y ) { //if (conditional)
4 smallest = y; //then statement
5 }
6 else {
7 smallest = x; //else statement
8 }
9 return smallest;

10 }
11 .

1 Dump of assembler code for function getSmallest:
2 0x40059a <+4>: mov %edi,-0x14(%rbp)
3 0x40059d <+7>: mov %esi,-0x18(%rbp)
4 0x4005a0 <+10>: mov -0x14(%rbp),%eax
5 0x4005a3 <+13>: cmp -0x18(%rbp),%eax
6 0x4005a6 <+16>: jle 0x4005b0 <getSmallest+26>
7 0x4005a8 <+18>: mov -0x18(%rbp),%eax
8 0x4005ae <+24>: jmp 0x4005b9 <getSmallest+35>
9 0x4005b0 <+26>: mov -0x14(%rbp),%eax

10 0x4005b9 <+35>: pop %rbp
11 0x4005ba <+36>: retq

Figure 26: Assembly code of a simple if statement

Again, note that since we are working with int types, the respective parameter registers are %edi and %esi,
the respective lower 32-bits of the registers %rdi and %rsi. Let’s walk through this again.

1. The first mov instruction copies the value located in register %edi (the first parameter, x) and places it
at memory location %rbp-0x14 on the call stack. The instruction pointer (%rip) is set to the address
of the next instruction, or 0x40059d.

2. The second mov instruction copies the value located in register %esi (the second parameter, y) and
places it at memory location %rbp-0x18 on the call stack. The instruction pointer (%rip) updates to
point to the address of the next instruction, or 0x4005a0.
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3. The third mov instruction copies x to register %eax. Register %rip updates to point to the address of
the next instruction in sequence.

4. The cmp instruction compares the value at location %rbp-0x18 (the second parameter, y) to x and sets
appropriate condition code flag registers. Register %rip advances to the address of the next instruction,
or 0x4005a6.

5. The jle instruction at address 0x4005a6 indicates that if x is less than or equal to y, the next instruction
that should execute should be at location <getSmallest+26> and that %rip should be set to address
0x4005b0. Otherwise, %rip is set to the next instruction in sequence, or 0x4005a8.

With the cmov instruction, this can be a lot shorter. With the gcc compiler with level 1 optimizations turned
on, we can see that a lot of redundancies are turned off.

1 <getSmallest>:
2 0x400546 <+0>: cmp %esi,%edi #compare x and y
3 0x400548 <+2>: mov %esi,%eax #copy y to %eax
4 0x40054a <+4>: cmovle %edi,%eax #if (x<=y) copy x to %eax
5 0x40054d <+7>: retq #return %eax

Figure 27: Compiled with gcc -01 -o getSmallest getSmallest.c

Like if statements, loops in assembly can be implementing using jump functions that revisit some instruction
address based on the result on an evaluated condition. Let’s take a look at a basic loop function.

1 int sumUp(int n) {
2 int total = 0;
3 int i = 1;
4

5 while (i <= n) {
6 total += i;
7 i++;
8 }
9 return total;

10 }
11 .
12 .
13 .
14 .
15 .
16 .

1 Dump of assembler code for function sumUp:
2 0x400526 <+0>: push %rbp
3 0x400527 <+1>: mov %rsp,%rbp
4 0x40052a <+4>: mov %edi,-0x14(%rbp)
5 0x40052d <+7>: mov $0x0,-0x8(%rbp)
6 0x400534 <+14>: mov $0x1,-0x4(%rbp)
7 0x40053b <+21>: jmp 0x400547 <sumUp+33>
8 0x40053d <+23>: mov -0x4(%rbp),%eax
9 0x400540 <+26>: add %eax,-0x8(%rbp)

10 0x400543 <+29>: add $0x1,-0x4(%rbp)
11 0x400547 <+33>: mov -0x4(%rbp),%eax
12 0x40054a <+36>: cmp -0x14(%rbp),%eax
13 0x40054d <+39>: jle 0x40053d <sumUp+23>
14 0x40054f <+41>: mov -0x8(%rbp),%eax
15 0x400552 <+44>: pop %rbp
16 0x400553 <+45>: retq

Figure 28: Simple loop function in C and assembly.

Finally, we want to let the reader know the convention of calle and caller saved registers. The compiler tries
to pick these registers, and by convention in x86, we have the following.
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Figure 29: Caller save and callee save registers.

So far, we’ve traced through simple functions in assembly. In this section, we discuss the interaction between
multiple functions in assembly in the context of a larger program. We also introduce some new instructions
involved with function management.

Definition 4.44 (Leave)

The leave instruction is used to deallocate the current stack frame. For example, the leaveq instruc-
tion is a shorthand that the compiler uses to restore the stack and frame pointers as it prepares to
leave a function. When the callee function finishes execution, leaveq ensures that the frame pointer
is restored to its previous value. It is equivalent to the following two instructions:

leaveq movq %rbp, %rsp

popq %rbp

Definition 4.45 (Call and Return)

The call instruction is used to call a function and the ret to return from a function. The callq
and retq instructions play a prominent role in the process where one function calls another. Both
instructions modify the instruction pointer (register %rip).

1. When the caller function executes the callq instruction, the current value of %rip is saved on
the stack to represent the return address, or the program address at which the caller resumes
executing once the callee function finishes. The callq instruction also replaces the value of %rip
with the address of the callee function.

callq addr <fname> push %rip

mov addr, %rip

2. The retq instruction restores the value of %rip to the value saved on the stack, ensuring that
the program resumes execution at the program address specified in the caller function. Any
value returned by the callee is stored in %rax or one of its component registers (e.g., %eax).
The retq instruction is usually the last instruction that executes in any function.

retq pop %rip
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Let’s work through an example to solidify our knowledge.

Example 4.23 (Calling Functions in Assembly)

Let’s take the following code and trace through main.

1 #include <stdio.h>
2

3 int assign(void) {
4 int y = 40;
5 return y;
6 }
7

8 int adder(void) {
9 int a;

10 return a + 2;
11 }
12

13 int main(void) {
14 int x;
15 assign();
16 x = adder();
17 printf("x is:

%d\n", x);
18 return 0;
19 }
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .

1 0000000000400526 <assign>:
2 400526: 55 push %rbp
3 400527: 48 89 e5 mov %rsp,%rbp
4 40052a: c7 45 fc 28 00 00 00 movl $0x28,-0x4(%rbp)
5 400531: 8b 45 fc mov -0x4(%rbp),%eax
6 400534: 5d pop %rbp
7 400535: c3 retq
8

9 0000000000400536 <adder>:
10 400536: 55 push %rbp
11 400537: 48 89 e5 mov %rsp,%rbp
12 40053a: 8b 45 fc mov -0x4(%rbp),%eax
13 40053d: 83 c0 02 add $0x2,%eax
14 400540: 5d pop %rbp
15 400541: c3 retq
16

17 0000000000400542 <main>:
18 400542: 55 push %rbp
19 400543: 48 89 e5 mov %rsp,%rbp
20 400546: 48 83 ec 10 sub $0x10,%rsp
21 40054a: e8 e3 ff ff ff callq 400526 <assign>
22 40054f: e8 d2 ff ff ff callq 400536 <adder>
23 400554: 89 45 fc mov %eax,-0x4(%rbp)
24 400557: 8b 45 fc mov -0x4(%rbp),%eax
25 40055a: 89 c6 mov %eax,%esi
26 40055c: bf 04 06 40 00 mov $0x400604,%edi
27 400561: b8 00 00 00 00 mov $0x0,%eax
28 400566: e8 95 fe ff ff callq 400400

<printf@plt>
29 40056b: b8 00 00 00 00 mov $0x0,%eax
30 400570: c9 leaveq
31 400571: c3 retq

Figure 30: C code and its assembly equivalent. Main function calls two other functions.

Let’s trace through what happens here in detail. This will be long.
1. %rbp is the base pointer that is initialized to something. Before we even begin main, say that

we have the following initializations, where %eax, %edi is garbage. %rsp denotes where on the
stack we are right before calling to main, %rbp is the base pointer to the current program, and
%rip should be the address of the first instruction in main. Again since we work with integers
we use the lower 32-bits of the registers. %rip now points to the next instruction.
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2. Now we start the main function. By calling main, the base pointer %rbp of the stack outside
of the main frame will be overwritten by the base of the main stack frame, so we must save it
for when main is done. Therefore, we push it onto the stack where %rsp is pointing. %rip now
points to the next instruction.

3. Then we actually change the location of the base pointer to the top of the stack, which now
includes the first instruction in main.
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4. Now we manually change the stack pointer and have it grow by two bytes (0x10). Therefore,
%rsp is decremented by 0x10 and %rip points to the next instruction at 0x54a.

5. Now the next instruction pointed at by %rip is the callq instruction, which tells to go to the
address of the assign function. We by default first update %rip to point to the next instruction
at 0x55f. However, this should not be the actual next instruction that we execute since we are
calling another function. Rather, we want to update %rip to address 0x526 where assign is
located at, but after completion we also want to know that we want to execute the instruction
after it at address 0x55f. Therefore, we should save address 0x55f onto the stack and then
update %rip to point to 0x526. This is what we refer to as a return address.

49/ 130



Muchang Bahng Spring 2024

6. %rip is incremented to the next address. We step into the assign function, which is now a
new stack frame, so the first thing we do is save the base pointer of the main stack frame onto
the stack since we must immediately update it with the base pointer of the assign stack frame,
which is where %rsp is pointing to.

7. %rip is incremented to the next address. We then update the base pointer to the top of the
stack.
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8. Now we want to move the number 0x28 (40) into the memory location -0x4(%rbp) of the stack,
which is 4 bytes above the frame pointer, which is also the stack pointer. It is common that
the frame pointer is used to reference locations on the stack. Note that this does not update
the stack pointer.

9. Now we take the same address where we stored 0x28 to and move it into %eax, effectively
loading 40 onto the return value.
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10. We see that we will return this value soon, but before we do, we want to make sure that when
the assign stack frame gets deleted (not really, but overwritten), we want to restore the base
pointer of the main stack frame. We have already saved this before at %rsp, which hasn’t
changed since we only worked with displacements from the base pointer. We retrieve the main
stack pointer data and load it back into %rbp. Note that this increments %rsp by 8 bytes,
shrinking the stack, and we are technically out of the assign stack frame.

11. Note that at this point, since %rbp was popped off, the next value that is at the top of the stack
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is the address %rip that we store earlier, which points to the next execution in main. When
retq executes, this value at the top of the stack is popped into %rip, allowing main to continue
executing within the main stack frame. Note that the return value is stored in %eax.

12. Now we execute the next instruction in %rip which is a call to the adder function. %rip is
automatically updated to the next address at 0x554, but since this is a callq instruction, we
first want to store this %rip into the stack so we can come back to it, and then update %rip to
the first instruction in adder, which is address 0x536.

13. Since we are in the adder function, this creates a new stack frame and we must update %rbp.
Again, we don’t want to overwrite the base pointer of main, so we save it onto the stack by
pushing %rbp.
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14. Then we update %rbp to the current stack pointer.

15. This part is a bit tricky. Note that the value of 0x28 still lives at 0xd1c, which is conveniently
at address -0x4(%rbp). Therefore, when we call int a; in that corresponding line in adder,
we can actually add 2 to it, though it seems like there was no value assigned to it. This is just
a trick though. So, we can take these remnant value and store it into %eax.
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16. We then add 2 to it.

17. Now we are almost done, so we pop the base pointer of the main stack frame, at 0xd40, back
into %rbp.
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18. We now return the value in %eax and pop the base pointer of the adder stack frame, which
simply updates the instruction pointer %rip back to the next instruction in main. This is
equivalent to pop %rip, which is equivalent to moving the stack pointer %rsp into %rip and
then shrinking the stack by 8 bytes subq $8, %rsp.

19. Now it is relatively straightforward since we do the rest in main (except for the print statement).
The current value in %eax represents the return value of adder. We want to put this in the
variable x, which we have already allocated some memory for right above the base pointer in
the main stack frame. We move it there. Note that right after, it places this right back into
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%eax.

20. the mov instruction at address 0x55a copies the value in %eax (or 0x2A) to register %esi, which
is the 32-bit component register associated with %rsi and typically stores the second parameter
to a function. We can see why since this will be put into a print statement, which is a function,
and x = %esi is the second argument of printf.

21. Now we want to retrieve the first argument of the print function. The address at $0x400604 is
some address in the code segment memory that holds the string "x is %d\n".
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22. Then we move 0 into the %eax register to clear it.

23. We then call the printf function, which we won’t trace through but it outputs to stdout.
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24. The print function might have returned something, but we don’t care. We want to main function
to return 0, so we move 0 into %eax.

25. Finally we execute leaveq, which prepares the stack for returning from the function call. It
essentially moves the base pointer back to the stack pointer and then pops the base pointer off
the stack. The new %rbp is the original base pointer of whatever was outside the main function,
0x830.
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26. Finally, we execute retq, which pops the return address off the stack and puts it into %rip.

We have omitted the details of caller and callee saved registers, but they do exist and are important for the
general implementations.

For arrays, there’s not anything new here. Let’s go over some code and follow through it.

1 int sumArray(int *array, int length) {
2 int i, total = 0;
3 for (i = 0; i < length; i++) {
4 total += array[i];
5 }
6 return total;
7 }

This function takes the address of an array and the length of it and sums up all the elements in the array.

1 0x400686 <+0>: push %rbp # save %rbp
2 0x400687 <+1>: mov %rsp,%rbp # update %rbp (new stack frame)
3 0x40068a <+4>: mov %rdi,-0x18(%rbp) # copy array to %rbp-0x18
4 0x40068e <+8>: mov %esi,-0x1c(%rbp) # copy length to %rbp-0x1c
5 0x400691 <+11>: movl $0x0,-0x4(%rbp) # copy 0 to %rbp-0x4 (total)
6 0x400698 <+18>: movl $0x0,-0x8(%rbp) # copy 0 to %rbp-0x8 (i)
7 0x40069f <+25>: jmp 0x4006be <sumArray+56> # goto <sumArray+56>
8 0x4006a1 <+27>: mov -0x8(%rbp),%eax # copy i to %eax
9 0x4006a4 <+30>: cltq # convert i to a 64-bit integer

10 0x4006a6 <+32>: lea 0x0(,%rax,4),%rdx # copy i*4 to %rdx
11 0x4006ae <+40>: mov -0x18(%rbp),%rax # copy array to %rax
12 0x4006b2 <+44>: add %rdx,%rax # compute array+i*4, store in %rax
13 0x4006b5 <+47>: mov (%rax),%eax # copy array[i] to %eax
14 0x4006b7 <+49>: add %eax,-0x4(%rbp) # add %eax to total
15 0x4006ba <+52>: addl $0x1,-0x8(%rbp) # add 1 to i (i+=1)
16 0x4006be <+56>: mov -0x8(%rbp),%eax # copy i to %eax
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17 0x4006c1 <+59>: cmp -0x1c(%rbp),%eax # compare i to length
18 0x4006c4 <+62>: jl 0x4006a1 <sumArray+27> # if i<length goto <sumArray+27>
19 0x4006c6 <+64>: mov -0x4(%rbp),%eax # copy total to %eax
20 0x4006c9 <+67>: pop %rbp # prepare to leave the function
21 0x4006ca <+68>: retq # return total

4.4.6 ARM Instructions

4.4.7 Buffer Overflows

5 Compiling and Linking
Now let’s talk about how this compiling actually happens. Compiling is actually an umbrella term that is
misused. Turning at C file into an executable file consists of multiple intermediate steps, one of which is
actually compiling, but the whole series is sometimes referred to as compiling. A more accurate term would
be building. Before we get onto it, there are two types of compilers.

Definition 5.1 (GCC, CLang)

The two mainstream compilers used is GCC (with the gdb debugger) and Clang (with lldb). For
now, the difference is that

1. gcc is more established.
2. clang is newer and has more features.

A useful flag to know is that we can always specify the name of the (final or intermediary) output
file with the -o flag.

Definition 5.2 (Complete Build Process)

To actually turn a C file into an executable file, we need to go through a series of steps. We start off
with the C code, which are the .c, .cpp, or .h files.

1. Preprocessing: The precompiler step expands the preprocessor directives (all the #include
and #define statements) and removes comments. This results in a .i file. The preprocessor
will replace these macros with the actual code. This results in a .i file.

1 clang/gcc -E main.c -o main.i

2. Compiling: We take these and generate assembly code. This results in a .asm or .s file.

1 clang/gcc -S main.c -o main.s

3. Assembler: We take the assembly code and generate machine code in the form of relocatable
binary object code (this is machine code, not assembly). This results in a .o or .obj file.

1 clang/gcc -c main.c -o main.o

4. Linking: We take these object files and link them together to form an executable file. This
results in a .exe or .out file.

The GCC or CLang compiler automates this process for us. For example, gcc -c hello.c generates
an object file, taking care of the preprocessing, compiling, and assembling code. Then, gcc hello.o
links the object file to generate an executable file.

There are a lot of questions to be asked here, and we will go through them step by step.
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5.1 Precompiling Stage
Just like how Python package managers like conda have specific directories that they find package in, the C
library also has a certain directory.

Definition 5.3 (Standard Library Directory)

In Linux systems, there are two main directories you look at:
1. /usr/include contains the standard C library headers.
2. /usr/local/include contains the headers for libraries that you install yourself.

In Mac Silicon, these directories are a little bit more involved. You must first install the xcode
command line developer tools, which will then create these directories.

1. The standard C library headers are in

/Library/Developer/CommandLineTools/SDKs/MacOSX*.sdk/usr/include.

In here, we can find all the relevant import files like stdio.h and such. When we precompile, the output .i
file represents a precompiled C file. It still has C code, but it has been optimized to

1. Remove comments.

2. Replace all the #include statements with the actual code.

3. Replace all the global variables declared in #define with the actual value.

Between x86 and ARM, there are no significant differences in how C files are precompiled.

Example 5.1 ()

Take a look at the following minimal example.

1 #include "second.h"
2 #define a 3
3

4 int add(int x, int y) {
5 return x + y;
6 }
7

8 int main() {
9 // test comment

10 int b = 5;
11 int c = add(a, b);
12 int d = subtract(a, b);
13 return 0;
14 }

1 int subtract(int a, int b) {
2 return a - b;
3 }
4 .
5 .
6 .
7 .
8 .
9 .

10 .
11 .
12 .
13 .
14 .

Figure 31: I have included a main.c file that imports statements from a second.h file.

Now, I run gcc -E main.c -o main.i to generate the precompiled file, which gives me the following.
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1 # 1 "main.c"
2 # 1 "<built-in>" 1
3 # 1 "<built-in>" 3
4 # 418 "<built-in>" 3
5 # 1 "<command line>" 1
6 # 1 "<built-in>" 2
7 # 1 "main.c" 2
8 # 1 "./second.h" 1
9 int subtract(int a, int b) {

10 return a - b;
11 }
12 # 2 "main.c" 2
13

14

15 int add(int x, int y) {
16 return x + y;
17 }
18

19 int main() {
20

21 int b = 5;
22 int c = add(3, b);
23 int d = subtract(3, b);
24 return 0;
25 }

Figure 32: The precompiled file.

Notice a few things:
1. The header file second.h has been replaced with the actual code.
2. The comments have indeed been removed.
3. The global variable a has been replaced with the actual value 3.

This leaves us with the question of what all the rest of the lines that start with a # are for. They are called
preprocessor directives.

Definition 5.4 (Preprocessor Directives)

Preprocessor directives are commands that are executed before the actual compilation begins.
These directives allow additional actions to be taken on the C source code before it is compiled into
object code. Directives are not part of the C language itself, and they are always prefixed with a #
symbol.

1. #include is used to include the contents of a file into the source file. It selects portions of the
file to include based on the file name.

2. #define is used to define a macro, which is a way to give a name to a constant value or a piece
of code.

3. #ifdef, #ifndef, #else, and #endif are used for conditional compilation.
4. #error is used to generate a compilation error.
5. #pragma is used to give the compiler specific instructions.
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5.2 Compiling Stage
Once we have precompiled, we can compile the code into assembly code. For the following two examples, we
will parse through the general syntax of assembly code. It is quite different between x86 and ARM, so we
will use the minimal C code

1 int add(int x, int y) {
2 return x + y;
3 }
4

5 int main() {
6 int a = 3;
7 int b = 5;
8 int c = add(a, b);
9 return 0;

10 }

for both examples.

Example 5.2 (x86 Compiled Assembly Language)

The assmebly code is shown.

1 .
2 .file "main.c"
3 .text
4 .globl add
5 .type add, @function
6 add:
7 .LFB0:
8 .cfi_startproc
9 endbr64

10 pushq %rbp
11 .cfi_def_cfa_offset 16
12 .cfi_offset 6, -16
13 movq %rsp, %rbp
14 .cfi_def_cfa_register 6
15 movl %edi, -4(%rbp)
16 movl %esi, -8(%rbp)
17 movl -4(%rbp), %edx
18 movl -8(%rbp), %eax
19 addl %edx, %eax
20 popq %rbp
21 .cfi_def_cfa 7, 8
22 ret
23 .cfi_endproc
24 .LFE0:
25 .size add, .-add
26 .globl main
27 .type main, @function
28 main:
29 .LFB1:
30 .cfi_startproc
31 endbr64
32 pushq %rbp
33 .cfi_def_cfa_offset 16
34 .cfi_offset 6, -16
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35 movq %rsp, %rbp
36 .cfi_def_cfa_register 6
37 subq $16, %rsp
38 movl $3, -12(%rbp)
39 movl $5, -8(%rbp)
40 movl -8(%rbp), %edx
41 movl -12(%rbp), %eax
42 movl %edx, %esi
43 movl %eax, %edi
44 call add
45 movl %eax, -4(%rbp)
46 movl $0, %eax
47 leave
48 .cfi_def_cfa 7, 8
49 ret
50 .cfi_endproc
51 .LFE1:
52 .size main, .-main
53 .ident "GCC: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0"
54 .section .note.GNU-stack,"",@progbits
55 .section .note.gnu.property,"a"
56 .align 8
57 .long 1f - 0f
58 .long 4f - 1f
59 .long 5
60 0:
61 .string "GNU"
62 1:
63 .align 8
64 .long 0xc0000002
65 .long 3f - 2f
66 2:
67 .long 0x3
68 3:
69 .align 8
70 4:

Example 5.3 (ARM Compiled Assembly Language)

The assembly code is shown.

1 .
2 .section __TEXT,__text,regular,pure_instructions
3 .build_version macos, 14, 0 sdk_version 14, 4
4 .globl _add ; -- Begin function add
5 .p2align 2
6 _add: ; @add
7 .cfi_startproc
8 ; %bb.0:
9 sub sp, sp, #16

10 .cfi_def_cfa_offset 16
11 str w0, [sp, #12]
12 str w1, [sp, #8]
13 ldr w8, [sp, #12]
14 ldr w9, [sp, #8]
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15 add w0, w8, w9
16 add sp, sp, #16
17 ret
18 .cfi_endproc
19 ; -- End function
20 .globl _main ; -- Begin function main
21 .p2align 2
22 _main: ; @main
23 .cfi_startproc
24 ; %bb.0:
25 sub sp, sp, #48
26 .cfi_def_cfa_offset 48
27 stp x29, x30, [sp, #32] ; 16-byte Folded Spill
28 add x29, sp, #32
29 .cfi_def_cfa w29, 16
30 .cfi_offset w30, -8
31 .cfi_offset w29, -16
32 mov w8, #0
33 str w8, [sp, #12] ; 4-byte Folded Spill
34 stur wzr, [x29, #-4]
35 mov w8, #3
36 stur w8, [x29, #-8]
37 mov w8, #5
38 stur w8, [x29, #-12]
39 ldur w0, [x29, #-8]
40 ldur w1, [x29, #-12]
41 bl _add
42 mov x8, x0
43 ldr w0, [sp, #12] ; 4-byte Folded Reload
44 str w8, [sp, #16]
45 ldp x29, x30, [sp, #32] ; 16-byte Folded Reload
46 add sp, sp, #48
47 ret
48 .cfi_endproc
49 ; -- End function
50 .subsections_via_symbols

We can see that in both examples, there are generally two types of codes.

1. The regular CPU operations with registers and memory.

2. Some code starts off with some code that starts with a .. Every line that starts with a . are called
assembler directives.

Let’s elaborate more on what these directives are.

Definition 5.5 (Assembler Directives)

An assembler directives are instructions in assembly language programming that that give com-
mands to the assembler (which then converts this to an object file) about various aspects of the
assembly process, but they do not represent actual CPU instructions that execute in the program.
Unlike typical assembly language instructions that directly manipulate registers and execute arith-
metic or logical operations, directives are used to organize, control, and provide necessary information
for the assembly and linking of binary programs. They can manage memory allocation, define sym-
bols, control compilation settings, and much more.
There are general types of directives that are common in both x86 and ARM that we should be aware
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about:
1. Section directives.
2. Data allocation directives.
3. Symbol definition directives.
4. Macro and Include directives.
5. Debugging and error handling directives.

Example 5.4 (x86 Assembly Directives)

Let us elaborate on the specific directives in the x86 assembly code, some of which are in the example
above.

1. .file "main.c" is a directive that tells the assembler that the following code is from the file
main.c. It is a form of metadata.

2. .text is a directive that tells the assembler that the following code is the text section (the
text/code portion of memory) of the program. This is where the actual code is stored.

3. .globl add is a directive that tells the assembler that the following code is a global function
called add.

4. .type add, @function is a directive that tells the assembler that the following code is a
function.

Example 5.5 (ARM Assembly Directives)

You also see that there are symbols that represent memory addresses. Let’s elaborate on what symbols
mean.

Definition 5.6 (Symbol)

A symbol is a name that is used to refer to a memory location. It can be a function name, a global
variable, or a local variable.

1. Global symbols are symbols that can be referenced by other object files, e.g. non-static functions
and global variables.

2. Local symbols are symbols that are only visible within the object file, e.g. static functions and
local variables. The linker won’t know about these types.

3. External symbols are referenced by this object file but defined in another object file.

5.3 Objdump
Since we will be using the objdump package quite a lot, it is worth mentioning the different commands you
will use and store them here as a reference. For first readers, don’t expect to know what each of them do,
but rather look back at this for a reference.

5.3.1 ELF and Mach-O Formats

Objdump is a command line utility that is used to display information about object files, which are often
outputted in a specific format. The two main output file types are called ELF (Executable and Linkable
Format) and Mach-O (Mach Object).

Definition 5.7 (ELF)

The Executable and Linkable Format (ELF) is a common standard file format for executables,
object code, shared libraries, and core dumps. It is analogous to a book, with the following parts:

67/ 130



Muchang Bahng Spring 2024

1. Header, which is like the cover of the book. It contains metadata about the file, such as the
architecture, the entry point, and the sections.

2. Sections, which are like chapters. Each section contains the content for some given purpose
or use wthin the program. e.g. .binary is just a block of bytes, .text contains the machine
code, .data contains initialized data, and .bss contains uninitialized data.

3. Symbol Table, is like a detailed table of contents of all defined symbols such as functions,
external (global) variables, local maps, etc.

4. Relocation records, which is like the index of the book that lists references to symbols.
The format is generally as such when you run objdump -d -r hello.o (d represents disassembly
and r represents relocation entries).

1 ELF header # file type
2

3 .text section
4 - code goes here
5

6 .rodata section
7 - read only data
8

9 .data section
10 - initialized global variables
11

12 .bss section
13 - uninitialized global variables
14

15 .symtab section
16 - symbol table (symbol name, type, address)
17

18 .rel.text section
19 - relocation entries for .text section
20 - addresses of instructions that will need to be modified in the executable.
21

22 .rel.data section
23 - relocation info for .data section
24 - addresses of pointer data that will need to be modified in the merged executable.
25

26 .debug section
27 - info for symbolic debugging (gcc -g)

Definition 5.8 (Mach-O)

5.3.2 Objdump Commands

Theorem 5.1 (File Headers with Objdump)

Given that you have an object file, the first thing you might want to do is see the file header. You
do with this objdump -f main.o.

1 main.o: file format elf64-x86-64
2 architecture: i386:x86-64, flags 0x00000011:
3 HAS_RELOC, HAS_SYMS
4 start address 0x0000000000000000
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Theorem 5.2 (Section with Objdump)

To look at the section headers to get a closer overview, you use objdump -h main.o.

1 main.o: file format elf64-x86-64
2

3 Sections:
4 Idx Name Size VMA LMA File off Algn
5 0 .text 0000004b 0000000000000000 0000000000000000 00000040 2**0
6 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
7 1 .data 00000000 0000000000000000 0000000000000000 0000008b 2**0
8 CONTENTS, ALLOC, LOAD, DATA
9 2 .bss 00000000 0000000000000000 0000000000000000 0000008b 2**0

10 ALLOC
11 3 .comment 0000002c 0000000000000000 0000000000000000 0000008b 2**0
12 CONTENTS, READONLY
13 4 .note.GNU-stack 00000000 0000000000000000 0000000000000000 000000b7 2**0
14 CONTENTS, READONLY
15 5 .note.gnu.property 00000020 0000000000000000 0000000000000000 000000b8 2**3
16 CONTENTS, ALLOC, LOAD, READONLY, DATA
17 6 .eh_frame 00000058 0000000000000000 0000000000000000 000000d8 2**3
18 CONTENTS, ALLOC, LOAD, RELOC, READONLY, DATA

Theorem 5.3 (Disassembly with Objdump)

Now you might actually want to look at the disassembly of the code, which is what we often use it
for. To do this, you use objdump -D main.o to get the entire output.

1. The leftmost column represents the address of the instruction.
2. The next column represents the machine code of the instruction.
3. The next column represents the assembly code of the instruction.

1 main.o: file format elf64-x86-64
2

3 Disassembly of section .text:
4

5 0000000000000000 <add>:
6 0: f3 0f 1e fa endbr64
7 ...
8 17: c3 retq
9

10 0000000000000018 <main>:
11 18: f3 0f 1e fa endbr64
12 ...
13 4a: c3 retq
14

15 Disassembly of section .comment:
16

17 0000000000000000 <.comment>:
18 0: 00 47 43 add %al,0x43(%rdi)
19 ...
20 2a: 30 00 xor %al,(%rax)
21

22 Disassembly of section .note.gnu.property:
23

24 0000000000000000 <.note.gnu.property>:
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25 0: 04 00 add $0x0,%al
26 ...
27

28 Disassembly of section .eh_frame:
29

30 0000000000000000 <.eh_frame>:
31 0: 14 00 adc $0x0,%al
32 ...

If you just want to look at the contents of the executable sections, then you can use objdump -d
main.o.

1 main.o: file format elf64-x86-64
2

3 Disassembly of section .text:
4

5 0000000000000000 <add>:
6 0: f3 0f 1e fa endbr64
7 4: 55 push %rbp
8 5: 48 89 e5 mov %rsp,%rbp
9 8: 89 7d fc mov %edi,-0x4(%rbp)

10 b: 89 75 f8 mov %esi,-0x8(%rbp)
11 e: 8b 55 fc mov -0x4(%rbp),%edx
12 11: 8b 45 f8 mov -0x8(%rbp),%eax
13 14: 01 d0 add %edx,%eax
14 16: 5d pop %rbp
15 17: c3 retq
16

17 0000000000000018 <main>:
18 18: f3 0f 1e fa endbr64
19 1c: 55 push %rbp
20 1d: 48 89 e5 mov %rsp,%rbp
21 20: 48 83 ec 10 sub $0x10,%rsp
22 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
23 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
24 32: 8b 55 f8 mov -0x8(%rbp),%edx
25 35: 8b 45 f4 mov -0xc(%rbp),%eax
26 38: 89 d6 mov %edx,%esi
27 3a: 89 c7 mov %eax,%edi
28 3c: e8 00 00 00 00 callq 41 <main+0x29>
29 41: 89 45 fc mov %eax,-0x4(%rbp)
30 44: b8 00 00 00 00 mov $0x0,%eax
31 49: c9 leaveq
32 4a: c3 retq

If you want to see the source code intermixed with disassembly, then you can use the -S flag, but
make sure that the object file is a generated with debugging information, i.e. use gcc -c -g main.c
-o main.o.
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1 main.o: file format elf64-x86-64
2

3

4 Disassembly of section .text:
5

6 0000000000000000 <add>:
7 int add(int x, int y) {
8 0: f3 0f 1e fa endbr64
9 4: 55 push %rbp

10 5: 48 89 e5 mov %rsp,%rbp
11 8: 89 7d fc mov %edi,-0x4(%rbp)
12 b: 89 75 f8 mov %esi,-0x8(%rbp)
13 return x + y;
14 e: 8b 55 fc mov -0x4(%rbp),%edx
15 11: 8b 45 f8 mov -0x8(%rbp),%eax
16 14: 01 d0 add %edx,%eax
17 }
18 16: 5d pop %rbp
19 17: c3 retq
20

21 0000000000000018 <main>:
22

23 int main() {
24 18: f3 0f 1e fa endbr64
25 1c: 55 push %rbp
26 1d: 48 89 e5 mov %rsp,%rbp
27 20: 48 83 ec 10 sub $0x10,%rsp
28 int a = 3;
29 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
30 int b = 5;
31 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
32 int c = add(a, b);
33 32: 8b 55 f8 mov -0x8(%rbp),%edx
34 35: 8b 45 f4 mov -0xc(%rbp),%eax
35 38: 89 d6 mov %edx,%esi
36 3a: 89 c7 mov %eax,%edi
37 3c: e8 00 00 00 00 callq 41 <main+0x29>
38 41: 89 45 fc mov %eax,-0x4(%rbp)
39 return 0;
40 44: b8 00 00 00 00 mov $0x0,%eax
41 }
42 49: c9 leaveq
43 4a: c3 retq

Figure 33: Disassembly of the object file back into assembly using objdump -d -S main.o.

Note that you can always see this disassembly with debuggers like gdb or lldb, but objdump generally
works for all architectures.

Theorem 5.4 (Symbol Table)

If you want to look at all the symbols existing within the object file, you use objdump -t main.o (t
for table of symbols).

1. The leftmost column represents the address of the symbol.
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2. The next column represents the type of the symbol. The g and l represent global and local
symbols, respectively. The O and F represent object and function symbols, while the UND and
ABS represent undefined and absolute symbols.

3. The next column represents the section that the symbol is in.
4. The next column represents the size of the symbol.
5. The last column represents the name of the symbol.

1 main.o: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 0000000000000000 l df *ABS* 0000000000000000 main.c
5 0000000000000000 l d .text 0000000000000000 .text
6 0000000000000000 l d .data 0000000000000000 .data
7 0000000000000000 l d .bss 0000000000000000 .bss
8 0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
9 0000000000000000 l d .note.gnu.property 0000000000000000 .note.gnu.property

10 0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
11 0000000000000000 l d .comment 0000000000000000 .comment
12 0000000000000000 g F .text 0000000000000018 add
13 0000000000000018 g F .text 0000000000000033 main

Theorem 5.5 (Relocation Table)

If you want to look then at the relocation table, then you use objdump -r main.o.
1. The leftmost column represents the offset of the relocation (i.e. the location within the section

where this relocation needs to be applied).
2. The second column represents the type of relocation.
3. The third column represents the symbol that this relocation references.

1 main.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.text]:
4 OFFSET TYPE VALUE
5 000000000000003d R_X86_64_PLT32 add-0x0000000000000004
6

7

8 RELOCATION RECORDS FOR [.eh_frame]:
9 OFFSET TYPE VALUE

10 0000000000000020 R_X86_64_PC32 .text
11 0000000000000040 R_X86_64_PC32 .text+0x0000000000000018

5.4 Assembling Stage and Object Files
Now, once you have gotten the object file, you cannot simply open it up in a text edit as it is in machine
code. To actually interpret anything from it, you must disassmble it, meaning that you convert the machine
code back into assembly code. The main software that you use to do this is objdump. Let’s take a look again
at the object file.
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1 Disassembly of section .text:
2

3 0000000000000000 <add>:
4 0: f3 0f 1e fa endbr64
5 4: 55 push %rbp
6 5: 48 89 e5 mov %rsp,%rbp
7 8: 89 7d fc mov %edi,-0x4(%rbp)
8 b: 89 75 f8 mov %esi,-0x8(%rbp)
9 e: 8b 55 fc mov -0x4(%rbp),%edx

10 11: 8b 45 f8 mov -0x8(%rbp),%eax
11 14: 01 d0 add %edx,%eax
12 16: 5d pop %rbp
13 17: c3 retq
14

15 0000000000000018 <main>:
16 18: f3 0f 1e fa endbr64
17 1c: 55 push %rbp
18 1d: 48 89 e5 mov %rsp,%rbp
19 20: 48 83 ec 10 sub $0x10,%rsp
20 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
21 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
22 32: 8b 55 f8 mov -0x8(%rbp),%edx
23 35: 8b 45 f4 mov -0xc(%rbp),%eax
24 38: 89 d6 mov %edx,%esi
25 3a: 89 c7 mov %eax,%edi
26 3c: e8 00 00 00 00 callq 41 <main+0x29>
27 41: 89 45 fc mov %eax,-0x4(%rbp)
28 44: b8 00 00 00 00 mov $0x0,%eax
29 49: c9 leaveq
30 4a: c3 retq

Figure 34: Disassembly of the object file back into assembly using objdump -d main.o.

Let’s note a couple things.

1. The functions are organized by their starting address followed by their name, e.g.

1 0000000000000000 <add>:

Within each function, each line of assembly code is shown. To find the total memory the function takes
up, you can just take the address of the last line and subtract it from the address of the first line. Or
you can literally count the number of bytes in each line (remember 2 hex is 1 byte).

2. The line that calls the add function is 0x0 (00 00 00 00), with is the relative target address intended
to be filled in by the linker. The actual assembly line just says that the function continues on to the
next line at address 0x41. This is because the object file is not aware of where it will be loaded into
memory, and all lines with this opcode e8 00 00 00 00 is intended to be filled in by the linker.

3. Look at address 0x3c. It is calling another function, but the values starting from address 0x3d is 00
00 00 00, which is not the actual address of the function but also a dummy address. This is because
the object file is not aware of where the function is located in memory.
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5.5 Linking Stage and Relocation
5.5.1 Relocation

If the object file is already in machine code, then why do we need a separate linking stage that converts
main.o into main the binary? The reason is stated in the previous section: because the object files uses
relative memory addressing and does not know about which memory is accessed in other object files, we
need to relocate the symbols in the object file to their proper addresses. So how does the linker actually
know how to relocate these symbols into their proper addresses? It uses the relocation table, which contains
information about the addresses that need to be modified in the object file.

1 main.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.text]:
4 OFFSET TYPE VALUE
5 000000000000003d R_X86_64_PLT32 add-0x0000000000000004
6

7

8 RELOCATION RECORDS FOR [.eh_frame]:
9 OFFSET TYPE VALUE

10 0000000000000020 R_X86_64_PC32 .text
11 0000000000000040 R_X86_64_PC32 .text+0x0000000000000018

Figure 35: Relocation table for main.o object file.

Let’s talk about how to actually read this table. We can look at the first entry, which shows an offset of 0x3d.
This represents the offset from the beginning of the .text section where the relocation needs to be applied.
Looking back at the disassembly file, this address 0x3d is precisely where there was a dummy address 00
00 00 00. We want to replace this with the actual address defined in the VALUE column, which is add (with
a slight offset of 0x4, which is typically used to compensate for the PC-relative addressing mode where the
CPU might be adding the length of the instruction to the program counter (PC) before the relocation value
is applied). The type of relocation won’t be covered in our scope. Let’s go through each relocation entry:

1. The first entry is for the add function. If we look at the disassembly, within the main function, the
address 0x3d is where the add function is called. The linker will replace the dummy address with the
actual address of the add function.

1 Disassembly of section .text:
2

3 0000000000000000 <add>:
4 0: f3 0f 1e fa endbr64
5 4: 55 push %rbp
6 5: 48 89 e5 mov %rsp,%rbp
7 8: 89 7d fc mov %edi,-0x4(%rbp)
8 b: 89 75 f8 mov %esi,-0x8(%rbp)
9 e: 8b 55 fc mov -0x4(%rbp),%edx

10 11: 8b 45 f8 mov -0x8(%rbp),%eax
11 14: 01 d0 add %edx,%eax
12 16: 5d pop %rbp
13 17: c3 retq
14

15 0000000000000018 <main>:
16 18: f3 0f 1e fa endbr64
17 1c: 55 push %rbp
18 1d: 48 89 e5 mov %rsp,%rbp
19 20: 48 83 ec 10 sub $0x10,%rsp
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20 24: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
21 2b: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
22 32: 8b 55 f8 mov -0x8(%rbp),%edx
23 35: 8b 45 f4 mov -0xc(%rbp),%eax
24 38: 89 d6 mov %edx,%esi
25 3a: 89 c7 mov %eax,%edi
26 3c: e8 00 00 00 00 callq 41 <main+0x29> <-- here
27 41: 89 45 fc mov %eax,-0x4(%rbp)
28 44: b8 00 00 00 00 mov $0x0,%eax
29 49: c9 leaveq
30 4a: c3 retq

2. The second and third entries are for the .eh_frame section. We can see that the offset of 0x20 and
0x40 represents the following lines below. They also have dummy addresses that need to be replaced.
They are replaced by the address .text, which represents the first address in the .text section, i.e.
the address of the add function, and the address .text+0x18, which represents the address of the main
function.

1 Disassembly of section .eh_frame:
2

3 0000000000000000 <.eh_frame>:
4 0: 14 00 adc $0x0,%al
5 2: 00 00 add %al,(%rax)
6 4: 00 00 add %al,(%rax)
7 6: 00 00 add %al,(%rax)
8 8: 01 7a 52 add %edi,0x52(%rdx)
9 b: 00 01 add %al,(%rcx)

10 d: 78 10 js 1f <.eh_frame+0x1f>
11 f: 01 1b add %ebx,(%rbx)
12 11: 0c 07 or $0x7,%al
13 13: 08 90 01 00 00 1c or %dl,0x1c000001(%rax)
14 19: 00 00 add %al,(%rax)
15 1b: 00 1c 00 add %bl,(%rax,%rax,1)
16 1e: 00 00 add %al,(%rax)
17 20: 00 00 add %al,(%rax) <-- here for 2nd entry
18 22: 00 00 add %al,(%rax)
19 24: 18 00 sbb %al,(%rax)
20 26: 00 00 add %al,(%rax)
21 28: 00 45 0e add %al,0xe(%rbp)
22 2b: 10 86 02 43 0d 06 adc %al,0x60d4302(%rsi)
23 31: 4f 0c 07 rex.WRXB or $0x7,%al
24 34: 08 00 or %al,(%rax)
25 36: 00 00 add %al,(%rax)
26 38: 1c 00 sbb $0x0,%al
27 3a: 00 00 add %al,(%rax)
28 3c: 3c 00 cmp $0x0,%al
29 3e: 00 00 add %al,(%rax)
30 40: 00 00 add %al,(%rax) <-- here for 3rd entry
31 42: 00 00 add %al,(%rax)
32 44: 33 00 xor (%rax),%eax

Therefore, we can see that the object file generates a “skeleton” code that contains all the instructions, with
some dummy addresses that need to be replaced. The relocation table T tells us exactly where these dummy
addresses are in the code and what they need to be replaced with. Therefore, if we want to call a function
printf that is in the text section at address 0x30, then we can actually look at the value at T[30] to see
where the actual address is. At this point, note that we still do not know the actual memory address of add.
This is determined by the linker.
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5.5.2 Linking with One Object File

Now let’s see what happens once we link the object file main.o into the final executable main. If we
disassemble it, then we can see a few things:

1. The addresses of all the functions have been changed. add starts on address 0x1129 rather than 0x0
and main starts on address 0x1141 rather than 0x18.

2. The dummy address 0x0 of the call to function add in main have been replaced with the actual addresses
0x1129.

1 0000000000001129 <add>:
2 1129: f3 0f 1e fa endbr64
3 112d: 55 push %rbp
4 112e: 48 89 e5 mov %rsp,%rbp
5 1131: 89 7d fc mov %edi,-0x4(%rbp)
6 1134: 89 75 f8 mov %esi,-0x8(%rbp)
7 1137: 8b 55 fc mov -0x4(%rbp),%edx
8 113a: 8b 45 f8 mov -0x8(%rbp),%eax
9 113d: 01 d0 add %edx,%eax

10 113f: 5d pop %rbp
11 1140: c3 retq
12

13 0000000000001141 <main>:
14 1141: f3 0f 1e fa endbr64
15 1145: 55 push %rbp
16 1146: 48 89 e5 mov %rsp,%rbp
17 1149: 48 83 ec 10 sub $0x10,%rsp
18 114d: c7 45 f4 03 00 00 00 movl $0x3,-0xc(%rbp)
19 1154: c7 45 f8 05 00 00 00 movl $0x5,-0x8(%rbp)
20 115b: 8b 55 f8 mov -0x8(%rbp),%edx
21 115e: 8b 45 f4 mov -0xc(%rbp),%eax
22 1161: 89 d6 mov %edx,%esi
23 1163: 89 c7 mov %eax,%edi
24 1165: e8 bf ff ff ff callq 1129 <add> <-- replaced with actual address
25 116a: 89 45 fc mov %eax,-0x4(%rbp)
26 116d: b8 00 00 00 00 mov $0x0,%eax
27 1172: c9 leaveq
28 1173: c3 retq
29 1174: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
30 117b: 00 00 00
31 117e: 66 90 xchg %ax,%ax

5.5.3 Global vs External Symbols

So far, we have talked about using the #include as a precompiling command that says “put all the text from
this other file right here.” Take the following code for instance.
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1 // file1.c
2 #include "sum.h"
3

4 int array[2] = {1, 2};
5

6 int main() {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.h
2 int sum(int *a, int n) {
3 int i, s = 0;
4 for (i = 0; i < n; i++) {
5 s += a[i];
6 }
7 return s;
8 }
9 .

Figure 36: Including a header file in file1.c to import functions and variables.

However, there is another way to do this. We can use external symbols to access. Rather than simply copying
and pasting the code into the file, the extern keyword marks that the variable or function exists externally
to this source file and does not allocate storage for it.

1 // main.c
2 extern int sum(int *array, int n);
3

4 int array[2] = {1, 2};
5

6 int main(void) {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.c
2 int sum(int *array, int n) {
3 int i, s = 0 ;
4 for (int i = 0; i < n; i++) {
5 s += array[i];
6 }
7 return s;
8 }
9 .

Figure 37: Using external symbols to access functions and variables.

One is not a replacement for the other, so what advantage does this have? Well, as we will see, if we have
multiple object (source) files, say A.c, B.c, and C.c, that need to reference the same function or variable
var in ext.c, then how would we do this? If we simply put #include "ext.h" in all the files, then we
would have multiple copies of the same code. This means that for each source there would be its own copy
of var created and the linker would be unable to resolve this symbol. However, if we put extern int var;
at the top of each source file, then only one copy of var would be created (in ext.c), which creates a single
instance of var for the linker to resolve. 2

Therefore, there are three types of symbols (variables, functions, etc.) that we need to consider:

1. Global symbols that are defined in the global scope of a C file.

2. Local symbols that are defined in the local scope of a C file, e.g. within functions, loops, etc.

3. External symbols that are defined in another C file referenced by the extern keyword.

Linkers will only know about global and external symbols, and will have no idea that any local symbols
exist. With the information of these two types of symbols and the relocation tables of each object file, the
linker can then resolve the addresses of all the symbols in the final binary.

The two types of symbols that the linker will know about are the global and external symbols. We can see
that external symbols can be problematic if the object files don’t know about each other.

2https://stackoverflow.com/questions/1330114/whats-the-difference-between-using-extern-and-including-header-files
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Example 5.6 (Global and Local Symbols)

Consider the following code where the left file includes the right file.

1 // main.c
2 #include "sum.h"
3

4 int array[2] = {1, 2};
5

6 int main() {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.h
2 int sum(int *a, int n) {
3 int i, s = 0;
4 for (i = 0; i < n; i++) {
5 s += a[i];
6 }
7 return s;
8 }
9 .

In the left file,
1. We define the global symbol main().
2. Inside main, val is a local symbol so the linker knows nothing about it.
3. The sum function is an external symbol, and it references a global symbol that’s defined in sum

the right file.
4. The array is a global symbol that is defined in the right file.

In the right file, the linker knows nothing of the local symbols i or s.

5.5.4 Linking with Multiple Object Files

We have seen the case of linking when we simply have one object file. The relocation was simple since the
.text section is contiguous and so we needed simple translations of addresses to relocate add and main,
along with whatever other sections and files. Now let’s consider the case where we have multiple object files.

1 // main.c
2 extern int sum(int *array, int n);
3

4 int array[2] = {1, 2};
5

6 int main(void) {
7 int val = sum(array, 2);
8 return val;
9 }

1 // sum.c
2 int sum(int *array, int n) {
3 int i, s = 0 ;
4 for (int i = 0; i < n; i++) {
5 s += array[i];
6 }
7 return s;
8 }
9 .

Now they have their own object files shown below, where I also put the source code lines to make it easier
to parse. Note that again, in main.o the call to function sum is a dummy address that needs to be replaced.
Furthermore, in both main.o and sum.o, the .text section is at address 0x0, where the addresses of the
function main and sum are, respectively. This causes an overload in the address space.

To demonstrate what happens, we look at how the disassembly, symbol tables, and relocation tables are
updated before (with the object files) and after (in the binary) linking.

Example 5.7 (Disassembly of Object Files)

In here, note that both the array and sum are not initialized and are therefore set to dummy addresses.

1 main.o: file format elf64-x86-64
2 Disassembly of section .text:
3

4 0000000000000000 <main>:
5 extern int sum(int *array, int n);
6
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7 int array[2] = {1, 2};
8

9 int main(void) {
10 0: f3 0f 1e fa endbr64
11 4: 55 push %rbp
12 5: 48 89 e5 mov %rsp,%rbp
13 8: 48 83 ec 10 sub $0x10,%rsp
14 int val = sum(array, 2);
15 c: be 02 00 00 00 mov $0x2,%esi
16 11: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # 18 <main+0x18> <-- dummy

address
17 18: e8 00 00 00 00 callq 1d <main+0x1d> <-- dummy

address
18 1d: 89 45 fc mov %eax,-0x4(%rbp)
19 return val;
20 20: 8b 45 fc mov -0x4(%rbp),%eax
21 }
22 23: c9 leaveq
23 24: c3 retq

1 sum.o: file format elf64-x86-64
2 Disassembly of section .text:
3

4 0000000000000000 <sum>:
5 int sum(int *array, int n) {
6 0: f3 0f 1e fa endbr64
7 4: 55 push %rbp
8 5: 48 89 e5 mov %rsp,%rbp
9 8: 48 89 7d e8 mov %rdi,-0x18(%rbp)

10 c: 89 75 e4 mov %esi,-0x1c(%rbp)
11 int i, s = 0;
12 f: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)
13 for (int i = 0; i < n; i++) {
14 16: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
15 1d: eb 1d jmp 3c <sum+0x3c>
16 s += array[i];
17 1f: 8b 45 fc mov -0x4(%rbp),%eax
18 22: 48 98 cltq
19 24: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4),%rdx
20 2b: 00
21 2c: 48 8b 45 e8 mov -0x18(%rbp),%rax
22 30: 48 01 d0 add %rdx,%rax
23 33: 8b 00 mov (%rax),%eax
24 35: 01 45 f8 add %eax,-0x8(%rbp)
25 for (int i = 0; i < n; i++) {
26 38: 83 45 fc 01 addl $0x1,-0x4(%rbp)
27 3c: 8b 45 fc mov -0x4(%rbp),%eax
28 3f: 3b 45 e4 cmp -0x1c(%rbp),%eax
29 42: 7c db jl 1f <sum+0x1f>
30 }
31 return s;
32 44: 8b 45 f8 mov -0x8(%rbp),%eax
33 }
34 47: 5d pop %rbp
35 48: c3 retq
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1. In main.o at address 0x0, we have the main function and this is because everything is stored
relatively to the start of main. Once we have linked, main shows the absolute addresses of all
the instructions.

2. In instruction 11 in main.o we can see that 48 8d 3d is the lea instruction, which is the same
as that in main. However, the address that is was acting on is 0x0 since the array has not been
initialized yet. We can see in main that the address is now 0x00002ecf.

3. The comment in main indicates that the final relocated address used to access the array is
0x4010. To see relocated addresses in general, just look for the comments and shift them
accordingly.

1 main: file format elf64-x86-64
2

3 0000000000001129 <main>:
4 1129: f3 0f 1e fa endbr64
5 112d: 55 push %rbp
6 112e: 48 89 e5 mov %rsp,%rbp
7 1131: 48 83 ec 10 sub $0x10,%rsp
8 1135: be 02 00 00 00 mov $0x2,%esi
9 113a: 48 8d 3d cf 2e 00 00 lea 0x2ecf(%rip),%rdi # 4010 <array>

10 1141: e8 08 00 00 00 callq 114e <sum>
11 1146: 89 45 fc mov %eax,-0x4(%rbp)
12 1149: 8b 45 fc mov -0x4(%rbp),%eax
13 114c: c9 leaveq
14 114d: c3 retq
15

16 000000000000114e <sum>:
17 114e: f3 0f 1e fa endbr64
18 1152: 55 push %rbp
19 1153: 48 89 e5 mov %rsp,%rbp
20 1156: 48 89 7d e8 mov %rdi,-0x18(%rbp)
21 115a: 89 75 e4 mov %esi,-0x1c(%rbp)
22 ...

Example 5.8 (Symbol Tables of Object Files)

Let’s take a look at the symbol table of each file as well. Again, all of the addresses of each symbol
are 0s since they are using relative addressing. The array and main are global symbols since they
reside in the global scope, while the sum function is an external and undefined symbol.

1 main.o: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 0000000000000000 l df *ABS* 0000000000000000 main.c
5 0000000000000000 l d .text 0000000000000000 .text
6 0000000000000000 l d .data 0000000000000000 .data
7 0000000000000000 l d .bss 0000000000000000 .bss
8 0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
9 0000000000000000 l d .note.gnu.property 0000000000000000 .note.gnu.property

10 0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
11 0000000000000000 l d .comment 0000000000000000 .comment
12 0000000000000000 g O .data 0000000000000008 array
13 0000000000000000 g F .text 0000000000000025 main
14 0000000000000000 *UND* 0000000000000000 _GLOBAL_OFFSET_TABLE_
15 0000000000000000 *UND* 0000000000000000 sum
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1 sum.o: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 0000000000000000 l df *ABS* 0000000000000000 sum.c
5 0000000000000000 l d .text 0000000000000000 .text
6 0000000000000000 l d .data 0000000000000000 .data
7 0000000000000000 l d .bss 0000000000000000 .bss
8 0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
9 0000000000000000 l d .note.gnu.property 0000000000000000 .note.gnu.property

10 0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
11 0000000000000000 l d .comment 0000000000000000 .comment
12 0000000000000000 g F .text 0000000000000049 sum

When we have the linked binary, note a few things.
1. In main.o, the numbers on the left represents the address of the symbol (all 0s since we haven’t

linked yet and their final addresses aren’t known), while the addresses in a.out are all known.
2. In main.o, the sum function is an external symbol and is undefined. The linker will need to

know where this is. In main, note that the sum function is now a global symbol and is defined,
along with the size. We can now see that all the final addresses of each symbol is known, along
with their sizes, and the UND marker is now gone as well.

3. Only the size of the global variable is known in main.o since we have defined it within the code.
However, in main, the linker has now assigned an address to it.

4. To see the size in bytes of the array, you can look at the address and how much size it takes up.

1 main: file format elf64-x86-64
2

3 SYMBOL TABLE:
4 ...
5 0000000000004008 g O .data 0000000000000000 .hidden __dso_handle
6 000000000000114e g F .text 0000000000000049 sum
7 0000000000002000 g O .rodata 0000000000000004 _IO_stdin_used
8 00000000000011a0 g F .text 0000000000000065 __libc_csu_init
9 0000000000004020 g .bss 0000000000000000 _end

10 0000000000001040 g F .text 000000000000002f _start
11 0000000000004018 g .bss 0000000000000000 __bss_start
12 0000000000001129 g F .text 0000000000000025 main
13 0000000000004018 g O .data 0000000000000000 .hidden __TMC_END__
14 ...

Example 5.9 (Relocation Tables)

Ignoring the .eh_frame, in main.o the relocation table contains entries for array and sum that must
be relocated.

1 main.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.text]:
4 OFFSET TYPE VALUE
5 0000000000000014 R_X86_64_PC32 array-0x0000000000000004
6 0000000000000019 R_X86_64_PLT32 sum-0x0000000000000004
7

8 RELOCATION RECORDS FOR [.eh_frame]:
9 OFFSET TYPE VALUE

10 0000000000000020 R_X86_64_PC32 .text
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1 sum.o: file format elf64-x86-64
2

3 RELOCATION RECORDS FOR [.eh_frame]:
4 OFFSET TYPE VALUE
5 0000000000000020 R_X86_64_PC32 .text

We can see a couple things. Namely, there is nothing to be relocated in a.out since everything has
been relocated already by the linker. So let’s focus on the relocation for main.o. In here, we can see
that in the .text section, there are two things being relocated:

1. The reference to the global variable array is being relocated. In this object file, we look at the
offset 0x14 from the beginning of the .text section, which contains the instruction that needs
to access array. This relocation record tells the linker to calculate the 32-bit offset from the
instruction (at offset 0x14) to the start of array, then adjust it by subtracting 4 bytes.

2. The reference to the sum function is being relocated. In this object file, we look at the offset 0x19
from the beginning of the .text section, which contains the instruction that needs to access
sum. This relocation record tells the linker to calculate the 32-bit offset from the instruction
(at offset 0x19) to the start of the .plt section, then adjust it by subtracting 4 bytes.

1 main: file format elf64-x86-64

5.6 Compiler Optimization
We have learned the complete process of compilers, but compilers can be a little smarter than just translating
code line by line. They also come with flags that can optimize the code.

Definition 5.9 (gcc Optimization)

The gcc compiler can optimize the code with the -O flag. To run level 1 optimization, we can write

1 gcc -O1 -o main main.c

The level of optimizations are listed:
1. Level 1 perform basic optimizations to reduce code size and execution time while attempting

to keep compile time to a minimum.
2. Level 2 optimizations include most of GCC’s implemented optimizations that do not involve a

space-performance trade-off.
3. Level 3 performs additional optimizations (such as function inlining) and may cause the program

to take significantly longer to compile.

Let’s see what common implementation are.

Definition 5.10 (Constant Folding)

Constants in the code are evaluated at compile time to reduce the number of resulting instructions.
For example, in the code snippet that follows, macro expansion replaces the statement int debug =
N-5 with int debug = 5-5. Constant folding then updates this statement to int debug = 0.

1 #define N 5
2 int debug = N - 5; //constant folding changes this statement to debug = 0;
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Definition 5.11 (Constant Propagation)

Constant propagation replaces variables with a constant value if such a value is known at compile
time. Consider the following code segment, where the if (debug) statement is replaced with if
(0).

1 int debug = 0;
2

3 int doubleSum(int *array, int length){
4 int i, total = 0;
5 for (i = 0; i < length; i++){
6 total += array[i];
7 if (debug) {
8 printf("array[%d] is: %d\n", i, array[i]);
9 }

10 }
11 return 2 * total;
12 }

Definition 5.12 (Dead Code Elimination)

Dead code elimination removes code that is never executed. For example, in the code snippet that
follows, the if (debug) statement and its body is removed since the value of debug is known to be
0.

1 int debug = 0;
2

3 int doubleSum(int *array, int length){
4 int i, total = 0;
5 for (i = 0; i < length; i++){
6 total += array[i];
7 if (debug) { // remove
8 printf("array[%d] is: %d\n", i, array[i]); // remove
9 } // remove

10 }
11 return 2 * total;
12 }

Definition 5.13 (Simplifying Expressions)

Some instructions are more expensive than others, so things like
1. 2 * total may be replaced with total + total because addition instruction is less expensive

than multiplication.
2. total * 8 may be replaced with total « 3
3. total % 8 may be replaced with total & 7

Note that these optimization techniques are in no way a guarantee that the code will run faster since there
are many factors and always edge cases (for example, maybe some localities are lost). Furthermore, compiler
optimization will never be able to improve runtime complexity (e.g. by replacing bubble sort with quicksort).
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6 Storage Hierarchy

6.1 Expanding on von Neumann Architecture
So far, our model of the computer has been a simple von Neumann architecture which consists of a CPU
and memory. However, there are many other intricacies that are extremely important in practice, and we’ll
expand on each one by one.

Definition 6.1 (Computer Architecture)

In our elaborated computer architecture, a computer consists of the components.
1. A CPU that consists of an arithmetic logic unit (ALU), registers, and a bus interface that

controls the input and output.
2. The IO bridge that handles communication between everything.
3. The system bus that connects the CPU to the IO bridge.
4. The memory bus that connects the memory to the IO bridge.
5. The IO bus that connects the IO devices and disk to the IO bridge.
6. IO devices like mouse, keyboard, and monitor.
7. The disk controller and disk that stores data.

Figure 38: Diagram of the IO bus.

We can see from the diagram above that the CPU can directly access registers (since it’s in the CPU itself)
and the main memory (since it’s connected to the memory bus). However, to access something like the disk,
it must go through the disk controller. This gives us our first categorization of memory.

Definition 6.2 (Primary Storage)

Primary storage devices are directly accessible by the CPU and are used to store data that is
currently being processed. This includes CPU registers, cache memory, and RAM. In memory, the
basic storage unit is normally a cell (one bit per cell), which is the physical material that holds
information. A supercell has address and data widths (number of bits), which is analogous to a lock
number and the lock capacity, respectively. It is called random access since it takes approximately
the same amount of time to access any cell in memory. There are two primary ways that this is
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implemented:
1. Static RAM (SRAM) stores data in small electrical circuits (e.g. latches) and is typically

the fastest type of memory. However, it is more expensive to build, consumers more power, and
occupies more space, limiting the SRAM storage.

2. Dynamic RAM (DRAM) stores data using electrical components (e.g. capacitors) that
hold an electrical charge. It is called dynamic because a DRAM system must frequently refresh
the charge of its capacitors to maintain a stored value. It also requires error correction which
introduces redundancy.

Device Capacity Approx. latency RAM type
Register 4 - 8 bytes < 1 ns SRAM
CPU cache 1 - 32 megabytes 5 ns SRAM
Main memory 4 - 64 gigabytes 100 ns DRAM

Table 4: Memory hierarchy characteristics

Definition 6.3 (Secondary Storage)

Secondary storage devices are not directly accessible by the CPU and are used to store data that
is not currently being processed. This includes hard drives, SSDs, and magnetic tapes. There are
two primary ways:

1. Spinning disks store data on a magnetic surface that spins at high speeds.
2. Solid state drives (SSDs) store data on flash memory chips.

There are three key components of memory that we should think about:

1. The capacity, i.e. amount of data, it can store (how large the water tank is).

2. The latency, i.e. amount of time it takes for a device to respond with data after it has been instructed
to perform a data retrieval operation (how fast the data flows).

3. The transfer rate or thoroughput, i.e. amount of data that can be moved between the device and
main memory (how wide the pipe is). Naively, with one channel and sequential transfer the transfer
rate is one over the latency.

We must provide a good balance of these three qualities, and also note that there are some physical limitations
(i.e. latency cannot be faster than speed of light), and this is more effectively done through a hierarchical
memory system.
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Figure 39: Memory hierarchy.

For example when we want to read from the disk, the CPU must request to the bus interface, which travels
through the bus interface, I/O bridge, I/O bus, disk controller, and to the disk itself. Then the data goes
back through the disk controller, I/O bus, I/O bridge, through the memory bus, and resides in the main
memory. Note that disks are block addressed, so it will transfer the entire block of data into the memory.
It must specify a destination memory address (DMA). When the DMA completes, the disk controller
notifies the CPU with an interrupt (i.e. asserts a special interrupt pin on the CPU), letting it know that the
operation has finished. This signal goes through the disk controller to the IO bridge to the CPU. From now
on, the CPU knows that there is memory that it can access to run an application loaded in memory.

6.2 Disk

Definition 6.4 (Hard Disk Drives)

Back then, there were hard disk drives (HDDs) that literally had a spinning wheel and a needle
head that read the data.
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Figure 40: Visual diagram of hard disk drive with its sectors.

1. HDDs are not random access since the data must be sequentially read. This was disadvantageous
since the spinning wheel had to spin to the correct location, which took time. The needle also
had to move to the correct location, which also took time and therefore read and write speeds
were dominated by the time it took to move the needle.

2. The smallest unit of data that can be read is a complete disk sector (not a single byte like
RAM).

Definition 6.5 (Solid State Drives)

Now, we have solid state drives (SSDs) that store data on flash memory chips. This is advanta-
geous since there are no moving parts, so the latency is much lower and the latency is not dominated
by the time it takes to move the needle.

1. SSDs are random access.
2. The smallest unit of data is a page, which is usually 4KB and maybe for high scale computers

2-4 MB (but on “Big Data” applications big but computers, it can be up to 1GB).
3. A collection of pages, usually 128 pages, is called a block, making is 512KB.

While virtually all RAM and primary storage devices are byte addressable (i.e. you can access any byte
in memory), secondary storage devices are block addressable (i.e. you can only access a block of memory
at a time). Therefore, to access a single byte in secondary storage, you must first load the entire block into
memory, calculate which byte from that block you want, and then access it. Therefore, you need both the
block number x and the offset o to access a byte in secondary storage, which is why it is even slower than
accessing RAM.

Figure 41: Block offset.

Therefore, you can think of raw data in units of blocks of size 2b for some b bits.

1. Take the low order b bits of a byte address as an integer, which is the offset of the addressed byte in
the block.

2. THe rest of the bits are the block number x, which is an unsigned long.

3. You request the block number x, receive the block contents, and then extract the requested byte at
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offset in x i.e. calculate block[x][offset].

6.3 Locality
So far, we have abstracted away most of these memory types as a single entity with nearly instantaneous
access, but in practice this is not the case. The most simple way is to simply have RAM and our CPU
registers, but by introducing more intermediate memory types, we can achieve greater efficiency.

Definition 6.6 (Locality)

Locality is a principle that generally states that a program that accesses a memory location n at
time t is likely to access memory location n+ ϵ at time t+ ϵ. This principle motivates the design of
efficient caches.

1. Temporal locality is the idea that if you access a memory location, you are likely to access it
again soon.

2. Spatial locality is the idea that if you access a memory location, you are likely to access
nearby memory locations soon.

This generally means that if you access some sort of memory, the values around that address is also
likely to be accessed and therefore it is wise to store it closer to your CPU. In CPUs, both the
instructions and the data are stored in the cache, which exploits both kinds of locality (repeated
operations for temporal and nearby data for spatial).

Example 6.1 (Locality)

Consider the following code.

1 int sum_array(int *array, int len) {
2 int i;
3 int sum = 0;
4

5 for (i = 0; i < len; i++) {
6 sum += array[i];
7 }
8

9 return sum;
10 }

1. Temporal Locality
(a) We cycle through each loop repeatedly with the same add operation, exploiting temporal

locality.
(b) The CPU accesses the same memory (stored in variables i, len, sum, array) within each

iteration and therefore at similar times.
2. Spatial Locality

(a) The spatial locality is exploited when the CPU accesses memory locations from each ele-
ment of the array, which are contiguous in memory.

(b) Even though the program accesses each array element only once, a modern system loads
more than one int at a time from memory to the CPU cache. That is, accessing the first
array index fills the cache with not only the first integer but also the next few integers
after it too. Exactly how many additional integers get moved depends on the cache’s block
size. For example, a cache with a 16 byte block size will store array[i] and the elements
in i+1, i+2, i+3.

We can see the differences in spatial locality in the following example.
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Example 6.2 ()

One may find that simply changing the order of loops can cause a significant speed up in your program.
Consider the following code.

1 float averageMat_v1(int **mat, int n) {
2 int i, j, total = 0;
3

4 for (i = 0; i < n; i++) {
5 for (j = 0; j < n; j++) {
6 // Note indexing: [i][j]
7 total += mat[i][j];
8 }
9 }

10 return (float) total / (n * n);
11 }

1 float averageMat_v2(int **mat, int n) {
2 int i, j, total = 0;
3

4 for (j = 0; j < n; j++) {
5 for (i = 0; i < n; i++) {
6 total += mat[i][j];
7 }
8 }
9 return (float) total / (n * n);

10 }
11 .

Figure 42: Two implementations of taking the total sum of all elements in a matrix.

It turns out that the left hand side of the code executes about 5 times faster than the second version.
Consider why. When we iterate through the i first and then the j, we access the values array[i][j]
and then by spatial locality, the next few values in the array, which are array[i][j+1], ... are stored
in the cache.

1. In the left hand side of the code, these next stored values are exactly what is being accessed,
and the CPU can access them in the cache rather than having to go into memory.

2. In the right hand side of the code, these next values are not being accessed since we want to
access array[i+1][j], .... Unfortunately, this is not stored in the cache and so for every n2

loops we have to go back to the memory to retrieve it.

6.4 Caches
In theory, a cache should know which subsets of a program’s memory it should hold, when it should copy
a subset of a program’s data from main memory to the cache (or vice versa), and how it can determine
whether a program’s data is present in the cache. Let’s talk about the third point first. It all starts off with
a CPU requesting some memory address, and we want to determine whether it is in the cache or not. To do
this, we need to look a little deeper into memory addresses.

Definition 6.7 (Portions of Memory Addresses)

A memory address is a m-bit number.a It is divided up into three portions.
1. The tag field with t bits at the beginning.
2. The index field with i bits in the middle.
3. The offset field with o bits at the end.

The tag plus the index together refers to the block number.

Figure 43: Portions of a 16 bit memory address with t = 4, i = 7, o = 5.

a64 in 64-bit machines.

Before we see why we do this, we should also define the portions of a CPU.
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Definition 6.8 (CPU Cache)

A CPU cache divides its storage space as follows. A cache is essentially an array of sets, where S is
the number of sets. Each set is divided into E units called cache lines/rows, with each cache line
independent of all others and contains two important types of information.

1. The cache block stores a subset of program data from main memory, of size 2o.a Sometimes,
the block is referred to as the cache line. Note that is the cache block size is 2o bytes, then the
block offset field has length log2 2

o = o.
2. The metadata stores the valid bit (which tells us if the actual data in memory is valid),

and the tag of length t (the same as the tag length of the memory address) which tells us the
memory address of the data in the cache.

Therefore, the cache size is defined to be C = S · E ·B (the metadata is not included).

Figure 44: Diagram of a direct-mapped cache.

CPU caches are built-in fast memory (SRAM) that stores stuff. There are two types:
1. i-cache stores copies of instructions.
2. d-cache stores copies of data from commonly referenced locations.

We saw that caches come in different levels, they all just hold words retrieved from a higher level of
memory.

1. CPU registers hold words retrieved from L1 cache.
2. L1 holds cache lines retrieved from L2 cache.
3. L2 cache holds cache lines retrieved from L3 cache or the main memory.
4. Main memory holds disk blocks retrieved from local disks.
5. Local disks hold blocks retrieved from remote disks or network servers.
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Figure 45: How caches retrieve data from higher levels of memory.

aIn Intel computers, it is typically 64 bytes long and for Mac Silicon, it is 128 bytes.

Example 6.3 (Simple Calculations)

Given a direct-mapped cache specified by a block size of 8 bytes and a cache capacity of 4 KB,
1. the cache can hold 512 blocks.
2. the block offset field is log2 8 = 3 bits wide.
3. the address 0x1F = 0b00011111 is in block number 3 since the last three bits are the offset, and

whatever is left (passed through the hashamp, which is simply modulo), is the block number.

In I/O caches, software keeps copies of cached items in memory, indexed by name via a hash table.

At the lowest level, registers are explicitly program-controlled, but when accessing any sort of higher memory,
the CPU doesn’t know whether some data is in the cache, memory, or the disk.
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Figure 46

Finally, let’s compare software vs hardware caches.

Definition 6.9 (Software Caches)

When implementing caches in software, there are large time differences (DRAM vs disk, local vs
remote), and they can be tailored to specific uses cases. They also have flexible and sophisticated
approaches with data structures (like trees) and can perform complex computation.

Theoretically, when implementing hash tables, you never actually have to evict something. You can have
the values of the table to be a linked list where we add to the head. If there is unlimited chaining, we have
a full associative cache, and if we have limited chaining (e.g. 5), it is like a 5-way set associative cache. If it
goes out of bound, we can implement LRU by removing the tail of the linked list.

Definition 6.10 (Hardware Caches)

In hardware caches, there are smaller time differences, needs to be as fast as possible, and paralleliza-
tion is emphasized.

There are slightly different implementations of caching, and for each implementation, we will describe

1. how to load data from memory into the cache,

2. how to retrieve data from the cache,

3. how to write data to the cache.

6.4.1 Direct Mapped Cache

A direct mapped cache is a caching implementation when we assume that E = 1, which means that for any
given memory address, there is only one possible cache line that can store this data at that memory address.
That is, the cache is really just a bunch of sets with one cache line each, and each cache line is completely
isolated from the others. Whether we load data from memory into cache or try to retrieve data from the
cache, it’s really the same process.
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Theorem 6.1 (Placement)

To load data from memory into the cache, which happens when there is a cache miss, we do the
following.

1. The CPU requests a memory address M = (T, I,O).
2. There exists a hashmap H that maps the index I to a cache line.
3. At line H(I), we can get a cache miss and must load from memory into this cache.
4. We wait until the memory has retrieved the data from the portion of the memory. i.e. we wait

for the 2o bytes located at addresses (T, I, 0 . . . 0) to (T, I, 1 . . . 1). Call this data D.
5. The 2o byte string D is stored in the cache data block at line M(I),ready to be used.

Theorem 6.2 (Lookup)

To see whether a requested memory address is in the cache, we do the following.
1. The CPU requests a memory address M = (T, I,O).
2. There exists a hashmap H that maps the index I to a cache line.
3. At line H(I), check the cache line’s valid bit. If it is not valid, then this is a cache miss and we

must go to the memory to retrieve the data, leading to the above process.
4. Since there could be multiple I that maps to the same cache line, there will be overlap. But

this is where the tag portion comes in. At cache line H(I), the CPU checks the cache tag to
see if it matches the memory tag T .

5. If it does, then we have just found a way to identify the first t+ i bits of the requested memory
address, and we have gotten a cache hit. Now, we know that the cache’s data block holds the
data that the program is looking for. We use the low-order offset bits of the address to extract
the program’s desired data from the stored block.

Figure 47: Diagram of a cache request. Note that since the entire data in the memory block stored in the
cache, we can take advantage of spatial locality.

So far, we’ve talked about reading operations, but what about writing to the cache? It is generally imple-
mented in two ways.

Definition 6.11 (Write-Through, Write-Back Cache)

Note that when we write data to cache, it does not need to be immediately written to memory,
but rather it can be flushed to memory at a later time. This is efficient since if we have repeated
operations on a single memory address, we don’t have to go back and forth between the CPU and
memory.

1. In a write-through cache, a memory write operation modifies the value in the cache and
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simultaneously writes the value to the corresponding location in memory. It is always synchro-
nized.

2. In a write-back cache, a memory write operation modifies the value stored in the cache’s data
block, but does not update main memory. Instead, the cache sets a dirty bit in the metadata
to indicate that the cache block has been modified. The modified block is only written back to
memory when the block is replaced in the cache.

Figure 48: A dirty bit is a one bit flag that indicates whether the data stored in a cache line has been modified.
When set, the data in the cache line is out o sync with main memory and must be written back (flushed)
back to memory before eviction.

As usual, the difference between the designs reveals a trade-off. Write-through caches are less complex
than write-back caches, and they avoid storing extra metadata in the form of a dirty bit for each
line. On the other hand, write-back caches reduce the cost of repeated writes to the same location in
memory.

Theorem 6.3 (Replacement)

Replacement occurs exactly the same way as if we just did a placement and is trivial. We retrieve
the data block from the memory and store it in the cache. Direct-mapping conveniently determines
which cache line to evict when loading new data. Given new memory M = (T, I,O), you must evict
the cache line at H(I).

6.4.2 N way Set-Associative Cache

Note that for both examples, given a fixed hashmap H it is not possible to store data in two memory
addresses M1 and M2 where both H(I1) = H(I2). Therefore, the choice of hashing must be done so that
it minimizes the number of collisions. So far, we have only considered memory read operations for which a
CPU performs lookups on the cache. Caches must also allows programs to store values. However, there is a
better way to do this: just construct it so that each set has more than one cache line, and so data in index
portions of different memory addresses can be stored in different cache lines.

In here, we deal with E ̸= 1, and so there are multiple set each with multiple lines. This means that the
cache is more like a 2D array, and when we want to retrieve an index, we must look through the H(I)th line
in each set to see if the tag matches.

Theorem 6.4 (Lookup)

To see whether a requested memory address is in the cache, we do the following.
1. The CPU requests a memory address M = (T, I,O).
2. We iterate through each of the S sets in the cache, looking at cache line M(I).
3. For each line, we check if it is valid and if so, whether the line tag matches the memory tag. If

we get a hit, then we have found the data in the cache.
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Figure 49: Diagram of a 2 set-associative cache.

If you have a fully associative cache, then you have one set with E = C/B lines. Therefore, you can
really put any memory address data in any cache line. There is a clear tradeoff here. As we increase N , we
can get more flexibility in using all of our cache space, but the time complexity of retrieving and writing
data scales linearly. In fact, this linear scan is too slow for a cache, which is why you need to implement
some parallel tag search, but this turns out to be quite expensive to build.3

Though we have a more robust implementation with associative mapping, placement and replacement now
face the problem of which set to place the data in or evict existing data.

Theorem 6.5 (Placement)

To load data from memory into the cache this is trivial since we can just go through the sets, find
one where the valid bit is 0, and just place the data there.

In replacement, this is a bit trickier, but using the principle of temporal locality, we can try and replace the
least recently used cache. This tries to minimize cache misses, but not slow down the lookup too much.

Theorem 6.6 (Replacement)

To replace data on the cache, we use the least recently used (LRU) algorithm. This matches
temporal locality, but it also requires some additional state to be kept.

6.4.3 Types of Cache Misses

There are three types of cache misses.

Definition 6.12 (Cold (Compulsory) Miss)

A cold miss occurs when the cache is empty and the CPU requests a memory address. This is the
first time the CPU is requesting this memory address, and so it must go to the memory to retrieve
the data.

3You have to copy the request tag with a circuit and compare it to all the tags in the cache, which turns out to be a much
larger circuit.
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Definition 6.13 (Capacity Miss)

A capacity miss occurs when the cache is full and the CPU requests a memory address that is not
in the cache. This is because the cache is full and so the CPU must evict some data to make space
for the new data.

Definition 6.14 (Conflict Miss)

A conflict miss occurs from premature eviction of a warm block.

Valgrind’s cachegrind mode.

7 Operating Systems
Up until now, we’ve seen the dynamics of how one program works in a computer system. The code, which
first resides in the disk, is fetched (through blocks) into memory, and after compiling (precomiling, compiling,
assembling, linking), we have a binary. The binary is then loaded into memory in the stack frame, and the
CPU executes the instructions. The CPU also has a cache, which stores the most frequently accessed data
during the process, taking advantage of locality for efficiency.

Our computer obvious does not just run one program. It runs several, and to run several, we need some
control mechanism to manage how these programs interact with the CPU, memory, and disk. For example,
one problem is that if we download application A and application B and run their binaries, how do we know
whether they share memory addresses and consequently overwrite each other’s data?4 The operating system
takes care of these, which manages processes that each have their own virtual memory space.

Furthermore, consider some of the components of the computer: the RAM, disk, and IO devices like your
keyboard and monitor. For security reasons, it is not wise to let the user applications (e.g. Chrome or Slack)
control these devices completely. Their power must be restricted in some way.

1. When you have a Chrome window and resize it, Chrome should not be able to modify the pixels outside
that window.

2. When you want to print some statement using printf,

3. When you’re editing a code file with VSCode, you want to limit the application to save to certain parts
of the disk.

4. When you are running Chrome and Slack together, you don’t want them to read each other’s data
directly.

This is also for convenience. Say that if you are creating an application that has the option to save files to
disk, you don’t want to write the hardware backend to write to the disk. You want to just call a function
that writes to the disk, and the OS will take care of the rest.

Definition 7.1 (Operating System)

A common confusion is that people think that the operating system describes the computer itself,
but it is really just another piece of software. What makes this piece of software so special is that it
manages every other software in the computer. It provides generally three services:

1. It multiplexes the hardware resources. Since there are many applications/programs with finite
CPU resources (number of cores) and shared access to storage devices, the OS schedules some
sharing mechanism for execution time on CPU cores and manages access to storage devices.

2. It abstracts the hardware platform. Since each CPU core simply executes a sequence of
instructions, the OS introduces processes and thread abstractions. Furthermore, it introduces

4This is different from linking, where we have relocation tables to ensure that object files do not conflict with each other.
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filesystems (file/directories) on top of raw storage devices.
3. It protects software principals from each other. Since many applications from various users

are using the CPU, the OS provides isolation between them. It enforces user access permission
(read/write) for files.

The OS is booted by the system firmware (BIOS or UEFI), which lives in ROM (sRAM and therefore non-
volatile) and copies the OS from a fixed part of the disk, called the bootloader, into the RAM, which itself
then loads the OS into memory. Once the OS starts running, it loads the rest of itself from disk, discovers
and initializes hardware resources, and initializes its data structures and abstractions to make the system
ready for users.

Definition 7.2 (Kernel)

The kernel is the actual binary that is loaded into RAM that runs the OS. The kernel code and
data resides in a fixed and protected range of addresses, called the kernel space, and user programs
cannot access kernel space.

7.1 Control Flow
When we worked with jumps (conditional and unconditional), calls, and returns in assmebly, all of these
operations were with respect to the program state, which is the isolated environment that the program
is in. One program doesn’t have any clue of what is going on anywhere else, such as other programs or
input/output signals. This means that given what we have learned,

1. programs cannot to write files to the disk (since that is outside the program).

2. programs cannot be terminated by pressing CTRL + C on the keyboard.

3. programs cannot receive data that arrives from the disk.

4. programs cannot send data to the monitor to display.

5. programs cannot react accordingly when there is an instruction to divide by 0.5

To do all these things, we need to have access to the global system state, which the OS has access to.

It turns out that it is impossible for jumps and procedure calls to achieve this, and rather the system needs
mechanisms for exceptional control flow (i.e. control flow that is not within the regular program state),
or commonly referred to as exceptions. This requires the CPU to enter into a more powerful state than its
current place in the program state, called the kernel state. The actual thing that triggers this is called an
interrupt, which can come from both the hardware and software. In the kernel state, the CPU can access
the hardware and perform operations that the program state cannot to handle these exceptions.

Example 7.1 (Interrupts)

Some examples of how the OS can be interrupted is:
1. when one’s WiFi card detects a signal.
2. a hard disk drive may interrupt the OS if a read fails due to a bad sector.
3. an application may request a system call to open a file.
4. If you have 10 applications running on 1 CPU core, you may want the CPU core to run to the

next application every 10 milliseconds. So, there may be a system call every 10 milliseconds in
each program to the OS to switch to the next application.

5I guess you can use a conditional jump to check if the divisor is 0 and then jump to a different part of the code.
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Definition 7.3 (Execution Modes)

The CPU helps with this by providing two execution modes, which is determined by a special bit in
the CPU called the mode bit.

1. In user mode, the CPU executes only user-level instructions and accesses only the memory
locations that the OS makes available to it. It also restricts which hardware components the
CPU can directly access.

2. In kernel mode, the CPU executes any instructions and accesses any memory location (includ-
ing those that store OS instructions and data). It can also directly access hardware components
and execute special instructions.

Note that the execution mode is property of the CPU !

Example 7.2 (Monitor)

A monitor is really just some device that scans a certain portion of memory at a certain frequency
that is higher than the human eye can detect. In user mode, if you try to access this memory buffer,
you get an exception. No user mode can access this memory buffer.

Example 7.3 (Amazon.com)

When you are on Amazon to search up some product, you want to type in some keyword in the search
bar. The web browser, say Chrome, that you are running it on, runs in user mode. When you type in
the keyword, Chrome sends a system call to the OS, triggering the kernel mode which retrieves the
keys that you pressed, and redirects it to Chrome. The same goes with the location of your mouse.
When you move and click on a product, Chrome sends a system call to the OS, which then receives
the mouse location and sends it back to Chrome. The application has no way to directly access the
hardware.

Now specifically, how does one enter in this kernel mode? We’ve already hinted at it before, but to elaborate,
there are 4 types of exceptions.

Definition 7.4 (Types of Exceptions/Interrupts)

As we have mentioned, we go into kernel mode through exceptional control flows. To go back from
the kernel mode to the user mode after the exception handling is done, the kernel must explicitly
give back the control to the user program, which is done with a special instruction, which changes
the CPU to the user mode again. At this point, it can return back to user mode at the current
instruction, next instruction, or abort it.

1. These control flows can either by synchronous (caused by an instruction) or asynchronous
(caused by some other event external to the processor). Asynchronous interrupts are indicated
by setting the processor’s interrupt pins.

2. Furthermore, intentional exceptions transfer control to the OS to perform some function, and
unintentional exceptions happen when there is a bug.

This gives us 4 categories of exceptions.
1. Intentional synchronous exceptions are system calls, aka traps (e.g. printf, open, close,

write, breakpoint traps, special instructions). It returns control to the next instruction.
2. Unintentional synchronous exceptions are faults (possibly recoverable) or aborts (unrecover-

able) (e.g. invalid or protected address or opcode, page fault, overflow, divide by zero). This
automatically triggers the kernel mode which then uses an exception handler to kill the process.

3. Intentional asynchronous exceptions are software interrupts, which is when software requests
an interrupt to be delivered at a later time (e.g. there’s some task you want the kernel to do
later).

4. Unintentional asynchronous exceptions are hardware interrupts caused by an external event
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(e.g. IO such as CTRL + C, op completed, timers which may switch to another application every
10ms, power fail, keyboard, mouse click, disk, receiving a network packet). Unlike system calls,
which come from executing program instructions, hardware interrupts are delivered to the CPU
on an interrupt bus.

Once a system call or hardware interrupt is finished, the program continues to resume back in user
mode.

Figure 50: The CPU and interrupts. User code running on the CPU is interrupted (at time X on the time
line), and OS interrupt handler code runs. After the OS is done handling the interrupt, user code execution
is resumed (at time Y on the time line).

Now the question arises: how does the CPU know where to go when an system call or interrupt occurs?
These are done through tables that map some unique ID number to some functionality. These tables are
stored in a protected memory space reserved by the kernel.

Definition 7.5 (System Call Table)

This is done through the system call table, which is a table of addresses in memory that the CPU
can jump to when a system call occurs. Each system call has a unique number k, and the handler
function k is called each time system call k occurs.

Example 7.4 (Common System Calls)

Some common system calls, or syscalls, are shown below with their unique ID number (in Linux
x64).

Table 5: System Call Functions

Number Name Description
0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to process

Example 7.5 (Syscalls of Open)

Look at the following objdump file below. The corresponding C code just calls open(filename,
options) and the corresponding syscall ID is 0x2. We are simply loading the syscall ID into the
%eax register (only needs last 32 bits since the syscall IDs are quite small), which is then executed
by the syscall instruction to go into the kernel mode.
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1 00000000000e5d70 <__open>:
2 ...
3 e5d79: b8 02 00 00 00 mov $0x2,%eax # 2 is the open syscall number
4 e5d7e: 0f 05 syscall # return value in %rax
5 e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
6 ...

A negative number in %eax gives an error corresponding to negative errorno. It is also worth
mentioning that %eax is used rather than %rdi or %rsi because we need these two parameter registers
as arguments for the open function itself.

Note that whether we are in the program stack or the kernel stack, we always have stack pointers and other
registers to navigate them. In fact, for every CPU core, it has its own set of registers and its own kernel
stack.

Example 7.6 (Syscall of Read)

If we have read syscall, then
1. We use the syscall table to go to the trap handler for the read syscall.
2. The handler identifies the block and allocates a buffer.
3. Then it reads the block from the disk, which may take a while (in CPU time) since it is extremely

slow for all IO tasks. The CPU, while waiting, can be put to sleep for other processes to run
on the CPU. When the disk is done reading, it (the hardware) can send a hardware interrupt
to the CPU, telling it that it is done.

4. Then it copies the block to the user buffer and returns from the syscall back into the user mode
in the program state.

Definition 7.6 (Exception Table)

This is done through the exception table, which is a table of addresses in memory that the CPU
can jump to when an exception occurs. Each type of event has a unique exception number k, and
the handler function k is called each time exception k occurs.a

Figure 51: System call table is stored in a protected memory space reserved by the kernel.

aThis is similar to a hardware implementation of a switch statement in C.

Example 7.7 (Common Exception Numbers)

Some common exception numbers are listed below.
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Table 6: Exception Summary

Exception Number Description Exception Class
0 Divide Error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort

32-255 OS-defined Interrupt or trap

From the application’s point of view, even if an interrupt happens, it just thinks it is running line by line.

Definition 7.7 (Process Address Space)

Interrupts can happen at any time, and one way to efficiently support this execution context switch
from user mode to kernel mode is to do the following. At boot time, the OS loads its kernel code at a
fixed location in RAM. Every time you create a new program state, the OS initializes a CPU register
with the starting address of the OS handler function. On an interrupt, the CPU switches to kernel
mode and executes OS interrupt handler code instructions that are accessible at the top addresses
in every process’s address space. Because every process has the OS mapped to the same location at
the top of its address space, the OS interrupt handler code is able to execute quickly in the context
of any process that is running on the CPU when an interrupt occurs. This OS code can be accessed
only in kernel mode, protecting the OS from user-mode accesses; during regular execution a process
runs in user mode and cannot read or write to the OS addresses mapped into the top of its address
space.a

Figure 52: Process address space: the OS kernel is mapped into the top of every process’s address space.

aHowever, due to security reasons where the user space can read kernel space data, this is obsolete.

In summary, a good visual is that each program runs as independent processes, with its own virtual address
space (elaborated next) and the OS mediates access to shared resources.
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Figure 53: Multiple programs running and controlled by an operating system.

Each process can be in one of three states. It can either be currently running on the state, ready to run,
or if there is a long IO operation, it can be blocked, which is then unblocked with a hardware interrupt.
Usually anything that involves IO puts the state to blocked (e.g. reading data from disk, the keyboard, or
the internet). The pool of processes that are concurrently running is the running and ready states.

Figure 54: Three states that a single process can be in. The pool of processes that are concurrently running is the
running and ready states. The blocked state is waiting to be put back into this pool by a hardware interrupt.

Example 7.8 (Running a Binary)

Therefore, to run a binary file a.out,
1. The kernel first loads the binary file from disk into RAM.
2. Then the OS kernel creates a new process with its own virtual memory stack and its global

variables, etc.
3. Then the CPU’s %rip register point to the address of the main function.
4. The kernel’s virtual memory space is mapped to the top of the process’s virtual memory space,

where it is not visible to the user mode.
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Figure 55: The kernel’s virtual memory space is mapped to the top of the process’s virtual memory space.

7.2 Virtual Memory
We have mentioned that there is a problem where two different application developers, who have linked their
own C files to create binaries, can be installed on one computer and run at the same time. However, the
linking has already been finished and the memory addresses of the symbols in each executable are fixed.
This can be a problem if there are overlaps in the memory addresses.

Definition 7.8 (Virtual Memory)

The actual main memory of our system is referred to as the physical memory. To prevent such
overlaps, the kernel and each user process has its own virtual memory. That is, there exists a
memory management unit (MMU) in the CPU that translates virtual addresses to physical
addresses through a hashmap.

Figure 56: Memory management unit maps each virtual address to a physical address.

103/ 130



Muchang Bahng Spring 2024

This allows the kernel to map the virtual memory of each process to the physical memory.

Figure 57: Each process has its own virtual memory space, which is mapped by the MMU to the physical
memory space.

Example 7.9 (Virtual and Physical Memory Size)

Given a n-bit machine with 2m-bytes of memory, n > m and so there are more virtual addresses than
physical addresses. If we have a 64-bit machine with 16GB of memory, then there are 264 virtual
addresses and 23 · 234 = 237 bits of physical memory. If there are 8 processes running then there are
8 · 264 = 267 bits of virtual memory.

There are many properties of virtual memory that solves a lot of problems and makes things more convenient.
The main property is called indirection which means that the virtual memory is not the actual physical
memory.

1. The first problem is that there are much more virtual addresses than physical addresses. Even storing
a table for one process would take up more than all of your RAM. Therefore, for every byte in main
memory, there exists one physical address (PA) and zero, one, or more virtual addresses (VA). We will
elaborate on the specifics of this implementation later.

2. We also need to have memory management. Every process has its own stack, heap, .text, and .data
sections. We must be able to allocate and deallocate memory and fit this accordingly.

3. We also need to have protection. We need to ensure that one process cannot read or write to another
process’s memory.

4. While we want isolation, we also want sharing between processes if needed (e.g. signing into Slack
using Google on a browser). Furthermore, if there are multiple calls of the printf function, we can
just have a single copy of the printf function in memory rather than having multiple copies for each
process. This can be done through the concept of permissions.

Let’s talk about how we should actually map these addresses. One property of this mapping is that we want
contiguous addresses both in the virtual and the physical level so that we can store arrays, exploit locality,
etc. Therefore, we can use larger blocks known as pages. Just like how we have divided memory addresses
into sections that can be used to map to caches, we can divide the memory addresses into sections that can
be used to map to the physical memory. Note that this also takes care of the first problem partially since
now we can fit this table in the memory.
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Definition 7.9 (Page)

Both in virtual and physical memory, an n-bit address can be divided into a page number and an
offset. The page number is n− 12 and the offset is 12 bits. The page number is used to index into
a page table that maps the page number to a physical address.

Figure 58: A page is a contiguous block of memory addresses.

While the entire page table is stored in memory (at memory stored by a protected CPU register), a
portion of the page table is stored in the CPU cache.

1. The virtual page number (VPN) is equivalent to the block number.
2. The page offset is equivalent to the block offset.

Example 7.10 (Page Number)

In a 64-bit machine with 16GB of RAM, you have 264/212 = 252 virtual pages and 237/212 = 225

physical pages.

Therefore, our translation table is really a map from a virtual page number to a physical page number,
rather than a virtual address to a physical address. This is created at runtime. Therefore,

1. The virtual page number V P is mapped through some map M to get the physical page number PP .

2. The virtual offset is the same as the physical offset.

Definition 7.10 (Page Table)

The page table is a hashmap that maps the virtual page number to the physical page number defined
as the mapping

H : (V P,m)︸ ︷︷ ︸
64 bits

−→ PP (11)

Each input-output pair is called a page table entry (PTE), and virtual memory is fully associa-
tive, meaning that any virtual page can be placed in any physical page, though it requires a large
mapping function (the PT), which is different from CPU caches.
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Figure 59: The page table only needs the virtual page number plus the metadata to map to the physical page
number. The offset is provided by the virtual memory address itself.

Note that while we want to store the 52-bit VP in the page table, the actual input is still 64-bits,
with 12 bits of metadata m. This metadata contains some information about the following

1. A bit that indicates whether the page is a read, write, or executable piece of code (3 bits).
2. A bit that indicates whether the page is valid or not.

Figure 60: The page table entry contains the physical page number and some metadata.

Therefore, if you malloc, you are really just allocating some virtual memory addresses, which then get
mapped to physical memory addresses in one or more pages.

Definition 7.11 (Page Fault)

It is clear that not every virtual page number can be mapped to a physical page number. If it turns
out that a page fault happens if

1. the virtual page number maps to no physical page (i.e. is not in the page table) in the RAM
2. if some user program tries to access a physical page owned by the kernel
3. if the page number maps to some place in the disk (but it is not in physical RAM)

Page faults can be used in a lot of creative ways, but to reduce the risk of a page fault, e.g. when
running out of physical memory, we can move some physical pages into disk and allocate memory by
creating a new entry in our page table that maps this application’s virtual page into the now empty
physical page.

Note that by this construction, instructions that are contiguous in virtual memory may not be contiguous in
physical memory. This may seem like it defeats the purpose of locality, but for most purposes, the 4KB page
size will be enough to exploit it. We also see that malloced addresses in the heap (while we have learned
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that they were higher on the stack on higher addresses), are not necessarily in higher addresses in physical
memory. Therefore, physical memory is scattered, and this is good since you don’t need a giant contiguous
block of memory to run large programs; you can divide it up into multiple physical pages.

Definition 7.12 (Swap Space)

Sometimes, the memory might not be in physical memory. Since memory is constrained (e.g. only
16GB), if we initialize a large array in the stack or global data, we may run out of memory. Therefore,
the OS can flush out some physical pages in memory to disk, which is called swapping. The portion
of the disk space that can be used in swapping is called the swap space.

Figure 61: Swapping out physical pages to disk.

This allows us to abstract software into having almost infinite memory. Another important property
is that swapping is write-back rather than write-through. We really don’t want to write to disk
every time we modify memory, so some thing may never end up on the disk (e.g. stack for short-lived
processes). This is why when we open a file in C or Python, you may have to call close() since that
will flush the memory to disk.

Example 7.11 (Page Fault)

When we swap out a physical page to disk, the physical page is now empty and accessing the virtual
memory at this page table will cause a page fault. Say, when we want to write to a memory address
that is swapped into the disk. The following will happen.

1. You execute code normally in user mode.
2. Then you try to write to a memory address that is swapped out, say through a mov operation.

Say it is the following assembly code.

1 80483b7: c7 05 10 9d 04 08 0d movl $0x0,0x8049d10

This raises a page fault, an exception, and so the OS goes into kernel mode.
3. The kernel then finds the location of this physical page in the disk. The implementation is

OS-specific (e.g. you can store some metadata).
4. Then it must copy the page back from disk into memory, and it may also have to swap out
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some other physical page to disk to make space if needed.
5. Then the OS goes back into user mode, which now has access to the relevant memory in disk.

Ultimately, the moving operation is called twice. The first time it fails in user mode, and the second
time (after the kernel mode, but now back to user mode) it succeeds. Note that this is different from
a system call, which returns back to the next instruction. This call returns to the current instruction.

Definition 7.13 (Page Sharing)

This also makes protection and sharing to be quite nice. Given two virtual pages V P1 and V P2, owned
by two different processes, we can have them share information by mapping to the same physical page
PP .

Section Read Write Execute
Stack 1 1 0
Heap 1 1 0

Static Data 1 1 0
Literals/const 1 0 0
Instructions 1 0 1

Table 7: Permissions for different sections of virtual memory.

Example 7.12 (Page Sharing Between Two Applications)

Furthermore, we can set process 1 to have only read permissions and process 2 to have read/write
permissions. Therefore, say Google Chrome (process 2) can write your password into some memory,
and then Slack (process 1) can read it, copy it into the CPU, and do stuff with it.

Figure 62: Sharing of data between two processes.

Now that we see how memory is swapped in the backend, we can see why larger memory can sometimes
mean faster programs and why thrashing occurs.

Definition 7.14 (Thrashing)

The set of virtual pages that a program is “actively” accessing at any point in time is called its
working set.

1. If the working set of one process is less than physical memory, then there is good performance
for one process.

2. If the working set of all processes is greater than physical memory, then we have thrashing,
which is a performance meltdown where pages are swapped between memory and disk contin-
uously, and the CPU is always waiting or paging.
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Example 7.13 (Computation Exercise)

Suppose that you have 16 KiB pages, 48-bit virtual addresses, and 16 GiB physical memory. How
many bits wide are the following fields?

1. Virtual page number : 48− 14 = 34 bits.
2. Virtual page offset : 16 KiB is 214 bytes, so we need 14 bits.
3. Physical page number : 16 GiB is 234 bytes, so we need 34− 14 = 20 bits.
4. Physical page offset : 16 KiB is 214 bytes, so we need 14 bits.

Furthermore, we have

Figure 63: Given the virtual address, we can figure out the physical address, VPN, and PPN easily.

8 Shared Memory and Concurrency
So far, we’ve talked about everything as a sequential process of instructions. In practicality, we have improved
this from the memory perspective by implementing caches, virtual memory, and swapping, but in the CPU
perspective. In CPUs, we can’t just simply increase the clock frequency indefinitely since there are physical
limitations.6 The current trend is to increase parallelism to compute faster, which is implemented with cores
and threads. Let’s clear some of these definitions up.

Definition 8.1 (Processors, Cores)

In almost every consumer computer, there exists one processor (CPU) in it. The CPU can have
multiple cores. Each core has its own set of registers, L1/L2 cache, and possibly even a shared L3
cache.

Now these cores must run a certain program. Let’s define what this means exactly.

Definition 8.2 (Program, Process)

A program can be thought of as a binary executable produced after linking. A process is a running
instance of some program.

1. It is identified by a process ID (PID) number.
2. It is run on a CPU core, with its own registers.
3. It has its own virtual address space, containing the code (instructions), heap, and pagetable

6It turns out that power consumption increases faster than clock frequency, so it scales badly.
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that maps it to physical memory.

Example 8.1 (Where to look for PIDs)

We can see the PIDs either by using htop (for UNIX systems) or by looking at the /proc directory
in Linux systems. Each directory name represents the PID of the process.

1 ubuntu@passionate-blesbok:/proc$ ls
2 1 118 1368 26 44 590 762 cpuinfo modules
3 10 119 1369 27 448 599 763 crypto mounts
4 101 12 1370 28 45 6 764 devices net
5 1012 120 1371 29 46 605 765 diskstats pagetypeinfo
6 102 1232 138 3 467 608 769 driver partitions
7 103 1234 139 30 468 611 796 execdomains pressure
8 1031 1261 14 309 47 612 8 fb sched_debug
9 1037 129 15 31 471 613 801 filesystems schedstat

10 1038 13 16 32 473 629 810 fs scsi
11 104 132 17 33 474 638 822 interrupts self
12 1043 1342 18 34 475 651 836 iomem slabinfo
13 105 1353 180 35 48 666 850 ioports softirqs
14 106 1354 19 356 49 696 872 irq stat

(a) You can see the PIDs of the process by looking at the /proc directory. This changes quite often as processes
are destroyed and created often, so to maybe track this in real time you might want to run watch -n 0.1 ’ls’.

(b) You can see the PID number of each process (binary) running on the left column when running htop on UNIX
systems.

Figure 64: Two different ways to see the PIDs of all current processes.
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There is a specific numbering to each process.
1. The process with PID 1 is always the kernel process.
2. The smaller PIDs (perhaps less than 300) are also reserved for the kernel, so don’t kill it.

If you go into each process, you can see a few things.

1 ubuntu@passionate-blesbok:/proc/750$ sudo ls
2 attr comm fd map_files net pagemap sessionid statm

uid_map
3 autogroup coredump_filter fdinfo maps ns personality setgroups

status wchan
4 auxv cpuset gid_map mem numa_maps projid_map smaps syscall
5 cgroup cwd io mountinfo oom_adj root smaps_rollup

task
6 clear_refs environ limits mounts oom_score sched stack

timers
7 cmdline exe loginuid mountstats oom_score_adj schedstat stat

timerslack_ns

Figure 65: There are many files in each PID folder that tells you about the process.

1. To get information about the status of this process, you can cat status.
2. The virtual address space is stored in pagemap. If you’re on an 64-bit machine, this file will

be extremely big, so just cat pagemap won’t work. Therefore you should try cat maps, which
shows you something like the following.

1 ubuntu@passionate-blesbok:/proc/750$ sudo cat maps
2 aaaac673c000-aaaac67e3000 r-xp 00000000 08:01 2576

/usr/sbin/rsyslogd
3 aaaac67f3000-aaaac67f6000 r--p 000a7000 08:01 2576

/usr/sbin/rsyslogd
4 aaaac67f6000-aaaac67fd000 rw-p 000aa000 08:01 2576

/usr/sbin/rsyslogd
5 aaaac67fd000-aaaac67fe000 rw-p 00000000 00:00 0
6 aaaadfe94000-aaaadfed7000 rw-p 00000000 00:00 0 [heap]

In here, you can see that the lefthand column represents the range of virtual memory address.
The next column gives us the permissions (read, write, executable, shared/private).

8.1 Process Level Concurrency

Definition 8.3 (Context Switch)

Let us first start off with a single core system. At this point, everything is sequential, and to run all
these processes at oncea we want to use system calls to transition between these processes. This is
called a context switch.
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Figure 66: 5 processes may be executed as such on a single core.

Note that due to context switches, the CPU time, which is the time is takes to run a process on
a CPU, is much shorter than the wall-clock time, which is the time a human perceives a process
takes to complete.

anot programs, since there can be multiple instances of one program, like two Chrome instances. In fact, Chrome
produces multiple processes to help run each part of the browser, so one program may translate to multiple processes.

Note that context switches are expensive. To do one, you must essentially replace two things.

1. First, you need to clear out all the register values. This can be done by storing them in the current
stack at the VAS, which then gets mapped through the page table into the physical address space.

2. Now the register values (like the instruction and stack pointers) are stored safely in the stack in the
VAS, the actual page table must be swapped out too since each process must have its own virtual
address space.

Since it is quite expensive to context switch all the time, the simplest thing to do is add more cores, which
gives us the double benefit of distributing the process workload and having to do less context switches. This
is called physical concurrency, and given the same workload, it speeds up our computation absolutely.
However, this can physically take us so far due to the limited number of cores, and we must go further and
use logical concurrency.

8.2 Thread Level Concurrency
It turns out that it is much more expensive to reload the page table of a new process rather than clearing
out the register values. So, perhaps maybe we can try to implement multiple related “processes” that share
the same VAS, but have their own execution stream (i.e. own stack and registers). This is precisely the
concept of a thread.

Definition 8.4 (Threads)

Threads are multiple execution streams within a single process. To summarize them, a thread is an
execution context within a process that has a...

1. thread ID
2. its own stack frame
3. its own register contexta

This is all that is really needed to execute some computation. Now, given that there are some number
of threads in process K, they share the same virtual address space (VAS), are all under the same
PID, share the same code, static data, heap, and file table. The individual stacks living within the
VAS are protected from each other to avoid stack overflow.
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Figure 67: When there are two threads of a single process, the threads share the same virtual memory
space. However, they each have their own set of registers. For example, they each have their own instruction
pointer that points to the next line of code, along with their own stack pointer. Furthermore, to prevent
stack overflow, there are protection mechanisms that prevent one stack from growing past a certain limit into
another stack owned by a different thread.

Therefore, we can speed up our program in two ways.
1. If we have one core, we can do context switching faster between each thread (since we only have

to load the register values).
2. If we have multiple cores, we can take thread 1 and have it run on one core while taking thread

2 and running it on another core. This is really analogous to having two separate processes on
two cores, but these two processes simply share the same VAS, with the same code, data, and
heap.

aThis does not mean that each process has its own physical registers. It has its own value that is loaded into the
registers. The physical number of registers is determined by the number of CPU cores.

Threads are advantageous for multiple reasons. First, by utilizing multiple cores we can speed up our
program to reduce our CPU time. However, if we are sharing threads between one core, we’re not actually
speeding up anything at all but rather reducing our wall-clock time. The main speedup that we will feel is
that latency heavy tasks will get offloaded to other threads, while more relevant programs can be run on the
main thread. This is explained more in the following example.

Example 8.2 (Mobile Application)

If we have a single threaded messaging mobile app, then this is painfully slow since if we want to
scroll down our messages while also sending and receiving messages, then we would have to wait for
the message to receive from the server, into our disk, and into our memory, before the app responds
when scrolling.
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Figure 68: Single threaded app.

However, if we have a multithreaded app with one thread for the app UI and the other one for the
server through a background thread, then we can have good UI response time.

Figure 69: Multithreaded app. Methods on the UI thread must be fast to ensure user satisfaction while
anything slow can run on a background thread.

The following law gives us a certain bound on how much parallelization can help us. Note that this does
not talk about the responsiveness of an application due to clever thread sharing. It just says given a certain
amount of computational task, how much can we reduce the CPU time with parallelization?

Theorem 8.1 (Amdahl’s Law)

Say that we have code that runs in 1 second. Given that proportion f of our code can be parallelized,
and the speedup for that portion is N , then the new time that our program will take is

Tnew = (1− f) + f/N (12)

since the sequential part 1−f cannot be sped up, and the remaining parallel part f can be sped up by
distributing over N cores. Therefore, defining the speedup as Tnew/Told, we get our total parallelized
speedup is

1

(1− f) + f/N
(13)

Note that it is bounded by the sequential portion as N → ∞.
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Figure 70: Amdahl’s law for different f ’s over multiple number of processors N .

This is implemented in C with the pthread.h library, which is included in the standard library directory
and follows the POSIX (Portable Operating System Interface) standard. Essentially, we want to do the
following:

1. Define a function that will be called for each thread. It must return a void pointer void * and its
arguments must also be a void pointer void *. Think of this as our new main function for each stack
that will be created from each thread.7 Since we are only restricted to a function taking in one void
pointer argument, it is common to define a new struct like arg_t that contains all the parameters you
need to run each thread. The void pointer can be typecast into the struct pointer at the beginning of
each thread function.

2. We create pthread_t objects, which are the thread objects.

3. We call the pthread_create function that takes in the pointer of the thread object, some settings, the
function to be called, and its arguments. At this point, the operating system will determine how these
threads will be run, so you can’t make any sequential assumptions about them.

4. Then we join them using pthread_join, which basically waits until all the threads are complete before
main continues.

We will show two examples that go over this process. But more importantly, the concurrency of these two
examples will show unpredictable behavior.

Example 8.3 (Simply Print out Thread Number)

We can make threads to print out the number. But these aren’t really in the same order.

7Called a function pointer?
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1 #include <stdio.h>
2 #include <pthread.h>
3 #include <stdlib.h>
4

5 void* thread(void* args) {
6 printf("Thread %d\n", *(int*)args);
7 return NULL;
8 }
9

10 int main(int argc, char *argv[]) {
11 int size = 10;
12 pthread_t threads[size];
13 int rc, i;
14

15 // thread creation
16 for (i = 0; i < size; i++) {
17 rc = pthread_create(&threads[i], NULL, thread, &i);
18 }
19

20 // join waits for the threads to finish
21 for (i = 0; i < size; i++) {
22 rc = pthread_join(threads[i], NULL);
23 }
24 return 0;
25 }

1 Thread 1
2 Thread 2
3 Thread 6
4 Thread 3
5 Thread 8
6 Thread 5
7 Thread 2
8 Thread 4
9 Thread 3

10 Thread 3
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .

Figure 71: Threads output shows that the order in which the functions are called cannot be predicted.

8.3 Atomicity Violation Bugs and Mutex Locks
We see that there are some parts of the code that are not meant to be parallelized.

Definition 8.5 (Atomicity-Violation Bugs)

This bug happens when the desired atomicity (indivisibility) among multiple memory accesses is
violated.

Example 8.4 (Atomicity-Violation in SQL)

For example, if we have two threads doing the following (in MySQL):

1 Thread1::
2 if (thd-> proc_info) {
3 ...
4 fputs(thd->proc_info);
5 ...
6 }
7

8 Thread2::
9 thd->proc_info = NULL;

If we pass the if statement but within it, thd->proc_info becomes NULL, then this would be very
bad. Therefore, we should put locks around.
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1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2

3 Thread1::
4 pthread_mutex_lock(&lock);
5 if (thd-> proc_info) {
6 ...
7 fputs(thd->proc_info);
8 ...
9 }

10 pthread_mutex_unlock(&lock);
11

12 Thread2::
13 pthread_mutex_lock(&lock);
14 thd->proc_info = NULL;
15 pthread_mutex_unlock(&lock);

Example 8.5 (Incrementing Shared Counter between Two Threads)

The volatile keyword for counter means that it can be changed by all threads.
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1 #include <stdio.h>
2 #include <pthread.h>
3 #include <stdlib.h>
4

5 static volatile int counter = 0;
6

7 void* thread(void* args) {
8 printf("%s : Start \n", (char*)args);
9

10 for (int i = 0; i < 10 * 1000 * 1000; i++) {
11 counter += 1;
12 }
13

14 printf("%s : End \n", (char*)args);
15 return NULL;
16 }
17

18 int main(int argc, char *argv[]) {
19 pthread_t thread1, thread2;
20

21 int rc;
22 rc = pthread_create(&thread1, NULL, thread, "A");
23 rc = pthread_create(&thread2, NULL, thread, "B");
24

25 rc = pthread_join(thread1, NULL);
26 rc = pthread_join(thread2, NULL);
27

28 printf("Counter : %d\n", counter);
29 return 0;
30 }

1 A : Start
2 B : Start
3 A : End
4 B : End
5 Counter : 10229646
6 .
7 .
8 A : Start
9 B : Start

10 B : End
11 A : End
12 Counter : 14965289
13 .
14 .
15 A : Start
16 B : Start
17 A : End
18 B : End
19 Counter : 10086690
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .

Figure 72: From looking at the behavior, we can see that the start and end times of thread A and thread B
is complete unpredictable. It is only within the sequential nature within each thread (i.e. X : start must
come before X : End that is predictable. More so, after all the increments, the total sum collected by counter
isn’t even 20 million!). The actual speed and ordering of this is determined at runtime.

To really see what’s going on here, we must look into the assmebly code behind this. If we focus on
line 11 when the counter is incremented and look at its assembly, we see

1 7a7: 8b 05 0a 0b 20 00 mov 0x200b0a(%rip),%eax # 200c1c <counter>
2 7ad: 83 c0 01 add $0x1,%eax
3 7b0: 89 05 01 0b 20 00 mov %eax,0x200b01(%rip) # 200c1c <counter>

What this means is that every thread consists of loading the counter value from the instruction
pointer plus an offset into %eax, then adding 1 to it, and then storing it back to the same memory
location (the rip changes, so the memory address between the 1st and 3rd line will be slightly different,
but they are the same address). If we have threads 1 and 2, we can have the following possible
interweavings:

1. (1 loads, 1 adds, 1 stores, 2 loads, 2 adds, 2 stores). This would result in a +2.
2. (1 loads, 1 adds, 2 loads, 2 adds, 2 stores, 1 stores). This would result in a +1 since thread 2

loads before 1 could store the incremented version.
3. (1 loads, 2 loads, 1 adds, 2 adds, 1 stores, 2 stores). This would also result in a +1 for the same

reasons as before.

There is a big problem here: it seems that these things overwrite each other.
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Definition 8.6 (Data Race)

We have just seen an example of a data race, which occurs if two or more threads concurrently
accesses the same memory location with at least one write. The section of code where a data race
can occur is called the critical section.

So how do we address this challenge of concurrency? This is where locks and mutexes come in.

Definition 8.7 (Lock)

A lock is a construct to enforce mutual exclusion in conflicting code sections (critical sections). It is
implemented as a special data object in memory. We can use the API methods

1. acquire() or lock() is called when going into a critical section.
2. and release() or unlock() is called when going out of a critical section.

If the lock is already acquired by a thread and not released yet, then other threads will not be able to
acquire the lock and execute the next instructions. There are two ways this is implemented. First, an
incoming thread can wait if another thread holds the lock, called a spinlock,a or it can be blocked,
called a mutex (mutual exclusion).bc

aThis is mainly implemented through kernel and used almost exclusively for OS development, not application
development.

bThis is mainly implemented in user space.
cThis has a FIFO queue.

To implement this in C, there’s a few things that we have to do.

1. First, make a pthread_mutex_t global variable.

2. Then, make initialize the mutex before you create the threads and destroy the mutex after you join
the threads in the main function.

3. Finally, put the specific locks and unlocks in the locations of the functions that the thread calls.

There are few strategies to correct the counter example above, which all produce the correct output Counter:
20000000.

1. We can put the lock around the entire for loop of the thread function. However, this essentially takes
us back to the sequential regime.
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1 static volatile int counter = 0;
2 pthread_mutex_t mutex; // global declaration of mutex
3

4 void* thread(void* args) {
5 pthread_mutex_lock(&mutex); //acquire the mutex lock
6 for (int i = 0; i < 10 * 1000 * 1000; i++) {
7 counter += 1;
8 }
9 pthread_mutex_unlock(&mutex); //release the mutex lock

10 return NULL;
11 }
12

13 int main(int argc, char *argv[]) {
14 pthread_t thread1, thread2;
15 int rc;
16 rc = pthread_mutex_init(&mutex, NULL); //initialize the mutex
17 rc = pthread_create(&thread1, NULL, thread, "A");
18 rc = pthread_create(&thread2, NULL, thread, "B");
19 rc = pthread_join(thread1, NULL);
20 rc = pthread_join(thread2, NULL);
21 pthread_mutex_destroy(&mutex); //destroy (free) the mutex
22 printf("Counter : %d\n", counter);
23 return 0;
24 }

Figure 73: Putting the mutex locks around the entire for loop.

2. A better idea to actually implement parallelization is to put the locks around the line that says counter
+= 1;. This is the critical code that loads the counter value from the stack into the register, increments
it by 1, and sends it back to the stack. We should isolate this so that no other threads can execute
during these 3 assembly lines.
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1 static volatile int counter = 0;
2 pthread_mutex_t mutex; // global declaration of mutex
3

4 void* thread(void* args) {
5 for (int i = 0; i < 10 * 1000 * 1000; i++) {
6 pthread_mutex_lock(&mutex); //acquire the mutex lock
7 counter += 1;
8 pthread_mutex_unlock(&mutex); //release the mutex lock
9 }

10 return NULL;
11 }
12

13 int main(int argc, char *argv[]) {
14 pthread_t thread1, thread2;
15 int rc;
16 rc = pthread_mutex_init(&mutex, NULL); //initialize the mutex
17 rc = pthread_create(&thread1, NULL, thread, "A");
18 rc = pthread_create(&thread2, NULL, thread, "B");
19 rc = pthread_join(thread1, NULL);
20 rc = pthread_join(thread2, NULL);
21 pthread_mutex_destroy(&mutex); //destroy (free) the mutex
22 printf("Counter : %d\n", counter);
23 return 0;
24 }

Figure 74: Now we put the locks within the counter. However, this is much slower since locking and unlocking are
relatively expensive. It runs in 0.274s.

3. The first two tries are not ideal, but what we can do is have each thread store its local work all within
each of its stack, and then when it communicates with the shared memory on counter, this is where
the locks should come in place. This has the double benefit of locking/unlocking very few times, along
with protecting the critical section of the code.
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1 static volatile int counter = 0;
2 pthread_mutex_t mutex; // global declaration of mutex
3

4 void* thread(void* args) {
5 int my_counter = 0;
6 for (int i = 0; i < 10 * 1000 * 1000; i++) {
7 my_counter += 1;
8 }
9 pthread_mutex_lock(&mutex); //acquire the mutex lock

10 counter += my_counter;
11 pthread_mutex_unlock(&mutex); //release the mutex lock
12 return NULL;
13 }
14

15 int main(int argc, char *argv[]) {
16 pthread_t thread1, thread2;
17 int rc;
18 rc = pthread_mutex_init(&mutex, NULL); //initialize the mutex
19 rc = pthread_create(&thread1, NULL, thread, "A");
20 rc = pthread_create(&thread2, NULL, thread, "B");
21 rc = pthread_join(thread1, NULL);
22 rc = pthread_join(thread2, NULL);
23 pthread_mutex_destroy(&mutex); //destroy (free) the mutex
24 printf("Counter : %d\n", counter);
25 return 0;
26 }

Figure 75: In here, we have each thread increment its own local version of the counter and store it in my_counter.
Then, we increment the global counter by the total my_counter, which will require one mutex lock. It runs in 0.049s.

Example 8.6 (Inserting into Linked List)

Inserting into a linked list is a sequential process, but what if we want to parallelize it with multiple
threads? Consider the following code.

1 typedef struct __node_t {
2 int key;
3 struct __node_t *next;
4 } node_t;
5

6 typedef struct __list_t {
7 node_t *head;
8 } list_t;
9

10 void List_Init(list_t *L) {
11 L -> head = NULL;
12 }
13

14 void List_Insert(list_t *L, int key) {
15 // insert a new node with the key value at the beginning of the list
16 node_t *new = malloc(sizeof(node_t));
17 assert(new);
18 new -> key = key;
19 new -> next = L -> head;
20 L -> head = new;
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21 }
22

23 int main(void) {
24 list_t L;
25 list_t *Lp = &L;
26 List_Init(Lp);
27 for (int i = 0; i < 10; i++) {
28 List_Insert(Lp, i);
29 }
30 return 0;
31 }

Say that we want to parallelize the creation of the length 10 linked list. Simply initializing some
threads and calling List_Insert 10 times won’t properly create this linked list. This is because two
threads may overwrite where L -> head points to. The most naive thing to do is to put locks around
the whole function, but now we are back to the sequential regime! If we think about it, the malloc
calls, asserting that there is viable memory, and assigning the input key value to new -> key does
not overwrite anything else. It is only when we assign new -> next to the head value of L that things
may get overwritten, so we put the locks shown below, while slightly modifying the list struct to
have the pthread_mutex_t attribute.

1 typedef struct __list_t {
2 node_t *head;
3 pthread_mutex_t lock;
4 } list_t;
5

6 void List_Init(list_t *L) {
7 L -> head = NULL;
8 pthread_mutex_init(&L -> lock, NULL);
9 }

10

11 void List_Insert(list_t *L, int key) {
12 // insert a new node with the key value at the beginning of the list
13 node_t *new = malloc(sizeof(node_t));
14 assert(new);
15 new -> key = key;
16 pthread_mutex_lock(&L->lock)
17 new -> next = L -> head;
18 L -> head = new;
19 pthrea_mutex_unlock(&L->lock)
20 }

8.4 Deadlock Bugs
Locks are extremely useful to segment out a portion of code that should be uninterrupted. However, there
are many consequences of misusing it.

Definition 8.8 (Deadlock Bugs)

A deadlock bug happens when you make locks such that the program cannot run anymore. These
aren’t specific to threads, but also processes as well. They require the four preconditions:

1. Mutual exclusion: you must have a lock to begin with to have a deadlock, so this is trivial.
2. Hold and Wait: Threads must have the ability to hold resources (e.g. the philosophers must

hold forks which prevent others from taking them) .
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3. No Preemption: Preemption refers to the ability to take the fork out of someone else’s hand.
So if you have a thread, you can first take lock A, then look at whether lock B is available. If
not, then unlock A and try again. However, this can lead to a bunch of threads just simply
picking up and putting down forks, causing a livelock.

4. Circular Wait: That is, there exists a circular chain of threads such that each thread holds a
resource needed by the next thread. A strategy is too define a fixed acquisition order for locks
(e.g. lock A always before lock B).

You shouldn’t try to hold multiple locks at once, but if you must, you should have a strategy to avoid
deadlock. Choosing a lock order is the recommended way.

Example 8.7 (Bank Accounts)

Let’s go through an example. Suppose we had the following code below.

1 struct account {
2 pthread_mutex_t lock;
3 int balance;
4 };
5

6 struct arg_t {
7 struct account fromAcct;
8 struct account toAcct;
9 int amt;

10 };
11

12 pthread_mutex_t mutex; // global declaration of mutex
13

14 void* Transfer(void* args) {
15

16 struct arg_t* data = (struct arg_t*)args;
17

18 struct account* fromAcct = &(data -> fromAcct);
19 struct account* toAcct = &(data -> toAcct);
20 int amt = data -> amt;
21

22

23 pthread_mutex_lock(&fromAcct->lock);
24 pthread_mutex_lock(&toAcct->lock);
25

26 fromAcct->balance -= amt;
27 toAcct->balance += amt;
28

29 pthread_mutex_unlock(&fromAcct->lock);
30 pthread_mutex_unlock(&toAcct->lock);
31

32 return NULL;
33 }

Suppose that Threads 0 and 1 are executing concurrently and represent users A and B, respectively.
Now consider the situation in which A and B want to transfer money to each other: A wants to
transfer 20 dollars to B, while B wants to transfer 40 to A.
Both threads concurrently execute the Transfer function. Thread 0 acquires the lock of acctA while
Thread 1 acquires the lock of acctB. Now consider what happens. To continue executing, Thread 0
needs to acquire the lock on acctB, which Thread 1 holds. Likewise, Thread 1 needs to acquire the
lock on acctA to continue executing, which Thread 0 holds. Since both threads are blocked on each
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other, they are in deadlock.
This can be simply fixed by rearranging the locks so that each lock/unlock pair surrounds only the
balance update statement associated with it.

1 void *Transfer(void *args){
2 //argument passing removed to increase readability
3 //...
4

5 pthread_mutex_lock(&fromAcct->lock);
6 fromAcct->balance -= amt;
7 pthread_mutex_unlock(&fromAcct->lock);
8

9 pthread_mutex_lock(&toAcct->lock);
10 toAcct->balance += amt;
11 pthread_mutex_unlock(&toAcct->lock);
12

13 return NULL;
14 }

Example 8.8 (Dining Philosopher’s Problem)

There are 5 philosophers at a roundtable with 5 plates of food with 5 forks. Each philosopher needs
two forks (both on their left and on their right) to start eating their plate. However, there can be a
deadlock if every philosopher takes the fork on their right and is always waiting for the left fork (this
happens due to a circular dependency).

1. One way to resolve this issue is to set an ID to every fork and have the philosophers always
take the lower ID fork first before trying to take the higher ID. Then this resolves and at least
one philosopher can eat.

Example 8.9 (Set-Intersection Problem)

Again, like the bank account section, we have the following code that can create deadlocks if there is
a code that attempts to compute A ∩B and B ∩A at similar times.

1 set_t *set_intersection(set_t *s1, set_t *s2) {
2 set_t *result = set_create();
3 pthread_mutex_lock(&s1->lock);
4 pthread_mutex_lock(&s2->lock);
5

6 for (int i = 0; i < s1->size; i++) {
7 if (set_contains(s2, s1->data[i])) {
8 set_add(result, s1->data[i]);
9 }

10 }
11

12 pthread_mutex_unlock(&s2->lock);
13 pthread_mutex_unlock(&s1->lock);
14 return result;
15 }

Like using the IDs and ordering, we can resolve this by grabbing locks in a defined order, say from
high to low. Therefore, we replace the locks as such.

1 if (&m1 > &m2) {
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2 pthread_mutex_lock(&m1);
3 pthread_mutex_lock(&m2);
4 } else {
5 pthread_mutex_lock(&m2);
6 pthread_mutex_lock(&m1);
7 }

However, this still creates a deadlock if we compute A ∩A, so we should place a deadlock.

It turns out that we can make logically equivalent code without locks! By using atomic primitives that have
implementations in C, we can create wait-free algorithms. For example, consider the int CompAndSwap(int*
addr, int expected, int new) function. If *addr == expected, then we set *addr to new and return 1.
Otherwise, we do nothing and return 0. Then, the two pieces of code are equivalent, but the advantage of
the RHS is that there is never a deadlock.

1. In the left, we pass by pointer to increment a variable.

2. In the right, we first set old to the value of val, and if the value of val is equal to old (which may not
always be true if some other thread modifies this value), then we set old = *val again and increment
it by amt.

1 void add(int *val, int amt) {
2 pthread_mutex_lock(&m);
3 *val += amt;
4 pthread_mutex_unlock(&m);
5 }
6 .

1 void add(int *val, int amt) {
2 do {
3 int old = *val;
4 }
5 while(!CompAndSwap(val, old, old+amt));
6 }

However, the left hand, despite the risk of deadlocks, is still recommended. The mutex API allows for better
distribution of CPU.

8.5 Order Violation Bugs and Condition Variables

Definition 8.9 (Order Violation Bugs)

An order violation bug happens when the desired order between two memory accesses is flipped,
i.e. A should always be executed before B, but the order is not enforced during execution.

1. For example, one thread that acts on a linked list may already assume that the linked list is
initialized when it is not. Therefore, we should have these threads wait until initialization.

2. Another example is if there is a set of producers and consumers that manage the flow of items
through a buffer. If there is no good, then consumers cannot consume and they must wait. If
the supply is full then the producers must wait. This also requires some process of waiting.

We can use a regular conditional to check, but this may not be efficient due to the following example.

Example 8.10 (Condition Checks with Vanilla While Loops)

Say that you want to call the following function on a linked list, but you must wait until the list is
not NULL.

1 int getItem(list_t *list) {
2 pthread_mutex_lock(&list -> m);
3 // TODO: wait until list is non-empty
4 int item = list -> head -> item;
5 list -> head = list -> head -> next;
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6 pthread_mutex_unlock(&list -> m);
7 return item;
8 }

To check whether list is not a null pointer, we can simply use a while loop to check.

1 int tryGetItem(list_t *list, int *out) {
2 int success = 0;
3 ptherad_mutex_lock(&list -> m);
4 if (list -> head) {
5 success = 1;
6 *out = list -> head -> item;
7 list -> head = list -> head -> next;
8 }
9 pthread_mutex_unlock(&list -> m);

10 return success;
11 }
12 .
13 .

1 int getItem( list_t *list) {
2 pthread_mutex_lock(&list -> m);
3 // TODO: wait until list is non-empty
4 while (list -> head == NULL) {
5 pthread_mutex_unlock(&list -> m);
6 yield(); // optional
7 pthread_mutex_lock(&list -> m);
8 }
9 int item = list -> head -> item;

10 list -> head = list -> head -> next;
11 pthread_mutex_unlock(&list -> m);
12 return item;
13 }

Figure 76: On the LHS, this returns 0 if the retrieval is not successful, and so you must wrap this function
within some while loop to check if it is actually successful. On the RHS, we can use the yield() function
which gives control to the OS to schedule another thread.

This constant checking through a while loop leads to a waste of CPU resources. Therefore, we want
to put the thread to sleep while there is no element in list so other processes can use the CPU core.
This is the motivation behind conditional variables.

Definition 8.10 (Condition Variables)

Condition Variables force a thread to be blocked until a particular condition is reached. This
construct is useful for scenarios in which a condition must be met before the thread does some work.

1. Every CV is bound to exactly one mutex. This is because the state of a condition, even if
true on one thread, can be changed immediately by another thread, so some sort of locking is
needed.

2. Condition variables have the type pthread_cond_t.
3. To initialize a condition variable, use the pthread_cond_init function.
4. To destroy it, use pthread_cond_destroy.
5. pthread_cond_wait(&cond, &mutex) takes the address of a condition variable cond and a

mutex mutex as its arguments. It causes the calling thread to block on the condition variable
cond until another thread signals it (or "wakes" it up).

6. The pthread_cond_signal(&cond) function causes the calling thread to unblock (or signal)
another thread that is waiting on the condition variable cond (based on scheduling priority).
If no threads are currently blocked on the condition, then the function has no effect. Unlike
pthread_cond_wait, the pthread_cond_signal function can be called by a thread regardless
of whether or not it owns the mutex in which pthread_cond_wait is called.

It is important to know about the states that a thread can be in. It can either be currently running/active,
ready to run (perhaps through a syscall), or blocked.
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Figure 77: Note that the only way a thread can be blocked is if it is waiting for a condition to happen. If that
condition happened and a signal arrives at the thread, then it “wakes up.” Condition variables allow these thread to
go in and out of the blocked state.

With this, the general design pattern is as such.

Theorem 8.2 (Condition Variable Design Pattern)

To implement this effectively, we must first identify a state that will be accessed by 2+ threads
concurrently and add locks to protect the shared state. If we need to wait on some condition, we use
condition variables.

1 methodThatWaits() {
2 pthread_mutex_lock(&m);
3

4 // Read/write shared state
5

6 while (!checkSharedState()) {
7 pthread_cond_wait(&cv, &m);
8 }
9

10 // Read/write shared state
11

12 pthread_mutex_unlock(&m);
13 }

1 methodThatSignals() {
2 ptherad_mutex_lock(&m);
3

4 // Read/write shared state
5

6 // If checkSharedState() is now true
7 pthread_cond_signal(&cv);
8

9 // Read/write shared state
10

11 pthread_mutex_unlock(&m);
12 }
13 .

The implementation is quite complex at first, so let’s go through an example.

Example 8.11 (Soda Machine)

Say that we want to model a soda machine, with consumers taking soda from the machine and
producers filling the machine up.

1. We’d like to create some variables that encode the state of the soda machine. This is the shared
state.

1 static volatile int numSodas;
2 #define MaxSodas 100;

2. We also want to implement one lock to protect all shared states, say

1 pthread_mutex_t sodaLock;

This allows us to implement mutual exclusion so that only one thread can manipulate the
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machine (state) at a time.
3. The ordering constraints are that the consumer must wait if the machine is empty (CV

hasSoda), and the producer must wait if the machine is full (CV hasRoom).
4. The first thing we must do is make sure that the consumer and producer function has a lock

and unlock over its body since both functions modify the vending machine.

1 consumer() {
2 pthread_mutex_lock(&sodaLock);
3

4 // take a soda from machine
5

6 pthread_mutex_unlock(&sodaLock);
7 }

1 producer() {
2 pthread_mutex_lock(&sodaLock);
3

4 // add a soda to machine
5

6 pthread_mutex_unlock(&sodaLock);
7 }

5. Moreover, the consumer and producer’s actions of taking or adding soda is dependent on the
state already. For the consumer, it should wait if the machine is empty for a signal that notifiies
that it is not empty. Once the consumer receives the signal, it takes a soda and can send a
signal that the machine is not full to the producer function.

1 consumer() {
2 pthread_mutex_lock(&sodaLock);
3 // wait if empty
4 // take a soda from machine
5 // notify that it is not full
6 pthread_mutex_unlock(&sodaLock);
7 }

1 producer() {
2 pthread_mutex_lock(&sodaLock);
3 // wait if full
4 // add a soda to machine
5 // notify that it is not empty
6 pthread_mutex_unlock(&sodaLock);
7 }

6. To put this into code, we finally have

1 consumer() {
2 pthread_mutex_lock(&sodaLock);
3

4 while (numSodas == 0) {
5 // while empty
6 wait(sodaLock, hasSoda);
7 }
8 numSodas -= 1; // take soda
9 signal(hasRoom);

10 pthread_mutex_unlock(&sodaLock);
11 }

1 producer() {
2 pthread_mutex_lock(&sodaLock);
3

4 while (numSodas == MaxSodas) {
5 wait(sodaLock, hasRoom);
6 }
7

8 numSodas += 1; // add soda
9 signal(hasSoda);

10 pthread_mutex_unlock(&sodaLock);
11 }

Let’s go through this. From the consumer function, we have:
1. The consumer function starts by acquiring a lock on the sodaLock mutex using

pthread_mutex_lock(). This ensures that only one consumer thread can access the shared
resources (e.g., numSodas) at a time.

2. It then enters a while loopa that checks if numSodas is zero. If numSodas is zero, it means there
are no sodas available for consumption. In this case, the consumer thread calls the wait()
function, which unlocks the sodaLock mutex and waits for a signal on the hasSoda condition
variable. This allows other threads to acquire the lock and proceed.

3. When the consumer thread receives a signal indicating that sodas are available (hasSoda con-
dition variable), it wakes up and reacquires the lock on sodaLock.

4. The consumer thread then decrements numSodas by 1, indicating the consumption of a soda.
5. After consuming a soda, the consumer thread signals the hasRoom condition variable using the

signal() function. This notifies any waiting producer threads that there is now room available
in the soda buffer.

6. Finally, the consumer thread unlocks the sodaLock mutex using pthread_mutex_unlock(),
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allowing other threads to access the shared resources.
From the producer function, we have:

1. The producer function starts by acquiring a lock on the sodaLock mutex using
pthread_mutex_lock(). This ensures that only one producer thread can access the shared
resources at a time.

2. It then enters a while loop that checks if numSodas is equal to MaxSodas. If numSodas is equal
to MaxSodas, it means the soda buffer is full, and the producer cannot add more sodas. In this
case, the producer thread calls the wait() function, which unlocks the sodaLock mutex and
waits for a signal on the hasRoom condition variable. This allows other threads to acquire the
lock and proceed.

3. When the producer thread receives a signal indicating that there is room available in the soda
buffer (hasRoom condition variable), it wakes up and reacquires the lock on sodaLock.

4. The producer thread then increments numSodas by 1, indicating the production of a new soda.
5. After producing a soda, the producer thread signals the hasSoda condition variable using the

signal() function. This notifies any waiting consumer threads that a soda is now available for
consumption.

6. Finally, the producer thread unlocks the sodaLock mutex using pthread_mutex_unlock(),
allowing other threads to access the shared resources.

Note that we must have a while loop since if the producer ended up broadcasting the hasSoda
condition to say 10 threads when there are 5 sodas, then 5 of those threads will get a soda while 5
may not, and this possibility should be detected by the while loop.

aWe want this to be a while loop since we want to reevaluate the condition even after reacquiring the lock.
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