
SLAM Muchang Bahng Spring 2023

Monocular Visual-Inertial Simultaneous Localization and Mapping

(SLAM)

Muchang Bahng

Spring 2023

1 Introduction

In computer vision, machines should reliably be able to see what the surrounding environment is like (map
building) and where it is located in this environment (localization). Autonomous robots should know
this in order to move around and do things. Vehicles should know this in order to reliably drive around.
Mobile devices should implement this in order to produce stable holograms in augmented reality software.
The general set of algorithms that allow machines to achieve this is called Simultaneous Localization
and Mapping (SLAM).
In order to solve this mapping and localization situation, we can implement intrusive sensors in a prepared
environment, which are effective but very limited (e.g. QR codes, guiding rails). On the other hand,
non-intrusive sensors allow for robots to explore more general environments, but are more difficult to
implement. We will focus on non-intrusive sensors since we cannot presume which environment our machine
will be in (though we generally know whether it is indoors or outdoors).
Therefore, a typical visual SLAM workflow includes the following steps:

1. Sensor data acquisition: Acquisition and preprocessing of camera images (along with IMU sensors,
etc.)

2. Visual Odometry (VO): Estimating the camera movement between adjacent frames to estimate the
displacement of the observer (ego-motion) and generate a rough local map. Known as frontend.
This tends to be noisy and accumulates error.

3. Backend Filtering/Optimization: The backened receievs camera poses and different time stamps
from VO and results from loop closing, and then applies optimization to generate a fully optimized
trajectory and map. Known as backend.

4. Loop Closing: Determines whether the robot has returned to its previous position in order to reduce
accumulated drift. If a loop is detected, it will provide information to backend for further optimization.

5. Reconstruction: Constructs the map based on camera trajectory.

Ideally, we would want SLAM to process images at 30fps, which is generally considered real-time.

1.1 Hardware

1.1.1 Sensors

There are many types of sensors we should be familiar with:

1. GPS uses satellites and triangulation to locate a specific point on the Earth’s surface. But this is not
good for indoors.

2. LIDAR shoots beams of light and measures the return time, like echolocation but with light. They
are usually bulky and slightly expensive, used mainly in vehicles.

1/ 26

SLAM Muchang Bahng Spring 2023

3. Cameras take pictures/videos for visual data. There are many types of cameras:

(a) Monocular cameras uses only one camera. It is cheap but it is hard to measure depth from the
projection of R3 to R2. If we want to recover the 3D structure, we have to change the camera’s
view angle, but it only does it on a relative scale.

(b) Stereo cameras use two cameras, and the distance between these two is called the baseline.
The depth is calculated from the disparity of the two image pairs.

(c) RGB-D (RGB-Depth) Cameras measures the distance between objects and the camera by
actively emitting light to the object and receiving it back.

(d) Opti-track cameras (usually multiple ones) are placed around a certain area and can use soft-
ware to detect feature points on a rigid body or skeleton.

4. IMU (Inertial Measurement Unit) consists of a gyroscope, which measures the orientation and
angular velocity, and an accelerometer, which measures the acceleration. This is known as a 6 DoF
IMU, but if we have a magnetometer, which measures magnetic fields, this is known as a 9 DoF
IMU. IMUs are actually quite cheap and are incorporated into many commercial mobile devices, but
they tend to be very noisy, so their data is usually optimized with feature detection algorithms.

The machine could receive lots of different data, e.g. inertial data, photos, LIDAR, but we will mainly focus
on camera data (continuous stream of pictures) coupled with other sensors. The goal of visual SLAM is to
localize and build a map using this continuous stream of images. The type of lens also matter since they can
cause distortion effects.

1. Pinhole lens is just a pin hole in which the light passes through.

2. Fisheye lens are ultra wide-angle lens that produces strong visual distortion intended to create a wide
panoramic or hemispherical image.

Either way, we model our data as a projection of the real world onto some light sensor that goes through
the lens, followed by some random noise which we assume to be Gaussian.

1.1.2 Wireless Connections

When looking at edge assisted SLAM, the strength and reliability of the connections between the mobile
agent and the edge server is important. These are usually done over WiFi or cellular.

1. WiFi uses multiple bands of radio waves to provide high-speed internet access to mobile devices. It is
necessary to have a modem connected to a router, and a device needs a wireless adapter to translate
between data and radio signals. WiFi-5G provides faster speeds over shorter range, and WiFi-2.4G
provides slower speeds over larger range.

2. Cellular uses cell phone towers to enable mobile device communication. Cellular 5G, 4G, and LTE are
the top choices.

1.1.3 Memory

For fast retrieval, the data is stored in RAM rather than an SSD. The server would store a global map and
other info in a 16GB to 256GB RAM.

1.2 Image Processing

1.2.1 Feature Extraction

Analyzing an entire picture pixel-by-pixel can be too computationally intensive, which is why we can extract
certain feature points that represent the image. In essence, we extract feature points from images and
match them between consecutive images to estimate things like camera motion (for VO) and the scene
structure (for mapping).

2/ 26

SLAM Muchang Bahng Spring 2023

Colloquially, feature points are like special points in an image, which tend to be corners, edges, or pixels
that may be different from its neighbors. In 1988, corners were good feature points because we can observe
a significant gradient change in all directions. On the other hand, a flat region has no gradient change and
an edge region has no gradient changed along the edge direction. This paradigm manifested in the Harris
Corner Detector algorithm.
However, just detecting corners can be very naive, especially when camera angles have changed, so more
sophisticated feature extraction algorithms, like SIFT, SURF, and ORB, have been introduced. Compared
with simple corner points, these features should have certain properties:

1. Repeatability: the same feature could be found in different images.

2. Distinctiveness: different features have different expressions.

3. Efficiency: the number of feature points should be far fewer than the number of pixels.

4. Locality: the feature is only related to a small image area.

SIFT and SURF have been patented, are too computationally intensive, and are too slow, so they are not
used for real-time SLAM. However, the more recently developed ORB (Oriented FAST and rotated BRIEF)
algorithm is widely used due to its speed and open-sourceness, resulting in ORB-SLAM.
The FAST algorithm takes a pixel p and compares the brightness of p to surrounding 16 pixels within a
radius. They are divided into three classes (darker, lighter, or similar to p), and if more than 8 pixels are
darker or brighter than p then it is selected as a keypoint.

However, FAST features do not have an orientation component and multiscale features. So ORB algorithm
uses a multiscale image pyramid. An image pyramid is a multiscale representation of a single image, that
consist of sequences of images all of which are versions of the image at different resolutions. Each level in
the pyramid contains the downsampled version of the image than the previous level. Once orb has created
a pyramid it uses the fast algorithm to detect keypoints in the image. By detecting keypoints at each level
orb is effectively locating key points at a different scale. In this way, ORB is partial scale invariant.

After locating keypoints orb now assign an orientation to each keypoint like left or right facing depending
on how the levels of intensity change around that keypoint. For detecting intensity change orb uses intensity
centroid. The intensity centroid assumes that a corner’s intensity is offset from its center, and this vector
may be used to impute an orientation.

3/ 26

SLAM Muchang Bahng Spring 2023

1.2.2 Segmentation

Another image processing algorithm uses convolutional neural networks to classify the pixels in an image to
certain classes.

1. Semantic segmentation labels specific regions of an image according to a corresponding class (e.g.
fruit, person) of what is being represented.

2. Instance segmentation separates different instances of an image for each instance. It goes beyond
just semantic segmentation.

ORB-SLAM2 and ORB-SLAM3 (the latest ORB-SLAM algorithms) do not implement segmentation since
they assume that we are working in a static environment (i.e. with no moving parts like walking humans).
Map building with features that are actively moving in the environment would be very problematic, so
algorithms like edgeSLAM segments frames between moving and static parts, and runs visual odometry on
those feature points within the static portions. Something to keep in mind is incorrectly labeling a static
part as moving isn’t too problematic, but if we incorrectly label a moving part as static and attempt to
construct a map from it, we would get very bad results.
Another application of segmentation is that we can train these neural nets further on camera data to
increase classification accuracy within the environment, minimizing the false positives and especially the
false negatives.

1.2.3 Types of Maps

There are two types of maps. Topological maps are simply graphs composed of nodes and edges. It
relaxes the requirements on precise locations on a map by removing map details and emphasizes whether
the nodes are connected or not. It is more compact but not good for representing complex maps. Metric
maps emphasizes the exact numerical locations of the objects in maps. They may be represented as a point
cloud composed of a bunch of map points in R3, and the number of points in which we consider determine
how sparse or dense they are.

1. Sparse maps do not use many points and do not express all the objects. They focus on modeling
certain classes of objects, which gives quick representations. They are mainly used in SLAM algorithms
due to their speed and because we can still retrieve useful local information from these maps.

2. Dense maps focus on modeling all the things that are seen in a frame and has much more map points
than a sparse map. They are quite slow to make, but for accurate navigation this is what we need.

4/ 26

SLAM Muchang Bahng Spring 2023

2 Transformations

It is well known that a rigid body transformation has 6 degrees of freedom (3 orientation + 3 translation).
Our goal is to write a compact representation of this group of transformations.

2.1 Special Orthogonal and Euclidean Groups

Note that given some point p P R3, we can have multiple representations of it based on the coordinate
system we’re using. We are really interested in two orthonormal bases:

1. The world coordinate system, which is just some stationary inertial coordinate marked with the
subscript W .

pW “ xWeWx ` yWeWy ` zWeWz

2. The camera coordinate system, which is a moving coordinate system. The z-axis of the camera
coordinate system is usually perpendicular to the camera lens.

pC “ xCe
C
x ` yCe

C
y ` zCe

C
z

Note that we can go from the world and camera coordinate system by rotations and translations. Ignoring
translations for now, we can get

p “

¨

˝

| | |

eWx eWy eWz
| | |

˛

‚

¨

˝

xW

yW
zW

˛

‚“

¨

˝

| | |

eCx eCy eCz
| | |

˛

‚

¨

˝

xC

yC
zC

˛

‚

where the matrices are of R P Op3q, which means RT “ R´1, so we have the change of basis transformation:
¨

˝

xW

yW
zW

˛

‚“

¨

˝

peWx qTeCx peWx qTeCy peWx qTeCz
peWy qTeCx peWy qTeCy peWy qTeCz
peWz qTeCx peWz qTeCy peWz qTeCz

˛

‚

¨

˝

xC

yC
zC

˛

‚

Therefore, to go between pW and pC, we just have to use some rotation matrix R P SOp3q. However, there
are translations t, so we extend this to the special euclidean group SEp3q, of form

SEp3q “

"

T “

ˆ

R t
0T 1

˙

P R4ˆ4 | R P SOp3q, t P R3

*

That is, given some vector a1 P R3, the transformation a2 “ Ra1 ` t is equivalent to simply multiplying
ˆ

a2
1

˙

“

ˆ

R t
0T 1

˙ ˆ

a1
1

˙

This forms a group, with inverse formula given by

T´1 “

ˆ

RT ´RT t
0T 1

˙

The transformation T21 is from system 1 to 2 (read right to left, like matrix multiplication).

5/ 26

SLAM Muchang Bahng Spring 2023

2.2 Rotation Vectors and Euler Angles

Another representation of a 3D rigid body rotation is with a 3D vector that is parallel with the axis of
rotation and the length is equal to the angle of rotation. That is, we can get a vector of form θn, where n is
a unit vector and θ is the angle of rotation. There is a clear bijection (given that θ is defined on a quotient
space) between rotation vectors and SOp3q:

1. Vector to Matrix

R “ cos θI ` p1 ´ cos θqnnT ` sin θ

¨

˝

0 ´n3 n2

n3 0 ´n1

´n2 n1 0

˛

‚

2. Matrix to Vector: n is the normalized eigenvector of R of eigenvalue 1, and

θ “ arccos

ˆ

trpRq ´ 1

2

˙

Euler angles express the rotation across each axis, and the order of rotation must be specified (since SOp3q

is not abelian).

1. Rotate around Z axis: θyaw “ y

2. Rotate around Y axis: θpitch “ p

3. Rotate around X axis: θroll “ r

Therefore, we can use the 3-dimensional vector py, p, rqT to describe any rotation, but due to the Gimbal
lock problem, a degree of freedom is lost in singularity cases. So this is not a good method for simulation,
and is only good for human-to-computer interaction. It turns out that no 3-dimensional representation of
SOp3q exists that avoids this singularity problem. However, there is a 4-dimensional one.

2.3 Quaternions

The quaternions are numbers q “ q0 ` q1i ` q2j ` q3k that satisfy

i2 “ j2 “ k2 “ ´1

ij “ k, ji “ ´k

jk “ i, kj “ ´i

ki “ j, ik “ ´j

More specifically, it is an associative normed ring. Let us define the operations. Given two quaternions

qa “ rsa,vasT “ sa ` xai ` yaj ` zak

qa “ rsb,vbsT “ sb ` xbi ` ybj ` zbk

1. Addition is defined
qa ` qb “ rsa ` sb,va ` vbsT

2. Scalar multiplication is defined
cq “ rks, kvsT

3. Multiplication is defined by distributing over all elements

qaqb “ sasb ´ xaxb ´ yayb ´ zazb

` psaxb ` xasb ` yazb ´ zaybqi

` psayb ´ xazb ` yasb ` zaxbqj

` psazb ` xayb ´ yaxb ` zasbqk

6/ 26

SLAM Muchang Bahng Spring 2023

4. The norm is defined
||qa|| “

a

s2a ` x2
a ` y2a ` z2a

5. Conjugate is defined
q˚
a “ sa ´ xai ´ yaj ´ zak

6. The inverse is the formula

q´1 “
q˚

||q||2

A rotation of a vector p is Rp where R P SOp3q, and we can represent a rotation of p with a unit quaternion
q. We take the imaginary quaternion r0,psT and multiply it as such

p1 “ qpq´1

and take the imaginary part of p1. The conversion between R and q is quite involved, so we will not mention
it here.

2.4 More General Transformations

So note that the degrees of freedom for a rotation is 3 (though it cannot be represented with 3 parameters;
4 must be provided at least in quaternion form). Along with the 3 translation parameters,

1. the degrees of freedom of the Euclidean transformation group SOp3q is 6. Length, angle, and volume
are all invariant.

SEp3q “

"

T “

ˆ

R t
0T 1

˙

P R4ˆ4 | R P SOp3q, t P R3

*

2. the degrees of freedom of the similarity transformation group is 7 (`1 for scaling). Volume ratio is
invariant.

"

T “

ˆ

sR t
0T 1

˙

P R4ˆ4 | R P SOp3q, s P R, t P R3

*

3. the degrees of freedom for the affine transformation semigroup (not always invertible) is 12 (9 for
general linear mapping, plus 3 for translation). Parallelism and volume ratio is invariant.

"

T “

ˆ

A t
0T 1

˙

P R4ˆ4 | A P R3ˆ3, t P R3

*

4. the degrees of freedom for the perspective transformations are 15 (`3 for scale a). Under this, plane
intersection and tangency is invariant, and this is what is most similar to a camera lens.

"

T “

ˆ

A t
aT 1

˙

P R4ˆ4 | A P R3ˆ3, t P R3, a P R3

*

2.5 Lie Groups

Recall that the exponential of a matrix is defined

exppAq “

8
ÿ

k“0

1

k!
Ak

and the inverse logarithm map acting on R P SOp3q is

lnpRq “

n
ÿ

k“0

p´1qk

k ` 1
pR ´ Iqk`1

7/ 26

SLAM Muchang Bahng Spring 2023

SOp3q and SEp3q are all Lie groups, which are really smooth manifolds, and therefore we can look at their
tangent space at the origin 0, which is by definition the Lie algebra. A Lie algebra g of a Lie group G is a
vector space equipped with a Lie bracket: an alternating bilinear map r¨, ¨s : gˆg ÝÑ g satisfying the Jacobi
identity

@ X,Y,Z rX, rY,Zss ` rZ, rX,Yss ` rY, rZ,Xss “ 0

Usually, we will work with the algebra of matrices, which has matrix multiplication equipped, and define the
Lie bracket to be the commutator

rX,Ys “ XY ´ YX

The set of all traceless 3 ˆ 3 real matrices of the form

ϕ “

¨

˝

0 ´ϕ3 ϕ2

ϕ3 0 ´ϕ1

´ϕ2 ϕ1 0

˛

‚

forms the Lie algebra sop3q of the Lie group SOp3q. It is a 3-dimensional vector space. Since sop3q is
isomorphic to R3, sometimes writers denote the elements as simply 3-vectors rather than a full matrix. It
turns out that the Lie algebra sep3q of SOp3q is the 6-dimensional vector space of matrices of form

sep3q “

"

ξ “

ˆ

ϕ ρ
0T 0

˙

P R4ˆ4

ˇ

ˇ

ˇ

ˇ

ϕ P sop3q, ρ P R3

*

which can be represented by a 6-vector. Now the relationship between adding two vectors in the Lie algebras
exponentiating them vs exponentiating them first and multiplying is given by the BCH formula

ln
`

exppAq exppBq
˘

“ A ` B `
1

2
rA,Bs `

1

12
rA, rA,Bss ´

1

12
rB, rA,Bss ` . . .

2.6 Camera Parameterization

Now we can use this transformations to describe how the 3D world gets transformed into a matrix representing
an image. There are 3 stages:

1. World-to-Camera: 3D-3D projection. Rotation, Scaling, Translation.

2. Camera-to-Image: 3D-2D projection. Loss of information. Depends on the camera model and
parameters (pinhole, f-theta, etc.).

3. Image-to-Pixel: Continuous to Discrete. Quantization and origin shift.

Now, let us have some position vector in the world coordinate system pW “ pxW , yW , zW qT , since the
coordinates are usually the standard basis e1, e2, e3. Given that the camera is facing at some R P SOp3q

and translated t P R3 units, p in the camera coordinate system is

pC “ RpW ` t

or more compactly, we can write
ˆ

pC

1

˙

“

ˆ

R t
0T 1

˙ ˆ

pW

1

˙

where the 4 ˆ 4 transformation matrix is known as the camera extrinsic matrix. This extrinsic matrix
can change if the physical location/orientation of the camera is changed, making it a function of time Tptq.
The pinhole model projects the 3D points in the camera coordinate system into a 2D plane, shown as a
yellow plane below. The rays pass the center of the camera opening and are projected on the 2D plane on
the other end. The 2D plane is what is captured as images by the camera. It is a lossy transformation,
which means projecting the points from the camera coordinate system to the 2D plane can not be reversed
(the depth information is lost — Hence by looking at an image captured by a camera, we can’t tell the
actual depth of the points). The X and Y coordinates of the points are projected onto the 2D plane. The
2D plane is at f (focal-length) distance away from the camera. The projection Xi, Yi can be found by the

8/ 26

SLAM Muchang Bahng Spring 2023

law of similar triangles (the ray entering and leaving the camera center has the same angle with the x and
y-axis, alpha and beta respectively), giving us

xi

f
“

xC

zC
and

yi
f

“
yC
zC

Technically, there should be a minus sign, but we can ignore it for all practical purposes.

So if we know the actual 3D points in the camera coordinates (xC , yC , zC known) and the focal length f ,
then we can simply calculate the image plane to be

xi “ f
xC

zC
and yi “ f

yC
zC

which can be modeled by the matrix equation in homogeneous coordinates

¨

˝

xi

yi
1

˛

‚“

¨

˝

f{zC 0 0 0
0 f{zC 0 0
0 0 1{zC 0

˛

‚

¨

˚

˚

˝

xC

yC
zC
1

˛

‹

‹

‚

Now if there are distortions due to some lens on top of the pinhole, then this is when we would account for
this. Usually, we account for a polynomial distortion, such as

xdistorted “ xp1 ` k1r
2 ` k2r

4 ` k3r
6q

ydistorted “ yp1 ` k1r
2 ` k2r

4 ` k3r
6q

9/ 26

SLAM Muchang Bahng Spring 2023

We will assume that there are no distortions, so working with pxi, yiq. Now if we discretize the pxi, yiq to
pixel coordinates pu, vq, then we can finally represent the points as an image matrix. Let us assume that the
pixel coordinates of this image are discrete values, with ρu pixels/meter in the x-axis and ρv pixels/meter in
the y-axis, so we first scale it. Since the origin of the image coordinates lie at the center of the image plane
while the pixel coordinates has their origin defined at the top-left corner of the image, we should translate
it by a certain cu and cv in the x and y axes. Therefore, we have

#

u “ ρuxi ` cu

v “ ρV yi ` cv
ùñ

¨

˝

u
v
1

˛

‚“

¨

˝

ρu 0 cu
0 ρv cv
0 0 1

˛

‚

¨

˝

xi

yi
1

˛

‚

Now this two-step process of projecting the image and discretizing it gives us the camera intrinsic matrix,
defined

¨

˝

ρufzC 0 cu{zC
0 ρvf{zC cvzc 0
0 0 1{zC 0

˛

‚“

¨

˝

ρu 0 cu
0 ρv cv
0 0 1

˛

‚

¨

˝

f{zC 0 0 0
0 f{zC 0 0
0 0 1{zC 0

˛

‚

So, combining everything into one step, we have the equation

¨

˝

u
v
1

˛

‚“

¨

˝

ρuf{zC 0 cu{zC 0
0 ρvf{zC cv{zC 0
0 0 1{zC 0

˛

‚

loooooooooooooooooooomoooooooooooooooooooon

intrinsic

ˆ

R t
0T 1

˙

loooomoooon

extrinsic

¨

˚

˚

˝

xW

yW
zW
1

˛

‹

‹

‚

Sometimes, we write it by putting the ZC to the other side, and denoting it a constant s, which is the
”hidden” scale factor representing depth. So, we have

s

¨

˝

u
v
1

˛

‚“

¨

˝

ρuf 0 cu 0
0 ρvf cv 0
0 0 1 0

˛

‚

ˆ

R t
0T 1

˙

¨

˚

˚

˝

xW

yW
zW
1

˛

‹

‹

‚

If two vectors are proportional in the sense that v “ cu, then we write u » v. So, we can write

¨

˝

u
v
1

˛

‚»

¨

˝

ρuf 0 cu
0 ρvf cv
0 0 1

˛

‚

`

RpW ` t
˘

3 Visual Intertial SLAM

The input to a typical visual SLAM algorithm are a series of images (frames) captured from a camera. These
would usually be RGB images, but with more advanced cameras (RGB-D or Opti-Track), they can accept
more data.

1. Tracking: The tracking module detects feature points in the image (using feature detection algorithms
such as SIFT, SURF, ORB) and uses them to find correspondences with a previous reference image,
called a keyframe. Based on the correspondences, it simultaneously calculates the relative odometry
between the reference keyframe and the current frame and calculates the map points, which can be
thought of as the feature points reprojected into 3D space that help construct a map (feature points
are in R2 and map points in R3, but they both essentially represent the same point). Then, the module
determines if this frame should be added as another keyframe (based on a series of conditions s.t. its
features can’t be too similar or to different from the previous keyframe). If it does decide that this
should be a keyframe, then it passes it to the local mapping module. In summary, this module does 3
things:

(a) It uses visual odometry to compute the ego-motion of the agent. It does not build a map.

10/ 26

SLAM Muchang Bahng Spring 2023

(b) At the same time it extracts map points. A collection of feature points sounds like a map itself,
but surprisingly, these map points are not used as inputs for the local mapping module that builds
maps. It does sacrifice the computing efficiency by ”throwing away” this calculation, but it does
allow more parallelism due to executing the tracking, local mapping, and loop closing in separate
threads.

(c) It determines which keyframes should be used to build a map.

2. Local Mapping: This module creates correspondences between the new keyframe and other keyframes
in the map. It then performs bundle adjustment through Maximum a Posteriori (MAP) esti-
mation, a process of refining the relative coordinates of where the images were taken given the detected
common features between keyframes.

3. Loop Closing: This new keyframe is compared to all other keyframes to check if the current location
is the same as a previously visited location. If the current keyframe is similar to the previous one, this
module will perform fusion of these keyframes and all related ones. It also performs pose optimization,
typically as a graph optimization. Realistically, for computational reasons, this is done every once
in a while rather than at every keyframe.

Note that to construct the global map, we basically take keyframes and the ego-motion between them.
Essentially, a map is a graph where the vertices correspond to image frames, and edges correspond to 3D
visual transformations between them. Ultimately, the agent records map points in a keyframe, then goes
through some estimated motion, and then records map points in another keyframe, some of which may be
the same points as before, and projects these points to R3 to construct the map.

3.1 Odometry: Keyframes and Map Points

The image taken from a monocular camera is just a 2D projection of the 3D space. If we want to recover the
3D structure, we just have to change the camera’s view angle. In monocular SLAM, we move the camera
and estimate its motion, as well as the distances and sizes of the objects in the scene. From everyday
experiences, we know that if we move to the right, everything in our frame moves to the left. Additionally,
closer objects move faster, while farther objects move slower. Thus, when the camera moves, the movement
of these obejcts on the image forms pixel disparity, which can be used to quantitatively determine the depth
of various objects. But these are all relative values; we don’t know the actual size of these objects.
Stereo cameras consist of two synchronized monocular cameras, displaced with a known distance, called the
baseline. Because the physical distance of the baseline is known, we can take the two frames captured at
the same moment and use the differences between the images to calculate the depth. Usually, the further
the baseline, the more reliable for further distances.
Let us assume that we are working with monocular cameras with pinhole lens. If we have a camera which
takes a frame, then moves, and then takes another frame, we can estimate the ego-motion of the camera and
the map points with the following visual.

11/ 26

SLAM Muchang Bahng Spring 2023

Given that you know the two poses, you can ”project” them out to 3D space to estimate the map points, and
given that you know the map points, you can use the differences in the feature points between the frames
to estimate the pose. This is sort of a chicken-or-egg scenario, which is why this is called simultaneous
localization and mapping. Fortunately, due to the 8-point algorithm, if we can find at least 8 common
feature points between 2 frames, we can estimate the camera pose and map point position (since knowing
one leads to the other). Furthermore, in visual-inertial SLAM, we have the inertial measurements from the
IMU, too. For example, since it measures linear acceleration a, we can integrate it twice to get the linear
displacement:

∆x “

ĳ

a dt

and optimize this noisy estimate with the 8-point algorithm. Note that the 8-point algorithm is used in
odometry and not in local mapping.
Mathematically, visual-inertial odometry is a function that takes in a series of frames (which can really
be stripped down to their sets of feature points) and the inertial inputs (from the IMUs). It outputs the
ego-motion of the agent between the frames, which is some element ϕ P SEp3q, a set of keyframes, and a set
of map points. The important part is the ϕ’s, which encode the localization information and thus gives us a
rough pose of the camera. A key difference between odometry and map building is that odometry takes in
every frame to determine ego-motion, localization, and map points, while local mapping uses only keyframes
to construct maps. In odometry, we could compare adjacent frames vk, vk`1, but it is generally preferred to
compare a frame to the latest keyframe (since these are considered more optimized and stable).

These keyframes are then sent to the local mapping module, which creates new 3D map points via trian-
gulation. An optimized camera pose can be then calculated by solving the bundle adjustment problem,
ultimately creating a global map (along with outputting the trajectory of the camera).

3.2 Local Mapping: Bundle Adjustment

Geometric BA that minimizes feature reprojection error, or photometric BA that minimizes the photometric
error of a set of selected pixels. Global vs local bundle adjustment.

3.3 Loop Closing

3.4 Mathematical Formulation of SLAM

Now that we have some qualitative understanding of SLAM, along with some of the mathematical machinery
for it, let us explain the problems we’re trying to solve. We can model this using a discrete time model since
the camera frames are coming in discrete moments.

1. Let the camera/agent have poses x1, . . . ,xK (composed of both location and orientation).

2. Assume that the map is made up of several landmarks y1, . . . ,yN .

3. At each timestep, we can use input commands uk´1 to direct the agent (e.g. turn 15 degrees to the
left). That is, given command uk, we expect xk´1 to go to xk, with some additional noise wk. This
function f is called the motion equation.

xk “ fpxk´1,ukq ` wk

12/ 26

SLAM Muchang Bahng Spring 2023

This represents the localization portion of SLAM, and the notation is consistent with the robotics. For
example, we can think of the pose as a 6-DoF element xk´1 P SEp3q, the command uk would also be
an element of SEp3q representing some transformation, and the function h : SEp3q ˆ SEp3q ÝÑ SEp3q

is simply the group operator (matrix multiplication). There are many different representations of this.

4. Along with the motion equation, we have a observation equation that describes the process that
the agent spots landmark yj at pose xk, and generates some observation data zk,j . We can describe
this relationship with some abstract function h.

zk,j “ hpyj ,xkq ` vk,j

This represents the mapping portion of SLAM. More specifically, xk P SEp3q describes the pose of the
agent in world coordinates, and the landmark/mappoint yj P R3 is just some point. The pose xk will
determine where the agent is facing and where it can view, and the function h will project all rj to
image coordinates zk,j P R2 for all k, j. Say that at pose xk, the camera can see y1 in its view. Then,
hpy1,xkq will end up being the projection of y1 P R3 in the world coordinates to zk,1 P R2 in the image
coordinates (so h can be thought of as the extrinsic matrix followed by intrinsic matrix multiplication).
If y2 is not visible, it will return a null value.

So, our model consists of two stochastic processes:

xk “ fpxk´1,ukq ` wk

zk,j “ hpyj ,xkq ` vk,j

Now we assume that the noise are Gaussian: wk „ N p0,Rkq and vk,j „ N p0,Qk,jq.
For better visualization, at each time k “ 1, . . . ,K, we have the following. At k “ 0, we know the initial
x0, and we give the command u1, which gives us x1. At this point, we want to take all map points yj and
compute its image coordinates, which can give some successful coordinates (if the mappoints are within the
frame) and some null.

We may get some results at timestep 1 such as

z1,1 “

ˆ

13
340

˙

, z1,2 “ H, . . .

So after all timesteps, we would have to keep track of the following:

1. The K poses, which are all stochastic

x “ tx0,x1,x2, . . . ,xKu

where x0 is known.

13/ 26

SLAM Muchang Bahng Spring 2023

2. The N landmarks, which are all known in world coordinates,

y “ ty1, . . . ,yNu

3. The K input commands, which are all known

u “ tu1, . . . ,uKu

4. The N 2-vectors at each time step k P rKs,

z “ tz1, . . . , zKu, where zk “

¨

˚

˝

z1,1 P R2

...
z1,N P R2

˛

‹

‚

Since this data comes gradually over time, we can hold an estimated state at the current moment and then
update it with new data. This method is called filtering. However, this method is outdated (20+ years
old). A more modern way is to record the data into a file an look for the best trajectory and map in all
time, which is commonly known as batch estimation.
Note that we completely know our input commands uk, along with the outputs zk,n representing the image
coordinates of the N landmarks at each pose. From this data, we must infer the actual poses x and the
landmark positions y, which can be fully represented by the conditional probability distribution:

P px,y | u, zq9P pz,u | x,yq P px,yq

Note that this is a posterior distribution over all K poses and N landmarks, i.e. this is a probability measure
over the space

SEp3qK ˆ pR3qN

It is quite hard to find this posterior in nonlinear systems (which is what we will be working with), but it is
feasible to optimize it, i.e. find the mode.

px,yq˚
MAP “ argmaxP px,y | z,uq “ argmaxP pz,u | x,yq P px,yq

If we take an improper prior, we can just solve the Maximum Likelihood Estimation

px,yq˚
MLE “ argmaxP pz,u | x,yq

4 Visual Odometry

4.1 Feature Mapping: ORB

Remember that if we would like to compute the ego-motion of our agent, it is more efficient to extract
feature points from our frames to reduce the dimensionality of our problem. Extracting these feature points
is extremely important since they determine the quality of our data. Ideally, we want feature points to
remain stable after the camera moves, and when the scene/angle view changes slightly, the algorithm can
determine from the iamges which places refer to the same point. Furthermore, we would want these feature
points to be rotation and scale invariant, since that shouldn’t affect which points are important. Therefore,
we may use some radially symmetric kernel to detect keypoints. For simple algorithms, we can look at a
grayscale image, but for most modern ones, the gray value alone is not feasible.
A feature point is composed of two parts:

1. A key point, which is the 2D position of the feature point in an image.

2. A descriptor is usually a vector describing the information of the pixels around the key point and
used for identifying the same object in multiple key points. Features with similar appearance should
have similar descriptors that are close within their vector space, and this metric can be used for
feature mapping. Usually, the L2 Euclidean distance is used, and for binary descriptors (BRIEF), the
Hamming distance is used. As the number of dimensions increases, we must also use approximate
nearest neighbor searches.

14/ 26

SLAM Muchang Bahng Spring 2023

The SIFT (Scale Invariant Feature Transform) is one of the most accurate and robust (through different
angles, perspectives, and lighting changes), but it is extremely expensive. The FAST algorithm exchanges
accuracy and robustness for calculation speed increase, and only calculates the keypoint (not the descrip-
tor). The ORB (Oriented FAST and Rotated BRIEF) algorithm is widely used for real-time image feature
extraction. To compare performance, extracting about 1000 feature points in the same image takes about
15.3 ms for ORB, 217.3ms for SURF, and 5228.7ms for SIFT. Big differences.
Learning about each algorithm is beyond the scope of this course, so we will learn about the ORB feature.
They consist of two parts: ORB key points and ORB descriptors.

1. FAST corner point extraction basically finds the corner points in the images and computes the main
direction of the feature points, making the BRIEF descriptor rotation invariant.

2. The BRIEF descriptor describes the surrounding image area where the feature points were extracted
in the previous step. ORB

4.1.1 FAST Key Point

We take a grayscale image and do the following:

1. Select pixel p from the image, assuming its brightness as Ip.

2. Set a threshold T , for example 20% of Ip.

3. Take p as center, and select the 16 pixels on a circle with a radius of 3.

4. If there are consecutive N points on the selected circle whose brightness is outside of rIp ´ T, Ip ` T s,
then p can be considered a feature point. N “ 12 usually: FAST-12.

5. Iterate through the above 4 steps with each pixel.

There are some optimization techniques but this algorithm suffers from lousy repeatability and uneven
distribution. Another problem is that the original FAST corners are often clustered.
Furthermore, because it fixed the radius of the circle as 3, there is also a scaling problem: a place that
looks like a corner from a distance may not be a corner when it comes close. This is solved by an image
pyramid. The bottom of the pyramid is the original image, and for each layer up, the image is scaled to
produce different resolutions. The smaller image can be seen as a scene viewed from a distance. We can
match images on different layers to achieve scale invariance.
Finally, let us talk about rotation invariance. To know this, we must define the centroid of an image. Given
an image block B consisting of pixels px, yq with their grayscale intensities Ipx, yq, let us define the moment
of the image block B as

Mpq :“
ÿ

px,yqPB

xpyq Ipx, yq

Then, the centroid of B is defined

C “

ˆ

m10

m00
,
m01

m00

˙

Connect the geometric center O and the centroid C of the image block to get an direction vector
ÝÝÑ
OC, so the

direction of the feature point can be defined as

θ “ arctan
´m01

m10

¯

With this information, we can improve the feature points to be rotation invariant, thus resulting in Oriented
FAST.

15/ 26

SLAM Muchang Bahng Spring 2023

4.1.2 BRIEF Descriptor and Feature Matching

BRIEF is a binary descriptor that encodes the size relationship between 2 random pixels p and q near the
key point. If Ip ą Iq, then take 1, and 0 otherwise. If we take n such pairs, we get a n-dimensional vector in
t0, 1un. This BRIEF algorithm implements the comparison of randomly selected points, which is very fast.
Now we can calculate (using the Hamming distance) between the BRIEF descriptors to determine which
key points match the same object. However, mismatches are common due to the locality of image features.
Due to repeated textures in the scene, feature descriptions can be very similar, so it is hard to resolve
this mismatch by using local features only. The most naive is the brute force method: Assume features xm

t ,
m “ 1, . . .M are extracted in image It and features xn

t`1, n “ 1, . . . , N in image It`1. We can just brute force
this by computing the MN{2 distances and then sorting. But this is not computationally efficient, which
is why we can use more sophisticated methods, such as the Fast Approximate Nearest Neighbor (FLANN)
algorithm. The technical details will be skipped here, but here are two pictures with points that have been
feature matched.

4.2 2D-2D Epipolar Geometry: Estimating Ego-Motion

We will refer to the diagram above. Let’s have some map point in world coordinates pW “ pxW , yW , zW qT .
Let the camera position C1 be represented by R1 and t1, and that of C2 be represented by R2 and t2. Then,

16/ 26

SLAM Muchang Bahng Spring 2023

we can represent the camera coordinates as

ˆ

pC1

1

˙

“

ˆ

R1 t1
0T 1

˙ ˆ

pW

1

˙

ˆ

pC2

1

˙

“

ˆ

R2 t2
0T 1

˙ ˆ

pW

1

˙

“

ˆ

R21 t21
0T 1

˙ ˆ

R1 t
0T 1

˙ ˆ

pW

1

˙

“

ˆ

R21 t21
0T 1

˙ ˆ

pC1

1

˙

From our previous notation, we know that the intrinsic camera matrix has dimensions K P R3ˆ4 that maps
from the homoegenous 3D coordinates to homogeneous 2D coordinates. We can also write

pC1 “ R1pW ` t1

pC2 “ R21pC1 ` t21

We can work with 3D camera coordinates px, y, zq and stick with the 3D homogeneous image coordinates
pu, v, 1q. Then, our intrinsic matrix is the previous one with the rightmost column truncated, which will be
denoted K from now on.

su “ s

¨

˝

u
v
1

˛

‚“

¨

˝

ρuf 0 cv
0 ρvf cv
0 0 1

˛

‚pC

Then, we can write the image projections of pW onto each camera frame as s1u1 “ KpC1 and s2u2 “

KpRpC1
` tq. Since K is invertible (upper diagonal with nonzero product of diagonal entries), we can define

x1 “ K´1u1 and x2 “ K´1u2.

x1 “ K´1u1 “
1

s1
pC1

x2 “ K´1u2 “
1

s2

`

RpC1
` t

˘

“
s1
s2

ˆ

1

s1
RpC1

`
1

s1
t

˙

“
s1
s2

`

Rx1 `
1

s1
t
˘

Define

t^ “

¨

˝

0 ´t3 t2
t3 0 ´t1

´t2 t1 0

˛

‚

We left multiply xT
2 t

^ on both sides of the final line, which reduces the left side to 0.

0 “ xT
2 t

^x2 “ xT
2 t

^

ˆ

s1
s2

`

Rx1 `
1

s1
t
˘

˙

“
s1
s2

xT
2 t

^Rx1

which gets us the epipolar constraints:

xT
2 t

^Rx1 “ 0 ðñ pT
2 K

´T t^RK´1p1 “ 0

Geometrically, it means that O1, P,O2 are coplanar (obvious?). This constraint encodes both translation
and rotation.

1. The essential matrix is defined E “ t^R.

2. The fundamental matrix is defined F “ K´TEK´1.

17/ 26

SLAM Muchang Bahng Spring 2023

This allows us to write
x2Ex1 “ p2Fp1 “ 0

which shows the relationship between two matching points concisely. Therefore, based on the pixel positions
of these mached points, we should first find E or F, and then find R, t. Often the simpler form E is used in
practice. It has the following properties:

1. Equivalence under different scales: Multiplying E by a different scale gives the same constraint.

2. The singular values of the E must be of form pσ, σ, 0q.

It turns out that the set of essential matrices form a 5-dimensional projective space. The fact that it has
5 DoF indicates that we can use at least 5 pairs of (nonredundant) points to solve E. However, due to the
nonlinearity of this space, we must use 8 pairs, which is the classical 8-point algorithm.

4.2.1 8-Point Algorithm

Let’s describe the algorithm. Consider a pair of matched points, with coordinates u1 “ pu1, v1, 1qT and
u2 “ pu2, v2, 1qT . We have

`

u2 v2 1
˘

¨

˝

e1 e2 e3
e4 e5 e6
e7 e8 e9

˛

‚

¨

˝

u1

v1
1

˛

‚“ 0

We rewrite the matrix in vector form e “ pe1, . . . , e9qT . Then, the epipolar constraint can be written in a
linear form w.r.t. e.

`

u2u1, u2v1, u2, v2u1, v2v1, v2, u1, v1, 1
˘

¨ e “ 0

Given that we have 8 pairs of matched features puk,vku8k“1, we can solve the linear system of equations

¨

˚

˚

˚

˝

u1
2u

1
1 u1

2v
1
1 u1

2 v12u
1
1 v12v

1
1 v12 u1

1 v11 1
u2
2u

2
1 u2

2v
2
1 u2

2 v22u
2
1 v22v

2
1 v22 u2

1 v21 1
...

...
...

...
...

...
...

...
...

u8
2u

8
1 u8

2v
8
1 u8

2 v82u
8
1 v82v

8
1 v82 u8

1 v81 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

e1
e2
e3
e4
e5
e6
e7
e8
e9

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0

e is located in the null space of this matrix. The rank of the coefficient matrix can be at most 8, and by the
rank-nullity theorem, if this is of full rank, then the null space is of dimension 1. Considering the equivalence
property of E, this gives us a unique solution.
If we get N ą 8 pairs of features, then we can calculate a least-squares solution. We can define the N ˆ 9
matrix A of coefficients and then solve the least squares solution for

Ae “ 0

Now we must talk about how to retrieve R, t from E. We will skip technalities and just say that this can
be solved by taking the SVD of E “ UΣVT .

4.3 Triangulation: Estimating Map Points

The first thing to note is that triangulation is caused by translation. Only when there is enough amount
of translation, triangles in epipolar geometry can be formed, and then triangulation can be implemented.
Therefore, triangulation cannot be used for pure rotation because the triangle does not exist in this case.
We will refer to the diagram below.

18/ 26

SLAM Muchang Bahng Spring 2023

Now given the matched features points, we have computed an estimate of R and t. Now, we must still
compute the depth of the mappoint pW from C1 and C2, i.e. the variables s1 and s2. Remember that
we have the projected image coordinates u1,u2 satisfying s1u1 “ KpC1 and s2u2 “ KpRpC1 ` tq. By
substituting, we get s1x1 “ pC1

and s2x2 “ pC2
, i.e. we can interpret the x’s as the normalized coordinates

of pC . They satisfy
s2x2 “ s1Rx1 ` t

Geometrically, we want to find a 3D point on the ray
ÝÝÝÑ
O1p1 to make its projection as close to p2, same for

the other point. Either way, the answer is similar. To estimate s1, we can multiply both sides of the formula
by x^

2 to get
0 “ s2x

^
2 x2 “ s1x

^
2 Rx1 ` x^

2 t

With s1, s2 is easy to calculate, and we find their depth, multiply it by x1,x2, and find their spatial
coordinates. Other more effective methods might be optimizing a least square cost function rather than
directly solving it.

4.4 2D Optical Flow

4.5 Direct Method

5 Filters

Note from before that we are trying to solve the equations

xk “ fpxk´1,ukq ` wk

zk,j “ hpyj ,xkq ` vk,j

for t “ 0, . . . , N and landmarks m “ 1, . . . ,M . We would like to infer the values of x,y using our values of
u and z. Due to noise, we know that these are random variables. For convenience of notation, let us denote
all of our unknowns at time t “ k to be

Xk :“ txk,y1, . . . ,yMu

We can also let zk be the vector pzk,1, zk,2, . . . , zk,M and redefine h as the vector-valued function that outputs
the zk. So, our model looks like

Xk “ fpXk´1,ukq ` wk

zk “ hpXkq ` vk

We would like to use the data from 1 to k to estimate the current state distribution P pXk | X0,u1:k, z1:kq.
Let us focus on the zk, which are the image points of all landmarks that we get for all timesteps so far. We
can use Bayes’ rule to expand

P pXk | X0,u1:k, z1:kq9P pzk | Xkq P pXk | X0,u1:k, z1:k´1q

19/ 26

SLAM Muchang Bahng Spring 2023

The likelihood tells us the probability of observing zk given that we are at Xk. We can condition over Xk´1

on the prior since Xk must be dependent on Xk´1.

P pXk | X0,u1:k, z1:k´1q “

ż

P pXk | Xk´1,X0,u1:k, z1:k´1q P pXk´1 | X0,u1:k, z1:k´1q dXk´1

From here, we can make more assumptions for simplicity.

5.1 Linear Systems and the Kalman Filter

We assume that Xk satisfies the Markov property, i.e. its state at k is only affected by the state at k ´ 1.
So, we can get a recursive formula representing the state distribution of Xk (P pXk | X0,u1:k, zk´1q) as
something conditioned over the state distribution of Xk´1 P pXk´1 | X0,u1:k´1, z1:k´1q.

P pXk | X0,u1:k, z1:k´1q “

ż

P pXk | Xk´1,ukq P pXk´1 | X0,u1:k´1, z1:k´1q dXk´1

Since we assumed Gaussian noise, we know that all these random vectors X1, . . . ,Xk are Gaussian, so we
can work with their means and covariance matrices. Now let us assume another thing: our system is linear,
so the equations are of the form

Xk “ AkXk´1 ` uk ` wk

zk “ CkXk ` vk

with noise wk „ N p0,Rq and vk „ Np0,Qq, with subscripts removed for conciseness. Now, in order to
calculate the posterior, we must calculate the likelihood and prior in here.

P pXk | X0,u1:k, z1:kq9P pzk | Xkq P pXk | X0,u1:k, z1:k´1q

Due to the Markov property, we don’t need to condition over it and can find it if we know the posterior
distribution of X̂k´1 „ N pX̂k´1, P̂k´1q. Let us use X̂ to represent the posterior of X and X̌ for the prior.

1. Prediction Step: The prior can be calculated simply by transforming the posterior Gaussian X̂k´1

under the linear transformation and adding the extra noise wk. This gives us the formula for the prior

P pXk | X0,u1:k, z1:k´1q “ N pAkX̂k´1 ` uk,AkP̂k´1A
T
k ` Rq

So, we have X̌k „ N pAkX̂k´1 ` uk,AkP̂k´1A
T
k ` Rq.

2. Update Step: The likelihood can be computed very easily since we are fixing Xk.

P pzk | xkq “ N pCkxk,Qq

3. Multiplying these two Gaussian densities gives us the posterior N px̂k, P̂kq. The arithmetic is quite
involved, so in summary, we first calculate the Kalman gain:

K “ P̌kC
T
k pCkP̌kC

T
k ` Qkq´1

4. This gives us the formula for the posterior:

P pXk | X0,u1:k, z1:kq “ N
`

x̌k ` Kpzk ´ Ckxkq, pI ´ KCkqP̌k

˘

5.2 Nonlinear Systems and the Extended Kalman Filter

Usually, the motion and observation equations are nonlinear models, but we can simply take the first order
Taylor expansion to approximate them as linear systems. Let the mean and covariance matrix at time k ´ 1
be x̂k´1 and P̂k´1. Then, we simply expand at x̂k´1 on the motion equation:

Xk « fpX̂k´1,ukq `
Bf

BXk´1

ˇ

ˇ

ˇ

ˇ

X̂k´1

pXk´1 ´ X̂k´1q ` wk

“ fpX̂k´1,ukq ` FpXk´1 ´ X̂k´1q ` wk

20/ 26

SLAM Muchang Bahng Spring 2023

where we denote the total derivative as F. For the observation model, we can just take the total derivative
at Xk.

zk « hpXkq `
Bh

BXk

ˇ

ˇ

ˇ

ˇ

Xk

pxk ´ Xkq ` uk

“ hpXkq ` Hpxk ´ Xkq ` uk

where we denote the total derivative as H. Then, we can summarize the algorithm in the following way:

1. The prediction step is
X̌k „ N

`

fpX̂k´1,ukq,FP̂k´1F
T ` Rkq

2. The likelihood is of form
P pzk | xkq “ N

`

hpxk ` Hpxk ´ Xkq,Qk

˘

3. We compute the Kalman gain
Kk “ PkH

T pHPkH
T ` Qkq´1

4. The posterior can be written

X̂k „ N
`

Xk ` Kkpzk ´ hpXkqq, pI ´ KkHqPk

˘

To describe the EKF, this is quite a simple algorithm that can be used to estimate the amount of uncertainty
within a certain period of time in a lot of applications. However, EKF falls short in many aspects. First, the
Markov property is too strong of an assumption, since a robot can be programmed to return the to starting
position after a long time. The linearization can approximate quite badly, since for every step, the model is
linearized only once. Finally, filter methods have no outlier detection mechanism, which causes the system
to diverge when there are outliers.

6 Bundle Adjustment and Graph Optimization

Bundle adjustment refers to optimizing both camera parameters (both intrinsic and extrinsic) and 3D land-
marks with images. To put simply, consider the bundles of light rays emitted from 3D points. They are
projected into the image planes of several cameras and then detected as feature points. The purpose of
optimization can be explained as to adjust the camera poses and the 3D points, to ensure the projected 2D
features (bundles) match the detected results.
Recall the observation equation zi,j “ hpxi,yjq. So given a data point zi,j , we can compute its error as

eij “ zij ´ hpxi,yjq

Summing for all landmarks j “ 1, . . . ,m and all time steps k “ 1, . . . , n gives the cost function, or objective
function,

fpXq :“
1

2

m
ÿ

i“1

n
ÿ

j“1

||eijpXq||2 “
1

2

n
ÿ

i“1

m
ÿ

j“1

||zij ´ hpxi,yjq||2

where X “ px1, . . . ,xn,y1, . . . ,ymq P R6n ˆ R3m. We will denote camera pose and the landmarks as

xc “ px1, . . . ,xnq

xp “ py1, . . . ,ymq

Note that at this point, it is common to represent xi with its Lie algebra representation in sep3q. Given
some small increment ∆X, we can approximate f : R6n ˆ R3m ÝÑ R as

1

2
||fpX ` ∆Xq||2 “

1

2
||e ` F∆xc ` E∆xp||2

21/ 26

SLAM Muchang Bahng Spring 2023

where F P R2ˆ6n and E P R2ˆ3m are the partial derivative matrices in block form

F “

´

Bf
Bx1

Bf
Bx2

. . . Bf
Bxn

¯

with each
Bf

Bxi
P R2ˆ6

E “

´

Bf
By1

Bf
By2

. . . Bf
Bym

¯

with each
Bf

Byj
P R2ˆ3

Numerical optimization like the Gauss-Newton or the Levenberg-Marquardt methods essentially solves an
incremental linear equation of form

H∆x “ g

where H is an approximate of the Hessian matrix of f using the Jacobian J “ rF Es, of form

H “ JTJ “

ˆ

FTF FTE
ETF ETE

˙

Since H P Rp6n`3mqˆp6n`3mq is high-dimensional, inverting it takes Opn3q time, but we can take advantage
of its sparsity. Note that the Jacobian’s entries are really just partial derivatives.
Now let us show that H is sparse. Consider one of the error terms eij , which describes only the residual
about yj in xi and only involves the ith camera pose and the jth landmark. Its Jacobian has the following
form and is very sparse:

Jij “

ˆ

02ˆ6, . . . ,02ˆ6,
Beij
Bxi

,02ˆ6, . . . ,02ˆ6,02ˆ3, . . . ,02ˆ3,
Beij
Byj

,02ˆ3, . . . ,02ˆ3

˙

If we compute Hij “ JT
ijJij , then Hij will have 4 nonzero blocks (in the iith, ijth, jith, and jjth block).

Then simply adding these Hij ’s, or multiplying the stacked Jacobians as such

¨

˚

˚

˝

—
... —

— Jij —

—
... —

˛

‹

‹

‚

T ¨

˚

˚

˝

—
... —

— Jij —

—
... —

˛

‹

‹

‚

“ H

results in the matrix H with blocks of form

H “

ˆ

H11 H12

H21 H22

˙

where the subscript 1 represents the derivatives w.r.t. the xi’s and the 2 represents that of yj ’s. It can be
easily seen that H11 and H22 are block-diagonal matrices of 6 ˆ 6 and 3 ˆ 3 matrices, respectively, which
is sparse. H12 and H21 may be sparse or dense, depending on the observation data. It turns out that if
the ijth block is nonempty, then this means that the camera at the ith pose can observe the jth landmark,
which is analogous to there being a connection between the nodes xi and yj in a connected graph. Using
linear algebra tricks, this can be solved in acceptable time. So solving this system by inverting H solves the
graph optimization problem.
For example, let us have two camera poses x1,x2 and 6 landmarks py1,y2,y3,y4,y5,y6q in the scene. Say
that camera at pose x1 observes py1,y2,y3,y4q and at pose x2 observes py3,y4,y5,y6q. We can connect an
edge between xi and yj if it can be observed, as such:

22/ 26

SLAM Muchang Bahng Spring 2023

Then, the overall cost function is

fpXq “
1

2

´

||e11pXq||2 ` ||e12pXq||2 ` ||e13pXq||2 ` ||e14pXq||2

` ||e23pXq||2 ` ||e24pXq||2 ` ||e25pXq||2 ` ||e26pXq||2
¯

Let Jij be the Jacobian corresponding to eij , and we can form the Jacobian

J “

»

—

—

—

—

—

—

—

—

—

—

–

J11
J12
J13
J14
J23
J24
J25
J26

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

Be11

Bx1
02ˆ6

Be11

By1
02ˆ3 02ˆ3 02ˆ3 02ˆ3 02ˆ3

Be12

Bx1
02ˆ6 02ˆ3

Be12

By2
02ˆ3 02ˆ3 02ˆ3 02ˆ3

Be13

Bx1
02ˆ6 02ˆ3 02ˆ3

Be13

By3
02ˆ3 02ˆ3 02ˆ3

Be14

Bx1
02ˆ6 02ˆ3 02ˆ3 02ˆ3

Be14

By4
02ˆ3 02ˆ3

02ˆ6
Be23

Bx2
02ˆ3 02ˆ3

Be23

By3
02ˆ3 02ˆ3 02ˆ3

02ˆ6
Be24

Bx2
02ˆ3 02ˆ3 02ˆ3

Be24

By3
02ˆ3 02ˆ3

02ˆ6
Be25

Bx2
02ˆ3 02ˆ3 02ˆ3 02ˆ3

Be25

By5
02ˆ3

02ˆ6
Be26

Bx2
02ˆ3 02ˆ3 02ˆ3 02ˆ3 02ˆ3

Be26

By6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and we can compute H “ JTJ, which will look like an arrowhead matrix. Again, with linear algebra
techniques, we can invert this and solve the optimization problem.

6.1 Robust Kernels

In this BA problem, we want to minimize the L2 norm of the error term e. This is ideal, but what happens
if the data given by a certain error term is wrong due to some mismatch of the nodes? That is, what if
we added an edge that shouldn’t have been added to the graph? The algorithm will try to incorporate an
observation that is impossible to happen, which will contribute to a large error that shouldn’t be there. Even
worse, the gradient is likely to be very large, too, and this will eliminate out the influence of other correct
edges. We can fix this by introducing a robust kernel function, which bounds the error of each edge. More
specifically, we can replace the L2 norm with something that is more bounded (whether it’d be the norm
itself or its derivatives). For example, we can use the Huber kernel

Hpeq “

#

1
2e

2 when |e| ď δ

δp|e| ´ 1
2δq otherwise

6.2 Sliding Window Filter and Optimization

Solving graph optimization with camera pose and spatial points is called BA, but this often does not meet
real time SLAM requirements. This puts a limit on the size of the matrix H, the number of iterations we
can compute for the optimization process, and so on. The first way to reduce computation is to extract
keyframes from the video, only constructing the BA between the keyframe and the landmarks. The non-
keyframes are only used for localization and do not contribute to the mapping point. But as enough time
passes, the number of keyframes will also increase to the point where we cannot compute efficiently.
The simplest way to control the BA is to keep only the N keyframes closest to the current moment and
remove the earlier ones. Therefore, we will fix the BA within a time window, and those that leave this
window is discarded, hence the name, sliding window filter. This means that the connected graph between
the camera poses and the landmarks will be updated. Note that while we will not elaborate here, more
sophisticated sliding windows must be implemented rather than just that of closest in time, since a robot
stopping in one pose for an extended amount of time may lead to bad degradation errors.
Remember that given a connected graph of poses xn and landmarks ym, this specific graph corresponds to
some sparse block matrix H that we eventually have to invert. Now, a change to this graph would lead to a
change in H, which would affect our optimization scheme. Suppose we have a set of poses x1, . . . ,xN along
with the set of all landmarks that they can see, indexed by some set J : tyjujPJ . Then, a sliding window
would refer to an addition of xN`1 and a deletion of x1, along with the modification of whatever landmarks.

23/ 26

SLAM Muchang Bahng Spring 2023

1. It turns out that adding the new pose and keyframe isn’t all that difficult, and we can conveniently
optimize H given that new rows/columns are added since we are dealing with bigger Gaussians.

2. Deleting a keyframe, along with the landmarks it observes is quite a pain, however. First, it turns out
that H will no longer be sparse, leading to bigger issues.

6.3 Pose Graph Optimization

Given the amount of feature points one can extract from an image, it is unsurprising that landmarks ym

occupy most of the optimization time. In fact, after several observations, the spatial position of the landmarks
will converge to a value and remain almost unchanged (think about 8-point algorithm plus optimization
done for countless frames), while the divergent outliers are usually invisible. Optimizing the landmarks
seems redundant, so we should focus on pose estimation. That is, we can fix the feature points after a few
iterations and regard them as constraints of pose estimation.
In fact, we can construct a graph optimization with only pose variables. The edge between pose vertices can
be set with measurements by the ego-motion estimation obtained from feature matching. So once the initial
estimation of of the landmark points is completed (by?), we no longer optimize them and only care about
the connections between all camera poses. That is, we abandon the optimization of landmark, and only keep
the edges between pose variables. This way, we can keep the computational cost low, much better than a
simple window filter. When we no longer optimize the landmark in BA and only regard them as constraints
on the pose nodes, we get a pose graph with a much reduced scale.

Now let us define the vertices and edges in a pose graph optimization. The node represents the camera pose,
denoted x1, . . . ,xn, which we will represent as elements of SEp3q. The edge is the estimation of the relative
motion between the two pose nodes, where the movement from xi to xj is denoted ∆xij P SEp3q. Note that
this movement is really just

∆xij “ xj x
´1
i

Since we are working witha fully connected graph of these nodes, these compositions will not be exactly
consistent: certain compositions from xi to xj will not match exactly. So this can just be turned into a least
squares problem. Ideally, if both sides of the equation above are equal, we should have

I “ p∆xijq´1xj x
´1
i

and mapping both sides through the logarithmic map gives us this equation in the Lie algebra sep3q.

0 “ ln
`

p∆xijq´1xj x
´1
i

˘

Let eij “ ln
`

p∆xijq´1xj x
´1
i

˘

be the error of the edge from xi to xj , and our job is to minimize some
weighted of these errors eij P R6. This total error function C of the graph edges E can be written as

CpEq :“
1

2

ÿ

pi,jqPE

eTijΣ
´1
ij eij

where the Σij ’s account for sensitivity in certain edges or components of the error term for each edge.

24/ 26

SLAM Muchang Bahng Spring 2023

7 SLAM and Beyond

Let’s now summarize what SLAM does. Note that filtering is not used at all in modern SLAM systems, and
the following is a very general outline of SLAM. Many variants have modifications.

1. We first take a sequence of images (at a certain framerate) and identify its keyframes. The keyframes
are considered the ”high-quality” data.

2. All frames are used for the frontend, which includes pose estimation and estimation of map points.
This is usually done with lightweight algorithms such as the 8 point algorithm or triangulation. The
output of this module is some noisy initialization of both the pose estimates X and the landmark
estimates Y.

3. The initial estimates are optimized with the backend using more heavy-duty optimization techniques,
such as bundle adjustment and (pose) graph optimization. Only the keyframes are needed for this.
Indeed, since adjacent frames are similar, deleting them won’t lose much information (dimensionality-
reduction without much information loss). Furthermore, we can treat this backend as some combination
of the backend algorithms mentioned, e.g. graph optimization, filtering, sliding windows, pose graph
optimization. However, graph optimization is the most common (at least in ORB-SLAM3). Ultimately,
the output of this module is the optimized estimates of X and Y.

4. Then loop closing is done on X for futher optimization.

7.1 Edge SLAM

All this is computationally quite expensive, so the purpose of EdgeSLAM is to offload the computation and
memory overhead to an edge server. Second, we want to keep the overall resource usage (CPU, memory)
on the mobile agent to be relatively constant for long-term operation. What it essentially does is keep the
tracking module within the mobile agent and outsources the local mapping, loop closing, segmentation, and
global map building processes in the edge server. Since tracking requires the mobile agent to compare new
frames with previous ones, we keep a local map within the mobile agent.

1. The mobile agent takes in frames and uses feature detection to compare them to its local map. It
calculates the relative odometry and selects keyframes to send to the edge server.

2. The edge server performs bundle adjustment, loop detection, (possibly segmentation), and builds the
global map. Then it sends the relevant portion of the map to the mobile agent, updating its local map.

This biggest problem now here is bandwidth and latency. More specifically, to achieve SLAM performance
at 30fps, we would want the end-to-end latency (mobile to server to mobile) plus the edge processing time
to be less than 33.3ms. Here are some solutions for improvement:

1. We utilize three separate connections that work independently of each other so that there is no sequence
nor delays (frames sent from agent to server, keyframes sent from agent to server, map updates sent
from server to agent).

2. If traffic is too high, the mobile device can choose to reject the local map update. This reduces the
frequency of local map updates (which is time-consuming and pauses the agent from processing new
frames), resulting in a slight loss of accuracy. To ensure a minimum frequency of updates, we also
implement a time-out mechanism to determine when a local map is stale.

3. We can tweak parameters that determine the conditions in which we should choose a keyframe. This
allows for more or less frequent keyframe updates (what Xu basically does)

4. When updating the map, depending on which is more efficent, we can either

(a) erase the entire local map and update it from scratch, or

(b) apply edge changes to the local map by ”adding” the differences

25/ 26

SLAM Muchang Bahng Spring 2023

7.2 Multi-Agent Collaborative SLAM

Now take this a step further, where we utilize edge servers to conduct SLAM with multiple agents. This
leads to the potential problems:

1. Increased bandwidth.

2. First come first serve queuing can cause significant delay in localization updates.

3. The size of the global map increases sharply, which may exceed the memory capabilities of the edge
server.

4. Overlaps in local maps, so we must develop an efficient way to merge maps.

26/ 26

	Introduction
	Hardware
	Sensors
	Wireless Connections
	Memory

	Image Processing
	Feature Extraction
	Segmentation
	Types of Maps

	Transformations
	Special Orthogonal and Euclidean Groups
	Rotation Vectors and Euler Angles
	Quaternions
	More General Transformations
	Lie Groups
	Camera Parameterization

	Visual Intertial SLAM
	Odometry: Keyframes and Map Points
	Local Mapping: Bundle Adjustment
	Loop Closing
	Mathematical Formulation of SLAM

	Visual Odometry
	Feature Mapping: ORB
	FAST Key Point
	BRIEF Descriptor and Feature Matching

	2D-2D Epipolar Geometry: Estimating Ego-Motion
	8-Point Algorithm

	Triangulation: Estimating Map Points
	2D Optical Flow
	Direct Method

	Filters
	Linear Systems and the Kalman Filter
	Nonlinear Systems and the Extended Kalman Filter

	Bundle Adjustment and Graph Optimization
	Robust Kernels
	Sliding Window Filter and Optimization
	Pose Graph Optimization

	SLAM and Beyond
	Edge SLAM
	Multi-Agent Collaborative SLAM

