
Python Muchang Bahng Fall 2024

Python

Muchang Bahng

Fall 2024

Contents
1 Names and Values 2

1.1 Mutating vs Rebinding . 2
1.2 Assignments are Everywhere . 5
1.3 Object Caching . 6
1.4 Default Arguments are Evaluated when Function is Defined 7

2 Function Closures and Variable Scopes 7

3 Lists 7
3.1 Queues . 8

4 Hash Maps 8
4.1 Dict Class . 10
4.2 Dict-Like Data Structures . 10
4.3 Extending Dictionaries . 11

5 Additional Built-In Data Structures 11
5.1 Heaps . 11

6 Iterators and Loops 11
6.1 Dynamic Evaluation of Condition During Loop . 11
6.2 Iterators and Enhanced For Loops . 12

7 Item Assignment with Walrus Operator 13

8 Raising Exceptions 14

9 Positional and Keyword Arguments 14

10 Decorators 14

11 Composing Classes 18

1/ 18

Python Muchang Bahng Fall 2024

A course on intermediate Python that developers should be aware of. These aren’t specifically in order.

1 Names and Values
There are a lot of parallel characteristics between python variable assignment and C++ pointers. When we
assign a variable to an object in python, what we are doing under the hood is creating the value/object in
the heap memory (hence we use malloc rather than initializing on the stack) and initializing a pointer to
point to that place in memory.

The left hand side is called a name, or a variable, and the right hand side is called the value. We say
the name references, is assigned, or is bound to the value. In fact, this name is really just a pointer to the
memory location of where the value is stored, and we can access this using the built-in id function.

1 # Python
2 x = 4
3 print(x) # 4
4 print(id(x)) # 4382741696
5 .
6 .

1 # C
2 int* x_ = malloc(sizeof(int));
3 *x_ = 4;
4 int** x = &x_;
5 printf("%d\n", **x); // 4
6 printf("%p\n", *x); // 0x600003ff4000

Figure 1: Referencing an int variable in Python and C. I realize that this isn’t completely equivalent since the C code
uses a pointer to a pointer, but it helps explain other things a bit easier so bear with me.

1 # Python
2 y = [1, 2, 3]
3 print(y) # [1, 2, 3]
4 print(id(y)) # 4314417472
5 .
6 .
7 .
8 .

1 # C
2 int* x_ = malloc(sizeof(int) * 3);
3 x_[0] = 1; x_[1] = 2; x_[2] = 3;
4 int** x = &x_;
5 for (int i = 0; i < 3; ++i) {
6 printf("%d ", *(*x+i)); // 1 2 3
7 }
8 printf("\n%p", *x); // 0x6000011cc040

Figure 2: Referencing a list in Python and C.

1.1 Mutating vs Rebinding
So far so good. But what if we wanted to change x or y? This is where we have to be careful about when
defining change.

1. We can change by taking the value that the name references/points to and mutate it. Types of
values where we can do this are called mutable types, which have methods that allow this change (e.g.
__setitem__ or append for lists). In this case, the memory address it points to should stay the same.

2. We can change by creating a new value/object and changing the name to point to this new object.
If no other variables points to the original object, then the memory is automatically freed. This is
how immutable types are changed, and the memory address it points to should be different. What
immutable really means is that you cannot change the value that the pointer is pointing to without
changing the actual memory location.

So which one is it that Python does? The answer is: it depends.1

1For more information, look at https://nedbatchelder.com/text/names.html.

2/ 18

https://nedbatchelder.com/text/names.html

Python Muchang Bahng Fall 2024

Example 1.1 (Pass By Reference vs By Value)

There are two ways a programmer can interpret the following iconic example.

1 x = 4
2 y = x
3 print(x, y) # obviously prints 4, 4
4 y = 5
5 print(x, y) # what about this?

1. Passing By Reference. The first interpretation is that by setting y = 5, we are modifying the
value that y points to be 5. Since the pointer x also points to the same memory address pointed
by y, then x also should equal 5.

2. Passing By Value. By setting y = 5, we create a new int object, reassign the pointer y to the
new object. Therefore x still points to 4 and y now points to 5.

1 // Pass by Reference
2 int* x_ = malloc(sizeof(int));
3 *x_ = 4;
4 int** x = &x_;
5 int** y = &x_;
6 printf("%d, %d\n", **x, **y); // 4, 4
7

8 **y = 5;
9 printf("%d, %d\n", **x, **y); // 5, 5

10 .
11 .

1 // Pass by Value
2 int* x_ = malloc(sizeof(int));
3 *x_ = 4;
4 int** x = &x_;
5 int** y = &x_;
6 printf("%d, %d\n", **x, **y); // 4, 4
7

8 int *y_ = malloc(sizeof(int));
9 *y_ = 5;

10 y = &y_;
11 printf("%d, %d\n", **x, **y); // 4, 5

Though Python does not technically use references vs values, this analogy is helpful to think about.

Seeing as how an integer is immutable and a list is mutable, let’s look at how it affects them.

1 x = 4
2 print(x, id(x)) # 4 4374664384
3 x = x + 1
4 print(x, id(x)) # 5 4374664416

1 y = [1, 2]
2 print(y, id(y)) # [1, 2] 4340042048
3 y.append(3)
4 print(y, id(y)) # [1, 2, 3] 4340042048

As we see, we rebind for immutable types, which changes the pointing memory address, and mutate for
mutable types, which doesn’t change the address. Therefore, if an object is mutable, then we can mutate it.

Example 1.2 (Warning)

This is very subtle and implementation specific. For immutable types, we are pretty much guaranteed
rebinding, but for mutable types, we may not be so sure.

1. If we instantiate two lists and concatenate them using + into a list with a new name, we call
the __add__ method, which creates a new list object and binds it to that new list.

1 y = [1, 2]
2 z = [3]
3 print(y, id(y)) # [1, 2] 4380248384
4 print(z, id(z)) # [3] 4380250176
5 a = z + y
6 print(a, id(a)) # [1, 2, 3] 4380551424
7

8 a[1] = 4
9 print(a) # [3, 4, 2]

3/ 18

Python Muchang Bahng Fall 2024

10 print(y) # [1, 2]
11 print(z) # [3]

2. If we instantiate two lists and extend them using +=, then we call the __extend__ method,
which extends z with a copy of y. Note that z[1:] and y are two different lists objects in
memory, not the same reference.

1 y = [1, 2]
2 z = [3]
3 print(y, id(y)) # [1, 2] 4380248384
4 print(z, id(z)) # [3] 4380250176
5 z += y
6 print(z, id(z)) # [3, 1, 2] 4380250176
7

8 z[2] = 9
9 print(y) # [1, 2]

10 print(z) # [3, 1, 9]

3. Just to see an example of an immutable type, even using the iadd method does not keep its
original memory address. The entire thing is always allocated to new memory.

1 x = "Hello "
2 print(id(x)) # 4382416384
3 print(x) # Hello
4 x += "World"
5 print(id(x)) # 4382723056
6 print(x) # Hello World

This explains a lot of the weird phenomena, and it is extremely important to know whether a variable is
copied by reference or by value, since you’ll be able to predict the behavior on one variable if you modify
the other one. The common immutable types in Python are string, int, float.

Example 1.3 ()

To drive the point home, take a look at this. T

1 # Pass by value
2 x = 4
3 y = x
4 # Points to same address
5 print(id(x)) # 4382741696
6 print(id(y)) # 4382741696
7 x += 1
8 # Now it doesn’t
9 print(x) # 5

10 print(y) # 4

1 # Pass by reference
2 x = []
3 y = x
4 # Points to same address
5 print(id(x)) # 4383459648
6 print(id(y)) # 4383459648
7 x.append(1)
8 # Still points to same address
9 print(x) # [1]

10 print(y) # [1]

Example 1.4 (Common Traps)

To initialize a list of zeros, we can just do

1 >>> x = [0] * 5
2 >>> x[0] = 1

4/ 18

Python Muchang Bahng Fall 2024

3 >>> x
4 [1, 0, 0, 0, 0]

This is all good since primitive types are immutable, so modifying one really just rebinds it to another
value and doesn’t affect the others. However, if we are initializing a list of lists, then we get something
different.

1 >>> x = [[]] * 5
2 >>> print(x)
3 [[], [], [], [], []]
4 >>> x[0].append(1)
5 >>> x
6 [[1], [1], [1], [1], [1]]

This is because we are instantiating 5 names that all point to the same empty list. Modifying one
really is an act of mutating, leading to the changes persisting across all names. This is because the
inner list is multiplied and therefore copied by reference. This means that all the lists are simply
pointing to the same object in memory, and modifying one modifies all.

1.2 Assignments are Everywhere
Let’s look at a few more examples where assignment are, starting with enhanced for loops.

Theorem 1.1 (Assignments in Enhanced For Loops)

Enhanced for loops of form for elem in x is really an assignment of elem to each element of x. All
of the following are assignments.

1 for elem in ...
2 [... for elem in ...]
3 (... for elem in ...)
4 {... for elem in ...}

Take a look at this anomaly.

1 x = [1, 2, 3]
2 for elem in x:
3 elem += 1
4 print(x) # [1, 2, 3]

With the above theorem, the problem is clear. In the first iteration, we have elem = 1 and x[0] = 1. elem
has been incremented with iadd and therefore is rebound to 2, but this does not affect x[0], leading to no
changes. Note that if the elements were mutable, then we can make these changes persist.

1 x = [[1], [2], [3]]
2 for elem in x:
3 elem[0] += 1
4 print(x) # [[2], [3], [4]]

In here, elem and x[0] are bound to [1] and have the same memory address. I then access the memory
address of the first element of elem and rebind it to its increment. While the 1 changes to a 2, and elem[0]
points to a different memory address, the memory address of elem[0] itself does not change! Therefore, we
have effectively changed the value of the element and have basically mutated the array using the setitem

5/ 18

Python Muchang Bahng Fall 2024

dunder method.

This also persists in functions as well.

Theorem 1.2 (Assignments in Functions)

Arguments in functions are also assigned, in local scope of course.

Compare these two snippets.

1 def augment_twice(a_list, val):
2 a_list.append(val)
3 a_list.append(val)
4

5 nums = [1, 2, 3]
6 augment_twice(nums, 4)
7 print(nums) # [1, 2, 3, 4, 4]

1 def augment_twice_bad(a_list, val):
2 a_list = a_list + [val, val]
3

4 nums = [1, 2, 3]
5 augment_twice_bad(nums, 4)
6 print(nums) # [1, 2, 3]
7 .

1. In the LHS, nums is bound to [1, 2, 3]. In the function scope, a_list is also bound to the same
list. We augment 4 twice, which mutates the object, and upon returning, the name a_list is removed.
However, the changes persist and is seen by nums.

2. In the RHS, nums is also bound to [1, 2, 3]. In the function, a_list is being rebound since we use
the add method, effectively creating a new list in memory. Now the two variables point to different
objects with different memory addresses, and when the function returns, the new list is deleted. Note
that this could be avoided if we use the iadd dunder method, which leads to the memory address being
preserved.

1.3 Object Caching
In general, if we initialize two variables to be the same value, they do not point to the same memory address.

1 # Example of when two variables are
2 # initialized to be the same value, but
3 # do not point to the same memory
4 x = 1000
5 y = 1000
6 print(id(x)) # 4385025360
7 print(id(y)) # 4385026288
8 .
9 .

10 .

1 int* x_ = malloc(sizeof(int));
2 *x_ = 1000;
3 int** x = &x_;
4

5 int* y_ = malloc(sizeof(int));
6 *y_ = 1000;
7 int** y = &y_;
8

9 printf("%p\n", *x); 0x600001be8040
10 printf("%p\n", *y); 0x600001be8050

However, we can initialize y to be equal to x, which tells it to point to the same memory address as x is,
thus having the same id.

1 x = 1000
2 y = x
3 print(id(x)) # 4303203888
4 print(id(y)) # 4303203888
5 .
6 .
7 .
8 .

1 int* x_ = malloc(sizeof(int));
2 *x_ = 1000;
3 int** x = &x_;
4

5 int** y = &x_;
6

7 printf("%p\n", *x); 0x600002368040
8 printf("%p\n", *y); 0x600002368040

This does not change for mutable types either.

6/ 18

Python Muchang Bahng Fall 2024

1 x = []
2 print(id(x)) # 4378741056
3 x = []
4 print(id(x)) # 4378742848

Usually, just setting the values equal does not have it point to the same memory address, but for integers
[-5, 256], Python caches these numbers so that even if we initialize two numbers with the same integer
value, they will always point to the same address.

1 # Don’t need to set y = x
2 x = 200
3 y = 200
4 print(id(x)) # 4314934592
5 print(id(y)) # 4314934592

This is a CPython-specific fact that you should be aware of.

1.4 Default Arguments are Evaluated when Function is Defined
We are used to writing functions with default arguments. An important implementation detail is that
default arguments are evaluated when a function is defined, not when it is called. Consider the following
buggy example.

1 def stuff(x = []):
2 x.append(3)
3 print(x)
4

5 stuff() # [3]
6 stuff() # [3, 3]

There are two unexpected errors with this:

1. We would expect the second call to stuff to print [3].

2. The list that x references to should be garbage collected (more on this later) when the name has been
deleted after the function returned, but it did not.

We will address this first problem. It turns out that the default argument [] is created in memory and every
call with the default argument assigns x to this same list object in the same address. That is, no new lists
are created.

This is of course not a problem if default arguments are immutable types likes integers. Even though the
default argument is bound to the same object in memory for all calls, the value cannot be modified since
you can only rebind it to another object, so it will not contaminate other calls.

2 Function Closures and Variable Scopes
Therefore, this can lead to buggy behavior when using mutable types where it may be passed by reference.

Nonlocal and global keywords.

3 Lists
Lists are implemented as an array of pointers, which can point to any object in memory which is why Python
lists can be dynamically allocated. We should be familiar with the general operations we can do with a list,

7/ 18

Python Muchang Bahng Fall 2024

which are implemented as dunder methods.

Definition 3.1 (Length)

The list.__len__() method returns the length of a list, which is stored as metadata and is thus
O(1) retrieval time. It is invoked by len(list) <-> list.__len__().

Definition 3.2 (Set Item, Get Item, Del Item)

The following three methods are getter, setter, and delete functions on the list[T] array given the
index.

1. The __getitem__(i) -> T returns the value of the index of the list. Since we can do pointer
arithmetic on the array, which is again just 8 byte pointers, we essentially have O(1) retrieval
time. It is invoked by list[i] <-> list.__getitem__(i).

2. The __setitem__(i, val) -> None returns None and sets the value of the index. It is invoked
by list[i] = val <-> list.__setitem__(i, val).

3. The __delitem__(i) -> None deletes the value at that index. It is invoked by del list[i]
<-> list.__delitem__(i).

The next few definitions are not dunder methods, but are important.

Definition 3.3 (Append, Insert, Pop)

List.append(val) is amortized O(1) but is quite slow if we are inserting into the middle with
List.insert(i, val). List.pop() is great for removing from the back of the list, with O(1), but
not so great for removing from the front, where all the elements have to be shifted O(n). Dynamically
resizing the array, where all the elements of the previous array gets copied over to a larger array, is
slightly different. For example, in an old implementation of Python, the new size is implemented
to be new_size + new_size » 3 + (new_size < 9 ? 3 : 6), which approximately doubles the
size (like Java, which exactly doubles the list size), giving us amortized O(1).

Definition 3.4 (Extend)

Definition 3.5 (Sort)

List slicing is quite slow since we are copying the references to every element in the list. Note that the values
are not copied themselves, but we are creating an array of new pointers.

Slicing can be done past last index. Slicing creates a copy of the sublist.

3.1 Queues
A collections.deque (double ended queue) is implemented as a doubly linked list.

4 Hash Maps
In general, a hashmap can be implemented in the following ways. We take an object and hash its value,
giving us another memory address. This intuitively implies that this object is immutable, since changing
the object will lead to a different memory address. A convenient way to bypass this is to convert lists into

8/ 18

Python Muchang Bahng Fall 2024

tuples.2 The hash function may map two different values to the same memory address, so we can deal with
collisions in different ways.3

1. Linked List. The hashed address actually is a linked list, and every time we add to it we append to
the linked list.

2. Probing. If we have two objects x1 and x2 which both map to the same y = h(x1) = h(x2), then we
can predefine another function f that will act on h(x2) when it sees that h(x1) is already occupied,
effectively mapping it to f(h(x2)). Two common ones is f(x) = x + 1, which maps it to the next
address, called linear probing, or we can scale it in different ways, e.g. quadratic probing.

3. Double Hashing, Open Addressing. We can hash the hash differently, effectively doing (h1(x) + i ·
h2(x))modS, and keep incrementing i from 0 to whenever it sees a new spot.

Definition 4.1 (Python Dictionaries)

Python does indeed implement dictionaries as hash maps/tables and uses open addressing to handle
collisions, meaning that it can only store one and only one entry. Python’s hash table is also a
contiguous block of memory, so you can actually do O(1) lookup by index as well, though the indices
aren’t stored.

1 -+-----------------+
2 0| <hash|key|value>|
3 -+-----------------+
4 1| ... |
5 -+-----------------+
6 .| ... |
7 -+-----------------+
8 i| ... |
9 -+-----------------+

10 .| ... |
11 -+-----------------+
12 n| ... |
13 -+-----------------+

Figure 3: Logical model of Python Hash table. It consists of the keys, the hash of the keys, and the values
that are stored in the hashed memory address. The indices are shown on the left, but they are not stored
along with the table.

When a new dict is initialized, it starts with 8 slots.
1. When adding entries to the table, we take the key k, hash it to h, and we do an additional mask

operation i = mask(key) & mask, where mask = PyDictMINSIZE - 1 (in CPython).
2. If the slot is empty, the entry is added to the slot. If the slot is occupied, CPython (and PyPy)

compares the hash and the key (with ==, not is) of the entry in the slot against what we are
inserting. If both match, it thinks the entry already exists and uses open addressing to move
onto the next entry.

3. The dict will be resized if it is 2/3 full to avoid slowing down lookups.

It is well known that the keys and hash tables are not guaranteed to be in sorted order, and this is true in
general. However, in Python it is different.

2However, there are languages where you can hash mutable objects. Again, this is an implementation detail.
3Good visuals here: https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/.

9/ 18

https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/

Python Muchang Bahng Fall 2024

Theorem 4.1 ()

From Python 3.7+ (for all implementations) and CPython 3.6+, dicts preserve insertion order, so
calling dict.keys() will return keys in insertion order

Example 4.1 (Back to References)

As a review, when we iterate over a dict with an enhanced for loop, we are just calling next on the
keys or values that may be a copy by value or a copy by reference.

1 # y is copied by value so incrementing
2 # it rebinds it
3 >>> x = {"a" : 1, "b" : 2, "c" : 3}
4 >>> for k in x:
5 ... y = x[k]
6 ... y += 1
7 ...
8 >>> x
9 {’a’: 1, ’b’: 2, ’c’: 3}

1 # v is passed by value, so incrementing
2 # it rebinds it
3 >>> x = {"a" : 1, "b" : 2, "c" : 3}
4 >>> for v in x.values():
5 ... v += 1
6 ...
7 >>> x
8 {’a’: 1, ’b’: 2, ’c’: 3}
9 .

4.1 Dict Class
We should also be familiar with some of the dunder methods.

Definition 4.2 (Get)

There are two ways to access from a dictionary.
1. dict[key] retrieves the value and throws a KeyNotFoundError if a key does not exist.
2. dict.get(key, def) retrieves the value and will return def if the key does not exist.

Definition 4.3 (Items)

Given a dictionary dict, we can run dict.items() to get a view of the dictionary. Since this is a
view, it does not copy the entire dictionary, and is presented as a list of tuples. However, this is not
an iterator either. T

4.2 Dict-Like Data Structures
Let’s look through the different dict-like data structures.

Definition 4.4 (Defaultdict)

A nice trick is to initialize a collections.defaultdict, which is a subclass of Dict that allows you
to use dict[key] and automatically initializes the value to some default value if the key does not
exist. It is initialized in the following ways.

1. defaultdict(int)
2. defaultdict(dict: Dict)
3. defaultdict(log: Function, dict) runs the function log every time a new key is added.

10/ 18

Python Muchang Bahng Fall 2024

Definition 4.5 (Counter)

collections.Counter is good for finding the count of elements and does not require you to initialize
the count to 0 before incrementing it.

1 data = [1, 1, 2, 3]
2 counter = {}
3 for d in data:
4 if d not in counter:
5 counter[d] = 0
6 counter[d] += 1
7 {1: 2, 2: 1, 3: 1}

1 from collections import Counter
2 data = [1, 1, 2, 3]
3 counter = Counter()
4 for d in data:
5 counter[d] += 1
6 Counter({1: 2, 2: 1, 3: 1})
7 .

4.3 Extending Dictionaries

5 Additional Built-In Data Structures

5.1 Heaps

6 Iterators and Loops
Iterables, Iterators, Generators, zipping, range vs xrange. Range is an iterable, not iterator.

For loops and while loops are straightforward enough, but it’s important to know the difference between
them.

6.1 Dynamic Evaluation of Condition During Loop
In while loops, the condition is rechecked and thus any functions called during this is recomputed at each
loop, and so when deleting things from a list, the loop already accounts for the new length. However, a for
loop evaluates the length of the list only once and leads to index violation errors.

1 x = [1, 2, 3, 4]
2 print(x)
3 i = 0
4 while i < len(x):
5 print(len(x))
6 if x[i] == 2:
7 del x[i]
8 i += 1
9 print(x)

10

11 [1, 2, 3, 4]
12 4
13 4
14 3
15 [1, 3, 4]

1 x = [1, 2, 3, 4]
2 print(x)
3

4 for i in range(len(x)):
5 print(i, x[i])
6 if x[i] == 2:
7 del x[i]
8 print(x)
9

10 [1, 2, 3, 4]
11 0 1
12 1 2
13 2 4
14 IndexError: list index out of range
15 .

This can also be a problem when evaluating to a list where you may need to append more elements to it.
Here we use the previous initial list. We want to append 5 and 6 since 2 and 4 are even, but the extra 6
added will require us to add 7 as well. In a for loop, this also breaks down. The for loop only accounts up
to the length of the original list, which will end with 6 as the last element added. Whether you want the
condition to by dynamically evaluated at every loop depends on the problem.

11/ 18

Python Muchang Bahng Fall 2024

1 x = [1, 2, 3, 4]
2 print(x)
3

4 i = 0
5 while i < len(x):
6 print(x[i])
7 if x[i] % 2 == 0:
8 x.append(max(x) + 1)
9 i += 1

10

11 print(x)
12

13 [1, 2, 3, 4]
14 [1, 2, 3, 4, 5, 6, 7]

1 x = [1, 2, 3, 4]
2 print(x)
3

4 for i in range(len(x)):
5 if x[i] % 2 == 0:
6 x.append(max(x) + 1)
7

8 print(x)
9

10 [1, 2, 3, 4]
11 [1, 2, 3, 4, 5, 6]
12 .
13 .
14 .

6.2 Iterators and Enhanced For Loops
A list is an example of an iterable object. An Iterable class implements an __iter__() method that
transforms it into an Iterator object. An Iterator objects allows one to generate some value every time
a __next__() method is called. It should implement the next function and an __iter__() method also,
which just returns itself. Here is an example for a list.

1 class Iterator:
2

3 def __init__(self, input: list):
4 self.index = 0
5 self.input = input
6 self.limit = len(input)
7

8 def __iter__(self):
9 return self

10

11 def __next__(self):
12 if self.index > self.limit:
13 raise StopIteration
14 self.index += 1
15 return self.input[self.index]

So far, we have talked about looping through a list by looking at the indices. Another way is to to use an
enhanced for loop to iterate directly over the values. When we use an enhanced for loop, we are really just
creating an iterator object around the list and doing a while loop. Therefore, a for loop is really just a while
loop!

1 x = [1, 2, 3, 4]
2 for elem in x:
3 print(elem)
4 .
5 .
6 .
7 .
8 .

1 x = [1, 2, 3, 4]
2 x_ = iter(x)
3 while True:
4 try:
5 item = next(x_)
6 except StopIteration:
7 break
8 print(item)

This means that every for loop is really just a while loop. For loops were created early on in programming
for convenience. Even when doing for loops over indexes, the range is really an iterable, and so you can
convert it into an iterator and do the same thing.

12/ 18

Python Muchang Bahng Fall 2024

Another fact about range is that it is lazy, meaning that to save memory, calling range(100) does not
generate a list of 100 elements. The iterator really evaluates the next number on demand, which adds
runtime overhead but saves memory.

Example 6.1 (Common Trap)

Look at the following code

1 >>> x = [1, 2, 3, 4]
2 >>> for elem in x:
3 ... elem += 1
4 ...
5 >>> x
6 [1, 2, 3, 4]

This is clearly not our intended behavior. This is because in the backend, the elem is really being
returned by calling next() on the iterator object. The type being returned is an int, a primitive
type, and therefore it is passed by value. Even though elem and x[i] points to the same memory
address, once we reassign elem += 1, elem just gets reassigned to another number, which does not
affect x[i]. Note that this does not work as well since elem is just being copied by value and not by
reference, and again further changes to elem will decouple it from x[i].

1 >>> x = [1, 2, 3, 4]
2 >>> for i, elem in enumerate(x):
3 ... elem = x[i]
4 ... elem += 1
5 ...
6 >>> x
7 [1, 2, 3, 4]

To actually fix this behavior, we must make sure to call the __setitem__(i, val) method, which
can be done as such.

1 >>> x = [1, 2, 3, 4]
2 >>> for i in range(len(x)):
3 ... x[i] += 1
4 ...
5 >>> x
6 [2, 3, 4, 5]

Note that if we had nonprimitive types in the list, then the iterator will copy by reference, and we
don’t have this problem.

1 >>> x = [[1], [2], [3]]
2 >>> for elem in x:
3 ... elem.append(4)
4 ...
5 >>> x
6 [[1, 4], [2, 4], [3, 4]]

7 Item Assignment with Walrus Operator
Avoids Repeated Computation

13/ 18

Python Muchang Bahng Fall 2024

8 Raising Exceptions
Many beginners prefer to return None, but you should really be raising exceptions.

9 Positional and Keyword Arguments

10 Decorators
Note that in Python, functions are first-class citizens, which means three things:

1. They can be treated as objects.

1 def shout(text):
2 return text.upper()
3

4 print(shout(’Hello’)) # HELLO
5 yell = shout
6 print(yell(’Hello’)) # HELLO

2. They can be passed into another function as an argument.

1 def shout(text):
2 return text.upper()
3

4 def whisper(text):
5 return text.lower()
6

7 def greet(func):
8 greeting = func("Hi, How are You.")
9 print (greeting)

10

11 greet(shout) # HI, HOW ARE YOU.
12 greet(whisper) # hi, how are you.

3. They can be returned by another function.

1 def create_adder(x):
2 def adder(y):
3 return x+y
4

5 return adder
6

7 add_15 = create_adder(15)
8 print(add_15(10)) # 25

Say that you have a function f that does something. I want to modify the behavior so that I do something
either before of after f is called automatically, but I don’t want to manually add code into the function body.
What I can do is simply define another function wrapper and call f inside it.

1 def f():
2 print("Hello world")
3

4 def wrapper():
5 print("started")
6 f()
7 print("ended")

14/ 18

Python Muchang Bahng Fall 2024

8

9 wrapper() # "started\n Hello world\n ended"

Great, we can do this for one function. But what if there were thousands of functions I want to do this for?
Rather than creating a wrapper function for each function, I can make a third function called decorator
that takes in the original function f and outputs the wrapper function.

1 def decorator(f):
2 def wrapper():
3 print("started")
4 f()
5 print("ended")
6

7 return wrapper
8

9 def f():
10 print("Hello world")
11

12 wrapper = decorator(f)
13 wrapper() # "started\n Hello world\n ended"
14

15 decorator(f) # <function decorator.<locals>.wrapper at 0x100b38e00>
16 decorator(f)() # "started\n Hello world\n ended"

This way, I can modify any function I want with this behavior, and is known as function aliasing. This is
essentially what a decorator is.

Definition 10.1 (Decorators)

Decorators are used to modify the behavior of your functions without changing its actual code, used
with the operator. The two are equivalent.

1 def decorator(f):
2 def wrapper():
3 print("started")
4 f()
5 print("ended")
6

7 return wrapper
8

9 def f():
10 print("Hello world")
11

12 f = decorator(f)
13 f() # "started\n Hello world\n ended"

1 def decorator(f):
2 def wrapper():
3 print("started")
4 f()
5 print("ended")
6

7 return wrapper
8

9 @decorator
10 def f():
11 print("Hello world")
12

13 f() # "started\n Hello world\n ended"

This means that every time I call the function f, it really calls the function decorator with f passed
into it as an argument. With functions that have arguments, the wrapper function should also have
the same arguments. Generically, we can just use the args and kwargs arguments to unpack these
variables so that wrapper’s arguments always matches those of f’s arguments, but we can modify
these arguments for extra functionality as well.

15/ 18

Python Muchang Bahng Fall 2024

1 # generic args and kwargs
2 def decorator(f):
3 def wrapper(*args, **kwargs):
4 print("started")
5 f(*args, **kwargs)
6 print("ended")
7

8 return wrapper
9

10 @decorator
11 def f(string):
12 print(string)
13

14 f("Hello World")
15 # started
16 # Hello World
17 # ended

1 # custom arguments
2 def decorator(f):
3 def wrapper(string, start_msg):
4 print(start_msg)
5 f(string)
6 print("ended")
7

8 return wrapper
9

10 @decorator
11 def f(string):
12 print(string)
13

14 f("Hello World", "time to go")
15 # time to go
16 # Hello World
17 # ended

If we want to get the return values of this function, we can store the return value in temporary
variable tmp, run whatever code after the function f, and finally return tmp in wrapper.

1 def decorator(f):
2 def wrapper(*args, **kwargs):
3 print("started")
4 tmp = f(*args, **kwargs)
5 print("ended")
6 return tmp
7

8 return wrapper
9

10 @decorator
11 def f(string):
12 return string + "!"
13

14 print(f("Hello World"))
15 # started
16 # ended
17 # Hello World!

Example 10.1 (Measuring Total and CPU Runtime)

If we want to find the runtime of a function, we can do this easily.

1 import time
2

3 def runtime(f):
4 def wrapper(*args, **kwargs):
5 start = time.time()
6 product = f(*args, **kwargs)
7 end = time.time()
8 print(f"Took {end - start} s")
9 return product

10 return wrapper
11

16/ 18

Python Muchang Bahng Fall 2024

12 @runtime
13 def dot(list1, list2):
14 res = 0
15 for x, y in zip(list1, list2):
16 res += x * y
17 return res
18

19 x = [1, 2, 3]
20 y = [2, 2, 3]
21 result = dot(x, y) # Took 3.814697265625e-06 s
22 print(result) # 15

However, this is not accurate as the OS will switch between different processes. Therefore, the process
time is more accurate.

1 import numpy as np
2 import time
3

4 def cpu_usage(f):
5 def wrapper(*args, **kwargs):
6 start_cpu = time.process_time()
7 result = f(*args, **kwargs)
8 end_cpu = time.process_time()
9 print(f"CPU time: {end_cpu - start_cpu:.6f} seconds")

10 return result
11 return wrapper
12

13 @cpu_usage
14 def matrix_mult(a, b):
15 return np.matmul(a, b)
16

17 x = np.random.randn(2000, 2000)
18

19 matrix_mult(x, x) # CPU time: 0.772730 seconds

Example 10.2 (Memory Usage)

We can measure memory usage with the psutil library.

1 import numpy as np
2 import psutil, os
3

4 def memory_usage(f):
5 def wrapper(*args, **kwargs):
6 process = psutil.Process(os.getpid())
7 mem_before = process.memory_info().rss
8 result = f(*args, **kwargs)
9 mem_after = process.memory_info().rss

10 print(f"Memory usage: {(mem_after - mem_before) / 1024 / 1024:.2f} MB")
11 return result
12 return wrapper
13

14 @memory_usage
15 def matrix_mult(a, b):
16 return np.matmul(a, b)

17/ 18

Python Muchang Bahng Fall 2024

17

18 x = np.random.randn(2000, 2000)
19 matrix_mult(x, x) # Memory usage: 46.81 MB

Example 10.3 (Measuring Function Call Count)

To measure how many times a function has been called, we can use the decorator.

1 def call_counter(f):
2 def wrapper(*args, **kwargs):
3 wrapper.count += 1
4 print(f"Function ’{f.__name__}’ called {wrapper.count} times")
5 return f(*args, **kwargs)
6 wrapper.count = 0
7 return wrapper
8

9 @call_counter
10 def factorial(x):
11 if x == 1:
12 return 1
13 return x * factorial(x - 1)
14

15 result = factorial(7)
16 # Function ’factorial’ called 1 times
17 # Function ’factorial’ called 2 times
18 # Function ’factorial’ called 3 times
19 # Function ’factorial’ called 4 times
20 # Function ’factorial’ called 5 times
21 # Function ’factorial’ called 6 times
22 # Function ’factorial’ called 7 times
23 print(result)
24 # 5040

functools.wraps.

11 Composing Classes
If you find yourself nesting built-in types, this is prob an indicator to compose classes. @dataclass.dataclass
operator to define simple data structures.

18/ 18

	Names and Values
	Mutating vs Rebinding
	Assignments are Everywhere
	Object Caching
	Default Arguments are Evaluated when Function is Defined

	Function Closures and Variable Scopes
	Lists
	Queues

	Hash Maps
	Dict Class
	Dict-Like Data Structures
	Extending Dictionaries

	Additional Built-In Data Structures
	Heaps

	Iterators and Loops
	Dynamic Evaluation of Condition During Loop
	Iterators and Enhanced For Loops

	Item Assignment with Walrus Operator
	Raising Exceptions
	Positional and Keyword Arguments
	Decorators
	Composing Classes

