
Linux Muchang Bahng January 2024

Linux

Muchang Bahng

January 2024

Contents
1 Hardware 5

1.1 Von Neumann Architecture . 5
1.2 Instruction Set Architectures . 6
1.3 Assembly in x86_64 . 8
1.4 Graphics Drivers . 10

1.4.1 Multiple GPUs . 11
1.5 Peripheral Devices . 11
1.6 System Hardware . 12

1.6.1 Non-Volatile Drive Storage . 12
1.6.2 Volatile, Short-Term Storage . 14

1.7 Program Lifecycle Phases . 16
1.7.1 More on Executables . 17
1.7.2 Static vs Dynamic Languages . 17

2 Filesystems 17
2.1 Mounting . 19

2.1.1 Mounting a Remote Disk . 20
2.2 Maintence . 20

2.2.1 SSD . 20
2.2.2 Filesystem . 21

2.3 Modifying Partitions . 21

3 Firmware 22
3.1 Updating Firmware . 23
3.2 Modifying UEFI Variables . 23
3.3 Recovery Mode . 24

4 Bootloaders 25
4.1 GRUB . 26

5 Systemd 26
5.1 systemctl: Managing systemd . 28
5.2 Targets . 29
5.3 Systemd Logging . 29

6 Directory Structure 29
6.1 Users and Permission . 29

6.1.1 Managing Users . 29
6.1.2 Changing Permission . 31
6.1.3 Changing Ownership . 32

1/ 39

Linux Muchang Bahng January 2024

7 Display Servers 32

8 Package Management 32
8.1 Wget . 33
8.2 Pacman . 33
8.3 Yay . 36
8.4 Dpkg and Deb files . 36
8.5 Apt . 36
8.6 Snap and Flatpak . 38

9 Windows Managers and Desktop Environments 38

10 Shells and Terminals 38
10.1 Crontab . 39

2/ 39

Linux Muchang Bahng January 2024

The following set of notes describes the everyday use of a Linux operating system. I refer to it for mainly
my personal desktop, but it is also useful for working in computing clusters. Some of the commands are
specific to the Arch Linux distribution (since that is what I work with), but I occasionally include those from
Ubuntu and Red Hat, since I run into these distributions often in servers.

I try to organize this in a way so that one who wishes to get started in Linux can go through these notes
chronologically. For now, we will assume that you have a Linux distribution installed. There are many
resources beyond this book that helps you do that.

You can always try out Ubuntu (or any other distribution) through a virtual machine, which is a software
emulation of a physical computer system. It allows you to run multiple operating systems or instances of
an operating system on a single physical machine. Each virtual machine operates independently and has its
own virtual hardware, including virtual CPU, memory, storage, and network interfaces. Virtual machines are
created and managed by virtualization software called hypervisors. The hypervisor abstracts the underlying
physical hardware and allows multiple virtual machines to share the same resources while isolating them from
one another. This enables efficient utilization of hardware resources and provides flexibility in deploying and
managing various operating systems and software applications. VMs generally have the advantage of being
completely isolated from the main computer, so if anything wrong happens in the VM, it’s fine. They can be
used in research environments that are beta-testing unstable packages or for white-hacking practices. One
example of a hypervisor is Oracle’s VirtualBox, which is free to download. It should look like this when
you open it for the first time.

Now in order to create a VM with its own OS, you need to have the appropriate ISO file, which is an exact
copy of an entire optical disk such as a CD, DVD, or Blu-ray archived into a single file. The essentially stores
the entire software needed to operate the OS. Therefore, you should download the proper ISO file from the
internet (usually a couple GBs).

1. Ubunutu ISO files

2. Windows 10 ISO files

3. Apple does not allow distribution of its ISO files, so you will need to download from unofficial sources,
which may be unsafe.

Once you have this ISO file, you can reuse it to create as many VMs as you want of that OS. Now follow
these instructions: Click the new button and select where the virtual machine data will be stored, along
with its OS. You can set the RAM, but don’t make it more than half of your host computer since it will
hog up too much RAM. Choose “Create a virtual hard disk now". Choose “VDI (VirtualBox Disk Image)".
Dynamically allocated just means that the virtual disk size will adaptively grow as your storage gets full.
Set the disk size to be at least 20GB.

After you created this, go to the VM settings (this is where you can edit your CPU cores, RAM cap, etc.).
To add the ISO file, click on the “Empty" tab right under the “Controller:IDE", then the CD icon to the
right, and “choose a disk file". You should now choose the ISO file. Then go tweak other settings, and set the
display:video memory to the max (128MB). Now you should be able to go through the installation wizard
when you turn the VM on. Refer to the instructions for each OS.

3/ 39

https://ubuntu.com/download/desktop
https://www.microsoft.com/en-us/software-download/windows10

Linux Muchang Bahng January 2024

(a) Windows 10 Set Up (b) Ubuntu 22.04 Set Up

Figure 1: What you should get once you open up the VM after adding ISO files.

1. For Windows: Say I don’t have a product key. Click Windows 10 Home. Accept terms. Select the
custom installation. Click the drive and click new, making the parititon at least 10534MB, and click
apply. Next. Wait for the system to load.

2. For Ubuntu, you should get a GRUB view. Select “Try or install Ubunutu".

You should now see one of these two screens.

(a) Windows 10 Set Up (b) Ubuntu 22.04 Set Up

Figure 2: What you should get once you open up the VM after initial configuration and log in.

1. For Windows, select your region. Select the keyboard layout. Sign in or create a Microsoft account.
Choose privacy terms. Skip whatever.

2. For Ubuntu: Select Install Ubuntu with English. Set the keyboard layout. The normal installation
may take a while, so I would select minimal depending on what you need. If you are short on time,
you can uncheck the download updates while installing since you can always do that after you install.
Click Erase disk and install Ubunutu. Choose region and add information.

Finally, you should see your desktop.

4/ 39

Linux Muchang Bahng January 2024

(a) Windows 10 Set Up (b) Ubuntu 22.04 Set Up

Figure 3: What you should see once everything is set up.

For my personal use, the packages below are ones that I end up installing every time I create a new VM to
work in during research.

1 sudo apt update
2 sudo apt install snapd
3 sudo snap install --classic code
4 sudo snap install slack
5 sudo apt install git
6 sudo snap install spotify
7 sudo apt install htop
8 wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
9 sudo dpkg -i google-chrome-stable_current_amd64.deb

10 sudo apt install virtualbox

Once you are ready to use Linux consistently, it is optimal to dual boot it, which means that you have one
computer that is divided into two: one for each operating system. Then you need to partition your drive
and allocate it to your secondary OS. There are plenty of guides and tutorials online on how to do this.

There may be a point where you may need to resize your drive partitions as you need more or less space in one
of your OS. This is when we need to do partition resizing. To do this, we need an empty thumb drive with
at least 8GB of space in it (everything in here will be deleted). Then in your Ubuntu, install balenaEtcher
and an Ubuntu (any version) ISO file. Mount the ISO file into your USB drive using balenaEtcher, following
the steps in this video to eventually get into Gparted. Another popular guide uses Rufus in the Windows
system, but I have found that this does not work for me.

1 Hardware

1.1 Von Neumann Architecture
It is essential to have an initial model of a computer. For this, we will first use the von Neumann
architecture, which is the basis for most computers today. It consists of a central processing unit
(CPU), memory, and an input/output (I/O) system.

5/ 39

https://www.youtube.com/watch?v=Kyz9x71gEPI&t=504s
https://www.youtube.com/watch?v=vlVXPtJ20hA&t=467s

Linux Muchang Bahng January 2024

Definition 1.1 (Memory)

The memory is where the computer stores data and instructions, which can be though of as a giant
array of memory addresses, with each containing a byte. This data consists of graphical things or
even instructions to manipulate other data.

Definition 1.2 (Central Processing Unit)

The CPU is responsible for taking instructions (data) from memory and executing them.
1. The CPU is composed of registers (different from the cache), which are small, fast storage lo-

cations. These registers can either be general purpose (can be used with most instructions) or
special purpose (can be accessed through special instructions, or have special meanings/uses,
or are simply faster when used in a specific way).

2. The CPU also has an arithmetic unit and logic unit, which is responsible for performing
arithmetic and logical operations.

3. The CPU also has a control unit, which is responsible for fetching instructions from memory
through the databus, which is literally a wire connecting the CPU and RAM, and executing
them.

It executes instructions from memory one at a time and executes them, known as the fetch-execute
cycle. It consists of 4 main operations.

1. Fetch: The program counter, which holds the memory address of the next instruction to be
executed, tells the control unit to fetch the instruction from memory through the databus.

2. Decode: The fetched data is passed to the instruction decoder, which figures out what the
instruction is and what it does and stores them in the registers.

3. Execute: The arithmetic and logic unit then carries out these operations.
4. Store: Then it puts the results back on the databus, and stores them back into memory.

The CPU’s clock cycle is the time it takes for the CPU to execute one instruction. More specifically,
the clock cycle refers to a single oscillation of the clock signal that synchronizes the operations of
the processor and the memory (e.g. fetch, decode, execute, store), and decent computers have clock
cycles of at least 2.60GHz (2.6 billion clock cycles per second).

To clarify, let us compare registers and memory. Memory is addressed by an unsigned integer while registers
have names like %rsi. Memory is much bigger at several GB, while the total register space is much smaller
at around 128 bytes (may differ depending on the architecture). The memory is much slower than registers,
which is usually on a sub-nanosecond timescale. The memory is dynamic and can grow as needed while the
registers are static and cannot grow.

Definition 1.3 (Input/Output Device)

The input device can read/load/write/store data from the outside world. The output device, which
has direct memory address, can display data to the outside world.

Putting this all together, we have Figure 4.

1.2 Instruction Set Architectures

Definition 1.4 (Instruction Set Architecture)

The ISA or just architecture of a CPU is a high level description of what it can do. Some differences
are listed here:

1. What instructions it can execute.
2. The instruction length and decoding, along with its complexity.
3. The performance vs power efficiency.

6/ 39

Linux Muchang Bahng January 2024

Figure 4: von Neumann Architecture

Definition 1.5 ()

ISAs can be classified into two types.
1. The complex instruction set computer (CISC) is characterized by a large set of complex

instructions, which can execute a variety of low-level operations. This approach aims to reduce
the number of instructions per program, attempting to achieve higher efficiency by performing
more operations with fewer instructions.

2. The reduced instruction set computer (RISC) emphasizes simplicity and efficiency with a
smaller number of instructions that are generally simpler and more uniform in size and format.
This approach facilitates faster instruction execution and easier pipelining, with the philosophy
that simpler instructions can provide greater performance when optimized.

Example 1.1 (x86 Architecture)

The x86 architecture is a CISC architecture, which is the most common architecture for personal
computers. Here are important properties:

1. It is a complex instruction set computer (CISC) architecture, which means that it has a large
set of complex instructionsa.

2. Byte-addressing is enabled and words are stored in little-endian format.
3. In the x86_64 architecture, registers are 8 bytes long (and 4 bytes in x86_32) and there are 16

total general purpose registers, for a total of only 128 bytes (very small compared to many GB
of memory). Other special purpose registers are also documented in the wikipedia page, but it
is not fully documented. The registers are listed belowb:

1 %rax # return value
2 %rbx # callee saved
3 %rcx # 4th argument
4 %rdx # 3rd argument
5 %rsi # 2nd argument
6 %rdi # 1st argument
7 %rbp # callee saved
8 %rsp # stack pointer
9 %r8 # 5th argument

10 %r9 # 6th argument
11 %r10 # scratch register
12 %r11 # scratch register
13 %r12 # callee saved
14 %r13 # callee saved

7/ 39

Linux Muchang Bahng January 2024

15 %r14 # callee saved
16 %r15 # callee saved

Example 1.2 (ARM Archiecture)

Mainly in phones, tablets, laptops.

Example 1.3 (MIPS Architecture)

MIPS is a RISC architecture, which is used in embedded systems such as digital home and networking
equipment.

This is a large overview of the different architectures, but Arch Linux states on their website that they have
official packages optimized for the x86-64 architecture.1

Furthermore, by running cat /proc/cpuinfo, you can see the specs of each CPU core you have. This
includes the model name (clock cycle), cache size, flags, and microcode. The flags are the most
important, since they tell you what features your CPU has.2

1. lm: 64 bit architecture.

2. vmx (Intel) or svm (AMD): Hardware virtualization .

3. aes: Accelerate AES encryption.

4. fpu: Floating Point Unit, which is used for floating point operations.

5. vme: Virtual 8086 mode enhancements, which is used for virtualization.

6. de: Debugging extensions, which is used for debugging.

7. pse: Page Size Extensions, which is used for larger page sizes.

8. tsc: Time Stamp Counter, which is used for timing.

9. msr: Model Specific Registers, which is used for model specific operations.

10. mce: Machine Check Exception, which is used for error checking.

11. pae: Physical Address Extensions, which is used for larger memory.

12. mce: Machine Check Exception, which is used for error checking.

1.3 Assembly in x86_64

Definition 1.6 (Instruction)

An instruction is a single line of assembly code. It consists of some instruction followed by its (one
or more) operands. The instruction is a mnemonic for a machine language operation (e.g. mov, add,
sub, jmp, etc.). The size specifier can be appended to this instruction mnemonic to specify the size
of the operands.

1. b (byte) for 1 byte

ahttps://en.wikipedia.org/wiki/X86_instruction_listings
bOlder x86_32 architecture has 8 general purpose registers with the r replaced by a e, e.g. eax instead of rax.
1https://archlinux.org/
2The entire list of flags and what they can do is mentioned in the Arch kernel source code, which is a good reference:

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/include/asm/cpufeatures.h

8/ 39

Linux Muchang Bahng January 2024

2. w (word) for 2 bytes
3. l (long) for 4 bytes
4. q (quad word) for 8 bytes

Note that due to backwards compatibility, word means 2 bytes in instruction names. Furthermore,
the maximum size is 8 bytes since that is the size of each register in x86_64. An operand can be of
3 types, determined by their mode of access:

1. Immediate addressing is denoted with a $ sign, e.g. a constant integer data $1.
2. Register addressing is denoted with a % sign with the following register name, e.g. %rax.
3. Memory addressing is denoted with the hexadecimal address in memory, e.g. 0x034AB.

Like higher level programming languages, we can perform operations, do comparisons, and jump to different
parts of the code. Instructions can be generally categorized into three types:

1. Data Movement: These instructions move data between memory and registers or between the reg-
istery and registery. Memory to memory transfer cannot be done with a single instruction.

1 %reg = Mem[address] # load data from memory into register
2 Mem[address] = %reg # store register data into memory

2. Arithmetic Operation: Perform arithmetic operation on register or memory data.

1 %reg = %reg + Mem[address] # add memory data to register
2 %reg = %reg - Mem[address] # subtract memory data from register
3 %reg = %reg * Mem[address] # multiply memory data to register
4 %reg = %reg / Mem[address] # divide memory data from register

3. Control Flow: What instruction to execute next.

1 jmp label # jump to label
2 je label # jump to label if equal
3 jne label # jump to label if not equal
4 jg label # jump to label if greater
5 jl label # jump to label if less
6 call label # call a function
7 ret # return from a function

Now unlike compiled languages, which are translated into machine code by a compiler, assembly code is
translated into machine code through a two-step process. First, we assemble the assembly code into an
object file by an assembler, and then we link the object file into an executable by a linker. Some common
assemblers are NASM (Netwide Assembler) and GAS/AS (GNU Assembler), and common linkers are ld
(GNU Linker) and lld (LLVM Linker), both installable with sudo pacman -S nasm ld.

Definition 1.7 (mov)

Let’s talk about the mov instruction. A good diagram to see is the following:

Parantheses indicate that we are using a pointer dereference.

Definition 1.8 (int)

The int instruction is used to generate a software interrupt. It is often used to invoke a system call.

9/ 39

Linux Muchang Bahng January 2024

Definition 1.9 (ret)

The ret instruction is used to return from a function. It returns the value in the %rax register.

Example 1.4 (Swap Function)

In gdb, we may have a function that swaps two integers.

1 swap:
2 movq (%rdi), %rax
3 movq (%rsi), %rdx
4 movq %rdx, (%rdi)
5 movq %rax, (%rsi)
6 ret

which is the assembly code for the following C code.

1 void swap(long *xp, long *yp) {
2 long t0 = *xp;
3 long t1 = *yp;
4 *xp = t1;
5 *yp = t0;
6 }

1.4 Graphics Drivers
Note that one type of data we must store on memory is the individual pixels in a computer screen. Say that
in a 1920 × 1080 resolution computer, there are about 1920 × 1080 × 3 ≈ 2 million bytes of data that we
have to store. This isn’t that much data (only 2MB), but we must update it quite fast since our screens are
always updating. This is why all computer which have a GUI comes with a built-in graphics driver. To see
the GPU hardware specifications, install lshw.

Definition 1.10 (Graphics Processing Unit)

The GPU is a specialized processing unit that is designed to handle the rendering of images and
videos. It is designed to handle the rendering of images and videos, and is optimized for parallel
processing. Like the CPU, it has some common metrics:

1. Clock Speed: The speed at which the GPU can execute instructions. This is usually measured
in MHz or GHz.

2. Memory: The amount of memory that the GPU has. This is usually measured in GB.
3. Memory Bandwidth: The speed at which the GPU can read and write to its memory. This

is usually measured in GB/s.
4. Cores: The number of cores that the GPU has. This is usually measured in thousands, which

allows for parallel processing.
You can check which GPUs you have by running lspci | grep VGA or neofetch. There are generally
two types of GPUs:

1. Integrated GPU: This type of GPU is built into the same chip as the CPU (Central Processing
Unit). It shares resources with the CPU, including memory, which can lead to reduced perfor-
mance for graphics-intensive tasks. However, its integrated nature makes it more power-efficient
and cost-effective.

2. Discrete GPU: This is a separate component from the CPU and comes with its own RAM
(usually called VRAM or Video RAM). It is typically installed in a dedicated slot on the moth-
erboard. Because it operates independently of the CPU, a discrete GPU can offer significantly

10/ 39

Linux Muchang Bahng January 2024

better performance for graphics processing, gaming, or deep learning.

Definition 1.11 (Monitor)

Furthermore, your computer monitor, which actually displays these pixels to you, must also have
metrics that match the GPU. Some properties:

1. The resolution is the number of pixels that the monitor can display, and is usually measured
in pixels.

2. The refresh rate is the number of times the monitor can refresh the image on the screen per
second, and is usually measured in Hz.

To see these metrics for all monitors connected to your computer, run xrandr, which lists all the
resolutions and possible refresh rates for each resolution.

Definition 1.12 (Graphics Driver)

In order for your operating system to communicate with your GPU, you need a graphics driver.
This is a piece of software that allows the operating system to communicate with the GPU. There
are two main types of graphics drivers:

1. Open Source Drivers: These are drivers that are developed and maintained by the open
source community. They are usually included with the Linux kernel, and are generally stable
and reliable.

2. Proprietary Drivers: These are drivers that are developed and maintained by the GPU
manufacturer. They are usually not included with the Linux kernel, and are generally more
feature-rich and performant than open source drivers.

Intel drivers are open source, but Nvidia drivers are proprietary (which is why Linus Torvalds has
beef with Nvidia).a

Some popular graphics drivers include mesa for Intel and nvidia drivers for NVIDIA.

1.4.1 Multiple GPUs

Everything is pretty straightforward when you have one graphics card, but when you have multiple graphics
cards, you have to specify which one you want to use. If you want to only use one GPU, you can just disable
the other one in the BIOS. However, if you have an Intel/Nvidia dual driver and want to use both, install
Nvidia Optimius (for Ubuntu, it is supported through nvidia-prime).3,4

Now make sure that the systemd daemon is running, and you can call optimus-manager –switch hybrid
to enable hybrid graphics. This will log you out.

1.5 Peripheral Devices
Peripheral devices refer to other devices outside of the motherboard, including mice, keyboards for input,
monitors, printers, network managers, and usb ports. Even the GPU is considered a peripheral device. These
must be connected to the motherboard in some way to be managed by the operating system, and similar
to the databus connecting the CPU and memory, there are buses that connect the motherboard and these
peripheral devices.

aA video of Linus Torvalds saying “fuck you” to Nvidia: https://www.youtube.com/watch?v=iYWzMvlj2RQ
3This wiki article (https://github.com/Askannz/optimus-manager/wiki) provides a good overview of this matter.
4Installation instructions here: https://github.com/Askannz/optimus-manager?tab=readme-ov-file

11/ 39

Linux Muchang Bahng January 2024

Definition 1.13 (PCI Bus)

The PCI (Peripheral Component Interconnect) bus is a high-speed bus that connects the
motherboard to peripheral devices. It is used to connect devices like network cards, sound cards, and
graphics cards to the motherboard. PCI buses operated based on the PCI standard, which is a set
of specifications that define the physical and electrical characteristics of the bus.

The command to use to enumerate all PCI devices is sudo lspci (with -v for verbose).

1 00:00.0 Host bridge: Intel Corporation 10th Gen Core Processor
2 00:01.0 PCI bridge: Intel Corporation 6th-10th Gen Core Processor
3 00:02.0 VGA compatible controller: Intel Corporation CometLake-H
4 00:04.0 Signal processing controller: Intel Corporation Xeon
5 00:08.0 System peripheral: Intel Corporation Xeon E3-1200 v5/v6
6 00:12.0 Signal processing controller: Intel Corporation Comet
7 00:13.0 Serial controller: Intel Corporation Device 06fc
8 00:14.0 USB controller: Intel Corporation Comet Lake USB 3.1
9 00:14.2 RAM memory: Intel Corporation Comet Lake PCH Shared

10 00:14.3 Network controller: Intel Corporation Comet Lake PCH
11 00:15.0 Serial bus controller: Intel Corporation Comet Lake
12 00:15.1 Serial bus controller: Intel Corporation Comet Lake
13 00:16.0 Communication controller: Intel Corporation Comet
14 00:1c.0 PCI bridge: Intel Corporation Device 06b8 (rev f0)
15 00:1c.6 PCI bridge: Intel Corporation Device 06be (rev f0)
16 00:1d.0 PCI bridge: Intel Corporation Comet Lake PCI Express
17 00:1e.0 Communication controller: Intel Corporation Comet Lake
18 00:1f.0 ISA bridge: Intel Corporation Device 068e
19 00:1f.3 Audio device: Intel Corporation Comet Lake PCH cAVS
20 00:1f.4 SMBus: Intel Corporation Comet Lake PCH SMBus Controller
21 00:1f.5 Serial bus controller: Intel Corporation Comet Lake
22 01:00.0 3D controller: NVIDIA Corporation TU117M [GeForce GTX 1650
23 02:00.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
24 03:00.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
25 03:01.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
26 03:02.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
27 03:04.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge
28 04:00.0 System peripheral: Intel Corporation JHL7540 Thunderbolt
29 38:00.0 USB controller: Intel Corporation JHL7540 Thunderbolt 3
30 6c:00.0 Unassigned class [ff00]: Realtek Semiconductor Co., Ltd.
31 6d:00.0 Non-Volatile memory controller: Samsung Electronics Co

Figure 5: This is the following output of lspci on my personal computer.

1.6 System Hardware
1.6.1 Non-Volatile Drive Storage

A drive is basically a computer component used to store data. It may be a static storage device (e.g. a
HDD or SSD) or may use removable media (e.g. thumb, disk, CD). All drives store nonvolatile data (also
called nonvolatile memory, NVM), meaning that the data is not erased when the power is turned off.

1. A floppy disk drive is a portable circular floppy plastic/metal disk coated with iron oxide or other
magnetic material. They come in many sizes ranging from 3 8 inches in diameter, with the standard
capacity being 1.44MB. When inserting the floppy disk into a computer, there is a read/write head
that uses a magnet to polarize the iron particles in one of two directions, each represting a 0 or 1 in
binary data. The head can also read these polarities in order to retrieve data stored on the disk in the

12/ 39

Linux Muchang Bahng January 2024

form of polarized particles. Note that the head would read the disk "circularly" as the disk rotates.
Each disk would be divided into typically 40 tracks with around 8 equal sectors.

2. A hard disk drive (HDD) is an electro-mechanical data storage device that stores and retrieves
digital data using magnetic storage and one or more rigid (hence, the name hard) rapidly rotating
platters coated with magnetic material. Data is accessed in arandom-access manner, meaning that
individual blocks of data can be stored and retrieved in any order. They usually come inside a metal
case enclosing the entire drive (3.5-inch for computers and 2.5-inch for laptop HDDs). Since the data
on the HDD is determined by the polarities of the magnetic material on the disks, it is sensitive to
external magnetic fields that may corrupt the data. Furthermore, because the drive heads must align
over an area of the disk in order to read or write data, and the disk is constantly spinning, there’s
a delay before data can be accessed. The drive may need to read from multiple locations in order to
launch a program or load a file, which means it may haveto wait for the platters to spin into the proper
position multiple times before it can complete the command. If a drive is asleep or in a low-power
state, it can take several seconds more for the disk to spin up to full power and begin operating. Their
speeds are measured in RPM, with the normal range of desktop HDDs having 5400-7200 RPM. It is
useful to know that 5400 RPM drives offer an average of 100MB/s read and 7200 RPM drives offer
120MB/s.

3. A Solid State Drive (SSD) is an extra step up from the HDD. From the very beginning, it was
clear that hard drives couldn’t possibly match the speeds at which CPUs could operate. Latency in
HDDs is measured in milliseconds, compared with nanoseconds for your typical CPU. One millisecond
is 1,000,000 nanoseconds, and it typically takes a hard drive 10-15 milliseconds to find data on the drive
and begin reading it. The hard drive industry introduced smaller platters, on-disk memory caches, and
faster spindle speeds to counteract this trend, but there’s only so fast drives can spin. Western Digital’s
10,000 RPM VelociRaptor family is the fastest set of drives ever built for the consumer market, while
some enterprise drives spun as quickly as 15,000 RPM. The problem is, even the fastest spinning drive
with the largest caches and smallest platters are still achingly slow as far as your CPU is concerned.
Unlike HDDs, soid state drives do not need moving parts or spinning disks (hence their name). Instead,
it uses NAND flash memory, which is a type of non-volatile storage that erases data in units called
blocks and rewrites data at the Byte level. It also retains data for decades, regardless of whether the
device is powered on or off. It is used in not only SSD, but also USB flash drives, SD cards, mobile
phones, digital cameras, tablets, and others. The most fundamental unit of storage is the flash memory
cell, which uses electron thresholds to hold certain bits of information, usually three bits (called TLC
- triple level cell) or four bits (called QLC - quad level cell). If is no electron charge in the cell, the cell
represents a 111 (for TLC) and 1111 (for QLC). Since each cell can store multiple bits of information,
they are arranged in a large array (consisting of millions of cells stacked on top of each other) into a
block, leading to a typical storage between 256KB and 4MB.

On Windows, each type of drive on a computer are assigned a device/drive letter, a single alphabetic
character A through Z. Computers containing a hard drive always have that default hard drive assigned
to a C: drive letter, and external drives may be assigned different letters, such as Google Drive being
assigned a G: drive letter. You may also notice that when opening the command prompt on windows,
the leftmost letter represents which drive you are currently on. Note that the "wmic" is an abbreviation of
Windows Management Interface Command. Some commands may require you to use an elevated command
prompt, which can be used by opening the cmd file as an administrator.

1 C:\Users\bahng>

1 # Lists all drives on your computer
2 # DeviceID = drive letter
3 # DriveType: 2=Removable, 3=Fixed local, 4=Network
4 # FreeSpace and Size in bytes
5 wmic LOGICALDISK LIST BRIEF # Windows cmd
6

13/ 39

Linux Muchang Bahng January 2024

7 # Outputs drive model and status
8 # Status OK = good health
9 # Status ’Pred Fail’ = potential crash warning

10 wmic diskdrive get status, model # Windows cmd
11

12 # Checks file system and provides drive issues summary
13 # Non-zero bad sectors require technical help
14 chkdsk c: # Windows cmd
15

16 # Opens window showing all drive types
17 dfrgui # Windows cmd
18

19 # Changes working drive (e.g. d:)
20 <letter>: # Windows cmd

We demonstrate some of the commands here.

1 C:\Users\bahng>wmic LOGICALDISK LIST BRIEF
2 DeviceID DriveType FreeSpace ProviderName Size VolumeName
3 C: 3 838628864000 1003327844352 OS
4 G: 3 71506178048 107374182400 Google Drive
5

6 C:\Users\bahng>wmic diskdrive get status, model
7 Model Status
8 PM9A1 NVMe Samsung 1024GB OK

1.6.2 Volatile, Short-Term Storage

Information travels from drives and other stores to the CPU, but the physical distance that the bits must
travel across the motherboard also puts an upper limit on the retrieval speed (i.e. the speed of electromagnetic
waves), especially if the distance must be covered thousands or millions of times back and forth. This limit
is known as latency. This is why computers have a hierarchy of stores reserved for information that is
accessed more frequently, some closer to the CPU and others even within the CPU itself!

1. Random Access Memory, or RAM, is short-term memory that acts as a cache for the CPU that
is 50-200 times faster than a regular SSD. It is volatile, meaning that all its memory is erased when
the computer shuts down. The most recent type of RAM is DDR4, then DDR3, followed by DDR2,
DDR, and SDRAM. In addition the speeds of RAM is

(a) DDR4: 2133mhz, 2400mhz, 2666mhz, 3200mhz

(b) DDR3: 1066mhz, 1300mhz, 1600mhz, 1866mhz

where the mhz value represents how many times per second the RAM can access its memory. However,
know that some motherboards have technical limitations to what kind of RAM speed it can handle, so
in these cases, the system will throttle your faster RAM stick to meet this need. In terms of capacity,
the following gives us nice benchmarks.

(a) 4-8 GB: Laptops for web browsing and light gaming (e.g. my Macbook Air 2019)

(b) 16-32 GB: Laptops for gaming (possibly heavy) and programming

(c) 64-128 GB: Crazy stuff.

(d) 256 GB: This basically means you have a RAM that is pretty much the size of a typical SSD.
This is usually for specialized research computers or clusters.

Finally, there are broad categories of RAM.

14/ 39

Linux Muchang Bahng January 2024

(a) Static RAM (SRAM) requires a constant power flow in order to function and therefore doesn’t
need to be refreshed to keep the data intact (hence the name static). Note that this does not
mean that SRAM is nonvolatile. Therefore, the SRAM is typically used in CPU caches or video
cards.

(b) Dynamic RAM (DRAM) requires a periodic refresh of power in order to function. The capac-
itors that store data in DRAM gradually discharge energy (no energy means the data becomes
lost). DRAM is found in systems memory and video graphics memory.

(c) Synchronous Dynamic RAM (SDRAM) is a DRAM that operates in sync with the CPU
clock, which means that it waits for the clock signal before responding to data input. This is
advantageous since the CPU can process overlapping instructions in parallel, known as pipelining
(the ability to reveive an instruction before the previous instruction has been fully resolved). This
allows more instructions to be completed simultaneously. By contrast, DRAM is asynchronous,
which means it responsd immediately to user input.

2. CPU caches have a hierarchy that is divided into (from fastest to slowest) L1, L2, L3, and sometimes
even L4. The CPU will check the L1 cache first to see if there is a hit (if there is, then data is retrieved
extremely fast), then the L2, and so on.

(a) L1: 8-64 KB storage typically (but there are exceptions, i.e. the Apple M1 chip has a 192 KB L1
cache)

(b) L2: 256KB-8MB storage

(c) L3: 10-64MB storage (and sometimes up to 256MB for server chips)

1 # Outputs relevant information about the RAM.
2 wmic MEMORYCHIP (get BankLabel, DeviceLocator, MemoryType, TypeDetail, Capacity, Speed) #

Windows cmd
3

4 # Outputs a list of all specifications of each memory stick.
5 wmic memoryship list full # Windows cmd
6

7 # Outputs the total RAM memory of your computer.
8 systeminfo | findstr /C:"Total Physical Memory" # Windows cmd
9

10 # Outputs the available RAM memory of your computer.
11 systeminfo |find "Available Physical Memory" # Windows cmd

For my computer, the outputs are as such. It shows two memory sticks each with 8GB of memory, a memory
type of 0 which is a DDR4 (type 24 means DDR3), speeds of 3200 mhz, and TypeDetail of 128 which means
the RAM is synchronous (SDRAM).

1 C:\Users\bahng>wmic MEMORYCHIP get BankLabel, DeviceLocator, MemoryType, TypeDetail, Capacity,
Speed

2 BankLabel Capacity DeviceLocator MemoryType Speed TypeDetail
3 8589934592 DIMM A 0 3200 128
4 8589934592 DIMM B 0 3200 128

The status of your CPU can be checked with the following commands

1 # Outputs a list of all specifications of the CPU.
2 wmic cpu list full # Windows cmd
3

4 # Outputs relevant information about the CPU.
5 wmic cpu (get caption, deviceid, name, numberofcores, maxclockspeed, status) # Windows cmd

15/ 39

Linux Muchang Bahng January 2024

Compiler Interpreter
Takes more time to analyze source code but
execution time is faster.

Takes less time to analyze source code but ex-
ecution time is slower.

Debugging is harder since the compiler gener-
ates an error message after the entire scan.

Debugging is easier since the interpreter con-
tinues translating the program until an error
is met.

Requires a lot of memory for generating object
codes.

Requires less memory because no object code
is generated.

Generates intermediate object code. No intermediate object code is generated.

1.7 Program Lifecycle Phases
First, we review some definitions. More on program lifecycle phases here. Programming languages are
broadly classified into two types. High-level languages are the familiar programming languages that we
work with today (that allow much more abstraction), while low-level languages are very close to the
hardware, such as machine language and assembly language. Programmers write programs in source code
(usually high-level languages), which are then inputted into language processors that translate them into
object code (usually machine code consisting of binary). The duration in which the source code of
the program is being edited is called the edit time, while the compile time is when the source code is
translated into machine code by a language processor. There are three types of language processors.

1. A compiler is a language processor that reads the complete source program written in high-level
language as a whole in one go and translates it into an equivalent program in machine language. The
source code is translated to object code successfully if it is free of errors. The compiler specifies the
errors at the end of the compilation with line numbers when there are any errors in the source code.
The errors must be removed before the compiler can successfully recompile the source code again. (e.g.
C, C++, C#, Java)

2. An assmebler is used to translate the program written in Assembly language (basically a low-level
language with very strong correspondence between the instructions in the language and the machine
code instructions) into machine code. The assembler is basically the 1st interface that is able to
communicate humans with the machine. We need an assembler to fill the gap between human and
machine so that they can communicate with each other. Code written in assembly language is some
sort of mnemonics (instructions) like ADD, MUL, MUX, SUB, DIV, MOV and so on, and the assembler
is basically able to convert these mnemonics into binary code.

3. An interpreter translates a single statement of the source program into machine code and executes
immediately before moving on to the next line. If there is an error in the statement, the interpreter
terminates its translating at that statement and displays an error message. The interpreter moves on
to the next line for execution only after the removal of the error. An interpreter directly executes
instructions written source code without previously converting them to an object code or machine
code. (e.g. Python, Pearl, JavaScript, Ruby)

A quick compare and contrast.

The result of a successful compilation is an executable, which is a program in the form of a file containing
millions of lines of very simple machine code instructions (e.g. add 2 numbers or compare 2 numbers), also
called processor instructions. This executable can be stored somewhere in the computer drive for future
use or it may be copied immediately in a faster memory state, such as the RAM. The load time is when
the OS takes the program’s executable from storage and puts it into an active memory (e.g. RAM) in order
to begin execution.

The CPU understands only a low level machine code language (aka native code), which is contained within
the executable. The language of the machine code is hardwired into the design of the CPU hardware; it is
not something that can be changed at will. Each family of compatible CPUs (e.g. the popular Intel x86
family) has its own, idiosyncratic machine code which is not compatible with the machine code of other CPU

16/ 39

https://en.wikipedia.org/wiki/Program_lifecycle_phase

Linux Muchang Bahng January 2024

families. More information here. Once the instruction bytes are copied from storage to RAM, the CPU can
run through the steps/lines at the rate of about 2 billion lines/steps per second. This execution phase, when
the CPU executes the instructions until normal termination or a crash, is called the runtime.

1.7.1 More on Executables

More specifically, an executable is a file that contains a list of instructions and data to cause a computer’s
CPU to perform indicated tasks, as opposed to the data files, which are fundamentally strings of data that
must be interpreted (parsed) by a program to be meaningful. Executables usually have extension names
.exe or .bat, and they can generally be run (invoked) in two ways:

1. The executable file can be run by simply double clicking on the file name, opening it, and having the
user type commands in an interactive session of an interpter (like inputting commands in terminal
window or a python shell).

2. Alternatively, we can start writing a program, complete writing it, and then have this program compiled
into an executable to be invoked.

Some common examples of executables are:

1. python.exe - used to run python scripts that have the .py extension, located at

C: \Users\bahng\AppData\Local\Programs\Python\Python39

2. pythonw.exe - used to run .pyw files for GUI programs

3. terminal.exe (on MacOS)

4. cmd.exe (on Windows OS)

5. py.exe - an executable used to run the python.exe executable like a shortcut, located at

C:\windows\py.exe

1.7.2 Static vs Dynamic Languages

Type-checking is the process of checking and verifying the type of a construct (constant, variable, array,
list, object) and its usage context. It helps in minimizing the possibility of type errors in the program, and
type checking may occur either at compile-time (static checking) or at run-time (dynamic checking).

1. Statically-Typed Languages: Since we type check during compilation, every detail about the vari-
ables and all the data types must be known before we do the compiling process. Once a variable is
assigned a type, it can’t be assigned to some other variable of a different type, and so the data type
of a declared variable is fixed. This makes sense since in Java, C, C++, etc., the programmer must
specify what the data type of each variable is by writing something like int myNum = 15.

2. Dynamically-Typed Languages: Since we type-check during runtime, there is no need to specify
the data type of each variable while writing code, which improves writing speed. These languages have
the capability to identify the type of each variable during run-time, so we do not need to declare the
data types of variables. In these languages, variables are bound to objects at run-time using assignment
statements, and most modern languages (e.g. JavaScript, Python, PHP, etc.) are dynamically typed.

2 Filesystems
Before we get into anything, even the loading of the firmware or the operating system kernel, we must talk
about the hardware and how a computer stores data. Data, whether it is in memory or some disk, is just a
bunch of sequences of bits. A drive is a physical device that can store data. A partition is a logical division
of a drive, and a filesystem is a way to organize data on a drive. For example, if I have a 1TB SSD, I can

17/ 39

https://web.stanford.edu/class/cs101/software-1.html

Linux Muchang Bahng January 2024

run it as a single partition, or I can divide it into two partitions, one for a Windows operating system and
another for a Linux operating system. A filesystem is a bit more confusing, so here are some examples.

Example 2.1 (Linux Filesystems)

Listed.
1. ext4: The most common filesystem for Linux.
2. XFS: Designed for high performance and scalability, often used in enterprise environments for

large-scale storage.
3. btrfs: A modern filesystem that offers advanced features like snapshots, dynamic inode alloca-

tion, and integrated device management for better data reliability and performance.
4. zfs: Originally developed by Sun Microsystems for Solaris, ZFS is known for its data integrity,

support for enormous storage capacities, and features like snapshots, copy-on-write, and built-in
data compression.

Example 2.2 (Windows Filesystems)

Listed.
1. NTFS (New Technology File System): The standard filesystem for Windows operating

systems, supporting file permissions, encryption, and large file sizes.
2. FAT32 (File Allocation Table 32): An older filesystem with wide compatibility across dif-

ferent operating systems, including Windows, macOS, and various Linux distributions, though
it has limitations on file and partition sizes.

3. exFAT (Extended File Allocation Table): Designed to be a lightweight filesystem similar
to FAT32 but without its limitations, exFAT is used for flash drives and external hard drives
due to its support for larger files and compatibility.

Example 2.3 (MacOS Filesystems)

Listed.
1. APFS (Apple File System): The default filesystem for macOS, iOS, and other Apple op-

erating systems since 2017, designed for SSDs and featuring strong encryption, space sharing,
and fast directory sizing.

2. HFS+ (Hierarchical File System Plus): Also known as Mac OS Extended, it was the
primary filesystem for Mac computers before APFS, supporting journaling for data integrity.

When your computer boots up, it needs to know where to find the operating system kernel. This is done by
mounting the filesystems. The mount point is the directory where the filesystem is attached to the system.
The root filesystem is the filesystem that contains the operating system kernel.

Depending on your hardware specs, you may have multiple drives. To list all drives and their partitions, run
lsblk. The type determines whether it is a disk or a partitions, and the mountpoints determine where the
partitions are mounted. Furthermore, the RO indicates whether this is a HDD (1) or SSD (0).

The swap partition is a special type of partition that is used as a temporary storage area for the operating
system. It is used when the system runs out of RAM.

For a more detailed view on what the partitions consist of, you can run fdisk -l.

1 Disk /dev/nvme0n1: 953.87 GiB, 1024209543168 bytes, 2000409264 sectors
2 Disk model: PM9A1 NVMe Samsung 1024GB
3 Units: sectors of 1 * 512 = 512 bytes
4 Sector size (logical/physical): 512 bytes / 512 bytes
5 I/O size (minimum/optimal): 512 bytes / 512 bytes
6 Disklabel type: gpt
7 Disk identifier: 26D88CE9-B388-4CF1-856C-14D5EEB0C143

18/ 39

Linux Muchang Bahng January 2024

1 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
2 zram0 254:0 0 4G 0 disk [SWAP]
3 nvme0n1 259:0 0 953.9G 0 disk
4 nvme0n1p1 259:1 0 240M 0 part
5 nvme0n1p2 259:2 0 128M 0 part
6 nvme0n1p3 259:3 0 309.4G 0 part
7 nvme0n1p4 259:4 0 990M 0 part
8 nvme0n1p5 259:5 0 16.7G 0 part
9 nvme0n1p6 259:6 0 1.4G 0 part

10 nvme0n1p7 259:7 0 500M 0 part /boot
11 nvme0n1p8 259:8 0 4.7G 0 part [SWAP]
12 nvme0n1p9 259:9 0 619.9G 0 part /

Figure 6: This is the following output on my personal computer.

8

9 Device Start End Sectors Size Type
10 /dev/nvme0n1p1 2048 493567 491520 240M EFI System
11 /dev/nvme0n1p2 493568 755711 262144 128M Microsoft reserved
12 /dev/nvme0n1p3 755712 649658367 648902656 309.4G Microsoft basic data
13 /dev/nvme0n1p4 1960380416 1962407935 2027520 990M Windows recovery environment
14 /dev/nvme0n1p5 1962407936 1997441023 35033088 16.7G Windows recovery environment
15 /dev/nvme0n1p6 1997443072 2000377855 2934784 1.4G Windows recovery environment
16 /dev/nvme0n1p7 649658368 650682367 1024000 500M EFI System
17 /dev/nvme0n1p8 650682368 660447231 9764864 4.7G Linux swap
18 /dev/nvme0n1p9 660447232 1960380415 1299933184 619.9G Linux filesystem

As you can see here, my single disk has 9 partitions.

1. The first EFI system (1) or the Microsoft reserved (2) partition contains the Windows operating system
kernel.

2. The Microsoft basic data (3) partition contains the Windows files.

3. The Windows recovery environment (4, 5, 6) is a partition that contains the Windows recovery envi-
ronment, which are partitions set aside by the manufacturer to hold an image of your system before it
was shipped from the factory.

4. The EFI system (7) partition contains the Linux operating system kernel, which is required to load
the operating system.

5. The Linux swap (8) partition is a partition that contains the Linux swap.

6. The Linux filesystem (9) is a partition that contains the actual Linux operating system itself, along
with all your files.

2.1 Mounting
You can further go into the /dev directory to see the devices that are mounted, e.g. the /dev/nvme0n1p9
is the device that is mounted on the root directory, and most of these files are either device files (which are
special files that provide an interface to hardware devices, allowing software and users to interact with them
as if they were normal files) or symlinks.

The mount command is used to attach a filesystem to the system’s directory tree. The umount command
is used to detach a filesystem from the system’s directory tree.

1. Mounting a filesystem: The general syntax is mount -t type device dir. For example, to mount
the /dev/nvme0n1p9 to the root directory, you can run mount -t ext4 /dev/nvme0n1p9 /mnt.

19/ 39

Linux Muchang Bahng January 2024

2. Unmounting a filesystem: The general syntax is umount dir. For example, to unmount the root
directory, you can run umount /mnt.

When the computer boots up, it must automatically mount the specific filesystems. This is configured in
the fstab file.

Definition 2.1 (fstab)

The fstab file is a system configuration file that contains information about filesystems. It is located
at /etc/fstab. It is used to define how disk partitions, various other block devices, or remote
filesystems should be mounted into the filesystem. Each line in the file contains six fields, separated
by whitespace. The fields include:

1. Filesystem: The block device or remote filesystem to be mounted. This can be the UUID
(Universally Unique Identifier), the label, or the traditional device name (like /dev/sda1) that
specifies which device or partition is being referred to.

2. Mount Point: The directory where the filesystem should be mounted.
3. Type: The type of the filesystem, e.g. ext4, vfat, swap, etc.
4. Options: Mount options for the filesystem, e.g. rw for read-write, ro for read-only, noexec to

prevent execution of binaries, etc.
5. Dump: A number used by the dump command to determine whether the filesystem should

be backed up. It is often set to 0 to disable backups.
6. Pass: A number used by the fsck command to determine the order in which filesystems should

be checked. Root filesystems should have this set to 1, and other filesystems should either be 2
(to check after the root) or 0 (to disable checking).

1 # Static information about the filesystems.
2 # See fstab(5) for details.
3

4 # <file system> <dir> <type> <options> <dump> <pass>
5 # /dev/nvme0n1p9
6 UUID=abcfef03-bfae-4d1f-b463-fd6538f18a41 / ext4 rw,relatime 0 1
7 # /dev/nvme0n1p7
8 UUID=150D-7A67 /boot vfat rw,relatime,fmask=0077,dmask=0077,codepage=437,
9 iocharset=ascii,shortname=mixed,utf8,errors=remount-ro 0 2

10 # /dev/nvme0n1p8
11 UUID=5c191f65-b016-475d-b04a-5b7c89bda31d none swap defaults 0 0

Figure 7: My personal fstab file.

2.1.1 Mounting a Remote Disk

It is actually possible to mount a folder on a server into your local machine. To do this, you use sshfs to
mount a remote directory over SSH. The general syntax is sshfs user@host:/remote/dir /local/dir to
mount and fusermount -u /local/dir to unmount.

2.2 Maintence
2.2.1 SSD

As soon as your write or delete bits from the SSD (e.g. when you’re deleting a file), it degrades the speed of
the read/write. To alleviate the effects, you can use TRIM, which is a command that allows the operating
system to inform the SSD which blocks of data are no longer considered in use and can be wiped internally. It
can be downloaded as a part of the util-linux package, which provides the systemd services fstrim.timer
and fstrim.service. It is recommended to use weekly trims rather than continuous trims.

20/ 39

Linux Muchang Bahng January 2024

2.2.2 Filesystem

Occasionally, you may have a corrupt partitions, whether it is your boot or root directory. In this case, you
should use the fsck command to check and repair a filesystem. The general steps are:

1. unmount the specific partition you want (identified with lsblk) using sudo umount /dev/partition.

2. run sudo fsck -t type device (or for specific filesystem types like vfat you can be a bit more specific
by running sudo fsck.vfat /dev/partition) to check the filesystem and fix any changes.

3. mount the specific partition back using sudo mount /dev/partition.

2.3 Modifying Partitions
Modifying partitions require specialized software. Partitioning can be done using two main partitioning
schemes GPT (the modern one) and MBR (legacy). The parted utility gives detailed info on your parti-
tions. To see which scheme you have, just run sudo parted -l, where the output can be shown in Figure
8.

1 Model: PM9A1 NVMe Samsung 1024GB (nvme)
2 Disk /dev/nvme0n1: 1024GB
3 Sector size (logical/physical): 512B/512B
4 Partition Table: gpt
5 Disk Flags:
6

7 Number Start End Size File system Name Flags
8 1 1049kB 253MB 252MB fat32 EFI system partition boot, esp
9 2 253MB 387MB 134MB Microsoft reserved partition msftres

10 3 387MB 333GB 332GB ntfs Basic data partition msftdata
11 7 333GB 333GB 524MB fat32 boot, esp
12 8 333GB 338GB 5000MB linux-swap(v1) swap
13 9 338GB 1004GB 666GB ext4
14 4 1004GB 1005GB 1038MB ntfs hidden, diag
15 5 1005GB 1023GB 17.9GB ntfs hidden, diag
16 6 1023GB 1024GB 1503MB ntfs hidden, diag
17

18

19 Model: Unknown (unknown)
20 Disk /dev/zram0: 4295MB
21 Sector size (logical/physical): 4096B/4096B
22 Partition Table: loop
23 Disk Flags:
24

25 Number Start End Size File system Flags
26 1 0.00B 4295MB 4295MB linux-swap(v1)

Figure 8: Output of sudo parted -l on my own machine.

It is important to know which partition scheme you should use.

1. To dual-boot with Windows (both 32-bit and 64-bit) using Legacy BIOS, the MBR scheme is required.

2. To dual-boot Windows 64-bit using UEFI mode instead of BIOS, the GPT scheme is required.

3. If you are installing on older hardware, especially on old laptops, consider choosing MBR because its
BIOS might not support GPT.

4. If you are partitioning a disk that is larger than 2TB, you need to use GPT.

21/ 39

Linux Muchang Bahng January 2024

5. It is recommended to always use GPT for UEFI boot, as some UEFI implementations do not support
booting to the MBR while in UEFI mode.

3 Firmware
Let us go through the steps of a booting (bootstrapping) process. Administrators have little direct, interactive
control over most of the steps required to boot a system, but they can modify bootstrap configurations by
editing config files or system startup scripts.

1. Power On: You power on the machine.

2. Load firmware from NVRAM: You want to be able to identify the specific piece of hardware to
load your operating system in. The firmware is a permanent piece of software that does this.

3. Probe for hardware: We look for hardware that is on the computer.

4. Select boot device (disk, network, etc.): We select the storage device that we want to load the
operating system on.

5. Identify EFI system partition:

6. Load boot loader (e.g. GRUB): A software that allows you to identify and load the proper OS
kernel is provided.

7. Determine which kernel to boot: You choose which kernel you want to load.

8. Load kernel: The OS kernel is identified and loaded into the boot device.

9. Instantiate kernel data structure:

10. Start init/systemd as PID 1:

11. Exectute startup scripts:

12. Running system: You now have a running system!

Right above the hardware, the system firmware, is a piece of software that is executed whenever the
computer boots up.

1. Power Supply Activation: Once the computer is turned on, the power supply begins to provide
electricity to the system’s components. One of the first signals generated is the "Power Good" signal,
indicating that the power supply is stable and at the correct voltages.

2. CPU Reset: Upon receiving the "Power Good" signal, the CPU resets and starts its operations. The
CPU is designed to start executing instructions from a predefined memory address, which is hardwired
into the CPU. This address, stored in ROM, contains the starting point of the firmware.Read Only
Memory is simply another type of computer memory that stores permanent data and instructions for
the device to start up.

3. Predefined Memory Address: For BIOS systems, the CPU begins executing code at the firmware
entry point located in the system’s ROM (Read-Only Memory). In UEFI systems, the process is similar,
but the UEFI firmware provides more functionalities and a more flexible pre-boot environment.

4. POST (Power on Self Test): The firmware conducts a series of diagnostic tests to ensure that
essential hardware components like RAM, storage devices, and input/output systems are functioning
correctly. This stage is critical for verifying system integrity before loading the operating system.

To be honest, there is not a lot that the user can control here with just software. The firmware is a
permanent piece of software that is executed whenever the computer boots up, which makes it relatively
safe from tampering. If your computer fails to boot up, the most fundamental reason may be a firmware
problem. However, we’re not screwed yet.

22/ 39

Linux Muchang Bahng January 2024

Most firmware offers a user interface which can be accessed by pressing the F2, F11, F12, or some combination
of magic keys at the instant the system first powers on. Depending on what computer model you have, you
may have some control of basic functionalities.

Figure 9: Firmware of Dell XPS 13 9320

Some important functionalities you can do with the firmware are:

1. Determine the boot order of the devices, usually by prioritizing a list of available options (e.g. try to
boot from a DVD drive, then a USB, then the hard disk).

2.

The BIOS, which stands for Basic Input/Output System, has been used traditionally. It is mainly
responsible for loading the bootloader. When the computer starts, it runs a Power on Self Test (POST)
to make sure that core hardware such as the memory and hard disk is working properly. Afterward, the
BIOS will check the primary hard drives’ Master Boot Record (MBR), which is a section on your hard
drive where the bootloader is located.

A more formalized and modern standard called EFI (Extensible Firmware Interface) has replaced it,
and it has been revised to the UEFI (Unified Extensible Firmware Interface) standard, but we can
treat EFI and UEFI as equivalent in most cases. Fortunately, most UEFI systems can fall back to a legacy
BIOS impelmentation if the operating system they’re booting doesn’t support UEFI. Since we’re likely to
encounter boot firmware systems, it’s worthwhile to go into both of them.

3.1 Updating Firmware
The first thing you should do when you’re having trouble with firmware is use fwupd, which is a daemon that
handles firmware updates. It is a simple daemon to allow session software to update device firmware on your
local machine. Upon installation, it creates a systemd agent on /lib/systemd/system/fwupd.service. It
does not start automatically. I have used this to update my firmware, which saved a lot of booting errors,
with instructions accessed in this link.

3.2 Modifying UEFI Variables
You can directly examine and modify UEFI variables on a running system with the efibootmgr command.
You get a following summary of the configuration:

23/ 39

https://wiki.archlinux.org/title/fwupd

Linux Muchang Bahng January 2024

1 BootCurrent: 0005
2 Timeout: 0 seconds
3 BootOrder: 0005,0001,0002,0000,0003,0004
4 Boot0000* UEFI PM9A1 NVMe Samsung 1024GB S65VNE0R318841 1 ...
5 Boot0001* ubuntu HD(1,GPT,ede98b7e-75ad-452e-ab47-3411dd6026c1,0x800,0x780...
6 Boot0002* Windows Boot Manager HD(1,GPT,ede98b7e-75ad-452e-ab47-3411dd60...
7 Boot0003* Linux Firmware Updater HD(1,GPT,ede98b7e-75ad-452e-ab47-...
8 Boot0004* UEFI PM9A1 NVMe Samsung 1024GB S65VNE0R318841 1 2 PciRoot(0x0)/...
9 Boot0005* Linux Boot Manager HD(7,GPT,2d28b70f-725b-4ca3-98d4-25f5c83fc00e...

It shows you which disk you are currently booted into, the boot order that is currently configured, and
information about each of the disks. You can use a GUI to do this as well. You can press a certain key when
booting (F2 on my Dell XPS15 9500) to enter the BIOS setup.

Figure 10: The BIOS setup can look very different depending on the computer but looks like this for me.

From here, we can edit different settings like boot options (priority of booting OS), certain video settings,
etc.

3.3 Recovery Mode
Occasionally, you may run into problems with booting up the system. You can go into recovery mode
by looking at the advanced options in the GRUB menu and selecting the option that literally says recovery
mode.

24/ 39

Linux Muchang Bahng January 2024

This gives us a list of options that we can take to fix the system. Every setting except root is automatically
done. The root command gives us root privileges (no sudo is needed). This also means we have full access
to all files, and we may cause irreversible damage to our system if we made a mistake. If we had not enabled
read/write access with "Enable networking" the filesystem will be mounted read only, and we are unable to
edit files. In case we don’t have access to a network, or this was not desired, we can remount our filesystem(s)
giving write access with the following command:

1 mount -o rw,remount /

With editing privileges, we can hopefully better diagnose or undo our problems. Finally, from the root shell
type exit to go back to the menu.

4 Bootloaders
Once the firmware is loaded, which probes the system to find the hardware, it must load the operating
system kernel. This is the job of the boot loader.

Definition 4.1 (Boot Loader, Boot Manager)

The bootloader is another critical piece of software that allows you to identify and load the proper
operating system kernel. If it also provides an interactive menu with multiple boot choices, then it is
often called a boot manager.

In modern systems which support UEFI (not the legacy BIOS), you must configure your partitions so that
there exists an EFI partition (at /boot) that contains this bootloader.

EFI bootloaders usually have a .efi extension, and it is crucial that you know where the bootloaders are
in your system in case they go missing or are corrupt. To see the configuration, you can run efibootmgr
(with verbose), which gives you information on several things:

1. It scans the entire system for EFI bootloaders and lists them.

2. It lists the locations of the EFI bootloaders. It starts off which what partition they are in, and
then lists the directory where the bootloader is located. BootX64.efi is the Windows bootloader
and grubx64.efi is the GRUB bootloader. For example, you may have a bootloader at (partition
7)/boot/efi/EFI/Boot/bootx64.efi.

3. It lists the boot order, which is the order in which the bootloaders are loaded. In case a boot loader
fails to load, the next one is loaded. Therefore, if you have an arch linux bootloader that is corrupt,
and the next in line is the Windows bootloader, you will automatically boot into Windows. You can
also set the boot order in the BIOS.

25/ 39

Linux Muchang Bahng January 2024

In case you can’t boot in, you can always get an Arch ISO burned in on a thumb drive, boot into it, mount
the relevant partitions containing the Arch bootloader and the root directory, and then chroot into the root
directory to modify files.

4.1 GRUB
The way that these kernels can be loaded can be configured through the bootloader, and the most popular
boot manager is GRUB, the Grand Unified Bootloader. GRUB, developed by the GNU project, is
the default loader on most Linux distributions. There is an old version called GRUB legacy and the more
modern GRUB 2. Most people refer to GRUB 2 and simply GRUB. FreeBSD, which is another complete
(non-Linux) OS, have their own boot loader, but GRUB is compatible with it. Therefore, for dual-boot or
triple-boot systems that have multiple kernels, GRUB is the go-to bootloader for loading any of them.

Figure 11: GRUB menu on my screen. Ubuntu does not display the GRUB menu by default. To see GRUB during
boot you need to press the right-hand SHIFT key during boot.

As a critical piece of software, we would expect its configuration files to be in the NVRAM, but GRUB
understands most of the filesystems in common use and can find its way into the root filesystem on its own.
Therefore, we can read its configuration from a regular text file, kept in /boot/grub/grub.cfg. Changing
the boot configuration is as simple as updating the grub.cfg file, but it is not advised to edit it directly.
Rather, we can edit the /etc/default/grub file and run sudo update-grub to that the changes are written
to grub.cfg automatically.

5 Systemd
A process is really any program that is running on your computer. A daemon is a background process
that runs continuously, performing specific tasks even when no user is logged in.

Once the kernel has been loaded and completed its initialization process, it creates a collection of spontaneous
(as in the kernel starts them automatically) processes in user space. They’re really part of the kernel
implementation and don’t necessarily correspond to programs in the filesystem. They’re not configurable
and they don’t require administrative attention. These processes can be monitored with the commands ps,
top, or htop.

The most important process is the init process, with a system PID of 1 and with special privileges. It is
used to get the system running and for starting other processes.

1. Setting the name of the computer

26/ 39

Linux Muchang Bahng January 2024

2. Setting the time sone

3. Checking disks with fsck

4. Mounting filesystems

5. Removing old files from the /tmp directory

6. Configuring network interfaces

7. Configuring packet filter

8. Starting up other daemons and network services, along with killing zombie processes or parenting
orphaned processes.

There are three flavors of system management processes in widespread use:

1. Historically, SysVinit was a series of plaintext files that ran as scripts to start processes, but due to
some problems, Linux now uses systemd.

2. An init variant that derives from the BSD UNIX, used on most BSD-based systems.

3. A more recent contender called systemd which aims to cover the init processes and much more. This
significant increase in control causes some controversy.

4. Other flavors include Apple MacOS’s launchd before it adopted systemd. Ubuntu also used Upstart
before migrating to systemd.

Systemd is essentially a collection of smaller programs, services, and libraries such as systemctl, journalctl,
init, process management, network management, login management, logs, etc. Some processes may depend
on other processes, and with hundreds of them, it’s very hard to do manually, which is why systemd does it
all for you. A post on the systemd blog notes that a full build of the project generates 69 different binaries
(subject to change).

Definition 5.1 ()

A unit is anything that is managed by systemd. It can be “a service, a socket, a device, a mount
point, an automount point, a swap file or partition, a startup carget, a watched filesystem path, a
time controlled and supervised by systemd, a resource management slice, or a group of externally
created processes." Within systemd, the behavior of each unit is defined and configured by a unit
file. Within systemd, the behavior of each unit is defined and configured by a unit file.
The files are all over the place:

1. /lib/systemd/system contains standard systemd unit files
2. /usr/lib/systemd/system are from locally installed packages, e.g. if I installed a pacman

package that contained unit files, then those would go here.
3. /etc/systemd/system is where you put your custom files. etc also has the highest priority, so

it overwrites the other files.
4. /run/systemd/system is a scratch area for transient units.

By convention, unit files are named with a suffix that varies according to the type of unit being
configured. For example, service units have a .service suffix and timers user .timer. Within
the unit file, some sections e.g. ([Unit]) apply generically to all kinds of units, but others (e.g.
[Service]) can appear only in the context of a particular unit type.

Example 5.1 (Service Unit File)

If we go into one of these unit files, which have the prefix .service, they are usually formatted as
such:

1 # comments are just the same as in bash Scripts

27/ 39

Linux Muchang Bahng January 2024

2 # the headers are important!
3

4 [Unit] #
5 Description=Description of the unit file
6 Documentation=man:something
7 After=network.target
8

9 [Service]
10 Type=forking # tells that the process may exit and is not permanent
11 PIDFile= #
12 ExecStartPre= # scripts to run before you start
13 ExecStart= # scripts to run when starting
14 ExecReload= # script to run when you try to reload the process
15 ExecStop= # script to run to stop the process
16

17 [Install] # Tells at what point should this be running
18 WantedBy=multi-user.target

5.1 systemctl: Managing systemd
systemctl is an all-purpose command for investigating the status of systemd and making changes to its
configuration. Running systemctl without any arguments invokes the default list-units subcommand,
which shows all loaded and activive services, sockets, targets, mounts, and devices. To show only services,
use –type=service.

The two main commands that you will use to interact with systemd is systemctl and journalctl.

1. systemctl status unit checks the status, ouputting the description, whether it’s enabled/disabled,
and whether it’s active/inactive.

2. systemctl enable unit enables it, which means that it will start when booting the computer. It
does this by creating a symlink to the unit file. This is different from start.

3. systemctl disable unit disables it.

4. systemctl start unit starts it now and runs it immediately.

5. systemctl stop unit makes it inactive.

6. systemctl reload will run whatever is in the ExecReload in the unit file.

7. systemctl restart runs ExecStop and then ExecStart.

8. systemctl kill unit kills the process.

Some of the statuses that you may see are inactive (deactivated, exited), active (activating, running), failed,
static (not started, frozen by systemd), bad (broken, probably due to bad unit files), masked (ignored by
systemd), indirect (disabled, but another unit file references it so it could be activated).

To troubleshoot, you should run systemctl –failed to see if there are any failed processes, which can be a
problem, and then you can use journalctl –since=today to view your systemd logs. This log is important
for diagnosing fundamental problems with your system. To view only entries logged at the error level or
above, you can set the priorities with -p err -b.

28/ 39

Linux Muchang Bahng January 2024

5.2 Targets

5.3 Systemd Logging
The journald daemon allows you to capture log messages produced by the kernel and services. These system
messages are stored in the /run directory, but we can access them directly with the journalctl command.

Example 5.2 ()

You can configure journald to retain messages from prior boots. To do this, edit the following file and
configure the Storage attribute:

1 #/etc/systemd/journald.conf
2 [Journal]
3 Storage=persistent

Then, you can obtain a list of prior boots with journalctl –list-boots and you can access messages from
a prior boot by referring to its index or by naming its long-form ID: journalctl –b -1.

6 Directory Structure
It should be clear that the stands for your user home directory, while / stands for the root directory.

1 (base) mbahng@xps15:~\$ pwd
2 /home/mbahng
3 (base) mbahng@xps15:~\$ cd /
4 (base) mbahng@xps15:/\$ pwd
5 /

Let us now take a look at the contents of the root directory:

1 (base) mbahng@xps15:~\$ ls /
2 bin dev lib libx32 mnt root snap timeshift var
3 boot etc lib32 lost+found opt run srv tmp
4 cdrom home lib64 media proc sbin sys usr

You can see that the root home directory is in here, as opposed to user home directories in the /home folder.

1. root: This contains all the files for when you need to boot. You shouldn’t mess with this.

2. etc: This is where you system wide configuration for applications is stored (unlike local configuration
files for one user, which is stored in your home directory). It is often a target for backups.

3. media, mnt: Used for mounting external storage systems and even internal storage systems.

4. opt: A place where you can install whatever you want. Quite flexible.

6.1 Users and Permission
6.1.1 Managing Users

You should first check which users are on your system. Most people just check their home directory using

1 (base) mbahng@xps15:~\$ ls -l /home
2 total 8
3 drwxr-xr-x 3 root root 4096 Jan 17 23:57 linuxbrew

29/ 39

Linux Muchang Bahng January 2024

4 drwxr-xr-x 44 mbahng mbahng 4096 Jul 2 13:27 mbahng

But this is not accurate. Rather, we should check the contents of the /etc/passwd file, which has a list of
users in our computer (1 per line). The purpose is to contain a listing of and the options that are associated
with your user accounts on your server.

1 (base) mbahng@xps15:~\$ cat /etc/passwd
2 root:x:0:0:root:/root:/bin/bash
3 daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
4 bin:x:2:2:bin:/bin:/usr/sbin/nologin
5 sys:x:3:3:sys:/dev:/usr/sbin/nologin
6 sync:x:4:65534:sync:/bin:/bin/sync
7 games:x:5:60:games:/usr/games:/usr/sbin/nologin
8 man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
9 lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

10 mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
11 news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
12 uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
13 proxy:x:13:13:proxy:/bin:/usr/sbin/nologin
14 www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin
15 backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
16 list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
17 irc:x:39:39:ircd:/run/ircd:/usr/sbin/nologin
18 gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
19 nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
20 ...

Let us just examine my user.

1 (base) mbahng@xps15:~\$ cat /etc/passwd | grep mbahng
2 mbahng:x:1000:1000:mbahng,,,:/home/mbahng:/bin/bash

Going from left to right, mbahng is my user, the x stands for a hashed password that cannot be shown, the
1000 is the user id (UID), the 1000 is the group id (GID), mbahng is the user information field (optional),
next /home/mbahng is the user’s home directory, and finally /bin/bash is the shell designated for the user.
When you create a user id when first installing Ubuntu, this will almost always have uid of 1000. On most
linux distributions, the user accounts that will be used by humans are given uids of 1000 and above. Note
that in Ubunutu 22.04, a home directory is not created automatically (this differs based on distribution)
when we create a new user. So note the following commands. To add a user called batman, we have

1 (base) mbahng@xps15:~\$ sudo useradd batman # just add user
2 (base) mbahng@xps15:~\$ sudo useradd -m batman # add user with home dir
3 (base) mbahng@xps15:~\$ cat /etc/passwd | grep batman
4 batman:x:1001:1001::/home/batman:/bin/sh

and it gives a new uid that is the next available one from 1000, i.e. 1001. To delete the user, just do

1 (base) mbahng@xps15:~\$ sudo userdel batman # delete user
2 (base) mbahng@xps15:~\$ sudo userdel -r batman # delete user w/ home dir

Now let’s talk about changing passwords. If you want to change your own password, you can just type
passwd and go through the steps. To set another user’s password, you need to be in root mode and type

1 (base) mbahng@xps15:~\$ sudo passwd batman # set password for batman

30/ 39

Linux Muchang Bahng January 2024

Note that we have a hashed version of the user’s password in the /etc/passwd file. We can actually see the
full hashed versions by going into /etc/shadow.

6.1.2 Changing Permission

Running ls -l command lists all files and directories in your current working directory, along with their
permissions.

1 -rw-rw-r-- 1 mbahng mbahng 4336730777 Sep 29 2022 cuda_11.8.0_520.61.05_linux.run
2 drwxr-xr-x 9 mbahng mbahng 4096 Jul 1 23:33 Desktop
3 drwxr-xr-x 8 mbahng mbahng 4096 Jul 1 15:08 Documents
4 drwxr-xr-x 6 mbahng mbahng 12288 Jul 1 22:36 Downloads
5 drwxr-xr-x 4 mbahng mbahng 4096 Jun 29 19:43 Games
6 drwxr-xr-x 6 mbahng mbahng 4096 Feb 22 17:27 Jts
7 drwxrwxr-x 5 mbahng mbahng 4096 Jun 28 19:39 KakaoTalk
8 drwxr-xr-x 16 mbahng mbahng 4096 Jun 2 21:13 miniconda3
9 drwxrwxr-x 4 mbahng mbahng 4096 Jun 22 13:12 nltk_data

The first columm is a string of 10 characters representing the permissions. They are divided into 4 sections:

1 d rwx r-x r-x

The first letter can be a d, l, or -, meaning directory, link, or file, respectively. The next three groups,
representing the permissions of the user (third columm), group (fourth), and everyone else, have the same
format. It is rwx, which stands for read, write, execute.

1. Read: Means to read a file or read a directory.

2. Write: Means to edit a file or modify the contents of a directory.

3. Execute: Means to run the file as an executable or go cd into the directory.

A dash in place of any one of them means that whatever entity does not have the permissions. However, we
can set the permissions using the chmod command. If we have a file named testfile.txt in our current
directory, we can add or revoke permissions with

1 chmod +r testfile.txt // assign read permissions to all users
2 chmod +w testfile.txt // assign write permissions to all users
3 chmod +x testfile.txt // assign execute permissions to all users
4

5 chmod g+rw testfile.txt // assign read and write to group
6 chmod u-r testfile.txt // revoke read to user
7 chmod o+x testfile.txt // assign execute to other users

Writing all these can be tedious, so what we can do is take advantage of the numerical encodings of the
permissions. Note that r = 4, w = 2, x = 1, and so any number between 0 and 7 can encode the three bits
(through the coefficients of the binary expansion). Therefore, if we wanted every permission for all users, we
can write

1 chmod 770 testfile.txt

where the first 7 stands for rwx, the next 7 stands for rwx, and the final 0 stands for –-. To change the
permissions for everything inside a directory (e.g. say you want to make all downloads only readable and
writable by you), then you can type

1 chmod 600 ~/Downloads/*

31/ 39

Linux Muchang Bahng January 2024

6.1.3 Changing Ownership

If you have multiple users in your computer (type ls /home), then you may want to give ownership of a
directory or folder to another user.

1 (base) mbahng@xps15: ls /home
2 batman mbahng

To change permissions of a file/directory to another user and group, we can use the chown command (with
sudo)

1 sudo chown -R batman:batman Downloads/

7 Display Servers
When you boot up your computer, you are greeted with a graphical user interface (GUI) that allows you to
interact with your computer. This is the job of the display server, which is a program that provides graphical
display capabilities for the operating system.

Definition 7.1 (Display Server)

A display server is a program that manages the communication between your computer’s hardware
and graphical software applications. It acts as a bridge for input and output devices; for example, it
processes the input from your keyboard and mouse and outputs graphics to the monitor. The display
server is responsible for the fundamental task of drawing windows and handling the low-level aspects
of input and output, but it doesn’t dictate how these windows look or are arranged. For almost every
purpose, there are two types of display servers:

1. X: The X Window System, which is the older and more established display server.
2. Wayland: The newer and more modern display server.

Definition 7.2 (X Window System)

The X Window System is a windowing protocol for Unix/Linux OSes, similar to the way that
Microsoft Windows or Apple Mac OS X can run different apps in separate windows. X defines the
protocol for a display server what can render windows on a display client (your computer), inside
which are running apps.a

1. X11 refers to version 11 of the X protocol, while
2. Xorg is an open-source implementation of X.

Definition 7.3 (Wayland)

X, made in 1984, has developed a lot of cruft over the years, and Wayland is a modern replacement for
X. It is a protocol for a compositor to talk to its clients, as well as a C library implementation of that
protocol. The compositor can be a standalone display server running on Linux kernel modesetting
and evdev input devices, an X application, or a wayland client itself.

8 Package Management
Linux comes in many flavors of distributions. Most beginners look at screenshots of these distributions on
the internet and judge them based on their aesthetics (e.g. I like how Kali Linux looks so I’ll go with that

aExplanation here: https://www.reddit.com/r/linuxquestions/comments/3uh9n9/what_exactly_is_xxorgx11/

32/ 39

Linux Muchang Bahng January 2024

one). A common feature of all Linux distributions is that they provide the user the power to customize their
system however they want, so you can essentially make every linux distribution look like any other. So what
are some things you should consider when choosing a distribution?

1. First is the popularity and how well it is supported. This includes the number of people who use the
distribution (e.g. the Ubuntu StackExchange is a very large community) and how good the documen-
tation is overall (e.g. the ArchLinux wiki is very well documented).

2. Each linux distribution essentially consists of a kernel and package manager. The architecture, design,
and the update scheme of the kernel may be an interest to many linux users.

3. Every distribution has its own native package manager, and the availability of certain necessary pack-
ages, the ease of installation, and the updating schemes is also something to consider.

4. The ideals of the respective communities. The community behind each distribution has a certain set of
ideals that they lean more towards. For example, the Ubuntu community likes having programs that
are right out of the box, with good GUI support and is more beginner-friendly while Arch has more of
a minimal and extremely customizable nature to it with its software being much more CLI dependent.

Let’s begin with the package managers. Every application on your system (Firefox, Spotify, pdf readers,
VSCode, etc.) is a package, and manually downloading and managing each one is impossible to do. Therefore,
each distribution has its own native package manager that automatically takes care of downloading, installing,
removing, checking dependency requirements of each package. In order to download a package, a package
manager should also know where it is downloading from. Essentially, a package manager itself can be
downloaded with other package managers, so package managers are packages as well.

1. apt : The advanced packaging tool is the native manager for Ubuntu distributions.

2. pacman : Native package manager for Arch Linux.

3. yay : The package manager for software in the Arch User Repository.

4. snap :

5. flatpak :

6. dpkg : Package manager for Debian based distributions.

Chances are if you are using one distribution, you would only have to work with a small subset of these
package managers. Each package manager has one or more files in the computer that specify a list of
repositories.

8.1 Wget
wget is a command-line utility used to download files from the internet. It stands for "web get."

8.2 Pacman
For example, the configuration file for pacman is located at /etc/pacman.conf. In the options section, I
can configure stuff like text color, enabling/disabling parallel downloads, choosing specific packages to ignore
upgrading, etc. Then, we can specify the servers that we should download from. In the text below, the
server variable defines which server we should look at first, and then the Include variable stores the location
of the file mirrorlist that defines a list of other servers that we should download from.

The mirrorlist file stores a list of URLs. Each URL is a mirror, which is a server that contains a physical
replica of all the packages that are available to you via pacman (hence the name mirror). You can literally
type in the links provided in Figure 13 (replacing $repo with core and $arch with x86_64). It contains a
tarball of each package ready to be downloaded. Some repos might contain more packages than others, some
might have packages that only they supply that others don’t, but if you can install the piece of software via
your package manager then one of your configured repos is declaring they have it available and therefore

33/ 39

Linux Muchang Bahng January 2024

1 # The following paths are commented out with their default values listed.
2 # If you wish to use different paths, uncomment and update the paths.
3 #RootDir = /
4 #DBPath = /var/lib/pacman/
5 #CacheDir = /var/cache/pacman/pkg/
6 #LogFile = /var/log/pacman.log
7 #GPGDir = /etc/pacman.d/gnupg/
8 #HookDir = /etc/pacman.d/hooks/
9 HoldPkg = pacman glibc

10 #XferCommand = /usr/bin/curl -L -C - -f -o %o %u
11 #XferCommand = /usr/bin/wget --passive-ftp -c -O %o %u
12 #CleanMethod = KeepInstalled
13 Architecture = auto
14

15 # Pacman won’t upgrade packages listed in IgnorePkg and members of IgnoreGroup
16 #IgnorePkg =
17 #IgnoreGroup =
18

19 #NoUpgrade =
20 #NoExtract =
21

22 # Misc options
23 #UseSyslog
24 #Color
25 #NoProgressBar
26 CheckSpace
27 #VerbosePkgLists
28 ParallelDownloads = 5
29 ILoveCandy

Figure 12: Subset of contents of the /etc/pacman.conf file

34/ 39

Linux Muchang Bahng January 2024

1 Server = https://archlinux.mailtunnel.eu/$repo/os/$arch
2 Server = https://mirror.cyberbits.eu/archlinux/$repo/os/$arch
3 Server = https://mirror.theo546.fr/archlinux/$repo/os/$arch
4 Server = https://mirror.sunred.org/archlinux/$repo/os/$arch
5 Server = https://mirror.f4st.host/archlinux/$repo/os/$arch
6 Server = https://md.mirrors.hacktegic.com/archlinux/$repo/os/$arch
7 Server = https://mirrors.neusoft.edu.cn/archlinux/$repo/os/$arch
8 Server = https://mirror.moson.org/arch/$repo/os/$arch
9 Server = https://archlinux.thaller.ws/$repo/os/$arch

Figure 13: Contents of the /etc/pacman.d/mirrorlist file

should have the file on hand to give to you if asked for it. A list of all available mirrors are available here
(this only uses HTTPS, but HTTP mirrors are also available).

The mirrors that you download from should be trustworthy and fast. The speed is mainly related to how
close you are to that mirror geographically, so if you are moving to another country you should probably
update this mirrorlist for faster download speeds. There is a default mirrorlist file that is generated, but you
can download and use the reflector package to update it.

Here are some common commands:

1. Install a package: sudo pacman -S pkg1 (-s stands for synchronize)

2. Remove a package: sudo pacman -R pkg

• remove dependencies also: -s (recursive)

• also remove configuration files: -n (no save)

• also removes children packages: -c (cascade)

3. Update all packages: sudo pacman -Syu

• synchronize: -S

• refresh package databases: -y (completely refresh: -yy)

• system upgrade: -u

4. List installed packages: pacman -Q

• List detailed info about a package: pacman -Qi pkg

• List all files provided by a package: pacman -Ql pkg

• List all orphaned packages: pacman -Qdt

• List all packages that have updates available: pacman -Qu

• List all explicitly installed packages: pacman -Qet

• Display the dependency tree of a package: pactree pkg (from the pacman-contrib package)

• List last 20 installed packages:

1 expac --timefmt=’%Y-%m-%d %T’ ’%l\t%n’ | sort | tail -n 20

5. To check size of current packages and dependencies, download expac and run expac -H M ’%m
t%n’ | sort -h

35/ 39

https://archlinux.org/mirrorlist/all/https/

Linux Muchang Bahng January 2024

6. The package cache stored in /var/cache/pacman/pkg/ keeps old or uninstalled versions of packages
automatically. This is helpful since it also keeps older versions of packages in the cache, and you can
manually downgrade in case some packages break.

• We can delete all cached versions of installed and uninstalled packages, except for the most recent
3, by running paccache -r (provided by the pacman-contrib package).

• To remove all cached packages not currently installed, run pacman -Sc

• To remove all cached aggressively, run pacman -Scc

• To downgrade, you go into the package cache directory and say you want to see which versions of
neovim you have installed. You can ls the directory to see the following.

1 neovim-0.9.5-1-x86_64.pkg.tar.zst
2 neovim-0.9.5-1-x86_64.pkg.tar.zst.sig
3 neovim-0.9.5-2-x86_64.pkg.tar.zst
4 neovim-0.9.5-2-x86_64.pkg.tar.zst.sig

We have an older version of neovim installed, and to roll it back we can use

1 pacman -U neovim-0.9.5-1-x86_64.pkg.tar.zst

The pacman log (/var/log/pacman.log) is also useful since it logs all pacman outputs when you do anything
with pacman. So if you are looking for the packages that have been installed in the latest pacman -Syu,
then you can use this to individually see each package that has been upgraded.

8.3 Yay
Yay is used to install from the Arch User repository and must be updated separately. To run this, you can
either run yay -Syu or you can just run yay. Since this is not officially maintained, these packages are more
likely to break something. The yay logs are not stored separately can can be accessed in the pacman logs.

8.4 Dpkg and Deb files
Ubuntu is a Linux distribution within the family of Debian-based systems (with Debian, Linux Mint, etc.).
File of the .deb format is used to distribute and install software packages on these systems. A deb package
contains the files for a particular software application or library, along with metadata that describes the
package and instructions on how to install or remove it. The package format follows a specific structure and
includes files such as control files, data files, and scripts. Therefore, many downloaded packages may come
in this format, similar to how a file is zipped before we have to extract it.

Dpkg is the primary package manager for Debian based systems. It installs, builds, removes, configures, and
retrieves information for Debian packages of the .deb format. Given that we have some file package.deb
downloaded, the command

1 dpkg -i package.deb

installs the specified package from the package.deb file. Removing it is just (note without the suffix)

1 dpkg -r package

8.5 Apt
read more here

36/ 39

https://www.reddit.com/r/Ubuntu/comments/9awvip/eli5_snap_and_flatpak_how_are_they_differ_from_apt/

Linux Muchang Bahng January 2024

While dpkg is the native package manager for Debian based systems, apt is just a built-in Ubuntu tool to help
install these Debian packages and manage dependencies. To run apt commands, we must have root privilege,
so we should always use sudo. When these command are run, you should get a confirmation question asking
whether you want to continue, with [Y/n]. The capital letter is the default, so you can either enter in ‘y’ or
just press ENTER.

1. The update command connects to various URLs to download a list of available packages. Periodically,
new packages are introduced to Debian and Ubunutu repositories all the time, so this command re-
freshes the index so that it knows what packages are available and at what versions. It is a good idea
to run this before you use apt commands for the day.

1 sudo apt update

2. The upgrade command just updates all packages and their dependencies to their latest versions. How-
ever, this does not update packages which require the installation of additional packages.

1 sudo apt upgrade

3. The dist upgrade updates packages including those that need installation of new dependencies. So it
is a good idea to run upgrade first and then dist-upgrade after.

1 sudo apt dist-upgrade

Installing and removing packages is easy.

1. We can install from the apt repository with

1 sudo apt install htop

2. We can remove it with

1 sudo apt remove htop

If you don’t know the name of the application or package you want to install, then you can search for a
keyword with apt search. Say that you want to install vim but you don’t know what the actual package
name is called. You can just type

1 apt search vim

The central location where apt gets its updates from is contained in the /etc/apt/sources.list file. Here
is a snippet of it in my system.

1 # deb cdrom:[Ubuntu 22.04.1 LTS _Jammy Jellyfish_ - Release amd64 (20220809.1)]/
2 jammy main restricted
3

4 # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
5 # newer versions of the distribution.
6 deb http://us.archive.ubuntu.com/ubuntu/ jammy main restricted
7 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy main restricted
8

9 ## Major bug fix updates produced after the final release of the
10 ## distribution.
11 deb http://us.archive.ubuntu.com/ubuntu/ jammy-updates main restricted
12 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy-updates main restricted
13

37/ 39

Linux Muchang Bahng January 2024

14 ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
15 ## team. Also, please note that software in universe WILL NOT receive any
16 ## review or updates from the Ubuntu security team.
17 deb http://us.archive.ubuntu.com/ubuntu/ jammy universe
18 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy universe
19 deb http://us.archive.ubuntu.com/ubuntu/ jammy-updates universe
20 # deb-src http://kr.archive.ubuntu.com/ubuntu/ jammy-updates universe
21 ...

8.6 Snap and Flatpak
Other package managers that you may need to use often are snap and flatpak, which can both be installed
with

1 sudo apt install snap flatpak

9 Windows Managers and Desktop Environments
These days, the terms window managers (WMs) and Desktop Environments (DEs) are used interchangeably,
but they mean slightly different things. A window manager is the display software that determines how the
pixels for each window overlaps with other and their movement. This is generally divided into two paradigms
with the most familiar being floating WMs and the other being tiling WMs. Even before I knew about
tiling WMs, I found myself manually tiling windows on floating WMs, so the move to tiling WMs was a
no-brainer.

Some DEs and WMs are:

1. GNOME

2. KDE Plasma

3. Qtile

10 Shells and Terminals
Beginners may think of the shell and the terminal to be the same thing, but they are different. The shell
is a command line interpreter, a layer that sits on top of the kernel in which the user can interact with.
It is essentially the only API to the kernel where the user can input commands and processes them. The
terminal emulator is a wrapper program that runs a shell and allows us to access the API. It may be
useful to think of the shell as like a programming language and the terminal as a text editor like VSCode.

The three most common shells are the following:

1. Bash:

2. Zsh:

3. Fish:

Some common terminal emulators (most of which comes as a part of the desktop environment) are the
following:

1. Kitty:

2. Alacritty:

3. Gnome-Terminal:

38/ 39

Linux Muchang Bahng January 2024

10.1 Crontab
To schedule jobs, you run crontab -e, which will give you a text file for which you can list jobs. It looks
like

1 # Edit this file to introduce tasks to be run by cron.
2 #
3 # Each task to run has to be defined through a single line
4 # indicating with different fields when the task will be run
5 # and what command to run for the task
6 #
7 # To define the time you can provide concrete values for
8 # minute (m), hour (h), day of month (dom), month (mon),
9 # and day of week (dow) or use ’*’ in these fields (for ’any’).

10 #
11 # Notice that tasks will be started based on the cron’s system
12 # daemon’s notion of time and timezones.
13 #
14 # Output of the crontab jobs (including errors) is sent through
15 # email to the user the crontab file belongs to (unless redirected).
16 #
17 # For example, you can run a backup of all your user accounts
18 # at 5 a.m every week with:
19 # 0 5 * * 1 tar -zcf /var/backups/home.tgz /home/
20 #
21 # For more information see the manual pages of crontab(5) and cron(8)
22 #
23 # m h dom mon dow command

In the bottom line, we can add the following to run sudo apt update every minute. The 5 columns refer
to minute (0-59), hour (0-24), date of month (1-31), month (1-12), and date of week (0-7, where 0 and 7 is
Sunday). The asterick means every instance of.

1 # Run every minute
2 * * * * * sudo apt update
3

4 # Run at 9:15am every first day of the month
5 15 9 1 * * sudo apt update
6

7 # Run for every minute of every hour for the 13th day of every month if it is Friday
8 * * 13 * 5 sudo apt update

You get the idea.

39/ 39

	Hardware
	Von Neumann Architecture
	Instruction Set Architectures
	Assembly in x86_64
	Graphics Drivers
	Multiple GPUs

	Peripheral Devices
	System Hardware
	Non-Volatile Drive Storage
	Volatile, Short-Term Storage

	Program Lifecycle Phases
	More on Executables
	Static vs Dynamic Languages

	Filesystems
	Mounting
	Mounting a Remote Disk

	Maintence
	SSD
	Filesystem

	Modifying Partitions

	Firmware
	Updating Firmware
	Modifying UEFI Variables
	Recovery Mode

	Bootloaders
	GRUB

	Systemd
	systemctl: Managing systemd
	Targets
	Systemd Logging

	Directory Structure
	Users and Permission
	Managing Users
	Changing Permission
	Changing Ownership

	Display Servers
	Package Management
	Wget
	Pacman
	Yay
	Dpkg and Deb files
	Apt
	Snap and Flatpak

	Windows Managers and Desktop Environments
	Shells and Terminals
	Crontab

