
Linux Muchang Bahng Summer 2023

Linux

Muchang Bahng

January 2024

Contents

1 Hardware 3
1.1 Von Neumann Architecture . 3
1.2 Instruction Set Architectures . 4
1.3 Assembly in x86 64 . 6
1.4 Graphics Drivers . 7

1.4.1 Multiple GPUs . 9
1.5 Peripheral Devices . 9
1.6 Overview of Architecture . 9

2 Filesystems 9
2.1 Mounting . 12

2.1.1 Mounting a Remote Disk . 12
2.2 Maintence . 13

2.2.1 SSD . 13
2.2.2 Filesystem . 13

2.3 Modifying Partitions . 13

3 Firmware 14
3.1 Updating Firmware . 16
3.2 Modifying UEFI Variables . 16

4 Bootloaders 16
4.1 GRUB . 17

5 Systemd 17
5.1 systemctl: Managing systemd . 19
5.2 Targets . 20
5.3 Systemd Logging . 20

6 Display Servers 20

7 Windows Managers and Desktop Environments 21

8 Package Management 21
8.1 Pacman . 22
8.2 Yay . 24

9 Vim and Neovim 24
9.1 Vim vs Neovim . 24
9.2 Vim Configuration File . 25
9.3 Neovim Configuration File . 25

1/ 37

Linux Muchang Bahng Summer 2023

9.4 Troubleshooting . 26

10 Shells and Terminals 26

11 LaTeX and VimTex 27

12 Networking 27
12.1 Computer Networks and the Internet . 28
12.2 History of the Internet . 31
12.3 Network Interfaces . 33
12.4 Addresses . 33

12.4.1 LAN Addresses and NAT . 35
12.4.2 Ports . 36
12.4.3 Hardware (MAC) Addresses . 36

12.5 TCP Packets and Encapsulation . 37
12.6 OSI and Internet Protocols . 37
12.7 HTTP and HTTPS . 37
12.8 UDP and TCP . 37
12.9 SSH . 37

13 Driver and Hardware Configuration 37
13.1 Audio Drivers . 37
13.2 Bluetooth . 37
13.3 Synaptics . 37
13.4 Video Drivers . 37
13.5 Monitor . 37
13.6 Nvidia GPU Drivers . 37

14 Development 37
14.1 Git . 37
14.2 Python and Conda . 37

2/ 37

Linux Muchang Bahng Summer 2023

The following set of notes describes the everyday use of a Linux operating system. I refer to it for mainly
my personal desktop, but it is also useful for working in computing clusters. Some of the commands are
specific to the Arch Linux distribution (since that is what I work with), but I occasionally include those
from Ubuntu and Red Hat, since I run into these distributions often in servers.

I try to organize this in a way so that one who wishes to get started in Linux can go through these notes
chronologically. For now, we will assume that you have a Linux distribution installed. There are many
resources beyond this book that helps you do that.

1 Hardware

1.1 Von Neumann Architecture

It is essential to have an initial model of a computer. For this, we will first use the von Neumann
architecture, which is the basis for most computers today. It consists of a central processing unit
(CPU), memory, and an input/output (I/O) system.

Definition 1.1 (Memory)

The memory is where the computer stores data and instructions, which can be though of as a giant
array of memory addresses, with each containing a byte. This data consists of graphical things or
even instructions to manipulate other data.

Definition 1.2 (Central Processing Unit)

The CPU is responsible for taking instructions (data) from memory and executing them.
1. The CPU is composed of registers (different from the cache), which are small, fast storage lo-

cations. These registers can either be general purpose (can be used with most instructions) or
special purpose (can be accessed through special instructions, or have special meanings/uses,
or are simply faster when used in a specific way).

2. The CPU also has an arithmetic unit and logic unit, which is responsible for performing
arithmetic and logical operations.

3. The CPU also has a control unit, which is responsible for fetching instructions from memory
through the databus, which is literally a wire connecting the CPU and RAM, and executing
them.

It executes instructions from memory one at a time and executes them, known as the fetch-execute
cycle. It consists of 4 main operations.

1. Fetch: The program counter, which holds the memory address of the next instruction to be
executed, tells the control unit to fetch the instruction from memory through the databus.

2. Decode: The fetched data is passed to the instruction decoder, which figures out what the
instruction is and what it does and stores them in the registers.

3. Execute: The arithmetic and logic unit then carries out these operations.
4. Store: Then it puts the results back on the databus, and stores them back into memory.

The CPU’s clock cycle is the time it takes for the CPU to execute one instruction. More specifically,
the clock cycle refers to a single oscillation of the clock signal that synchronizes the operations of
the processor and the memory (e.g. fetch, decode, execute, store), and decent computers have clock
cycles of at least 2.60GHz (2.6 billion clock cycles per second).

To clarify, let us compare registers and memory. Memory is addressed by an unsigned integer while registers
have names like %rsi. Memory is much bigger at several GB, while the total register space is much smaller
at around 128 bytes (may differ depending on the architecture). The memory is much slower than registers,
which is usually on a sub-nanosecond timescale. The memory is dynamic and can grow as needed while the
registers are static and cannot grow.

3/ 37

Linux Muchang Bahng Summer 2023

Definition 1.3 (Input/Output Device)

The input device can read/load/write/store data from the outside world. The output device, which
has direct memory address, can display data to the outside world.

Putting this all together, we have Figure 1.

Figure 1: von Neumann Architecture

1.2 Instruction Set Architectures

Definition 1.4 (Instruction Set Architecture)

The ISA or just architecture of a CPU is a high level description of what it can do. Some differences
are listed here:

1. What instructions it can execute.
2. The instruction length and decoding, along with its complexity.
3. The performance vs power efficiency.

Definition 1.5 ()

ISAs can be classified into two types.
1. The complex instruction set computer (CISC) is characterized by a large set of complex

instructions, which can execute a variety of low-level operations. This approach aims to reduce
the number of instructions per program, attempting to achieve higher efficiency by performing
more operations with fewer instructions.

2. The reduced instruction set computer (RISC) emphasizes simplicity and efficiency with a
smaller number of instructions that are generally simpler and more uniform in size and format.
This approach facilitates faster instruction execution and easier pipelining, with the philosophy
that simpler instructions can provide greater performance when optimized.

Example 1.1 (x86 Architecture)

The x86 architecture is a CISC architecture, which is the most common architecture for personal
computers. Here are important properties:

1. It is a complex instruction set computer (CISC) architecture, which means that it has a large
set of complex instructionsa.

2. Byte-addressing is enabled and words are stored in little-endian format.
3. In the x86 64 architecture, registers are 8 bytes long (and 4 bytes in x86 32) and there are 16

4/ 37

Linux Muchang Bahng Summer 2023

total general purpose registers, for a total of only 128 bytes (very small compared to many GB
of memory). Other special purpose registers are also documented in the wikipedia page, but it
is not fully documented. The registers are listed belowb:

%rax # return value

%rbx # callee saved

%rcx # 4th argument

%rdx # 3rd argument

%rsi # 2nd argument

%rdi # 1st argument

%rbp # callee saved

%rsp # stack pointer

%r8 # 5th argument

%r9 # 6th argument

%r10 # scratch register

%r11 # scratch register

%r12 # callee saved

%r13 # callee saved

%r14 # callee saved

%r15 # callee saved

ahttps://en.wikipedia.org/wiki/X86 instruction listings
bOlder x86 32 architecture has 8 general purpose registers with the r replaced by a e, e.g. eax instead of rax.

Example 1.2 (ARM Archiecture)

Mainly in phones, tablets, laptops.

Example 1.3 (MIPS Architecture)

MIPS is a RISC architecture, which is used in embedded systems such as digital home and networking
equipment.

This is a large overview of the different architectures, but Arch Linux states on their website that they have
official packages optimized for the x86-64 architecture.1

Furthermore, by running cat /proc/cpuinfo, you can see the specs of each CPU core you have. This
includes the model name (clock cycle), cache size, flags, and microcode. The flags are the most
important, since they tell you what features your CPU has.2

1. lm: 64 bit architecture.

2. vmx (Intel) or svm (AMD): Hardware virtualization .

3. aes: Accelerate AES encryption.

4. fpu: Floating Point Unit, which is used for floating point operations.

5. vme: Virtual 8086 mode enhancements, which is used for virtualization.

6. de: Debugging extensions, which is used for debugging.

7. pse: Page Size Extensions, which is used for larger page sizes.

8. tsc: Time Stamp Counter, which is used for timing.

1https://archlinux.org/
2The entire list of flags and what they can do is mentioned in the Arch kernel source code, which is a good reference:

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/include/asm/cpufeatures.h

5/ 37

Linux Muchang Bahng Summer 2023

9. msr: Model Specific Registers, which is used for model specific operations.

10. mce: Machine Check Exception, which is used for error checking.

11. pae: Physical Address Extensions, which is used for larger memory.

12. mce: Machine Check Exception, which is used for error checking.

1.3 Assembly in x86 64

Definition 1.6 (Instruction)

An instruction is a single line of assembly code. It consists of some instruction followed by its (one
or more) operands. The instruction is a mnemonic for a machine language operation (e.g. mov, add,
sub, jmp, etc.). The size specifier can be appended to this instruction mnemonic to specify the size
of the operands.

1. b (byte) for 1 byte
2. w (word) for 2 bytes
3. l (long) for 4 bytes
4. q (quad word) for 8 bytes

Note that due to backwards compatibility, word means 2 bytes in instruction names. Furthermore,
the maximum size is 8 bytes since that is the size of each register in x86 64. An operand can be of 3
types, determined by their mode of access:

1. Immediate addressing is denoted with a $ sign, e.g. a constant integer data $1.
2. Register addressing is denoted with a % sign with the following register name, e.g. %rax.
3. Memory addressing is denoted with the hexadecimal address in memory, e.g. 0x034AB.

Like higher level programming languages, we can perform operations, do comparisons, and jump to different
parts of the code. Instructions can be generally categorized into three types:

1. Data Movement: These instructions move data between memory and registers or between the reg-
istery and registery. Memory to memory transfer cannot be done with a single instruction.

%reg = Mem[address] # load data from memory into register

Mem[address] = %reg # store register data into memory

2. Arithmetic Operation: Perform arithmetic operation on register or memory data.

%reg = %reg + Mem[address] # add memory data to register

%reg = %reg - Mem[address] # subtract memory data from register

%reg = %reg * Mem[address] # multiply memory data to register

%reg = %reg / Mem[address] # divide memory data from register

3. Control Flow: What instruction to execute next.

jmp label # jump to label

je label # jump to label if equal

jne label # jump to label if not equal

jg label # jump to label if greater

jl label # jump to label if less

call label # call a function

ret # return from a function

Now unlike compiled languages, which are translated into machine code by a compiler, assembly code is
translated into machine code through a two-step process. First, we assemble the assembly code into an
object file by an assembler, and then we link the object file into an executable by a linker. Some common
assemblers are NASM (Netwide Assembler) and GAS/AS (GNU Assembler), and common linkers are ld
(GNU Linker) and lld (LLVM Linker), both installable with sudo pacman -S nasm ld.

6/ 37

Linux Muchang Bahng Summer 2023

Definition 1.7 (mov)

Let’s talk about the mov instruction. A good diagram to see is the following:

Parantheses indicate that we are using a pointer dereference.

Definition 1.8 (int)

The int instruction is used to generate a software interrupt. It is often used to invoke a system call.

Definition 1.9 (ret)

The ret instruction is used to return from a function. It returns the value in the %rax register.

Example 1.4 (Swap Function)

In gdb, we may have a function that swaps two integers.
swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

which is the assembly code for the following C code.

void swap(long *xp, long *yp) {

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

1.4 Graphics Drivers

Note that one type of data we must store on memory is the individual pixels in a computer screen. Say that
in a 1920 × 1080 resolution computer, there are about 1920 × 1080 × 3 ≈ 2 million bytes of data that we
have to store. This isn’t that much data (only 2MB), but we must update it quite fast since our screens are
always updating. This is why all computer which have a GUI comes with a built-in graphics driver. To see
the GPU hardware specifications, install lshw.

7/ 37

Linux Muchang Bahng Summer 2023

Definition 1.10 (Graphics Processing Unit)

The GPU is a specialized processing unit that is designed to handle the rendering of images and
videos. It is designed to handle the rendering of images and videos, and is optimized for parallel
processing. Like the CPU, it has some common metrics:

1. Clock Speed: The speed at which the GPU can execute instructions. This is usually measured
in MHz or GHz.

2. Memory: The amount of memory that the GPU has. This is usually measured in GB.
3. Memory Bandwidth: The speed at which the GPU can read and write to its memory. This

is usually measured in GB/s.
4. Cores: The number of cores that the GPU has. This is usually measured in thousands, which

allows for parallel processing.
You can check which GPUs you have by running lspci | grep VGA or neofetch. There are generally
two types of GPUs:

1. Integrated GPU: This type of GPU is built into the same chip as the CPU (Central Processing
Unit). It shares resources with the CPU, including memory, which can lead to reduced perfor-
mance for graphics-intensive tasks. However, its integrated nature makes it more power-efficient
and cost-effective.

2. Discrete GPU: This is a separate component from the CPU and comes with its own RAM
(usually called VRAM or Video RAM). It is typically installed in a dedicated slot on the moth-
erboard. Because it operates independently of the CPU, a discrete GPU can offer significantly
better performance for graphics processing, gaming, or deep learning.

Definition 1.11 (Monitor)

Furthermore, your computer monitor, which actually displays these pixels to you, must also have
metrics that match the GPU. Some properties:

1. The resolution is the number of pixels that the monitor can display, and is usually measured
in pixels.

2. The refresh rate is the number of times the monitor can refresh the image on the screen per
second, and is usually measured in Hz.

To see these metrics for all monitors connected to your computer, run xrandr, which lists all the
resolutions and possible refresh rates for each resolution.

Definition 1.12 (Graphics Driver)

In order for your operating system to communicate with your GPU, you need a graphics driver.
This is a piece of software that allows the operating system to communicate with the GPU. There
are two main types of graphics drivers:

1. Open Source Drivers: These are drivers that are developed and maintained by the open
source community. They are usually included with the Linux kernel, and are generally stable
and reliable.

2. Proprietary Drivers: These are drivers that are developed and maintained by the GPU
manufacturer. They are usually not included with the Linux kernel, and are generally more
feature-rich and performant than open source drivers.

Intel drivers are open source, but Nvidia drivers are proprietary (which is why Linus Torvalds has
beef with Nvidia).a

aA video of Linus Torvalds saying “fuck you” to Nvidia: https://www.youtube.com/watch?v=iYWzMvlj2RQ

Some popular graphics drivers include mesa for Intel and nvidia drivers for NVIDIA.

8/ 37

Linux Muchang Bahng Summer 2023

1.4.1 Multiple GPUs

Everything is pretty straightforward when you have one graphics card, but when you have multiple graphics
cards, you have to specify which one you want to use. If you want to only use one GPU, you can just disable
the other one in the BIOS. However, if you have an Intel/Nvidia dual driver and want to use both, install
Nvidia Optimius (for Ubuntu, it is supported through nvidia-prime).3,4

Now make sure that the systemd daemon is running, and you can call optimus-manager --switch hybrid

to enable hybrid graphics. This will log you out.

1.5 Peripheral Devices

Peripheral devices refer to other devices outside of the motherboard, including mice, keyboards for input,
monitors, printers, network managers, and usb ports. Even the GPU is considered a peripheral device. These
must be connected to the motherboard in some way to be managed by the operating system, and similar
to the databus connecting the CPU and memory, there are buses that connect the motherboard and these
peripheral devices.

Definition 1.13 (PCI Bus)

The PCI (Peripheral Component Interconnect) bus is a high-speed bus that connects the
motherboard to peripheral devices. It is used to connect devices like network cards, sound cards, and
graphics cards to the motherboard. PCI buses operated based on the PCI standard, which is a set
of specifications that define the physical and electrical characteristics of the bus.

The command to use to enumerate all PCI devices is sudo lspci (with -v for verbose).

1.6 Overview of Architecture

2 Filesystems

Before we get into anything, even the loading of the firmware or the operating system kernel, we must talk
about the hardware and how a computer stores data. Data, whether it is in memory or some disk, is just a
bunch of sequences of bits. A drive is a physical device that can store data. A partition is a logical division
of a drive, and a filesystem is a way to organize data on a drive. For example, if I have a 1TB SSD, I can
run it as a single partition, or I can divide it into two partitions, one for a Windows operating system and
another for a Linux operating system. A filesystem is a bit more confusing, so here are some examples.

Example 2.1 (Linux Filesystems)

Listed.
1. ext4: The most common filesystem for Linux.
2. XFS: Designed for high performance and scalability, often used in enterprise environments for

large-scale storage.
3. btrfs: A modern filesystem that offers advanced features like snapshots, dynamic inode alloca-

tion, and integrated device management for better data reliability and performance.
4. zfs: Originally developed by Sun Microsystems for Solaris, ZFS is known for its data integrity,

support for enormous storage capacities, and features like snapshots, copy-on-write, and built-in
data compression.

3This wiki article (https://github.com/Askannz/optimus-manager/wiki) provides a good overview of this matter.
4Installation instructions here: https://github.com/Askannz/optimus-manager?tab=readme-ov-file

9/ 37

Linux Muchang Bahng Summer 2023

00:00.0 Host bridge: Intel Corporation 10th Gen Core Processor

00:01.0 PCI bridge: Intel Corporation 6th-10th Gen Core Processor

00:02.0 VGA compatible controller: Intel Corporation CometLake-H

00:04.0 Signal processing controller: Intel Corporation Xeon

00:08.0 System peripheral: Intel Corporation Xeon E3-1200 v5/v6

00:12.0 Signal processing controller: Intel Corporation Comet

00:13.0 Serial controller: Intel Corporation Device 06fc

00:14.0 USB controller: Intel Corporation Comet Lake USB 3.1

00:14.2 RAM memory: Intel Corporation Comet Lake PCH Shared

00:14.3 Network controller: Intel Corporation Comet Lake PCH

00:15.0 Serial bus controller: Intel Corporation Comet Lake

00:15.1 Serial bus controller: Intel Corporation Comet Lake

00:16.0 Communication controller: Intel Corporation Comet

00:1c.0 PCI bridge: Intel Corporation Device 06b8 (rev f0)

00:1c.6 PCI bridge: Intel Corporation Device 06be (rev f0)

00:1d.0 PCI bridge: Intel Corporation Comet Lake PCI Express

00:1e.0 Communication controller: Intel Corporation Comet Lake

00:1f.0 ISA bridge: Intel Corporation Device 068e

00:1f.3 Audio device: Intel Corporation Comet Lake PCH cAVS

00:1f.4 SMBus: Intel Corporation Comet Lake PCH SMBus Controller

00:1f.5 Serial bus controller: Intel Corporation Comet Lake

01:00.0 3D controller: NVIDIA Corporation TU117M [GeForce GTX 1650

02:00.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge

03:00.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge

03:01.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge

03:02.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge

03:04.0 PCI bridge: Intel Corporation JHL7540 Thunderbolt 3 Bridge

04:00.0 System peripheral: Intel Corporation JHL7540 Thunderbolt

38:00.0 USB controller: Intel Corporation JHL7540 Thunderbolt 3

6c:00.0 Unassigned class [ff00]: Realtek Semiconductor Co., Ltd.

6d:00.0 Non-Volatile memory controller: Samsung Electronics Co

Figure 2: This is the following output of lspci on my personal computer.

Example 2.2 (Windows Filesystems)

Listed.
1. NTFS (New Technology File System): The standard filesystem for Windows operating

systems, supporting file permissions, encryption, and large file sizes.
2. FAT32 (File Allocation Table 32): An older filesystem with wide compatibility across dif-

ferent operating systems, including Windows, macOS, and various Linux distributions, though
it has limitations on file and partition sizes.

3. exFAT (Extended File Allocation Table): Designed to be a lightweight filesystem similar
to FAT32 but without its limitations, exFAT is used for flash drives and external hard drives
due to its support for larger files and compatibility.

Example 2.3 (MacOS Filesystems)

Listed.
1. APFS (Apple File System): The default filesystem for macOS, iOS, and other Apple op-

erating systems since 2017, designed for SSDs and featuring strong encryption, space sharing,
and fast directory sizing.

10/ 37

Linux Muchang Bahng Summer 2023

2. HFS+ (Hierarchical File System Plus): Also known as Mac OS Extended, it was the
primary filesystem for Mac computers before APFS, supporting journaling for data integrity.

When your computer boots up, it needs to know where to find the operating system kernel. This is done by
mounting the filesystems. The mount point is the directory where the filesystem is attached to the system.
The root filesystem is the filesystem that contains the operating system kernel.

Depending on your hardware specs, you may have multiple drives. To list all drives and their partitions, run
lsblk. The type determines whether it is a disk or a partitions, and the mountpoints determine where the
partitions are mounted. Furthermore, the RO indicates whether this is a HDD (1) or SSD (0).

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

zram0 254:0 0 4G 0 disk [SWAP]

nvme0n1 259:0 0 953.9G 0 disk

nvme0n1p1 259:1 0 240M 0 part

nvme0n1p2 259:2 0 128M 0 part

nvme0n1p3 259:3 0 309.4G 0 part

nvme0n1p4 259:4 0 990M 0 part

nvme0n1p5 259:5 0 16.7G 0 part

nvme0n1p6 259:6 0 1.4G 0 part

nvme0n1p7 259:7 0 500M 0 part /boot

nvme0n1p8 259:8 0 4.7G 0 part [SWAP]

nvme0n1p9 259:9 0 619.9G 0 part /

Figure 3: This is the following output on my personal computer.

The swap partition is a special type of partition that is used as a temporary storage area for the operating
system. It is used when the system runs out of RAM.

For a more detailed view on what the partitions consist of, you can run fdisk -l.

Disk /dev/nvme0n1: 953.87 GiB, 1024209543168 bytes, 2000409264 sectors

Disk model: PM9A1 NVMe Samsung 1024GB

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: gpt

Disk identifier: 26D88CE9-B388-4CF1-856C-14D5EEB0C143

Device Start End Sectors Size Type

/dev/nvme0n1p1 2048 493567 491520 240M EFI System

/dev/nvme0n1p2 493568 755711 262144 128M Microsoft reserved

/dev/nvme0n1p3 755712 649658367 648902656 309.4G Microsoft basic data

/dev/nvme0n1p4 1960380416 1962407935 2027520 990M Windows recovery environment

/dev/nvme0n1p5 1962407936 1997441023 35033088 16.7G Windows recovery environment

/dev/nvme0n1p6 1997443072 2000377855 2934784 1.4G Windows recovery environment

/dev/nvme0n1p7 649658368 650682367 1024000 500M EFI System

/dev/nvme0n1p8 650682368 660447231 9764864 4.7G Linux swap

/dev/nvme0n1p9 660447232 1960380415 1299933184 619.9G Linux filesystem

As you can see here, my single disk has 9 partitions.

1. The first EFI system (1) or the Microsoft reserved (2) partition contains the Windows operating system
kernel.

11/ 37

Linux Muchang Bahng Summer 2023

2. The Microsoft basic data (3) partition contains the Windows files.

3. The Windows recovery environment (4, 5, 6) is a partition that contains the Windows recovery envi-
ronment, which are partitions set aside by the manufacturer to hold an image of your system before it
was shipped from the factory.

4. The EFI system (7) partition contains the Linux operating system kernel, which is required to load
the operating system.

5. The Linux swap (8) partition is a partition that contains the Linux swap.

6. The Linux filesystem (9) is a partition that contains the actual Linux operating system itself, along
with all your files.

2.1 Mounting

You can further go into the /dev directory to see the devices that are mounted, e.g. the /dev/nvme0n1p9

is the device that is mounted on the root directory, and most of these files are either device files (which are
special files that provide an interface to hardware devices, allowing software and users to interact with them
as if they were normal files) or symlinks.

The mount command is used to attach a filesystem to the system’s directory tree. The umount command
is used to detach a filesystem from the system’s directory tree.

1. Mounting a filesystem: The general syntax is mount -t type device dir. For example, to mount
the /dev/nvme0n1p9 to the root directory, you can run mount -t ext4 /dev/nvme0n1p9 /mnt.

2. Unmounting a filesystem: The general syntax is umount dir. For example, to unmount the root
directory, you can run umount /mnt.

When the computer boots up, it must automatically mount the specific filesystems. This is configured in
the fstab file.

Definition 2.1 (fstab)

The fstab file is a system configuration file that contains information about filesystems. It is located
at /etc/fstab. It is used to define how disk partitions, various other block devices, or remote
filesystems should be mounted into the filesystem. Each line in the file contains six fields, separated
by whitespace. The fields include:

1. Filesystem: The block device or remote filesystem to be mounted. This can be the UUID
(Universally Unique Identifier), the label, or the traditional device name (like /dev/sda1) that
specifies which device or partition is being referred to.

2. Mount Point: The directory where the filesystem should be mounted.
3. Type: The type of the filesystem, e.g. ext4, vfat, swap, etc.
4. Options: Mount options for the filesystem, e.g. rw for read-write, ro for read-only, noexec to

prevent execution of binaries, etc.
5. Dump: A number used by the dump command to determine whether the filesystem should

be backed up. It is often set to 0 to disable backups.
6. Pass: A number used by the fsck command to determine the order in which filesystems should

be checked. Root filesystems should have this set to 1, and other filesystems should either be 2
(to check after the root) or 0 (to disable checking).

2.1.1 Mounting a Remote Disk

It is actually possible to mount a folder on a server into your local machine. To do this, you use sshfs to
mount a remote directory over SSH. The general syntax is sshfs user@host:/remote/dir /local/dir to
mount and fusermount -u /local/dir to unmount.

12/ 37

Linux Muchang Bahng Summer 2023

Static information about the filesystems.

See fstab(5) for details.

<file system> <dir> <type> <options> <dump> <pass>

/dev/nvme0n1p9

UUID=abcfef03-bfae-4d1f-b463-fd6538f18a41 / ext4 rw,relatime 0 1

/dev/nvme0n1p7

UUID=150D-7A67 /boot vfat rw,relatime,fmask=0077,dmask=0077,codepage=437,

iocharset=ascii,shortname=mixed,utf8,errors=remount-ro 0 2

/dev/nvme0n1p8

UUID=5c191f65-b016-475d-b04a-5b7c89bda31d none swap defaults 0 0

Figure 4: My personal fstab file.

2.2 Maintence

2.2.1 SSD

As soon as your write or delete bits from the SSD (e.g. when you’re deleting a file), it degrades the speed of
the read/write. To alleviate the effects, you can use TRIM, which is a command that allows the operating
system to inform the SSD which blocks of data are no longer considered in use and can be wiped internally. It
can be downloaded as a part of the util-linux package, which provides the systemd services fstrim.timer
and fstrim.service. It is recommended to use weekly trims rather than continuous trims.

2.2.2 Filesystem

Occasionally, you may have a corrupt partitions, whether it is your boot or root directory. In this case, you
should use the fsck command to check and repair a filesystem. The general steps are:

1. unmount the specific partition you want (identified with lsblk) using sudo umount /dev/partition.

2. run sudo fsck -t type device (or for specific filesystem types like vfat you can be a bit more specific
by running sudo fsck.vfat /dev/partition) to check the filesystem and fix any changes.

3. mount the specific partition back using sudo mount /dev/partition.

2.3 Modifying Partitions

Modifying partitions require specialized software. Partitioning can be done using two main partitioning
schemes GPT (the modern one) and MBR (legacy). The parted utility gives detailed info on your parti-
tions. To see which scheme you have, just run sudo parted -l, where the output can be shown in Figure
5.

It is important to know which partition scheme you should use.

1. To dual-boot with Windows (both 32-bit and 64-bit) using Legacy BIOS, the MBR scheme is required.

2. To dual-boot Windows 64-bit using UEFI mode instead of BIOS, the GPT scheme is required.

3. If you are installing on older hardware, especially on old laptops, consider choosing MBR because its
BIOS might not support GPT.

4. If you are partitioning a disk that is larger than 2TB, you need to use GPT.

5. It is recommended to always use GPT for UEFI boot, as some UEFI implementations do not support
booting to the MBR while in UEFI mode.

13/ 37

Linux Muchang Bahng Summer 2023

Model: PM9A1 NVMe Samsung 1024GB (nvme)

Disk /dev/nvme0n1: 1024GB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 253MB 252MB fat32 EFI system partition boot, esp

2 253MB 387MB 134MB Microsoft reserved partition msftres

3 387MB 333GB 332GB ntfs Basic data partition msftdata

7 333GB 333GB 524MB fat32 boot, esp

8 333GB 338GB 5000MB linux-swap(v1) swap

9 338GB 1004GB 666GB ext4

4 1004GB 1005GB 1038MB ntfs hidden, diag

5 1005GB 1023GB 17.9GB ntfs hidden, diag

6 1023GB 1024GB 1503MB ntfs hidden, diag

Model: Unknown (unknown)

Disk /dev/zram0: 4295MB

Sector size (logical/physical): 4096B/4096B

Partition Table: loop

Disk Flags:

Number Start End Size File system Flags

1 0.00B 4295MB 4295MB linux-swap(v1)

Figure 5: Output of sudo parted -l on my own machine.

3 Firmware

Let us go through the steps of a booting (bootstrapping) process. Administrators have little direct, interactive
control over most of the steps required to boot a system, but they can modify bootstrap configurations by
editing config files or system startup scripts.

1. Power On: You power on the machine.

2. Load firmware from NVRAM: You want to be able to identify the specific piece of hardware to
load your operating system in. The firmware is a permanent piece of software that does this.

3. Probe for hardware: We look for hardware that is on the computer.

4. Select boot device (disk, network, etc.): We select the storage device that we want to load the
operating system on.

5. Identify EFI system partition:

6. Load boot loader (e.g. GRUB): A software that allows you to identify and load the proper OS
kernel is provided.

7. Determine which kernel to boot: You choose which kernel you want to load.

8. Load kernel: The OS kernel is identified and loaded into the boot device.

9. Instantiate kernel data structure:

10. Start init/systemd as PID 1:

14/ 37

Linux Muchang Bahng Summer 2023

11. Exectute startup scripts:

12. Running system: You now have a running system!

Right above the hardware, the system firmware, is a piece of software that is executed whenever the
computer boots up.

1. Power Supply Activation: Once the computer is turned on, the power supply begins to provide
electricity to the system’s components. One of the first signals generated is the ”Power Good” signal,
indicating that the power supply is stable and at the correct voltages.

2. CPU Reset: Upon receiving the ”Power Good” signal, the CPU resets and starts its operations. The
CPU is designed to start executing instructions from a predefined memory address, which is hardwired
into the CPU. This address, stored in ROM, contains the starting point of the firmware.Read Only
Memory is simply another type of computer memory that stores permanent data and instructions for
the device to start up.

3. Predefined Memory Address: For BIOS systems, the CPU begins executing code at the firmware
entry point located in the system’s ROM (Read-Only Memory). In UEFI systems, the process is similar,
but the UEFI firmware provides more functionalities and a more flexible pre-boot environment.

4. POST (Power on Self Test): The firmware conducts a series of diagnostic tests to ensure that
essential hardware components like RAM, storage devices, and input/output systems are functioning
correctly. This stage is critical for verifying system integrity before loading the operating system.

To be honest, there is not a lot that the user can control here with just software. The firmware is a
permanent piece of software that is executed whenever the computer boots up, which makes it relatively
safe from tampering. If your computer fails to boot up, the most fundamental reason may be a firmware
problem. However, we’re not screwed yet.

Most firmware offers a user interface which can be accessed by pressing the F2, F11, F12, or some combination
of magic keys at the instant the system first powers on. Depending on what computer model you have, you
may have some control of basic functionalities.

Figure 6: Firmware of Dell XPS 13 9320

Some important functionalities you can do with the firmware are:

1. Determine the boot order of the devices, usually by prioritizing a list of available options (e.g. try to
boot from a DVD drive, then a USB, then the hard disk).

15/ 37

Linux Muchang Bahng Summer 2023

2.

TheBIOS, which stands forBasic Input/Output System, has been used traditionally. A more formalized
and modern standard called EFI (Extensible Firmware Interface) has replaced it, and it has been revised
to the UEFI (Unified Extensible Firmware Interface) standard, but we can treat EFI and UEFI as
equivalent in most cases. Fortunately, most UEFI systems can fall back to a legacy BIOS impelmentation if
the operating system they’re booting doesn’t support UEFI. Since we’re likely to encounter boot firmware
systems, it’s worthwhile to go into both of them.

3.1 Updating Firmware

The first thing you should do when you’re having trouble with firmware is use fwupd, which is a daemon that
handles firmware updates. It is a simple daemon to allow session software to update device firmware on your
local machine. Upon installation, it creates a systemd agent on /lib/systemd/system/fwupd.service. It
does not start automatically. I have used this to update my firmware, which saved a lot of booting errors,
with instructions accessed in this link.

3.2 Modifying UEFI Variables

You can directly examine and modify UEFI variables on a running system with the efibootmgr command.
You get a following summary of the configuration:

BootCurrent: 0005

Timeout: 0 seconds

BootOrder: 0005,0001,0002,0000,0003,0004

Boot0000* UEFI PM9A1 NVMe Samsung 1024GB S65VNE0R318841 1 ...

Boot0001* ubuntu HD(1,GPT,ede98b7e-75ad-452e-ab47-3411dd6026c1,0x800,0x780...

Boot0002* Windows Boot Manager HD(1,GPT,ede98b7e-75ad-452e-ab47-3411dd60...

Boot0003* Linux Firmware Updater HD(1,GPT,ede98b7e-75ad-452e-ab47-...

Boot0004* UEFI PM9A1 NVMe Samsung 1024GB S65VNE0R318841 1 2 PciRoot(0x0)/...

Boot0005* Linux Boot Manager HD(7,GPT,2d28b70f-725b-4ca3-98d4-25f5c83fc00e...

It shows you which disk you are currently booted into, the boot order that is currently configured, and
information about each of the disks.

4 Bootloaders

Once the firmware is loaded, which probes the system to find the hardware, it must load the operating
system kernel. This is the job of the boot loader.

Definition 4.1 (Boot Loader, Boot Manager)

The bootloader is another critical piece of software that allows you to identify and load the proper
operating system kernel. If it also provides an interactive menu with multiple boot choices, then it is
often called a boot manager.

In modern systems which support UEFI (not the legacy BIOS), you must configure your partitions so that
there exists an EFI partition (at /boot) that contains this bootloader.

EFI bootloaders usually have a .efi extension, and it is crucial that you know where the bootloaders are
in your system in case they go missing or are corrupt. To see the configuration, you can run efibootmgr
(with verbose), which gives you information on several things:

1. It scans the entire system for EFI bootloaders and lists them.

16/ 37

https://wiki.archlinux.org/title/fwupd

Linux Muchang Bahng Summer 2023

2. It lists the locations of the EFI bootloaders. It starts off which what partition they are in, and
then lists the directory where the bootloader is located. BootX64.efi is the Windows bootloader
and grubx64.efi is the GRUB bootloader. For example, you may have a bootloader at (partition
7)/boot/efi/EFI/Boot/bootx64.efi.

3. It lists the boot order, which is the order in which the bootloaders are loaded. In case a boot loader
fails to load, the next one is loaded. Therefore, if you have an arch linux bootloader that is corrupt,
and the next in line is the Windows bootloader, you will automatically boot into Windows. You can
also set the boot order in the BIOS.

In case you can’t boot in, you can always get an Arch ISO burned in on a thumb drive, boot into it, mount
the relevant partitions containing the Arch bootloader and the root directory, and then chroot into the root
directory to modify files.

4.1 GRUB

The way that these kernels can be loaded can be configured through the bootloader, and the most popular
boot manager is GRUB, the Grand Unified Bootloader.

GRUB, developed by the GNU project, is the default loader on most Linux distributions. There is an old
version called GRUB legacy and the more modern GRUB 2. Most people refer to GRUB 2 and simply
GRUB. FreeBSD, which is another complete (non-Linux) OS, have their own boot loader, but GRUB is
compatible with it. Therefore, for dual-boot or triple-boot systems that have multiple kernels, GRUB is the
go-to bootloader for loading any of them.

As a critical piece of software, we would expect its configuration files to be in the NVRAM, but GRUB
understands most of the filesystems in common use and can find its way into the root filesystem on its own.
Therefore, we can read its configuration from a regular text file, kept in /boot/grub/grub.cfg. Changing
the boot configuration is as simple as updating the grub.cfg file.

5 Systemd

A process is really any program that is running on your computer. A daemon is a background process
that runs continuously, performing specific tasks even when no user is logged in.

Once the kernel has been loaded and completed its initialization process, it creates a collection of spontaneous
(as in the kernel starts them automatically) processes in user space. They’re really part of the kernel
implementation and don’t necessarily correspond to programs in the filesystem. They’re not configurable
and they don’t require administrative attention. These processes can be monitored with the commands ps,
top, or htop.

The most important process is the init process, with a system PID of 1 and with special privileges. It is
used to get the system running and for starting other processes.

1. Setting the name of the computer

2. Setting the time sone

3. Checking disks with fsck

4. Mounting filesystems

5. Removing old files from the /tmp directory

6. Configuring network interfaces

7. Configuring packet filter

8. Starting up other daemons and network services, along with killing zombie processes or parenting
orphaned processes.

17/ 37

Linux Muchang Bahng Summer 2023

There are three flavors of system management processes in widespread use:

1. Historically, SysVinit was a series of plaintext files that ran as scripts to start processes, but due to
some problems, Linux now uses systemd.

2. An init variant that derives from the BSD UNIX, used on most BSD-based systems.

3. A more recent contender called systemd which aims to cover the init processes and much more. This
significant increase in control causes some controversy.

4. Other flavors include Apple MacOS’s launchd before it adopted systemd. Ubuntu also used Upstart
before migrating to systemd.

Systemd is essentially a collection of smaller programs, services, and libraries such as systemctl, journalctl,
init, process management, network management, login management, logs, etc. Some processes may depend
on other processes, and with hundreds of them, it’s very hard to do manually, which is why systemd does it
all for you. A post on the systemd blog notes that a full build of the project generates 69 different binaries
(subject to change).

Definition 5.1 ()

A unit is anything that is managed by systemd. It can be “a service, a socket, a device, a mount
point, an automount point, a swap file or partition, a startup carget, a watched filesystem path, a
time controlled and supervised by systemd, a resource management slice, or a group of externally
created processes.” Within systemd, the behavior of each unit is defined and configured by a unit
file. Within systemd, the behavior of each unit is defined and configured by a unit file.
The files are all over the place:

1. /lib/systemd/system contains standard systemd unit files
2. /usr/lib/systemd/system are from locally installed packages, e.g. if I installed a pacman

package that contained unit files, then those would go here.
3. /etc/systemd/system is where you put your custom files. etc also has the highest priority, so

it overwrites the other files.
4. /run/systemd/system is a scratch area for transient units.

By convention, unit files are named with a suffix that varies according to the type of unit being
configured. For example, service units have a .service suffix and timers user .timer. Within
the unit file, some sections e.g. ([Unit]) apply generically to all kinds of units, but others (e.g.
[Service]) can appear only in the context of a particular unit type.

Example 5.1 (Service Unit File)

If we go into one of these unit files, which have the prefix .service, they are usually formatted as
such:

18/ 37

Linux Muchang Bahng Summer 2023

comments are just the same as in bash Scripts

the headers are important!

[Unit] #

Description=Description of the unit file

Documentation=man:something

After=network.target

[Service]

Type=forking # tells that the process may exit and is not permanent

PIDFile= #

ExecStartPre= # scripts to run before you start

ExecStart= # scripts to run when starting

ExecReload= # script to run when you try to reload the process

ExecStop= # script to run to stop the process

[Install] # Tells at what point should this be running

WantedBy=multi-user.target

5.1 systemctl: Managing systemd

systemctl is an all-purpose command for investigating the status of systemd and making changes to its
configuration. Running systemctl without any arguments invokes the default list-units subcommand,
which shows all loaded and activive services, sockets, targets, mounts, and devices. To show only services,
use --type=service.

The two main commands that you will use to interact with systemd is systemctl and journalctl.

1. systemctl status unit checks the status, ouputting the description, whether it’s enabled/disabled,
and whether it’s active/inactive.

2. systemctl enable unit enables it, which means that it will start when booting the computer. It
does this by creating a symlink to the unit file. This is different from start.

3. systemctl disable unit disables it.

4. systemctl start unit starts it now and runs it immediately.

5. systemctl stop unit makes it inactive.

6. systemctl reload will run whatever is in the ExecReload in the unit file.

7. systemctl restart runs ExecStop and then ExecStart.

8. systemctl kill unit kills the process.

Some of the statuses that you may see are inactive (deactivated, exited), active (activating, running), failed,
static (not started, frozen by systemd), bad (broken, probably due to bad unit files), masked (ignored by
systemd), indirect (disabled, but another unit file references it so it could be activated).

To troubleshoot, you should run systemctl --failed to see if there are any failed processes, which can
be a problem, and then you can use journalctl --since=today to view your systemd logs. This log is
important for diagnosing fundamental problems with your system. To view only entries logged at the error
level or above, you can set the priorities with -p err -b.

19/ 37

Linux Muchang Bahng Summer 2023

5.2 Targets

5.3 Systemd Logging

The journald daemon allows you to capture log messages produced by the kernel and services. These system
messages are stored in the /run directory, but we can access them directly with the journalctl command.

Example 5.2 ()

You can configure journald to retain messages from prior boots. To do this, edit the following file and
configure the Storage attribute:

#/etc/systemd/journald.conf

[Journal]

Storage=persistent

Then, you can obtain a list of prior boots with journalctl --list-boots and you can access messages
from a prior boot by referring to its index or by naming its long-form ID: journalctl --b -1.

6 Display Servers

When you boot up your computer, you are greeted with a graphical user interface (GUI) that allows you to
interact with your computer. This is the job of the display server, which is a program that provides graphical
display capabilities for the operating system.

Definition 6.1 (Display Server)

A display server is a program that manages the communication between your computer’s hardware
and graphical software applications. It acts as a bridge for input and output devices; for example, it
processes the input from your keyboard and mouse and outputs graphics to the monitor. The display
server is responsible for the fundamental task of drawing windows and handling the low-level aspects
of input and output, but it doesn’t dictate how these windows look or are arranged. For almost every
purpose, there are two types of display servers:

1. X: The X Window System, which is the older and more established display server.
2. Wayland: The newer and more modern display server.

Definition 6.2 (X Window System)

The X Window System is a windowing protocol for Unix/Linux OSes, similar to the way that
Microsoft Windows or Apple Mac OS X can run different apps in separate windows. X defines the
protocol for a display server what can render windows on a display client (your computer), inside
which are running apps.a

1. X11 refers to version 11 of the X protocol, while
2. Xorg is an open-source implementation of X.

aExplanation here: https://www.reddit.com/r/linuxquestions/comments/3uh9n9/what exactly is xxorgx11/

Definition 6.3 (Wayland)

X, made in 1984, has developed a lot of cruft over the years, and Wayland is a modern replacement for
X. It is a protocol for a compositor to talk to its clients, as well as a C library implementation of that
protocol. The compositor can be a standalone display server running on Linux kernel modesetting
and evdev input devices, an X application, or a wayland client itself.

20/ 37

Linux Muchang Bahng Summer 2023

7 Windows Managers and Desktop Environments

These days, the terms window managers (WMs) and Desktop Environments (DEs) are used interchangeably,
but they mean slightly different things. A window manager is the display software that determines how the
pixels for each window overlaps with other and their movement. This is generally divided into two paradigms
with the most familiar being floating WMs and the other being tiling WMs. Even before I knew about
tiling WMs, I found myself manually tiling windows on floating WMs, so the move to tiling WMs was a
no-brainer.

Some DEs and WMs are:

1. GNOME

2. KDE Plasma

3. Qtile

8 Package Management

Linux comes in many flavors of distributions. Most beginners look at screenshots of these distributions on
the internet and judge them based on their aesthetics (e.g. I like how Kali Linux looks so I’ll go with that
one). A common feature of all Linux distributions is that they provide the user the power to customize their
system however they want, so you can essentially make every linux distribution look like any other. So what
are some things you should consider when choosing a distribution?

1. First is the popularity and how well it is supported. This includes the number of people who use the
distribution (e.g. the Ubuntu StackExchange is a very large community) and how good the documen-
tation is overall (e.g. the ArchLinux wiki is very well documented).

2. Each linux distribution essentially consists of a kernel and package manager. The architecture, design,
and the update scheme of the kernel may be an interest to many linux users.

3. Every distribution has its own native package manager, and the availability of certain necessary pack-
ages, the ease of installation, and the updating schemes is also something to consider.

4. The ideals of the respective communities. The community behind each distribution has a certain set of
ideals that they lean more towards. For example, the Ubuntu community likes having programs that
are right out of the box, with good GUI support and is more beginner-friendly while Arch has more of
a minimal and extremely customizable nature to it with its software being much more CLI dependent.

Let’s begin with the package managers. Every application on your system (Firefox, Spotify, pdf readers,
VSCode, etc.) is a package, and manually downloading and managing each one is impossible to do. Therefore,
each distribution has its own native package manager that automatically takes care of downloading, installing,
removing, checking dependency requirements of each package. In order to download a package, a package
manager should also know where it is downloading from. Essentially, a package manager itself can be
downloaded with other package managers, so package managers are packages as well.

1. apt : The advanced packaging tool is the native manager for Ubuntu distributions.

2. pacman : Native package manager for Arch Linux.

3. yay : The package manager for software in the Arch User Repository.

4. snap :

5. flatpak :

6. dpkg : Package manager for Debian based distributions.

Chances are if you are using one distribution, you would only have to work with a small subset of these
package managers. Each package manager has one or more files in the computer that specify a list of
repositories.

21/ 37

Linux Muchang Bahng Summer 2023

The following paths are commented out with their default values listed.

If you wish to use different paths, uncomment and update the paths.

#RootDir = /

#DBPath = /var/lib/pacman/

#CacheDir = /var/cache/pacman/pkg/

#LogFile = /var/log/pacman.log

#GPGDir = /etc/pacman.d/gnupg/

#HookDir = /etc/pacman.d/hooks/

HoldPkg = pacman glibc

#XferCommand = /usr/bin/curl -L -C - -f -o %o %u

#XferCommand = /usr/bin/wget --passive-ftp -c -O %o %u

#CleanMethod = KeepInstalled

Architecture = auto

Pacman won’t upgrade packages listed in IgnorePkg and members of IgnoreGroup

#IgnorePkg =

#IgnoreGroup =

#NoUpgrade =

#NoExtract =

Misc options

#UseSyslog

#Color

#NoProgressBar

CheckSpace

#VerbosePkgLists

ParallelDownloads = 5

ILoveCandy

Figure 7: Subset of contents of the /etc/pacman.conf file

8.1 Pacman

For example, the configuration file for pacman is located at /etc/pacman.conf. In the options section, I
can configure stuff like text color, enabling/disabling parallel downloads, choosing specific packages to ignore
upgrading, etc. Then, we can specify the servers that we should download from. In the text below, the
server variable defines which server we should look at first, and then the Include variable stores the location
of the file mirrorlist that defines a list of other servers that we should download from.

The mirrorlist file stores a list of URLs. Each URL is a mirror, which is a server that contains a physical
replica of all the packages that are available to you via pacman (hence the name mirror). You can literally
type in the links provided in Figure 8 (replacing $repo with core and $arch with x86 64). It contains a
tarball of each package ready to be downloaded. Some repos might contain more packages than others, some
might have packages that only they supply that others don’t, but if you can install the piece of software via
your package manager then one of your configured repos is declaring they have it available and therefore
should have the file on hand to give to you if asked for it. A list of all available mirrors are available here
(this only uses HTTPS, but HTTP mirrors are also available).

The mirrors that you download from should be trustworthy and fast. The speed is mainly related to how
close you are to that mirror geographically, so if you are moving to another country you should probably
update this mirrorlist for faster download speeds. There is a default mirrorlist file that is generated, but you
can download and use the reflector package to update it.

22/ 37

https://archlinux.org/mirrorlist/all/https/

Linux Muchang Bahng Summer 2023

Server = https://archlinux.mailtunnel.eu/$repo/os/$arch

Server = https://mirror.cyberbits.eu/archlinux/$repo/os/$arch

Server = https://mirror.theo546.fr/archlinux/$repo/os/$arch

Server = https://mirror.sunred.org/archlinux/$repo/os/$arch

Server = https://mirror.f4st.host/archlinux/$repo/os/$arch

Server = https://md.mirrors.hacktegic.com/archlinux/$repo/os/$arch

Server = https://mirrors.neusoft.edu.cn/archlinux/$repo/os/$arch

Server = https://mirror.moson.org/arch/$repo/os/$arch

Server = https://archlinux.thaller.ws/$repo/os/$arch

Figure 8: Contents of the /etc/pacman.d/mirrorlist file

Here are some common commands:

1. Install a package: sudo pacman -S pkg1 (-s stands for synchronize)

2. Remove a package: sudo pacman -R pkg

• remove dependencies also: -s (recursive)

• also remove configuration files: -n (no save)

• also removes children packages: -c (cascade)

3. Update all packages: sudo pacman -Syu

• synchronize: -S

• refresh package databases: -y (completely refresh: -yy)

• system upgrade: -u

4. List installed packages: pacman -Q

• List detailed info about a package: pacman -Qi pkg

• List all files provided by a package: pacman -Ql pkg

• List all orphaned packages: pacman -Qdt

• List all packages that have updates available: pacman -Qu

• List all explicitly installed packages: pacman -Qet

• Display the dependency tree of a package: pactree pkg (from the pacman-contrib package)

• List last 20 installed packages:

expac --timefmt=’%Y-%m-%d %T’ ’%l\t%n’ | sort | tail -n 20

5. To check size of current packages and dependencies, download expac and run expac -H M ’%m

t%n’ | sort -h

6. The package cache stored in /var/cache/pacman/pkg/ keeps old or uninstalled versions of packages
automatically. This is helpful since it also keeps older versions of packages in the cache, and you can
manually downgrade in case some packages break.

• We can delete all cached versions of installed and uninstalled packages, except for the most recent
3, by running paccache -r (provided by the pacman-contrib package).

• To remove all cached packages not currently installed, run pacman -Sc

• To remove all cached aggressively, run pacman -Scc

23/ 37

Linux Muchang Bahng Summer 2023

• To downgrade, you go into the package cache directory and say you want to see which versions of
neovim you have installed. You can ls the directory to see the following.

neovim-0.9.5-1-x86_64.pkg.tar.zst

neovim-0.9.5-1-x86_64.pkg.tar.zst.sig

neovim-0.9.5-2-x86_64.pkg.tar.zst

neovim-0.9.5-2-x86_64.pkg.tar.zst.sig

We have an older version of neovim installed, and to roll it back we can use

pacman -U neovim-0.9.5-1-x86_64.pkg.tar.zst

The pacman log (/var/log/pacman.log) is also useful since it logs all pacman outputs when you do anything
with pacman. So if you are looking for the packages that have been installed in the latest pacman -Syu,
then you can use this to individually see each package that has been upgraded.

8.2 Yay

Yay is used to install from the Arch User repository and must be updated separately. To run this, you can
either run yay -Syu or you can just run yay. Since this is not officially maintained, these packages are more
likely to break something. The yay logs are not stored separately can can be accessed in the pacman logs.

9 Vim and Neovim

Vim is guaranteed to be on every Linux system, so there is no need to install it. However, you may have
to install Neovim (which is just a command away). Vim can be a really big pain in the ass to learn, but I
got into it when I was watching some video streams from a senior software engineer at Netflix called The
Primeagen. He moved around the code like I’ve never seen, and I was pretty much at the limit of my typing
speed, so I decided to give it a try during the 2023 fall semester. My productivity plummetted during the
first 2 days (which was quite scary given that I had homework due), but within a few weeks I was faster
than before, so if you have the patience, I would recommend learning it. Here is a summary of reasons why
I would recommend learning Vim:

1. It pushes you to know the ins and outs of your editor. As a mechanic with his tools, a programmer
should know exactly how to configure their editor.

2. The plugin ecosystem is much more diverse than other editors such as VSCode. You can find plug-
ins/extensions for everything. Here is a summmary of them here.

3. You’re faster. If you’re going to be coding for the next 5 years, then why no t spend a month to master
something that will make you faster? You’ll increase total productivity.

4. Computing clusters and servers will be much easier to navigate since they all run Linux with Vim.

5. Vim is lightweight, and you don’t have to open up VSCode every time you want to edit a configuration
file.

9.1 Vim vs Neovim

Experience wise, Vim and Neovim are very similar, and if you configure things rihght, you may not even be
able to tell the difference. But there are 3 differences that I want to mention:

1. Neovim can be configured in Lua, which is much cleaner than Vimscript.

2. Neovim provides mouse control right out of the box, which is convenient for me at times and can be
easier to transition into, while Vim does not provide any mouse support.

3. There are some plugins that are provided in Neovim that are not in Vim.

24/ 37

https://github.com/rockerBOO/awesome-neovim#neovim-lua-development

Linux Muchang Bahng Summer 2023

Either way, the configuration is essentially the same. At startup, the text editor will parse some predeter-
mined configuration file and load those settings.

It may be the case that a remote server does not have neovim installed, or you may not have the permissions
to install it. In this case, you can use sshfs, which is a file system client based on the SSH File Transfer
Protocol. It allows you to mount a remote directory over SSH.

9.2 Vim Configuration File

In Vim, your configuration files are located in /.vimrc and plugins are located in /.vim/. In here, you
can put in whatever options, keymaps, and plugins you want. All the configuration is written in VimScript.

options

filetype plugin indent on

syntax on

set background=dark

set expandtab ts=2 sw=2 ai

set nu

set linebreak

set relativenumber

keymaps

inoremap <C-j> <esc>dvbi

inoremap jk <esc>

nnoremap <C-h> ge

nnoremap <C-l> w

9.3 Neovim Configuration File

In Neovim, I organize it using Lua. It essentially looks for the /.config/nvim/init.lua file and loads
the options from there. We also have the option to import other Lua modules for better file structure with
the require keyword. The tree structure of this configuration file should be the following below. The extra
user director layer is necessary for isolating configuration files on multiple user environments.

... ftplugin

. ... cpp.lua

. ... html.lua

... init.lua

... LICENSE

... lua

. ... user

. ... options.lua

. ... keymaps.lua

. ... plugins.lua

. ... telescope.lua

. ... toggleterm.lua

... plugin

... packer_compiled.lua

The init file is the “main file” which is parsed first. I generally don’t put any explicit options in this file and
reserve it only for require statements. It points to the following (group of) files:

1. options.lua: This is where I store all my options.

2. keymaps.lua: All keymaps.

25/ 37

Linux Muchang Bahng Summer 2023

3. plugins.lua: First contains a script to automatically install packer if it is not there, and then contains
a list of plugins to download.

4. Plugin Files: Individual configuration files for each plugin (e.g. if I install a colorscheme plugin, I
should choose which specific colorscheme I want from that plugin).

5. Filetype Configuration Files: Options/keymaps/plugins to load for a specific filetype. This helps
increase convenience and speed since I won’t need plugins like VimTex if I am working in JavaScript.

Once you have your basic options and keymaps done, you’ll be spending most of your time experimenting
with plugins. It is worth to mention some good ones that I use.

1. Packer as the essential package manager.

2. Plenary

3. Telescope for quick search and retrieval of files.

4. Indent-blankline for folding.

5. Neoformat for automatic indent format.

6. Autopairs and autotag to automatically close quotation marks and parantheses.

7. Undotree to generate and navigate undo history.

8. Vimtex for compilation of LaTeX documents.

9. Onedark and Oceanic Next for color schemes.

10. Vim-Startify for nice looking neovim startup.

11. Comment for commenting visual blocks of code.

It is also worthwhile to see how they are actually loaded in the backend. Each plugin is simply a github
repo that has been cloned into /.local/share/nvim/site/pack/packer/, which contains two directories.
The packages in start/ are loaded up every time Neovim starts, and those in opt/ are packages that are
loaded up when a command is called in a certain file (known as lazy loading). Therefore, if you have any
problems with Neovim, you should probably look into these folders (and possibly delete them and reinstall
them using Packer if needed).

9.4 Troubleshooting

A good test to run is :checkhealth, which checks for any errors or warnings in your Neovim configuration.
You should aim to have every (non-optional) warning cleared, which usually involves having to install some
package, making it executable and/or adding to $PATH.

If you are getting plugin errors, you can also manually delete the plugin directory in ‘pack/packer‘ and run
‘PackerInstall‘ to re-pull the repos. This may help.

10 Shells and Terminals

Beginners may think of the shell and the terminal to be the same thing, but they are different. The shell
is a command line interpreter, a layer that sits on top of the kernel in which the user can interact with.
It is essentially the only API to the kernel where the user can input commands and processes them. The
terminal emulator is a wrapper program that runs a shell and allows us to access the API. It may be
useful to think of the shell as like a programming language and the terminal as a text editor like VSCode.

The three most common shells are the following:

1. Bash:

2. Zsh:

26/ 37

Linux Muchang Bahng Summer 2023

3. Fish:

Some common terminal emulators (most of which comes as a part of the desktop environment) are the
following:

1. Kitty:

2. Alacritty:

3. Gnome-Terminal:

11 LaTeX and VimTex

Latex is a great way to take notes. One can go to Overleaf and have everything preconfigured, but in here I
set it up on my local desktop. I will already assume you have a PDF viewer installed. I use zathura, which
is lightweight and also comes with vim motions for navigation.

First install the VimTex plugin in plugins.lua with use lervag/vimtex. Then, you want to install TexLive,
which is needed to compile tex files and to manage packages. The directions for TexLive installation is
available [here](https://tug.org/texlive/quickinstall.html). Once I downloaded the install files, I like to run
sudo perl ./install-tl --scheme=small. Be careful with the server location (which can be set with
the --location parameter), as I have gotten some errors. I set --scheme=small, which installs about 350
packages compared to the default scheme, which installs about 5000 packages (7GB). I also did not set
--no-interaction since I want to slightly modify the --texuserdir to some other path rather than just
my home directory.

Once you installed everything, make sure to add the binaries to PATH, which will allow you to access the
tlmgr package manager, which pulls from the CTAN (Comprehensive TeX Archive Network) and gives
VimTex access to these executables. Unfortunately, the small scheme installation does not also install the
latexmk compiler, which is recommended by VimTex. We can simply install this by running “‘ sudo tlmgr
install latexmk “‘ Now run ‘:checkhealth‘ in Neovim and make sure that everything is OK, and install
whatever else is needed.

To install other Latex packages (and even document classes), we can use tlmgr. All the binaries and
packages are located in /usr/loca/texlive/202*/ and since we’re modifying this, we should run it with
root privileges. The binaries can also be found here. Let’s go through some basic commands:

1. List all available packages: tlmgr list

2. List installed packages: tlmgr list --only-installed (the packages with the ‘i‘ next to them are
installed)

3. Install a package and dependencies: sudo tlmgr install amsmath tikz

4. Reinstall a package: sudo tlmgr install amsmath --reinstall

5. Remove a package: sudo tlmgr remove amsmath More commands can be found here for future refer-
ence.

After this, you can install Inkscape, which is free vector-based graphics editor (like Adobe Illustrator). It
is great for drawing diagrams, and you can generate custom keymaps that automatically open Inkscape for
drawing diagrams within LaTeX, allowing for an seamless note-taking experience.

12 Networking

Networking is a large field in itself, but in here I go over the most useful and practical applications of it in
my everyday use. Some ways that I personally benefit from this is:

1. Connecting to WiFi and diagnosing problems.

27/ 37

http://tug.ctan.org/info/tlmgrbasics/doc/tlmgr.pdf

Linux Muchang Bahng Summer 2023

2. Connecting to WiFi and diagnosing problems.

3. Connecting to other networks such as computing clusters or third-party blockchains.

4. Seeing how more abstract schemes such as APIs work.

5. Ethical hacking.

I introduce these concepts and how to do some basic implementation a Unix operating system.

I like to learn about networking as if I am designing it from scratch. Some big questions to ask when
designing network schemes are:

1. How do we uniquely identify computers?

2. How should we establish a connection between them? Through hardware or signals?

3. What protocols should we use, like a common language, so that all computers understand what each
other are saying?

4. Can we implement security measures to prevent unwanted visitors into our computer?

12.1 Computer Networks and the Internet

Let us first define a computer network, some of its architecture, and then move onto the Internet.

Definition 12.1 (Computer Network)

A computer network is a group of computers (i.e. computing devices) that use a set of common
communication protocols over digital interconnections for the purpose of sharing resources located
on or provided by the network nodes, which may include personal computers, servers, networking
hardware, or other specialised or general-purpose hosts.

These network nodes may be able to communicate to certain neighboring nodes, and this graph architecture
determines the network topology. A computer network can be visualized as a connected graph of nodes

Example 12.1 (Network Topologies)

Common layouts are:
1. Line Network: All nodes are connected in a line.

A B C D

2. Bus Network: All nodes are connected to a common medium along this medium.
3. Star Network: all nodes are connected to a special central node.

A B

C

D

E

F

G

H

I

4. Ring Network: Each node is connected to its left and right neighbour node, such that all
nodes are connected and that each node can reach each other node by traversing nodes left- or
rightwards.

28/ 37

Linux Muchang Bahng Summer 2023

A B

C

D

E

F

G

H

I

5. Mesh Network: each node is connected to an arbitrary number of neighbours in such a way
that there is at least one traversal from any node to any other.

A B

C

D

E

H

F

6. Fully Connected Network: each node is connected to every other node in the network.

A B

C

D

E

F

G

H

I

7. Tree Network: nodes are arranged hierarchically.

A

BC

D EF

Notice how many of these networks have redundancy: having multiple ways to get from one node to another.
That is, when a network path is no longer available, data is still able to reach its destination through another
path. Usually, we would like to avoid a single point of failure and construct a fault-tolerant system
that can experience failure in its components but still continue operating properly. However, building more
connections may be expensive.

Because there are multiple paths that a piece of data takes to get from point X to point Y, routing strate-
gies are implemented in order to determine the most optimal path. Now in order for network nodes to
communicate with each other, they should have some sort of universal method of communicating with each
other.

Definition 12.2 (Communication Protocol)

A communication protocol is a system of rules that allow multiple entities of a communications
to transmit information via any kind variation of a physical quantity. The protocol defines the rules,
syntax, semantics and synchronization of communication and possible error recovery methods. A
protocol can have many jobs, such as:

1. Determining how nodes will communicate with each other .
2. Making sure that these modes of communication is compatible with hardware .

29/ 37

Linux Muchang Bahng Summer 2023

3. Implementing security protocols such as encryption schemes.

Computers can connect through physical (e.g. cables) or wireless connections.

1. The CAT5 cable is a twisted pair (copper) cable that’s designed for use in computer networks. It
consists of four twisted pairs of copper wires. These twisted pair cables send data through a network by
transmitting pulses of electricity that represent binary data. The information transmission follow the
Ethernet standards, which is why twisted pair cables are commonly known as Ethernet cables. Use
for both LANs and WANs. They can carry up to 1 Gbps across hundreds of feet, but are susceptible
to interference.

2. Fiber-optic cables carry light instead of electricity in a fiber coated with plastic layers. The pulses of
light represent binary data and also follow the Ethernet standards. They are also capable of transmit-
ting much more data per second that copper cables, and they have the advantage of low transmission
loss and immunity to electrical interference. Often used to connect networks across oceans so that data
can travel quickly around the world. They can carry up to 26 Tbps acorss 50 miles (but are expensive)

3. A wireless card inside a computer turns binary data into radio waves and transmits them through
the air. However, they do not travel very far (100 ft in office buildings or up to 1000 ft in an open
field). The waves are picked up by a wireless access point which converts them from radio waves back
into binary data. These access points would be connected to the rest of the network using physical
wiring. They can carry up to 1.3 Gbps.

4. Infrared signals and microwaves are sometimes used.

In order for the computers to send data into binary, they must convert this data into binary and send them
as streams of 1s and 0s in a process called line coding. Furthermore, computers can raise efficiency of each
wire by sending changing electric currents through a single wire. For example, rather than using three wires
to encode 101 as

1

0

1

they send it through a single wire with intervals of 1
3 seconds

1 0 1

or even better, at a rate of 1 megabit per second (interval of 0.000001 seconds)

.000000s .000001s .000002s .000003s

As long as two computers agree on the time period in which the electricity intervals are being sent, they can
communicate much more efficiently. In an electrical connection (such as Ethernet), the signal would be a
voltage or current. In an optical connection (such as a fiber-optic cable), the signal would be the intensity
of light.

Definition 12.3 ()

There are many properties about line coding that are relevant, but ultimately the speed of a connection
is a combination of the bandwidth and latency.

1. The bit rate describes the data transfer rate of a connection. It measures the number of bit
states that a channel can transmit per unit time. It is measured in bits per second. We can
interpret it as the amount of water flowing through a pipe.
Bit rate is typically seen in terms of the actual data rate. But for most transmissions, the data
represents part of a more complex protocol, which includes bits representing source address,

30/ 37

Linux Muchang Bahng Summer 2023

destination address, error detection/correction codes, and other information. This data is called
the overhead, while the actual data transferred is called the payload. At times, the overhead
may be substantial (up to 20% to 50%).

2. The throughput is the number of bit states of usable information, that can be successfully
received over a channel per unit time. Without any channel noise, it is really just the payload.
Note that this is an observed, dynamic parameter with a fixed and variable loss. It is also known
as consumed bandwidth and is measured in bits per second.

3. The bandwidth describes the maximum data transfer rate of a connection; that is, the max-
imum throughput of a communication. It is measured in bits per second. We can interpret it
as how thick the pipe is (i.e. how much water can flow through it at max). Note that this is
different from the bandwidth used in signal processing.
Data often flows over multiple network connections, which means the connection with the
smallest bandwidth (most likely your local connection) acts as a bottleneck.

4. The latency, or ping-rate, measures the round trip time between the sending of a data message
to a computer and the receiving of that message, measured in milliseconds. We can interpret it
as the speed at which the water is flowing through a pipe. We can check latency by doing

>>>ping www.google.com

64 bytes: icmp_seq=0 ttl=115 time=37.868 ms

which outputs a latency time of 37.868ms (to get to www.google.com and back) for sending a
data packet of 64 bytes. Note that there is an intrinsic limiting factor to latency: the speed of
light, which is approximately 1 foot per nanosecond. In addition to distance, another limiting
factor is the congestion in the network and the type of connection.

Example 12.2 ()

Given two computers connected by a wire that is configured to transfer 1000 bits per second, the bit
rate would be 1 Kbps. However, if the channel has noise and demands retransmission of 10 bits out
of every 1000 of the original transmission, then the throughput would be 990 bps.
Furthermore, the Ethernet frame can have as many as 1542 bytes. Say that there are 1500 bytes of
payload and an overhead of 42 bytes. Then, the protocol efficiency would would be

payload

frame size
=

1500

1542
= 0.9727 = 97.3%

Typically, the actual line rate is stepped up by a factor influenced by the overhead to achieve an actual
target net data rate. In One Gigabit Ethernet, the actual line rate is 1.25 Gbits/s to achieve a net payload
throughput of 1 Gbit/s. In a 10-Gbit/s Ethernet system, gross data rate equals 10.3125 Gbits/s to achieve
a true data rate of 10 Gbits/s. The net data rate also is referred to as the throughput, or payload rate, of
effective data rate.

12.2 History of the Internet

IETF, ICANN, IANA, ISPs.

Example 12.3 (ARPANET)

The ARPANET was the precursor to the Internet, the network where Internet technology was first
tested out. It was started in 1969 with four computers connected to each other.

31/ 37

Linux Muchang Bahng Summer 2023

UCLAUCSB

SRI UTAH

For example, even if the path between SRI and UCSB is gone, the connections between SRI and
UCSB is not lost (since IP packets can travel through UCLA’s router).

Now we can see an implementation of these networks in the internet.

Definition 12.4 (Internet)

The Internet is a global network of computing devices communicating with each other in some way,
whether they’re sending emails, downloading files, or sharing websites. The Internet is an open
network, which means that any computing device can join as long as they follow the protocols. The
internet is powered by many layers of protocols, and to create a global network of computing devices,
we need:

1. Wires & Wireless: Physical connections between devices, plus protocols for converting elec-
tromagnetic signals into binary data.

2. IP: A protocol that uniquely identifies devices using IP addresses and provides a routing strategy
to send data to a destination IP address.

3. TCP/UDP: Protocols that can transport packets of data from one device to another and check
for errors along the way.

4. TLS: A secure protocol for sending encrypted data so that attackers can’t view private infor-
mation.

5. HTTP & DNS: The protocols powering the World Wide Web

An ISP (Internet Service Provider) provides internet to its region. These ISPs are managed by cer-
tain continental autonomous systems (AS). The Regional Internet Registry (RIR) is divided into their
regions: AFRNIC (Africa), ARIN (American), APNIC (Asia-Pacific), LACNIC (Latin America and Car-
ribean), and RIPE NCC (European).

The main protocol suite used by the internet is TCP/IP, which is a collection of protocols that the internet
uses. The bulk of this chapter will describe this protocol.

Figure 9: TCP/IP layering model.

32/ 37

Linux Muchang Bahng Summer 2023

12.3 Network Interfaces

Before we even start talking about IP addresses or protocols, we should mention that there are several
interfaces from which computers can send and receive data. For example, if you are connected to both wired
ethernet and WiFi, there are two paths, or interfaces, that data can travel. To see all your interfaces, use
the ip -c a command.

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host noprefixroute

valid_lft forever preferred_lft forever

2: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group

link/ether 64:bc:58:11:c0:24 brd ff:ff:ff:ff:ff:ff

inet 10.197.221.245/16 brd 10.197.255.255 scope global dynamic noprefixroute

valid_lft 597085sec preferred_lft 597085sec

inet6 fe80::b9e9:2f85:ded7:eaaf/64 scope link noprefixroute

valid_lft forever preferred_lft forever

The following lists out all the interfaces. We can see that we’re connected to two interfaces, but there are a
lot more. Usually, these interfaces also have a number following them that indexes different instances of the
same type of interface.

1. lo: This is the loopback interface.

2. wlan0: For wireless connections

3. tun: When you are connected to VPN.

4. en:

5. gif :

6. awd:

7. llw:

8. bridge:

9. utun:

For each interface, there is a set of protocols that must be set for data to transfer.

12.4 Addresses

Every computer needs some address that determines its unique identity. The version of TCP/IP that has
been in widespread use is IPv4, which uses 4-byte IP addresses. A modernized version, IPv6, expands the
IP address space to 16 bytes and incorporates several additional features, making it faster and easier to
implement.

Definition 12.5 (IP Address)

The protocol describes the use of IP addresses to uniquely identify Internet-connected devices (for
transmission of data). That is, when a computer sends a message to another computer, it must
specify the recipient’s IP address and also include its own IP address so that the second computer
can reply. There are two versions of the Internet Protocol in use today:

1. IPv4: The first version ever used on the Internet and having the form of 4 octets split by
periods in between.

33/ 37

Linux Muchang Bahng Summer 2023

[0− 255].[0− 255].[0− 255].[0− 255]

Even though it presented in decimal, computers store them in binary

74.125.20.113 ⇐⇒ 01001011.01111101.00010100.01110001

IPv4 addresses can take 232 values, but IPv6 was created for more space.
2. IPv6: The newer standard (introduced in June 2012) is in the form

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF

with hexadecimal digits (total of 3.4× 1039 possible IPv6 values).

Definition 12.6 (CIDR Notation)

Sometimes, a set of IP addresses are specified using CIDR notation. An address of the form

145.201.67.4/16

represents all addresses of form 145.201. ∗ .∗.

Operating systems and network devices have supported IPv6 for a long time, and the motivation behind the
deployment of IPv6 was due to the concern that devices were running out of IPv4 addresses. Asia ran out
first in 2011, followed by every other continent ever since then.

But we’ve learned to make more efficient use of the IPv4 addresses that we have. For example, Network
Address Translation (or NAT) lets entire networks of machines hide behind single IPv4 addresses. Class-
less Inter-Domain Routing (CIDR) subdivides networks and promotes efficient backbone routing as well.
Ultimately, IPv6, with better security and engineering, is going to take over, but not for a while since it’s not
fundamentally different from IPv4 and the drawbacks of IPv4 haven’t been bad enough to spark migration.

Definition 12.7 (Hierarchy of IP Addresses)

The IP addresses are formatted in an hierarchical way. The IPv4 address hierarchy is structured as
such: The first few numbers (may or may not be divided by octets) could identify a network admin-
istered by an Internet Service Provider. The last numbers, which can also represent subnetworks
(subnets), identifies a home computer on that network.

Example 12.4 (University of Michigan)

For example, if we represent the IP address 141.213.127.13 in binary (of 32 bits)

10001101.11010101.01111111.00001101

the first 16 bits could route to all of UMich, the next two bits could route to a specific UMich
department, and the final 14 bits could route to individual computers.

1000110111010101 01 11111100001101
UMich Network Medicine department Lab computer

This hierarchy gives UMich the ability to differentiate between 22 departments and 214 = 16, 384
computers within each department. In general, the ability to create hierarchical levels at any point
in the IP address allows for greater flexibility in the size of each level of the hierarchy.

34/ 37

Linux Muchang Bahng Summer 2023

Example 12.5 (Duke)

Duke’s IP addresses are of the form 153.3. . , with the DUKE-INTERCHANGE ISP provider.

Definition 12.8 (Hostname)

IP addresses can be quite cumbersome to memorize, which is why they are often addressed with their
hostname. Operating systems allow one or more hostnames to be associated with an IP address so
that users can type rfc-editor.org rather than 4.31.198.49. This mapping can be set up in multiple
days, e.g. with the /etc/hosts file or the LDAP database system to DNS the world-wide Domain
Name System.

12.4.1 LAN Addresses and NAT

We’ve talked about how entire networks of machines can hide behind a single IPv4 address. Let’s elaborate
on this. In fact, your computer is not connected to the internet directly. It is actually in a private network,
or a LAN network, which uses a private IP address space (supported by both IPv4 and v6). Anything on
the inside of your private network is not on the Internet; it is on your LAN, an entirely separate network,
with its own address space. Anything on your LAN must have a unique (within the LAN) IP address to
participate properly with your local network. Therefore, anyone else who has a LAN is also not part of the
internet. So if you are only on your LAN network, how do you actually connect to the internet?

Definition 12.9 (Router)

The router is a device that forms a connection between your LAN network and the internet. It has
both a private local address, called a gateway address, and a public address. It is responsible for
forwarding data between the local server computers and the internet. Therefore, to the outside world,
all devices identify the network internet activity by the one public IP address assigned to the router.
The gateway address can be found with ip route and the public address, of course, can be found
with the commands previously mentioned.

Definition 12.10 (Modem)

Amodem, short formodulator/demodulator is a device that converts a signal from your computer
to some kind of signal to talk to other computers. The main difference between the router and the
modem is that

1. The router crates a network between the computers in your home and routes network traffic
between them (through Ethernet cables or wireless connection). Your home router has one
connection to the Internet and connections to your private local network.

2. The modem serves as a bridge between your local network and the Internet.

To access our IP address, we can do the following:

1. To access local ip address, we can either run the command hostname -i, ip -c a, or ifconfig.

2. To access the public ip address, we can either google it or run curl ifconfig.me. Since this is public,
any device connected to the same network/router should have the same IP address.

Definition 12.11 (NAT)

In order for LAN devices to connect to the Internet, their outgoing traffic has the source address
changed to match that of the internet/WAN IP address of the router. The router keeps track of this,
and makes sure any response traffic gets sent to the right internal machine. This is called Network

35/ 37

Linux Muchang Bahng Summer 2023

Address Translation (NAT). There are generally two types of NAT:
1. Basic, one-to-one NAT: The simplest type of NAT provides a one-to-one translation of IP

addresses. In this type of NAT, only the IP addresses, IP header checksum, and any higher-level
checksums that include the IP address are changed. Basic NAT can be used to interconnect
two IP networks that have incompatible addressing.

2. One-to-many NAT: The majority of network address translators map multiple private hosts
to one publicly exposed IP address. In a typical configuration, a local network uses one of the
designated private IP address subnets. A router in that network has a private address of that
address pace. The router it also connected to the Internet with a public address assigned by
the ISP. As traffic passes from the local network to the Internet, the source address in each
packet is translated on the fly from a private address to the public address. The router tracks
basic data about each active connection (particularly the destination address and port). When
a reply returns to the router, it uses the connection tracking data it stored during the outbound
phase to determine the private address on the internal network to which to forward the reply.

Definition 12.12 ()

The IP addresses that are in the private network’s space are usually divided up into 3 categories. But
as of now, the categories don’t mean anything.

1. Class A private range addresses: 10.0.0.0 - 10.255.255.255 (16,777,216 IPs)
2. Class B private range addresses: 172.16.0.0 – 172.31.255.255 (1,048,576 IPs)
3. Class C private range addresses: 192.168.0.0 – 192.168.255.255 (65,536 IPs)

Since the private IPv4 address space is relatively small, many private IPv4 networks unavoidably use
the same address ranges. This can create a problem when merging such networks, as some addresses
may be duplicated for multiple devices. In this case, networks or hosts must be renumbered, often
a time-consuming task, or a network address translator must be placed between the networks to
translate or masquerade one of the address ranges.

12.4.2 Ports

IP addresses identify a machine’s network interfaces, but they aren’t specific enough to address individual
processes or services, many of which might be actively using the network at once. TCP and UDP extend
IP addresses with a concept known as a port, which is a 16-bit number that supplements an IP address to
a particular communication channel. Valid ports range from 1 to 65, 535. A port, combined with an IP
address, results in a socket address that is used to establish a connection between a client and a server.

UNIX systems restrict programs from binding to port numbers under 1024 unless they are run as root or
have an appropriate Linux capability. Anyone can communicate with a server running on a low port number;
the restriction only applies to the program listening on the port.

12.4.3 Hardware (MAC) Addresses

The lowest level of addressing is the network hardware. Many devices are assigned a unique 6-byte hardware
address at the time of manufacture. The first 3 bytes identify the manufacturer, and the last 3 bytes are a
unique serial number that the manufacturer assigns. Sysadmins can sometimes identify the brand of machine
that is trashing a network by looking up the 3-byte identifier in a table of vendor IDs. In theory, ethernet
hardware addresses are permanently assigned and immutable, but many network interfaces let you override
the hardware address and set one of your own choosing.

36/ 37

Linux Muchang Bahng Summer 2023

12.5 TCP Packets and Encapsulation

12.6 OSI and Internet Protocols

12.7 HTTP and HTTPS

HTTP stands for hypertext transfer protocol, implemented in Layer 7, which transfers data between your
computer and the server over the internet through clear text. This may not be the most ideal way since
any interceptors can read the transferred data. This isn’t a problem for regular internet browsing, but if
you are inputting sensitive data, then HTTP should not be used. This is why HTTPS (which stands for
secure HTTP) was invented, which is implemented in Layer 4 and encrypts the data being transferred, and
every website where you input sensitive data should be using HTTPS (indicated by the https:// prefix in
the URL and a padlock symbol for modern browsers). Due to the extra security measures, HTTPS is less
lightweight than HTTP, and its respective default ports are HTTP (80) and HTTPS (443).

A natural question to ask would be: which encryption scheme does HTTPS use? Both Secure Sockets Layer
(SSL) and Transport Layer Security (TLS) is used in the modern web.

SSL certificate.

12.8 UDP and TCP

TCP handshake can be seen with curl.

12.9 SSH

13 Driver and Hardware Configuration

13.1 Audio Drivers

13.2 Bluetooth

Blueman.

13.3 Synaptics

13.4 Video Drivers

13.5 Monitor

13.6 Nvidia GPU Drivers

14 Development

14.1 Git

14.2 Python and Conda

Make sure to add conda path to PATH.

37/ 37

	Hardware
	Von Neumann Architecture
	Instruction Set Architectures
	Assembly in x86_64
	Graphics Drivers
	Multiple GPUs

	Peripheral Devices
	Overview of Architecture

	Filesystems
	Mounting
	Mounting a Remote Disk

	Maintence
	SSD
	Filesystem

	Modifying Partitions

	Firmware
	Updating Firmware
	Modifying UEFI Variables

	Bootloaders
	GRUB

	Systemd
	systemctl: Managing systemd
	Targets
	Systemd Logging

	Display Servers
	Windows Managers and Desktop Environments
	Package Management
	Pacman
	Yay

	Vim and Neovim
	Vim vs Neovim
	Vim Configuration File
	Neovim Configuration File
	Troubleshooting

	Shells and Terminals
	LaTeX and VimTex
	Networking
	Computer Networks and the Internet
	History of the Internet
	Network Interfaces
	Addresses
	LAN Addresses and NAT
	Ports
	Hardware (MAC) Addresses

	TCP Packets and Encapsulation
	OSI and Internet Protocols
	HTTP and HTTPS
	UDP and TCP
	SSH

	Driver and Hardware Configuration
	Audio Drivers
	Bluetooth
	Synaptics
	Video Drivers
	Monitor
	Nvidia GPU Drivers

	Development
	Git
	Python and Conda

