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1 Objects
We define a bunch of terms. This may seem unnecessary, but it becomes very useful when getting into the
weeds of C++.

Definition 1.1 (Statements)

A statement is an instruction that causes the program to perform some action. Statements are the
smallest independent unit of computation in the C++ language, and they are ended with a semicolon.

1 int x; // declaration statement
2 int y = 2; // initialization statements
3 int z = 2 + 3;

1.1 Types

Definition 1.2 (Type)

A type is a protocol that defines the set of possible values and a set of operations that can be
performed on those values.a There are several categorizations for types.

1. At the very basic level, we have primitive types, which are always built-in types that come
with C++ or the standard library (e.g. int, double, boolean).

2. Compound types are types that are built in by primitive types. In here, we have
(a) Built-in types which come with C++ or the standard library (e.g. functions)
(b) User-defined types which the user defines (e.g. enumsb, classes, structs)

Note that the protocols for each type is dependent on the version of C++, the computer architecture,
and the compiler. Therefore we have to be careful to accommodate them.

Great, now let’s see what primitive types are supported in C++.

Definition 1.3 (Integral Types)

Integral types represent a proper subset of Z.
1. The signed numbers include int, long, long long and are stored in two’s complement repre-

sentation.

aThis is similar to a mathematical set endowed with some operations. This definition is quite abstract, but it suffices.
bSince they are implemented with integral types.
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1 * thread #1, queue = ’com.apple.main-thread’, stop reason = instruction step over
2 frame #0: 0x0000000100003fa0 a.out‘main + 28
3 a.out‘main:
4 -> 0x100003fa0 <+28>: add sp, sp, #0x10
5 0x100003fa4 <+32>: ret
6 0x100003fa8: udf #0x1
7 0x100003fac: udf #0x1c
8 Target 0: (a.out) stopped.
9 (lldb) x/4xb $sp+4

10 0x16fdfec44: 0xff 0xff 0xff 0xff
11 (lldb) x/4xb $sp+8
12 0x16fdfec48: 0x01 0x00 0x00 0x00

Figure 1: Two’s complement representation of ±1 on my machine from inspecting memory in lldb. Note
that this is little endian, with the least significant hex coming first.

2. The unsigned numbers include unsigned int, unsigned long, unsigned long long and are
stored regularly.

1 * thread #1, queue = ’com.apple.main-thread’, stop reason = instruction step over
2 frame #0: 0x0000000100003fa0 a.out‘main + 28
3 a.out‘main:
4 -> 0x100003fa0 <+28>: add sp, sp, #0x10
5 0x100003fa4 <+32>: ret
6 0x100003fa8: udf #0x1
7 0x100003fac: udf #0x1c
8 Target 0: (a.out) stopped.
9 (lldb) x/4xb $sp+4

10 0x16fdfec44: 0x00 0x01 0x00 0x00
11 (lldb) x/4xb $sp+8
12 0x16fdfec48: 0x01 0x00 0x00 0x00

Figure 2: Regular representation of unsigned integers 256 = 0x1000 and 1 = 0x01.

Definition 1.4 (Floating Point Types)

Floating point types represent a proper subset of R.

Definition 1.5 (Char)

Character types represent the extended ASCII character set and is always 1 Byte. Some nice facts
to know.

1. The numbers 0-9 take characters 48 to 57.
2. The uppercase letters A-Z take 65 to 90.
3. The lowercase letters a-z take 97 to 122.

Definition 1.6 (Boolean)

A boolean stores 1 bit of memory, but in practice it takes up 1 Byte since a Byte is the smallest
addressable unit of memory in most computer architectures.
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Definition 1.7 (Void)

The void type is the analogous to the null or none type in other languages. It is a type that does
not represent a type, stating that an object has no type.

Example 1.1 (Types with _t Suffix?)

Some types have the _t suffix, which just represents type. Some types have this and others don’t. In
C++, there is no exact size for each fundamental type (except for char, which is always 1 byte). There
is however a lower bound, so you should always use the lower bound and for maximum portability,
never assume that a type can store more bytes.

1.1.1 Casting

Definition 1.8 (Typecasting)

The action of converting one type to another type is called typecasting.
1. The programmer can explicitly typecast by calling an operator to change an objects type.
2. If two objects are relatively similar,a then the C++ implementation may do an implicit type-

cast to convert it automatically.

Here we list some situations when there is implicit typecasting.

Lemma 1.1 (Variable Initialization)

When initializing (or assigning a value to) a variable with a value of a different type.

1 double d = 3; // int value 3 implicitly converted to type double
2 d = 6;

Lemma 1.2 (Function and Operators)

Function calls and operators will implicitly typecast between char and signed int. This can both be
convenient and a pain to work with.

1 int main() {
2 char x = ’a’; // 97 in ASCII
3 std::cout << x + 4; // 101
4 std::cout << x - 200; // -103
5 return 0;
6 }

Lemma 1.3 (Return Types)

When the type of a return value is different from the function’s declared return type.

1 float func() {
2 return 3.0; // double value 3.0 implicitly converted to float
3 }

adefined very loosely here
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Lemma 1.4 (Truthy and Falsy Values)

When we use a non-Boolean value in an if-statement.

1 if (5) { // int value 5 implicitly converted to true
2 ...
3 }

Lemma 1.5 (Returning Structs)

Say that we have a function that returns a struct (an anonymous object with no name).

1 strict Point3d {
2 int x;
3 int y;
4 int z;
5 };

We can actually return a list, which will be implicitly typecasted to be of the struct type.

1 Point3d getZeroPoint() {
2 return Point3d {0.0, 0.0, 0.0};
3 }

1 Point3d getZeroPoint() {
2 return {0.0, 0.0, 0.0};
3 }

How do we explicitly typecast? C++ defines a few operators (not functions! explained later) that does this.

Definition 1.9 (C Style Cast)

Similar to typecasting in C, we can do the following.

1 (T)foo

Definition 1.10 (Static Cast)

We can conduct a static typecast, which happens during compile time.

1 static_cast<T>(foo)

Definition 1.11 (Dynamic Cast)

1 dynamic\_cast<T>(foo)
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1.2 Variables

Definition 1.12 (Value)

The definition of a value is quite abstract. It is simply some data with a type. In computers, the
value gets encoded into some sequence of bits. The identity of a value is purely determined by the
abstract concept it represents.

Definition 1.13 (Objects and Variables)

An object represents a memory of storage (typically RAM or CPU cache) that can hold a value. It
has 4 properties.

1. Like a value, it has a type representing the type of value it holds.
2. It has an address representing where the value is stored.
3. The identity is determined not just by the value that it stores, but also its address.
4. It may have a name.a Objects with a name are called variables, and those without a name

are called anonymous. The linkage of the variable determines which address the variable
refers to.

Note that in C++, the definition of an object slightly differs than in more general contexts.

Definition 1.14 (Literal)

A literal is a value that is directly inserted into code, e.g. 5, 3.2, ’a’. It is not a variable since it
does not have an name, and it is not an object either since it doesn’t have an address.

Theorem 1.1 (Types are not Objects!)

If a type defines the protocol, then wouldn’t this be stored in memory? No, this is for the compiler.

1.2.1 Scope and Duration

Now that we’ve established variables, we can talk about their scope.

Definition 1.15 (Block)

A block is a portion of code that is within curly braces { ...}. Note that C++ is not line sensitive.

You probably know that there are two types of variables: local variables and global variables, along with
their general properties. Let’s specify them a bit, starting with the two most important ones: scope and
duration.

Definition 1.16 (Duration)

The duration of an identifier governs how it will be constructed and destroyed, over its lifetime.
1. Automatic duration means that their lifetime begins at the start of the block (at {) and is

destroyed at the end of the block }.
2. Static duration means they are created when the program starts (before main()) and de-

stroyed when it ends. Variables with static duration, both local and global, are 0-intialized by
default. (e.g. static int x; is really static int x = 0;). It is conventional to prefix static
local variables with a s_.

aTypically some alphanumeric string like x.
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Definition 1.17 (Scope)

The scope of an identifier refers to where it is accessible by.
1. Block scope refers to a variable being accessible within a certain block.
2. Global scope refers to a variable being accessible from everywhere.

It may seem like the scope and duration are related, but you can have any combination of automatic local
variables (just called local variables), static local variables, and global variables. The duration talks about
when a variables is allowed to live while the scope talks about where it is accessible from. Just like local
variables, global variables can be const as well, and like all const variables, must be initialized.

Definition 1.18 (Local Variables)

Local variables are variables constructed inside a block scope and are accessible only within that
block. They have automatic duration by default.

Definition 1.19 (Static Local Variables)

If we talk about static local variables, they are variables with block scope but having static
duration.
This may be a bit counterintuitive, but say that there is a variable that you want to persist for the
entire program, but you only want to modify that value within a function.

1 void increment() {
2 static int val = 1; // static duration. Initializer only executed once.
3 ++val;
4 std::cout << val << "\n";
5 } // val is not destroyed here, but becomes inaccessible
6

7 int main() {
8 increment();
9 increment();

10 return 0;
11 }

Definition 1.20 (Global Variables)

Global variables live within the global scope of the global or a local namespace and therefore can
be accessible from anywhere. They are static variables by definition. Usually it is preferred to define
global variables in a namespace. It is conventional to prefix global variables with g_.

Example 1.2 (Automatic Duration)

You can see that every block contains its own scope with its own local variables. When the block
ends all variables in this block are destroyed on the stack.

1 int main() {
2 int x = 2;
3 std::cout << x << std::endl; // 2
4 {
5 int y = 1;
6 std::cout << x << std::endl; // 2
7 std::cout << y << std::endl; // 1
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8 }
9 return 0;

10 }

Example 1.3 (Accessing Parent Block Scope)

Local variables in a nested block have access to the parent block’s scope. Both of these programs are
valid. The left accesses the parent block’s x while the right one access x newly created in the local
scope.

1 int main() {
2 int x = 2;
3 for (int i = 0; i < 10; i++) {
4 x += 1;
5 }
6 std::cout << x << std::endl; // 12
7 return 0;
8 }
9 .

1 int main() {
2 int x = 2;
3 for (int i = 0; i < 10; i++) {
4 int x = 1;
5 x += 1;
6 }
7 std::cout << x << std::endl; // 2
8 return 0;
9 }

Example 1.4 (Variable Shadowing)

You can see that the x is initialized in the main() block scope, but it gets “shadowed” by the x in the
nested block. Once the block terminates, then it is “revealed” again.

1 int main() {
2 int x = 2;
3 std::cout << x << std::endl; // 1
4 {
5 int x = 1;
6 std::cout << x << std::endl; // 1
7 }
8 std::cout << x << std::endl; // 2
9 return 0;

10 }

Static local variables are good for id generation, since they are not accessible beyond a block but still have a
persistent state that does not get reset. Another good use is to use const static local variables for functions
that needs to use a const value, but initializing that object is expensive. Using a local variable would
instantiate it every time the function is called, but a static local variable requires us to create it once.

1.2.2 Internal and External Linkage

Remember that given a name, its linkage determines whether other declarations of that name refer to the
same object or not.

Definition 1.21 (Static Global Variables)

When static is applied to a global variable, it has a completely unrelated effect than that applied on
a local variable. It means that the global variable now has internal linkage, meaning that the variable
cannot be exported to other files.
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1.3 Operators and Functions
In Python, there is no difference between functions and operators since every operator (e.g. +) gets mapped
to a dunder method (e.g. __add()__). In C++, there are differences. Operators and functions are similar
in behavior, but we should know that operators are more like keywords while function are compound types.

Definition 1.22 (Function)

A function is a set of statements enclosed in a block, which uses a sequence of parameters and a
return type. It has the following properties.

1. It may have a name (e.g. foo()). Those without a name are called anonymous functions.
2. By default, a call to a function requires us to jump to a separate piece of code.

Definition 1.23 (Operations)

An operator is a keyword with a fixed syntax which also does some operation. An operation
consists of an operator (+) and one or more operands (3, 4.3).

1. Operators come as a part of C++ (sizeof, +) or the C++ standard library (std::cout «).
2. Unlike a function, an operator does not jump to another sequence in the code and is compiled

to a sequence of instructions by the compiler.
3. Operators usually have a fixed number of parameters, while functions can use different sets of

operands (overloading).
4. Operators have built-in precedence rules (e.g. multiplication before addition)

Definition 1.24 (sizeof Operator)

The sizeof operator returns the size (in bytes) of its operand.
1. sizeof(short) = 4
2. sizeof(int) = 4
3. sizeof(long) = 4
4. sizeof(long long) = 8
5. sizeof(float) = 4
6. sizeof(double) = 8
7. sizeof(long double) = 8

1.4 Declaration vs Definition
Variables can be constructed in two ways.

1. We first declare a variable, which tells the compiler about the existence of the variable (int x;).
Then, we can define the variable, which assigns it a literal (x = 4;).

2. We can initialize a variable, which both declares it and defines it at once (int x = 4;).

1. The declaration of a function states the existence of the function.

1 double foo(int x, double y); // one way
2 double foo(int, double); // another way

This declaration is also called the function prototype, or the function identifier.

2. The definition of a function tells us the actual implementation.

1 double foo(int x, double y) {
2 ...
3 }
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1.5 Expressions

Definition 1.25 (Expression)

An expression is simply a line of code containing variables, operations, literals, and function names/-
calls. The process of executing an expression is called evaluation. The type category is simply
the type of the value, object, or function that results from the evaluated expressions. The value
category indicates whether the expression resolves to a value, an object, a function, or nothing (this
list is exhaustive).

2 Translation
Now that we’ve gotten the basics, we should learn more about the translation process so that we can avoid
definition conflicts and know how to work with multi-file programs.

Definition 2.1 (Translation)

Translating C++ code to a binary consists of multiple steps:
1. Preprocessing the code.
2. Compiling each file independently.
3. Linking all the files.

Conventionally, all of these are called compiling, but it really isn’t.

2.1 Preprocessing
When preprocessing, we do some boring stuff like removing comments. However, the main job is to take care
of preprocessing directives, which are expressions with the # symbol. The most obvious is the #include
directives, which replaces the include directive with the contents of the included file. That is,
#include is really just a way to substitute code.

1. including with angle brackets, e.g. #include <iostream>, means that the compiler is looking for this
file in the standard library files.

2. including with double quotes, e.g. #include "tensor.h", means that the compiler is looking for this
file locally in your project directory. It means you’ve written it.

Other directives is the #define directive.

1. You can define it to substitute text. It is conventionally in all upper-case.

1 #define NAME "Muchang" // all instances of NAME will be replaced with "Muchang"

2. Or you can define it without substitution text, where further occurrences of NAME will be replaced by
nothing.

1 #define NAME

The second isn’t used for substitution, but rather for conditional compilation, which can be useful. You
just wrap C++ statements around as such.

11/ 41



C++ Muchang Bahng Winter 2024

1 #ifdef NAME
2 ...
3 #endif

1 #ifndef NAME
2 ...
3 #endif

To see the output after preprocessing, use the -E flag.

1 g++ main.cpp -E

2.2 Compilation
We only compile files one at a time and independently. When the compiler compiles a file, it goes through
each line sequentially. Therefore, we must ensure that all functions/variables/classes are declared first before
they are called. Forward declaration makes this a lot easier.

There is a difference between a declaration and a definition.

Definition 2.2 (ODR)

Remember the ODR (One Definition Rule):
1. Within a file, each function, variable, type, or template in a given scope can only have one

definition. Definitions occurring in different scopes (e.g. local variables defined inside different
functions, or functions defined inside different namespaces) do not violate this rule.

2. Within a program, each function or variable in a given scope can only have one definition.a
To be honest, ODR 2 really implies ODR 1, since once the directives are preprocessed or the object
files are linked, we are really left with one executable file.

Example 2.1 (ODR 1 Violation)

The following shows that in the same file, there are multiple variables defined in the function scope
of main, and there are two definitions of foo in the global scope.

1 int main() {
2 int x;
3 int x;
4

5 return 0;
6 }
7 .

1 int foo() { return 5; }
2 int foo() { return 5; }
3

4 int main() {
5 std::cout << foo();
6 return 0;
7 }

Example 2.2 (ODR 2 Violation)

Say that main.cpp has the main() method that calls on int add(int x, int y), which is forward
declared. However, say that we define add in two places.

1 // foo.cpp
2 int add(int x, int y) {
3 return x + y;
4 }

1 // bar.cpp
2 int add(int x, int y) {
3 return x + y;
4 }

Then, if we run g++ main.cpp foo.cpp bar.cpp, the linker will complain that there is a function
redefinition.

aThis rule exists because programs can have more than one file. For example, if you have two definitions of int add(int,
int) in two different files, the linker does not know which one to connect the declaration to.
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2.3 Linking
Remember, declaration is not the same thing as definition. When we do the linking, we go through all the
source files in our project and match all the declarations with our definitions. The source files must all be
written in the compile command.

1 g++ main.cpp add.cpp
2 g++ add.cpp main.cpp

This should not be order dependent. The source files can be

1 // main.cpp
2 int add(int x, int y); // declaration
3

4 int main() {
5 int z = add(2, 3);
6 return 0;
7 }

1 // add.cpp
2 // definition
3 int add(int x, int y) {
4 return x + y;
5 }
6 .
7 .

2.4 Header Files
To be honest, we can just include forward declarations everywhere, but this does not scale well to large
projects. If we had a set of declarations that we wanted to use over a bunch of files, we can package them
nicely using a header file.

If we have a bunch of functions and classes written in foo.cpp, then it is conventional to write a foo.h
that contains all the declarations of these expressions. Then, whenever we need to write a new file bar.cpp
that uses functions from foo.cpp, we can just #include "foo.h", which replaces this directive (by the
preprocessor) with all the forward declarations in foo.h. Boom easy.

1 // add.cpp
2 int add(int x, int y) {
3 return x + y;
4 }

1 // add.h
2 int add(int x, int y);
3 .
4 .

Therefore when we call add in main.cpp, we can just #include "add.h" to put in the declarations, mak-
ing everything good. Conventionally, it is best practice for a source file to also include its paired header
(e.g. add.cpp should also contain #include "add.h" at the top). This allows the compiler to discover
inconsistencies between the two files, and this extra cost is negligible.1

Example 2.3 (Definitions inside Header Files)

You should not add definitions (only declarations) to header files since if they are included in multiple
header files, then we would have different definitions of the same function, leading to ODR 2 violation.
Take a look at the following.

1 // square.h
2 int getSquareSides() {
3 return 4;
4 }

1 // wave.h
2 #include "square.h"

With the following.

1 #include "square.h"

1https://www.learncpp.com/cpp-tutorial/cpp-faq/#pairedheader
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2 #include "wave.h"
3 int main() {
4 return 0;
5 }

This won’t compile since
1. by including square.h, we have defined getSquareSides() in the global scope of main.cpp.
2. by including wave.h, we have included square.h which then substitutes this line with the

definition of getSquareSides() again.
This is an ODR 1 violation.

The simple fix to the above is to just remove the #include "wave.h", but what if we needed some other
function from wave.h? Resolving this issue is not trivial if say, half of the functions in square.h is needed in
wave.h and the other half is needed in main.cpp. We must include both of them in main.cpp, but then we
have an inevitable redefinition. Without separating square.h into separate files, solving this is impossible.

Even if we didn’t have definitions in header files in the first place (which is bad practice in general), repeated
declarations, which are still fine, are also not really ideal either. Furthermore, custom types are typically
defined in header files, so redefining them leads to an ODR violation.

Definition 2.3 (Header Guards)

Fortunately, we have header guards, which are conditional compilation directives that tell the
compiler to include a header file at most once to the main file. You can do this in two ways.

1. Just put this to the top of the header file. The compiler will take care of redeclaration/redefi-
nitions for you. This isn’t always fail-safe.

1 #pragma once

2. More manually, we can use a conditional compilation directive. Put this on the top of the
header.

1 #ifndef HEADERFILE_H
2 #define HEADERFILE_H
3

4 ...Header Contents...
5

6 #endif

In the beginning, HEADERFILE_H is not defined, so we include all of this. In a second inclusion
though, HEADERFILE_H is defined, so the preprocessor removes this.

Note that header guards limit the number of times a header can be included in a single given file,
but the header may still be repeated across separate project files. This is what we want.

2.5 Namespaces
Perhaps we want to have two functions of the same name, but we get a redefinition error. This is where
namespaces come in.

Definition 2.4 (Namespace)

We can wrap each function around a namespace, which is written with an upper-case letter.

1 namespace Foo {
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2 int bar() {}
3 }

To access identifiers defined in the namespace, we must use the scope resolution operator ::. If
no scope resolution is given, or an empty one is given, then we look for the identifier in the global
namespace.

1 int x = Foo::bar(); // Foo namespace
2 int y = bar(); // global namespace
3 int z = ::bar(); // global namespace

Example 2.4 (Namespace)

Say that we have two files with the same-name function in different namespaces.

1 namespace Foo {
2 int doSomething(int x, int y) {
3 return x + y;
4 }
5 }

1 namespace Goo {
2 int doSomething(int x, int y) {}
3 return x - y;
4 }
5 }

When we put our forward declarations, we must make sure to add the namespace using the scope
resolution operator. If the namespace is not included, then the linker will look for the function in the
global namespace rather than the user-defined namespace.

1 int doSomething(int x, int y); // this results in an error
2 int Foo::doSomething(int x, int y); // correct
3 int Goo::doSomething(int x, int y); // correct
4

5 int main() {
6 std::cout << Foo::doSomething(4, 3) << ’\n’;
7 std::cout << Goo::doSomething(4, 3) << ’\n’;
8 return 0;
9 }

Let’s talk about a few properties of namespaces.

Lemma 2.1 (Identifiers in Parent Namespaces)

If an identifier A in a namespace uses another identifier B without a scope resolution, then A will
look for B within A’s namespace. If no matching identifier for B is found, then the compiler will then
check each containing namespace in sequence to see if a match is found, with the global namespace
being checked last.

1 #include <iostream>
2 void print() // this print() lives in the global namespace
3 {
4 std::cout << " there\n";
5 }
6

7 namespace Foo {
8 void print() // this print() lives in the Foo namespace
9 {
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10 std::cout << "Hello";
11 }
12

13 void printHelloThere()
14 {
15 print(); // calls print() in Foo namespace
16 ::print(); // calls print() in global namespace
17 }
18 }
19

20 int main() {
21 Foo::printHelloThere(); // prints "Hello there"
22 return 0;
23 }

Lemma 2.2 (Nested Namespaces)

Namespaces can be nested as well, either of 2 ways.

1 namespace Foo {
2 namespace Goo{
3 ...
4 }
5 }
6 .
7 .

1 namespace Foo {
2

3 }
4

5 namespace Foo::Goo {
6

7 }

Lemma 2.3 (Namespace aliases)

You can shorten namespaces using namespace aliases.

1 namespace Active = Foo::Goo;
2 int x = Active::doSomething();

Lemma 2.4 (Using Namespace)

The using namespace is a directive that allows access to all members of a namespace.

2.6 Building and Makefiles
Most computer come with a built-in C or C++ compiler out of the box. There are generally two types.

1. gcc (GNU compiler collection) is primarily a C compiler. g++ is a C++ compiler built on top of
gcc. When compiling C++ code, g++ automatically links the C++ standard library and enables
C++ specific features. This is generally considered the old standard that supports more platforms and
architectures.

2. clang is the C compiler and clang++ is the C++ one. It is generally considered a more modern
version, with better error messages.

Generally, when you run these compiler commands, you must specify a huge number of options to go along
with it. For example, here is my compiler commands for a personal project I am working on.
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1 /Library/Developer/CommandLineTools/usr/bin/c++ \
2 -Daten_python_EXPORTS \
3 -I/Users/mbahng/Development/pyember/aten/src \
4 -I/Users/mbahng/Development/pyember/aten/bindings \
5 -isystem /opt/miniconda3/envs/ember/include/python3.12 \
6 -isystem /Users/mbahng/Development/pyember/build/_deps/pybind11-src/include \
7 -std=gnu++17 \
8 -arch x86_64 -arch arm64 \
9 -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX14.4.sdk \

10 -fPIC -fvisibility=hidden -flto

Figure 3: Note that c++ is a symlink to either g++ or clang++.

Let’s parse some of these flags.

Definition 2.5 (Optimization Flags)

We can optimize our compilation process at different levels.
1. -O0: No optimization, with fastest compilation and best for debugging.
2. -O1: Basic optimization
3. -O2: Moderate optimization, with best balance and most commonly used.
4. -O3: Aggressive optimization, which can make code larger/slower in some cases.
5. -Os: Optimize for size of the final binary.
6. -Ofast: Like -O3 but can break standards compliance for speed.

Definition 2.6 (Debugging Flags)

The various flags for debugging information are:
1. -g: Include debugging information.
2. -Wall: Enable all common warnings.
3. -Wextra: Enable extra warnings beyond -Wall
4. -Werror: Treat warnings as errors.
5. -fsanitize=undefined: Check for undefined behavior.

Definition 2.7 (Language Standards)

The language standards are simple.
1. -std=c++17: Use C++17 standard.
2. -std=c++20: Use C++20 standard.
3. -std=gnu++17: Use C++17 with GNU extensions.

Definition 2.8 (Architecture/Platform)

1. -fPIC: Generate position-independent code (needed for shared libraries).
2. -m32 or -m64: Compile for 32/64-bit used mainly in traditional Unix/Linux environments.a
3. -arch: Specify the CPU architecture for compatibility across OSes. You can specify x86_64,

arm64, and others. You can specify multiple architectures to make it portable with all of them,
e.g. -arch x86_64 -arch arm64.

4. -march native: On a known CPU architecture, this tells to use all available instructions for
this CPU, which optimizes performance of instruction sets at the cost of portability. If you
want to ensure maximum compatibility across architectures, you don’t want this flag since it
will use instructions that other CPUs do not support.

17/ 41



C++ Muchang Bahng Winter 2024

5. -mtune=generic however optimizes for a CPU but doesn’t use instructions unique to it. This
is good for widely distributed software.

Definition 2.9 (Include Paths and Linking)

These final ones are probably the ones you will directly interact with the most.
1. -c source.cpp: Tells to create an object file from the source file source.cpp.
2. -I<path>: Add include directory, which is a directory where the compiler looks for header files

that are referenced in your source code. It tells the compiler to also look in this directory for
headers.

3. -L<path>: Add library search directory, which tells the compiler to look for library files (like
.so, .dylib, .pyd, or .a files) in a certain directory during the linking phase.

4. -l<library>: Link against library.
5. -D<macro>: Define preprocessor macro.

2.6.1 Makefiles

Definition 2.10 (Makefiles)

As we’ve seen above, we probably don’t want to rewrite out an entire set of arguments every time
we compile something. Perhaps we can make another script that automatically generates these
commands, called build files. These are Makefiles and they exist literally with the name Makefile
in a directory. If we run the make command with an argument, also called a target, it automatically
compiles with the flags that we set in the Makefile. The general structure of a makefile is

1 target: dependencies
2 commands # This must be a tab, not a space

In here, you can define commands for compiling, linking, translation, and cleaning.

Example 2.5 (Representative Makefile)

Here is an example, where we can call
1. make or make all
2. make program
3. make main.o
4. make utils.o

1 # Define arguments
2 CXX = g++
3 CXXFLAGS = -Wall -O2
4

5 # Default: generate the binary directly
6 all: main.cpp utils.cpp
7 $(CXX) $(CXXFLAGS) main.cpp utils.cpp
8

9 # Link the object files
10 program: main.o utils.o
11 $(CXX) $(CXXFLAGS) main.o utils.o -o program
12

13 # Create object file from source file main.cpp
14 main.o: main.cpp

aThis isn’t needed when you have the -arch flag.
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15 $(CXX) $(CXXFLAGS) -c main.cpp
16

17 # Create object file from source file utils.cpp
18 utils.o: utils.cpp
19 $(CXX) $(CXXFLAGS) -c utils.cpp

2.7 CMake
Even with Makefiles, they have some disadvantages.

1. They can get extremely complex with thousands of lines in a single Makefile.

2. Makefiles are primarily designed for Unix-like systems, so cross-platform development is hard.

3. The dependencies may be complex, with different libraries stored in different locations on different
platforms. Coding this all into a Makefile is error prone.

Definition 2.11 (CMake)

Therefore, we have a further abstraction called CMake, which automatically generates Makefiles,
which themselves generate the actual compiler commands. They are stored in a text file called
CMakeLists.txt. Conventionally, you would make a build/ directory cd into it, and run

1 cmake <path-to-cmakelists>

which will automatically generate a Makefile along with other build files for you.

Let’s talk about what options CMake supports.

2.7.1 Standards

Definition 2.12 (Version)

CMake is a software, and it has versions that are important to have a general knowledge of.
1. CMake 3.0 (2014). Major transition from CMake 2.x by Kitware. Has target-based dependency

management.
2. CMake 3.6 (2016). Enhanced C++11/14/17 support.
3. CMake 3.10 (2017). Added CUDA language support and Visual Studio 2017 support.
4. CMake 3.20 (2021). Improved C++20 support.
5. CMake 3.27 (2023). Improved build system integration.

We can set the minimum version. If a user tries to compile with a CMake version that is less than
that required, compilation fails.

1 # Requires CMake 3.10 or higher
2 cmake_minimum_required(VERSION 3.10)
3

4 # This sets policies to 3.10 but requires at least 3.5
5 cmake_minimum_required(VERSION 3.5...3.10)
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Definition 2.13 (CMake Options and Variables)

CMake variables are variables that are either set manually or automatically. They are conventionally
uppercase.

1. To set one manually in CMakeLists.txt, we write

1 # basic variable setting
2 set(MY_VARIABLE "value")
3 # list variable
4 set(MY_LIST "item1" "item2" "item3")
5 # path variable
6 set(MY_PATH "${PROJECT_SOURCE_DIR}/include")

2. We can actually set them directly in the command line when calling cmake. You should first set
an option for it in CMakeLists.txt and then call it with the option argument having a prefix
of D, which tells cmake that this is a variable definition.

1 # CMakeLists.txt
2 option(MY VARIABLE "Documentation" ON)

1 # Command Line
2 cmake -DMY_VARIABLE=value ..

Definition 2.14 (Message)

You can output logs as a part of your build process such as the following.

1 message("Hello world")
2 message("my variable is ${MY_VARIABLE}")

Definition 2.15 (Project Name)

The project name defines the name of your project and automatically sets certain CMake variables.
1. PROJECT_NAME contains the name you specified in project().
2. PROJECT_SOURCE_DIR is the full path to the directory containing your main CMakeLists.txt
3. PROJECT_BINARY_DIR is the full path to the build directory where CMake generates build files.

1 project(aten)
2

3 # Sets these variables
4 message("Project name: ${PROJECT_NAME}")
5 message("Source dir: ${PROJECT_SOURCE_DIR}")
6 message("Build dir: ${PROJECT_BINARY_DIR}")

Definition 2.16 (C++ Standards)

We can set the C++ standard as such

1 set(CMAKE_CXX_STANDARD 17)

which is equivalent to using compiler flags like -std=c++17. If we also set

1 set(CMAKE_CXX_STANDARD_REQUIRED ON)

then this forces CMake to always use the specified standard and will fail if the compiler does not
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support C++17.

Definition 2.17 (Operating Systems)

CMake also automatically defines which operating system it is running on through the following
cmake variables. With these, we can use conditionals to set extra configuration depending on the
system.

1 if(UNIX) # Linux, macOS, BSD, etc.
2 # UNIX-specific settings
3 endif()
4

5 if(APPLE) # macOS, iOS
6 # Apple-specific settings
7 endif()
8

9 if(WIN32) # Windows
10 # Windows-specific settings
11 endif()
12

13 if(LINUX) # Linux specifically
14 # Linux-specific settings
15 endif()

Definition 2.18 (Architecture)

The CMAKE_OSX_ARCHITECTURES is similar to the -arch flag.

1 set(CMAKE_OSX_ARCHITECTURES "x86_64;arm64")

2.7.2 Compiling

Definition 2.19 (Build Type)

CMAKE_BUILD_TYPE sets the type of build configuration, which controls compiler optimization levels
and debug information. The options are

1. Debug. No optimization (-O0), includes debug symbols (-g). Produces larger binaries and
slower execution.

2. Release. Max optimization (-O3), no debug symbols. Has fastest execution and smaller bina-
ries, but harder to debug.

3. RelWithDebInfoa. High optimization (-O2), includes debug symbols (-g).
4. MinSizeRelb. Size optimization -Os, no debug symbols, and smallest possible binaries, which

are good for embedded systems.
We can set it either in the file or in the command line.

1 # Set during cmake configuration
2 cmake -DCMAKE_BUILD_TYPE=Release ..
3

4 # Or in CMakeLists.txt
5 set(CMAKE_BUILD_TYPE Debug)
6 set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -g")
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Definition 2.20 (Add Executable)

add_executable tells CMake to create an executable program from source files.

1 # Creates executable named ’myapp’ from main.cpp
2 add_executable(myapp main.cpp)
3

4 # Multiple source files
5 add_executable(myapp2
6 main.cpp
7 utils.cpp
8 helper.cpp
9 )

Definition 2.21 (Include Directories)

We can tell cmake to look into specific include directories to look for header files, similar to the -I
flag.

1 target_include_directories(myapp PRIVATE include)

Definition 2.22 (Link Libraries)

We can tell cmake to look into certain library directories to look for library files (.so, .a, etc.) during
linking, similar to the -L flag.

1 target_link_libraries(myapp PRIVATE somelib)

2.7.3 Subdirectories

Example 2.6 (Motivation for Multiple CMake Files)

Sometimes, you may have multiple CMakeList.txt in different subdirectories. Look at this directory
structure.

1 .
2 |-- CMakeLists.txt
3 |-- README.md
4 |-- bindings
5 | |-- CMakeLists.txt
6 | |-- ...
7 | |-- common.hpp
8 |-- main.cpp
9 |-- src

10 | |-- CMakeLists.txt
11 | |-- ...
12 | |-- Util
13 |-- test
14 |-- CMakeLists.txt

aStands for Release with Debug Info
bMinimum size release.
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15 |-- ...
16 |-- Tensor

1. It has a main cmake file.
2. If we want to compile the source files, there src/CMakeLists.txt that will do it for us.
3. Same with the bindings cmake file.
4. Same with the test cmake file.

This nested structure allows for more flexibility, since by setting certain cmake parameters, we can
control which parts of this project get compiled.

Definition 2.23 (Subdirectories)

add_subdirectory tells CMake to enter a subdirectory and process the CMakeLists.txt file there.

1 add_subdirectory(src)

Definition 2.24 (Conditionals)

We can implement conditionals.

1 if (BUILD_DEV)
2 message(STATUS "Development mode ON")
3 ...
4 add_subdirectory(test)
5 else()
6 message(STATUS "Development mode OFF")
7 endif()

2.7.4 External Libraries

When you install CMake, it also comes with a set of Find<Package>.cmake files, which are basic finders lo-
cated in CMake’s modules directory. This on my mac is located in /opt/homebrew/share/cmake/modules/,
which contains files like FindZLIB.cmake or FindOpenSSL.cmake. These are also cmake files and contain
variables that tell you where to find these packages.

However, just because the cmake finders are there does not mean that the actual package is installed.
Therefore, Find<Package>.cmake will run but fail to find the package. When you install an external library
through a system package manager like apt/brew/pacman or by building it yourself, it creates a package
configuration file.

Definition 2.25 (Package Config Files)

The package creates a file called <Package>Config.cmake (also a cmake file) which serves to tell
other projects how to use the installed library. They are usually found in paths like

1 /user/lib/cmake/XXX/XXXConfig.cmake
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Example 2.7 ()

1 # When you install CMake, you get basic finders like:
2 /opt/homebrew/share/cmake/Modules/FindZLIB.cmake
3 /opt/homebrew/share/cmake/Modules/FindOpenSSL.cmake
4

5 # When you install Boost, you get:
6 /opt/homebrew/lib/cmake/Boost-1.82.0/BoostConfig.cmake
7

8 # When you install OpenCV, you get:
9 /opt/homebrew/lib/cmake/opencv4/OpenCVConfig.cmake

Definition 2.26 (Find Package)

Therefore, if we want to use an external package, we must first take the cmake finder file, find the
package config file, and locate the existing package binaries. This is all done by the find_package
command.

1 # Simple find
2 find_package(OpenSSL)
3

4 # Require the package - CMake will error if not found
5 find_package(Boost REQUIRED)
6

7 # Find specific components of a package
8 find_package(Boost REQUIRED COMPONENTS filesystem system)
9

10 # Specify minimum version
11 find_package(OpenSSL 1.1.1 REQUIRED)

So how does it know where to look for packages? It looks at the following in order.
1. Package-specific hints, e.g. BOOST_ROOT for Boost to see if any package-specific paths are defined.
2. CMAKE_PREFIX_PATH, which is a cmake variable that you can specify manually.

1 # In CMakeLists.txt
2 set(CMAKE_PREFIX_PATH
3 "/custom/path/to/library"
4 "/another/path"
5 )

3. System paths, which differ for each operating system.

1 # On macOS (with Homebrew/M1,M2,M3)
2 /opt/homebrew/lib/cmake/
3 /usr/local/lib/cmake/
4

5 # On Linux
6 /usr/lib/cmake/
7 /usr/local/lib/cmake/
8 /usr/share/cmake/

If a package is not found, it will report an error (if REQUIRED). When a package is found, it typically
provides
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1 # Common variables set by find_package
2 ${PACKAGE_NAME}_FOUND # Was it found?
3 ${PACKAGE_NAME}_INCLUDE_DIRS # Headers location
4 ${PACKAGE_NAME}_LIBRARIES # Library locations

While find_package looks for the system’s pre-built binaries, we can also get the source code from a library
directly and compile/link it along with our program. This is what FetchContent_Declare does.

Definition 2.27 (Fetch Content)

The FetchContent_Declare downloads code during CMake configuration and builds the library from
source as a part of my project. If you have your own project A and it requires dependency B, it
downloads and compiles B, compiles A, and then links the object files of A and B together to get the
final binary. In your cmake file, you must first

1 include(FetchContent)

and then

1 # First declare what you want
2 FetchContent_Declare(
3 googletest
4 GIT_REPOSITORY https://github.com/google/googletest.git
5 GIT_TAG main
6 )
7

8 # Then make it available (downloads & builds)
9 FetchContent_MakeAvailable(googletest)

It will have slower builds than finding a package since it compiles everything. In the backend, it is
really just doing an add_subdirectory of the downloaded repository’s source and binary directories,
with their own cmake files, and processing them.

3 Constants and Constant Expressions
One of the greatest advantages of C++ is that it is compiled, which allows us to reduce the runtime by
offloading computations into compile time. This is particularly important for speed-sensitive programs such
as algorithmic trading. Therefore, we should be familiar with consts and constexprs.

3.1 Compiler Optimization
By default, all expressions are evaluated at runtime, but compilers have different levels of optimization. Here
are some methods in which it optimizes, which follow the as-if rule that states that a compiler can modify
a program however it likes in order to produce more optimized code, so long as those modification do not
affect a program’s observable behavior.

Definition 3.1 (Constant Folding)

The compiler replaces expressions that have literal operands with the result of the operation, e.g. 3
+ 4 automatically gets evaluated to 7.
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Definition 3.2 (Constant Propagation)

In the code below, x is initialized to be 7 and will be stored in the memory allocated for x. On the
next line, the program will go out to memory to fetch the same value to print. This is redundant.
Therefore, the compiler will realize that x always has the constant value 7 and will replace all instances
of x with 7.

1 #include <iostream>
2

3 int main() {
4 int x { 7 };
5 std::cout << x << ’\n’;
6 return 0;
7 }

Definition 3.3 (Dead Code Elimination)

The compiler removes all code that has no noticeable effect on the program’s behavior. Note that
this is not a preprocessing step.

1 #include <iostream>
2 int main() {
3 int x { 7 }; // this line is removed.
4 std::cout << 7 << ’\n’;
5 return 0;
6 }

A slightly higher level optimization evaluates certain expressions during compile time.

Definition 3.4 (Compile-Time Expression)

A compile-time expression is an expression that must always be capable of being evaluated at
compile-time.

Example 3.1 ()

Say we have the following code.

1 const double x { 1.2 };
2 const double y { 3.4 };
3 const double z { x + y };

z may or may not be evaluated to 4.6 at runtime. By default it is evaluated at runtime, but it
depends on the compiler and level of optimization.

Shifting some of the evaluation from runtime to compile time makes your code faster, though it may make it
more difficult to debug since the compiler might rearrange the logic of your program (though in an equivalent
way). Therefore, at runtime, the compiled code no longer correlates with the original source code.

3.2 Constants
Now we talk about a seemingly separate, but very related concept.
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Definition 3.5 (Constant Variables)

Named constants are variables that cannot change.
1. They cannot be declared and must be initialized since they cannot change. This is called

constant expression initialization.
2. If a variable can be made constant, it should be. It reduces bugs and gives more opportunity

for compiler optimization, effectively reducing runtime and increasing compile time.
3. Function parameters that are const just tells the compiler that it won’t be changed during

the function execution. But since the variable is thrown away after the body, it doesn’t really
matter anyways. You can also return const types, but this is again a temporary copy and may
impede compiler optimizations so it not recommended.

4. In a way, consts are just like object-like directives with substitution text, but consts follow
scoping, so use consts whenever you can rather than macros.

Theorem 3.1 ()

All compiler-time expressions must be consts. However, a const variable does not guarantee that it
will be evaluated in compile time. With only consts, only const integral variables can be a part of a
constant expression. No other const variable is allowed.

Proof.

It is not surprising to see that if an expression can be evaluated at compile time, it must be a const
variable. Consider the contrapositive: if it wasn’t a const variable, then it may be initialized or
changed during runtime and therefore the expression cannot be evaluated at compile time. However,
the converse is not true.

3.3 Compile-Time Programming
Notice that when we really want a section of code to be evaluated at compile-time, the best we can do
is use const variables and hope that the compiler executes it. In other words, we are dependent on the
sophistication of the compiler, which is not ideal. To allow more explicit control over which parts of code
we want to execute at compile-time, we can use compile-time programming. In C++11, compile-time
programming was introduced with constant expressions, or constexprs.

Definition 3.6 (Constant Expression)

A constant expression is an expression that must be entirely evaluatable at compile-time.a They
generally contain the following:

1. Literals
2. Most operators with constant expression operands, e.g. 3 + 4, 2 * sizeof(int)
3. Constexpr variables
4. Constexpr function calls with constant expression arguments.

Any expression not a constant expression is called a runtime expression. The following cannot be
used in a constant expression.

1. Non-const variables (e.g. int x = 3;)
2. Const non-integral variables, even when they have a constant expression initializer (e.g. const

double d = 1.2). To use such variables, we need to define them with constexpr.
3. Function parameters.

There is a complex list of literals, operators, and variables that can and cannot be used in constant
expressions.

aalong with rules that determine how the compiler should handle these expressions.
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There are still two problems. First, the limitations of constant expressions not being able to contain const
non-integral variables is quite restricting. Second, even if we did have a constant expression, the compiler
will by default evaluate it at runtime. Fortunately, constexpr addresses both problems.

Definition 3.7 (constexpr Keyword)

The constexpr variable is always a compile-time constant. As a result, a constexpr variable must
be initialized with a constant expression, otherwise a compilation error will result. Here are some
examples.

1 constexpr double gravity = 9.8; // works for doubles now

Since a constexpr variable is really a constant expression, it is implicitly a const variable.

4 Lvalue and Rvalues

4.1 Lvalues and Rvalues
There are two types of a value expressions prior to C++11.

1. An lvalue expression evaluates to a named object (variable) or function. A modifiable lvalue can
be modified, while a non-modifiable lvalue cannot be modified (because it is const or constexpr).

2. An rvalue expression evaluates to everything else, such as unnamed objects (values), literals, or
unnamed functions (anonymous functions). They are not identifiable (meaning they have to be used
immediately) and only exist within the scope of the expression in which they are used.

Example 4.1 (Assignment Statement)

An assignment statement requires the use of the assignment operator and two subexpressions,
which are the operands. Note that the whole statement is also an expression.

1 int x = 2;

1. It requires the left operand to be a modifiable lvalue expression, and
2. the right operand to be an rvalue expression.

Lemma 4.1 (Implicit Conversion of lvalue to rvalue)

It turns out that in assignment statements, lvalues can also be on the right side since they are
implicitly converted to rvalues.

This gets very important when learning about references later on.

5 Control Flow and Error Handling
We are probably familiar with for loops and if statements, but C++ gives us a much wider suite of keywords
and operators to choose from. In here, we revisit three things:

1. Conditional statements. We visit them by comparing if and switch statements, along with seeing how
they may be evaluated at compile time when using constexprs.

2. Loops. We can approach them more formally now that we know about scope and duration.

3. Assert and exit statements.
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5.1 If Statements
Constexpr if statements can be evaluated at compile time, so we end up compiling only the block under the
condition that evaluates to true.

5.2 Switch Statements

5.3 Assert and Static Assert
Assert statements can be turned off with the #NDEBUG directive. static_assert checks at compile time, so
the condition must be a constant expression.

5.4 Halt Statements

6 Named Functions
Now we revisit named functions (as opposed to anonymous functions, which we need to know about structs
for), and explore it a bit more. This is our first compound type that we will delve into.

Definition 6.1 (Named Functions)

Note that when a function is called, it creates a new stack and copies the arguments into the new
stack frame. It does the evaluation and returns whatever expression by again copying, and all the
variables in the stack are destroyed. It is a compound type of form

1 T funcName(T arg1, T arg2, ...)

This picture of a function is especially important when dealing with its nuances.

6.1 Inline Functions
When we make a call to a function, we add another frame to our call stack, store the address of our
stack pointer, and then execute the function body in the new stack frame. This is known as the function
overhead.

Definition 6.2 (Inline Functions)

We can avoid this by using the inline keyword to define inline functions.

1 inline int add(int x, int y) {
2 return x + y;
3 }

As the name suggests, the compiler essentially replaces the function call with the function body,
treating as it if it were all on the same stack frame.

We get the benefits of no function overhead while still maintaining modularity of our code. However, abusing
this increases the size of our compiled executable, which may make our program slower. Most of the time,
the compiler is better at optimizing this.

6.2 Overloading
Functions can be overloaded based on their parameters, and the compiler will try to match the function call
to the appropriate overload based on the arguments, called overload resolution. The number of parameters
and types of parameters are used in differentiating, but not the return type.
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6.3 Deleting
Sometimes, functions may use implicit type conversion to call. For example, look at the code.

1 #include <iostream>
2

3 void printInt(int x) {
4 std::cout << x << ’\n’;
5 }
6

7 int main() {
8 printInt(5); // okay: prints 5
9 printInt(’a’); // prints 97 -- does this make sense?

10 printInt(true); // print 1 -- does this make sense?
11 return 0;
12 }

Definition 6.3 (Function Deleting)

If we want to enforce that a function cannot take other parameters, we can define that function as
deleted using the = delete specifier. A call to a deleted function will halt compilation.

1 #include <iostream>
2

3 void printInt(int x) {
4 std::cout << x << ’\n’;
5 }
6

7 void printInt(char) = delete; // calls to this function will halt compilation
8 void printInt(bool) = delete; // calls to this function will halt compilation
9

10 int main() {
11 printInt(97); // okay
12

13 printInt(’a’); // compile error: function deleted
14 printInt(true); // compile error: function deleted
15

16 printInt(5.0); // compile error: ambiguous match
17

18 return 0;
19 }

6.4 Default Arguments
Explicit arguments must all come before any default argument.

Default arguments can not be redeclared, and must be declared before use. Therefore, for forward declara-
tions, the default argument can be declared in either the forward declaration or the function definition, but
not both.

However, note that default arguments can lead to ambiguous matches.
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6.5 Template Functions

Definition 6.4 (Template Functions)

Let’s talk about the syntax. We start with the keyword template, which tells the compiler that we’re
creating a template. Next we specify all the template parameters that our template will use inside
the brackets. For each type template parameter, we use the keyword template or class, followed by
the name of the type template parameter (e.g. T).

1 template <typename T>
2 T add(T x, T y) {
3 return x + y;
4 }

Function templates are not actually functions. Their code isn’t compiled or executed directly. Instead,
function templates have one job: to generate functions (that are compiled and executed), called
function instantiation. The instantiated functions are called function instances, and they are
implicitly inline. When we call a function with a new template argument, it gets instantiated during
translation. Therefore, if we called add with arguments int and double, the result of our compilation
would look as if we had explicitly defined the following functions.

1 template<>
2 int max<int>(int x, int y) // the generated function max<int>(int, int)
3 {
4 return (x < y) ? y : x;
5 }
6

7 template<>
8 double max<double>(double x, double y) // the generated function max<double>(double,

double)
9 {

10 return (x < y) ? y : x;
11 }

Here are some properties.

Lemma 6.1 (Normal Function Call Priority)

Template functions can be called in several ways. However, a normal function call syntax will prefer
a non-template function over an equally viable function instantiated from a template.

1 template <typename T>
2 T max(T x, T y)
3 {
4 std::cout << "called max<int>(int, int)\n";
5 return (x < y) ? y : x;
6 }
7

8 int max(int x, int y)
9 {

10 std::cout << "called max(int, int)\n";
11 return (x < y) ? y : x;
12 }
13

14 int main()
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15 {
16 std::cout << max<int>(1, 2) << ’\n’; // calls max<int>(int, int)
17 std::cout << max<>(1, 2) << ’\n’; // deduces max<int>(int, int) (non-template

functions not considered)
18 std::cout << max(1, 2) << ’\n’; // calls max(int, int)
19

20 return 0;
21 }

Lemma 6.2 (Static Local Variables)

If a static local variable is defined in a template function, every function instance will have its own
copy of the static local variable.

1 #include <iostream>
2

3 template <typename T>
4 void printIDAndValue(T value) {
5 static int id{ 0 };
6 std::cout << ++id << ") " << value << ’\n’;
7 }
8

9 int main() {
10 printIDAndValue(12); // 1) 12
11 printIDAndValue(13); // 2) 13
12 printIDAndValue(14.5); // 1) 14.5
13 return 0;
14 }

Lemma 6.3 (No Implicit Type Conversions)

Unlike explicit functions, function instances are strict in that they will not do any implicit type
conversions. In the left, the call to max is okay since the int will be converted to a double. On the
right, however, will generate an error.

1 double max(double x, double y) {
2 return (x < y) ? y : x;
3 }
4

5 int main() {
6 std::cout << max(2, 3.5) << ’\n’; //

okay
7 return 0;
8 }
9 .

1 template <typename T>
2 T max(T x, T y) {
3 return (x < y) ? y : x;
4 }
5

6 int main() {
7 std::cout << max<double>(2, 3.5) <<

’\n’; // error
8 return 0;
9 }

Definition 6.5 (Multiple Template Type Parameters)
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Definition 6.6 (Overloading Function Templates)

Lemma 6.4 (Function Templates in Multiple Files)

When we forward declare a function template, we cannot just define the template function in another
file.

1 // main.cpp
2 template <typename T>
3 T addOne(T x); // template forward

declaration
4

5 int main() {
6 std::cout << addOne(1) << ’\n’;
7 std::cout << addOne(2.3) << ’\n’;
8 return 0;
9 }

1 // add.cpp
2 template <typename T>
3 T addOne(T x) {
4 return x + 1;
5 }
6 .
7 .
8 .
9 .

10 .

This would get a linker error since the linker cannot see the definitions of all the function instances.
There are two solutions to this.

1. We can use a header file that contains the function template definition and add that along with
a header guard. This is recommended.

1 // main.cpp
2 template <typename T>
3 T add(T x, T y);
4

5 int main() {
6 std::cout << add(1, 2) << "\n";
7 std::cout << add(’1’, ’a’) << "\n";
8 return 0;
9 }

1 // add.cpp
2 template <typename T>
3 T add(T x, T y) {
4 return x + y;
5 }
6 template int add<int>(int x, int y);
7 template char add<char>(char x,

char y);
8 .

2. We can explicitly define all the necessary function instances.a This might be okay if we are
using enum types.

1 // main.cpp
2 #include "add.h"
3

4 int main() {
5 std::cout << add(1, 2) << "\n";
6 std::cout << add(’a’, ’b’) << "\n";
7 return 0;
8 }

1 // add.cpp
2 #pragma once
3

4 template <typename T>
5 T add(T x, T y) {
6 return x + y;
7 }
8 .

6.6 Non-Type Template Parameters
As of C++20, function parameters cannot be constexpr. Therefore, we cannot enforce that these parameters
should be fixed at compile time. There may be times where we would like to build a constexpr from the
function parameters (say, to do a static_assert check on some value), but function parameters cannot be
constexpr and therefore this is impossible.

aBefore C++20, only integral, enumeration type, or constexpr can be a template parameter.
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Definition 6.7 (Non-Type Template Parameters)

It turns out that non-type template parameters can indeed be constexpr, so they can indeed be used
to build constexpr and therefore evaluate at compile time. Again, function instantiations are inline.

Example 6.1 (Motivation)

Say that we have this code.

1 double getSqrt(double d) {
2 assert(d >= 0.0 && "getSqrt(): d must be non-negative");
3 return std::sqrt(d);
4 }
5

6 int main() {
7 std::cout << getSqrt(5.0) << ’\n’;
8 std::cout << getSqrt(-5.0) << ’\n’;
9 return 0;

10 }

When we run getSqrt(-5.0), we will runtime assert out. While this is better than nothing, because
-5.0 is a literal (and implicitly constexpr), it would be better if we could static_assert so that er-
rors such as this one would be caught at compile-time. However, static_assert requires a constant
expression, and function parameters can’t be constexpr... However, if we change the function param-
eter to a non-type template parameter instead, then we can do exactly as we want. The following
will fail to compile.

1 template <double D>
2 double getSqrt() {
3 static_assert(D >= 0.0, "getSqrt(): D must be non-negative");
4 return std::sqrt(D);
5 }
6

7 int main() {
8 std::cout << getSqrt<5.0>() << ’\n’;
9 std::cout << getSqrt<-5.0>() << ’\n’;

10 return 0;
11 }

Template parameters can’t always be used over regular parameters since the parameter itself may not be a
constant expression, so regular parameters are still necessary for runtime evaluation. Here are some other
properties.

Lemma 6.5 ()

Non-type template parameters can be implicitly type-casted.

Lemma 6.6 ()

We can use type-deduction for non-type template parameters using auto.

1 template <auto N> // deduce non-type template parameter from template argument
2 void print() {
3 std::cout << N << ’\n’;
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4 }
5

6 int main() {
7 print<5>(); // N deduced as int ‘5‘
8 print<’c’>(); // N deduced as char ‘c‘
9 return 0;

10 }

7 References
References and pointers are the next compound types that we will look at. While the language we have
explained so far is pretty good, there is a problem. We’ve said that a variable is simply an object with a
name. Since it’s an object, it has an address where it stores some value at that address. Say that we want
to create two separate variables that has the same address, so that we can have two paths to modify the
value. We cannot do this since the new initialized variable stores a copy of the value at a different address.

1 int x = 2; // stores 2 at address A
2 int y = y; // stores 2 at address B

Therefore modifying y will not modify x. This problem of not being able to create two names that bind to
the same object is problematic, and this is a generalization of two more specific problems.

Example 7.1 (Copying During Functions Calls May Be Expensive)

We have explained that when calling a function, it copies all of the arguments in the stack to the new
stack frame. This may be good for isolation, but this is a double-edged sword. If we have a large
object to copy to do some read operations on, this may be inefficient.

Example 7.2 (In-Place Modification)

If we want a function to modify the value of one of its arguments, this is impossible since it just
copies the argument in a new variable, modifies this, and then gets deleted. We could have it return
the modified object to override the old one in the parent frame, but this copying of the return value
is again slow.

This is where references and pointers come into the rescue. They are similar in that they mainly serve the
same purpose, but their behaviors can differ. Generally, references are considered safe while pointers are
considered dangerous. There are things that pointers can do that references cannot, and vice versa.

7.1 Lvalue References

Definition 7.1 (Lvalue Reference)

A reference is an alias for an existing variable (we say it is bound to the variable), not a variable
(and therefore not an object) itself.a However, whatever we do to the reference will persist in the
original variable. There are two types of references.

1. lvalue references are references that refer to an lvalue. 99% of the time we work with lvalue
references.

1 int x = 2;
2 int& y = x;
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2. rvalue references are references that refer to an rvalue.
A reference evaluates to the variable when used in an expression.

Here we list a few important properties.

Lemma 7.1 (Typechecking)

Lvalue references will (usually) only bind to an object matching its referenced type.

Lemma 7.2 (Initialization)

Lvalue references must be initialized. They cannot be declared.

Lemma 7.3 (No Reseating)

Lvalue references can’t be reseated (changed to refer to another object).

Lemma 7.4 (Scope and Duration)

Lvalue references follow the same scoping and duration rules that normal variables do.

Lemma 7.5 (References of References)

You cannot have references of references, since the right-expression in the assignment statement will
evaluate to the variable.

1 int x = 5;
2 int &y = x;
3 int &z = y; // y evaluates to x, so z is still a reference to int

Lemma 7.6 ()

Lvalue references and referents have independent lifetimes. An lvalue reference should always be
initialized after the referent. However, one can by destroyed before the other.

1. If the reference is destroyed before the referent, this is fine.
2. If the referent is destroyed before the reference, this results in a dangling reference.

7.2 Rvalue References
Rvalue references are useful in that they can extend the lifespan of the object they are initialized with to
the lifespan of the rvalue reference.

Definition 7.2 (Rvalue Reference)

aIf possible, the reference may be replaced with the variable name by the compiler. This isn’t always possible, so perhaps
references may require storage.

36/ 41



C++ Muchang Bahng Winter 2024

7.3 Pass and Return by Reference

Theorem 7.1 (Object must outlive Function)

The programmer must be sure that the object being referenced outlives the function returning the
reference. Otherwise, the reference will be let dangling.

8 Pointers

Definition 8.1 (Pointer)

A pointer is an object that holds a memory address as its value. Given an address, we can deref-
erence them with * and get their address using &.

1 int x = 4;
2 int* y = &x;
3 std::cout << y << ’\n’;
4 std::cout << *x << ’\n’;

We can modify what the value that the pointer points to by dereferencing the pointer. If we have a
const variable, then we must use a const pointer, which must be initialized.

1 const int x = 4;
2 const int *p = &x; // good
3 int *p = &x; // compilation error

Immediately this seems extremely similar to lvalue references. Here we list a few properties which help
differentiate them.

Lemma 8.1 (Typechecking)

Pointers will (usually) only bind to an object matching its pointed type.

Lemma 8.2 (Declaration is Okay)

Pointers can be declared rather than initialized. If it is, then it is known as a wild pointer. Rather,
we should initialize it to null to make it a null pointer. We can use the nullptr literal.

1 int* p;
2 int* q = nullptr // null pointer since it’s not holding address

Dereferencing both a wild and null pointer leads to undefined behavior. Null pointers are falsy, so we
can use them to evaluate whether we have a null pointer.

Lemma 8.3 (Reseating Allowed)

Pointers can be reseated, meaning that we can change the address that the pointer is pointing to.

1 int x = 3;
2 int y = 4;
3 int *p = &x;
4 *p = &y; // points now to &y from &x
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We can see that through both references and pointers, we can indirectly access an object. References may
be more convenient since the dereferencing happens implicitly while for pointers, we must explicitly use the
* operator.

It’s worth noting that the address of operator doesn’t return a literal, but rather a pointer variable that
stores the address.

1 int x = 5;
2 std::cout << &x // returns pointer, not address literal

Again, if you destroy the object that the pointer is pointing to, then we get a dangling pointer, which
leads to undefined behavior. It is easy to test whether a pointer is null or not, but if it isn’t, there is no easy
way to determine if it’s dangling.

8.1 Pass and Return by Address
In addition to pass by value and reference, we can pass in the address of an object as an argument into a
function.

Definition 8.2 (Pass by Address)

Given a function that takes in a pointer p, we can interpret it as
1. a pass by address of the object type p is pointing to.
2. a pass by value of the pointer p

Therefore, the address will be copied, but the actual object will not be.

1 int doSomething(int* p);

8.2 Smart, Shared, and Unique Pointers

8.3 Function Pointers

9 Enumerations
If we wanted to define a new type that takes values in some discrete space, then we can use an enum.

Definition 9.1 (Unscoped Enumerations)

An enumeration is a compound data type whose values are restricted to a set of symbolic constants,
called enumerators. These enumerators will implicitly convert to integral values as such.

1 enum Color {
2 red, // 0
3 green, // 1
4 blue // 2
5 };
6

7 int main() {
8 Color shirt = red;
9 std::cout << shirt; // prints 0

10 }

They must be fully defined before we can use it. A forward declaration is not sufficient. Enumerations
are implicitly constexpr. Unscoped enumerations have the same scope as where they are defined in.
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If they are defined in the global namespaces, then they have global scope.

Theorem 9.1 (Integral Labels can be Explicitly Assigned)

We can actually explicitly label.

1 enum Animal {
2 cat = -3, // values can be negative
3 dog, // -2
4 pig, // -1
5 horse = 5,
6 giraffe = 5, // shares same value as horse
7 chicken, // 6
8 };

10 Structs

Definition 10.1 (Structs)

Structs are compound types that allow you to store multiple values of different types. We can define
them as such.

1 struct Employee {
2 int id {};
3 int age {};
4 double wage {};
5 };

We can also initialize them in two ways:
1. By defining their component data types, called aggregate initialization.

1 int main() {
2 Employee frank = { 1, 32, 60000.0 }; // copy-list initialization using braced

list
3 Employee joe { 2, 28, 45000.0 }; // list initialization using braced list
4 Employee bob {2, 28} // bob.wage value-initialized to 0.0
5 return 0;
6 }

2. With another struct of the same type.

1 int main() {
2 Employee frank = { 1, 32, 60000.0 };
3 Employee bob = frank; // copied
4 return 0;
5 }

Like functions, the initialization behaves similarly.
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Lemma 10.1 (Missing Initialization Values)

When doing aggregate initialization, if we do not give the struct enough values in our list to cover all
attributes, the remaining attributes are value-initialized (e.g. ints are initialized to 0, floats to 0.0,
etc.).

1 int main() {
2 Employee frank = { 1, 32 }; // no double for salary given
3 std::cout << frank.salary << std::endl; // prints 0
4 return 0;
5 }

Lemma 10.2 (Default Initialization Values)

We can add default values in our definition of the struct. It is always recommended to.

1 struct Employee {
2 int id = 0;
3 int age = 1;
4 double wage = 10000.0;
5 };

11 Classes

11.1 Basics

Definition 11.1 (Class)

A class is a keyword that is used to make a user-defined compound type.

11.2 Functors

Definition 11.2 (Functors)

Functors are callable objects.

This is similar to Python’s __call__() dunder method.

11.2.1 Anonymous Functions and Captures

It’s a bit weird that we talk about anonymous functions in the class, but this is exactly because lambda
functions are implemented as classes under the hood. j

Definition 11.3 (Anonymous Functions)
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11.3 Inheritance

12 Virtual Functions

13 Standard Library
Now that we’ve built up the basics, we can go into the implementation of the data structures and algorithms
in the standard library.

13.1 String

13.2 Array

13.3 Vector

14 Dynamic Memory Allocation
So far, we’ve worked only in the stack, where our variables were limited to its scope and were destroyed after
the block ends. If we want to keep objects in a more persistent memory location, we use the heap.

15 Operator Overloading

16 Building
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