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1 Cryptography
The most primitive types of encryption before the advent of computers consisted of Caesar Cipher, Vigenere
cipher, Hill’s Cipher, and Verman cipher (for brief descriptions, see here). All of these were easily decipherable
by foreign parties using computers, so more sophisticated methods were developed, such as RSA, SHA, and
AES, to list a few.

These advanced encryption methods can be categorized into 2 categories (plus an extra group for hash
functions), followed by examples. These example algorithms differ from each other by how much data they
can handle at once (when splitting strings into blocks of text and encrypting each of the blocks at a time)
and what kind of key it needs for its decryption.

1. Symmetric encryption requires both parties (the sender and the receiver) to have access to the
same key. So, the recipient needs to have the key before the message is decrypted. This works best
for closed systems, which have less risk of a third-party intrusion. Symmetric encryption is faster than
asymmetric encryption, but the limit is that both parties must securely store their keys before any
message is sent.

• AES (Advanced Encryption System) is one of the most secure and widely used encryption
types, used by governments and businesses. It encrypts data in blocks, splitting up the plaintext
into certain blocks, encrypting them separately. Additionally, each encryption method has a
different number of rounds of encryption.

– AES-128 encrypts blocks of a 128-bit size with 10 rounds

– AES-192 encrypts blocks of a 192-bit size

– AES-256 encrypts blocks of a 256-bit size with 14 rounds

• DES (Data Encryption Standard) was the accepted standard of encryption in the 1970s but
is considered unsafe on its own. It encrypts 56 bits of data in a block, i.e., a block/key length of
56 bits.

• 3DES/TDEA (Triple Data Encryption Algorithm) is an upgraded version of DES used
today, which uses three separate 56-bit keys for triple protection. The shorter block lengths are
encrypted three times, but newer forms may take over soon.

2. Asymmetric encryption, also called public-private key encryption, uses two keys for the en-
cryption process, a public-private key pair (public, private). If user A, with pair (g, g′), wants to send
user B, with pair (f, f ′), a message M, A can take B’s public key and encrypt the message to get the
ciphertext f(M). They can send this encrypted message over the internet to B, where B will use their
own private key to decrypt the message to get f ′(f(M)). Mathematically speaking, letting T be the
set of all strings, the public key f : T → T is a mapping that encrypts a message into a jumble of
characters, known to the world, while the private key f ′ : T → T is precisely the inverse of f . Usu-
ally, f ′ is almost impossibly hard to compute, which is what makes asymmetric encryption so secure.
Even though public-key encryption is slower, it has the huge advantage of allowing any two parties to
communicate to each other, without the need to exchange keys in advance.

• RSA (Ron Rivest, Adi Shamir, Leonard Adleman) takes advantage of the mathematical
fact that it is easy to multiply 2 large prime numbers together, but it is not easy to factor a large
number into two prime numbers (by large we’re talking on the order of hundreds of digits). The
math behind RSA is here. It is extremely secure, with an estimated breaking time of thousands
or millions of years before an RSA encryption is brute-force cracked. Another great advantage
of RSA is its scalability, coming with various encryption key lengths such as 768-bit, 1024-bit,
2048-bit, 4096-bit, etc., but it is not practical for large or numerous files due to speed.

• ECC (Elliptic Curve Cryptography) is based on the algebraic structure of elliptic curves over
finite fields. It also works on the principle of irreversibility (easy to compute in one direction but
painfully difficult to reverse it). More specifically, the security of ECC depends on the ability to
compute a point multiplication and the inability to compute the multiplicand given the original
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and product points. The size of the elliptic curve, measured by the total number of discrete integer
pairs satisfying the curve equation, determines the difficulty of the problem.

3. Another type of encryption used is called the cryptographic hash function, which is an algorithm
that takes an arbitrary amount of data input and produces a fixed-size output of enciphered text called
a hash value, or hash. It is extremely hard to decode, so it is mainly used as a one-way encryption.

• MD5 (Message Digest 5) creates 128-bit outputs but is an outdated method.

• SHA-1 is the second version of the Secure Hash Algorithm, after SHA-0. SHA-1 creates 160-bit
outputs and replaced MD5.

• SHA-2 is a suite of hashing algorithms much more secure than SHA-1 algorithms, with each
algorithm represented by the length of its output.

– SHA-224 creates 224-bit outputs.

– SHA-256 creates 256-bit outputs.

– SHA-384 creates 384-bit outputs.

– SHA-512 creates 512-bit outputs.

• LANMAN (LAN manager) is the Microsoft LAN Manager hashing algorithm, used by legacy
Windows systems, but due to weaknesses, it is not used today.

• NTLM (NT LAN Manager algorithm) is used for password hashing during authentication
and is the successor of the LANMAN algorithm.

Let’s talk about public-key encryption for a second. User A has no problem sending a secure message to
B, but there is a huge problem: B has no way of verifying that the message actually came from A! Some
hostile third party C could have sent a misleading message N to B by encrypting N with B’s public key to
get f(N). B has no way to know whether f(N) or f(M) is the correct one.

In order to verify the identity of the sender, digital signatures come into play. In order for A to prove
the authenticity of the message M (or to be exact, the encrypted message f(M)), A must digitally sign
the document/message. First, A uses a hash function H to generate the encrypted version of the message,
getting H(f(M)) (this hash function is well known). Now, this is further encrypted using A’s private key g′

to produce g′(H(f(M))). This is appended to the document and sent to B with A’s public key as a triplet
(f(M), g′(H(f(M))), g). B, upon receiving this triplet, has everything they need to verify the sender’s
identity.

• B first takes the well-known hash function H and computes H(f(M)) himself.

• B takes the string g′(H(f(M))) and decrypts it using the public key g to get g(g′(H(f(M)))) =
H(f(M))

• If the two values match, then B can verify that the sender who has that public key g also has the
correct private key g′, and is therefore user A.

Let’s observe the futility of (third-party) C’s efforts when trying to send a false message. Assume that C
has key pairs (k, k′).

• C can send the key triple using their own public key as (f(M), k′(H(f(M))), k). Certainly, the hash
functions will match since H(f(M)) = k(k′(H(f(M)))), but B can clearly see that the public key
received is k, and not g like it’s supposed to be.

• C can try sending the public key as g (since A’s public key g is open to everyone) to send the triple
(f(M), k′(H(f(M))), g). However, B would find out that H(f(M)) ̸= g(k′(H(f(M)))), and so the
hashes don’t match.
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Either way, C has no hope of impersonating A. Note that this is all dependent on sender A keeping their
private key g′ secure. If user C had access to g′, then this entire security system is compromised. In other
words, two separate entities in possession of the same key-pair are indistinguishable within the network.

1.1 Elliptic Curve Cryptography
We first introduce the Discrete Logarithm problem. It is well known that for any given a, b ∈ R, the
logarithm logb a is a number x such that bx = a. Analogously, in any algebraic group G, powers bk can be
defined for all integers k, and the discrete logarithm logb a is an integer k such that bk = a. Discrete
logarithms are quickly computable in a few special cases, but no efficient method is known for computing
them in general.

For our purposes, we can define an elliptic curve as a plane curve over a finite field which consists of the
points satisfying the equation

y2 = x3 + ax+ b (1)

along with a distinguished point at infinity, denoted ∞. The coordinates here are chosen from a fixed finite
field of characteristic not equal to 2 or 3. This set together with the group operation of elliptic curves
(described here and more informally below) is an abelian group, with the point at infinity as an identity
element.

Bitcoin uses a specific elliptic curve and a set of mathematical constants, as defined in a standard called
secp256k1, established by the National Institute of Standards and Technology (NIST). The secp256k1 curve
defined by the following function

y2 = (x3 + 7) over Fp × Fp (2)

or

y2 mod p = (x3 + 7) mod p (3)

where p = 2256−232−29−28−27−26−24−1, produces an elliptic curve that looks like the following. Note
that it is a collection of points since the "curve" is embedded in a discrete field rather than a continuum. In
actuality, the following visual is for when p = 17.

5/ 46

https://en.wikipedia.org/wiki/Elliptic_curve#The_group_law


Muchang Bahng Fall 2024

Figure 1: Discrete Elliptic Curve

One solution is the point

1 x = 55066263022277343669578718895168534326250603453777594175500187360389116729240
2 y = 32670510020758816978083085130507043184471273380659243275938904335757337482424

On a larger scale, the curve has more of a sense of randomness to it as we zoom out or embed it into different
2-manifolds.

Figure 2: Elliptic Curve on a larger scale

On this set of points on the elliptic curve, we can define an additive (group) operator + as such:

• Given any two different points P1, P2 on the elliptic curve, there is a third point P3 = P1 + P2 on the
elliptic curve. Geometrically, this third point P3 is calculated by drawing a line between P1 and P2,
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and this line will intersect the elliptic curve in exactly one additional place. Call this point P ′
3 = (x, y),

and then reflect this in the x-axis to get P3 = (x,−y).

• If P1 = P2, then the line drawn is merely just the tangent line of the extension of the curve into the
real plane at P1, and this line is guaranteed to intersect the curve in exactly one point.

• If P1 or P2 is the point at infinity, then it acts as the identity element. That is, P +∞ = ∞+ P = P

It is also true that + is associative in this group, so we can extend this to define multiplication as repeated
addition.

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

(4)

It turns out that multiplying (i.e., repeatedly adding) is easy to do, but to go the other way around is
notoriously hard.

2 Base58 Encoding and WIF Format
Since this encoding occurs so often in the following sections, let us review it separately. Say that we have a
string of hexadecimal characters, called the payload. Usually, payloads in hexadecimal are conventionally
converted into a Wallet Import Format (WIF) using a method called Base58Encode.

Base58Check has the following features:

• An arbitrarily sized input.

• A set of 58 alphanumeric symbols consisting of easily distinguished uppercase and lowercase letters
(0O, lI) are not used. The alphabet is:

1 123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

• Unlike a hash function, one can easily convert a number in any base from and to Base58Check.

The steps to encode it are shown:

• We determine a version prefix (in hex) for the payload that tells us what type of information it
represents and attach the prefix onto the payload to get

1 Version Prefix + Payload

• We compute the checksum by taking the first four bytes (i.e., 8 hex digits) of the double-SHA of the
Version Prefix + Payload and adding it to the end to get:

1 Version + Payload + Checksum = Version + Payload + SHA256(SHA256(Version Prefix +
Payload))

• Then we convert the entire hex number into Base58, which has the alphabet ultimately producing

1 Base58(Version + A + Checksum)

Some common version prefixes and the prefixes they produce after Base58Check encoding:
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Type Version Prefix (hex) Base58 Result Prefix
Bitcoin Address 0x00 1
Pay-to-Script-Hash Address 0x05 3
Bitcoin Testnet Address 0x6F m or n
Private Key WIF 0x80 5, K, or L
BIP38 Encrypted Private Key 0x0142 6P
BIP32 Extended Public Key 0x0488B21E xpub

Table 1: Version Prefixes and Their Base58 Result Prefixes

Figure 3: Base58Check Encoding Process

3 Bitcoin Keys and Addresses
In the early days of Bitcoin, it was possible to send payments to an IP-address like 104.25.248.32. This was
planned to be a convenient method to use Bitcoins without dealing with public keys and addresses. However,
after realizing that this process was vulnerable to man-in-the-middle attacks, the option was disabled and
newer forms of addresses came out.

Fundamentally, a Bitcoin wallet is basically a file that contains a public-private key pair (K, k) following
the Elliptic Curve Cryptography system. Our fundamental base will be in hexadecimal. Most generally, the
steps are as such:

• The private key k is a randomly generated 64-digit hexadecimal number (256-bits). It is stored in one
of two main forms, with WIF-compressed being the more recently used form:

– WIF-Uncompressed: Base58Check with a version prefix of 0x80, resulting in Base58 Result
prefix of 5.

– WIF-Compressed: Base58Check with a version prefix of 0x10, resulting in Base58 Result prefix
of K or L.

• The public key K can easily be computed by k using elliptic curve multiplication K = k ∗ G (which
is irreversible), where k is the private key, G is a constant point (x0, y0) called the generator point
(called this because it is the generating point of the entire group), and K is the resulting public key.
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Now, depending on which WIF form that k is in, K is stored in one of two ways. Note that K is a
pair of hexadecimal numbers.

– If k is WIF-Uncompressed, the pair of numbers K = (K1,K2) are simply concatenated with the
prefix 04

1 04 + K_1 + K_2

– If k is WIF-Compressed, only the first number K1 is stored with the prefix being 02 if K2 is
odd or 03 if K2 is even. This actually turns out to be a lossless form of compression, which is
explained here.

1 K_2 even --> 02 + K_1
2 K_2 odd --> 03 + K_1

• The Bitcoin address A is derived from the public key through the use of one-way cryptographic
hashing with the functions SHA256 and RIPEMD160. This composite function, called SHA160, produces
a 160-bit/20-byte number, i.e. a 40-digit hexadecimal. Note that the compressed and uncompressed
forms produce different bitcoin addresses!

1 A = RIPEMD160(SHA256(K)) = SHA160(K)

• This address A is almost always presented in WIF using Base58Check.

For bitcoin, the specific elliptic curve that is used is referred to as secp256k1, and the generator/base point
is always the same for all bitcoin addresses. It has hexadecimal coordinates:

1 x = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
2 y = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

which in compressed form is

1 G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

and uncompressed form is

1 G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
2 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

The diagram below shows a comprehensive outline of the key-producing processes, which has two paths (for
when a WIF-uncompressed or a WIF-compressed private key is created).
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Figure 4: WIF Compressed and Uncompressed Comparison

4 Cryptocurrency Wallets
Wallets are containers for private keys, usually implemented as structured files or databases. One common
misconception is that Bitcoin wallets contain coins, but that’s not true at all. Wallets contain just the
keys, not coins. Each user has a wallet containing keys. Wallets are really keychains containing pairs of
private/public keys, and users sign transactions with the keys, thereby proving they own the transaction
outputs (their coins). The coins are stored on the blockchain in the form of transaction-outputs (often noted
as vout or txout). There are two types of wallets:

• Nondeterministic (Random) wallets are simply collections of randomly generated private keys,
but they are cumbersome to manage, back up, and import, especially if you want to avoid address
re-use because that means managing many keys, which creates the need for frequent backups.

• Deterministic (Seeded) wallets are wallets that contain private keys that are all derived from a
common seed, through the use of a one-way hash function from a previous private key, linking them in
sequence. As long as you can re-create that sequence, you only need the first key (known as the seed
or master key) to generate them all. The seed is also sufficient for a wallet export or import, allowing
for easy migration of all the user’s keys between different wallet implementations.

4.1 Mnemonic Code Words
To make storing these words easier, we use mnemonic code words (a sequence of 12 24 English words)
to encode the seed. The mnemonic code represents 128 to 256 bits, which are used to derive a longer
(512-bit) seed through the use of the key-stretching function PBKDF2. The resulting seed is used to create a
deterministic wallet and all of its derived keys.
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128-bit 256-bit
Entropy Input 0c1e24e5917779d29

7e14d45f14e1a1a
2041546864449caf
f939d32d574753
fe684d3c947c33467
13dd8423e74abcf8c

Mnemonic army van defense carry jealous
true garbage claim echo media
make crunch

cake apple borrow silk endorse
fitness top denial coil riot stay
wolf luggage oxygen faint major
edit measure invite love trap field
dilemma oblige

Seed 3338a6d2ee71c7f28eb5b88215963
4cd46a898463e9d2d0980f8e80dfb
ba5b0fa0291e5fb888a599b44b931
87be6ee3ab5fd3ead7dd646341b2c
db8d08d13bf7

3972e432e99040f75ebe13a660110
c3e29d131a2c808c7ee5f1631d0a9
77fcf473bee22fce540af281bf7cd
eade0dd2c1c795bd02f1e4049e205
a0158906c343

Table 2: Examples of Mnemonic Code Words

4.2 Hierarchical Deterministic Wallets (BIP0032/BIP0044)
The most advanced form of deterministic wallets is the hierarchical deterministic wallet, or HD wallet,
defined by the BIP0032 standard. Hierarchical deterministic wallets contain keys derived in a tree structure,
such that a parent key can derive a sequence of children keys, each of which can derive a sequence of
grandchildren keys, and so on, to an infinite depth. This type of wallet is more specifically called a Type-2
HD wallet.

Figure 5: Hierarchical Deterministic Wallets

These wallets give both more of an organizational structure to the wallet. Additionally, users can create a
sequence of public keys without having access to the corresponding private keys. This allows HD wallets to
be used on an insecure server or in a receive-only capacity, issuing a different public key for each transaction.

HD wallets are created from a single root seed, which is a 128, 256, or 512-bit random number. The mnemonic
code words are derived for the user to back up, and the root seed is inputted into the HMAC-SHA512 algorithm
to output the master private key m (which itself produces the master public key M using normal elliptic
curve multiplication m ∗G) and a master chain code, which is used to introduce entropy in the function
that creates child keys from parent keys.
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Figure 6: HD Wallet Creation Process

Hierarchical deterministic wallets use a child key derivation (CKD) function to derive children keys from
parent keys. It takes in the inputs:

• A parent key, which could be private or public.

• A seed called a chain code (256 bits)

• An index number (32 bits) which represents the ith children of a parent (e.g. Child 0, Child 1, Child
2, etc.)

and outputs a 512-bit hash, which is really just a concatenation of the child 256-bit key and a 256-bit chain
code, called an extended key. We can represent the hash mathematically as a function CKD where

1 CKD(parent key, parent chain code, index) = (child key, child chain code)

Let us concentrate on the parent key input for the CKD function. One of the most important things about
CKD is that it suffices the commutative diagram below, where k represents a private key, K represents a
public key, * represents the normal elliptic multiplication that generates a public from a private key, and
CKD is the child key derivation function.

Figure 7: CKD Commutative Diagram

This means that inputting the private parent key will generate a private child key, and a public child key
will generate a public child key. More specifically, there are two types of extended keys.

• An extended public key is the concatenation of a public key and a chain code, which is generated
by inputting a parent public key, the chain code, and the index. Note that you can’t generate any
private keys with the extended public key; only public keys. This ability to derive public child keys
from public parent keys without having the private keys is especially useful since it gives us two ways
to derive a child public key:

– from the child private key, or
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– directly from the parent public key

This shortcut can be used to create very secure public-key-only deployments where a server or appli-
cation has a copy of an extended public key and no private keys whatsoever. That kind of deployment
can produce an infinite number of public keys and bitcoin addresses, but cannot spend any of the
money sent to those addresses. Meanwhile, on another, more secure server, the extended private key
can derive all the corresponding private keys to sign transactions and spend the money.

One common application of this solution is to install an extended public key on a web server that
serves an ecommerce application. The web server can use the public key derivation function to create a
new bitcoin address for every transaction (e.g., for a customer shopping cart). The web server will not
have any private keys that would be vulnerable to theft. Another common application of this solution
is for cold-storage or hardware wallets. In that scenario, the extended private key can be stored on a
paper wallet or hardware device (such as a Trezor hardware wallet), while the extended public key can
be kept online.

• An extended private key is the concatenation of a private key and a chain code. This allows you
to generate both the private and public keys of all future generations, giving you complete control of
future wallets.

4.3 Extended Child Key Derivation - Non-Hardened Extended Private Key
The diagram below shows the generation of an extended child private key with an extended child private
key. Let us walk through the steps:

• The parent private key and the parent chain code are the inputs.

• The parent public key is generated through elliptic curve addition from the parent private key.

• An index between 0 and 231−1 is chosen and concatenated to the public key. We now have the parent
chain code and the

1 parent public key + index

• The parent chain code and the parent public key+index is put in through the HMAC-SHA512 function
to generate a 512-bit output.

– The new chain code is the last 256 bits of the result from the HMAC.

– The new private key is the first 256 bits of the result from the HMAC added to the original private
key. This essentially just takes the original private key and increases it by a random 32-byte
number (mod whatever the order of the field in which the elliptic curve exists).

• Notice how even though the initial inputs are the parent private key and the parent chain code, the
child chain code is really dependent upon the parent public key. Furthermore, the security of the child
private key comes from adding the randomly-produced 32-byte number (produced by the parent public
key and chain code) to the unknown parent private key.
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Figure 8: Non-Hardened Extended Private Key Derivation

4.4 Extended Child Key Derivation - Non-Hardened Extended Public Key
The diagram below shows the generation of an extended child public key with an extended child public key.
This is really just a sub-diagram of the one above.

• The parent public key and the parent chain code are the inputs.

• An index between 0 and 231−1 is chosen and concatenated to the public key. We now have the parent
chain code and the

1 parent public key + index

• The parent chain code and the parent public key+index is put in through the HMAC-SHA512 function
to generate a 512-bit output.

– The new chain code is the last 256 bits of the result from the HMAC.

– Note that a public key in ECC is really a point (x, y). We first take the first 256 bits from the
HMAC, multiply it by the generator point G to get some point in R2, and finally use elliptic curve
addition to get the point

1 Parent Public Key + (First 256 bits of HMAC * G)

which is the new child public key.

14/ 46



Muchang Bahng Fall 2024

Figure 9: Non-Hardened Extended Public Key Derivation

A few more points to quickly hit:

• Child private keys are indistinguishable from nondeterministic random keys. Because the derivation
function is a one-way function, the child key cannot be used to find a parent key nor any of its siblings
since this requires you to backtrack across the hash function.

• The child private key alone can be used to make a public key and thus a bitcoin address. Then, it can
be used to sign transactions to spend anything paid to that address, which is still a lot of power. The
lack of the chain code just restricts you from making new keys.

• A child private key, the corresponding public key, and the bitcoin address are all indistinguishable from
keys and addresses created randomly. The fact that they are part of a sequence is not visible, outside
of the HD wallet function that created them. Once created, they operate exactly as "normal" keys.

• The initial chain code seed (at the root of the tree) is made from random data, while subsequent chain
codes are derived from each parent chain code.

4.5 Extended Child Key Derivation - Hardened Extended Private Key
The ability to derive a branch of public keys from an extended public key is very useful, but it comes with a
potential risk. Access to an extended public key does not give access to child private keys. However, because
the extended public key contains the chain code, if a child private key is known, or somehow leaked, it can
be used with the chain code to derive all the other child private keys. A single leaked child private key,
together with a parent chain code, reveals all the private keys of all the children. Worse, the child private
key together with a parent chain code (which can be found in the extended parent public key) can be used
to deduce the parent private key, quite easily, in fact.
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Figure 10: Parent Private Key Compromise Scenario

The risk is that with this information, a hostile party could have access one level up the wallet tree (but
not beyond), allowing outsiders to spend the bitcoins at will. To prevent this, HD wallets use an alternative
derivation function called hardened derivation, which breaks the relationship between the parent public
key and child chain code. The hardened derivation function uses the parent private key to derive the child
chain code, instead of the parent public key. This creates a "firewall" in the parent/child sequence, with a
chain code that cannot be used to compromise a parent or sibling private key.

The diagram below shows the generation of a hardened extended child private key with an extended child
public key. This is really just a sub-diagram of the one above.

• The parent private key and the parent chain code are the inputs.

• An index between 231 and 232 − 1 is chosen and concatenated to the private key (note that unlike the
non-hardened version, we do not convert the private key into a public key first). We now have the
parent chain code and the

1 parent private key + index

• The parent chain code and the parent public key+index is put in through the HMAC-SHA512 func-
tion to generate a 512-bit output.

– The new chain code is the last 256 bits of the result from the HMAC.

– The new private key is the first 256 bits of the result from the HMAC added to the original private
key. This again just takes the original private key and increases it by a random 256-bit number.

• Note that this hardened child key was constructed by putting the private key into the HMAC function
(which an extended public key does not have access to), which means that child extended private keys
derived this way will have a public key that cannot be derived by a corresponding extended public key.
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Figure 11: Hardened Extended Private Key Derivation

When the hardened private derivation function is used, the resulting child private key and chain code are
completely different from what would result from the normal derivation function. The resulting "branch"
of keys can be used to produce extended public keys that are not vulnerable, because the chain code they
contain cannot be exploited to reveal any private keys. Hardened derivation is therefore used to create a
"gap" in the tree above the level where extended public keys are used. In simple terms, if you want to use
the convenience of an extended public key to derive branches of public keys, without exposing yourself to the
risk of a leaked chain code, you should derive it from a hardened parent, rather than a normal parent. As a
best practice, the level-1 children of the master keys are always derived through the hardened derivation, to
prevent compromise of the master keys.

The index number used in the derivation function is a 32-bit integer. To easily distinguish between keys
derived through the normal derivation function versus keys derived through hardened derivation, this index
number is split into two ranges. Index numbers between 0 and 231 − 1 (0x0 to 0x7FFFFFFF) are used only
for normal derivation. Index numbers between 231 and 232 − 1 (0x80000000 to 0xFFFFFFFF) are used only
for hardened derivation. Therefore, if the index number is less than 231, that means the child is normal,
whereas if the index number is equal or above 231, the child is hardened. More info about all this here and
here.

4.6 HD Wallet Key Identifier (Path)
Keys in an HD wallet are identified using a "path" naming convention, with each level of the tree separated
by a slash /. Private keys derived from the master private key start with m. Public keys derived from the
master public key start with M. Therefore, the first child private key of the master private key is m/0. The
first child public key is M/0. The second grandchild of the first child is m/0/1, and so on.

The "ancestry" of a key is read from right to left, until you reach the master key from which it was derived.
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For example, identifier m/x/y/z describes the key that is the zth child of key m/x/y, which is the yth child
of key m/x, which is the xth child of m. Some examples of paths are shown in the table.

HD Path Key Described
m/0 The first (0) child private key from the master private key (m)
m/0/0 The first grandchild private key of the first child (m/0)
m/0’/0 The first normal grandchild of the first hardened child (m/0’)
M/23/17/0/0 The first great-great-grandchild public key of the first great-grandchild of the 18th grandchild of the 24th child

Table 3: Examples of HD Wallet Key Paths

The HD wallet tree structure offers tremendous flexibility. Each parent extended key can have 4 billion
children: 2 billion normal children and 2 billion hardened children. Each of those children can have another
4 billion children, and so on. The tree can be as deep as you want, with an infinite number of generations.
With all that flexibility, however, it becomes quite difficult to navigate this infinite tree. It is especially
difficult to transfer HD wallets between implementations, because the possibilities for internal organization
into branches and subbranches are endless. Two Bitcoin Improvement Proposals (BIPs) offer a solution to
this complexity by creating some proposed standards for the structure of HD wallet trees, but we will not
get into them here.

5 Advanced Keys and Addresses

5.1 Encrypted Private Keys (BIP0038)
For more advanced security without expending too much accessibility, BIP0038 proposes a common standard
for encrypting private keys (based off of AES encryption) that uses an extra password to further encrypt a
WIF-formatted private key. For example, the WIF-Uncompressed private key with a prefix of 5 would be
encrypted to a Base58Check-encoded encrypted private key with prefix 6P. Therefore, a key starting with
6P means that a password must be needed to decrypt it. The most common use case for BIP0038 encrypted
keys is for paper wallets that can be used to back up private keys on a piece of paper. As long as the user
selects a strong passphrase, a paper wallet with BIP0038 encrypted private keys is incredibly secure and a
great way to create offline bitcoin storage (also known as "cold storage").

Figure 12: BIP38 Encryption Process

5.2 Vanity Addresses
Vanity addresses are valid bitcoin addresses that contain human-readable messages. For example,

1 1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33

contains the letters forming the word "Love" as the first four Base58 letters. Vanity addresses require
generating and testing billions of random candidate private keys, until one derives a bitcoin address with the
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desired pattern. Vanity addresses are no less or more secure than any other address. You can no more easily
find the private key of an address starting with a vanity pattern than you can any other address. Looking
at the pattern "KidsCharity", we can approximate how frequently we might find this pattern in a bitcoin
address in the figure below. An average desktop PC without specialized hardware can search approximately
100,000 keys per second.

Length Pattern Frequency Average Search Time
1 1K 1 in 58 keys 1 millisecond
2 1Ki 1 in 3,364 50 milliseconds
3 1Kid 1 in 195,000 2 seconds
4 1Kids 1 in 11 million 1 minute
5 1KidsC 1 in 656 million 1 hour
6 1KidsCh 1 in 38 billion 2 days
7 1KidsCha 1 in 2.2 trillion 3-4 months
8 1KidsChar 1 in 128 trillion 13-18 years
9 1KidsChari 1 in 7 quadrillion 800 years
10 1KidsCharit 1 in 400 quadrillion 46,000 years
11 1KidsCharity 1 in 23 quintillion 2.5 million years

Table 4: Frequency and Search Time for Vanity Addresses

One way to find vanity addresses is to outsource the work to a pool of vanity miners. Vanity addresses can
be used to enhance and to defeat security measures; they are truly a double-edged sword. Used to improve
security, a distinctive address makes it harder for adversaries to substitute their own address and fool your
customers into paying them instead of you. Unfortunately, vanity addresses also make it possible for anyone
to create an address that resembles any random address, or even another vanity address, thereby fooling
your customers.

5.3 Paper Wallets
Paper wallets are basically bitcoin private keys printed on paper, effective for cold storage due to its immunity
from hacking. Often the paper wallet also includes the corresponding bitcoin address for convenience, but
this is not necessary because it can be derived from the private key. They can be generated in this website.
The simplest form of a paper wallet is the table below.

Public Address 1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x
Private Key (WIF) 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Table 5: Simple Paper Wallet

6 Transaction Chains and UTXOs
Fundamentally, a transaction is a data structure that encodes a transfer of value from a source of funds,
called an input, to a destination, called an output. A transaction contains the following:
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Size Field Description
4 bytes Version Specifies which rules this transaction follows
1 9 bytes (VarInt) Input Counter How many inputs are included
Variable Inputs One or more transaction inputs
1 9 bytes (VarInt) Output Counter How many outputs are included
Variable Outputs One or more transaction outputs
4 bytes Locktime A timestamp or block number that defines the earliest time that a transaction can be added to the blockchain, usually set to 0 to indicate immediate execution. If locktime is nonzero and below 500 million, it is interpreted as a block height, meaning the transaction is not included in the blockchain prior to the specified block height. If it is above 500 million, it is interpreted as a Unix Epoch timestamp (seconds since Jan-1-1970) and the transaction is not included in the blockchain prior to the specified time.

Table 6: Transaction Structure

Unspent transaction outputs, or UTXOs, are indivisible chunks of bitcoin currency locked to a specific
owner, recorded on the blockchain, and recognized as currency units by the entire network. The bitcoin
network tracks all available (unspent) UTXO currently numbering in the millions, with each user’s bitcoin
scattered as UTXO amongst hundreds of transactions and hundreds of blocks. In effect, there is no such
thing as a stored balance of a bitcoin address or account; there are only scattered UTXO, locked to specific
owners. Note that even though UTXOs can be any arbitrary value, once created it is indivisible just like a
coin that cannot be cut in half. If a UTXO is larger than the desired value of a transaction, it must still
be consumed in its entirety and change must be generated in the transaction. For example, if you have a
20 BTC UTXO and want to pay 1 bitcoin, your transaction must consume the entire 20 bitcoin UTXO and
produce two outputs: one paying 1 bitcoin to your desired recipient and another paying 19 bitcoin in change
back to your wallet. All this is automatically done by your bitcoin wallet. The diagram shows a sequence of
(three) transactions.

Figure 13: Sequence of Bitcoin Transactions

The misleading concept of a user’s bitcoin balance is derived from the use of the bitcoin wallet, but it is
really the case that the wallet calculates the user’s balance by scanning the blockchain and aggregating all
UTXOs belonging to that user. This system allows chunks of bitcoin to move from owner to owner in a
chain of transactions consuming and creating UTXO. Transactions consume UTXO by unlocking it with a
signature of the current owner and create UTXO by locking it to the bitcoin address of the new owner. The
exception to the output and input chain is a special type of transaction called the coinbase transaction,
which is the first transaction in each block. This transaction is placed there by the "winning" miner and
creates brand-new bitcoin payable to that miner as a reward for mining. This is how bitcoin’s money supply
is created during the mining process.

6.1 Transaction Fees
Furthermore, transaction fees exist, which serve as an incentive to include (mine) a transaction into the
next block and also as a disincentive as "spam" transactions of any kind of abuse of the system, by imposing
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a small cost on every transaction. Transaction fees are calculated based on the size of the transaction in
kilobytes (by multiplying the size of the transaction in kb by the per kilobyte fee), not the value of the
transaction in bitcoin and are collected by the miner who mines the block that records the transaction on
the blockchain. Miners prioritize transactions based on many different criteria, including fees, and might
even process transactions for free under certain circumstances. Transaction fees affect the processing priority,
meaning that a transaction with sufficient fees is likely to be included in the next-most–mined block, whereas
a transaction with insufficient or no fees might be delayed, processed on a best-effort basis after a few blocks,
or not processed at all. Transaction fees are not mandatory, and transactions without fees might be processed
eventually; however, including transaction fees encourages priority processing.

The data structure of transactions does not have a field for fees. Instead, fees are implied as the difference
between the sum of inputs and the sum of outputs. Any excess amount that remains after all outputs have
been deducted from all inputs is the fee that is collected by the miners.

1 Fees = Sum(Inputs) - Sum(Outputs)

This is a somewhat confusing element of transactions and an important point to understand, because if you
are constructing your own transactions you must ensure you do not inadvertently include a very large fee
by underspending the inputs. That means that you must account for all inputs, if necessary by creating
change, or you will end up giving the miners a very big tip! For example, if you consume a 20-bitcoin UTXO
to make a 1-bitcoin payment, you must include a 19-bitcoin change output back to your wallet. Otherwise,
the 19-bitcoin "leftover" will be counted as a transaction fee and will be collected by the miner who mines
your transaction in a block.

6.2 Transaction Chaining and Orphan Transactions
As we have seen, transactions form a chain, whereby one transaction spends the outputs of the previous
transaction (known as the parent) and creates outputs for a subsequent transaction (known as the child).
Sometimes an entire chain of transactions depending on each other—say a parent, child, and grandchild
transaction—are created at the same time, to fulfill a complex transactional workflow.

When a chain of transactions is transmitted across the network, they don’t always arrive in the same order.
Sometimes, the child might arrive before the parent. In that case, the nodes that see a child first can see that it
references a parent transaction that is not yet known. Rather than reject the child, they put it in a temporary
pool to await the arrival of its parent and propagate it to every other node. The pool of transactions without
parents is known as the orphan transaction pool. Once the parent arrives, any orphans that reference the
UTXO created by the parent are released from the pool, revalidated recursively, and then the entire chain of
transactions can be included in the transaction pool, ready to be mined in a block. Transaction chains can
be arbitrarily long, with any number of generations transmitted simultaneously. The mechanism of holding
orphans in the orphan pool ensures that otherwise valid transactions will not be rejected just because their
parent has been delayed and that eventually the chain they belong to is reconstructed in the correct order,
regardless of the order of arrival.

Figure 14: Orphaned Transaction

There is a limit to the number of orphan transactions stored in memory, to prevent a denial-of-service attack
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against bitcoin nodes. The limit is defined as MAX_ORPHAN_TRANSACTIONS in the source code of the bitcoin
reference client. If the number of orphan transactions in the pool exceeds MAX_ORPHAN_TRANSACTIONS, one
or more randomly selected orphan transactions are evicted from the pool, until the pool size is back within
limits.

7 Locking/Unlocking Scripts and Script Language
Bitcoin clients validate transactions by executing the following two types of scripts, which are written in a
Forth-like stack-based scripting language called Script. Note that the bitcoin transaction script language
Script contains many operators, but is deliberately limited in that there are no loops or complex flow control
capabilities, making it Turing incomplete.

• A locking script, also called a scriptPubKey is an encumbrance placed on an output, and it specifies
the conditions that must be met to spend the output in the future.

• An unlocking script, also called scriptSig, is a script that solves/satisfies the conditions placed on
an output by a locking script and allows the output to be spent. Unlocking scripts are part of every
transaction input, and most of the time they contain a digital signature produced by the user’s wallet
from his or her private key.

For each input in the transaction, the validation software will first retrieve the UTXO referenced by the
input. That UTXO contains a locking script defining the conditions required to spend it. The validation
software will then take the unlocking script contained in the input that is attempting to spend this UTXO
and execute the two scripts. Let’s take an example of user C in the diagram above. Say that C wants to
send 20.01BTC to user E. It first creates a transaction of 20.01 BTC from C → E (but does not validate it
yet). The software must first confirm that C has access to enough BTC to pay E this much BTC (if there are
insufficient funds, the transaction is rejected by the blockchain), so C’s wallet software searches through the
blockchain and finds a 20BTC UTXO (created from the conglomeration of outputs from users A122 to A241)
and a 0.014BTC UTXO (created from the output from user F). Both the 20BTC and 0.014BTC UTXO
contain a locking script, but C’s wallet contains the credentials, i.e. the unlocking script, that takes the
two locked UTXOs and unlocks it for use. C pays E in a 20.01BTC locked UTXO (unlockable only by E’s
wallet signature) and sends the "change" back to C’s own wallet in the form of a 0.001BTC locked UTXO
(unlockable only by C’s wallet signature).
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Figure 15: UTXO Transaction Example

7.1 Script Language
Bitcoin’s scripting language is called a stack-based language because it uses a very simple data structure
called a stack (which can be visualized as a stack of cards) with two operations:

• push adds an item on top of the stack

• pop removes the top item from the stack

The scripting language executes the script by processing each item from left to right. Numbers (data
constants) are pushed onto the stack, and operators push/pop one or more parameters from the stack, act
on them, and might push a result onto the stack. Three basic operators are:

• OP_ADD pops two items from the stack, adds them, and push the resulting sum onto the stack.

• OP_SUB pops two items from the stack, subtracts the second from the first number, and pushes the
resulting difference onto the stack.

• OP_EQUAL is a conditional operator that pops two items from the stack and pushes TRUE (represented
by 1) if they are equal or FALSE (represented by 0) if they are not equal.

For example, the following script is just a simple way of determining whether 2 + 7 − 3 + 1 = 7. It should
output TRUE.

1 2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

8 Standard Transactions
Developers of bitcoin introduced some limitations in the types of scripts that could be processed by the
reference client, encoded in a function called isStandard() defining 5 types of "standard" transactions:

• Pay to Public Key Hash (P2PKH)
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• Public Key

• Multi-Signature (limited to 15 keys)

• Pay to Script Hash (P2SH)

• Data Output (OP_RETURN)

8.1 Pay-to-Public-Key-Hash (P2PKH)
The vast majority of transactions processed on the bitcoin network are P2PKH transactions. In P2PKH
transactions, the locking scripts that restrict these UTXOs are hashes of public keys of the recipient, i.e. the
recipient address (A = SHA160(K)). The locking script is of the form:

1 OP_DUP OP_HASH160 <Public Key Hash> OP_EQUAL OP_CHECKSIG

These "locks" can be unlocked by the unlocking script, which is the pair consisting of:

• the recipient signature (which can only be produced by the recipient private key), and

• the recipient public key

The unlocking script is of the form:

1 <Recipient Signature> <Recipient Public Key>

The two scripts together would form the combined validation script:

1 <Recipient Signature> <Recipient Public Key> OP_DUP OP_HASH160 <Recipient Public Key Hash>
OP_EQUAL OP_CHECKSIG

When executed, this combined script will evaluate to TRUE if and only if the unlocking script matches the
conditions set by the locking script, i.e. if the unlocking script has a valid signature from the cafe’s private
key that corresponds to the public key hash set as an encumbrance. The step-by-step execution of the
combined script

1 <sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

is described below:

• The value <sig> is pushed to the top of the stack.

• The execution continues, and the value <PubK> is pushed to the top of the stack, on top of <sig>

• The DUP operator duplicates the top item in the stack, and the resulting value is pushed to the top of
the stack.

• The HASH160 operator hashes the top item in the stack with HASH160(PubK). The resulting value
<PubKHash> is pushed to the top of the stack.

• The value PubKHash from the script is pushed on top of the value PubKHash calculated previously from
the HASH160 of the PubK.

• The EQUALVERIFY operator compares the PubKHash encumbering the transaction with the PubKHash
calculated from the user’s PubK. If they match, both are removed and execution continues.

• The CHECKSIG operator checks that the signature <sig> matches the public key <PubK> and pushes
TRUE to the top of the stack if true.
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8.2 Pay-to-Public-Key (P2PK)
Pay-to-public key is a simpler form of bitcoin payment than P2PKH. With this script form, the public key
itself is stored in the locking scripts rather than the public-key hash as with P2PKH. P2PK was invented
by Satoshi to make bitcoin addresses shorter for ease of use, but is mainly outdated.

The locking script is of form:

1 <Public Key A> OP_CHECKSIG

and the corresponding unlock script is of form:

1 <Signature from Private Key>

The two scripts together would form the combined validation script:

1 <Signature from Private Key> <Public Key> OP_CHECKSIG

The step-by-step execution of the combined script

1 <sig> <PubK> CHECKSIG

is described below:

• The value <sig> is pushed to the top of the stack.

• The execution continues, and the value <PubK> is pushed to the top of the stack, on top of <sig>

• The CHECKSIG operator checks that the signature <sig> matches the public key <PubK> and pushes
TRUE to the top of the stack if true.

8.3 Multi-Signature
Multi-signature scripts set a condition where N public keys are recorded in the script and at least M of those
scripts must provide signatures to release the encumbrance, known as an M-of-N scheme. Note that there
is an inherent limit on how many public keys N there can be in a multisig script (with clearly M<N). The
general form of a M-of-N multisig locking script is:

1 M <Public Key 1> <Public Key 2> ... <Public Key N> N OP_CHECKMULTISIG

With an unlocking script of form:

1 OP_0 <Signature 1> ... <Signature M>

For example, the locking and unlocking scripts together of a 2-to-3 multisig scheme is of form

1 OP_0 <Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
OP_CHECKMULTISIG

When executed, this combined script will evaluate to TRUE if and only if the unlocking script matches the
conditions set by the locking script.
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Figure 16: Multi-Signature Scheme

8.4 Data Output (OP_RETURN)
Bitcoin’s distributed and timestamp ledger, the blockchain, has potential uses far beyond payments, such
as digital notary services, stock certificates, and smart contracts. Early attempts to use bitcoin’s script
language for these purposes involved creating transaction outputs that recorded data on the blockchain; for
example, to record a digital fingerprint of a file in such a way that anyone could establish proof-of-existence
of that file on a specific date by reference to that transaction.

The use of bitcoin’s blockchain to store data unrelated to bitcoin payments is a controversial subject, since the
inclusion of non-payment data in bitcoin’s blockchain causes a "blockchain bloat", burdening those running
full bitcoin nodes with carrying the cost of disk storage for data that the blockchain was not intended to
carry. Moreover, such transactions create UTXO that cannot be spent, using the destination bitcoin address
as a free-form 20-byte field. Because the address is used for data, it doesn’t correspond to a private key and
the resulting UTXO can never be spent; it’s a fake payment. This practice causes the size of the in-memory
UTXO set to increase and these transactions that can never be spent are therefore never removed, forcing
bitcoin nodes to carry these forever in RAM, which is far more expensive.

In version 0.9 of the Bitcoin Core client, a compromise was reached with the introduction of the OP_RETURN
operator. OP_RETURN allows developers to add 40 bytes of nonpayment data to a transaction output. However,
unlike the use of "fake" UTXO, the OP_RETURN operator creates an explicitly provably unspendable output,
which does not need to be stored in the UTXO set. OP_RETURN outputs are recorded on the blockchain,
so they consume disk space and contribute to the increase in the blockchain’s size, but they are not stored
in the UTXO set and therefore do not bloat the UTXO memory pool and burden full nodes with the cost of
more expensive RAM. OP_RETURN scripts look like this:

1 OP_RETURN <data>

The data portion is limited to 40 bytes and most often represents a hash, such as the output from the SHA256
algorithm (32 bytes). Many applications put a prefix in front of the data to help identify the application.
For example, the Proof of Existence digital notarization service uses the 8-byte prefix DOCPROOF, which is
ASCII encoded as 44f4350524f4f46 in hexadecimal.

Keep in mind that there is no "unlocking script" that corresponds to OP_RETURN that could possibly be used
to "spend" an OP_RETURN output. The whole point of OP_RETURN is that you can’t spend the money locked in
that output, and therefore it does not need to be held in the UTXO set as potentially spendable—OP_RETURN
is provably un-spendable. OP_RETURN is usually an output with a zero bitcoin amount, because any bitcoin
assigned to such an output is effectively lost forever. If an OP_RETURN is encountered by the script validation
software, it results immediately in halting the execution of the validation script and marking the transaction
as invalid. Thus, if you accidentally reference an OP_RETURN output as an input in a transaction, that
transaction is invalid.
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8.5 Pay-to-Script-Hash (P2SH)
To motivate this example, let us first describe some limitations of the P2PK multi-sig. Say that my company
uses a multi-sig script for all customer payments, meaning that any payments made by customers are locked
in such a way that they require at least 2 signatures to release, from me and one of my partners/attorney.
This kind of scheme offers corporate governance controls and protects against theft, embezzlement, or loss.
To give an example, say that there is a transaction from customer A → Company that produces a UTXO
of 1BTC. This UTXO would of course be locked by a multi-sig script of form

1 2 <my PubK> <Partner1 PubK> <Partner2 PubK> <Partner3 PubK> <Attorney PubK> 5 OP_CHECKMULTISIG

Even though multi-sig scripts are a powerful feature, they are cumbersome to use, since I would have to
communicate this script to every customer prior to payment, each customer would have to create a special
bitcoin wallet software, and the transaction sizes would be much larger (with more public keys added to the
locking script). The burden of that extra-large transaction would be borne by the customer in the form of
fees. Finally, a large transaction script like this would be carried in the UTXO set in RAM in every full
node until it was spent. To resolve these issues, pay-to-script-hash (P2SH) was developed.

The key characteristic of P2SH payments is that the complex locking script (in this context referred as the
redeem script) is replaced with its digital fingerprint, a cryptographic hash. When a transaction attempting
to spend the UTXO is presented later, it must contain the script that matches the hash, in addition to the
unlocking script. The following table shows a complex script without P2SH

Locking Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5 5 OP_CHECKMULTISIG
Unlocking Script Sig1 Sig2

Table 7: Complex Script without P2SH

while the next table shows a complex script as P2SH:

Redeem Script 2 <PubKey1> <PubKey2> <PubKey3> <PubKey4> <PubKey5> 5 OP_CHECKMULTISIG
Locking Script OP_HASH160 <20-byte hash of redeem script> OP_EQUAL
Unlocking Script <Sig1> <Sig2> <Unlocking Redeem Script>

Table 8: Complex Script with P2SH

As you can see from the tables, with P2SH the complex script that details the conditions for spending the
output (redeem script) is not presented in the locking script. Instead, only a hash of it is in the locking script
and the redeem script itself is presented later, as part of the unlocking script when the output is spent. This
shifts the burden in fees and complexity from the sender to the recipient (spender) of the transaction. Let
us walk through this step by step:

• Given a transaction from a customer to the company, the transaction UTXO, which would originally
be locked with the P2PSH script, referred to this as the original redeem script (which would be a
very long script when converted to hex),

1 2 <PubKey1> <PubKey2> <PubKey3> <PubKey4> <PubKey5> 5 OP_CHECKMULTISIG

is in fact locked with the shortened form (called the hash of the redeem script)

1 OP_HASH160 <20-byte hash of redeem script> OP_EQUAL

• When I (the CEO of the company) want to spend this UTXO, I must present an unlocking redeem
script (which should match the original redeem script) and the signatures necessary to unlock it, like
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this:

1 <Sig1> <Sig2> <Unlock Redeem Script>

• The two scripts are combined in two stages. First, the redeem script is checked against the locking
script to make sure the hash matches:

1 <original redeem script> OP_HASH160 <20-byte hash of redeem script> OP_EQUAL

• If the redeem script hash matches, the unlocking script is executed on its own, to unlock the redeem
script:

1 <Sig1> <Sig2> <Original Redeem Script>

which is really

1 <Sig1> <Sig2> 2 <PubKey1> <PubKey2> <PubKey3> <PubKey4> <PubKey5> 5 OP_CHECKMULTISIG

Figure 17: Pay-to-Script-Hash (P2SH) Process

9 The Bitcoin Network
Bitcoin is structured as a peer-to-peer (P2P) network architecture on top of the Internet, with a flat
network topology and decentralized, non-hierarchical structure between nodes. The bitcoin network refers
to the collection of nodes running the bitcoin P2P protocol, but there exists other protocols such as Stratum
(used for mining and lightweight/mobile wallets) and pool-mining ones. Therefore, the term extended
bitcoin network will refer to the overall network that includes the Bitcoin P2P protocol, pool-mining
protocols, the Stratum protocol, and other related ones.

The network consists of about 12,000 nodes with different functionalities/characteristics:

• Full Blockchain nodes, also called full nodes, refer to nodes that maintain a complete and up-
to-date copy of the bitcoin blockchain with all the transactions, which they independently build and
verify, starting with the very first block and building up to the latest known block in the network.

– SPV nodes, or lightweight nodes, contain a subset of the blockchain and can verify transactions
using a method called simplified payment verification (SPV).
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• Routing functions are contained in every node in order to participate in the network.

• Mining nodes compete to create new blocks by running specialized hardware to solve the proof-of-
work algorithm. Some mining nodes are also full nodes while others are lightweight nodes participating
in pool mining and depending on a pool server to maintain a full node.

• User wallets might be part of a full node, as is usually the case with desktop bitcoin clients. Increas-
ingly, many user wallets, especially those running on resource-constrained devices such as smartphones,
are SPV nodes.

When a new node boots up, it must discover other bitcoin nodes on the network in order to participate.
Through the TCP Internet protocol, the new node can first connect with any bitcoin node at random with
the familiar "three-way handshake," but it by default connects with some long-running stable nodes listed
on the client as seed nodes (which can be used to quickly discover other nodes in the network). Once this
connection is established, the node will send an addr (address) message containing its own IP address to its
neighbors, who will then forward it to its neighborhoods to ensure that the new node is better connected.
The handshakes allow each node to exchange their version, which contains the following information:

1 "addr" : "85.213.199.39:8333",
2 "services" : "00000001",
3 "lastsend" : 1405634126,
4 "lastrecv" : 1405634127,
5 "bytessent" : 23487651,
6 "bytesrecv" : 138679099,
7 "conntime" : 1405021768,
8 "pingtime" : 0.00000000,
9 "version" : 70002,

10 "subver" : "/Satoshi:0.9.2.1/",
11 "inbound" : false,
12 "startingheight" : 310131,
13 "banscore" : 0,
14 "syncnode" : true

Additionally, the newly connected node can send getaddr to the neighbors, asking them to return a list of
IP addresses of other peers. This way, a node can advertise its existence on the network for other nodes to
find it. This entire process is called bootstrapping.

9.1 Full Nodes vs Simplified Payment Verification (SPV) Nodes
In the early days of bitcoin, every node was a full node. Running a full blockchain node lets you independently
verify all transactions without the need to rely on any other systems. As of October 2021, the entire
blockchain was about 360GB. The first thing a full node will do once it connects to peers is try to construct
a complete blockchain. If it is a brand-new node and has no blockchain at all, it only knows one block, the
genesis block, which is statically embedded in the client software. We describe the steps of the blockchain
catching up:

1. A node joins the bitcoin network. This could be a brand-new node, or a node that had been offline for
a while and needs to catch up. It bootstraps to the network and sends/receives the version message
between its peers. This version message contains the "BestHeight" variable, which tells a node’s
current blockchain height (number of blocks). Peered nodes will see each other’s version and BestHeight
variables and compare how many blocks they each have. These peered nodes will exchange a "getblocks"
message that compares the top block on their local blockchain.
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Figure 18: Step 1: Node Joining the Network

2. The old node will send the new node an "inv" message, which tells the new node which blocks must
be exchanged for it to catch up. Upon receiving this inv message, the newer node issues a series of
"getdata" messages requesting the full block data and identifying the requested blocks using the hashes
from the inv message.

Figure 19: Step 2: Exchange of Block Information

3. This is all done in a controlled manner by sending 500 blocks at a time all spread out among peers to
avoid overwhelming the network with requests. This process continues until the node catches up with
the rest of the network.

Figure 20: Step 3: Controlled Block Transfer

Not all nodes have the ability to store the full blockchain, so the SPV method, which is much more common
than full nodes, is used to allow them to operate without storing everything. SPV nodes download only the
block headers without the included transactions, making the resulting chain 1000 times smaller than the full
blockchain. Since SPV nodes do not know about all the transactions on the network, they verify transactions
using a different methodology that relies on peers to provide partial views of relevant parts of the blockchain
on demand. Let us compare them with an example:

• When examining a new transaction in block 300,000, a full node links all 300,000 blocks down to
the genesis block and builds a full database of UTXO, establishing the validity of the transaction by
confirming that the UTXO remains unspent.

• An SPV node cannot validate whether the UTXO is unspent and will instead establish a link between
the transaction and the block that contains it using merkle paths (which is an efficient verification

30/ 46



Muchang Bahng Fall 2024

algorithm of the contents of large data structures). Each block in the bitcoin blockchain contains a
summary of all the transactions in the block using a merkle tree. Then, the SPV node waits until
it sees six additional blocks 300,001∼300,006 (these 6 blocks could be existing ones or ones that are
now being created) piled on top of the block (in order to make sure that a false blockchain is not
being created) and verifies the new transaction in block 300,000 by establishing its depth under blocks
300,006 to 300,001. The fact that other nodes on the network accepted block 300,000 and then did
the necessary work to produce six more blocks on top of it is proof, by proxy, that the transaction was
not a double-spend. An SPV node cannot be persuaded that a transaction exists in a block when the
transaction does not in fact exist. The SPV node establishes the existence of a transaction in a block
by requesting a merkle path proof and by validating the proof of work in the chain of blocks.

In summary, a full blockchain node verifies a transaction by checking the entire chain of thousands of blocks
below it in order to guarantee that the UTXO is not spent, whereas an SPV node checks how deep the block
is buried by a handful of blocks above it.

9.2 Transaction Pools
Almost every node on the bitcoin network maintains two temporary separate lists stored in local memory
and not saved on persistent storage, along with maybe one more:

• The orphan pool contains transactions without a parent.

• The transaction pool contains unconfirmed transactions. For example, a node that holds a user’s
wallet will use the transaction pool to track incoming payments to the user’s wallet that have been
received on the network but are not yet confirmed.

• The UTXO pool (maintained by some implementations of the bitcoin client) contains millions of
entries of unspent transaction outputs, including some dating back to 2009. It may be housed in local
memory or as an indexed database table on persistent storage.

When a node starts, both pools are empty but are gradually populated with new transactions received on the
network. When a transaction is added to the transaction pool, the orphan pool is checked for any orphans
that reference this transaction’s outputs and any matching orphans are then validated (which can trigger a
cascade reconstruction of an entire chain of interdependent transactions for chains missing the first parent
UTXO). To compare and contrast:

• The transaction and orphan pools represents a single node’s local perspective and might vary signifi-
cantly, while the UTXO pool represents the emergent consensus of the network and will therefore vary
little between nodes.

• The transaction and orphan pools only contain unconfirmed transactions, while the UTXO pool only
contains confirmed outputs.

9.3 Alert Messages
Alert messages are a seldom used function, but are nevertheless implemented in most nodes as bitcoin’s
"emergency broadcast system." It is a means by which the core bitcoin developers can send an emergency
text message to all bitcoin nodes of perhaps some serious problem in the bitcoin network, most notably in
early 2013 when a critical database bug caused a multiblock fork to occur in the bitcoin blockchain. They are
also cryptographically signed by a public key, with the corresponding private key held by few select members
of the core development team. Each node receiving this alert message will verify it, check for expiration,
and propagate it to all its peers, thus ensuring rapid propagation across the entire network.

10 The Blockchain
A block is a container data structure that aggregates transactions for inclusion in the public ledger, the
blockchain. It can be stored as a flat file or in a simple database. The Bitcoin Core client stores the
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blockchain metadata using Google’s LevelDB database. For quick reference, the block header is 80 bytes,
the average transaction is at least 250 bytes, and the average block contains more than 500 transactions. A
complete block with all transactions is therefore 1000 times larger than the block header. The structure of
the block can be seen below.

Block Size (4B) Size of the block, in bytes, following this field

Block Header (80B)

Version (4B): A version number to track software/protocol up-
grades
Previous Block Hash (32B): A reference to the hash of the
previous (parent) block in the chain
Merkle Root (32B): A hash of the root of the merkle tree of
this block’s transactions
Timestamp (4B): The approximate creation time of this block
(seconds from Unix Epoch)
Difficulty Target (4B): The proof-of-work algorithm difficulty
target for this block
Nonce (4B): A counter used for the proof-of-work algorithm

Transaction Counter (1∼9B) How many transactions follow
Transactions (Var) The transactions recorded in this block

Table 9: Structure of a Bitcoin Block

10.1 Block Header
A block header consists of three sets of block metadata.

• The reference to the previous block hash, which connects this block to the previous block in the
blockchain.

• The set (difficulty, timestamp, nonce) relate to the mining competition, which will be elaborated later.

• The third set is the merkle tree root, a data structure used to efficiently summarize all the transactions
in the block.

The primary identifier of a block is its cryptographic hash, made by hashing the 80-byte block header twice
through the SHA256 algorithm.

1 32-byte Block Hash = SHA256(SHA256(80-byte block header))

The resulting 32-byte hash is called the block hash, but more accurately called the block header hash,
because only the block header is used to compute it. The block hash identifies a block uniquely and unam-
biguously and can be independently derived by any node by simply hashing the block header. For example,
the following hash is the block hash of the genesis block, along with other variables:

1 "hash" : "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
2 "confirmations" : 308321,
3 "size" : 285,
4 "height" : 0,
5 "version" : 1,
6 "merkleroot" : "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
7 "tx" : [
8 "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
9 ],

10 "time" : 1231006505,
11 "nonce" : 2083236893,
12 "bits" : "1d00ffff",
13 "difficulty" : 1.00000000,
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14 "nextblockhash" : "00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048"

Note that the block hash is not actually included inside the block’s data structure, neither when the block is
transmitted on the network, nor when it is stored on a node’s persistence storage as part of the blockchain.
Instead, the block’s hash is computed by each node as the block is received from the network. The block
hash might be stored in a separate database table as part of the block’s metadata, to facilitate indexing and
faster retrieval of blocks from disk.

A second way to identify a block is by its position in the blockchain, called the block height. Therefore, a
block can thus be identified in two ways: by referencing the block hash or by referencing the block height.
The block hash is a unique identifier, but the block height may not always be unique due to blockchain forks,
when two or more blocks having the same block height compete for the same position in the blockchain.
The block height is also not a part of the block’s data structure; it is not stored within the block. Each
node dynamically identifies a block’s position (height) in the blockchain when it is received from the bitcoin
network. The block height might also be stored as metadata in an indexed database table for faster retrieval.

10.2 Linking Blocks in the Blockchain
Given a full node that contains the current blockchain, the node will know the block header, and therefore
the block hash, of the top block. As the node receives an incoming block from the network, it will validate
the block by looking at the incoming block header’s previous block hash. If the previous block hash matches
the current top block hash already in the local blockchain, then the node adds this new block to the end of
the chain, making the blockchain longer.

For example, assume that a full node has 277,314 blocks in the local copy of the blockchain, with the top
block header hash of

1 00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249

The bitcoin node then receives a new block from the network, which is parsed as follows:

1 "size" : 43560,
2 "version" : 2,
3 "previousblockhash" :
4 "00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249",
5 "merkleroot" :
6 "5e049f4030e0ab2debb92378f53c0a6e09548aea083f3ab25e1d94ea1155e29d",
7 "time" : 1388185038,
8 "difficulty" : 1180923195.25802612,
9 "nonce" : 4215469401,

10 "tx" : [
11 "257e7497fb8bc68421eb2c7b699dbab234831600e7352f0d9e6522c7cf3f6c77",
12

13 #[... many more transactions omitted ...]
14

15 "05cfd38f6ae6aa83674cc99e4d75a1458c165b7ab84725eda41d018a09176634"
16 ]

The new block’s "previousblockhash" field contains the hash of its parent block, which is already known to
the node, that of the last block on the chain at height 277,314. Therefore, this new block is a child of the
last block on the chain and extends the existing blockchain.

10.3 Merkle Trees
Each block in the bitcoin blockchain contains a summary of all the transactions in the block, using a merkle
tree, or a binary hash tree. It is a data structure where each node branches into two (hence the name
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binary) and containing cryptographic hashes (hence the name hash). Merkle trees provide a very efficient
process to verify whether a transaction is included in a block. A Merkle tree is constructed by recursively
hashing pairs of nodes until there is only one hash, called the root, or merkle root. The cryptographic hash
algorithm used in bitcoin’s merkle trees is SHA256 applied twice, also known as double-SHA256. The time
to parse a Merkle tree with N elements is O(log2 N), which is extremely good.

To show how this merkle tree structure of transactions is formed, let us start with a block that must encode
in it 4 transactions A, B, C, D.

• The transactions themselves are not stored in the merkle tree; rather, their data is double-hashed and
the resulting hash is stored in each leaf node as HA, HB , HC , HD:

1 H_A = SHA256(SHA256(Transaction A))

• Consecutive pairs of leaf nodes are then summarized in a parent node, by concatenating the two hashes
and hashing them together. For example, the parent node HAB is created as:

1 H_AB = SHA256(SHA256(H_A + H_B))

• This process continues until there is only one node at the top, the node known as the Merkle root.
This 32-byte hash is stored in the block header and summarizes all the data in all four transactions.

Figure 21: Merkle Tree with Four Transactions

• This can clearly be used to construct trees of any size containing any number of transactions. If there
are odd numbers of transactions to summarize at any level, then the last transaction hash will be
duplicated to create an even number of leaf nodes, known as a balanced tree.
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Figure 22: Merkle Tree with Odd Number of Transactions

To prove that a specific transaction is included in a block, all we need to do is create an authentication
path, or a merkle path, connecting the specific transaction to the root of the tree. To give an example,
let us have a merkle tree of 16 transactions, and we must prove that a given transaction K is included in the
block. The path consists of the four hashes

HL → HIJ → HMNOP → HABCDEFGH

With these four hashes provided as a path, any node can prove that HK (in green in the diagram) is included
in the merkle root by computing four additional pair-wise hashes HKL, HIJKL, HIJKLMNOP , and the merkle
tree root (outlined in a dotted line in the diagram).

Figure 23: Merkle Path for Transaction K

With merkle trees, a node can download just the block headers (80 bytes per block) and still be able to
identify a transaction’s inclusion in a block by retrieving a small merkle path from a full node, without
storing or transmitting the vast majority of the blockchain, which might be several gigabytes in size. Nodes
that do not maintain a full blockchain, called simplified payment verification (SPV nodes), use merkle paths
to verify transactions without downloading full blocks.

11 Mining and Consensus
Mining is the process by which new bitcoin is added to the money supply. There are multiple purposes and
properties of mining:
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• Mining serves to secure the bitcoin system against fraudulent transactions or transactions spending
the same amount of bitcoin more than once, known as a double-spend.

• Miners provide processing power to the bitcoin network in exchange for the opportunity to be rewarded
bitcoin.

• Mining is the invention that makes bitcoin special, a decentralized security mechanism that is the
basis for peer-to-peer digital cash. The reward of newly minted coins and transaction fees is an
incentive scheme that aligns the actions of miners with the security of the network, while simultaneously
implementing the monetary supply.

• Each block, generated on average every 10 minutes, contains entirely new bitcoins, created from noth-
ing.

• Every 210,000 blocks (approx. 4 years), the currency issuance rate is decreased by 50%. The rate of
new coins decreases like this exponentially over 64 "halvings" until block 13,230,000 (mined approx.
in 2137), when it reaches the minimum currency unit of 1 satoshi. At slightly less than 21 million
bitcoins, no more bitcoins will be issued.

• The finite and diminishing issuance creates a fixed monetary supply that resists inflation. Unlike a fiat
currency, which can be printed in infinite numbers by a central bank, bitcoin can never be inflated by
printing.

Bitcoin has no central authority, yet somehow every full node has a complete copy of a public ledger that it
can trust as the authoritative record. The blockchain is not created by a central authority, but is assembled
independently by every node in the network. Somehow, every node in the network, acting on information
transmitted across insecure network connections, can arrive at the same conclusion and assemble a copy of
the same public ledger as everyone else. This chapter examines the process by which the bitcoin network
achieves global consensus without central authority.

11.1 Mining Nodes & Aggregating Transactions into Blocks
A miner, or a mining node, is a specialized computer-hardware system connected to a server running a
full bitcoin node designed to mine bitcoins.

• Like every other full node, it receives, validates, and relays new, unconfirmed transactions on the
bitcoin network. These transactions are added to the node’s transaction pool, where they await until
they can be mined into a block. It is always listening for new blocks, too.

• The miner immediately constructs a new empty block (say, the Nth block in the chain), called a
candidate block. It takes the unconfirmed transactions that are in the pool, puts them in the
candidate block, and tries to find a solution to the proof-of-work algorithm in order to make the block
valid.

– If a new block is received before the miner can successfully solve the proof-of-work algorithm,
this signifies the end of the competition for block N and the beginning of the competition to
create block N+1. Upon receiving this block N and validating it, the miner will also check all the
transactions in the transaction pool and remove any that were included in block N+1. Whatever
transactions remain in the memory pool are unconfirmed and are waiting to be recorded in a new
block.

– If the miner successfully solves the algorithm first, then it takes the unconfirmed transactions
in the pool, puts it into the now valid block, and adds it to the blockchain. This new updated
blockchain is propagated throughout the network, telling other nodes that this block is solved.
With this, the miner node constructs the generation transaction, or coinbase transaction,
which represents the mining reward. It consists of the newly minted bitcoins (6.25BTC in 2021)
along with all the transaction fees (difference of all the outputs from all the inputs). Unlike
other transactions, the generation transaction has a "coinbase" input rather than one specifying
a previous UTXO to spend.
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11.2 Constructing the Block Header & Difficulty Representation
To construct the block header, the mining node needs to fill in the following fields.

Version (4B) A version number to track software/protocol upgrades
Previous Block Hash (32B) A reference to the hash of the previous (parent) block in the chain
Merkle Root (32B) A hash of the root of the merkle tree of this block’s transactions
Timestamp (4B) The approximate creation time of this block (seconds from Unix

Epoch)
Difficulty Target (4B) The proof-of-work algorithm difficulty target for this block
Nonce (4B) A counter used for the proof-of-work algorithm

Table 10: Block Header Fields

The version is self-explanatory and needs no further explanation. The mining node needs to add the "Previous
Block Hash," which is the hash of the block header of the top block in its local blockchain. This can also be
done since the node merely needs to double-SHA256 the header. To find the merkle root, the node constructs
a merkle tree to summarize all the transactions and finds the root hash. Then, the mining node will add a
4-byte timestamp encoded as the Unix Epoch timestamp. The node then fills in the difficulty target, which
defines the required proof-of-work difficulty to make this a valid block. The 4-byte difficulty is encoded as
an 8-digit hexadecimal, for example 0x1903a90c, which is a mantissa-exponent encoding of the target where
the first part 0x19 is a hexadecimal exponent and the next part 0x03x30c is the coefficient. The formula for
the difficulty target of this number is:

1 target = coefficient * 2^(8 * (exponent - 3))

which gets, using 0x1903a30c,

1 target = 0x03a30c * 2^(0x08 * (0x19 - 0x03))
2 = 0x03a30c * 2^0xB0
3 = 0x0000000000000003A30C00000000000000000000000000000000000000000000

Which, in decimal, is

1 238,348 * 2^176 =
22,829,202,948,393,929,850,749,706,076,701,368,331,072,452,018,388,575,715,328

Obviously, this is a really huge number, and we will find out what this means. For now, it is important
to just know that this is a predetermined number representing the "difficulty" of completing the algorithm.
Finally, the nonce is a variable that is initialized to 0.

11.3 Mining the Block & Proof-of-Work Algorithm
The miner constructs a candidate block filled with transactions and then constructs the header. Now, at
this point, the nonce is initialized to 0, and the miner calculates the hash of this block’s header to get

1 hash0 = SHA256(Block Header with Nonce=0)

and sees if it is smaller than the current target (target difficulty). If it is not, then the miner changes the
Nonce to a different value out of the 232 (about 4 billion) ones to get a different hash. Usually, we would
increment it by 1 to get the next hash:

1 hash1 = SHA256(Block Header with Nonce=1)
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Once the miner goes through billions and billions of hashes and finds a hash that is less than the target
difficulty, the node has successfully solved the proof-of-work algorithm. Note that it is often the case that
the miner can go through all 232 nodes and still not find a hash value that is less than the target. In this
case, the mining node can take additional measures to refresh the nonce:

• The timestamp can be changed up to two hours in the future, which would change the header and
therefore give a fresh new 4 billion new nonces to go through.

• The coinbase transaction, which can store 2∼100 bytes of data, can be used as a source of extra nonce
values. The coinbase transaction is included in the merkle tree, which means that any change in the
coinbase script causes the merkle root to change.

The 8 bytes of extra nonce, plus the 4 bytes of standard nonce and the 7200 seconds (within the next 2
hours) of timestamp, allows miners to explore a total of almost 2109 possibilities per second, an extremely
large number. For example, let us denote the block N header with nonce value M as BlockNHeaderM. Then,
the mining node will compute the following:

1 BlockNHeader0 => a80a81401765c8eddee25df36728d732...
2 BlockNHeader1 => f7bc9a6304a4647bb41241a677b5345f...
3 BlockNHeader2 => ea758a8134b115298a1583ffb80ae629...
4 BlockNHeader3 => bfa9779618ff072c903d773de30c99bd...
5 BlockNHeader4 => bce8564de9a83c18c31944a66bde992f...
6 BlockNHeader5 => eb362c3cf3479be0a97a20163589038e...
7 BlockNHeader6 => 4a2fd48e3be420d0d28e202360cfbaba...
8 BlockNHeader7 => 790b5a1349a5f2b909bf74d0d166b17a...
9 BlockNHeader8 => 702c45e5b15aa54b625d68dd947f1597...

10 BlockNHeader9 => 7007cf7dd40f5e933cd89fff5b791ff0...
11 BlockNHeader10 => c2f38c81992f4614206a21537bd634a...
12 BlockNHeader11 => 7045da6ed8a914690f087690e1e8d66...
13 BlockNHeader12 => 60f01db30c1a0d4cbce2b4b22e88b9b...
14 BlockNHeader13 => 0ebc56d59a34f5082aaef3d66b37a66...
15 BlockNHeader14 => 27ead1ca85da66981fd9da01a8c6816...
16 BlockNHeader15 => 394809fb809c5f83ce97ab554a2812c...
17 BlockNHeader16 => 8fa4992219df33f50834465d3047429...
18 BlockNHeader17 => dca9b8b4f8d8e1521fa4eaa46f4f0cd...
19 BlockNHeader18 => 9989a401b2a3a318b01e9ca9a22b0f3...
20 BlockNHeader19 => cda56022ecb5b67b2bc93a2d764e75f...

For example, if the target was

1 0x1000000000000000000000000000000000000000000000000000000000000000

then the winning nonce is 13, since it is the first nonce in which the BlockNHashM value was less than the
target. Clearly, given the target, we just need a hash value that starts with a 0, which has a 1/16 chance of
happening randomly. Furthermore, increasing the difficulty by 1 bit (or by 1 hex digit) causes an exponential
increase in the time it takes to find a solution, more specifically by a factor of 2 (or by 16). This is why all
bitcoin block hashes have a lot of zeroes in the beginning, meaning that the acceptable range of hashes is
much smaller, hence it is more difficult to find a valid hash.

11.4 Difficulty Target and Retargeting
Note that the easiness, and thus the speed in which the proof-of-work algorithm is solved, is dependent on
how small the target difficulty is. If we decrease the target, then the task of finding a hash that is less
than the target becomes more difficult, and more importantly, this difficulty target is adjustable. Bitcoin’s
blocks are generated every 10 minutes, which underpins the frequency of currency issuance and the speed of
transaction settlement. It must remain at a constant 10 minutes over many decades, adjusting to increased
computing power and additional mining nodes/competition.
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This difficulty adjustment algorithm is quite simple: It readjusts the difficulty every 2016 blocks, which should
have an expected computing time of 20,160 minutes (2 weeks). The ratio between the actual timespan and
desired timespan is calculated and a corresponding adjustment (up or down) is made to the difficulty.

1 New Difficulty = Old Difficulty * (Actual Time of Last 2016 Blocks / 20160 minutes)

• If the actual time in the past 2016 blocks took longer than 2 weeks (meaning that the rate at which
blocks are added to the blockchain is slower), then the new difficulty is increased from the old one to
make the process easier.

• If the actual time of the past 2016 blocks took less than 2 weeks, then this means that blocks are added
too fast and therefore the target must be decreased (making it more difficult).

To avoid extreme volatility in the difficulty, the retargeting adjustment must be less than a factor of 4
per cycle. If the required difficulty adjustment is greater than a factor of four, it will be adjusted by the
maximum and any further adjustment will be accomplished in the next retargeting periods.

Note that the target difficulty is independent of the number of transactions or the value of transactions, but
it is dependent on market forces as new miners enter the market to compete for the reward. This means
that the hashing power and electricity expended is not at all dependent on the number/value of transactions
within a block, but rather how many miners there are in the network (which determines how hard the
difficulty is).

11.5 Successfully Mining and Validating the Block
Once a mining node has found a nonce that produces a block hash that is less than the target, the node
transmits the block (with the header containing the nonce) to all its peers. They receive, validate, and then
propagate the new block, and as it ripples out across the network, each node adds it to its own copy of the
blockchain. The mining nodes that receives and validated the block abandon their efforts to find a block at
the same height and immediately start computing the next block in the chain.

The node is validated through a long list of criteria that must all be met, some of which are:

• The block data structure is syntactically valid.

• The block header hash is less than the target difficulty (enforces the proof of work)

• The block timestamp is less than two hours in the future (allowing for time errors)

• The block size is within acceptable limits

• The first transaction (and only the first) is a coinbase generation transaction

• All transactions within the block are valid using the transaction checklist.

Independent validation is what prevents cheaters from constructing fake blocks that will profit themselves.
A cheater who sends a block with a fake transaction will find their block rejected by the network, and the
cheater would expend a lot of electricity in mining without any rewards.

11.6 Blockchain Forks and Assembling Chains of Blocks
Nodes maintain three sets of blocks, shown below. Invalid blocks are rejected as soon as any one of the
validation criteria fails.

• The main blockchain is at any time whichever chain of blocks has the most cumulative difficulty
associated with it. Under most circumstances this is also the chain with the most blocks in it, unless
there are two equal-length chains and one has more proof of work.

• One or multiple secondary chains that form branches off the main block chain, due to forks. The
main chain can have branches with blocks that are "siblings" to the blocks on the main chain. These
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blocks are valid but not part of the main chain. They are kept for future reference, in case one of those
chains is extended to exceed the main chain in difficulty.

• Orphan blocks, which are blocks that do not have a known parent in the known (both main and
secondary) chains. Orphan blocks are saved in the orphan block pool where they will stay until their
parent is received. Once the parent is received and linked into the existing chains, the orphan can
be pulled out of the orphan pool and linked to the parent, making it part of a chain. Orphan blocks
usually occur when two blocks that were mined within a short time of each other are received in reverse
order (child before parent).

Under normal circumstances, once a valid block is found, it is sent, validated, and propagated through the
network, and new nodes will stack the new block on top of its local blockchain. As said before, this is done
by looking at the block’s "previous block hash" field, which is the reference to the new block’s parent. If the
parent is in the chain, it can be successfully linked.

Blocks might arrive at different nodes at different times, causing the nodes to have different perspectives of
the blockchain. We look at the simplified diagram of bitcoin as a global network. A fork in the blockchain
occurs whenever there are two candidate blocks competing to form the longest blockchain. This occurs under
normal conditions whenever two miners solve the proof-of-work algorithm within a short period of time from
each other. As both miners discover a solution for their respective candidate blocks, they immediately
broadcast their own "winning" block to their immediate neighbors who begin propagating the block across
the network. Each node that receives a valid block will incorporate it into its blockchain, extending the
blockchain by one block. If that node later sees another candidate block extending the same parent, it
connects the second candidate on a secondary chain. As a result, some nodes will "see" one candidate block
first, while other nodes will see the other candidate block and two competing versions of the blockchain will
emerge. This leads to two completely valid "versions" of the blockchain that is kept in each node.

Figure 24: Fork in the Blockchain

As the two blocks propagate, some nodes receive block "red" first and some receive block "green" first.
Therefore, the network splits into two different perspectives of the blockchain, one side topped with a red
block, the other with a green block.
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Figure 25: Network Split Due to Fork

The bitcoin network nodes closest to the Canadian node will hear about block "red" first and create a main
blockchain with "red" as the last block in the chain. Meanwhile, nodes closer to the Australian node will take
that block as the winner and extend the blockchain with "green" as the last block (e.g., blue-green), ignoring
"red" when it arrives a few seconds later. Any miners that saw "red" first will immediately build candidate
blocks that reference "red" as the parent and start trying to solve the proof of work for these candidate
blocks. The miners that accepted "green" instead will start building on top of "green" and extending that
chain.

Forks are almost always resolved within one block. As part of the network’s hashing power is dedicated to
building on top of "red" as the parent, another part of the hashing power is focused on building on top of
"green." Even if the hashing power is almost evenly split, it is likely that one set of miners will find a solution
and propagate it before the other set of miners have found any solutions. Let’s say, for example, that the
miners building on top of "green" find a new block "pink" that extends the chain (e.g., blue-green-pink).
They immediately propagate this new block and the entire network sees it as a valid solution.

Figure 26: Fork Resolution

All nodes that had chosen "green" as the winner in the previous round will simply extend the chain one
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more block. The nodes that chose "red" as the winner, however, will now see two chains: blue-green-pink
and blue-red. The chain blue-green-pink is now longer (more cumulative difficulty) than the chain blue-red.
As a result, those nodes will set the chain blue-green-pink as main chain and change the blue-red chain
to being a secondary chain, as shown in Figure 8-6. This is a chain reconvergence, because those nodes
are forced to revise their view of the blockchain to incorporate the new evidence of a longer chain. Any
miners working on extending the chain blue-red will now stop that work because their candidate block is an
"orphan," as its parent "red" is no longer on the longest chain. The transactions within "red" are queued
up again for processing in the next block, because that block is no longer in the main chain. The entire
network re-converges on a single blockchain blue-green-pink, with "pink" as the last block in the chain. All
miners immediately start working on candidate blocks that reference "pink" as their parent to extend the
blue-green-pink chain.

Figure 27: Network Reconvergence

A one-block fork may be quite common, occurring once a week, but a fork that extends to two blocks (i.e. if
two blocks are found almost simultaneously by miners on opposite sides of a previous fork) is extremely rare.
Bitcoin’s block interval of 10 minutes is a design compromise between fast confirmation times (settlement
of transactions) and the probability of a fork. A faster block time would make transactions clear faster but
lead to more frequent blockchain forks, whereas a slower block time would decrease the number of forks but
make settlement slower.

11.7 The Hashing Race and Mining Pools
The hash rate is a key measuring unit (and security metric) of the processing power of the Bitcoin network,
generally represented in hashes per second. The more hashing power in the network, the greater its security
and overall resistance to attack. Although bitcoin’s exact hashing power is unknown, it is possible to estimate
it from the number of blocks being mined and the current block difficulty. Daily numbers may periodically
rise or drop as a result of the randomness of block discovery. A terahash, or Th, is 1 trillion hashes, and
as of November 2021, the total hashrate of the entire bitcoin network is approximately 160m TH/s. The
historical data (actually, the 30-day moving average) of the hash rate in Th/s is shown below.
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Figure 28: Historical Hash Rate of Bitcoin Network

As the amount of hashing power applied to mining bitcoin has exploded, the difficulty has risen to match it,
as shown below in the graph of the 30-day moving average.

Figure 29: Bitcoin Mining Difficulty Over Time

These bitcoins are mined using ASIC mining chips, which have increased in density over the years (i.e. how
many chips can be squeezed into a building, while still dissipating the heat and providing adequate power).

Because individual miners don’t stand a chance, miners now collaborate to form mining pools, pooling
their hashing power and sharing the reward among thousands of participants. They get a smaller share of the
overall reward, but typically get rewarded every day, reducing uncertainty. Additionally, the ability to mine
without running a full node is another big benefit of joining a pool. Mining pools coordinate many hundreds
or thousands of miners, over specialized pool-mining protocols. The individual miners configure their mining
equipment to connect to a pool server, after creating an account with the pool. Their mining hardware
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remains connected to the pool server while mining, synchronizing their efforts with the other miners. Thus,
the pool miners share the effort to mine a block and then share in the rewards.

Mining pools coordinate hundreds/thousands of miners over specialized pool-mining protocols. The individ-
ual miners connect to the pool server while mining, synchronizing their efforts with the other miners. Thus,
the pool miners share the effort to mine a block and then share in the rewards. Successful blocks pay the
reward to a pool bitcoin address, rather than individual miners, and periodical payments are made to the
miners’ bitcoin addresses. Since most mining pools are managed by an individual or company, the pool
operator may charge a small management fee for the pool-services.

Miners participating in a pool split the work of searching for a solution to a candidate block, earning "shares"
for their mining contribution. The mining pool sets a lower difficulty target for earning a share, typically more
than 1,000 times easier than the bitcoin network’s difficulty. As miners succeed in the easier difficulty target,
they get more shares, and when someone in the pool successfully mines a block, the reward is earned by the
pool and then shared with all miners in proportion to the number of shares they had. Pool miners connect
to the pool server using a mining protocol such as Stratum (STM) or GetBlockTemplate (GBT). Both the
STM and GBT protocols create block templates that contain a template of a candidate block header. The
pool server constructs a candidate block by aggregating transactions, adding a coinbase transaction (with
extra nonce space), calculating the merkle root, and linking to the previous block hash. The header of the
candidate block is then sent to each of the pool miners as a template. Each pool miner then mines using
the block template, at a lower difficulty than the bitcoin network difficulty, and sends any successful results
back to the pool server to earn shares.

11.8 P2Pools and Consensus Attacks
Managed pools can be risky due to their single point of failure and the possibility for the pool manager to
cheat (by directing the pool effort to double-spend transactions or invalidate blocks), which is why P2Pool,
a new peer-to-peer mining pool without a central operator, was proposed and implemented in 2011.

P2Pool works by decentralizing the functions of the pool server, implementing a parallel blockchain-like
system called a share chain. A share chain is a blockchain running at a lower difficulty than the bitcoin
blockchain. The share chain allows pool miners to collaborate in a decentralized pool, by mining shares on
the share chain at a rate of one share block every 30 seconds. Each of the blocks on the share chain records
a proportionate share reward for the pool miners who contribute work, carrying the shares forward from the
previous share block. When one of the share blocks also achieves the difficulty target of the bitcoin network,
it is propagated and included on the bitcoin blockchain, rewarding all the pool miners who contributed to all
the shares that preceded the winning share block. Essentially, instead of a pool server keeping track of pool
miner shares and rewards, they are kept track by a decentralized blockchain called the share chain (basically
a mini-blockchain tracking shares within a pool server).

Participation in P2Pool has increased due to concerns of a 51% attack, a type of a consensus attack. A
scenario of a 51% attack would play out as such: Assume that a group of miners, controlling a majority (51%)
of the total network’s hashing power, collude to attack bitcoin. With the ability to mine the majority of the
blocks, the attacking miners can cause deliberate "forks" in the blockchain and double-spend transactions
or execute denial-of-service attacks against specific transactions or addresses.

• A fork/double-spend attack is one where the attacker causes previously confirmed blocks to be
invalidated by forking below them and re-converging on an alternate chain. With sufficient power,
an attacker can invalidate six or more blocks in a row, causing transactions that were considered
immutable (six confirmations) to be invalidated. Note that a double-spend can only be done on the
attacker’s own transactions, for which the attacker can produce a valid signature. Double-spending
one’s own transactions is profitable if by invalidating a transaction the attacker can get a nonreversible
exchange payment or product without paying for it.

For example, assume that entity A buys something from entity B for 10BTC. Once the transaction is
confirmed in a block in the form "A pays B 10BTC," B hands over the product to A. Once receiving
the product, A works with an accomplice, C, who operates a large mining pool, and C launches a
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51% attack as soon as A’s transaction is included in a block. C directs the mining pool to re-mine
the same block height as the block containing A’s transaction, replacing the "A → B" with "A →
A", a transaction that double-spends the same input as A’s payment. The double-spend transaction
consumes the same UTXO and pays it back to A’s wallet, instead of paying it to B, essentially allowing
A to keep the bitcoin. C then directs the mining pool to mine an additional block, so as to make
the chain containing the double-spend transaction longer than the original chain (causing a fork below
the block containing A’s transaction). When the blockchain fork resolves in favor of the new (longer)
chain, the double-spent transaction replaces the original payment to B. Ultimately, B lost both the
product and the BTC.

Figure 30: Double Spend Attack

To protect against this kind of attack, a merchant selling large-value items must wait at least 6 confir-
mations before giving the product to the buyer. The more confirmations elapse, the harder it becomes
to invalidate a transaction with a 51% attack. For high-value items, payment by bitcoin will still be
convenient and efficient even if the buyer has to wait 24 hours for delivery, which would ensure 144
confirmations.

• A denial-of-service attack is the other scenario for a consensus attack, which denies service to specific
bitcoin participants (their addresses). An attacker with a majority of the mining power can simply
ignore specific transactions. If they are included in a block mined by another miner, the attacker can
deliberately fork and re-mine that block, again excluding the specific transactions. This type of attack
can result in a sustained denial of service against a specific address or set of addresses for as long as
the attacker controls the majority of the mining power.
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Figure 31: Denial-of-Service Attack

Despite its name, the 51% attack scenario doesn’t actually require 51% of the hashing power, but can be
attempted with as little as 30%. The 51% threshold is simply the level at which such an attack is almost
guaranteed to succeed. A consensus attack is essentially a tug-of-war for the next block and the "stronger"
group is more likely to win. With less hashing power, the probability of success is reduced, because other
miners control the generation of some blocks with their "honest" mining power. One way to look at it is
that the more hashing power an attacker has, the longer the fork he can deliberately create, the more blocks
in the recent past he can invalidate, or the more blocks in the future he can control. Even though there is
no possible way for solo miners to control even 1% of the total mining power, it may be possible to do so
with mining pools.

46/ 46


	Cryptography
	Elliptic Curve Cryptography

	Base58 Encoding and WIF Format
	Bitcoin Keys and Addresses
	Cryptocurrency Wallets
	Mnemonic Code Words
	Hierarchical Deterministic Wallets (BIP0032/BIP0044)
	Extended Child Key Derivation - Non-Hardened Extended Private Key
	Extended Child Key Derivation - Non-Hardened Extended Public Key
	Extended Child Key Derivation - Hardened Extended Private Key
	HD Wallet Key Identifier (Path)

	Advanced Keys and Addresses
	Encrypted Private Keys (BIP0038)
	Vanity Addresses
	Paper Wallets

	Transaction Chains and UTXOs
	Transaction Fees
	Transaction Chaining and Orphan Transactions

	Locking/Unlocking Scripts and Script Language
	Script Language

	Standard Transactions
	Pay-to-Public-Key-Hash (P2PKH)
	Pay-to-Public-Key (P2PK)
	Multi-Signature
	Data Output (OP_RETURN)
	Pay-to-Script-Hash (P2SH)

	The Bitcoin Network
	Full Nodes vs Simplified Payment Verification (SPV) Nodes
	Transaction Pools
	Alert Messages

	The Blockchain
	Block Header
	Linking Blocks in the Blockchain
	Merkle Trees

	Mining and Consensus
	Mining Nodes & Aggregating Transactions into Blocks
	Constructing the Block Header & Difficulty Representation
	Mining the Block & Proof-of-Work Algorithm
	Difficulty Target and Retargeting
	Successfully Mining and Validating the Block
	Blockchain Forks and Assembling Chains of Blocks
	The Hashing Race and Mining Pools
	P2Pools and Consensus Attacks


