
VAE Muchang Bahng Spring 2023

Variational Autoencoders

Muchang Bahng

Spring 2023

Contents
1 Variational Autoencoders 2

1.1 Reparamaterization Trick . 8

2 Importance Weighted Autoencoders 13

3 Fisher Autoencoders 14

4 Conditional VAEs 15

References 16

1/ 16

VAE Muchang Bahng Spring 2023

1 Variational Autoencoders
Note that like linear latent variable models such as PCA, autoencoders “encode” our samples in a latent
space, which we will call Z. If we wanted to create a generative model from autoencoders, we can use the
analogous transition from PCA to PPCA, by changing our points to distributions. Like in PPCA, we might
want to define a standard Gaussian over the latent space Z and transform this into the original space X .
However, there is a small problem with autoencoders. The latent space where the encoded vectors lie may
not be contiguous, which means that the distribution of the latent space may not be very simple either.
Look at the encodings of MNIST below. Trying to sample from this space with a isotropic Gaussian results
in a high probability of hitting the “dead” zones which may give garbage generative results. If the space
has discontinuities and you sample a variation from there, the decoder will simply generate an unrealistic
output.

(a) Training an autoencoder on MNIST and then visualizing
the encodings from a 2D latent space shows the formation of
distinct clusters, but there are huge empty spaces where the
labeling may be ambiguous and not allow us to interpolate
effectively.

(b) Therefore, we want the encodings to be contiguous while
still being distinct. This allows smooth interpolation which
is easy to sample from with a simple pdf, e.g. Gaussian, and
enables construction of new samples.

Figure 1

In 2013, Kigma introduced this generative model that bridges between latent variable models and deep
neural nets. We can think of the relationship between the linear model PCA and its latent counterpart
PPCA as the relationship between the nonlinear autoencoders and variational autoencoders. This is a good
time to review linear and nonlinear latent variable models in my ML notes. Note that in a LVM, the family
of functions {Dβ} is used to map a latent variable z to the likelihood p(x | z). This can be done by a direct
transformation of the random variable Z (e.g. PPCA or as we will see later, normalizing flows), or we can
have Dβ(z) be an explicit parameterization (e.g. Gaussian mixture models and variational autoencoders).
Given neural networks, we can do the latter method quite easily, and we are already familiar with the
architectures to do so.

Example 1.1 (Classification Nets Parameterize Multinomials)

In a classification neural network with parameters β, it takes in an input x and outputs a softmax
vector fβ(x) = (p1, . . . , pK)T . This basically means that fβ(x) = θ parameterizes the conditional
distribution (in this case, multinomial) of y given x.

Y | X = x ∼ Multinomial(θ = fβ(x)) (1)

This is a much more efficient way to store conditional distributions than a dim(X)(K − 1) lookup
table.

Therefore, by generating a latent variable p(z) (that is simple and fixed), we can use a deep neural network
Dβ to generate θ = Dβ(z) which serve as the parameters of the conditional distribution pθ(x | z), and then
sampling from this distribution is easy because we assume that pθ(x | z) is in an explicitly parameterized

2/ 16

VAE Muchang Bahng Spring 2023

family of distributions. This allows us to easily sample from the joint distribution.

pθ(x, z) = pθ(x | z) p(z) (2)

This is all great, but computing

p(x) =

∫
p(x, z) dz =

∫
pθ(x | z) p(z) dz (3)

is computationally intractable. With strong assumptions, like conditional independence of not just p(x | z)
but also p(z | x), in RBMs, we can construct pretty good approximations. Recall that for RBMs, the
derivative of the log of p(x) decomposes into a positive phase that requires you to integrate over p(z | x),
which is easy, and p(x, h), which is hard to do in general. But through contrastive divergence, we can
approximate the integral by sampling a x̃ and constructing another integral over p(z | x), which is then easy
to compute.

Example 1.2 (Bernoulli-Bernoulli RBM)

We would like to approximate a d-dimensional Bernoulli vector x with a latent variable z ∈ RK . We
will assume a prior p(z) ∼ N(0, I), and let us have a neural net Dβ that parameterizes the random
vector x, where xi ∼ Bernoulli(θi) for θi. Then, by conditional independence,

p(x | z) =
d∏

i=1

pθ(xi | z) =
d∏

i=1

θxi
i (1− θi)

1−xi =

d∏
i=1

[
Dβ(z)

]xi

i

(
1− [Dβ(z)]d

)1−xi (4)

and we can see that since p has the flexibility of whatever vector in [0, 1]D it can be captured by
the neural net Dβ . It encompasses a broad family of Bernoulli probability distributions. We can see
that we have some method to compute p(x | z). We train a neural net (somehow) and do forward
prop on it to generate the correct parameters modeling the distribution of x. Note that in RBMs the
conditional independence allowed us to integrate over z easily. To see why, in the example above, the
integral becomes

p(x) =
∑

z∈{0,1}k

{ d∏
i=1

[
Dβ(z)

]xi

i

(
1− [Dβ(z)]d

)1−xi

}
p(z) (5)

where k is the dimension of the latent space. However, integrating over all z’s for more complex
spaces is not feasible.

Dβ is clearly nonlinear and we can’t just do some simple closed form optimization, so we must use the tools
introduced in nonlinear latent variable models. Namely, we revisit the variational lower bound. Recall that
estimating the true p(x) can be reduced to the problem of finding a good approximate of the true p(z | x),
the posterior or inference component, with some family of distributions {qϕ}. Just like the generation model,
we can build another neural network Eα such that ϕ = Eα(x) parameterizes the conditional distribution of
z, called our encoder.

p(z | x) ≈ qϕ(z | x) = qEα(x)(z) (6)

Example 1.3 (Encoder Neural Net Generates Parameters of Likelihood)

If ϕ = (µ, σ), where σ is just the vector representing variances of independent Gaussians, then we can
use the neural network E to get ϕ = Eα(x). In the example, ϕ = (µ, log σ2) since we want to allow
negative values, and

qϕ(z | x) ∼ N (Eα(x)) = N (ϕ) = N (µ, σ2) (7)

Therefore, by modeling both the likelihood and posterior with probability distributions that can be param-
eterized by an output of neural networks, we have a variational autoencoder.

3/ 16

VAE Muchang Bahng Spring 2023

Definition 1.1 (Variational Autoencoders)

In a variational autoencoder (VAE), we assume that the covariates x(i) ∼ X are generated as the
marginal of a joint distribution p(x, z) with latent variable z ∼ X. We model the sub-distributions
as such:

1. We assume that the prior p(z) is of fixed simple form, e.g. a standard Gaussian.
2. We assume that the likelihood p(x | z) can be approximated by a parameteric family of distri-

butions pθ(x | z), where θ = Dβ(z) is generated by a decoder neural network parameterized
by β.

3. We assume that the posterior p(z | x) can be approximated by a parameteric family of distri-
butions qϕ(z | x),a where ϕ = Eα(x) is generated by an encoder neural network parameterized
by α.

We can optimize θ, λ by equivalently optimizing the parameters α, β of the nets. Once this is done,
1. To conduct inference, we can input in some data x and retrieve the distribution of its latent

representation as qEα(x) ≈ p(z | x).
2. To generate data, we can sample z from p(z) and sample from pDβ(z)(x) ≈ p(x | z).
aNote that this is an assumption! The posterior may be an arbitrary shape or form.

Figure 2: A pictorial diagram of a nonlinear latent variable model to refresh your memory.

So how do we actually train this? Just like with every other nonlinear latent variable models, we can use
the evidence lower bound. We do a quick review. Recall that the KL divergence can be decomposed into
the sum of conditional entropies, and hence we can use the fact the KL divergence is always nonnegative to
create this bound.

log pθ(x) = KL
(
qϕ(z | x) || pθ(z | x)

)
+ Eqϕ(z|x)[log pθ(x, z)]− Eqϕ(z|x)[log qϕ(z | x)] (8)

≥ Eqϕ(z|x)[log pθ(x, z)]− Eqϕ(z|x)[log qϕ(z | x)] = ELBO(x, ϕ, θ) (9)

and therefore by summing over all the data points we can get the evidence lower bound, which holds for any
set of distributions q

(1)
ϕ , . . . , q

(N)
ϕ .

N∑
i=1

log pθ(x
(i)) ≥

N∑
i=1

Eqϕ(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eqϕ(z|x(i))[log qϕ(z | x(i))] = ELBO(D, ϕ, θ) (10)

4/ 16

VAE Muchang Bahng Spring 2023

Therefore, minimizing the KL divergence is equivalent to maximizing the ELBO w.r.t. θ and ϕ. As we have
seen in my ML notes, the gradient of the ELBO w.r.t. θ be solved by computing the gradient directly and
using SGD. However, taking the gradient w.r.t. ϕ is more complicated since we cannot put the gradient in
the expectation (since we are deriving and integrating w.r.t. ϕ). We can use the log-derivative trick1, but
this is known to have high variance and is not sufficient to backpropagate huge neural nets. This is not
actually the biggest problem either, as we will see that the extra parameters we’ve introduce with the neural
nets do not allow us to backpropagate across stochastic variables.

Now we talk about more implementation details presented in the paper, which is a simplified form.

1. The first is that [KW22] fixes a prior isotropic multivariate Gaussian pθ(z) = N (0, I), which lacks
parameters.

2. It also assumes that pθ(x | z) be a multivariate Gaussian (for real-valued data) or Bernoulli (in binary
data). This gives us a nice parameteric form that may hopefully approximate the true posterior, which
may be extremely complicated.

pθ(x | z) = N (µ(i), σ2(i)I) θ = {µ(i), σ2(i)} = Dβ(z
(i)) (11)

pθ(x | z) = Bernoulli(θ) θ = Dβ(z
(i)) (12)

3. It finally assumes that the true posterior pθ(z | x), which is intractable, takes on a form qϕ(z | x) that
can be approximated by a Gaussian with diagonal covariance.

qϕ(z | x(i)) = N (µ(i), σ2(i)I) ϕ = {µ(i), σ2(i)} = Eα(x
(i)) (13)

So let’s walk through the forward propagation with the likelihood set to Bernoulli. We have a dataset {x(i)}.
For each x(i)

1. We put it into our encoder network and get out the parameters ϕ(i) = Eα(x
(i)) for our latent Gaussian.

We output the mean µ
(i)
α and either the variance (σ

(i)
α)2, or the log-variance log(σ

(i)
α)2.2

2. We sample a z(i) from this Gaussian and feed it into the decoder network Dβ(z
(i)), which returns the

parameters θ(i) = Dβ(z
(i)) for our Bernoulli likelihood.

3. We sample x̂(i) from this Bernoulli and retrieve another sampled version of our input.

Great, so we can draw a computation graph for this, but before we do, let’s revisit the basics and draw a
simpler example.

Example 1.4 (Softmax)

In the graph below, note that our “prediction” ŷ(i) for the data point x(i) is not really a prediction
at all. If we have three categories (cat, dog, fish) and I give you an image, the model will output a
vector of probabilities, e.g. ŷ(i) = [0.1, 0.2, 0.7]. While we can easily infer that the probability of a
fish is highest, and therefore should be our prediction, the model didn’t actually output one answer.
Rather, we should interpret this output vector ŷ(i) as a parameter θ of a multinomial distribution.
From this we can sample an actual prediction ŷ(i) ∼ Multinomial(θ).
When we compute the loss of a sample, we compute the likelihood by taking the true output y(i)

and one-hot encoding it. One-hot encoding allows us to convert the label y(i) into a parameter of a

1explained in my ML notes
2Since variances must always be positive, sometimes a slight tweaking of transformations is needed. For example, if an

encoder network has a final linear layer, then the variances may not be always positive, which is a problem, so we may do an
exponential or a ReLU at the end. You may notice that the log may often return negative numbers, but as we will see later,
we can add a corresponding transformation in our reparamaterization trick, which will exponentiate the log-variances (this is
how it’s implemented in the code) before using them as variances. Calculating the log-variance first and then exponentiating it
may also bring better numerical stability.

5/ 16

VAE Muchang Bahng Spring 2023

multinomial itself, and this process is hidden inside ℓ. Therefore we want to maximize

log p(y(i) | x(i)) = p ˆθ(i)(y
(i)) =

∑
j

y
(i)
j log θ̂

(i)
j (14)

which is the cross entropy.

x(i)

W

Wx(i)

b

ŷ(i)

y(i)
ℓ

= θ̂

Figure 3: When we draw a computation graph to visualize the backpropagation of a softmax regression
function, note that we need to have the gradients start from the log-likelihood ℓ and reach “back” to W and
b, our model parameters.

Another way to approximate the log likelihood ℓ is to simply take the output parameter θ̂(i), keep on
sampling y’s from it, penalizing when needed, and averaging the penalties.a

log p(y(i) | x(i)) = logEy∼θ̂(i)

[
1yi=y

]
(15)

= log

∫
1y(i)=ypθ̂(i)(y) dy (16)

≈ log

{
1

N

L∑
l=1

1y(i)=y(i,l)

}
(17)

where y(i,l) ∼ Multinomial(θ̂(i)).

x(i)

W

Wx(i)

b

ŷ(i)

y(i)
ℓ

= θ

sample
ŷ(i,l)

Figure 4: Note that since it’s much harder to sample and converge onto a good approximation, it’s tougher
to go through the curly arrow. That is, it is harder to backpropagate through stochastic nodes.

Therefore, we can think of backpropagating as either one of two things. Either backpropagate straight
through the parameter like we did first, or sample from the estimated distribution and sum up to
approximate the samples.

aThis is useful if we can easily sample, but do not know the closed form of the likelihood distribution.

Let’s keep this in the back of our mind, and focus on the computation for a bit. By the simplifying form
that qϕ is a Gaussian, we can even get a nearly closed form of the ELBO.

6/ 16

VAE Muchang Bahng Spring 2023

Theorem 1.1 ()

Given the assumptions above,

ELBO(x, ϕ, θ) := Eqϕ(z|x)[log pθ(x | z)] + Eqϕ(z|x)[log p(z)]− Eqϕ(z|x)[log qϕ(z | x)] (18)

= Eqϕ(z|x)[log pθ(x | z)] + 1

2

D∑
d=1

(
1 + log((σd)

2)− (µd)
2 − (σd)

2

)
(19)

Therefore, the derivative of last two terms are exact, i.e. we don’t need to estimate them with SGD.

Proof.

Let’s evaluate the last two expectations.

Eqϕ(z|x)[log p(z)] =

∫
log p(z) · qϕ(z | x) dx (20)

=

∫
log{N (z | 0, I)} · N (z | µ, σ2) dz (21)

= −D

2
log(2π)− 1

2

D∑
d=1

µ2
d + σ2

d) (22)

Eqϕ(z|x)[log qϕ(z | x)] =
∫

log qϕ(z | x) qϕ(z | x) dz (23)

=

∫
log{N (z | µ, σ2)}N (z | µ, σ2) dx (24)

= −D

2

D∑
d=1

1 + log(σ2
d) (25)

Corollary 1.1 (Bernoulli Likelihood)

If pθ(x | z) is Bernoulli, then the ELBO can be estimated by estimating the likelihood

ELBO(x, ϕ, θ) =
1

L

L∑
l=1

+
1

2

D∑
d=1

(
1 + log((σd)

2)− (µd)
2 − (σd)

2

)
(26)

With these two things, let’s take a look at the computation graph of the VAE.

x(i)

α

Eα ϕ(i) =
(
µ(i)
α , σ(i)

α

) sample

z(i)

β

Dβ θ(i)

sample

x̂(i)

x(i)

ℓ

Figure 5: Computational graph of a VAE.

Note that since we have shown that the derivative of the last two expectations (i.e. the derivative of the KL
divergence) is dependent on the outputs σ and µ of the neural net, we must also backpropagate amongst
them as well, which is why you see the giant arrow from ϕ to ℓ.

7/ 16

VAE Muchang Bahng Spring 2023

We can see that since we know the closed form of pθ(x | z), backpropagating over θ(i) is no problem. However,
we must reach α to update the neural network weights, and to do this we must go backprop through the
stochastic node z(i), which may stump you. In fact, how do you even backpropagate against something that’s
a random variable? Remember that in our softmax example, we could simply compute the log likelihood
of a bunch of samples at this node to get an approximate average log likelihood. This is a start, but in
this case we want to compute the gradient of the log likelihood. Fortunately, the log-derivative trick3 allows
us to swap the gradient and expectation under a certain form, putting the expectation on the outside and
therefore allowing us to sample gradients.

∇ϕEqϕ(z)[f(z)] = Eqϕ(z)[f(z)∇ϕ log qϕ(z)] (27)

So we apply the same idea by sampling z(1), . . . , z(L) from the Gaussian with parameters ϕ(i) and for each
sample we fix z(l), allowing us to backpropagate to α to get a noisy estimate. By averaging these noisy
gradients we have an approximation of the true gradient w.r.t. x(i).4 Unfortunately, when doing this for
gradients the variance tends to be very high up to a point where it is impractical, and even with a lot of
sampling this frequently undershoots or overshoots the actual gradient. Therefore, we must come up with
an alternative solution to estimate the gradient efficiently.

1.1 Reparamaterization Trick
In 2013, Durk Kigma, then a PhD student in machine learning at the University of Amsterdam, introduced
a solution in [KW22] called the reparamaterization trick, which is just an application of a change of basis.

Theorem 1.2 (Reparameterization Trick)

Let qϕ(z|x) be a continuous distribution that can be sampled by first sampling ϵ ∼ p(ϵ) from a
parameter-free distribution and then applying a differentiable transformation gϕ(ϵ, x). Then:

∇ϕEqϕ(z|x)[f(z)] = ∇ϕEp(ϵ)[f(gϕ(ϵ, x))] = Ep(ϵ)[∇ϕf(gϕ(ϵ, x))] (28)

or in integrals,

∇ϕ

∫
f(z) qϕ(z | x) dz = ∇ϕ

∫
f(gϕ(ϵ, x)) p(ϵ) dϵ =

∫
∇ϕf(gϕ(ϵ, x)) p(ϵ) dϵ (29)

where f is any differentiable function.

Proof.

We clearly state our assumptions:
• We have a distribution qϕ(z|x) that can be reparameterized using gϕ(ϵ, x)
• ϵ is sampled from a parameter-free distribution p(ϵ)
• gϕ is differentiable with respect to ϕ
• f is any differentiable function

The first equality to prove is:

∇ϕEqϕ(z|x)[f(z)] = ∇ϕEp(ϵ)[f(gϕ(ϵ, x))]

This follows directly from the reparameterization property. Since z = gϕ(ϵ, x) where ϵ ∼ p(ϵ), we can
rewrite any expectation over qϕ(z|x) as an expectation over p(ϵ):

Eqϕ(z|x)[f(z)] = Ep(ϵ)[f(gϕ(ϵ, x))]

3Mentioned in my ML notes
4This like a SGD inside a SGD, since we’re sampling over minibatches of the samples x(i) as well.

8/ 16

VAE Muchang Bahng Spring 2023

Taking ∇ϕ of both sides gives us the first equality. The second equality to prove is:

∇ϕEp(ϵ)[f(gϕ(ϵ, x))] = Ep(ϵ)[∇ϕf(gϕ(ϵ, x))] ⇐⇒ ∇ϕ

∫
f(gϕ(ϵ, x))p(ϵ)dϵ =

∫
∇ϕf(gϕ(ϵ, x))p(ϵ)dϵ

(30)
To justify exchanging the gradient and integral, we invoke the Leibniz integral rule. This exchange
is valid when f ◦ gϕ is differentiable with respect to ϕ (given in our assumptions), the domain of
integration (support of p(ϵ)) is independent of ϕ, and there are suitable integrability conditions
(which we assume hold). Then we exchange the gradient and expectation:

∇ϕ

∫
f(gϕ(ϵ, x))p(ϵ)dϵ =

∫
∇ϕf(gϕ(ϵ, x))p(ϵ)dϵ (31)

A crucial observation is that p(ϵ) does not depend on ϕ (it is parameter-free), which is essential for
this exchange to work.

∇ϕEqϕ(z|x)[f(z)] = ∇ϕEp(ϵ)[f(gϕ(ϵ, x))] = Ep(ϵ)[∇ϕf(gϕ(ϵ, x))] (32)

This result is fundamental to variational inference and deep learning, particularly in training Variational
Autoencoders (VAEs). The key insight is that by reparameterizing the random variable z in terms of a
parameter-free random variable ϵ, we can separate the stochastic sampling (which is not differentiable) from
the deterministic transformation gϕ (which is differentiable).

The biggest advantage to this is that we although we do not avoid sampling to approximate the log likelihood,
the rate at which it converges is much faster than simple sampling or the log-derivative trick, which is
demonstrated in the example below.

Example 1.5 (Gradient of Expection of f(x) = x2 w.r.t. Gaussian)

Assume we have a normal distribution q that is parameterized by ϕ, specifically qϕ(x) = N(ϕ, 1). We
want to solve the below problem

min
ϕ

Eq[x
2] (33)

This is of course a rather silly problem and the optimal ϕ = 0 is obvious. One way to calculate
∇ϕE[x2] is using the log-derivative trick as follows

∇ϕEq[x
2] = ∇ϕ

∫
qϕ(x)x

2dx (34)

=

∫
x2∇ϕqϕ(x)

qϕ(x)

qϕ(x)
dx (35)

=

∫
qϕ(x)∇ϕ log qϕ(x)x

2dx (36)

= Eq[x
2∇ϕ log qϕ(x)] (37)

For our example where qϕ(x) = N(ϕ, 1), this method gives

∇ϕE[x2] = Eq[x
2(x− ϕ)] (38)

and we can sample from q ∼ N(ϕ, 1). Reparameterization trick is a way to rewrite the expectation
so that the distribution with respect to which we take the gradient is independent of parameter ϕ.
To achieve this, we need to make the stochastic element in q independent of ϕ. Hence, we write x as

x = ϕ+ ϵ, ϵ ∼ N(0, 1) (39)

Then, we can write
Eq[x

2] = Eϵ[(ϕ+ ϵ)2] (40)

9/ 16

VAE Muchang Bahng Spring 2023

where p(ϵ) is the distribution of ϵ, i.e., N(0, 1). Now we can write the derivative of Eq[x
2] as follows

∇ϕE[x2] = ∇ϕEp[(ϕ+ ϵ)2] = Ep[2(ϕ+ ϵ)] (41)

If we actually plot the variances, for sample sizes of N = 10, 100, 1000, 10000, 100000, we can see that
the reparamaterization trick produces estimates where the variances of the sampling distribution is
an order of magnitude smaller.

Figure 6: Credits to here.

Therefore, given that ϕµ = µ(i) and ϕσ = (σ(i))2 are the outputs of our encoder neural net, our transformation
is

gϕ(x, ϵ
(l)) = ϕµ +

√
ϕσ ⊙ ϵ(l) = µ(i) + σ(i) ⊙ ϵ(l) ϵ(l) ∼ N (0, I) (42)

or in the log-variance case, where the encoder outputs ϕσ = log(σ(i))2 = 2 log σ(i), we have

gϕ(x, ϵ
(l)) = µ(i) + eϕσ/2 ⊙ ϵ(l) = µ(i) + σ(i) ⊙ ϵ(l) ϵ(l) ∼ N (0, I) (43)

where ⊙ is element-wise multiplication, can be used to model p(z).5 The intuition behind this is to “push” the
stochastic node z(i) back so that we don’t have to go through it to reach α. Therefore, to compute the noisy
gradient for α, we can sample ϵ(l) ∼ N (0, I) and treat it as a fixed variable when doing backpropagation,
which essentially means that the mapping gϕ is a deterministic function (and so gϕ ◦ Eα is a deterministic
neural net). Then we do this L times to get L gradients, and average them to get the unbiased estimate of
the gradient of the single sample x(i). Then we must do this for all x(i) in a minibatch in SGD. Since this is
still too computationally heavy, we usually set L = 1.

5This is called factorized Gaussian posterior, but it can be extended to the full-variance Gaussian posterior where
the variance is parameterized through a lower triangular matrix L, from the Cholesky decomposition.

10/ 16

https://stats.stackexchange.com/questions/199605/how-does-the-reparameterization-trick-for-vaes-work-and-why-is-it-important

VAE Muchang Bahng Spring 2023

x(i)

α

Eα ϕ(i) =
(
µ(i)
α , σ(i)

α

)

sample

z(i)

β

Dβ θ(i)

sample

x̂(i)

x(i)

ℓ

ϵ(l)ϵ

gϕ

Figure 7: Note that the ϵ variable was added into the graph, and the blue variables are the parameters we want to
backpropagate and optimize. Therefore the path from ℓ to α does not directly go through a stochastic node. Note
that autograd calculates gradients for ϕ while on its way to α. But since ℓ is directly dependent on ϕ(i), we want to
make sure to update the ϕ(i) directly with a step in the right direction. The rest of the parameters, while they do
have their gradients computed, do not need to be updated with a step. A similar figure on a smaller scale can be
found in Kigma’s workshop presentation in NIPS.

Another advantage is that this is more general. Although we must meet the conditions that the posterior
pϕ(z | x) should be an absolutely continuous distribution that can be modeled as the transformation of a
simple random variable ϵ, since any distribution that is differentiable with respect to its parameters can be
reparamaterized by inverting the multivariate CDF function and applying the implicit method.

In order to see how the gradients are calculated, recall the following theorem.

Theorem 1.3 (Change of Basis)

We have
log qϕ(z | x) = log p(ϵ)− log

∣∣∣∣det(∂z

∂ϵ

)∣∣∣∣ (44)

where ∂z/∂ϵ denotes the Jacobian matrix computed through gϕ(x, ϵ).

Corollary 1.2 ()

This applied to the affine function gϕ above defined for the log-variance gives

∂z

∂ϵ
= diag(σ) =⇒ log

∣∣∣∣det(∂z

∂ϵ

)∣∣∣∣ = ∑
i

log σi (45)

Corollary 1.3 (Auto-Encoding VB (AEVB) Algorithm)

Applying the reparamaterization trick to the gradient of the ELBO gives the following corollary.

∇ϕ ELBO(x, ϕ, θ) = Ep(ϵ)[∇ϕ log pθ(x | z)−∇ϕ log qϕ(z | x) +∇ϕ log p(z)] (46)

Therefore we can unbiasedly approximate the gradient by sampling L points ϵ(1), . . . , ϵ(L) from p(ϵ),
transforming them to z(1), . . . , z(L) through the function gϕ, and finally computing the gradient of
the log posterior (which is easy since we know the closed form of the conditional distribution given

11/ 16

VAE Muchang Bahng Spring 2023

z), and finally averaging them.

∇ϕ ELBO(x, ϕ, θ) ≈ 1

L

L∑
l=1

[∇ϕ log pθ(x | z(l))−∇ϕ log qϕ(z
(l) | x) +∇ϕ log p(z

(l))]

=
1

L

L∑
l=1

[∇ϕ log pθ(x | gϕ(ϵ(l), x))−∇ϕ log qϕ(gϕ(ϵ
(l), x) | x) +∇ϕ log p(gϕ(ϵ

(l), x))]

which is guaranteed to converge by the law of large numbers, and furthermore we can do this for any
batch size L.

Really the VAEs were just a straightforward application of CAVI with the reparamaterization trick, plus the
extra variables α, β that are used to generate the θ, ϕ.

Algorithm 1.1 (Implementation of VAE)

To see an implementation of a VAE with PyTorch, see here.

12/ 16

code/vae.html

VAE Muchang Bahng Spring 2023

2 Importance Weighted Autoencoders

13/ 16

VAE Muchang Bahng Spring 2023

3 Fisher Autoencoders

14/ 16

VAE Muchang Bahng Spring 2023

4 Conditional VAEs
Note that once our VAE is trained, we have no control on the data generation process. That is, if we want
to generate only the digit 2, we can’t since we must just sample from the Gaussian p(z) in the latent space.
Therefore, conditioning all the distributions on what we want is the objective of conditional VAEs, which
uses the conditional ELBO.

Definition 4.1 (Conditional ELBO)

The conditional ELBO of x, θ, ϕ given some conditioning vector ca, is defined

Eqϕ(z|x)
[
log pθ(x | z, c)−KL(qϕ(z | x, c)||p(z | c))

]
(47)

aAnalogous to the digit we want in MNIST.

15/ 16

VAE Muchang Bahng Spring 2023

References
[KW22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

16/ 16

	Variational Autoencoders
	Reparamaterization Trick

	Importance Weighted Autoencoders
	Fisher Autoencoders
	Conditional VAEs
	References

