
Muchang Bahng Spring 2023

Muchang Bahng

Spring 2023

Contents
1 Multi-Layered Perceptrons 3

1.1 Feedforward Fully-Connected Networks . 3
1.2 Forward and Back Propagation . 5

2 Theoretical Properties 10
2.1 Universal Approximation . 10
2.2 Parameter Symmetry . 11
2.3 Smoothness . 12

3 Autograd Engines 14
3.1 Strides . 16
3.2 Automatic Differentiation . 16

4 Weight Initialization 18

5 Activation Functions 20

6 Popular Benchmark Datasets 22

7 Regularization 23
7.1 L1 and L2 Regularization . 23
7.2 Dropout . 23
7.3 Layer Normalization . 23
7.4 Batch Normalization . 25

8 Compression 27
8.1 Pruning . 27
8.2 Quantization . 27

9 Exercises 28

References 32

1/ 32

Muchang Bahng Spring 2023

Here is a few steps you can take as a guide to training a neural network.1

1. Preprocess the data.

2. Choose your neural net architecture (number of layers/neurons, etc.)

3. Do a forward pass with the initial parameters, which should be small, and check that the loss is
reasonable (e.g. log(1/10) ≈ 2.3 for softmax classification of 10 classes).

4. Now crank up the regularization term, and your loss should have gone up.

5. Now try to train on only a very small portion of your data without regularization using SGD, which
you should be able to overfit and get the accuracy to 100%.

6. Now you can train your whole dataset. Start off with a small regularization (e.g. 1e-6) and find a
learning rate that makes the loss go down.

(a) Run for a few epochs to see if the cost goes down too slowly (step size is too small) or the cost
explodes (step size too big). A general tip is that if the cost is ever bigger than 3 times the original
cost, then this is an indication that the cost has exploded.

(b) We can run a grid search (in log space) over the learning rate and the regularization hyperparam-
eters over say 10 epochs each, and compare which one makes the most progress.

7. Monitor and visualize the loss curve.

epoch

loss
very high learning rate

low learning rate
high learning rate

good learning rate

Figure 1: If you see loss curves that are flat for a while and then start decreasing, then bad initialization is a prime
suspect.

8. We also want to track the ratio of weight updates and weight magnitudes. That is, we can take the
norm of the weights θ and the gradient updates ∇θ, and a rule of thumb is that the ratio should be
about

||∇θ||
||θ||

≈ 0.001 or 0.01

1From Stanford CS 229 NLP.

2/ 32

Muchang Bahng Spring 2023

1 Multi-Layered Perceptrons
We build upon what we already know: generalized linear models. In simple regression, we transform the
inputs into the relevant features xn 7→ ϕ(xn) = ϕn and then, when we construct a generalized linear model,
we assume that the conditional distribution Y | X = x is in the canonical exponential family, with some
natural parameter η(x) and expected mean µ(x) = E[Y | X = x]. Then, to choose the link function g
that related g(µ(x)) = xTβ, we can set it to be the canonical link g that maps µ to η. That is, we have
g(µ(x)) = xTβ = η(x) such that the natural parameter is linearly dependent on the input. The inverse
g−1 of the link function is called the activation function, which connects the expected mean to a linear
function of x.

hβ(x) = g−1(xTβ) = µ(x) = E[Y | X = x] (1)

Now, note that for a classification problem, the decision boundary defined in the ϕ feature space is linear,
but it may not be linear in the input space X . We would like to extend this model by making the basis
functions ϕn depend on the parameters w and then allow these parameters to be adjusted during training.

(a) Data in space X = R2. (b) Transformed data ϕ(x) =
∥x∥.

(c) Logistic fit in transformed
space.

(d) Logistic fit to data in input
space.

Figure 2: Consider the set of points in R2 with the corresponding class. We transform the features to ϕ(x1, x2) =
x2
1+x2

2, which gives us a new space to work with. Fitting logistic regression onto this gives a linear decision boundary
in the space ϕ, but the boundary is circular in X = R2.

1.1 Feedforward Fully-Connected Networks
So how should we construct parametric nonlinear basis functions? One way is to have a similar architecture
as GLMs by having a linear map followed by an activation function f(x) = σ(wTx+ b). The simplest such
function with the activation function as the step function

f(z) =

{
1 if z ≥ 0

0 if z < 0
(2)

is the perceptron algorithm. It divides Rd using a hyperplane ωTx+ b = 0 and linearly classifies all points
on one side to value 1 and the other side to value 0. This is similar to a neuron, which takes in a value
and outputs a “signal" if the function evaluated gets past a threshold. However, for reasons regarding
training these networks, we would like to use smooth activation functions for this, so we would use different
activations. Hence we have a neuron.

Definition 1.1 (Neuron)

A neuron is a function of form
y = σ(wTx+ b) (3)

where σ : R → R is any nonlinear function, called an activation functions.

Ultimately, a neural net is really just a generalized linear model with some trained feature extractors, which
is why in practice, if researchers want to predict a smaller dataset, they take a pretrained model on a related

3/ 32

Muchang Bahng Spring 2023

larger dataset and simply tune the final layer, since the second last layer most likely encodes all the relevant
features. This is called transfer learning. But historically, it was called a multilayer perceptron and the name
stuck.

Definition 1.2 (Feedforward, Fully-Connected Multilayer Perceptron)

A L-layer multilayer perceptron (MLP) fθ : RD → RM , with parameters θ, is a function of form

hθ(x) := σ[L] ◦W [L] ◦ σ[L−1] ◦W [L−1] ◦ · · · ◦ σ[1] ◦W [1](x) (4)

where σ[l] : RN [l] → RN [l]

is an activation function and W [l] : RN [l−1] → RN [l]

is an affine map. We
will use the following notation.

1. The inputs will be labeled x = a[0] which is in RN [0]

= RD.
2. We map a[l] ∈ RN [l] 7→ W [l+1]a[l] + b[l+1] = z[l+1] ∈ RN [l+1]

, where z denotes a vector after an
affine transformation.

3. We map z[l+1] ∈ RN [l+1] 7→ σ(z[l+1]) = a[l+1] ∈ RN [l+1]

, where a denotes a vector after an
activation function.

4. We keep doing this until we reach the second last layer with vector a[L−1]. Note that in the last
layer we do not apply an activation function.

x = a0] ∈ Rd a[1] ∈ Rm1 a[2] ∈ Rm2 a[3] ∈ Rm3a[r−1] ∈ Rmr−1y ∈ a[r] ∈ R

x1

x2

x3

...

xd

a
[1]
1

a
[1]
2

a
[1]
3

...

a
[1]
m1−1

a
[1]
m1

a
[2]
1

a
[2]
2

a
[2]
3

...

a
[2]
m2−1

a
[2]
m2

a
[3]
1

a
[3]
2

a
[3]
3

...

a
[3]
m3−1

a
[3]
m3

a
[r−1]
1

a
[r−1]
2

a
[r−1]
3

...

a
[r−1]
mr−1−1

a
[r−1]
mr−1

y

a[1] = σ(W [1]x+ b[1])

a[2] = σ(W [2]a[1] + b[2])

a[3] = σ(W [3]a[2] + b[3])
. . .

y = W [r]a[r−1] + b[r]

Figure 3: If there does not exist any edge from a potential input x to an output y, then this means that x is
not relevant in calculating y, i.e. the weight is 0. However, we usually work with fully-connected neural
networks, which means that every input is relevant to calculating every output, since we usually cannot
make assumptions about which variables are relevant or not.

Note that each layer corresponds to how close a neuron is to the output. But really any neuron can be a
function of any other neuron. For example, we can connect a neuron from layer 4 back to a neuron of layer
1. For now, we will consider networks that are restricted to a feed-forward architecture, in other words
having no closed directed cycles.

4/ 32

Muchang Bahng Spring 2023

Code 1.1 (Parameters and Neural Nets in PyTorch)

At this point, you have learned the theory of MLPs. To actually implement them in PyTorch, look at
this module here, which will tell you on how to construct linear maps and activations functions, and
more importantly see how you can look at the weights, modify them, and see how they are initialized.
You can then learn how to explore the weights and biases of a neural network.

1.2 Forward and Back Propagation
Back in the supervised learning notes, we have gone through the derivation for linear, logistic, and softmax
regression. It turns out that despite them having very different architectures, with a identity, sigmoid, and
softmax activation function, our choice of loss to be the mean squared loss, the binary cross-entropy, and
the cross-entropy loss, had given very cute formulas in computing the gradient of the loss. Unfortunately,
the formulas do not get cute when we differentiate neural networks, but they do come in a very structured
way. To gain intuition, I would recommend to go over the exercises at the end of the chapter labeled ECE
689 Fall 2021 Midterm. If you just use chain rule to do the calculations, you can see that they require us to
compute all the intermediate z(i)’s and the a(i)’s, a process called forward propagation, before we compute
the gradients.

Definition 1.3 (Forward Propagation)

Given an MLP f and an input x, the process of sequentially evaluating

x = a[0] 7→ z[1] 7→ a[1] 7→ . . . 7→ z[L] 7→ a[L] = f(x) (5)

is called forward propagation.

When we want to compute the derivative of f . we can see that the intermediate partial derivatives in the
chain rule are repeatedly used. That is, if we have layer 0 ≤ l ≤ L, then to compute the derivative with
respect to the lth layer we use the chain rule

∂f

∂z[l]
=

∂f

∂z[l+1]
· z

[l+1]

z[l]
(6)

which requires us to know the derivative at the (l + 1)th layer, along with the current values of z[l], z[l+1]

to evaluate the derivatives at the current point. Therefore, we must complete forward propagation first and
then compute backwards from the result to the input to compute the gradients.

Definition 1.4 (Backward Propagation)

Given an MLP f with input x that has been forward propagated, the process of sequentially evaluating

∂f

∂a[L]
7→ ∂f

∂z[L]
7→ . . . 7→ ∂f

∂z[L]
, (7)

is called backward propagation, or backprop.

Backpropagation is not hard, but it is cumbersome notation-wise. What we really want to do is just compute
a very long vector with all of its partials ∂E/∂θ.

Algorithm 1.1 (Backpropagation)

To compute ∂En

∂w
[l]
ji

, it would be natural to split it up into a portion where En is affected by the term

5/ 32

code/parameters.ipynb

Muchang Bahng Spring 2023

before activation z[l] and how that is affected by w
[l]
ji . The same goes for the bias terms.

∂En

∂w
[l]
ji

=
∂En

∂z[l]︸ ︷︷ ︸
1×N [l]

· ∂z
[l]

∂w
[l]
ji︸ ︷︷ ︸

N [l]×1

and
∂En

∂b
[l]
i

=
∂En

∂z[l]︸ ︷︷ ︸
1×N [l]

· ∂z
[l]

∂b
[l]
i︸ ︷︷ ︸

N [l]×1

(8)

It helps to visualize that we are focusing on

hθ(x) = g
(
. . . σ(W[l]a[l−1] + b[l]︸ ︷︷ ︸

z[l]

) . . .
)

(9)

We can expand z[l] to get

z[l] =


w

[l]
11 . . . w

[l]

1N [l−1]

...
. . .

...
w

[l]

N [l]1
. . . w

[l]

N [l]N [l−1]




a
[l−1]
1
...

a
[l−1]

N [l−1]

+


b
[l]
1
...

b
N

[l]

[l]

 (10)

w
[l]
ji will only show up in the jth term of z[l], and so the rest of the terms in ∂z[l]

∂w
[l]
ji

will vanish. The

same logic applies to ∂z[l]

∂b
[l]
i

, and so we really just have to compute

∂En

∂w
[l]
ji

=
∂En

∂z
[l]
j︸ ︷︷ ︸

1×1

·
∂z

[l]
j

∂w
[l]
ji︸ ︷︷ ︸

1×1

= δ
[l]
j ·

∂z
[l]
j

∂w
[l]
ji

and
∂En

∂b
[l]
i

=
∂En

∂z
[l]
j︸ ︷︷ ︸

1×1

·
∂z

[l]
j

∂b
[l]
i︸ ︷︷ ︸

1×1

= δ
[l]
j ·

∂z
[l]
j

∂b
[l]
i

(11)

where the δ
[l]
j is called the jth error term of layer l. If we look at the evaluated jth row,

z
[l]
j = w

[l]
j1a

[l−1]
1 + . . . wjN [l−1]a

[l−1]

N [l−1] + b
[l]
j (12)

We can clearly see that
∂z

[l]
j

∂w
[l]
ji

= a
[l−1]
i and

∂z
[l]
j

∂b
[l]
i

= 1, which means that our derivatives are now reduced

to
∂En

∂w
[l]
ji

= δ
[l]
j a

[l−1]
i ,

∂En

∂b
[l]
i

= δ
[l]
j (13)

What this means is that we must know the intermediate values a[l−1] beforehand, which is possible
since we would compute them using forward propagation and store them in memory. Now note that
the partial derivatives at this point have been calculated without any consideration of a particular
error function or activation function. To calculate δ[L], we can simply use the chain rule to get

δ
[L]
j =

∂En

∂z
[L]
j

=
∂En

∂a[L]
· ∂a

[L]

∂z
[L]
j

=
∑
k

∂En

∂a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

(14)

which can be rewritten in the matrix notation

δ[L] =

(
∂g

∂z[L]

)T(
∂En

∂a[L]

)
=


∂g1

∂z
[L]
1

. . .
∂g

N[L]

∂z
[L]
1

...
. . .

...
∂g1

∂z
[L]

N[L]

. . .
∂g

N[L]

∂z
[L]

N[L]


︸ ︷︷ ︸

N [L]×N [L]


∂En

∂a
[L]
1

...
∂En

∂a
[L]

N[L]

 (15)

Note that as soon as we make a model assumption on the form of the conditional distribution Y |
X = x (e.g. it is Gaussian), with it being in the exponential family, we immediately get two things:
the loss function En (e.g. sum of squares loss), and the canonical link function g

6/ 32

Muchang Bahng Spring 2023

1. If we assume that Y | X = x is Gaussian in a regression (of scalar output) setting, then our
canonical link would be g(x) = x, which gives the sum of squares loss function. Note that since
the output is a real-valued scalar, a[L] will be a scalar (i.e. the final layer is one node, N [L] = 1).

En =
1

2
(y(n) − a[L])2 (16)

To calculate δ[L], we can simply use the chain rule to get

δ[L] =
∂En

∂z[L]
=

∂En

∂a[L]
· ∂a

[L]

∂z[L]
= a[L] − y(n) (17)

2. For classification (of M classes), we would use the softmax activation function (with its deriva-
tive next to it for convenience)

g(z) = g

( z1
...

zM

)
=

 ez1/
∑

k e
zk

...
ezM /

∑
k e

zk

 ,
∂gk
∂zj

=

{
gj(1− gj) if k = j

−gjgk if k ̸= j
(18)

which gives the cross entropy error

En = −y(n) · ln
(
hθ(x

(n))
)
= −

∑
i

y
(n)
i ln(a

[L]
i) (19)

where the y has been one-hot encoded into a standard unit vector in RM . To calculate δ[L], we
can again use the chain rule again

δ
[L]
j =

∑
k

∂En

∂a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

(20)

= −
∑
k

y
(n)
k

a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

(21)

=

(
−
∑
k ̸=j

y
(n)
k

a
[L]
k

·
∂a

[L]
k

∂z
[L]
j

)
−

y
(n)
j

a
[L]
j

·
a
[L]
j

∂z
[L]
j

(22)

=

(
−
∑
k ̸=j

y
(n)
k

a
[L]
k

· −a
[L]
k a

[L]
j

)
−

y
(n)
j

a
[L]
j

· a[L]
j (1− a

[L]
j) (23)

= a
[L]
j

∑
k

y
(n)
k︸ ︷︷ ︸

1

−y
(n)
j = a

[L]
j − y

(n)
j (24)

giving us
δ[L] = a

[L]
j − y[L] (25)

Now that we have found the error for the last layer, we can continue for the hidden layers. We can
again expand by chain rule that

δ
[l]
j =

∂En

∂z
[l]
j

=
∂En

∂z[l+1]
· ∂z

[l+1]

∂z
[l]
j

=

N [l+1]∑
k=1

∂En

∂z
[l+1]
k

·
∂z

[l+1]
k

∂z
[l]
j

=

N [l+1]∑
k=1

δ
[l+1]
k ·

∂z
[l+1]
k

∂z
[l]
j

(26)

By going backwards from the last layer, we should already have the values of δ[l+1]
k , and to compute

the second partial, we recall the way a was calculated

z
[l+1]
k = b

[l+1]
k +

N [l]∑
j=1

w
[l+1]
kj σ(z

[l]
j) =⇒

∂z
[l+1]
k

∂z
[l]
j

= w
[l+1]
kj · σ′(z

[l]
j) (27)

7/ 32

Muchang Bahng Spring 2023

Now this is where the “back" in backpropagation comes from. Plugging this into the equation yields
a final equation for the error term in hidden layers, called the backpropagation formula:

δ
[l]
j = σ′(z

[l]
j)

N [l+1]∑
k=1

δ
[l+1]
k · w[l+1]

kj (28)

which gives the matrix form

δ[l] = σ′(z[l])⊙ (W[l+1])T δ[l+1] =


σ′(z

[l]
1)

...
σ′(z

[l]

N [L])

⊙


w

[l+1]
11 . . . w

[l+1]

N [l+1]1
...

. . .
...

w
[l+1]

1N [l] . . . w
[l+1]

N [l+1]N [l]



δ
[l+1]
1
...

δ
[l+1]

N [l+1]

 (29)

and putting it all together, the partial derivative of the error function En with respect to the weight
in the hidden layers for 1 ≤ l < L is

∂En

∂w
[l]
ji

= a
[l−1]
i σ′(z

[l]
j)

N [l+1]∑
k=1

δ
[l+1]
k · w[l+1]

kj (30)

A little fact is that the time complexity of both forward prop and back prop should be the same, so if you
ever notice that the time to compute these two functions scales differently, you’re probably making some
repeated calculations somewhere.

Algorithm 1.2 (Epoch of Training)

Before training, we initialize all the parameters to be

θ = (W[1],b[1],W[2], . . . ,W[L],b[L]) (31)

Then, we repeat the following for one epoch of training.
1. Choose Batch: We choose an arbitrary data point (x(n),y(n)), an minibatch, or the entire batch

to compute the gradients on.
2. Forward Propagation: Apply input vector x(n) and use forward propagation to compute the

values of all the hidden and activation units

a[0] = x(n), z[1],a[1], . . . , z[L],a[L] = hθ(x
(n)) (32)

3. Back Propagation:
(a) Evaluate the δ[l]’s starting from the back with the formula

δ[L] =

(
∂g

∂z[L]

)T(
∂En

∂a[L]

)
(33)

δ[l] = σ′(z[l])⊙ (W[l+1])T δ[l+1] l = 1, . . . , L− 1 (34)

where ∂g
∂z[L] can be found by taking the derivative of the known link function, and the rest

of the terms are found by forward propagation (these are all functions which have been
fixed in value by inputting x(n)).

(b) Calculate the derivatives of the error as

∂En

∂W[l]
= δ[l](a[l−1])T ,

∂En

∂b[l]
= δ[l] (35)

4. Gradient Descent : Subtract the derivatives with step size α. That is, for l = 1, . . . , L,

W[l] = W[l] − α
∂En

∂W[l]
, b[l] = b[l] − α

∂En

∂b[l]
(36)

8/ 32

Muchang Bahng Spring 2023

The specific optimizer can differ, e.g. Adam, SGD, BFGS, etc., but the specific algorithm won’t
be covered here. It is common to use Adam, since it usually works better. If we can afford to
iterate over the entire batch, L-BFGS may also be useful.

Code 1.2 (Neural Net from Scratch)

Now it’s time to implement what most newcomers fear most: a neural net from scratch using only
numpy. Doing this will get you to understand the inner workings of a neural net, and you can find
the relevant code here.

Code 1.3 (Pytorch Implementation of Forward and Backward Propagation)

Once you have finished implementing from scratch, you can now use the PyTorch API to access the
same model weights. The code here shows how to look at the forward propagation and backpropa-
gation steps in PyTorch in intermediate layers and shows the backend behind storing gradients.

9/ 32

code/mlp_from_scratch.ipynb
code/forward_backward.ipynb

Muchang Bahng Spring 2023

2 Theoretical Properties

2.1 Universal Approximation
Great, so we have defined our architecture, but how do we know that this class of functions is expressive?
Neural networks have been mathematically studied back in the 1980s, and the reason that they are so
powerful is that we can theoretically prove the limits on what they can learn. For very specific classes of
functions, the results are easier, but for more general ones, it becomes much harder. We prove one of the
theorems below.

Let us think about how one would construct approximations for such functions. Like in measure theory, we
can think of every measurable function as a linear combination of a set of bump functions, and so we can
get a neural network to do the same.

Example 2.1 (Bump Functions in R)

Assuming the sigmoid activation function is used, the bump function

f(x) =

{
1 if a < x < b

0 if else
(37)

can be approximated by taking a linear combination of a sigmoid function stepping up and one
stepping down. That is,

f(x) ≈ 1

2
σ
(
k(x− a)

)
− 1

2
σ
(
k(x− b)

)
(38)

where k is a scaling constant that determines how steep the steps are for each function. Therefore,
as k → ∞, the function begins to look more like a step function.

Figure 4: Bump function approximated with a = 0.4, b = 0.6, with differing values of k.

Example 2.2 (Bump Functions in R2)

To do this for a 2-D step function, of the form

f(x1, x2) =

{
1 if a < x1 < b

0 if else
(39)

this is a simple extension of the first one. We just don’t need to make our linear combination

10/ 32

Muchang Bahng Spring 2023

dependent on x2 and we’re done.

f(x) ≈ 1

2
σ
(
k(x1 − a)

)
− 1

2
σ
(
k(x1 − b)

)
(40)

Example 2.3 (Tower Functions in R2)

Now to construct a tower function of the form

f(x1, x2) =

{
1 if a1 < x1 < b1, a2 < x2 < b2

0 if else
(41)

we need slightly more creativity. Now we can approximate it by doing

f(x) ≈ σ

(
k2
[
σ
(
k1(x1 − a1)

)
− σ

(
k1(x1 − b1)

)
+ σ

(
k1(x2 − a2)

)
− σ

(
k1(x2 − b2)

)
big]− b2

)
(42)

At this point, we can see how this would extend to Rn, and by isolating parts of the network we can have it
approximate tower functions that are completely separate from each other, at any height, and then finally
take a linear combination of them to approximate the original function of interest.

Theorem 2.1 (CS671 Fall 2023 PS5)

Suppose you have a 2D, L-lipschitz function f(x1, x2) defined on a unit square (x1, x2 ∈ [0, 1]). You
want to approximate this with an arbitrary neural net f̃ such that

sup
x∈[0,1]2

|f(x)− f̃(x)| ≤ ϵ (43)

If we divide the square into a checkerboard of K × K nonoverlapping squares, approximate the
restriction of f to each subsquare with a tower function, what is the least K we would need to ensure
that the error is less than ϵ?

2.2 Parameter Symmetry
Early in the development of the theory of neural nets, An Mei Chen, (currently VP of engineering in
Qualcomm) showed in [CLHN93] that for certain neural networks, there are multiple parameters θ that map
to the same function f .

Theorem 2.2 (Parameter Symmetry)

Consider a 2-layer feedforward network of form

f = W [2] ◦ σ ◦W [1] (44)

where σ = tanh. Let z be the hidden vector. We can see that by changing the signs of the ith row
of W [1], zi’s sign will be flipped. From the properties that tanh is an odd function (i.e. tanh(−x) =
− tanh(x)), therefore the activation will be also sign-flipped, but this effect can be negated by flipping
the ith column of the W [2]. Therefore, given that z ∈ RN , i.e there are N hidden units, we can
choose any set of row-column pairs of the weight matrices to invert, leading to a total of 2N different
weightings that produce the same function f .
Similarly, imagine that we permute the columns of W [2] and rows of W [1] in the same way. Then this
will also lead to an invariance in f , and so this leads to N !2N different weight vectors that lead to
the same function!

11/ 32

Muchang Bahng Spring 2023

2.3 Smoothness
Given that the input dimension is D, say that all the hidden layers are of dimension D and we have L
layers. Then, we are storing a matrix (plus bias vector) at each layer, resulting in a scaling of O(D2L). This
quadratic scaling leads to overparameterized models, which should raise a red flag. This naturally leads to
overfitting, but a strange phenomenon occurs.2

1. In the beginning, the training loss goes down along with the validation loss.

2. Soon the validation loss starts to go up while the training loss goes down, leading to overfitting.

3. The overfitting is worst when the training loss is 0.

4. At this point, the training loss remains at 0, but generalization starts to improve, and mysteriously
the validation loss starts going down.

There are many theories of why the last step ever happens. To interpret this, let’s revisit what overfitting
means. It means that small perturbations of the inputs will result in large variances in the outputs. If we
generalize well, x + ϵ should also result in f(x) + O(ϵ). Therefore, this means that the more parameters it
has, the better this stability is and therefore the more robust the model. How should we measure this sense
of stability? In analysis, a metric to assess the robustness of a deep neural net fθ : Rn −→ Rm is its Lipshitz
constant, which effectively bounds how much f can change given some change in x.

Definition 2.1 (Lipshitz Continuity)

A function f : Rn −→ Rm is called Lipshitz continuous if there exists a constant L such that for
all x, y ∈ Rn

||f(x)− f(y)||2 ≤ L||x− y||2 (45)

and the smallest L for which the inequality is true is called the Lipshitz constant, denoted Lip(f).

Theorem 2.3 (Lipschitz Upper Bound with Operator Norm of Total Derivative)

If f : Rn −→ Rm is Lipschitz continuous, then

Lip(f) = sup
x∈Rn

||Dxf ||op (46)

where || · ||op is the operator norm of a matrix. In particular, if f is scalar-valued, then its Lipschitz
constant is the maximum norm of its gradient on its domain

Lip(f) = sup
x∈Rn

||∇f(x)||2 (47)

The above theorem makes sense, since indeed the stability of the function should be equal to the stability of
its "maximum" linear approximation Dxf .

Theorem 2.4 (Lipschitz Upper Bound for MLPs)

It has already been shown that for a K-layer MLP

hθ(x) := TK ◦ ρK−1 ◦TK−1 ◦ · · · ◦ ρ1 ◦T1(x) (48)

the Lipshitz constant for an affine map Tk(x) = Mkx + bk is simply the operator norm (largest
singular value) of Mk, while that of an activation function is always bounded by some well-known
constant, usually 1. So, the Lipshitz constant of the entire composition h is simply the product of all
operator norms of Mk.

2I found this from Lex Fridman’s podcast with Ilya Sutskever.

12/ 32

Muchang Bahng Spring 2023

What about K-computable functions in general? That is, given a function f : Rn −→ Rm with

v0(x) = x (49)

v1(x) = g1
(
v0(x)

)
(50)

v2(x) = g2
(
v0(x), v1(x)

)
(51)

. . . = . . . (52)

vk(x) = gk
(
v0(x), v1(x), . . . , vk−1(x)

)
(53)

. . . = . . . (54)

vK(x) = gK
(
v0(x), v1(x), . . . , vK−2(x), vK−1(x)

)
(55)

where vk : Rn −→ Rnk , with n0 = n and nK = m, and

gk :

k−1∏
i=0

Rni −→ Rnk (56)

To differentiate vk w.r.t. x, we can use the chain rule, resulting in the total derivative

∂vk
∂x︸︷︷︸

nk×n

=

k−1∑
i=1

∂gk
∂vi︸︷︷︸

nk×ni

∂vi
∂x︸︷︷︸

ni×n

(57)

Therefore, it is this Lipschitz property that might entail how stable an MLP is. We have seen from the
universal approximation theorems that for a data set of any size, we can always fit a one-layer perceptron
that perfectly fits through all of them, given that the layer is large enough. In these cases, we are interested
in fitting the data smoothly, and theoretical research in bounding the Lipschitz constant is popular.

In practice this behavior is reflected in most cases, but they may be very sensitive in some cases, which we
call adversarial examples. Adversarial examples take advantage of this weakness by adding carefully chosen
perturbations that drastically change the output of the network. Adversarial machine learning attempts
to study these weaknesses and hopefully use them to create more robust models. It is natural to expect
that the precise configuration of the minimal necessary perturbations is a random artifact of the normal
variability that arises in different runs of backpropagation learning. Yet, it has been found that adversarial
examples are relatively robust, and are shared by neural networks with varied number of layers, activations
or trained on different subsets of the training data. This suggest that the deep neural networks that are
learned by backpropagation have intrinsic blind spots, whose structure is connected to the data distribution
in a non-obvious way.

13/ 32

Muchang Bahng Spring 2023

3 Autograd Engines
In numerical computing packages like numpy in Python and eigen in C++, we often work with scalars,
vectors, and matrices. From linear algebra, the generalization of these objects is a tensor, which is an
element of a tensor product space.3 The full mathematical abstraction is rarely needed in practice, and so
developers call tensors by their realization as multidimensional arrays.

Definition 3.1 (Tensor)

A tensor is an element of a tensor product space
⊗

i Vi. It is represented as a multidimensional
array of shape (dim(V1), . . . ,dim(Vn)).

If we were trying to build a Tensor class from scratch, what attributes should it have? Well obviously we
need the actual data in the tensor, which we will call storage, plus some metadata about the shape (in math,
known as the tensor rank). Usually, these packages optimize as much as possible for efficiency, and so these
are implemented as C-style arrays, which then requires knowledge of the type of each element of the Tensor,
called the dtype. Great, with these three attributes, we can do almost every type of arithmetic manipulation.
Let’s first introduce the most basic math tensor operations, which includes the normal operations supported
in an algebra, plus some other ones. We will denote the shapes as well.

1. Tensor Addition.

2. Tensor Additive Inverse.

3. Scalar Multiplication.

4. Matrix Multiplication.

5. Elementwise Multiplication.

6. Elementwise Multiplicative Inverse.

7. Transpose.

We would probably like some constructors that allows you to directly initialize tensors filled with 0s (zeros),
1s (ones), a multiplicative identity (eye4) Some random initializers would be good, such as sampling from
uniforms (uniform), gaussians (gaussian, randn).

Finally, we would like some very fundamental operations, such as typecasting, comparison, and indexing as
well.

3For a refresher, look at my linear algebra notes.
4homophone for I, used to denoted the identity matrix.

14/ 32

Muchang Bahng Spring 2023

Algorithm 1 Tensor Class Implementation
1: class Tensor:
2: Attributes:
3: storage: array ▷Underlying data storage
4: shape: tuple ▷Dimensions of tensor
5: dtype: type ▷Data type of elements
6: Constructors:
7: def __init__(data, shape, dtype):
8: Initialize tensor with given data, shape, and dtype
9: Static Constructors:

10: @staticmethod
11: def zeros(shape, dtype):
12: return tensor filled with zeros
13: @staticmethod
14: def ones(shape, dtype):
15: return tensor filled with ones
16: @staticmethod
17: def eye(n, dtype):
18: return n×n identity matrix
19: @staticmethod
20: def uniform(shape, low, high, dtype):
21: return tensor with uniform random values
22: @staticmethod
23: def gaussian(shape, mean, std, dtype):
24: return tensor with gaussian random values
25: Arithmetic Operations:
26: def __add__(self, other):
27: return element-wise addition
28: def __neg__(self):
29: return additive inverse
30: def __mul__(self, other):
31: return scalar or element-wise multiplication
32: def matmul(self, other):
33: return matrix multiplication
34: def __truediv__(self, other):
35: return element-wise division
36: def transpose(self):
37: return transposed tensor
38: Utility Operations:
39: def __repr__(self):
40: return string representation
41: def __str__(self):
42: return human-readable string
43: def __getitem__(self, index):
44: return indexed value(s)
45: def __eq__(self, other):
46: return element-wise equality comparison

Note that there are other operations, such as concatenation, splitting, and stacking that would be a good
idea to implement.

15/ 32

Muchang Bahng Spring 2023

3.1 Strides
A specific property of PyTorch is that they use strides as another source of metadata in storing tensors, which
greatly speeds up operations. Consider that we want to transpose the first two dimensions of a tensor. Then,
we would have to create a new tensor and fill it in with all the elements, which may be too computationally
expensive for such a small operation.

Definition 3.2 (Stride)

Given a tensor T of size (N1, . . . NM), it is stored as a contiguous array of
∏

m Tm elements, and we
can index it as

T [n1, n2, . . . , nM], 1 ≤ ni ≤ Ni (58)

To counteract this, the stride is a array S of M elements,

S = (S1, . . . , SM) (59)

where indexing with some I = (n1, . . . , nM) is equivalent to computing S · I and taking that index in
the array in memory. It defines a mapping.

If we do some calculation, the default stride of such a vector is defined

Sm =
∏
m<j

Nj , SM = 1 (60)

Example 3.1 (Transposing)

If we want to transpose the tensor above, then we change the stride from

S =

(∏
1<j

Nj ,
∏
2<j

Nj , . . . , 1

)
(61)

to
S =

(∏
2<j

Nj ,
∏
1<j

Nj , . . . , 1

)
(62)

3.2 Automatic Differentiation

Lemma 3.1 (Derivative of +/−)

Given two tensors X,Y and Z+ = X + Y,Z− = X − Y , we have

∂Z+

∂X
= +1

∂Z+

∂Y
= +1 (63)

∂Z−

∂X
= +1

∂Z−

∂Y
= −1 (64)

where ±1 are tensors of 1 or −1s of the same shape as X,Y .

Lemma 3.2 (Derivative of Element-wise Multiplication)

Given two tensors X,Y and Z = X ⊙ Y , we have

∂Z

∂X
= Y

∂Z

∂Y
= X (65)

16/ 32

Muchang Bahng Spring 2023

Lemma 3.3 (Derivative of Matrix Multiplication)

Given X ∈ (N,M) and Y ∈ (M,P), with Z = XY ∈ (N,P), the derivative of matrix multiplication
is

∂Z

∂X
∈ (N,P,N,M)

(
∂Z

∂X

)
i,j,k,l

:=
∂Zi,j

∂Xk,l
(66)

∂Z

∂Y
∈ (N,P,M,P)

(
∂Z

∂Y

)
i,j,k,l

:=
∂Zi,j

∂Yk,l
(67)

17/ 32

Muchang Bahng Spring 2023

4 Weight Initialization
The way that we initialize our weights can have a huge impact on our training performance. Imagine that
you are creating the first neural network and you want to decide how to initialize it. You may consider many
different cases.

Example 4.1 (Constant Initialization)

You may first think of initializing everything to 0 or 1, which is the simplest. Let’s run this, but we
can already see by epoch 15 that we have some problems.

Clearly, this is not good, and theoretically this makes sense since it means all our activations are
going to be the same, and thus all our gradients will be the same, meaning that are updates will be
the same for every weight, which is not good mixing. We can see this below:

Example 4.2 (Random Initialization with High Variance)

Okay, this didn’t work, so perhaps you think it would be a good idea have more randomness to
the initialization so that all the weights aren’t exactly one number. You could think of initializing
everything with three distinct schemes:

1. Randomly initialize everything to be −1 or 1 with equal probability.
2. Randomly initialize everything to be a Gaussian random variable with standard deviation 1.
3. Randomly initialize everything to be a uniform random variable between −1 and 1.

Running the experiments give the following.

However, this is also not good since it means that the activations will be very large, and thus the
gradients will be very large, and so the updates will be very large. This is not good since it means
that the weights will be jumping around a lot, and we won’t be able to converge. Furthermore,
depending on what activations we choose, e.g. tanh or sigmoid, very large activations may saturate

18/ 32

Muchang Bahng Spring 2023

the gradients and kill the learning.

Example 4.3 (Random Initialization with Low Variance)

This improves the next problem but now you want to fix the situation of the gradients being too big.
Therefore, you should initialize the parameters to be smaller values, but not so small that they are
zeros and we have the same problem as before. We use improved schemes:

1. Randomly initialize everything to be −0.1 or 0.1 with equal probability.
2. Randomly initialize everything to be a Gaussian random variable with standard deviation 0.1.
3. Randomly initialize everything to be a uniform random variable between −0.1 and 0.1.

Through out experiments, we have learned that a good rule of thumb for initializing weights is to make them
small and uniformly random without being too small. While it is harder to get better than this for MNIST,
a slightly better approach is Xavier initialization, which builds upon our same ideas.

Definition 4.1 (Xavier Initialization)

The Xavier initialization simply initializes each weight as a uniform distribution, with its range
dependent on the size of the input.

w
[l]
ij ∼ U

(
− 1√

N [l−1]
,

1√
N [l−1]

)
(68)

where N [l−1] is the number of neurons in the previous layer. This is a good rule of thumb for the
weights, but the biases can be initialized to 0 (though they are also initialized uniformly by default).

Code 4.1 (Experimenting with Weight Initializations)

The code used for generating the figures can be found here.

19/ 32

code/initialization.ipynb

Muchang Bahng Spring 2023

5 Activation Functions
The choice of the activation function can have a significant impact on your training, and we will describe
a few examples below. The first thing to note is that we must ensure that there is a nonzero gradient
almost everywhere. If, for example, we had a piecewise constant activation function, the gradient is 0 almost
everywhere, and it would kill the gradient of the entire network. In the early days of deep learning, researchers
used the probability-inspired sigmoid and tanh functions as the main source of nonlinearity. Let’s go over
them below.

Definition 5.1 (Sigmoid)

Sigmoid activations are historically popular since they have a nice interpretation as a saturating “fire
rate" of a neuron. However, there are 3 problems:

1. The saturated neurons “kill" the gradients, since if the input at any one point in the layers is
too positive or negative, the gradient will vanish, making very small updates. This is known as
the vanishing gradient problem. Therefore, the more layers a neural network has, the more
likely we are to see this vanishing gradient problem.

2. Sigmoid functions are not zero centered (i.e. its graph doesn’t cross the point (0, 0)). Consider
what happens when the input x to a neuron is always positive. Then, the sigmoid f will have
a gradient of

f

(∑
i

wixi + b

)
=⇒ ∂f

∂wi
= f ′

(∑
i

wixi + b

)
xi (69)

which means that the gradients ∇wf will always have all positive elements or all negative
elements, meaning that we will be restricted to moving in certain nonoptimal directions when
updating our parameters.

Definition 5.2 (Hyperbolic Tangent)

The hyperbolic tangent is zero centered, which is nice, but it still squashes numbers to range [−1, 1]
and therefore kills the gradients when saturated.

It turns out that these two activations were ineffective in deep learning due to saturation. A less probability
inspired activation was the ReLU, which showed better generalization an speed of convergence.

Definition 5.3 (Rectified Linear Unit)

The ReLU function has the following properties:
1. It does not saturate in the positive region.
2. It is very computationally efficient (and the fact that it is nondifferentiable at one point doesn’t

really affect computations).
3. It converges much faster than sigmoid/tanh in practice.
4. However, note that if the input is less than 0, then the gradient of the ReLU is 0. Therefore, if

we input a vector that happens to have all negative values, then the gradient would vanish and
we wouldn’t make any updates. These ReLU “dead zones" can be a problem since it will never
activate and never update, which can happen if we have bad initialization. A more common
case is when your learning rate is too high, and the weights will jump off the data manifold.

Unfortunately, the ReLU had some weaknesses, mainly being the dying ReLU, which is when the ReLU is
stuck in the negative region and never activates. This is a problem since the gradient is 0 in the negative
region, and so the weights will never update. Therefore, some researchers have proposed some modifications
to the ReLU.

20/ 32

Muchang Bahng Spring 2023

Definition 5.4 (Leaky ReLU)

The leaky ReLU
σ(x) = max{0.01x, x} (70)

does not saturate (i.e. gradient will not die), is computationally efficient, and converges much faster
than sigmoid/tanh in practice. We can also parameterize it with α and have the neural net optimize
α along with the weights.

σ(x) = max{αx, x} (71)

Definition 5.5 (ELU)

The exponential linear unit has all the benefits of ReLU, with closer to mean outputs. It has a
negative saturation regime compared with leaky ReLU, but it adds some robustness to noise.

σ(x) =

{
x if x > 0

α
(
expx− 1

)
if x ≤ 0

(72)

Definition 5.6 (SELU)

The scaled exponential linear unit is a self-normalizing activation function, which means that it
preserves the mean and variance of the input. This is useful for deep networks, since the mean and
variance of the input will be preserved through the layers. Its formula is

σ(x) = λ

{
x if x > 0

α
(
expx− 1

)
if x ≤ 0

(73)

where λ and α are constants.

Later on, some further modifications were made, such as the Swish and the Mish [Mis20] activation func-
tions. These functions have a distinctive negative concavity, unlike ReLU, which accounts for preservation
of small negative weights.

Definition 5.7 (Swish)

The Swish activation function is defined as

σ(x) = x · σ(βx) (74)

where β is a parameter that can be learned.

Definition 5.8 (Mish)

The Mish activation function is defined as

σ(x) = x · tanh(ln(1 + exp(x))) (75)

Code 5.1 (Generating Graphs)

Code used to generate these graphs are here.

21/ 32

code/activation_functions.ipynb

Muchang Bahng Spring 2023

6 Popular Benchmark Datasets
For here, we will go over some of the main datasets that are used in deep learning.

Definition 6.1 (MNIST and Fashion MNIST)

The MNIST dataset consists of 60k training images and 10k test images of handwritten digits. The
Fashion MNIST dataset consists of 60k training images and 10k test images of clothing items. These
are considered quite easy with the basic benchmarks:

1. Linear classifiers can reach past 90% accuracy.
2. A 2 layer MLP can reach up to 97% accuracy.
3. A CNN can reach up to 99% accuracy.

Definition 6.2 (CIFAR10 and CIFAR 100)

The CIFAR10 dataset consists of 60k 32x32 color images in 10 classes, with 6k images per class. The
CIFAR100 dataset consists of 60k 32x32 color images in 100 classes, with 600 images per class. These
are considered quite hard with the basic benchmarks:

1. Linear classifiers can reach past 40% accuracy.
2. A 2 layer MLP can reach up to 60% accuracy.
3. A CNN can reach up to 80% accuracy.

Definition 6.3 (ImageNet)

The ImageNet dataset, created at Stanford by Fei-Fei Li [DDS+09], consists of 1.2 million train-
ing images and 50k validation images in 1000 classes. This is considered very hard with the basic
benchmarks.

Creating your own custom dataset with spreadsheets or images is easy.5 Loading it to a dataloader that
shuffles and outputs minibatches of data is trivial. However, when doing so, you should pay attention to a
couple things.

1. Batch size: The dataloader stores the dataset (which can be several hundred GBs) in the drive, and
extracts batches into memory for processing. You should set your batch sizes so that they can fit into
the GPU memory, which is often smaller than the CPU memory.

5https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

22/ 32

Muchang Bahng Spring 2023

7 Regularization

7.1 L1 and L2 Regularization
Another way to regularize is by simply adding in a L1 or L2 regularization term.

Sometimes, it may not always be the best idea to regularize a neural net equally through all weights.
For example, weights which may be deeper down the forward pass may focus on more high level features
and therefore should be regularized differently than those that are close to the input. Other types of
regularization, such as Fiedler regularization [TD20] focuses on preserving the graph structure of the weights.

7.2 Dropout
Overfitting is always a problem. With unlimited computation, the best way to regularize a fixed-sized mdoel
is to average the predictions of all possible settings of the parameters, weighting each setting by its posterior
probability given the training the data. However, this is computationally expensive and cannot be done for
moderately complex models.

The dropout method introduced by [SHK+14], addresses this issue. We literally drop out some features (not
the weights!) before feeding them to the next layer by setting some activation functions to 0. Given a neural
net of N total nodes, we can think of the set of its 2N thinned subnetworks. For each training minibatch, a
new thinned network is sampled and trained.

At each layer, recall that forward prop is basically

z[l+1] = W[l+1]a[l] + b[l+1]

a[l+1] = σ(z[l+1])

Now what we do with dropout is

r
[l]
j ∼ Bernoulli(p)

ã[l] = r[l] ⊙ a[l]

z[l+1] = W[l+1]ã[l] + b[l+1]

a[l+1] = σ(z[l+1])

Basically we a sample a vector of 0s and 1s from a multivariate Bernoulli distribtion. We element-wise
multiply it with a[l] to create the thinned output ã[l]. In test time, we do not want the stochasticity of
having to set some activation functions to 0. That is, consider the neuron a[l] and the random variable ã[l].
The expected value of z[l+1] is

E[z[l+1]] = E[W[l+1]ã[l] + b[l+1]] = E[W[l+1]ã[l]] = pE[W[l+1]a[l]]

and to make sure that the output at test time is the same as the expected output at training time, we want
to multiply the weights by p: W

[l]
test = pW

[l]
train. Another way is to use inverted dropout, where we can

divide by p in the training stage and keep the testing method the same.

Code 7.1 ()

The code here shows how to implement dropout in PyTorch, which uses dropout layers.

7.3 Layer Normalization
Just like how we have to normalize our data before we input into a linear model, it may help to normalize
the outputs of one layer of a neural net before we input it into the next layer. This is an engineer’s method
to help with the training process. There are two ways that we can generally normalize data. First is to
normalize each sample, known as layer normalization, and the other way is to normalize the samples over
the batch.

23/ 32

code/dropout.ipynb

Muchang Bahng Spring 2023

Definition 7.1 (Layer Norm)

Given some batched output data X ∈ Rb×d, where b represents the batch size and d = d1×. . .×dk the
dimension of each sample, we can normalize each xi = Xi,: in the batch with layer normalization
by

xi 7→
xi − E[xi]√
Var[xi] + ε

⊙ γ + β (76)

where γ, β are learnable parameters that are the same shape as xi. If X is of dimension b × d, we
must use nn.LayerNorm(d) since these are the sizes of the learnable parameters.

Example 7.1 (Layer Norm)

The following example shows that each row (sample in batch) is normalized independently from one
another.

1 ln = nn.LayerNorm(5)
2 x = torch.Tensor(range(10)).reshape(2, 5)
3 print(x)
4 tensor([[0., 1., 2., 3., 4.],
5 [5., 6., 7., 8., 9.]])
6

7 print(ln(x))
8 tensor([[-1.4142, -0.7071, 0.0000, 0.7071, 1.4142],
9 [-1.4142, -0.7071, 0.0000, 0.7071, 1.4142]],

10 grad_fn=<NativeLayerNormBackward0>)

This also works for higher dimensions.

1 ln = nn.LayerNorm((5, 2))
2 x = torch.Tensor(range(20)).reshape(2, 5, 2)
3 print(x)
4 tensor([[[0., 1.],
5 [2., 3.],
6 [4., 5.],
7 [6., 7.],
8 [8., 9.]],
9

10 [[10., 11.],
11 [12., 13.],
12 [14., 15.],
13 [16., 17.],
14 [18., 19.]]])
15 print(ln(x))
16 tensor([[[-1.5667, -1.2185],
17 [-0.8704, -0.5222],
18 [-0.1741, 0.1741],
19 [0.5222, 0.8704],
20 [1.2185, 1.5667]],
21

22 [[-1.5667, -1.2185],
23 [-0.8704, -0.5222],
24 [-0.1741, 0.1741],
25 [0.5222, 0.8704],
26 [1.2185, 1.5667]]], grad_fn=<NativeLayerNormBackward0>)

24/ 32

Muchang Bahng Spring 2023

The tunable parameters γ, β are indeed the same size. They are initialized to 1s and 0s.

1 >>> for k, v in ln.state_dict().items():
2 ... print(k, v)
3 ...
4 weight tensor([[1., 1.],
5 [1., 1.],
6 [1., 1.],
7 [1., 1.],
8 [1., 1.]])
9 bias tensor([[0., 0.],

10 [0., 0.],
11 [0., 0.],
12 [0., 0.],
13 [0., 0.]])

7.4 Batch Normalization

Definition 7.2 (Batch Norm)

Batch normalization targets each feature over all batches rather than each sample (like columns
vs rows). Therefore, given some batched output data X ∈ Rb×d, where b represents the batch size
and d = d1 × . . .× dk the dimension of each output, we can normalize each feature xi = X:,i∈d by

xi 7→
xi − E[xi]√
Var[xi] + ε

⊙ γ + β (77)

where γ, β ∈ Rb are learnable parameters that are the same size as the batch. There are two types of
batch norms implemented in pytorch.

1. If X has hyperdimension 2 with b × d, we use BatchNorm1d(d) since we are normalizing over
the batch for each feature and we have d features to normalize.

2. If X has hyperdimension 3 with b× d1 × d2, we use BatchNorm1d(d_1).
3. If X has hyperdimension 4 with b× d1 × d2 × d3, we use BatchNorm2d(d_1).

Example 7.2 (Batch Norm 1D)

We can see that each feature is normalized independently from one another. For 2D,

1 >>> bn = nn.BatchNorm1d(5)
2 >>> x = torch.Tensor(range(10)).reshape(2, 5)
3 >>> print(x)
4 tensor([[0., 1., 2., 3., 4.],
5 [5., 6., 7., 8., 9.]])
6 >>> print(bn(x))
7 tensor([[-1.0000, -1.0000, -1.0000, -1.0000, -1.0000],
8 [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]],
9 grad_fn=<NativeBatchNormBackward0>)

For 3D inputs,

1 >>> bn = nn.BatchNorm1d(5)
2 >>> x = torch.Tensor(range(30)).reshape(2, 5, 3)
3 >>> print(x)

25/ 32

Muchang Bahng Spring 2023

4 tensor([[[0., 1., 2.],
5 [3., 4., 5.],
6 [6., 7., 8.],
7 [9., 10., 11.],
8 [12., 13., 14.]],
9

10 [[15., 16., 17.],
11 [18., 19., 20.],
12 [21., 22., 23.],
13 [24., 25., 26.],
14 [27., 28., 29.]]])
15 >>> print(bn(x))
16 tensor([[[-1.1267, -0.9941, -0.8616],
17 [-1.1267, -0.9941, -0.8616],
18 [-1.1267, -0.9941, -0.8616],
19 [-1.1267, -0.9941, -0.8616],
20 [-1.1267, -0.9941, -0.8616]],
21

22 [[0.8616, 0.9941, 1.1267],
23 [0.8616, 0.9941, 1.1267],
24 [0.8616, 0.9941, 1.1267],
25 [0.8616, 0.9941, 1.1267],
26 [0.8616, 0.9941, 1.1267]]], grad_fn=<NativeBatchNo
27 rmBackward0>)

Example 7.3 (Batch Norm 2D)

Here is an example of batch norm 2d. There really isn’t a difference between these two methods
except the dimension that they take in. That is all.

1 >>> bn = nn.BatchNorm2d(5)
2 >>> x = torch.Tensor(range(60)).reshape(2, 5, 3, 2)
3 >>> print(x)
4 tensor([[[[0., 1.],
5 [2., 3.],
6 [4., 5.]],
7 ...
8 [58., 59.]]]])
9 >>> print(bn(x))

10 tensor([[[[-1.1592, -1.0929],
11 [-1.0267, -0.9605],
12 ...
13 [1.0929, 1.1592]]]], grad_fn=<NativeBatchNormBack
14 ward0>)

26/ 32

Muchang Bahng Spring 2023

8 Compression

8.1 Pruning
It can be computationally and memory intensive to train and utilize neural networks. This is where network
pruning comes in, which attempts to identify a subnetwork that performs as well as the original. Given a
neural net f(x,θ) where θ ∈ RM , a pruned neural network can be thought of as a subnetwork f(x,m⊙ θ),
where m is a mask, i.e. a vector in {0, 1}M that, when multiplied component-wise to θ, essentially “deletes"
a portion of the parameters.

This idea has been around for a long time, and the general method of pruning is as such:

1. We initialize the neural network f(x,θ0) and train it until we have f(x,θ).

2. We now prune the network. The most basic pruning scheme is to keep the top k% largest weights,
since smaller weights do not contribute much to the forward prop, and thus can be ignored.

These pruned networks have been shown to reach accuracies as high as the original network, with equal
training progress. Now, if we were to take only this pruned network and train it from the beginning, it will
perform as well as the original network, only under the condition that we start from the same initialization
m ⊙ θ. If we take this subnetwork and initialize it differently at θ′

0, then this subnetwork would not train
well. Therefore, the performance of the pruned network is dependent on the initialization!

If we had initialized the full network differently, trained it, and then pruned again, we may have a different
subnetwork that will only train well on its own given this new initialization. Therefore, a good initialization
is extremely important for training subnetworks. This fact doesn’t help much since we can’t just take some
arbitrary subnetwork and train it since we don’t know the good initialization. We must always train the full
network, then find the subnetwork, and then find its initialization.

This is essentially the lottery ticket hypothesis [FC19], which states that a randomly-initialized, dense
neural network contains a subnetwork that is initialized such that, when trained in isolation, it can match
the test accuracy of the original network after training for at must the same number of iterations.

This paper hints at why neural networks work at all. It first states that only a very small subnetwork
is responsible for the vast majority of its performance, but it must be initialized at the right position.
But by overparameterizing these neural nets so much (by a certain margin), they have so many different
combinations of subnetworks such that whatever initialization you throw at it, it is guaranteed that some
subnetwork within it will train well with this initialization. This subnetwork is called the winning ticket.

8.2 Quantization

27/ 32

Muchang Bahng Spring 2023

9 Exercises

Exercise 9.1 (Tarokh, ECE685 2021 Midterm 1.1)

Let x ∈ R denote a random variable with the following cumulative distribution function

F (x) = exp

(
− exp

(
− x− µ

β

))
(78)

where µ and β > 0 denote the location and scale parameters, respectively. Let D = {x1, . . . , xn} be
a set of n iid observations of x.

1. Write an equation for a cost function L(µ, β | D) whose minimization gives the maximum
likelihood estimates for µ and β.

2. Compute the derivatives of L(µ, β | D) with respect to µ and β and write a system of equations
whose solution gives the MLEs of µ and β.

Solution 9.1

We can derive the PDF of the observation as

f(x;µ, β) =
dF (x)

dx
=

1

β
exp

{
−
(
x− µ

β
+ exp

(
− x− µ

β

))}
(79)

and the likelihood is then

L(µ, β | D) =

N∏
i=1

1

β
exp

{
−

(
x(i) − µ

β
+ exp

(
− x(i) − µ

β

))}
(80)

Rather than maximizing this likelihood, we minimize the negative log of it, defined as

ℓ(µ, β | D) = − lnL(µ, β | D) = N lnβ +

∑
i x

(I) −Nµ

β
+

N∑
i=1

exp
(
− x(i) − µ

β

)
(81)

The derivatives of ℓ can be computed simply by using the derivative rules.

∂ℓ

∂µ
= −N

β
+

1

β

N∑
i=1

exp
(
− x(i) − µ

β

)
(82)

∂ℓ

∂β
=

N

β
−

∑
i x

(i) −Nµ

β2
+

1

β2

N∑
i=1

(x(i) − µ) exp
(
− x(i) − µ

β

)
(83)

and so the MLE estimates that minimizes ℓ can be found by setting the equations above equal to 0.

Exercise 9.2 (ECE 685 Fall 2021 Midterm 1.2)

The figure depicts a simple neural network with one hidden layer. The inputs to the network are
denoted by x1, x2, x3, and the output is denoted by y. The activation functions of the neurons in the
hidden layer are given by h1(z) = σ(z), h2(z) = tanh(z), and the output unit activation function is
g(z) = z, where σ(z) = 1

1+exp(−z) and tanh(z) = exp(z)−exp(−z)
exp(z)+exp(−z) are the logistic sigmoid and hyperbolic

tangent, respectively. The biases b1, b2 are added to the inputs of the neurons int he hidden layer
before passing them through the activation functions. let

w = (b1, b2, w
(1)
11 , w

(1)
12 , w

(1)
21 , w

(1)
31 , w

(1)
32 , w

(2)
1 , w

(2)
2) (84)

28/ 32

Muchang Bahng Spring 2023

denote the vector of network parameters.
1. Write the input output relation y = f(x1, x2, x3;w) in explicit form.
2. Let D = {(x1,n, x2,n, x3,n)} denote a training dataset of N points where yn ∈ R are labels of

the corresponding data points. We want to estimate the network parameters w using D by
minimizing the mean squared error loss

L(w) =
1

2

N∑
n=1

(
f(x1,n, x2,n, x3,n;w)− yn

)2 (85)

Compute the gradient of L(w) with respect to the network parameters w.
3. Write pseudo code for one iteration for minimizing L(w) with respect to the network parameters

w using SGD with learning rate η > 0.

Solution 9.2

We can write the computation graph as

z
(1)
1 = w

(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 + b1 (86)

z
(1)
2 = w

(1)
12 x1 + w

(1)
32 x3 + b2 (87)

a
(1)
1 = σ(z(1)) (88)

a
(1)
2 = tanh(z

(1)
2) (89)

z(2) = w
(2)
1 a

(1)
1 + w

(2)
2 a

(1)
2 (90)

y = a(2) = g(z(2)) (91)

and composing these gives

y = w
(2)
1 σ(w

(1)
11 x1 + w

(1)
21 x2 + w

(1)
31 x3 + b1) + w

(2)
2 tanh(w

(1)
12 x1 + w

(1)
32 x3 + b2) (92)

The gradient of the network can be written as

∇wL(w) =
1

2

N∑
n=1

∇w

(
f(x1,n, x2,n, x3,n;w)− yn

)2 (93)

=

N∑
n=1

(f(x1,n, x2,n, x3,n;w)− yn)∇wf(x1,n, x2,n, x3,n) (94)

where
∇wf(x1,n, x2,n, x3,n) =

∂f

∂w

∣∣∣∣
x=x(n)

(95)

29/ 32

Muchang Bahng Spring 2023

Now we can take derivatives using chain rule, working backwards, and using the derivative identities
σ′(z) = σ(z)(1− σ(z)) and tanh′(z) = 1− tanh2(z).

∂f

∂w
(2)
1

=
∂f

∂z(2)
∂z(2)

∂w
(2)
1

= a
(1)
1 (96)

∂f

∂w
(2)
2

=
∂f

∂z(2)
∂z(2)

∂w
(2)
2

= a
(1)
2 (97)

∂f

∂w
(1)
11

=
∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
11

= w
(2)
1 a

(1)
1 (1− a

(1)
1)x1 (98)

∂f

∂w
(1)
21

=
∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
21

= w
(2)
1 a

(1)
1 (1− a

(1)
1)x2 (99)

∂f

∂w
(1)
31

=
∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂w
(1)
31

= w
(2)
1 a

(1)
1 (1− a

(1)
1)x3 (100)

∂f

∂b1
=

∂f

∂z(2)
∂z(2)

∂a
(1)
1

∂a
(1)
1

∂z
(1)
1

∂z
(1)
1

∂b1
= w

(2)
1 a

(1)
1 (1− a

(1)
1) (101)

∂f

∂w
(1)
12

=
∂f

∂z(2)
∂z(2)

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂w
(1)
12

= w
(2)
2 (1− (a

(1)
2)2)x1 (102)

∂f

∂w
(1)
13

=
∂f

∂z(2)
∂z(2)

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂w
(1)
13

= w
(2)
2 (1− (a

(1)
2)2)x3 (103)

∂f

∂b2
=

∂f

∂z(2)
∂z(2)

∂a
(1)
2

∂a
(1)
2

∂z
(1)
2

∂z
(1)
2

∂b2
= w

(2)
2 (1− (a

(1)
2)2) (104)

To compute one step of SGD, we must first choose a minibatch M ⊂ D and then compute

∇w;ML(w) =
∑

(x,y)∈M

(f(x;w)− y)∇wf(x) (105)

where we compute the gradient simply over the minibatch. Then, we update the parameters according
to

w = w − η∇w;ML(w) (106)

Exercise 9.3 (ECE 685 Fall 2021 Midterm 1.3)

Given the following neural network with 2 inputs (x1, x2), fully-connected layers and ReLU activa-
tions. The weights and biases of hidden units are denoted w and b, with h as activation units. For
example,

h1 = ReLU(x1w11 + x2w21 + b1) (107)

The outputs are denoted as (y1, y2) and the ground truth targets are denoted as (t1, t2).

y1 = ReLU(h1w31 + h2w41 + b3) (108)

30/ 32

Muchang Bahng Spring 2023

The values of the variables are given as follows:

i1 i2 w11 w12 w21 w22 w31 w32 w41 w42 b1 b2 b3 b4 t1 t2
1 2 1 0.5 -0.5 1 0.5 -2 -1 0.5 -0.5 -0.5 1 1 2 4

1. Compute the output (y1, y2) of the input (x1, x2) using the network parameters as specified
above.

2. Compute the mean squared error of the computed output and the target labels.
3. Using the calculated MSE, update the weight w31 using GD with η = 0.01.
4. Do the same with weight w42.
5. Do the same with weight w22.

31/ 32

Muchang Bahng Spring 2023

References
[CLHN93] An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural

network error surfaces. Neural Computation, 5(6):910–927, 11 1993.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[FC19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks, 2019.

[Mis20] Diganta Misra. Mish: A self regularized non-monotonic activation function, 2020.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

[TD20] Edric Tam and David Dunson. Fiedler regularization: Learning neural networks with graph
sparsity, 2020.

32/ 32

	Multi-Layered Perceptrons
	Feedforward Fully-Connected Networks
	Forward and Back Propagation

	Theoretical Properties
	Universal Approximation
	Parameter Symmetry
	Smoothness

	Autograd Engines
	Strides
	Automatic Differentiation

	Weight Initialization
	Activation Functions
	Popular Benchmark Datasets
	Regularization
	L1 and L2 Regularization
	Dropout
	Layer Normalization
	Batch Normalization

	Compression
	Pruning
	Quantization

	Exercises
	References

