
Normalizing Flows Muchang Bahng Spring 2023

Normalizing Flows

Muchang Bahng

Spring 2023

Contents
1 Normalizing Flows 2

1.1 Finite Normalizing Flows . 3
1.2 Coupling-Layer Flows . 6

1.2.1 RealNVP . 7
1.2.2 NICE . 7

1.3 GLOW . 8
1.3.1 c-GLOW . 9

1.4 Autoregressive Flows . 9
1.5 Infinitesimal Flows . 10
1.6 Wasserstein Flows . 10

References 10

1/ 10

Normalizing Flows Muchang Bahng Spring 2023

1 Normalizing Flows
We have seen many examples of generative models that attempt to produce a probability distribution p
that approximates the true pdf p∗ of the data samples. Some are given by an explicit model (e.g. GMMs,
RBMs, VAEs) which approximate with parameterized form p∗ ∼ pθ, while in others (GANs) the model is
implicit since we model the random variable as a transformation X = Ggθ (Z) through a neural network
with Z ∼ N (0, I). If we focus on VAEs—specifically variational inference—for a second, recall that the
performance of the model really just depends on the fact that we can approximate the intractable posterior
p(z | x) with some parameterized family qϕ(z)1

ELBO(x(i), ϕ, θ) = Eqϕ(z|x(i))[log pθ(x
(i) | z)]︸ ︷︷ ︸

likelihood term
(reconstruction part)

−KL(qϕ(z | x(i)) || p(z))︸ ︷︷ ︸
closeness of encoding to p(z)

(typically Gaussian)

(1)

This may not be advantageous and flexible enough to capture the true posterior if qϕ(z) is far away from
p(z | x)

To address this problem, in 2015, Google Deepmind through [RM16] introduced the idea of flow-based models
2 which—like GANs—want to map simple distributions (e.g. a Gaussian) to complex densities representing
the data. This would normally result in an implicitly defined pdf, but by making the transformation to be
invertible, we can use the change of basis formula to get a closed-form of the pdf, making flow models an
explicit model of the pdf. Recall the lemma below from multivariate calculus.

Lemma 1.1 (Jacobi)

Let X,Z be absolutely continuous random variables in Rn. Given that f : Rn → Rn is invertible and
differentiable everywhere, with X = f(Z), Z = f−1(X), we claim

pX(x) = pZ(z) ·
∣∣∣∣det ∂f−1

∂x

∣∣∣∣ = pZ(z) ·
∣∣∣∣ det ∂f∂z

∣∣∣∣−1

(2)

where det is the determinant of the total derivative (Jacobian).

Proof.

For n = 1, we have

pX(x) =
d

dx
FX(x) (3)

=
d

dx
FZ(f

−1(x)) (4)

= pz(f
−1(x)) · d

dx
f−1(x) (5)

= pz (6)

Therefore, if we parameterize f with some θ, then the marginal likelihood of x given θ can be written as

pX(x; θ) = pZ(f
−1
θ (x)) ·

∣∣∣∣det ∂f−1
θ

∂x

∣∣∣∣ (7)

Therefore, if X is a complex distribution and Z is a simple one (e.g. uniform), we might have hope to
efficiently compute pX(x) for any x ∈ Rn if

1This can be written qϕ(z) = qϕ(z | x), but since the encoder network produces the ϕ = Eα(x), the qϕ(z) really represents
a conditional distribution given x.

2This has nothing to do with flow graphs and the max-flow-min-cut theorem in graph theory.

2/ 10

Normalizing Flows Muchang Bahng Spring 2023

1. we can efficiently compute f−1
θ (x), which allows us to compute pZ(f−1(x)) efficiently since Z is simple.

2. we can efficiently compute the determinant of the Jacobian |det(∂f−1
θ /∂x)|.3

1.1 Finite Normalizing Flows
It looks like we have split this enormously hard problem of modeling X with two slightly less difficult
problems. However, with some tricks, we may be able to get a simple enough parameterization of f to be
able to compute its inverse plus the determinant of the Jacobian. Note that the construction of a neural
network was to take a simple function (one layer) and construct a complex family of functions composed of
multiple layers. This is what we can do as well.

Corollary 1.1 (Finite Normalizing Flow)

Given a sequence of transformations

Z = Z0
f1−→ Z1

f2−→ . . .
fK−1−−−→ ZK−1

fK−−→ ZK = X (8)

where each fk is invertible and differentiable everywhere, let us denote f = fK ◦ . . . ◦ f1 : Z → X,
which is invertible. Then

pX(x) = pZ(f
−1(x)) ·

K∏
k=1

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣−1

(9)

This sequence of random variables Zk is called a flow, and the sequence of the corresponding pdfs
pZk

is called the normalizing flow. As for how we parameterize this, our notation will assume that
θ = (θ1, . . . , θM) and each θm parameterizes fm.

Proof.

This can automatically be proved by induction. For an example, consider the sequence of invertible
functions Z f−→ Y

g−→→ X, where Z is a simple distribution that gets transformed to a slightly more
complicated distribution Y that then gets transformed to a complex distribution X. We can apply
the Jacobi theorem above to see pY (y) = pZ(f

−1(y)) · |(Df−1)(x)|, and so we have

pX(x) = pY (g
−1(x)) · |(Dg−1)(x)| (10)

= pZ(f
−1(g−1(x))) · |(Df−1)(y)| · |(Dg−1)(x)| (11)

= pZ((g ◦ f)−1(x))) · |(Df−1)(y)| · |(Dg−1)(x)| (12)

Therefore, by taking a sequence these functions fm, which may each have a simple parameterization, we may
construct a very complex composition fθ that may result in a very expressive Z. Again, this is very similar
to how a composition of linear mappings plus an activation gives us a very expressive neural network, and
unsurprisingly, there is an analogue of the universal approximation theorem for transformations of this form.

Theorem 1.1 (Probability Integral Transform)

Any n-dimensional random variable in Rn that is absolutely continuous w.r.t. the Lebesgue measure
can be constructed from the uniform distribution U on [0, 1]n. Since we can map to and back from
invertibility, any two such random variables X and Y can be mapped from each other,

X 7→ U 7→ Y (13)

3Note that computing determinants are approximately O(n2.4), which may not be practical.

3/ 10

Normalizing Flows Muchang Bahng Spring 2023

Now given this, our job is to maximize the log-likelihood. Since x = zK and z = z0, we substitute this in

ln pZK
(x) = ln pZ0

(f−1(x))−
K∑

k=1

ln

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣ (14)

and over the dataset we want to find

f∗ = argmax
f

N∑
i=1

ln pZ0
(f−1(x(i)))−

K∑
k=1

ln

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣ (15)

where we are really optimizing over f1, . . . , fK , i.e. their parameters θ1, . . . , θK . Great, now let’s define the
parametric form of f . There are two different types of invertible transformations that we can calculate in
linear time.

Definition 1.1 (Planar Contractions)

Let us have θ = {w ∈ RD, u ∈ RD, b ∈ R} and define the family of planar contractions

{f(z) = z + u · h(wT z + b)}θ (16)

for some smooth nonlinearity h.a This is not always invertible, but the paper uses h(x) = tanh(x)
with the fact that wTu ≥ −1 is sufficient for f to be invertible.

aAs the paper states, this flow can be visualized as modifying the initial density by applying a series of contractions
and expansions in the direction perpendicular to the hyperplane wT z + b.

This already looks like a single layer, so you might wonder why one can’t just directly make an invertible
neural net? There is already literature on this, but the typical computational complexity of computing the
determinant (plus the gradient of the determinant) is of scale O(LD3), where L is the number of hidden
layers and D is the dimension of each hidden layer. It turns out that this decomposition gives us a very cute
formula for computing determinants.

Lemma 1.2 ()

The determinant of a planar contraction is∣∣∣∣det ∂f∂z
∣∣∣∣ = ∣∣det(I + uψ(z)T)

∣∣ = ∣∣1 + uTψ(z)
∣∣ (17)

where ψ(z) = h′(wT z + b) · w. This can be computed in O(D) time.

Proof.

Use block matrix multiplication and the matrix determinant lemma.

The other type mentioned is a radial contraction.

Definition 1.2 (Radial Contraction)

Let us have θ = {c ∈ RD, α ∈ R+, β ∈ R} and define the family of radial contractions

{f(z) = z + βh(α, r)(z − c)}θ (18)

where r = |z − c| and h(α, r) = 1
α+r .a

aIt applies radial contractions and expansions around the reference point c and are referred to as radial flows.

4/ 10

https://en.wikipedia.org/wiki/Matrix_determinant_lemma

Normalizing Flows Muchang Bahng Spring 2023

Lemma 1.3 ()

The determinant of a radial contraction is∣∣∣∣det ∂f∂z
∣∣∣∣ = [

1 + βh(α, r)
]d−1[

1 + βh(α, r) + βh′(α, r)r
]

(19)

Figure 1: The effects of normalizing flow on two distributions. For example, for k = 2 we can transform a spherical
Gaussian into a bimodal distribution by applying 2 successive transformations.

With this form, we can now substitute this into the variational lower bound. Note that we have not just
simplified it with the following theorem, but we have also set it up as an expectation over the initial density
p(z), analogous to the reparamaterization trick that we have used for VAEs.

Theorem 1.2 ()

The variational lower bound can be written in the simplified form where the

ELBO(x) = Eq0(z0)[log q0(z0)]− Eq0(z0)[log p(x, zK)]− Eq0(z0)

[K∑
k=1

log
∣∣1 + uTk ψk(zk−1)

∣∣] (20)

for flow models.

Proof.

By definition qϕ(z | x) := qK(zk), and substituting this in along with our simplified formula for the
log likelihood gives us

ELBO(x) := Eqϕ(z|x)
[
log qϕ(z | x)− log p(x, z)

]
(21)

= EqK(zK)

[
log qK(zK)

]
− EqK(zK)

[
log p(x, zK)

]
(22)

= EqK(zK)

[
log q0(z0)−

K∑
k=1

log
∣∣1 + uTk ψk(zk−1)

∣∣]− EqK(zK)

[
log p(x, zK)

]
(23)

But since zK = f(z0), using LOTUS we can get

ELBO(x) = Eq0(z0)[log q0(z0)]− Eq0(z0)

[K∑
k=1

log
∣∣1 + uTk ψk(zk−1)

∣∣]− Eq0(z0)

[
log p(x, zK)

]
(24)

At this point we can take the gradients, freely swap them with the expectations, and compute them.

5/ 10

Normalizing Flows Muchang Bahng Spring 2023

1.2 Coupling-Layer Flows
This general method allowing linear-time computation of Jacobian determinants is an example of a general
normalizing flow. Before, we have just constructed some family of invertible functions {f} to transform
the data, such that it was simple enough to calculate the Jacobian determinants in linear time. But note that
in general, computing determinants requires you to have an triangular matrix (multiply all the diagonals).
Therefore, if we can create a neural network f such that its Jacobian is triangular, we will be done. In order
to have such an architecture to support this, we should introduce a special type of layer.

Definition 1.3 (Affine Coupling Layer)

Let us have an input z ∈ RD such that it can be partitioned into its first d elements and the rest.

z = [z1:d, zd+1:D] (25)

Now let’s have 2 neural networks (not necessarily invertible) F : Rd → RD−d and H : Rd → RD−d

defined

F (z′) = β, G(z′) = γ (26)

Then the coupling layer g : RD → RD with parameters θ = (θF , θH) is defined as the transformation
x = g(z), where

x1:d = z1:d (27)
xd+1:D = zd+1:D ⊙ β + γ = zd+1:D ⊙ F (x1:d) +H(xd+1:D) (28)

So this “layer” really composes of two neural networks, and it has both properties that we want. It is
invertible, with inverse z = g−1(x) defined

z′ = x′, z̄ =
z̄ − γ

β
=
z̄ −H(z′)

F (z′)
(29)

(a) Forward pass of the coupling layer. (b) Backward pass of the coupling layer

Figure 2: Coupling layers are easily invertible. For both the forward and backward pass, we must do a forward pass
through F and H.

Second, the determinant of this is easy to calculate since it is simply β1 × . . . × βD−d. Therefore, we can
stack these layers on top of each other, parameterized by different sequences of neural nets.

6/ 10

Normalizing Flows Muchang Bahng Spring 2023

1.2.1 RealNVP

By setting each function fi to be a cascading layer, we can model f = fK ◦ . . . ◦ f1 and do the exact same
normalizing flow model as mentioned before. This is pretty much NVP.

Figure 3: Cascading coupling layers represents f , where each layer is fi.

1.2.2 NICE

Volume preserving flows design the flow such that the Jacobian determinant is equal to 1 (which is
more restrictive but allows O(1) computation) but still allows for rich posteriors. Therefore, even though
computing the transformation fK ◦ . . . f1 will take longer due to the forward pass of neural nets, the lack of
need to calculate the determinant keeps this fast. An example of such a volume-preserving coupling-layer
flow model was introduced in [DKB15] by Dinh in 2014.

Definition 1.4 (NICE)

The nonlinear independent components estimation (NICE) model uses additive coupling
layers of the form

x1:d = z1:d (30)
xd+1:n = zd+1:n +H(x1:d) (31)

which we can see has a Jacobian determinant of one. The final layer of NICE is a multiplication by
a diagonal matrix with all diagonal elements nonzeros, i.e. xi = βizi, which is invertible and has the
absolute value of the determinant

∏
i |βi|.

Figure 4: An additive coupling layer.

7/ 10

Normalizing Flows Muchang Bahng Spring 2023

1.3 GLOW
Even with all these improvements with coupling-layers, flow models did not do as well as GANs. Therefore
in 2018 Kingma, having invented the VAE, made a comeback by taking flow models and adding a lot of
hacks in [KD18] to improve it, resulting in the GLOW model. There wans’t really much theoretical backing
to it, but it improved normalizing flow dramatically, finally resulting in a competitor for GANs.

Definition 1.5 (Flow Step in GLOW)

The GLOW layer consists of 3 components.
1. Actnorm.
2. Invertible 1× 1 Convolution.
3. Affine Coupling Layer.

Figure 5: One step of GLOW.

After each layer, this is followed by a squeeze operation.

Definition 1.6 (Squeeze Operation)

For each channel, squeezing divides the image into sub-squares of shape 2×2×c, and then reshapes
them into sub-squares of shape 1× 1× 4c.

Definition 1.7 (Split and Concatenation Operation)

The split operation passes half of the input variables to further layers and shave off the other
half as “finished.” The concatenation operation performs the corresponding reverse operation:
concatenation into a single tensor.

This results in the GLOW architecture.

8/ 10

Normalizing Flows Muchang Bahng Spring 2023

Figure 6: The complete glow architecture. L = 6 was known the be the best, but there’s lots of fine-tuning.

You have a flow and squeeze a bunch of times is GLOW.

1.3.1 c-GLOW

There were further improvements by Lu in 2019, where in introduced conditional GLOW in [LH20]. It
conditions on input noise, calculates the pdf of the noise, and subtracts it.

There are also applications in inpainting. You condition on the visible part and sample from conditional
distribution.

1.4 Autoregressive Flows
The nice form of flow models allows us to apply this to sequential data, i.e. in autoregressive models. Given
words x1, . . . , xn, sampled from p(x1, . . . , xn) = p(x1) p(x2 | x1) . . . p(xn | x1 . . . xn−1), we would like to
generate the next word. Doing so with RNNs can require lots of computation, so we can use autoregressive
models as flow models. Consider a Gaussian nonlinear autoregressive model.

p(x) =

n∏
i=1

p(xi | x<i), where p(xi | x<i) = N
(
µ(x1, . . . , xi−1), exp(αi(x1, . . . , xi−1))

2
)

(32)

where µi, αi are deep neural networks (but not too deep due to computation, e.g. they can be fixed-length
input resnets). Assuming that this is optimized somehow, we can sample from a Gaussian and run it through
the neural nets to get the parameters of the next Gaussian distribution, sample them, and then do it again.

zi ∼ N (0, 1), xi = µi + exp(αi)zi = µi(x<i) + exp(αi(x<i))zi (33)

This is the key idea to autoregressive normalizing flows. What we have just talked about is called a masked
autoregressive flow.

9/ 10

Normalizing Flows Muchang Bahng Spring 2023

(a) (b)

Figure 7

In an inverse autoregressive flow, the equations remain the same but the role of forward and backward
passes have been reversed.

We can see a trade-off.

1. Calculating log-likelihood. MAFs are better since we can calculate it easy (remember we need determi-
nant). IAFs requires us to go back and forth.

2. Sampling. IAFs are easier since we can sample from zi’s and sequentially calculate xi’s.

Can we get the benefits of both? Yes, and the general idea is to train the MAF first and then have the IAF
student model imitate it.

Example 1.1 (Video Flows)

We can model a video as as a time series generated by a fancy random Gaussian walk, where the
normal distributions are transformed by a neural network. This leads to WaveNet.

1.5 Infinitesimal Flows

1.6 Wasserstein Flows

References
[DKB15] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components

estimation, 2015.

[KD18] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions,
2018.

[LH20] You Lu and Bert Huang. Structured output learning with conditional generative flows, 2020.

[RM16] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows, 2016.

10/ 10

	Normalizing Flows
	Finite Normalizing Flows
	Coupling-Layer Flows
	RealNVP
	NICE

	GLOW
	c-GLOW

	Autoregressive Flows
	Infinitesimal Flows
	Wasserstein Flows

	References

