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1 Energy Models
Now this is the first time we talk about unsupervised learning. Note from our graphical models notes
that for unsupervised tasks, we have estimated the density of complex distributions by factoring them in
graphical models, e.g. Bayesian networks or Markov random fields. We will extend this into deep learning
architectures.1

Note that many of the theories behind energy models are very old (from the 1980s) and established, especially
in the prevalence of the Boltzmann distribution in statistical mechanics. All of them essentially rely on the
fact that we can model a probability density as

p(x) =
e−E(x)

Z
(1)

for some function E : Rn → R, which we call the negative energy, and Z is what we call the partition
function. We have seen from the Hammersley-Clifford theorem that we can model a joint probability
distribution on an undirected graph with the product of potential functions on the max cliques.2 Therefore,
we will take advantage of this in the specific instance of MRFs that are bipartite graphs, i.e. a non-feedforward
(since its cyclic) 2-layer neural network. We will talk about RBMs, deep belief networks, and hopfield
networks. Diffusion models, which can also be considered an energy model, will be talked separately.

The most straightforward application is that we can just have a neural network approximate this function Eθ,
which gives us a parameterized family of distributions pθ(x) = 1

Z e
−Eθ(x) that would hopefully approximate

the true distribution p∗(x). This is called an energy based model (EBM).

1.1 Training with MCMC
Therefore, we could like to maximize the log-likelihood (which gets rid of the partition function term), giving
us

argmax
θ

Ex∼p∗
[
log pθ(x)

]
= argmax

θ
Ex∼p∗

[
− Eθ(x)

]
− Ex∼p∗

[
logZθ

]
(2)

≈ argmin
θ

N∑
i=1

Eθ(x
(i)) +

N∑
i=1

logZθ (3)

Note that even though Zθ is constantly 1 with respect to x, the actual value of the integral will change with
respect to θ. Therefore this term also contributes to the argmax. Focusing on a single sample, we attempt
to compute the gradient of this. The first gradient ∇θEθ(x) is easy by automatic differentiation since E is
a neural net. However, the second term is quite tricky. But using some mathematical identities mentioned
in [SK21], we have

1This is not to be confused with graph neural networks (GNNs), which are designed for tasks whose inputs are graphs.
2But finding max cliques is NP-hard?
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∇θ logZθ = ∇θ log

∫
exp(−Eθ(x))dx (4)

=

(∫
exp(−Eθ(x))dx

)−1

∇θ

∫
exp(−Eθ(x))dx (5)

=

(∫
exp(−Eθ(x))dx

)−1 ∫
∇θ exp(−Eθ(x))dx (6)

=

(∫
exp(−Eθ(x))dx

)−1 ∫
exp(−Eθ(x))(−∇θEθ(x))dx (7)

=

∫ (∫
exp(−Eθ(x))dx

)−1

exp(−Eθ(x))(−∇θEθ(x))dx (8)

=

∫
exp(−Eθ(x))

Zθ
(−∇θEθ(x))dx (9)

=

∫
pθ(x)(−∇θEθ(x))dx (10)

= Ex∼pθ(x)[−∇θEθ(x)] (11)

This gives us hope. Therefore, we can estimate the intractable gradient as an expectation of the gradient of
the neural network with respect to the current estimate pθ(x) (not the true p∗!).

∇θEx∼p∗ [log pθ(x)] = Ex∼p∗ [∇θ log pθ(x)] (12)

≈
N∑
i=1

−∇θEθ(x)−∇θ logZθ (13)

=

N∑
i=1

{
−∇θEθ(x) + Ex∼pθ(x)[∇θEθ(x)]

}
(14)

≈
N∑
i=1

{
−∇θEθ(x) +

M∑
j=1

∇θEθ(x̃)

}
(15)

where the final step is from using a Monte Carlo sample with a size M batch of x̃ from pθ(x). We can draw
samples using MCMC, with Langevin dynamics MCMC being the most popular.

1.2 Boltzmann Machines
Okay, so we’ve learned to model an arbitrary distribution by approximating it with an energy model. While
they are not explicitly build into energy models, it is possible to include them. One such method is through
Boltzmann machines. Consider the graph x1, . . . , xD which represents a random vector x for which we would
like to model the probability distribution of.

x1 x2 xD...

What we can do is model the dependencies between these random elements with linear parameters W and b,
which essentially gives us a Markov Random Field. Let’s consider when xi’s are all Bernoulli, so x ∈ {0, 1}D,
which are known as Ising models in statistical mechanics. By Hammersley-Clifford, we don’t even need to
specify the individual functions over the maximal cliques, and rather we can just specify the energy function
E(x) of the Boltzmann distribution that the MRF encodes. We parameterize θ = {W, b}.
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Example 1.1 (Bernoulli Pairwise Markov Random Fields)

We define it to capture the interactions between Bernoulli random variables xi up to order 2.

pθ(x) =
1

Z
exp(E(x)) =

1

Z
exp

( ∑
ij∈E

xixjWij +
∑
i∈V

xibi

)
=

1

Z
exp

(
xTWx+ bTx

)
(16)

Now let’s check its conditional distribution. Let x−k denote the joint distribution of all random
variables minus xk.

p(xk = 1 | x−k) =
p(xk = 1, x−k)

p(x−k)
(17)

=
p(xk = 1, x−k)

p(xk = 0, x−k) + p(xk = 1, x−k)
(18)

=
exp

(∑
kj∈E xjWkj + xkbk

)
exp(0) + exp

(∑
kj∈E xjWkj + xkbk

) (19)

= σ

{
− bkxk −

∑
kj∈E

xjWkj

}
(20)

where the penultimate step comes from evaluating

p(xk = 1, x−k) =
1

Z(θ)
exp

( ∑
ij∈E,k ̸=i,j

xixjWij +
∑

ij∈E,k=i,j

xixjWij +
∑

i∈V,i̸=k

xibi + xkbk

)
(21)

=
1

Z(θ)
exp

( ∑
ij∈E,k ̸=i,j

xixjWij +
∑
kj∈E

xjWkj +
∑

i∈V,i̸=k

xibi + bk

)
(22)

p(xk = 0, x−k) =
1

Z(θ)
exp

( ∑
ij∈E,k ̸=i,j

xixjWij +
∑

i∈V,i ̸=k

xibi

)
(23)

and canceling out like terms in the numerator and denominator. This tells us that MRFs are related
to logistic function.

Example 1.2 (Gaussian Markov Random Fields)

If we assume that pθ(x) follows a multivariate Gaussian distribution, we have

p(x | µ,Σ) = 1

Z
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(24)

Since the Gaussian distribution represents at most second-order relationships, it automatically en-
codes a pairwise MRF. Therefore, we can rewrite

p(x) =
1

Z
exp

(
− 1

2
xTJx+ gTx

)
(25)

where J = Σ−1 and µ = J−1g.

However, this is still quite a limited model. For one, due to the linearity of the weight matrix, it always turns
out that the probability of xk = 1 is always given by a linear model (logistic regression) from the values
of the other units. This family of distributions parameterized by θ = {W, b} may not be broad enough to
capture the true p(x). Therefore, we can add latent variables that can act similarly to hidden units in a MLP
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and model higher-order interactions among the visible units. Just as the addition of hidden units to convert
logistic regression into MLP results in the MLP being a universal approximator of functions, a Boltzmann
machine with hidden units is not longer limited to modeling linear relationships between variables. Instead,
the Boltzmann machine becomes a universal approximator of probability mass functions over discrete random
variables.

Definition 1.1 (Boltzmann Machine)

The original Boltzmann machine has the energy function

E(v, h) = −vTRv − vTWh− hTSh− bT v − cTh (26)

It can represent the undirected graph that has connections within the x, within the h, and between
the x and h.

h1 h2 · · · hH−1 hH

x1 x2 · · · xD

Figure 1: 2-layer undirected graph representing a Boltzmann machine.

Therefore, by adding latent variables and connecting everything together, this gives us a very flexible model
that can capture a lot of distributions.

1.3 Restricted Boltzmann Machines
Unfortunately, there are problems with training this, and so the restricted Boltzmann machine allowed for
efficient training. Therefore, we will limit ourselves to pairwise MRFs, which only capture dependencies
between cliques of maximum size 2. We usually write x as the observed and z as the latent, but in the
literature v and h are used, respectively. Now, if we put a restriction saying that there cannot be any
intra-connections in the x and h, then we get the restricted Boltzmann machine, which has a slightly more
resticted form of the energy function than the general BM.

Definition 1.2 (Restricted Boltzmann Machine)

The restricted Boltzmann machine has the energy function

E(v, h) = −vTWh− bT v − cTh (27)

with connections only allowed between xi’s and hj ’s, known as a bipartite graph, implying that
the maximum clique length is 2. This model allows the elements of x to be dependent, but this
architecture allows for conditional independence, and not just for x given h, but also h given x.
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Therefore, we already have the extremely nice property that

p(x | h) =
D∏

k=1

p(xk | h) (28)

p(h | x) =
F∏

j=1

p(hj | x) (29)

h1 h2 · · · hH−1 hH

x1 x2 · · · xD

Figure 2: 2-layer undirected graph representing a restricted Boltzmann machine. Note that the intra-
connections (blue and orange) are gone.

Note that this form of the probability E(x) is equivalent to the product of max-cliques, which are of size 2
in this case.

p(v, h) = exp(−E(v, h))/Z (30)

= exp(vTWh+ bT v + cTh)/Z (31)

= exp(vTWh) exp(bT v) exp(cTh)/Z (32)

=
1

Z

∏
j

∏
k

exp(Wjkhjvk)
∏
k

exp(ckvk)
∏
j

exp(bjhj) (33)

Therefore, we can think of the exp(hTWx) as encoding the cliques of length 2 and the others as cliques
of length 1. The fact that we can calculate p(h | x) means that inferring the distribution over the hidden
variables is easy.

1.3.1 Contrastive Divergence

Now that we’ve done this, we can finally get to training the model. Now, essentially this is density estimation
problem given dataset D = {x(t)} of iid random variables, we want to maximize the likelihood of pθ, which
is really just equivalent to optimizing Eθ. So, let’s take the average negative log-likelihood and take the
derivative of it

∂

∂θ

1

T

∑
t

− log pθ(x
(t)) (34)

There’s a lot of computation to do here, so let’s focus on one sample x(t) and claim that the gradient
ultimately ends up as the following.
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Theorem 1.1 (Decomposition of Derivative)

The derivative of the log-likelihood decomposes into the following terms.

∂

∂θ
− log p(x(t)) =

∑
h

p(h | x(t)) ∂E(x(t), h)

∂θ
−

∑
x,h

p(x, h)
∂E(x, h)

∂θ
(35)

= Eh

[
∂E(x(t), h)

∂θ

∣∣∣∣ x(t)]︸ ︷︷ ︸
positive phase

−Ex,h

[
∂E(x, h)

∂θ

]
︸ ︷︷ ︸

negative phase

(36)

which reduces to

−∇θ ln p(x) =


−∇W ln p(x) =

∑
h p(h | x)hxT −

∑
x,h p(x, h)hx

T

−∇b ln p(x) =
∑

h p(h | x)h−
∑

x,h p(x, h)h

−∇c ln p(x) =
∑

h p(h | x)x−
∑

x,h p(x, h)x

(37)

Proof.

From the energy model form, we can see that Z =
∑

x,h exp(−E(x, h)). Therefore,

ln(Z) = ln

(∑
x,h

exp(−E(x, h))

)
(38)

∂

∂θ
ln(Z) =

1

Z

∑
x,h

exp(−E(x, h)) · −1 · ∂
∂θ
E(x, h) (39)

= − 1

Z

∑
x,h

exp(−E(x, h)) · ∂
∂θ
E(x, h) (40)

= − 1

Z

∑
x,h

Z · p(x, h) · ∂
∂θ
E(x, h) (41)

= −
∑
x,h

p(x, h)
∂E(x, h)

∂θ
(42)

We have by definition

− ln p(x) = − ln

{∑
h

exp
(
− E(x, h)

)}
+ ln(Z) (43)

and so when taking the derivative, the second term is solved from above and the first term, we apply
the chain rule to get

− ∂

∂θ
ln p(x) =

∑
h exp

(
− E(x, h)

) ∂E(x,h)
∂θ /Z∑

h exp
(
− E(x, h)

)
/Z

+
∂ ln(Z)

∂θ
(44)

=

∑
h p(x, h)

∂E(x,h)
∂θ

p(x)
+
∂ ln(Z)

∂θ
(45)

=
∑
h

p(h | x) ∂E(x, h)

∂θ
−
∑
x,h

p(x, h)
∂E(x, h)

∂θ
(46)
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We can use the closed form of E to then compute its partials.(
∂E(x, h)

∂W

)
ij

=
∂E(x, h)

∂Wij
=

∂

∂Wij

{
−

∑
i,j

Wijhixj −
∑
j

cjxj −
∑
i

bihi

}
= hixj (47)(

∂E(x, h)

∂b

)
i

=
∂E(x, h)

∂bi
= hi (48)(

∂E(x, h)

∂c

)
j

=
∂E(x, h)

∂cj
= xj (49)

which in matrix form is

∇θE(x, h) = {∇WE(x, h),∇bE(x, h),∇cE(x, h)} = {hxT , h, x} (50)

The conditional probability can be factorized out given x and computed easily by conditional inde-
pendence.

p(h | x) =
∏
j

p(hj | x) (51)

and so given that we have computed this for all h, we can write our gradient as

−∇θ ln p(x) =


−∇W ln p(x) =

∑
h p(h | x)hxT −

∑
x,h p(x, h)hx

T

−∇b ln p(x) =
∑

h p(h | x)h−
∑

x,h p(x, h)h

−∇c ln p(x) =
∑

h p(h | x)x−
∑

x,h p(x, h)x

(52)

Therefore, we can easily compute the left summation in the gradient form, but the right summation requires
us to compute p(x, h) as a general joint distribution, which is intractable. So we just approximate this with
a Monte Carlo estimator, specifically Gibbs sampling. This method is known as contrastive divergence which
was introduced in 2002 by Geoffrey Hinton in [Hin02].

Algorithm 1.1 (Contrastive Divergence)

The general idea is to replace by the expectation by a point estimate at x̃, which we can obtain by
sampling the conditions over and over through Gibbs. Since we know p(x | h) and p(h | x) easily, we
can start sampling the chain for some predetermined K steps (actually 2K since we are sampling the
x and h back and forth), and whatever x̃, h̃ you sample at the end is your estimate. You then use
this to approximate the negative phase

Ex,h

[
∂E(x, h)

∂θ

]
≈ ∂

∂θ
E(x̃, h̃) (53)

Here are the steps.
1. Initialize x0 = x and sample h0 from p(h | x0).
2. For k = 1, . . . ,K,

(a) Sample xk from p(x | hk−1).
(b) Sample hk from p(h | xk).

3. Once you get x̃ = xK ,a use this to approximate

−∇W ln p(x) =
∑
h

p(h | x)hxT −
∑
x,h

p(x, h)hxT ≈
∑
h

p(h | x)hxT −
∑
h

p(h | x̃)hx̃T (54)

−∇b ln p(x) =
∑
h

p(h | x)h−
∑
x,h

p(x, h)h ≈
∑
h

p(h | x)h−
∑
h

p(h | x̃)h (55)

−∇c ln p(x) =
∑
h

p(h | x)x−
∑
x,h

p(x, h)x ≈
∑
h

p(h | x)x−
∑
h

p(h | x̃)x̃ (56)
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We can tweak this procedure, such as persistent CD, where instead of initializing the chain to x(t),
we can initialize the chain to the negative sample of the last iteration.

Figure 3: In general, the bigger k is, the less biased the estimate of the gradient will be, and in practice k = 1
works well for learning good features. The reason this is called contrastive divergence is that in the gradient
update step, we have a positive sample and a negative sample that both approximates the expected gradient,
which contrasts to each other.

Therefore, contrastive divergence with k iterations gives us the CD-k algorithm.
aNote that we do not use h̃ = hK .

Algorithm 1.2 (Fitting)

Therefore, for updating θ, we get the following

W =W − α
(
∇W (− log p(x(t)))

)
(57)

=W − α
(
Eh[∇WE(x(t), h) | x(t)]− Ex,h[∇WE(x, h)]

)
(58)

=W − α
(
Eh[∇WE(x(t), h) | x(t)]− Eh[∇WE(x̄, h) | x̄]

)
(59)

=W + α
(
h(x(t))(x(t))T − h(x̄)x̄T

)
(60)

and doing this over all three parameters leads to

W ←W + α
(
h(x(t))(x(t))T − h(x̄)x̄T

)
(61)

b← b+ α
(
h(x(t))− h(x̄)

)
(62)

c =← c+ α
(
x(t) − x̂

)
(63)

Example 1.3 (Collaborative Filtering)

Netflix dataset.

1.3.2 Inference with Bernoulli-Bernoulli RBMs

We have talked about RBMs of a general form, but the standard is that the hidden units are almost always
Bernoulli, while the visible ones are either Bernoulli or Gaussian. Let’s talk about when x, h are both
Bernoulli, which allows us to simplify the general form of training.
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Definition 1.3 (Bernoulli-Bernoulli RBM)

For now, let us assume that we are trying to estimate the distribution of a Bernoulli random vector
x ∈ {0, 1}D with Bernoulli latent variables h ∈ {0, 1}F . Then, the energy of the joint configuration is

E(v, h; θ) = −
∑
ij

Wijvihj −
∑
i

bivi −
∑
j

ajhj = −vTWh− bT v − aTh (64)

where θ = {W,a, b} are the model parameters.

Let’s get some calculations out of the way.

Lemma 1.1 (Conditional Distributions)

For the Bernoulli RBM, we have

p(hj = 1 | x) = σ(bj +Wj,:x) (65)

p(xk = 1 | h) = σ(ck + hTW:,k) (66)

Proof.

Just use the definition of conditional probability and substitute the result below in the denominator.
The terms will cancel out.

Lemma 1.2 (Free Energy)

For the Bernoulli RBM, we want to compute the marginal p(x) as

p(x) =
exp(−F (x))

Z

=
1

Z
exp

(
cTx+

H∑
j=1

log
(
1 + exp(bj +Wj,:x)

))

=
1

Z
exp

(
cTx+

H∑
j=1

softplus(bj +Wj,:x)

)
where F is called the free energy and the softplus is defined.

softplus(x) = ln(1 + ex) (67)

Therefore, p(x) is calculated by taking the product of these terms, which is why it’s known as a
product of experts model.

x

y

-4 -3 -2 -1 1 2 3 4

1

2

3

4 softplus(·)

ReLU(·)

Figure 4: A graph of the softplus activation function, with the dotted ReLU.
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Proof.

We have

p(x) =
∑

h∈{0,1}H

exp
(
hWx+ cTx+ bTh

)
/Z (68)

= exp(cTx)
∑

h1=0,1

. . .
∑

hH=0,1

exp

(∑
j

hjWj,:x+ bjhj

)
/Z (69)

= exp(cTx)

( ∑
h1=0,1

exp(h1W1,:x+ b1h1)

)
. . .

( ∑
hH=0,1

exp(hHWH,:x+ bHhH)

)
/Z (70)

= exp(cTx)
(
1 + exp(b1 +W1,:x)

)
. . .

(
1 + exp(bH +WH,:x)

)
/Z (71)

= exp(cTx) exp
{
log

(
1 + exp(b1 +W1,:x)

)}
. . . exp

{
log

(
1 + exp(bH +WH,:x)

)}
/Z (72)

=
1

Z
exp

(
cTx+

H∑
j=1

log
(
1 + exp(bj +Wj,:x)

))
(73)

When training, we can use the closed form to simplify our calculations.

∂E(x, h)

∂Wjk
=

∂

∂Wjk
(74)

and so
Eh

[
∂E(x, h)

∂Wjk

∣∣∣∣x] = Eh[−hjxk | x] =
∑

hj=0,1

−hjxk p(hj | x) = −xkp(hj = 1 | x) (75)

where the final term is a sigmoid. Hence, we have

Eh[∇WE(w, h) | x] = −h(x)xT , where h(x) :=

 p(h1 = 1 | x)
...

p(hH = 1 | x)

 = σ(b+Wx) (76)

Now we can substitute what we solved into the second expectation, but again this is infeasible to calculate

Ex,h

[
∂E(x, h)

∂θ

]
=

∑
x,h

h(x)xT p(x, h) (77)

1.3.3 Inference with Gaussian-Bernoulli RBMs

Now we can talk about Gaussian Bernoulli RBMs.

Definition 1.4 (Gaussian-Bernoulli RBM)

If we assume that v is a real-valued (unbounded) input that follows a Gaussian distribution (with h
still Bernoulli), then we can add a quadratic term to the energy function

E(x, h) = −hTWx− cTx− bTh− 1

2
xTx (78)

In this case, p(x | h) becomes a Gaussian distribution N(c+WTh, I). The training process is slightly
harder for this, so what we usually do is normalize the training set by subtracting the mean off each
input and dividing the input by the training set standard deviation to get

E(v, h; θ) =
∑
i

(vi − bi)2

2σ2
i

−
∑
ij

Wijhj
vi
σi
−

∑
j

ajhj (79)

11/ 19



Energy Models Muchang Bahng Spring 2023

You should also use a smaller learning rate α compared to Bernoulli RBM.

Algorithm 1.3 (Implementation)

For an implementation with PyTorch, see here.

1.4 Score Matching
Due to the computational cost of MCMC algorithms in graphical models in general, Hyvarinen in 2005
introduced an indirect method to estimate the log likelihood by calculating the gradient of the PDF with
respect to the sample, called score matching. It is motivated by the following theorem.

Theorem 1.2 ()

If two continuously differentiable real-valued functions f(x), g(x) have equal first derivatives every-
where, then f(x) = g(x) + c for some constant c.

If we apply this to our energy model, due to the normalization requirement it is sufficient that f(x) = g(x)
if they match in their first derivatives. This gradient has a special name.

Definition 1.5 (Score)

Let X be a continuous random variable defined on Rn, and let p be its pdf. The score function of
p is the gradient of the log-pdf with respect to the sample.a

ψ(x) = ∇x log p(x) =


∂ log p(x)

∂x1

...
∂ log p(x)

∂xn

 =

ψ1(x)
...

ψn(x)

 (80)

Note that the score is a function ψ : Rn → Rn.
aNote that this is w.r.t. the sample, not the parameter, unlike what we do usually in machine learning.

The reason Hyvarinen introduced this score function in 2005 is because we want to have such a score is
that it does not depend on the normalizing constant Z. Our original problem was having the normalizing
constant

Z =

∫
pθ(x) dx (81)

indeed changes w.r.t. θ, but is stays constantly 1 with respect to z, and so by taking the log-derivative w.r.t.
x, we can actually get rid of this term completely. [Hyv05] Therefore, rather than maximizing the likelihood,
we want to minimize the expected L2 distance between the score functions, called the Fisher divergence.3

Definition 1.6 (Fisher divergence)

The Fisher divergence of two probability distributions p, pθ is

DF (p(x)||pθ(x)) := Ep(x)

[
1

2
||ψ(x)− ψθ(x)||2

]
(82)

= Ep(x)

[
1

2
||∇x log p(x)−∇x log pθ(x)||2

]
(83)

3Not to be confused with the Fisher score, which is a scalar and uses the same notation s in some of the papers.
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Therefore, rather than minimizing the KL-divergence, i.e. maximizing the log-likelihood, we can choose to
minimize the Fisher divergence. So we have come up with another way to conduct inference by an alternative
objective to minimize. But unsurprisingly, the KL and Fisher divergences are related.

Theorem 1.3 (Relationship Between Fisher and KL Divergnces)

Consider two random variables X,Y with pdfs p(x), q(y), and let us take the continuous time stochas-
tic process perturbed by independent normals

Xt = X +N (0, t), Yt = Y +N (0, t) (84)

and let pt(x), qt(y) be the pdfs of Xt, Yt. Then we have

DF (p, q) = −2
d

dt
DKL(pt, qt)

∣∣∣∣
t=0

(85)

This leads to the dual prime inequality, aka 2nd law of thermodynamics.a

lim
t→0

DKL(pt||qt)−DKL(p||q)
t

(86)

aWhat Tarokh said but need to confirm on this.

Proof.

Follows from de Bruijn equality.

JF (X) = 2
d

dt
[H(Xt)] (87)

The reason the Fisher divergence is so attractive is that under some mild regularity conditions, the parameter
estimated by minimizing the Fisher divergence converges to the true parameters in the limit of infinite data.
Furthermore, we can decompose it into the following.

Theorem 1.4 (No Need for True Score to Optimize Fisher Divergence Objective)

The Fisher divergence can be decomposed to

DF (p(x)||pθ(x)) = Ep(x)

[
1

2
||∇x log pθ(x)︸ ︷︷ ︸

sP (x,p)

||2 +∆x log pθ(x)

]
+ c∗ (88)

where ∆ represents the trace of the Hessian, sP is called the Fisher score, and c∗ is term that depends
only on p the true data generating distribution.

Proof.

The full proof is on the appendix of [Hyv05], but we show for one variable gone through class.

DF (p(x)||pθ(x)) =
1

2

∫
p(x)

(
|∇x log pθ(x)|2 + |∇x log p(x)|2 − 2∇x log p(x)∇x log pθ(x)}

)
dx (89)

The first term is 1
2Ep(x)[|∇x log pθ(x)|2], the second term is only dependent on p and we set that as
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c∗, and the third term can be decomposed by integration by parts into∫
p(x)

[p(x)]′

p(x)
· ∇x log pθ(x) dx =

∫
[p(x)]′ · ∇x log pθ(x) dx (90)

= p(x)∇x log pθ(x)
∣∣∣+∞

−∞
−

∫
p(x)∆x log pθ(x) dx (91)

As a hand-wavy way, we can see that since p(x) is a pdf, it must be the case that

0 = lim
x→+∞

p(x) = lim
x→−∞

p(x) (92)

and since the log probability is bounded the first term is 0, leaving us with the expectation of the
Hessian.

This is the key theorem in Hyvarinen’s paper. In the original objective, we must minimize the L2 distance
between the original score and the score that we can compute by the neural network (at this point, we are
assuming still that the neural net Eθ(x) ≈ log pθ(x), and the score is obtained by backpropagating through
x). But we have no clue what the true score it, so how are we supposed to minimize the L2 distance of
our model outputs with something that we don’t even know? The theorem states that by minimizing the
reformulated objective above (which does not depend on the true score at all), we can actually have our
output converge onto the true score without ever having to know the true score!

Therefore, by taking the gradient w.r.t. θ, we can put this inside the expectation and get an unbiased
estimator to optimize this objective.

∇θDF (p(x)||pθ(x)) = ∇θEp(x)

[
1

2
||∇x log pθ(x)||2 +∆x log pθ(x)

]
(93)

=
1

2
Ep(x)

[
∇θ||∇x log pθ(x)||2 +∇θ∆x log pθ(x)

]
(94)

≈ 1

2N

N∑
i=1

∇θ||∇x log pθ(x
(i))||2 +∇θ∆x log pθ(x

(i)) (95)

where x(i) are the true samples generated from p(x).

Now when we try to actually optimize this with SGD, note what would happen if we modeled our neural
net Eθ(x) ≈ log p(x) to output to log probability. There are two huge problems.

1. We would have to backprop on x not just once, but twice due to the Hessian calculation. This is
already O(d2) in dimension d. Even though it only requires the trace of the Hessian, this does not
scale well to large dimensions.

2. After backpropagating with x, in PyTorch we can’t just backprop on θ after since it still computes first
derivatives. The feature to compute the second derivatives w.r.t. x and θ is not possible in PyTorch,
and it also scales terribly.

To solve the first problem, note that one can immediately see that the Fisher divergence objective requires
us to know the Fisher score, which is itself a gradient, and so the model that we should be training Eθ(x)
should really be outputting the Fisher score, not the log-probability!

Eθ(x) ≈ ∇x log pθ(x) (96)

If we can rather have the neural network output the score itself rather than the log-probability, then we
won’t have to take the second derivative. This also does not affect inference since we can use the score to
sample from the distribution using MCMC, such as Langevin dynamics which directly requires the value
of ∇x log pθ(x) in each iteration. Therefore, modifying the neural net to output scores rather than the log
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probability helps us with training, and at the same time, does not hinder our ability to sample from the
model.4 Essentially, assuming that sθ(x(i)) = Eθ(x

(i), our gradient update step would look like this

∇θDF (p(x)||pθ(x)) ≈
1

2N

N∑
i=1

∇θ||sθ(x(i))||2 +∇θ∇xsθ(x
(i)) (97)

≈ 1

2N

N∑
i=1

∇θ||Eθ(x
(i))||2 +∇θ∇xEθ(x

(i)) (98)

This is better, but the second problem remains. That is, once we backprop on x we get∇xEθ(x), but we must
treat this as a function itself and do a second derivative w.r.t. θ. This still isn’t possible in PyTorch, and
to solve this, the next models we introduce—denoising score matching and sliced score matching—estimates
noisy versions of the Hessian with first-order approximations. In summary, both models avoid having to
calculate the derivative w.r.t. x at all, and rather approximate it in some way ∇θ∇xEθ(x) ≈ ∇θg(Eθ(x))
for some simple function g.

1.4.1 Denoising Score Matching

The score matching objective requires several regularity conditions for the true log p(x), notable that it
should be continuously differentiable and finite everywhere. However, these conditions may not always hold
in practice. For example, a distribution of digital images is typically discrete and bounded with values
restricted to {0, . . . , 255}. Therefore log p(x) is discontinuous and may reach −∞.

To alleviate this difficult, we can add a bit of noise to each data point and generate new samples x̃ = x+ϵ. As
long as the noise distribution p(ϵ) is smooth, the resulting noisy data distribution q(x̃) =

∫
q(x̃ | x) p(x) dx

is also smooth, and thus the Fisher divergence is a proper objective. In 2010, Kigma and LeCun in [KC10]
showed that the objective with noisy data can be approximated by the noiseless score matching objective
plus a regularization term. However, this still required computing expensive second-order derivatives.

In 2011, Vincent showed in [Vin11] that rather than trying to estimate pθ(x) ≈ p(x), we should focus on
estimating the noisy q(x̃), an idea called denoising score matching or DSM. The biggest advantage of this is
the following.

Theorem 1.5 (Decomposition of Noisy Fisher Divergence)

The noisy Fisher divergence can be decomposed to

DF (q(x̃)||pθ(x̃)) = Eq(x̃)

[
1

2
||∇x log q(x̃)−∇x log pθ(x̃)||22

]
(99)

= Eq(x,x̃)

[
1

2
||∇x log q(x̃ | x)−∇x log pθ(x̃)||22

]
+ constant (100)

Proof.

Letting sθ(x̃) = ∇x log pθ(x̃), we can expand this term.

1

2
Ex∼q

[
∥∇x log q(x̃)− sθ(x̃)∥22

]
=

1

2

∫
q(x̃)∥∇x log q(x̃)∥22dx̃+

1

2

∫
q(x̃)∥sθ(x̃)∥22dx̃ (101)

−
∫
q(x̃)∇x log q(x̃)

T sθ(x̃)dx̃ (102)

Note that the first integral is a constant w.r.t. θ, and the second term is 1
2Eq(x)[||sθ(x̃)||22]. If we

4Note that before we can model our estimated pdf as pθ(x) =
1
Z
e−Eθ(x), but now there is no simple form. But we haven’t

really lost anything. Since even in the old model, we must use MCMC to sample since Z is intractable, and in our score-output
model, our sampling is still identically done with MCMC.
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manipulate the final term, we get

−
∫
q(x̃)∇x̃ log q(x̃)

T sθ(x̃)dx̃ = −
∫
q(x̃)

1

q(x̃)
∇x̃q(x̃)

T sθ(x̃)dx̃ (103)

= −
∫
∇x̃q(x̃)

T sθ(x̃)dx̃ (104)

= −
∫
∇x̃

(∫
p(x)q(x̃|x)dx

)T

sθ(x̃)dx̃ (105)

= −
∫ (∫

p(x)∇x̃q(x̃|x)dx
)T

sθ(x̃)dx̃ (106)

= −
∫ (∫

p(x)q(x̃|x)∇x̃ log q(x̃|x)dx
)T

sθ(x̃)dx̃ (107)

= −
∫∫

p(x)q(x̃|x)∇x̃ log q(x̃|x)T sθ(x̃)dxdx̃ (108)

= −Ex∼p(x),x̃∼q(x̃|x)
[
∇x̃ log q(x̃|x)T sθ(x̃)

]
(109)

= −Eq(x,x̃)

[
∇x̃ log q(x̃|x)T sθ(x̃)

]
(110)

By the tower rule, we have Eq(x)[||sθ(x̃)||] = Eq(x,x̃)[||sθ(x̃)||] and summing them back up we have

DF (q(x̃)||pθ(x̃)) = c+
1

2
Eq(x,x̃)[||sθ(x̃)||22]− Eq(x,x̃)

[
∇x̃ log q(x̃|x)T sθ(x̃)

]
(111)

= c+
1

2
Eq(x,x̃)[||∇x̃ log q(x̃ | x)− sθ(x̃)||22]−

1

2
Eq(x,x̃)[||∇x̃ log q(x̃ | x)||22] (112)

but again, note that the third term is not dependent on θ and can therefore be treated as a constant.

Therefore we have not only just completely removed the hessian term, but also removed the expectation
over the true p(x). Doing this has drawbacks however. When p(x) is already a well-behaved distribution
that satisfies the regularity conditions, then DF (q(xx̃)||pθ(x̃)) ̸= DF (p(x)||pθ(x)), and we are optimizing the
noisy q. Therefore, we are not really minimizing the true objective, and so our job is to add a little bit a
noise so that q(x) ≈ p(x).

Since we can construct a pretty simple form of q(x̃ | x), the gradient is easy to calculate and can be done
in closed form in fact. The nice property is that we are matching ∇x̃ log q(x̃ | x) and not ∇x log p(x).
One way we can construct q is to perturb it by a small Gaussian, so x̃ = x + σz for z ∼ N (0, I). Then
q(x̃ | x) = N (x̃ | x, σ2I), and since the log-derivative of the conditional Gaussian is − (x̃−x)

σ2 = − z
σ , the

corresponding objective—which we use the reparameterization trick to modify the expectation—is

DF (q(x̃)||pθ(x̃)) = Ep(x)Ez∼N (0,1)

[
1

2

∣∣∣∣∣∣∣∣ zσ +∇x log pθ(x+ σz)

∣∣∣∣∣∣∣∣2
2

]
(113)

≈ 1

2N

N∑
i=1

∣∣∣∣∣∣∣∣z(i)σ +∇x log pθ(x
(i) + σz(i))

∣∣∣∣∣∣∣∣2
2

(114)

where x(i) are the data samples and z(i) are some Gaussian samples. However, note that while we cannot
set σ too high due to q ̸≈ p, we also can’t set it too small since the variance of the expression explodes.

Ep(x)Ez∼N (0,1)

[
1

2

∥z∥22
σ

+ sθ(x+ σz)T
z

σ
+

1

2

∥∥sθ(x+ σz)
∥∥2
2

]
(115)

Since both the variances of ∥z∥2
2

σ and sθ(x+ σz)T z
σ will both grow unbounded as σ → 0, we must fine-tune

σ, and [SSK+20] in 2019 suggested to choose a decreasing sequence of positive numbers σ1 > σ2 > . . . > σL,
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and use the denoising score matching objective with Gaussian noise of variance σi to train the score function
at the ith epoch.

Algorithm 1.4 (Denoised Score Matching)

Now we are finally ready to present the algorithm. Note that in here, we never know the true scores!

Algorithm 1 Denoised Score Matching

Require: Input data x(i)
Require: Batch size B
Require: Neural network that outputs the score sθ(x) = Eθ(x).
1: while not converged do
2: Sample minibatch of datapoints x(1), . . . , x(B) ∼ p(x)
3: Sample minibatch of Gaussian noise z(1), . . . , z(B) ∼ N (0, I)
4: Sample some small, but not too small, standard deviations σ(1), . . . , σ(B).a
5: Forward prop through the neural net to generate noisy scores

sθ(x
(i)) = Eθ(x

(i) + σ(i)z(i)) (116)

6: Compute the noisy Fisher divergence with empirical means

1

B

B∑
i=1

∥∥∥∥ z(i)σ(i)
+ sθ(x

(i))

∥∥∥∥2
2

(117)

7: Backprop the equation through E.
8: end while

Note that we can use more than one projections per data point as well.
aThere should really be a scheduler to fine-tune these values.

1.4.2 Sliced Score Matching

By adding noise to the data, DSM avoids the expensive computation of the second-order derivatives. How-
ever, the optimal EBM that minimizes the DSM objective corresponds to the distribution of the noise-
perturbed data q(x̃), not the original p(x). Therefore, in 2019, Song introduced in [SGSE19] as an alterna-
tive that is both consistent and computationally efficient. The general idea is that instead of minimizing the
Fisher divergence between two vector-valued scores, sliced score matching randomly samples a projection
vector v, takes the inner product between v and the two scores, and then compare the resulting two scalars.
More specifically, it minimizes the following.

Definition 1.7 (Sliced Fisher Divergence)

The sliced Fisher divergence is

DSF (p(x)||pθ(x)) = Ep(x)Ep(v)

[
1

2

(
vT∇x log p(x)− vT∇x log pθ(x)

)2] (118)

where p(v) denotes a projection distribution such that Ep(v)[vv
T ] is positive definite. A common

distribution to sample from is v ∼ N (0, I) or the multivariate normal with unit length.

Similar to Fisher divergence, we can again decompose this into a form that does not involve the unknown
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∇x log p(x), given by

DSF (p(x)||pθ(x)) = Ep(x)Ep(v)

[
1

2
{vT∇x log pθ(x)}2 + vT [∆x log pθ(x)]v

]
+ c (119)

At first glance, it may seem like we have the problematic Hessian term, but by contracting v first with the
first derivatives before computing the second derivatives, we can get a linear cost in d.

vT [∆x log pθ(x)]v =

d∑
i=1

d∑
j=1

∂2 log pθ(x)

∂xi∂xj
vivj =

d∑
i=1

∂

∂xi

( d∑
j=1

∂ log pθ(x)

∂xi
vi

)
︸ ︷︷ ︸

contract first

vi (120)

Since the contracted part is the same for different values for i, we only need to compute the value once,
backprop on this scalar, and then take the linear combination with weights vi, which requires two linear
passes.

Algorithm 1.5 (Sliced Score Matching)

Now we are finally ready to present the algorithm. Note that in here, we never know the true scores!

Algorithm 2 Sliced Score Matching

Require: Input data x(i)
Require: Batch size B
Require: Neural network that outputs the score sθ(x) = Eθ(x).
1: while not converged do
2: Sample minibatch of datapoints x(1), . . . , x(B) ∼ p(x)
3: Sample minibatch of projection directions v(1), . . . , v(B) ∼ p(v)
4: Forward prop through the neural net to generate scores

sθ(x
(i)) = Eθ(x

(i)) (121)

5: Compute the sliced score matching loss with empirical means

1

B

B∑
i=1

[
(v(i))T [∇xsθ(x

(i))]v(i) +
1

2

{
(v(i))T sθ(x

(i))
}2

]
(122)

Note that this can be done in linear time by contracting it first. That is, compute sθ(x) · v(i),
and then backprop on x, and then contract it with v(i) again.

6: Backprop the equation through E, treating v(i) as fixed.a
7: end while

Note that we can use more than one projections per data point as well.
aRemember this is the reparamaterization trick!

1.5 Deep Belief Network
Proposed in 2006

So far, BMs and RBMs aren’t really deep since they are shallow 2-layer networks, and I could have placed
them in my machine learning notes in graphical models. However, RBMs provided the foundations for deep
belief networks, a pivotal moment in deep learning, and thus they are considered part of the deep learning
curriculum.
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1.6 Hopfield Networks
They are EBMs and RNNs!
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