Encoder-Decoder Models Muchang Bahng Spring 2023

Encoder-Decoder Models

Muchang Bahng

Spring 2023

Contents

1__Encoder-Decoder Models| 2
ILL1__Autoencodersl . . . . . . . L 2
[1.2  Sequence to Sequence| . . . . ... Lo e e e 5
L3 More Flexible Modeld . . . . . . . . . . . . . e 7

|2 Autoregressive Models| 7
BT _NADE . . .« oo e e e 7
B2 PixelRNN . . . oot ot e e 7
2.3 PixelCNNI . . . o o e 7

[References| 7

1/[]



Encoder-Decoder Models Muchang Bahng Spring 2023

1 Encoder-Decoder Models

Encoder decoder models refer to a model consisting of two neural nets: the encoder that takes in the input
and maps it to some lower-dimensional vector. Then, the decoder takes in this encoded vector and attempts
to use it to decode what we’re trying to get. The type of neural network can be any: MLP, CNN, or RNN,
depending on what problem you’re trying to achieve.

Now, why would we want to do something like encode the input into some lower dimensional setting, and
then have the decoder neural net extract what we want? It seems like we’re making the problem harder.
There are two reasons:

1. The input vector may not be in the correct form that we want. This is the motivation for the seqZ2seq
model, where we are working with sequences of vectors that suffer from the problem of locality in RNNs.
Therefore, it is necessary to encode this entire sequence into one vector, at the loss of dimension.

2. The input vector may be noisy or too high-dimensional itself. In CNNs, we saw that convolutional layers
or pooling layers allow us to reduce the dimension to extract meaningful features from it. Likewise, we
can train the encoder to extract useful features into a lower dimensional space, and then the decoder
can efficiently work with this representation. This motivates the use of autoencoders, which can be
done with MLPs, CNNs, or even RNNs.

Note that while these two algorithms fall in the paradigm of encoder-decoder networks, the seq2seq model
is supervised while the autoencoder is unsupervised. In the seq2seq model, which deals with things like
machine translation, we have a labeled dataset of sentences in language A corresponding with sentences in
language B. However, in autoencoders, what we do is take a sample x from our dataset and use it both as the
input and output to train our network. Since there is no additional labeling required, this is an unsupervised
learning technique.

1.1 Autoencoders
In the totally linear case, we have PCA. Some input x € X = R? is mapped to a smaller-dimensional Z = R*.
v U .
X—2z—X

and so the “network" essentially computes x = UVx. Obviously the fact that k < d is essential, since if
k > d then we can choose U and V such that UV = I, which is trivial.

This can be used for the following problem: Given m points X1, ..., X,, € R? and target dimension k < d, find
the best k-dimensional subspade approximating the data. Formally, we want to find the matrices U € R4**

and V € R**4 that minimizes
m

fOV) =2 lixi = UVxil[3
i=1
where V is the compressor and U is the decompressor. Now unfortunately, this loss f is not convex, though
f(U,-) and f(-,V) are both convex.

Theorem 1.1 ()

We claim that the optimal solution is achieved when U = VT and UTU = I.

Proof.

For any U, V, the linear map x +— UVx has a range R that forms a subspace of dimension k. Let
wy, ..., wi be an orthonormal basis for R, which we arrange into columns of W. Hence, for each z;
there is z; € R¥ such that UVz; = Wz;. Note that by construction,WTW = I. Now we want to find
out which z minimizes f(z;, 2) = ||z; — Wz||3. We know that for all x € R, z € R¥,

f(z,2) = ||zll3 + 2" WTWz = 22" WTa = |||} + |]2]5 — 2" W Tz

2/



Encoder-Decoder Models Muchang Bahng Spring 2023

We want to minimize w.r.t. to z, so by taking the derivative and setting to 0, we get z = W7 x. This
means that

Sl —UVai|? 2> llwi = UVail? 2> |l — WW ||

i=1 i=1 g=ll

and since U,V are optimal, equality is achieved and so instead of U,V, we can take W, W7, with
WW Tz being the orthogonal projection of  onto R.

One application of PCA is eigenfaces, which assumes that the set of all faces (projected onto an image)
approximately lies in a hyperplane.

Autoencoders are a nonlinear generalization of PCA. We only use the inputs x; for learning. We want to
automatically extract meaningful features for the data and leverage the availability of unlabeled data. It
can be used for visualization and compression. We can also build generative models with autoencoders. We
can have several architectures, with none, one, or both the encoder/decoder having nonlinear activitation
functions. Here is one architecture.

Definition 1.1 (Autoencoder)

An autoencoder is a feed-forward neural net whose job is to take an input x and output X. It consists
of an encoder E; : X — Z and decoder Dy : Z — X, where X is the input/output space and Z is
the latent feature space.
1. The encoder model transforms x to a latent feature representation z. It is a feed-foward,
buttom-up neural net.
2. The decoder model maps z to a reconstruction x. It is generative, top-down.
where we have

Encoder : h(x) = g(a(z)) = o(b + Wx)
Decoder : a(x) = o(c + W*h(x))

encoder decoder

Figure 1: A graphical model of an autoencoder. The z is called the bottleneck layer, which compresses
the input into a lower-dimensional representation. The x is known as the input layer, the & as the output
layer, and everything else are hidden layers.

3/[7



Encoder-Decoder Models Muchang Bahng Spring 2023

The parameter gradients are obtained by backpropagating the gradient VoL like a regular network, but if
we force tied weights (i.e. W* = W7), then VwZ. is the sum of two gradients. This is because W is present
both in the encoder and decoder.

I want to train the whole neural network such that the error between x and x is minimized. We can consider
a squared-error, for example.
N 1 112
Lx,%) = 5llx = xll3 (1)

Algorithm 1.1 ()

An implementation of an autoencoder in PyTorch is here.

There are three things we can do to extract meaningful hidden features:

1. Undercomplete Representation: Make the latent dimension small. It compresses the input, but it
may only be good for the training distribution and may not be robust to other types of input. If it is
overcomplete, there is no guarantee that we will extract meaningful features.

2. Denoising Autoencoder: Injecting noise to the input. The idea is that the representation should
be robust to the introduction of noise. We take the original input x and we randomly assign a subset
of the inputs to 0, with probability v, similar to dropout, to get our noisy input x. Then we train the
autoencoder with the loss comparing the output X to the original, un-noisy input x. We can do this
for Gaussian additive noise too. As the visual below suggests, we are essentially “pushing" out inputs
away from the manifold and training the autoencoder to denoise it, pulling it back.

X = sigm(c + W*h(x))=-=-~-

3. Contractive Autoencoder: If we have the latent dimension greater than the input, then we can just
add an explict term in the loss that penalizes that solution (e.g. promoting sparsity). For example, we
can have the loss be

Lf(xD) 4+ M|V h(xD)[[7

where

).\ 2
V() 3 = 3 (ah())

t
ik 831:,(C )

which forces the encoder to throw away information. If one of the elements are 0, then we know that
the kth element of the input has no effect on the jth element of the encoded output. Therefore, it tries
to throw away as many elements of x as possible since the identity matrix will have a large Frobenius
norm, essentially contracting the input representation.

We can also promote sparsity by adding a L1 penalty, forcing the feature space to be sparse.

4/


code/autoencoder.html

Encoder-Decoder Models Muchang Bahng Spring 2023

The predictive sparse decomposition shows that the loss should be

Jmin (W2 = x|3 + Azl + [l (W) — 2/} @

where the first term tells the decoder to reconstruct the original input well, the second tells the latent vector
to be sparse, and the third tells us that we shouldn’t lose too much information when we encode.

We could also have stacked autoencoders, with each layer of latent features having some desired sparsity.

1.2 Sequence to Sequence

We have mentioned that RNNs and LSTMs have the advantage of mapping from variable length inputs to
variable length outputs. This can be done for any length input and any length output. However, the RNN
has the problem of locality, that the words next to the current word have a greater effect, and we are trying
to generate sequences on the fly by reading in each word. Even for bidirectional RNNs, where we go through
the whole sentence first, the effects of adjacent words have a greater effect when generating outputs. It would
be wiser to read the whole sentence and then start to generate a sequence. This is the motivation for the
encoder-decoder model. It is conventionally divided into a two-stage network.

1. The encoder neural net would convert a sequence into a single latent space representation z = f(x).
This latent representation z essentially refers to a feature (vector) representation, which is able to
capture the underlying semantic information of the input that is useful for predicting the output.

2. The decoder neural net would decode this feature vector, called the context vector, into a sequence
of the desired output y = g(z) by using it as the initial hidden state. It uses the previous output as
the next input for decoding.

Note that the encoder and decoder are two completely separate neural networks with their own parameters.
This is important, since the fact that these are two completely separate networks allows us to work in
different “paradigms" within either the feature or target space. For example, if we want to perform machine
translation from English to Spanish, our encoder RNN parameters have been tuned to the English syntax
and language, while the decoder RNN parameters are tuned to the Spanish language. Since we are modeling
different languages, it makes sense to have different sequence models for each one.

We will talk about a specific type of encoder-decoder model called seq2seq, which maps sequences to
sequences using RNN encoders and decoders. Conventionally, the hidden nodes of the encoder are denoted
with h, and those of the decoder are denoted with s.

1. For the encoder, we take in the inputs x; and generate the hidden states as
hy = f(x¢,hy—1) = Wehy 1 + Uex; + b, (3)

In general, the encoder transforms the hidden states at all time steps into a context variable through
the composition of functions ¢
C = q(hl,hg, .. .,hT)

In the figure below, the context variable is just C = hyp.

2. Now, given the target output sequence yi,...,¥r 41 for each timestep ¢’ (we use ¢’ to differentiate
from the input sequence time steps), the decoder assigns a predicted probability to each possible token
occurring at step y4 41 conditioned on both the previous tokens yi,...,¥y+ 41 and the context variable
C, i.e.

P(Fe1 [ V150053041, C)
Therefore, to decode the subsequent token y; 41, we calculate the hidden state sy 41 as a gated hidden
unit computed by
sy+1 = g(sv,¥v,C)

with the math mentioned here.

5/


https://arxiv.org/pdf/1409.0473.pdf#page=12

Encoder-Decoder Models Muchang Bahng Spring 2023

Context Vector

Encoder Decoder

Figure 2

Again, note that this encoder-decoder model is comprised of two completely separate deep models with their
own parameters, and so it is not simply just one long RNN that starts generating outputs only after it takes
in all the inputs. Sometimes, the inputs to the decoder may not be shown in diagrams since it is assumed
that they are always the previous node’s outputs. Furthermore, we can also see that there is no clear-defined
first input for the decoder model, since this is the beginning of the sequence. We usually just put some
special “start" element in here to denote the beginning of the output.

Here is a diagram for a encoder-decoder model for a 2-layer LSTM which is the standard for practical use,
which encodes the sentence meaning in the vectors c?} , hE], c,[fll , hgl]. In practice, high performing RNNs are
usually multilayer (almost alway greater than 1, but diminishing performance returns as number of layers
increases), but are not as deep as convolutional or feed forward networks.

) ( ) ( ) ( ) ( 0 ( )

] ] ( RN ] ( ] ]

L2 =2 =l —e ) Lm =L m'Y
-l —\ =

L2 B2 L2 L2 (2] (2]
) e O 0 O, SIas>
N I N7 AN|... 7 N I NN Nl.. (7 N

EHE -GG

L0l Rl [ ) [ L) (1] A ) ()
) ) D (D e D e D e )

Start yi Vi1

Encoder Decoder
Figure 3

6/ [7]



Encoder-Decoder Models Muchang Bahng Spring 2023

Again, to train this model, we do the same backpropagation algorithm on a normalized loss function with
teacher forcing over a parallel dataset. What is nice about the encoder-decoder seq2seq is that it can be
completely implemented end-to-end, so we can backpropagate through the entire decoder and encoder to
train the both models simultaneously.

1.3 More Flexible Models

By combining these neural nets, we can essentially create image captioning (with a CNN encoder and RNN
decoder) and image generation (RNN encoder and CNN decoder).

"man in black shirt is playing "construction worker in orange "two young girls are playing with
guitar." safety vest is working on road." lego toy."

Figure 4: Image captioning on various image prompts.

2 Autoregressive Models

2.1 NADE
Introduced in 2011 as alternative to RBMs.

2.2 PixelRNN
2.3 PixelCNN

References

/[T



	Encoder-Decoder Models
	Autoencoders
	Sequence to Sequence
	More Flexible Models

	Autoregressive Models
	NADE
	PixelRNN
	PixelCNN

	References

