
CNN Muchang Bahng Spring 2023

Convolutional Neural Networks

Muchang Bahng

Spring 2023

Contents
1 Convolution 2

2 Convolutional Neural Networks 6
2.1 Convolution Arithmetic . 6
2.2 Pooling Layers . 6
2.3 Architecture . 7
2.4 Backpropagation . 7

3 Backbone Models 8
3.1 AlexNet . 8
3.2 OverFeat . 8
3.3 VGG . 8

4 Residual Networks 9

5 Deconvolutions 10

6 Saliency Maps 11
6.1 CAM . 11
6.2 Grad-CAM . 11

7 Exercises 12

References 13

1/ 13

CNN Muchang Bahng Spring 2023

1 Convolution
Convolutional networks work with images, so let’s introduce a nice way to represent them as vectors.

Definition 1.1 (Image)

An image is a vector in some tensor product space. More specifically, avoiding the technicality that
each pixel element is bounded and discrete,

1. A grayscale image of resolution of H ×W is a vector in RH ⊗ RW .
2. An image with C channels of the same resolution is an element of RC ⊗ RH ⊗ RW .
3. A video with C channels and of the same resolution is an element of RT ⊗ RC ⊗ RH ⊗ RW ,

where T is the time dimension which is usually represented in some discrete frames.
Usually, we denote the height/width as the spatial dimension, the colors and the channel dimen-
sion, and time as the temporal dimension.a

aEverything we talked about so far applies to images when treated as vectors. In fact, so far we have been interpreting
images of size (C,H,W) through the isomorphism ϕ : RC ⊗ RH ⊗ RW → RC×H×W that essentially “unravels" the
image.

Note that the terminology above is general convention, and tensors of arbitrary shape may exist that encode—
say time over two dimensions. So far, we have seen the power of multilayer perceptrons and their predictive
ability on moderately sized vectors. In fact, if we process the MNIST with a simple MLP of 2 layers and 512
nodes each, we can easily get 95% accuracy within 10 epochs. However, these MNIST pictures are extremely
low resolution, at 1× 28× 28, and for even moderately sized images we can that there is a huge blowup of
parameters needed. 1 Clearly, this is not efficient, and so the only way to move on is to create a sparser
representation of the network. Therefore, can we create a sparser representation of a linear map that does
sacrifice too much expressibility for memory? With convolutional kernels2, the answer is yes. In 1994, Yann
LeCunn and Yoshua Bengio in Bell Labs published [LBBH98] which introduced the convolutional neural
network.

The only layer know is a fully-connected layer. Now we will learn about our second type of layer.

Definition 1.2 (1D Convolutional Layer)

A 1D convolutional operator/layer of
1. input channels Cin

2. output channels Cout

3. kernel size K
4. stride S

is an operator ϕ : RCin ×RL → RCout ×RLout , where C is the channel dimension and L is the spatial
dimension. We can view

ϕ(x)c,i =
∑

(1)

Definition 1.3 (2D Convolutional Layer)

A convolutional operator/layer of
1. size

1For example, an RGB image that is 3× 1024× 1024 would have 3m parameters, and then defining a dense linear map to
even 1000 dimensions would take 3 billion parameters. Given that 32-bit floating point is 4 bytes, this already takes up 12GB
of memory just to load the network.

2Note that this is completely different than the kernels mentioned in supervised learning, with support vector machines and
RKHS.

2/ 13

CNN Muchang Bahng Spring 2023

Definition 1.4 (3D Convolutional Layer)

A convolutional operator/layer of
1. size

Figure 1

Figure 2

Figure 3

Definition 1.5 (Convolutional Kernel)

A convolution operator on a vector space V representing an image space is simply a special type
of linear map that is parameterized by a much smaller set of numbers, stored within a kernel or

3/ 13

CNN Muchang Bahng Spring 2023

filter. In all honesty, it is much easier to go through examples to see how they work, so in this
definition I will focus more on describing the hyperparameters. Given an image of shape (C,H,W),
the convolution is essentially a sliding window that computes a dot product between the kernel and
the window that the kernel covers over the image.

1. The sliding window size is (Wker, Hker), which is conventionally square but does not need to
be.

2. This sliding window must compute over all channels, so in fact it is of shape (Cin,Wker, Hker).
This would generate one output channel image.

3. Multiple kernels can be used concurrently to generate different channel images. Therefore, if
we want to have a collection of Cout outputs that are extracted from each kernel, our total
kernel would be a collection of Cout kernels of shape (Cin,Wker, Hker, Cout). Therefore, the
total equation is

(X ∗K)f,i,j :=
∑
c

∑
p,q

Xc,i+p,j+q ·Kc,p,q,f + bf,i,j (2)

where c is the channel index, p, q are the location indices, f is the output channel index, and b
is some bias term.

4. The stride parameter s can also be set to determine the stride of the kernel K.
5. Another thing to note is that the output image of a kernel would be slightly smaller than the

input image, since the kernel cannot go over the edge. However, there are padding schemes to
preserve the original dimensions.

From the equation above, we can see that a convolutional layer, assuming that it has full padding, is
a linear map

K : RCin ⊗ RH ⊗ RW → RCout ⊗ RH ⊗ RW (3)

The vector space of linear maps mapping between these two spaces has CinH
2W 2Cout dimensions,

which is extremely large, but parameterizing K with this matrix reduces the set of relevant convolu-
tional maps to a subspace that is (1+CinHkerWker)Cout dimensional (with the +1 due to a bias term,
making this an affine map). This is essentially what a convolution is: sparse matrix multiplication,
and there is nothing else that makes it different from a classical feedforward neural network. It’s just
computationally efficient matrix multiplication for high-dimensional vectors.

In addition to computational efficiency and weight sharing, convolutional operators capitalize on the principle
of locality, i.e. that pixels are directly related to adjacent pixels. For example, a pixel representing a portion
of a dog’s ear would not be related to the background, but the color and positioning should be related to
the dog’s face, which may be within a certain neighborhood around. This has been shown to be similar to
the human visual system and is thus well motivated.

Though this next topic has more to do with classical image processing than computer vision, there are a
surprising number of features that these convolutional filters can extract from an image. By treating them
as a discretized form of a partial derivative (as the vertical and horizontal edge detection) or as the Hessian
operator (sharpening), we can extract many features from them.

Example 1.1 (Blurs, Edge Detection)

Given the original image below, we show various convolutional filters applied on the image. Note that
the kernel matrix may have the property that all of its entries sum to 1, meaning that on average,
the expected value of the brightness of each pixel will be 0, and the values will be left unchanged on

4/ 13

CNN Muchang Bahng Spring 2023

average. However, this is not a requirement.

Original =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Mean =
1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 Gaussian =
1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1


Sharpen =

 0 −1 0
−1 5 −1
0 −1 0

Horizontal =

−1 0 1
−2 0 2
−1 0 1

 Vertical =

−1 −2 −1
0 0 0
1 2 1


These filters visually output the following images. Note that these filters are each acting on the image
by acting individually on each channel and then combining the 3 outputs to create the new RGB
image.

(a) Original image. (b) 5× 5 mean blur applied. (c) 5× 5 Gaussian blur applied.

(d) Sharpening kernel. (e) Horizontal edge detection. (f) Vertial edge detection.

Figure 4: Different convolutional kernels acting on the same image. Several useful features like edges can be
detected with these simple linear maps.

We have seen in the example above that we can interpret each output channel of a convolution as a feature.
That is, our original input image with Cin = 3 channels may go through a convolution that has Cout = 10
output channels, producing 10 grayscale images. Each of these images may represent a feature that is
extracted from the image through a custom kernel. When we stack convolutional layers together (with
nonlinearities in between, of course), we can produce more complicated transformations that extract more
abstract features. For example, while the first layer or two may extract certain edges within a dog, perhaps
the fourth or fifth convolutional layer will be able to detect the presence of ears. This is a hand-wavy
example, but if you actually visualize the outputs of these layers during forward prop, it is possible to see
this in action.

5/ 13

CNN Muchang Bahng Spring 2023

2 Convolutional Neural Networks
With convolutions in mind, we

2.1 Convolution Arithmetic

2.2 Pooling Layers
What we eventually hope for is that we can extract higher level features that can be encoded in moderate-
dimensional vectors. Unfortunately, the rate at which regular convolutional filters (especially when there is
padding and a stride of 1) does not shrink the resolution of the input images at a fast enough rate. For
example, having a 3× 3× 3× 3 kernel with no padding on a (3, 100, 100) image will decrease the dimensions
to only (3, 98, 98) only. Therefore, we do some very simple operations to reduce the resolution faster.

Figure 5

Figure 6

Definition 2.1 (Pooling Layers)

A pooling layer takes in an input image of dimension (C,H,W) and essentially does downsampling
on it, involving some method of pooling local groups of pixels together into one value. There are
several ways to do this:

1. Max Pooling refers to dividing each channel of the image into a “checkerboard" of P × P
(where P is a hyperparameter and does not necessarily have to be a square) matrices and
simply choosing the maximum pixel value from it.

2. Average Pooling is the same as max pooling but we just take the average.
Clearly, these are not expensive operations and are an effective way to downsample. Therefore, the
same (3, 100, 100) image, after one convolutional layer followed by a pooling layer, will result in a

6/ 13

CNN Muchang Bahng Spring 2023

(3, 49, 49) image.

Ultimately, after a series of convolutions and pooling, we would want to reduce this image to a form of
(C,H,W), where both H and W are small and C is large. This is because for each value of C, say C = 1,
the cross section {(1,W,H)} would encode the value of the feature identified by C. In fact, it could be the
fact that both H and W are 1, and C = 10. Then, we would essentially be looking at an array of 10 numbers,
which could encode the presence of some abstract features. For example, the first value C = 1 would encode
the presence of an eye, which in the end has a value of 0.9 (high probability), the second C = 2 could encode
the presence of an ear, and so on.

2.3 Architecture
Perhaps the sparsity of these maps may not allow the convolutional layers alone to extract all the features
we need, so it is common to unwrap the features and then add a few fully connected layers at the end,
which is much more computationally feasible now that the convolutions and pooling layers have reduced
the dimensionality whilst extracting useful features with the concept of locality. This turns out to have
comparable performance to regular MLPs with a fraction of the computational cost, and can easily reach
98% validation accuracy on the MNIST dataset.

2.4 Backpropagation
The fully connected layers are all taken care of, but now it’s the convolutional layers and the pooling layers.
The convolutional layers are also linear maps, so they can be treated the same way. However, the pooling
layers may be nonlinear.

1. Average pooling is linear, so no worries here.

2. Max pooling is not linear, but it is the next best thing: piecewise linear.

7/ 13

CNN Muchang Bahng Spring 2023

3 Backbone Models

3.1 AlexNet

3.2 OverFeat

3.3 VGG

8/ 13

CNN Muchang Bahng Spring 2023

4 Residual Networks

Figure 7: Low-dimensional visual of loss with vs without residual connections.

Figure 8: Densenet architecture.

9/ 13

CNN Muchang Bahng Spring 2023

5 Deconvolutions

10/ 13

CNN Muchang Bahng Spring 2023

6 Saliency Maps

6.1 CAM

6.2 Grad-CAM

11/ 13

CNN Muchang Bahng Spring 2023

7 Exercises

Example 7.1 (Tarokh, Duke ECE685)

Consider an RGB image X = [X0, X1, X2] with three channels, and given as follows

X0 =


2 1 0 0
0 0 2 1
0 2 0 1
2 1 0 1

 , X1 =


2 2 0 0
0 0 2 1
0 0 2 0
0 1 0 1

 , X2 =


2 1 0 0
0 0 2 1
2 0 0 0
0 1 0 1

 (4)

The image is passed through the convolutional filter with the weights W = [W0,W1,W2] ∈ R3×3×3

and step size 1, and given as follows

W0 =

1 0 0
0 −2 0
0 0 −1

 , W1 =

1 2 0
2 0 −1
0 −1 1

 , W2 =

 0 0 −2
0 1 2
−2 2 0

 (5)

The output of the convolutional filter is given as

Y = ReLU

(2∑
i=0

(X ′
i ∗Wi) + 2 · 14×4

)
(6)

where Y is the output image, X ′ is the input image after applying 0 padding around the edges,
and ∗ is the discrete convolution operator. Compute the output Y , and then apply max pooling
on nonoverlapping 2 × 2 submatrices, and then apply average pooling on non-overlapping 2 × 2
submatrices.

Solution 7.1

We can compute

X0 ∗W0 =


−4 −4 −1 0
−2 2 −4 −2
−1 −4 −1 0
−4 −2 2 −2



X1 ∗W1 =


−2 6 3 −1
4 6 −1 4
1 −3 5 7
−1 0 5 2



X2 ∗W2 =


4 1 4 −2
2 0 4 11
2 −2 −4 2
2 1 2 1


and so we get

Y =


0 5 8 0
6 10 1 5
4 0 2 11
0 1 11 3

 (7)

Maxpooling and average pooling gives us

max(Y) =

[
10 8
4 11

]
and avg(Y) =

[
21/4 7/2
5/4 27/4

]
(8)

12/ 13

CNN Muchang Bahng Spring 2023

References
[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

13/ 13

	Convolution
	Convolutional Neural Networks
	Convolution Arithmetic
	Pooling Layers
	Architecture
	Backpropagation

	Backbone Models
	AlexNet
	OverFeat
	VGG

	Residual Networks
	Deconvolutions
	Saliency Maps
	CAM
	Grad-CAM

	Exercises
	References

