Reinforcement Learning

Muchang Bahng

Spring 2024

Contents

The following sources were used to make these notes.

1. David Silver's Google Deepmind Lectures on Reinforcement Learning

1 Markov Decision Processes

Definition 1.1 (State Space)

The formulations for reinforcement learning is very different from that of supervised learning. It is formulated as follows.

- 1. We start off with an agent, who's state lives in a finite set S of states.
- 2. At each discrete time step t, the agent can take some action $a_t \in \mathcal{A}$. Let A be the set of all actions and $A(s_t)$ be the set of all actions available in state s_t .
- 3. There are probabilities $P_{a,s,s'}$ that determine the probability of transitioning to state s' from state s after taking action a. It must be normalized, so the transition probabilities satisfy

$$
\sum_{a \in \mathcal{A}(s), s'} P_{a, s, s'} = 1 \text{ for all } s \in \mathcal{S}
$$
 (1)

4. There is also a reward function $R(s, a) : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ for taking action a in state s.

Note that this is really just a directed graph with some transition probability matrix, and therefore the tools of Markov chains can be applied here. We restate some common definitions. Sometimes, the reward function can output to \mathbb{R}^n , which corresponds to a *multi-objective* function that tries to maximize multiple rewards.

Example 1.1 (Autonomous Helicopter Flight)

To define an MDP for autonomous helicopter flight, we have

- 1. The state space S is the set of all possible positions and orientations of the helicopter, which is isomorphic to Tran $\mathbb{R}^3 \times SO(3)$.
- 2. The set of actions A represents the set of all possible configurations of the helicopter. Assuming that we have 3 switches that we can flick on and off, 2 meters that can be moved from 0 to 10, and two control sticks that can move 360 degrees, the configuration of all controls is really the space:

$$
\mathcal{A} = \{0, 1\}^3 \times [0, 10]^2 \times \text{SO}(2)^2 \tag{2}
$$

Definition 1.2 (Terminal State)

A state is terminal if it only transitions to itself and yield 0 reward.

Definition 1.3 (Trajectory)

At each time step t, the agent observes state $s_t \in S$, takes action $a_t \in \mathcal{A}(s_t)$, and receives a reward $r_t = R(s_t, a_t) \in \mathbb{R}$. The environment, in turn, transitions to s_{t+1} with probability $P_{a_t, s_t, s_{t+1}}$. This sequence of states, actions, and rewards is called a trajectory.

$$
\tau = (s_1, a_1, r_1), (s_2, a_2, r_2), \dots, (s_T, a_T, r_T)
$$
\n(3)

A trajectory that begins in a starting state s_1 and ends in a terminal state is called an **episode**.

Definition 1.4 (Return)

The return should be defined as the sum of all rewards that the agent gets within an episode, but there a discount factor that comes with time. Therefore, given a discounting factor $\gamma \in [0,1)$, the discounted cumulative return of a trajectory is the vector

$$
G(\tau) = \sum_{t=1}^{\infty} \gamma^{t-1} R(s_t, a_t)
$$
\n(4)

Since the reward at timestep t is discounted by a factor of γ^t , we would like to accrue positive rewards as soon as possible.

So far, we have not defined how the agent should act given that it is on state s_t . This is defined by the policy, which can be arbitrary defined stochastic process (i.e. a sequence of random variables) and does not need to be Markov. It just needs to depend on the trajectory up until that state.

Definition 1.5 (Policy)

A policy is a family of conditional measures over $A \times S^{\infty}$ that tells the agent what action to take given its current state S_t and the trajectory τ (the history prior to reaching state s).

$$
\mathbb{P}_{\pi}(A_t = a \mid S_t = s, \tau) = \mathbb{P}_{\pi}(A_t = a \mid S_t = s, S_{t-1} = s_{t-1}, \dots, S_1 = s_1)
$$
\n
$$
(5)
$$

Definition 1.6 (Stationary Policy)

However, if it is Markov, then it is called a *stationary policy*, which depends only on the current state. Therefore, π is defined over $A \times S$.

$$
\mathbb{P}_{\pi}(A_t = a \mid S_t = s) \tag{6}
$$

With this policy in place, we should define some sort of total reward function.

Definition 1.7 (Value Function)

The value function is the expected total reward starting from s and following policy π .

$$
V_{\pi}(s) \coloneqq \mathbb{E}_{\tau \sim \pi}[G(\tau) \mid S_1 = s] \tag{7}
$$

The **action value function** is the same thing but we fix an action $A_1 = a$.

$$
Q_{\pi}(s, a) := \mathbb{E}_{\tau \sim \pi}[G(\tau) \mid S_1 = s, A_1 = a]
$$
\n(8)

Therefore,

$$
V_{\pi}(s) = \mathbb{E}_{A_1}[Q_{\pi}] = \sum_{a \in \mathcal{A}(s)} \pi(a \mid s) Q_{\pi}(s, a)
$$
\n(9)

2 Multi Armed Bandits