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Chapter 1

Introduction

This book is a series of notes from physics courses that I have independently studied. As
the reader will see in the table of contents, this book covers a variety of topics in mainly
undergraduate and occasionally graduate level physics. Additionally, I have ordered the
chapters in such a way that prerequisite information for future chapters is initially covered,
but the content in these courses are so interdependent that it made it difficult to do so
completely.

This is book is not too rigorous nor too non-rigorous on its introduction to the topics
mentioned. Unlike most textbooks, this book does not focus on a specific field of physics;
it provides an introduction to a wide variety of fields. This book is mainly aimed for
people who would like to have a non-rigorous introduction to the courses covered and to
students who have taken these courses and would like to review them briefly. I believe
that this book serves as an excellent glossary that comprehensively covers the important,
fundamental ideas in the courses. Furthermore, I have tried to place an emphasis on the
geometric interpretations behind many of the concepts explained in this book.

Finally, I would like to state that this book is a work in progress, and I welcome any
constructive criticisms that readers may have for this book. Any questions and inquiries
can be emailed to: muchang.bahng@duke.edu. I would like to thank the professors, peers,
and textbooks that have helped me understand the material in this book. I would also
like to extend my gratitude to those that may help me in the future.
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Chapter 2

Classical Mechanics

We will usually work in the vector space R3.

2.1 Elementary Principles
Definition 2.1.1 (Displacement Vector). We denote r as the displacement vector of a
particle from given origin O. We can represent r in the following ways:

r = (x, y, z)

= r1e1 + r2e2 + r3e3

= rxi + ryj + rzk

= xx̂ + yŷ + zẑ

We may use any of these notations from now on. Furthermore, r can be interpreted as a
path function mapping from a time interval in the time continuum R3 to R3.

r(t) =
(
x(t), y(t), z(t)

)
This function models the movement of the particle through R3.

Definition 2.1.2 (Velocity, Acceleration Vector). Given the displacement vector r of a
particle, we define its velocity vector (function) as

v ≡ ṙ ≡ dr

dt
≡
(
dx

dt
,
dy

dt
,
dz

dt

)
and its acceleration vector (funtion) as

a ≡ dv

dt
≡
(
dvx
dt
,
dvy
dt
,
dvz
dt

)
Clearly a = r̈.

Definition 2.1.3 (Mass).
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Definition 2.1.4 (Linear Momentum). The linear momentum p of a particle is defined
as the product of its mass and velocity.

p = mv = m
dr

dt

Definition 2.1.5 (Force).

2.1.1 Frames

The motion of a body can only be described relative to something else. We can identify
this object with spatial coordinates and call it the origin.

Definition 2.1.6 (Spatial, Temporal Reference Frames). When dealing with problems
in classical mechanics, we would like to model properties of particles in R3. But before
we do that, we must determine the reference frame of R3; that is, we must (implicitly or
explicitly) specify

1. a choice of spatial origin O (which can be in motion), and

2. a choice of basis (i.e. axes in R3)

In the one-dimensional temporal axes, we must choose the origin in time

1. t = t0

Therefore, when determining a reference frame, we must identify the spatial origin, the
spatial axes, and the temporal origin.

We may be more comfortable with orthonormal reference frames with a stationary origin,
but sometimes, problems may be greatly simplified with more complex frames. We list
some examples of frames.

Example 2.1.1 (Common Frames). We begin with some simple frames, and transition to
more complex frames. The origin will be labeled with O, and for simplicity of visualizing,
we may restrict ourselves to R2.

1. Let S be the normal orthonormal frame of a system consisting of a block sliding down
from a ramp beginning at t = 0. For modeling a point (representing the center of
mass of the block) sliding down the ramp, we can conveniently use frame S ′. Notice
that, relative to S, the origin and orientation of S ′ have changed but are fixed.
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If we wish to change the temporal frame, we can let the block slide initially at t =
t0 6= 0.

2. We can represent two frames S,S ′ in relative motion at a constant velocity. Relative
to S, the origin of S ′ is changing (with constant velocity v) but the orientation has
not changed.

3. Given frame S, the frame S ′ rotates counterclockwise around the origin at a constant
rate. Relative to S, the origin of S ′ has not changed but the orientation is changing.

4. We can represent two frames S,S ′ in relative motion that is also accelerating. Rel-
ative to S, the origin of S ′ is changing but the orientation has not changed.

With the additional transformation t 7→ t− t0, we get a temporal change in frame.
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5. Given frame S, the frame S ′ is in constant relative motion that is also rotating.
Relative to S, both the origin and orientation of S ′ is changing.

Definition 2.1.7 (Newtonian Inertial Frame). An inertial frame of reference is a frame of
reference in which Newton’s first law is satisfied. In other words, it is a frame of reference
in which every particle with no force acting upon it is traveling in constant velocity.
This means that given an inertial frame S, an inertial frame S ′ is nonaccelerating and
nonrotating relative to S.

Theorem 2.1.1 (Transformations Among Newtonian Inertial Frames). Newtonian inertial
frames transform among each other according to the Galilean group of symmetries, defined

TranR3 ≡ R4 ×H ×O(3)

where H is the group of transformations of the form

(x, y, z, t) 7−→ (x+ at, y + bt, z + ct, t)

This makes sense with what we have described so far:

1. R4 represents the shift in the 3 + 1 spatial and temporal origin of the new frame

2. H represents the constant velocity motion of the origin of the new frame

3. O(3), the orthogonal group, represents the change in orientation of the new frame
(which is fixed and not changing at time passes).

2.1.2 Newton’s Laws of Motion

Definition 2.1.8 (Newton’s Second Law). In an inertial frame of reference, the force F
of a particle has the property:

F ≡ dp

dt
≡ ṗ

Clearly, by definition, this definition is equivalent to the notion that F = ma. Further-
more, we can see that by the fundamental theorem of calculus, the change in momentum
of a particle from time t = t1 to t = t2 can be computed by integrating the force applied
to it (which may change over time) over interval [t1, t2].

∆p =

ˆ t2

t1

F(t) dt
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∆p is also called the impulse, denoted J.

Corollary 2.1.1.1 (Newton’s First Law). In an inertial frame of reference, a particle moves
with constant velocity v if no force is applied to it.

F = 0 =⇒ a = 0

Clearly, given a force F acting on a point particle Newton’s second law gives us a second-
order vector-valued differential equation of the form

F = mr̈

Lemma 2.1.2 (Equation of Motion for a Particle with Constant Force). Given a constant
force F0 acting on a particle in R3 with a reference frame, let r(t) be the displacement
vector of the particle as time t passes. Then, the equation of motion for the particle is

r(t) = x0 + v0t+
1

2m
F0t

2 =

x0

y0

z0

+

vx0

vy0

vz0

 t+
1

2m

F0x

F0y

F0z

 t2

where x0 is the initial displacement and v0 is the initial velocity. Note that we need two
vectors to represent the initial condition since this second order differential equation can
be equivalently represented as a system of six first-order differential equations, which has
a 6-dimensional phase space.

Proof. We integrate to get the equation for velocity

ṙ(t) =

ˆ
r̈(t) dt = v0 +

1

m
F0t

and integrate again to get the equation for displacement

r(t) =

ˆ
ṙ(t) dt = r0 + v0t+

1

2m
F0t

2

�

Evidently, Newton’s two laws hold only in the special, inertial reference frames. Usually,
we use the first law to find whether a reference frame S is inertial and after, we can claim
as an experimental fact that the second law holds in these same inertial frames.

Example 2.1.2 (Reference Frame Fixed to the Earth). One important fact to realize
is that even though we may think that a reference frame fixed to the Earth is inertial, it
actually is not: it is only an approximation of an inertial frame. This is because the Earth
rotates on its axis once a day, circles around the sun once a year, and the sun orbits the
Milky Way galaxy.

Although these effects are very small, there are several phenomena (tides and trajecto-
ries of long-range projectiles) that are most simply explained by taking into account the
noninertial character of a frame fixed to the Earth.
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Theorem 2.1.3 (Newton’s Third Law of Motion). If object 1 exerts a force F21 on object
2, then object 2 always exerts a reaction force F12 on object 1 given by

F12 = −F21

It turns out that this third law brings forth the law of conservation of momentum, as we
will see now.

2.1.3 Systems of Particles and Total Linear Momentum

A physical system is a portion of the physical universe chosen for analysis. Everything
outside the system is known as the environment, which is ignored except for its effects on
the system. An isolated system is one that has negligible interaction with its environment,
but external forces may act on the system.

Definition 2.1.9 (Center of Mass of a System of Particles). Given a system of n particles
in a reference frame of R3 with displacement vectors

r1, r2, . . . , rn

and masses
m1,m2, . . . ,mn

its center of mass is defined by the weighed sum of their positions:

R ≡ rcm ≡
m1r1 +m2r2 + . . .+mnrn

m1 +m2 + . . .+mn

≡
∑

imiri∑
imi

If we wish the view the entire system as a point, then we can view it as a point with
displacement vector R and mass m =

∑
imi.

Definition 2.1.10 (Center of Mass for Continuously Distributed Body). The center of
mass of a body that is distributed continuously is

R ≡=
1

M

ˆ
V

%r dV
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where the integral runs over the volume V , dV denotes an element of volume, and % is
the the mass density of the body.

Definition 2.1.11 (Total Linear Velocity, Total Linear Momentum). Since we have de-
fined the displacement vector of the center of mass of the system, we can differentiate it
with respect to t to get

V ≡
∑

imivi∑
imi

But we know that m =
∑

imi, so this means that we can define the total momentum as

P ≡
(∑

i

mi

)(∑
imivi∑
imi

)
≡ mV

≡
∑
i

pi

Note that this allows us to interpret the linear momentum of a system in two equivalent
ways:

1. The total linear momentum is just the sum of the individual linear momenta of each
particle.

2. Let the center of mass of the system be R. Then the rate at which this center of
mass point moves is V , and multiplying this by the mass of the system gives the
total momentum.

Definition 2.1.12 (Total Force). Deriving the equation of the total momentum yields
the total force of the system.

Fcm ≡ macm

≡
∑
i

Fi

Again, we can interpret the total force as the sum of all the individual forces on each
particle, and this sum represents the force (change in momentum) of the center of mass
of the system.

Law of Conservation of Momentum

Let us have a system of n particles, with each particle labeled 1, 2, . . . , n, and let the
external force (outside the system) acting on particle i be labeled

Fext
i

Let the force of particle j acting on object i be represented as

Fij

and finally let the net force on particle i be represented with

Fi ≡ Fext
i +

∑
j 6=i

Fij

A simple diagram is shown when n = 3.
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Taking the total force of this system results in∑
i

Fi =
∑
i

Fext
i +

∑
i

∑
j 6=i

Fij

=
∑
i

Fext
i

by Newton’s third law that Fij = −Fji. This leads to a very important realization.

Lemma 2.1.4. Internal forces within a system do not affect the total force of the system.

Theorem 2.1.5 (Law of Conservation of Momentum). Interpreting the total force of the
system F as the derivative of the momentum P, we get

Ṗ =
∑
i

Fext
i

This means that if there is no external force acting on a system, then its momentum must
be constant. This can also be equivalently expressed as

F ext = MR̈

Example 2.1.3 (Block Sliding Down an Incline). A box of mass m is observed accelerating
from rest down an include that has coefficient of friction µ and is at angle θ from the
horizontal. How far will it travel in time t? Sketching it and drawing a free body diagram
gives

We choose our frame of reference by selecting the origin to be at the center of mass of
the block, the x-axis point down the slope, y-axis normal to the slope, and z-axis pointing
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out of the page. Doing so clearly simplifies the problem since we can observe that only the
x-component of the displacement vector is changing.

1. There are no forces in the z direction, so Fz = mz̈ = 0. Solving the differential
equation gives

z = z0 + vz0t

but since the initial displacement and velocities z0, vz0 = 0, z = 0.

2. There is no motion in the y-direction, so ÿ = 0 =⇒ Fy = 0. Solving the initial
value problem also gives y = 0. Furthermore, with a bit of trigonometry, we can see
that this implies that

Fy = N −mg cos θ = 0 =⇒ N = mg cos θ

and therefore, the frictional force is f = µmg cos θ.

3. Finally, we can see that the x-component of the weight force is wx = mg sin θ, and
so

Fx = wx − f = mg sin θ − µmg cos θ = mẍ

Solving this gives ẍ = g(sin θ − µ cos θ), and solving this differential equation gives

x(t) = x0 + vx0t+
1

2
g(sin θ − µ cos θ)t2

But since the initial displacement and velocity is 0 in this frame, we have

x(t) =
1

2
g(sin θ − µ cos θ)t2

Therefore, the path equation

t 7→

1
2
g(sin θ − µ cos θ)t2

0

0


completely determines the motion of the center of mass of the box throughout time.

2.1.4 Newton’s Laws in 2-Dimensional Polar Coordinates

Recall the polar change of basis transformations(
x

y

)
7→

( √
x2 + y2

arctan(y/x)

)
=

(
r

φ

)
,

(
r

φ

)
7→
(
r cosφ

r sinφ

)
=

(
x

y

)
Note that the right transformation is not injective (so the inverse transformation on the
left is not even well-defined), so we must restrict their domain and codomains in order to
take care of this technical difficulty.

Just as with rectangular coordinates, we introduce two unit vectors r̂ and φ̂, which are
unit vectors that points in the direction of increasing r when φ is fixed and increasing
φ when r is fixed. Unlike unit vectors x̂, ŷ in rectangular coordinates, which point in
the same direction no matter where they are located in R2, the unit vectors r̂, φ̂ point in
different directions at different points.
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Definition 2.1.13 (Linear Displacement Vector in Polar Coordinates). While the dis-
placement vector of a particle in rectangular coordinates is r = xx̂+yŷ, the displacement
vector of a particle in polar coordinates is

r = rr̂ = rr̂ + 0φ̂

Note that this is because the unit vector r̂ always points in the direction of the displace-
ment vector.

We now introduce the concept of angular displacement, velocity, and acceleration.

Definition 2.1.14 (Angular Displacement). Given a particle r(t) = r(t) r̂(t) at time t,
the angular displacement φ of it is defined to be be angle it forms with the x-axis.

Definition 2.1.15 (Angular Velocity). The angular velocity is defined as

ω ≡ φ̇

The linear velocity and the angular velocity are not related.

Example 2.1.4 (Fast Angular Velocity, Slow Linear Velocity).

Example 2.1.5 (Slow Angular Velocity, Fast Linear Velocity).

Definition 2.1.16 (Angular Acceleration). The angular acceleration is defined to be

α ≡ ω̇ ≡ φ̈

Discussion on Coordinate System with Changing Unit Vectors

Given the displacement path function r(t) of a particle in motion, so far, we have repre-
sented it in terms of the rectangular coordinate system

r(t) = x(t) x̂+ y(t) ŷ

This model is greatly simplified and intuitive, and since the unit vectors themselves aren’t
changing, we put them in familiar notationx̂, ŷ. However, when in polar form, the nota-
tion

r(t) = r(t)r̂

11



can be a bit misleading, since the reader also can assume that r̂ is also unchanging.
However, this is not the case. Say that the particle is at r1 = r(t1)r̂ at time t1 and
r2 = r(t2)r̂ at time t2, as shown below.

But clearly, the unit vector r̂ at t1 and r̂ at t2 are different, so they themselves are
functions of time too! Therefore, the better notation is

r(t) = r(t) r̂(t)

which shows both the unit vector and radius changing with respect to time. Therefore,
we have thrown away the assumption that the unit vectors are constant, and rather
accept that this unchanging nature of the unit vectors are specific only to the case of the
Cartesian coordinate system. So, to be more accurate, we should say that in rectangular
coordinates, the displacement vector is

r(t) = x(t)x̂(t) + y(t)ŷ(t)

where x̂(t), ŷ(t) are constant and can therefore be represented with the constant vector
x̂, ŷ.

In order to find the velocity vector, we simply derive the displacement vector with respect
to t. By the product rule we get

ṙ(t) = ṙ(t)r̂(t) + r(t) ˙̂r(t)

and we just have to derive what ˙̂r(t) is and put it in terms of the basis r̂(t), φ̂(t). To do
this we require a bit of analysis.

Lemma 2.1.6 (Derivation of Unit Velocity Vectors in 2-Dimensional Polar Coordinates).
Given a fixed frame in R2 in polar coordinates, let the displacement vector of a particle
in motion be r = rr̂. Then, the rate of change of the radial and angular unit vectors are

˙̂r = φ̇ φ̂

˙̂
φ = −φ̇ r̂

Proof. Given the two vectors at time t and t+ ∆t

r(t) = r(t) r̂(t) and r(t+ ∆t) = r(t+ ∆t) r̂(t+ ∆t)

we focus on their respective unit vectors.
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∆r̂(∆t) = r̂(t+ ∆t)− r̂(t) can be approximated as

∆r̂(∆t) = ∆φ(∆t)φ̂(t) + o(1) as ∆t→ 0

We can also linearly approximate ∆φ(∆t) ≡ φ(t + ∆t)− φ(t) (assuming differentiability
for simplicity) using its differential to get

∆φ(∆t) ≡ φ(t+ ∆t)− φ(t) = dφ(t) (∆t) + o(∆t)

= φ̇(t)∆t+ o(∆t) as ∆t→ 0

Substituting this in the first equation gives

∆r̂(∆t) =
(
φ̇(t)∆t+ o(∆t)

)
φ̂(t) + o(1)

= φ̇(t)∆tφ̂(t) + o(1) as ∆t→ 0

So, taking the derivative gives us

d

dt
r̂(t) ≡ lim

∆t→0

r̂(t+ ∆t)− r̂(t)

∆t
= lim

∆t→0

∆r̂(∆t)

∆t
= lim

∆t→0

φ̇(t)∆tφ̂(t) + o(1)

∆t
= φ̇(t)φ̂(t)

�

Definition 2.1.17 (Linear Velocity Vector in Polar Coordinates). Given an inertial frame,
the velocity vector for a particle in polar coordinates is

v(t) ≡ ṙ(t) r̂(t) + r(t)φ̇(t) φ̂(t)

≡ ṙ(t) r̂(t) + (r · φ̇)(t) φ̂(t)

or with cleaner notation without the t argument,

v ≡ ṙ r̂ + rφ̇ φ̂

≡ vr r̂ + rω φ̂

Qualitatively, this means that

1. the r-component of the velocity is equal to the rate at which the radius changes as
the particle moves (ṙ).
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2. the φ-component of the velocity (the linear rate at which it is spinning around) is
equal to the angular velocity of the particle as it moves, scaled by its radius from
the origin.

We explain the intuition behind this formula more here. Let us first sketch an arbitrary
path of a particle in R2 in polar coordinates. At arbitrary times t0, t1, t2, the particle will
be at points r(t0), r(t1), r(t2), respectively. The velocity vectors at those points are

v(t0),v(t1),v(t2)

which can be represented in terms of two bases: the rectangular basis (represented in
black)

v(ti) = vx(ti) x̂+ vy(ti) ŷ

and the polar basis (represented in red)

v(ti) = vr(ti) r̂(ti) + vφ(ti) φ̂(ti)

Note the procedure here. Given a particle in motion in two-dimensional space, we can vi-
sualize this motion by imagining the image of the path function t 7→ r(t). This also allows
us to clearly see the vector v(t) protruding from the point on the path that represents its
instantaneous velocity.

Now, upon endowing this space with the polar basis structure, we can represent this
abstract velocity vector at point t as a linear combination of its basis vectors r̂(t), φ̂(t) at
point t.

v(t) = vr(t) r̂(t) + vφ(t) φ̂(t)

This means that at time t, when the particle is at point r(t) = r(t) r̂(t), the basis vectors
at that instant of time points outwards from the radius (r̂(t)) and leftwards perpendicular
to the first vector (φ̂(t)). Then,

1. The r-component of v, vr(t) r̂(t), represents the instantaneous rate at which the
particle is moving away from the origin; that is, the rate at which the radius is
increasing.

2. The φ-component of v, vφ(t) φ̂(t), represents the instantaneous rate at which the
particle is moving around the origin; that is, the rate at which the angle θ is in-
creasing.
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To interpret the formula, remember that the component coefficients vx and vy are scalars,
and so they have no say in the direction of the velocity vectors (direction is determined by
the unit vectors). Therefore, when getting a sense of these component functions, all we
have to do is compare them to the magnitude of the component vectors vr r̂, vφ φ̂.

To see why the r-component of v is ṙ, it makes visual sense that a particle spiraling
outwards from the origin, meaning that it has a velocity vector that also points outwards,
is increasing in radius r. Same for spiraling inwards. Therefore, the r component of the
velocity is simply the rate of change of the radius itself.

The φ-component is slightly harder to interpret. Remember that the φ component is just
the angular velocity: the rate at which the particle spins around the origin (i.e. angle
changing). Lets assume that the particle circles the origin at a constant radius r(t) for
all t. Its velocity vector is clearly moving in just the φ-direction (and its r-component is
0). If the same particle were to circle the origin at double the original radius 2r(t) for all
t, then since it must travel twice as much (since the circle’s circumference is doubled) it
must travel at twice the speed to have the same angular velocity.

This line of reasoning leads to the intuition that given a particle’s path of motion r, the
further the r-component of rr̂ (i.e. the further it is away from the origin), the more linear
velocity vφ in the direction φ̂ is must have in order to have the same angular velocity.
Therefore, we must take the angular velocity φ̇ and scale it by the radius length r to get
the linear velocity φ̇r of the particle in direction of unit vector φ̂ at time t.

Definition 2.1.18 (Linear Acceleration Vector in Polar Coordinates). The acceleration
vector for a particle in polar coordinates is quite complicated. It is

a(t) ≡
(
r̈(t)− r(t)φ̇2(t)

)
r̂(t) +

(
r(t)φ̈(t) + 2ṙ(t)φ̇(t)

)
φ̂(t)

or in cleaner notation
a ≡

(
r̈ − rφ̇2

)
r̂ +

(
rφ̈+ 2ṙφ̇

)
φ̂

Explaining this qualitatively too complicated, so we present a simpler form for when the
radius r is constant, say r(t) = R for all t.

a ≡ −Rφ̇2 r̂ +Rφ̈ φ̂

≡ −Rω2 r̂ +Rα φ̂
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This means that for a particle that moves around a fixed circle,

1. the r-component of the acceleration vector is −Rω2, meaning that the particle is
accelerating inwards at a rate of

Rω2 =
v2

R

known as the centripetal acceleration.

2. the φ-component of the acceleration vector is Rα, representing the value of the
tangential acceleration.

Theorem 2.1.7 (Newton’s Second Law, Polar Form). Having calculated linear acceleration
in polar coordinates, we can finally write down Newton’s second law in terms of polar
coordinates.

F = ma ⇐⇒
(
Fr
Fφ

)
= m

(
r̈ − rφ̇2

rφ̈+ 2ṙφ̇

)
Example 2.1.6 (Oscillating Skateboard).

2.2 Projectiles and Charged Particles
Definition 2.2.1 (Air Resistance). The resistive force, or drag, f of air or any other
medium has some basic properties that we should be familiar with:

1. It depends (and is often proportional) to the speed v of the object concerned.

2. The direction of the force due to motion through the air is usually opposite to the
velocity v (even though there are some exceptional cases where it isn’t opposite).
We will assume this from now.

Therefore, given a particle traveling through a medium with a certain velocity on Earth,
the two forces acting on it are the gravitational force w = mg and the drag force of air
resistance f = −f(v)v̂.

The function f can be complicated, especially as the object’s speed approaches the speed
of sound. However, at lower speeds it is often a good approximation to write

f(v) = bv + cv2 = flin + fquad

However, sometimes one of the linear/quadratic terms may be small compared to the
other and can therefore be negligible.
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1. Very small liquid drops in air and slightly larger objects in a very viscuous fluid
have drag forces that are dominantly linear, and so

f = −bvv̂ = −bv

2. Most projectiles, such as golf balls, cannonballs, and humans in free fall, have drag
forces that are dominantly quadratic, meaning

f = −cv2v̂ = −cvv

Definition 2.2.2 (Air Resistance of Spherical Projectile at STP). In standard temper-
ature and pressure (STP), the air resistance relation f(v) of a spherical projectile (can-
nonball, baseball, drop of rain) is

f(v) = βDv + γD2v2

where

1. D denotes the diameter of the projectile

2. β = 1.6 · 10−4 N · s/m2

3. γ = 0.25 N · s2/m4

Example 2.2.1 (Equation of Motion of a Particle). Given the particle with initial velocity
v0 with drag force f = −f(v)v̂ and gravitational force w = mg, we see that the total force
F is the sum of these two forces. This leads to the differential equation

mr̈ = mg + f = mg − f(v)v̂ =⇒ mr̈(t) = mg − f
(
v(t)

)
v̂(t)

where we can solve it by interpreting v = ṙ. If f = −bv, then

mr̈(t) = mg − bv(t) =⇒ mr̈(t) = mg − bṙ(t)

which can be solved as a first-order differential equation in v.

mv̇(t) = mg − bv(t)

with initial value v(0) = v0.

2.2.1 Trajectory and Range in a Linear Medium

Horizontal Motion with Linear Drag

Consider an object (such as a cart) coasting horizontally in a linearly resistive medium,
with initial displacement x = 0, vx = vx0. With the proper frame, we can just focus on
the x-component of motion.
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The only force on the cart is the drag f(t) = −bv(t). Therefore, the equation of motion
in the x-component is

mv̇x(t) = −bvx(t) =⇒ v̇x(t) = − b

m
vx(t)

which has the solution

vx(t) = vx0e
−t/τ , τ =

m

b
represents linear drag

We can see that the cart slows down exponentially, which makes sense as shown in the
graph.

where x∞ = vx0τ is the point where the cart will converge to.

Lemma 2.2.1 (Horizontal Motion of Particle with Linear Drag). Integrating the solution
for vx gives the equation of horizontal motion of a particle with linear drag as

x(t) = x0 + vx0τ
(
1− e−t/τ

)
where x0 is the initial displacement and vx0 is the initial velocity.

Vertical Motion with Linear Drag

Let us consider a projectile that is subject to linear air resistance and is thrown vertically
downward.

The two forces on the projectile are gravity and air resistance. Focusing on the y-
component (with the appropriate frame where y > 0 is downwards), we have

mv̇y = mg − bvy

18



With the velocity downward, the retarding force is upward, while the force of gravity is
downward.

Definition 2.2.3 (Terminal Velocity). If vy is small, the force of gravity overpowers the
drag force and so the particle accelerates downwards. This will continue until the drag
force balances the weight. This speed is easily found by setting the acceleration to 0,
leading to the terminal speed formula

vter =
mg

b

Clearly this is only the y-component of velocity, and the actual vector form would be

vter =

(
0

mg/b

)

Just like horizontal motion, when an object is dropped in a medium with linear resistance,
vy approaches its terminal value vter exponentially in the following manner.

Lemma 2.2.2 (Vertical Motion of Particle with Linear Drag). Integrating the solution for
vx gives the equation of vertical motion of a particle (in a gravitational field) with linear
drag (where y > 0 points downward) as

y(t) = y0 + vtert+ (vy0 − vter)τ
(
1− e−t/τ

)
or, when y > 0 points upward,

y(t) = y0 + (vy0 + vter)τ
(
1− e−t/τ

)
− vtert

where y0 is the initial displacement and vy0 is the initial velocity.

General Trajectory with Linear Drag

We can combine the horizontal and vertical components into a general solution in R2.

Theorem 2.2.3 (Motion of Particle in Gravitational Field with Linear Drag). Given a
mass-m particle in motion within a gravitational field (with acceleration −g) in R2 (with
frame x, y > 0 pointing right, up), let its initial displacement and velocity (at t = 0) be

r(0) ≡ r0 ≡
(
x0

y0

)
and v(0) ≡ v0 ≡

(
vx0

vy0

)
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Then, the equation of motion of the particle, shown component-wise, is

x(t) = x0 + vx0τ
(
1− e−t/τ

)
(2.1)

y(t) = y0 + (vy0 + vter)τ
(
1− e−t/τ

)
− vtert (2.2)

where τ = m/b and the terminal velocity vter = −mg/b. This curve can be plotted and
compared with the motion of a particle in vacuum (without drag force). Notice how the
ball’s trajectory with drag force is asymptotic as x→ vx0τ .

Corollary 2.2.3.1 (Equation for Trajectory). By removing the parameter t, we can turn
the paramateric equation into an equation of x and y

y = y0 +
vy0 + vter

vx0

(
x− x0

)
+ vterτ ln

(
1− x− x0

vx0τ

)
or by choosing the appropriate frame where the origin is (x0, y0), we have

y =
vy0 + vter

vx0

x+ vterτ ln

(
1− x

vx0τ

)
Definition 2.2.4 (Horizontal Range of a Particle). The horizontal range R of a projectile
in a vacuum is

Rvac =
2vx0vy0

g

However, the horizontal range of it subject to linear air resistance is the nonzero solution
R to the equation

0 =
vy0 + vter

vx0

R + vterτ ln

(
1− R

vx0τ

)
which cannot be represented in terms of elementary functions. However, we can use
various methods, such as numerical methods (Euler, Simpson, Runge-Kutta) or since it is
reasonable to assume that vx0, τ are large, we can assume R

vx0τ
small to use the kth degree

Taylor approximation

ln(1− ε) = −
(
ε+

1

2
ε2 +

1

3
ε3 + . . .+

1

k
εk
)
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to convert the expression into a polynomial equation in terms of R.

For example, the third-degree approximation of ln(1− ε) leads to the equation(
vy0 + vter

vx0

)
R− vterτ

(
R

vx0τ
+

1

2

(
R

vx0τ

)2

+
1

3

(
R

vx0τ

)3
)

= 0

and the solution
R =

2vx0vy0

g
− 2

3vx0τ
R2 ≈ Rvac

2.2.2 Trajectory and Range in a Quadratic Medium

Modeling quadratic air resistance also requires us to solve the differential equation

mv̇ = mg + f

but this becomes a nonlinear differential equation, which is considerably harder to solve.

Horizontal Motion with Quadratic Drag

Given a cart coasting horizontally in a quadratically resistive medium with initial dis-
placement x = 0, vx = vx0. The only force on the cart is the drag f(t) = −c||v(t)||v(t),
and so we get the equation

mv̇(t) = −cv(t)v(t) ⇐⇒ m

(
v̇x(t)

0

)
= −c||v(t)||

(
vx(t)

0

)
Focusing on the x-component gives

mv̇x(t) = −c
(
vx(t)

)2

which is a differential equation that can be solved using variable-separation. Integrating
it gives

vx(t) =
vx0

1 + cv0t/m
=

v0

1 + t/τ
, τ =

m

cv0

represents quadratic drag

We can visualize the motions with the following graphs

Note the similarities and differences between the graphs of a particle in motion with linear
drag and with quadratic drag. Specifically,
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1. both velocities go to 0 as t→∞

2. In the linear case, vx goes to 0 exponentially, while in the quadratic case vx → 0
slowly, like 1/t.

3. In the linear case, x approaches a finite limit as t→∞, while in the quadratic case
x increases without limit as t→∞.

Lemma 2.2.4 (Horizontal Motion of Particle with Quadratic Drag). Integrating the so-
lution for vx gives the equation of horizontal motion of a particle with quadratic drag
as

x(t) = x0 + vx0τ ln

(
1 +

t

τ

)
where x0 is the initial displacement and vx0 is the initial velocity.

Vertical Motion with Quadratic Drag

Given a projectile that is subject to quadratic drag force and is thrown vertically down-
ward, the two forces on the projectile are gravity and air resistance. Measuring the
y-coordinate vertically down, the equation of motion is

mv̇y = mg − cv2
y

The terminal speed of the projectile can be calculated by setting the left hand side to 0,
giving

vter =

√
mg

c

solving for c and substituting into the differential equation gives

v̇y = g

(
1−

v2
y

v2
ter

)
leading to the solution

vy(t) = vter tanh

(
gt

vter
+ arctanh

( vy0

vter

))
where vy0 is the initial velocity of the particle.

Lemma 2.2.5 (Vertical Motion of Particle with Quadratic Drag). Integrating the solution
for vy gives the equation of vertical motion of a particle with quadratic drag as

y(t) = y0 +
v2
ter

g
ln

(
cosh

(
gt

vter
+ arccot

( vy0

vter

)))

where y0 is the initial displacement and vy0 is the initial velocity.
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General Trajectory with Quadratic Drag

Theorem 2.2.6 (Motion of Particle in Gravitational Field with Quadratic Drag). Given a
mass-m particle in motion within a gravitational field (with acceleration −g) in R2 (with
frame x, y > 0 pointing right, up), let its initial displacement and velocity (at t = 0) be

r(0) ≡ r0 ≡
(
x0

y0

)
and v(0) ≡ v0 ≡

(
vx0

vy0

)
Then, the solutions to the differential equation representing the motion

mr̈ = mg − cvv ⇐⇒

{
mv̇x = −c

√
v2
x + v2

y vx

mv̇y = −mg − c
√
v2
x + v2

y vy

are not solvable analytically. Unlike the linear terms, the component equations contain
variables that are dependent on the other equation, so they cannot be solved indepen-
dently. Therefore, they must be solved numerically.

However, there are properties that hold for all solutions to the system of equations.

Example 2.2.2 (Trajectory of a Baseball). The graph shows the trajectory of a baseball
thrown off a cliff and subject to quadratic air resistance. The initial velocity is 30 m/s
at 50◦ above the horizontal. The terminal speed is 35 m/s. The dashed curve shows the
corresponding trajectory in a vacuum, and the dots show the ball’s position at one-second
time intervals.

The effect of air resistance is quite large in this example since the ball was thrown only
little less than the terminal speed, meaning that the force of air resistance is only a little
less than that of gravity.

2.2.3 Motion of a Charge in a Magnetic Field

Lemma 2.2.7 (Motion of Charged Particle in Magnetic Field). Let a particle in R3 have
charge q, moving in velocity v at an instant in time. Let us have a magnetic field B :
R3 −→ R3. Then, the net force on the particle at that instant is

F = qv ×B
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where × represents the cross product in R3.

We can visualize the direction of this force using the familiar right-hand rule.

Solving for the motion of charged particles in a magnetic field is similar to that of pro-
jectiles in a gravitational field. In both cases, we get an initial velocity (initial push of
charged particle vs. initial throw of projectile). We find all the forces that are acting on
this particle, changing the velocity over time, and by solving the differential equation, we
find the equation for v. Integrating v(t) over t and using the fundamental theorem of
calculus gives the equation of motion r.

Motion of Charge in Uniform Magnetic Field

Let us consider a particle of mass m and charge q moving within a uniform magnetic field
B at initial velocity and displacement

v0 =

vx0

vy0

vz0

 and r0 =

x0

y0

z0


By choosing the appropriate frame, I can assume B to point only in the z-direction.
Therefore, the net force on the particle is just the magnetic force, leading to the differential
equation

mv̇(t) = qv(t)×B ⇐⇒ m

v̇xv̇y
v̇z

 = q

vxvy
vz

×
 0

0

B


leads to the system of equations

mv̇x = qBvy

mv̇y = −qBvx
mv̇z = 0

The third equation obviously assumes that vz is constant, and so the solution for the
z-component is z(t) = z0 + vz0t. As for the first two coupled equations, we introduce the
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constant ω = qB
m

called the cyclotron frequency to simplify them into

v̇x = ωvy

v̇y = −ωvx

which has solution(
vx
vy

)
=

(
cos (−ωt) − sin(−ωt)
sin(−ωt) cos (−ωt)

)(
vx0

vy0

)
=

(
vx0 cos(−ωt) −vy0 sin(−ωt)
vx0 sin(−ωt) vy0 cos (−ωt)

)
Therefore, the solutions to the system are

x(t) = X − 1

ω
vx0 sin(−ωt)− 1

ω
vy0 cos(−ωt)

y(t) = Y +
1

ω
vx0 cos(−ωt)− 1

ω
vy0 sin(−ωt)

z(t) = z0 + vz0t

where X, Y (the center of the helicoid) are determined so that x(0) = X, y(0) = Y . We
can put this in the form of a rotation matrix to get the solutionx(t)

y(t)

z(t)

 =

XY
z0

+
1

ω

sin(ωt) − cos(ωt) 0

cos(ωt) sin(ωt) 0

0 0 t

vx0

vy0

vz0


which traces out a helicoid rotating clockwise.

Note that the radius of the orbit is

r =
v

ω
=
mv

qB
=

p

qB

The radius increases as the particles accelerate, so that they eventually emerge at the
outer edge of the circular magnets that produce the magnetic field.
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2.3 Momentum, Angular Momentum
Recall the principle of conservation of momentum.

Theorem 2.3.1. If the net external force F ext on an N -particle system is 0, the system’s
total mechanical momentum P =

∑
mivi is constant.

Example 2.3.1 (Perfectly Inelastic Collision of Two Bodies). Two bodies have masses
m1,m2 and velocities v1,v2. The two bodies collide and lock together, moving off as a
single unit. Assuming no external forces in the system, find the velocity v of the single
body just after the collision.

Since there are no external forces acting on the system, by the law of conversation of
momentum the total momentum of the two bodies and that of the single body must be the
same. Therefore,

m1v1 +m2v2 = (m1 +m2)v =⇒ v =
m1v1 +m2v2
m1 +m2

A special case if when one of the bodies is initially at rest. With v2 = 0, we have

v =
m1

m1 +m2

v1

Rocket Science

In order for a rocket to get off of the ground, it must spurt out a bunch of fuel towards
the ground, allowing it to lift off by the law of conservation of momentum. Since we
can simplify the upwards motion of a rocket into one-dimension, let us focus on its y-
component.

Consider a rocket with initial mass m0, traveling upwards in the positive y-direction and
ejecting fuel at the constant exhaust speed vex relative to the rocket. Since the rocket
is ejecting mass, the rocket’s mass m(t0) is steadily decreasing and can be modeled as a
function of time

m(t) ≡ m0 − rt

This function must be known beforehand. Let the speed of the rocket be represented with
v(t), which must be figured out. We can define a function of the momentum

Procket(t) = m(t)v(t)
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and at time t+ ∆t, we have

Procket(t+ ∆t) = m(t+ ∆t) v(t+ ∆t)

=
(
m(t) + ∆m(∆t)

)(
v(t) + ∆v(∆t)

)
where clearly ∆m(∆t) < 0 if ∆t > 0 since fuel is spurting out from the rocket. This
means that the fuel ejected in the time ∆t has mass −∆m(∆t) and velocity v(t) − vex
relative to the ground.

For small ∆t, we can approximate this using the differentials

Procket(t+ ∆t) =
(
m(t) + dm(∆t)

)(
v(t) + dv(∆t)

)
+ o(∆t)

and so the total momentum of the rocket plus the fuel ejected at t+ ∆t is

P (t+ ∆t) =
(
m(t) + dm(∆t)

)(
v(t) + dv(∆t)

)
− dm(∆t)

(
v(t)− vex

)
+ o(∆t)

= m(t)v(t) +m(t)dv(∆t) + vexdm(∆t) + o(∆t)

= P (t) + dP (∆t) + o(∆t)

and so the differential dP is

dP (∆t) = m(t)dv(∆t) + vexdm(∆t)

If there is a net external force F ext such as gravity, this change of momentum is dP (∆t) =
F extdt(∆t). But assuming no external forces implies dP = 0 and so

m(t)dv(∆t) = −vexdm(∆t)

dividing both sides by dt(∆t) gives

m(t)
dv(t)(∆t)

dt(t)(∆t)
= −vex

dm(t)(∆t)

dt(t)(∆t)

or without the argument ∆t, we have

m(t)
d

dt
(t) = −vex

d

dt
m(t) ⇐⇒ m(t)v̇(t) = −vexṁ(t)

where −ṁ is the rate at which the rocket engine is ejecting mass.

Definition 2.3.1 (Thrust). The thrust of a rocket of changing mass m(t) and with
constant exhaust speed vex is defined

Thrust = −ṁvex

and since ṁ is negative, this defines thrust to be positive.
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Lemma 2.3.2 (Equation of Motion of a Rocket). Given a rocket with initial mass m0,
initial velocity v0, and mass function m(t) that represents the mass of the rocket over
time, the differential equation of motion of a rocket with no external forces

mdv = −vex dm

can be solved to give

v = v0 + vex ln

(
m0

m

)
This result puts a significant restriction on the maximum speed of the rocket. The ratio
m0/m is largest when all the fuel is burned and m is just the mass of rocket plus payload.
So even if the original mass is 90% fuel, this ratio is 10 meaning that ln 10 = 2.3. Therefore,
the speed gained cannot be more than 2.3vex.

2.3.1 Angular Momentum of a Single Particle

We have went over the center of mass and properties of the linear momentum of a system
of particles. We now move onto angular momentum.

Definition 2.3.2 (Angular Momentum). Within R3 with a frame, the angular momentum
` of a single particle is defined as the vector

` ≡ r × p

Note that unlike linear momentum p, since r is dependent on the choice of origin O, `
is also dependent on the choice of O. Therefore, we refer to ` as the angular momentum
relative to O.

Definition 2.3.3 (Torque, Rotational Form of Newton’s Second Law). The torque of a
particle about origin O is defined as the derivative of its angular momentum with respect
to time. That is,

Γ ≡ ˙̀
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That is, Γ represents how fast the angular momentum changes. With a bit of calculations,
we can see that

Γ =
d

dt

(
r × p

)
=
(
ṙ × p

)
+
(
r × ṗ

)
= r × F

where F is the linear momentum of the particle.

Kepler’s Second Law

In many one particle problems one can choose the origin O so that the net torque Γ
(about the chosen O) is zero, which implies that the angular momentum about O is
constant.

Example 2.3.2 (Orbit Around the Sun). Let a single planet orbit the sun. The only
force on the planet is the gravitational pull GmM/r2 of the sun.

Therefore, F is antiparallel to r and therefore the torque of the planet vanishes.

Γ = r × F = 0

Thus, choosing our origin at the sun implies that the planet’s angular momentum about
O is constant, allowing us to greatly simplify our problem. For example, because r × p is
constant, r,p must remain in a fixed plane and therefore the planet’s orbit is confined to
a single two-dimensional plane.

With this, we can now derive Kepler’s second law. Unlike Newton’s laws, which describe
the intrinsic laws of nature, Kepler’s laws are mainly mathematical summaries of the
motions of the planets. It turns out that Kepler’s laws are consequences of Newton’s laws
of motion.

Informally, it states that as each planet moves around the sun, a line drawn from the
planet to the sun sweeps out equal areas in equal times. But for the same is visualizing
orbits, we state Kepler’s first law without proof.
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Theorem 2.3.3 (Kepler’s First Law). The orbit of a planet is an ellipse with the Sun at
one of the two foci.

Theorem 2.3.4 (Kepler’s Second Law). Imagine a planet orbiting around the sun fixed
at point O. We shall make the approximation that the sun is fixed. It the two pairs of
points (P,Q) and (P ′, Q′) are separated by equal time intervals ∆t = ∆t′, then the two
areas ∆A and ∆A′ swept out by the planet are equal.

Proof. Derivation to be done. �

2.3.2 Angular Momentum of Several Particles

We define the angular momentum of a system of particles as the sum of the individual
angular momenta of each particle.

Definition 2.3.4 (Total Angular Momentum). Given a system of n particles r1, r2, . . . , rn
with respective angular momenta l1, l2, . . . , ln around an origin O, the total angular mo-
mentum is defined

L ≡
∑
i

li ≡
∑
i

ri × pi

For three particles, we have
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Unlike the total linear momentum, this interpretation of the total angular momentum as
the sum of its individual angular momenta is not equivalent to that being the angular
momentum of its center of mass R. It is slightly more complicated than that

Lemma 2.3.5 (Equivalent Interpretation of Total Angular Momentum). Given a system of
n particles r1, r2, . . . , rn with respective angular momenta l1, l2, . . . , ln around an origin
O, let its center of mass be R, total velocity be V , and its total linear momentum be P .
Then,

L = R× P +
∑
i

(ri −R)× (pi −miV )

This formula is quite complicated and can be greatly simplified when we consider each
vector ri as the sum of the center of mass R plus another vector r′i. Then, we have

ri = R+ r′i

and
vi = V + v′i

where V ≡ dR
dt

and v′i is the velocity of the ith particle relative to the center of mass of
the system.
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Then, we can calculate

L ≡
∑
i

ri × pi

=
∑
i

(R+ r′i)×
(
mi(V + v′i)

)
=
∑
i

R×miV +
∑
i

r′i ×miv
′
i +

(∑
i

mir
′
i

)
× V +R×

(∑
i

miv
′
i

)
But since

∑
imir

′
i defines the radius vectors from the center of mass R, the sum of all

of them vanishes, meaning that the last two terms of the last expression also vanishes.
Therefore,

L =
∑
i

R×miV +
∑
i

r′i ×miv
′
i

= R× P +
∑
i

r′i × p′i

where p′i is the linear momentum of the ith particle with respect to the origin O = R. In
words, this lemma says that the total angular momentum about a point O is the angular
momentum of motion concentrated at the center of mass, plus the angular momentum of
motion about the center of mass.

Law of Conservation of Angular Momentum

Definition 2.3.5 (Total Torque). We naturally define the total torque as the derivative
of the total angular momentum. Since the capital gamma letter already represents the
torque of a single particle, we just represent total torque as

L̇ ≡
∑
i

l̇i ≡
∑
i

Γ ≡
∑
i

ri × Fi

This means that the rate of change of L is just the net torque on the whole system.

Given particle α, we can divide up the forces on α into its internal and external forces, as
we did before. The net force on particle α is

Fα ≡
∑
β 6=α

Fαβ + F ext
α
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where, again, Fαβ is the force exerted on particle α by particle β, and F ext
α is the net

force exerted on particle α by all agents outside the n particle system. Then, we can
calculate

L̇ =
∑
α

rα × Fα

=
∑
α

∑
β 6=α

rα × Fαβ +
∑
α

rα × F ext
α

=
∑
α

∑
β>α

(rα × Fαβ + rβ × Fβα) +
∑
α

rα × F ext
α

=
∑
α

∑
β>α

(rα − rβ)× Fαβ +
∑
α

rα × F ext
α

where we used the fact that Fαβ = −Fβα. Using the fact that each force Fαβ acts in
a straight line (that is, it is central), we see that rα − rβ is parallel to Fαβ and so the
double sum vanishes.So,

L̇ =
∑
α

rα × F ext
α

Now we are ready to present the law.

Theorem 2.3.6 (Law of Conservation of Angular Momentum). The total torque on a
system of particles is just equal to the net external torque.

L̇ = Γext ≡
∑
i

ri × F ext
i

In particular, if the external torque on an n-particle system is zero, then the total angular
momentum L is constant.

Theorem 2.3.7 (Angular Momentum about the Center of Mass). The law and the more
general result L̇ = Γext were derived on the assumption that all quantities were measured
in an inertial frame, so that Newton’s second law could be invoked. This required both
L and Γext be measured about an origin O fixed in some inertial frame. Remarkably, the
same two results hold if L and Γext are measured about the center of mass. That is,

d

dt
L(about CM) = Γext(about CM)

and hence, if the external torque about the center of mass is 0, then the angular momentum
about the center of mass is conserved.
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What this means is that if there is no external rotational force (with respect to CM) on
the system of particles, then the sum of the individual angular momenta of each particle
(about the CM) will be the same, meaning that

l1 + l2 + l3 = constant C

Definition 2.3.6 (Moment of Inertia). The moment of inertia, also known as the angular
mass, of a rigid body is a quantity that determines the torque needed for a desired angular
acceleration. It is the equivalent to how mass determines the force needed for a desired
linear acceleration.

2.4 Energy

2.4.1 Kinetic Energy and Work

Definition 2.4.1 (Kinetic Energy). The kinetic energy of a single particle of mass m
traveling with speed v is defined to be

T =
1

2
mv2

Given that the particle is moving through space, we can use the fact that v2 = v · v and
evaluate

dT

dt
= mv̇ · v = F · v

Note that both sides are scalars. Using analysis, we can interpret this statement as the
following. For a certain time t and t+ ∆t, we have

T (t+ ∆t)− T (t) = (F · v)(∆t) + o(∆t)

which means that for an infinitesimal time dt passed, the change in kinetic energy dT
is gets asymptotically close (and therefore, can be interpreted as being equal) to (F ·
v)dt.

dT = F · v dt
However, on an infinitesimal scale, we can see that vdt is the best linear approximation
for r, so r = v dt. This leads to

dT = F · dr
We can construct an infinite sum of these values across a certain time period, which
converges, by definition, to the value of a Riemann integral.

Definition 2.4.2 (Work-Energy Theorem). Given a particle moving in a path t→ r(t) ∈
R3 within a force field F that defines a force vector for every point on the path, the work
done by F moving from point 1 to point 2 is

W (1→ 2) ≡ ∆T ≡ T2 − T2 =

ˆ 2

1

F · dr =

ˆ t2

t1

F (t) · v(t) dt

Note that F may be a vector field, but there can exist additional parameters on it. For
example, F may be dependent on not only the position of the particle in R3, but also its
velocity.
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1. Gravitational force gives a force field that is only dependent on the position of a
particle from some mass.

2. Drag force, however, is not just dependent on position. It can be (linearly or
quadratically) proportional to the velocity of the particle.

We can interpret work as the following: Given a particle that travels along a certain path
in R3 we can partition the path into N intervals Ii with a point chosen in each interval
ri ∈ Ii. This allows us to approximate the integral as

ˆ 2

1

F · dr ≈
N∑
i=1

Fri · vri

where Fri ,vri denotes the force and velocity at ri. At each term of the sum, we can see
that

1. if the force Fi acting at that point points in the direction of vi (i.e. Fi ·vi > 0, then
this adds a positive value of Fi ·vi to the series. This makes sense since Fi pointing
in the same direction as vi means that the velocity is increasing (and therefore the
kinetic energy).

2. if the force Fi acting at that point points in the opposite direction of vi (i.e. Fi ·vi <
0, then this adds a negative value of Fi · vi to the series. This makes sense since Fi
pointing in the opposite direction as vi means that the velocity is decreasing (and
therefore the kinetic energy).

3. if the force Fi acts orthogonally in the direction of vi (i.e. Fi · vi > 0, then the
force contributes nothing in increasing or decreasing the velocity of the particle in
the direction.

Setting N →∞ (or more specifically, the partition mesh λ→ 0) converges the sum onto
the value of the integral.

Note that the force F is really the net force of all forces acting on that particle.

F =
∑
j

Fj

For example, the net force on a projectile is the sum of two forces: the weight and drag
force. So, when computing the work done by the net force F , we can just sum up the
work done by the individual forces.

W (1→ 2) =

ˆ 2

1

F · dr

=

ˆ 2

1

∑
j

Fj · dr

=
∑
j

ˆ 2

1

Fj · dr =
∑
j

Wj(1→ 2)

Therefore, we can write the work energy theorem in the following way:

T2 − T1 =
n∑
i=1

Wi(1→ 2)
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2.4.2 Potential Energy and Conservative Forces

Definition 2.4.3 (Conservative Forces). A conservative force is a time-independent force
field F : R3 −→ R3 that is conservative. This means that it must satisfy one of the
properties:

1. F is the gradient of some potential scalar vector field U .

F = −∇U

2. The curl of F vanishes.
∇× F = 0

3. There is zero net work done by the force when moving a particle through a closed
loop C.

W (1→ 1) ≡
˛
C

F · dr = 0

4. The net work done by the force from point 1 to point 2 is path independent. Given
two path functions C1, C2 from point 1 to point 2, we have

ˆ
C1

F · dr =

ˆ
C2

F · dr = U(1)− U(2)

Due to the invariance of work over paths in a conservative force field, we can simplify the
formula for work as

W (1→ 2) ≡
ˆ 2

1

F (t) · v dt ≡
ˆ 2

1

(F · v)(t) dt

where F · v is a scalar function of t. If F is constant (immediately implying it being
conservative), we have

W (1→ 2) = F · d

where d is the displacement vector from 1 to 2.

Example 2.4.1. Gravitational and electromagnetic forces are examples of conservative
forces. Frictional and drag forces are not conservative.

Definition 2.4.4 (Potential Energy). Given a conservative force field F : R3 −→ R3, the
potential is a scalar field U : R3 −→ R such that

F = −∇U

This means that given
F = ∇U =

(
∂U
∂x

∂U
∂y

∂U
∂z

)
the work along a curve C from point 1 to point 2 is

W =

ˆ
C

F · dr =

ˆ
C

−∇U · dr = U(1)− U(2)

using the gradient theorem for line integrals.
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Definition 2.4.5 (Equilibrium Points). We can see that the potential energy is 0 at a
point if and only if the force field F = 0. This point is called an equilibrium point. For the
sake is visualization, we construct a conservative force field F in R2 and its corresponding
potential (scalar field) U . We can see that F = 0 at the local minimum A and F = 0 at
the local maximum B.

The force F tends to push a particle "downhill" towards the minima. Notice that A is
a stable equilibrium point, while B is an unstable one (since small perturbations on a
particle at B pushes it off).

Lemma 2.4.1 (Conservation of Energy for One Force Acting on One Particle). For con-
servative vector fields F , we see that

W = T (2)− T (1) = U(1)− U(2)

which implies that for any two points 1 and 2 in R3, the mechanical energy (ME), defined
as the sum of the kinetic energy (KE) and potential energy (PE), always stays constant.

T (1) + U(1) = T (2) + U(2) ⇐⇒ ME = KE + PE is constant

That is, mechanical energy is conserved.

Theorem 2.4.2 (Law of Conservation of Energy for One Particle). If all of the n forces Fi
acting on a particle are conservative, each with its corresponding potential energy Ui(r),
then the total mechanical energy,defined as

ME = T + U ≡ T +
∑
i

Ui(r)

is conserved, i.e. constant in time.

Therefore, for nonconservative force fields, we can see that mechanical energy is usually
not conserved, meaning that as a particle travels from 1 to 2, energy is either gained or
lost (by some external source).

Nonconservative Forces

If some of the forces on our particle are nonconservative, then we cannot define corre-
sponding potential energies nor a conserved mechanical energy. However, we can define
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potential energies for all forces that are conservative, and then use the Work KE theorem
in a form that shows how the nonconservative forces change the particle’s mechanical
energy.

We divide the net force on the particle into two parts: the conservative part Fcons and
the nonconservative part Fnc. Clearly for the conservative part there exists a potential
scalar field U associated with Fcons, where Fcons = −∇U . By the Work-KE theorem, the
change in kinetic energy between any two times is

∆T = W = Wcons +Wnc

but Wcons = −∆U , and so we have ∆(T + U) = Wnc. If we define mechanical energy as
E = T + U , then we have

∆E ≡ ∆(T + U) = Wnc

Mechanical energy is no longer conserved, but we have shown that ME changes exactly
to the extent that the nonconservative forces do work on our particle.

Time Dependent Force Fields

In certain cases, a force field F may change with respect to time, meaning that we must
interpret as a function

F : R3 × T ⊂ R −→ R3

This also induces the modification of U as

U : R3 × T −→ R

which now has another parameter t, where

F (r, t) = −∇U(r, t)

If F is conservative (that is, it stays conservative as t varies), it follows that

U1(t)− U2(t)

stays constant for a constant t. However, since every path function is paramaterized
over a time period of positive length, the work done by the particle as it moves from
point 1 to point 2 is no longer simply the difference in the function U between the two
points. Therefore, even though the total energy T + V may still be defined, it is not
conserved.

2.4.3 Summary

Let us summarize the relationship between the concepts we have talked about in this
section. For a particle in a certain system with forces acting on it, we can always define
its kinetic energy T = 1

2
mv2. Let’s visualize this by imagining the particle being a "tub"

filled with water that represents kinetic energy.
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As the particle moves through R3, the force field must affect the velocity of the particle
in some way, whether it slows it down (loses KE) or speeds it up (gains KE). We call
this change in kinetic energy from time 1 to time 2 done by F the work done by F ,
and the Work-Energy theorem tells us that we can compute this work by summing up
the infinitesimal changes in work dT , which is equal to the infinitesimal changes in KE
F · v dt, represented by the line integral

∆T =

ˆ 2

1

F · dr

Going back to the tub analogy, we can think of the force field F as a tube that either
adds or sucks away water (KE) from the tub. The rate at which the water is being
added/subtracted is determined by the force field, or more specifically by the value of
(F · v)(t). Therefore, by the fundamental theorem of calculus, we can Riemann integrate
this value over time to get the formula above.

The next natural question would be: where is this external source of water coming from
and leaking out to? This is where we split up the case into conservative and nonconserva-
tive force fields. If we are working in a conservative force field, we can accordingly define
a scalar potential energy field U that tells us how much potential energy this particle has
in addition to the kinetic energy. We represent this with a second tub.

It turns out within a conservative vector field, water is transferred between the KE tub
and the PE tub and those two tubs only, and generally, the system naturally evolves such
that the water from the PE tub flows into the KE tub, but the total amount of water in
the two tubs never change. The amount of water transferred between the tubs is known
as work. Note that

1. water transferred from PE → KE is positive work

2. water transferred from KE → PE is negative work

However, in a nonconservative vector field, things are different. Again, the kinetic energy
is well-defined, but now there is no scalar potential energy field U that exists. This implies
that there are actually leaks in the work tube where energy can come in and out from
some other source. Therefore, this can interrupt the flow
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For example, let us consider a particle with initial velocity v0 traveling in a 2-dimensional
gravitational field starting at (x0, y0). Clearly, the gravitational field is time-independent,
defined

F ≡
(

0

−mg

)
and since it is conservative, we can define the potential scalar field

U(x, y) = mgy

This is equivalent to the high school formula for gravitational potential energy PE = mgh.
Notice that this is simply the antiderivative of Fy. Therefore, the particle would initially
have a total mechanical energy of

ME =
1

2
mv2

0 +mgy0

Therefore, at any point in time, if we know the position of the particle, say (x1, y1), we
can solve

1

2
mv2

0 +mgy0 =
1

2
mv2

1 +mgy1

to get the speed (but not velocity) v1. However, when the particle is exposed to drag
force, then some energy is "stolen" by friction, and not 100% of the potential energy will
be converted to kinetic energy.

2.4.4 Energy for One-Dimensional Systems

Many interesting problems involve an object that is constrained to move in just one
dimension, and the analysis of such problems is much simpler, albeit still insightful, than
the general case. We analyze the motion of particles on R and then generalize this to the
motion on one-dimensional manifolds.

Let us consider an object constrained to move along a perfectly straight track, taking it to
be the x-axis (still embedded in R3). The only component of any force F that can do work
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is the x component Fx, and so the work done by F is the one-dimensional integral

W (x1 → x2) =

ˆ x2

x1

Fx(x) dx

Assuming that F is a conservative vector field, we let U be its potential (i.e. its primitive)
defined

U(x) ≡ −
ˆ x

x0

Fx(x
′) dx′

where x0 is a reference point such that U(x0) = 0.

Example 2.4.2 (Hooke’s Law). Hooke’s law states that the force F needed to extend or
compress a spring by some distance x scales linearly with respect to that distance. That
is,

Fx = −kx
where k is a constant factor characteristic of the spring (i.e. its stiffness), and x is small
compared to the total possible deformation of the spring.

For a mass on the end of a spring obeying Hooke’s law, the force is Fx = −kx, and if we
choose the reference point x0 = 0, we have

U(x) = −
ˆ x

0

−kx dx =
1

2
kx2

Solution of the Motion

Another feature of one-dimensional conservative systems is that we can use the con-
servation of energy to obtain a complete solution of the motion. In summary, since
E = T +U(x) is conserved, with U(x) a known function and E determined by the initial
conditions, we can see that

T =
1

2
mv2 = E − U(x)

and hence we can write the velocity as a function of x.

v(x) = ±
√

2

m

√
E − U(x)

Note that there is an ambiguity in the sign since energy considerations cannot determine
the direction of the velocity (and so we cannot extend this method to a 3-dimensional
system). This is in fact a differential equation that may or may not be solvable.
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Curvilinear One-Dimensional Systems

An Atwood machine consists of two masses m1,m2 suspended from opposite ends of a
massless, inextendible string that passes over a frictionless pulley. The two masses can
move up and down, but the forces of the pulley on the string and the string on the masses
constrain matters so that the massm2 can move up only to the extent thatm1 moves down
by exactly the same distance. Therefore, the position of the whole system an be specified
by a single parameter, for example the height x of m1 below the pulley’s center.

Let us consider the energies of the masses m1,m2. The forces acting on them are gravity
and the string tension. Since gravity is conservative, we can introduce potential energies
U1, U2 for the gravitational forces.

2.4.5 Central Forces

Definition 2.4.6 (Central Force). A central force is a force field F that is everywhere
directed toward or away from a fixed force center. Taking the force center to be the origin,
a central force has the form

F (r) = f(r) r̂

where f(r) gives the signed magnitude of the force.

Not all central forces are conservative. However, a central force is conservative if and only
if it is spherically symmetric.

Definition 2.4.7 (Spherical Coordinates). When working with central forces, we usually
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work in spherical coordinates due to the rotational invariance of F .

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

The angle φ is often called the azimuth. Note that like the polar coordinates, the unit
vectors r̂, θ̂, φ̂ are all orthonormal, with

1. r̂ pointing in the direction of r.

2. θ̂ pointing in the direction of increasing θ with r, φ fixed.

3. φ̂ pointing in the direction of increasing φ with r, θ fixed.

The statement that a function f(r) is spherically symmetric is simply the statement that,
with r expressed in spherical polars, f is independent of θ and φ. That is,

∂f

∂θ
and

∂f

∂φ

are zero everywhere.

We know that the gradient of a scalar function f is

∇f = x̂
∂f

∂x
+ ȳ

∂f

∂y
+ ẑ

∂f

∂z

Using a bit of analysis, we get the following theorem.

Theorem 2.4.3 (Gradient in Polar Coordinates). Given a function f of three variables
r, θ, φ, an infinitesimal change in f is

df =
∂f

∂r
dr +

∂f

∂θ
dθ +

∂f

∂φ
dφ

Some computation leads to the gradient of f being

∇f = r̂
∂f

∂r
+ θ̂

1

r

∂f

∂θ
+ φ̂

1

r sin θ

∂f

∂φ
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Therefore, given that a central force F (r) is conservative, if can be expressed in the form
−∇U , which has the form

F (r) = −∇U = −r̂ ∂U
∂r
− θ̂ 1

r

∂U

∂θ
− φ̂ 1

r sin θ

∂U

∂φ

but since ∂U
∂θ

= ∂U
∂φ

= 0, the formula reduces to

F (r) = −r̂ ∂U
∂r

2.4.6 Energy of Interaction of Two Particles

Two Particle System

Suppose there are two particles acting via force F12 (on particle 1 by particle 2) and F21,
with no other external forces. In general the force F12 could depend on the positions of
both particles, so we can write the forces as

F12 = F12(r1, r2)

and by Newton’s third law
F12 = −F21

For any isolated two-particle system, it is known to be translationally invariant (e.g.
gravity, electromagnetic force). This means that if we were to shift the entire two-particle
system somewhere else, the forces acting upon each other would be the same. That is,
given pair of points r1, r2 and another s1, s2 such that the distance vectors s1−s2 = r1−r2,
we have F12(r1, r2) = F12(s1, s2).

Example 2.4.3 (Gravity). The gravitational force between two particles would be

F12(r1 − r2) = − Gm1m2

|r1 − r2|3
(r1 − r2)

which is dependent purely on the difference vector between them.

In other words, F12(r1, r2) depends only on r1 − r2, and so we can write

F12 = F12(r1 − r2)

Now, let us fix r2. Assuming that F12 is conservative, we can define a potential energy
function U(r1) representing the potential of 1 sitting in the field generated by 2 satisfy-
ing

F12(r1 − r2) = −∇1U(r1 − r2)

Remember that r2 is fixed, and so both F12 and U12 are functions of r1 only!

F12 =⇒ r1 7→ F12(r1 − r2)

U12 =⇒ r1 7→ U12(r1 − r2)
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N-particle System

Definition 2.4.8 (Total Kinetic Energy of a System). Assume that there are N particles
in a system, labeled α = 1, 2, . . . , N , the total kinetic energy is just the sum of the N
separate energies.

T =
∑
α

Tα =
∑
α

1

2
mαv

2
α =

1

2

∑
α

mαṙα · ṙα

If we decompose the position of each particle as rα = R + r′α, where R is the center of
mass of the system, we have

T =
1

2

∑
α

mα

(
Ṙ+ ṙ′α

)2

=
1

2

∑
α

mαṘ
2 + Ṙ ·

∑
α

mαṙ′α +
1

2

∑
α

mαṙ′
2

α

=
1

2
MṘ2 +

1

2

∑
α

mαṙ′
2

α

This means that the kinetic energy can be split up into the kinetic energy of the center of
mass, together with the kinetic energy of the particles moving around the center of mass.

Theorem 2.4.4 (Work Energy Theorem of a System). Now, assume that for each particle
α, it moves along a trajectory Cα. By applying the Work-Energy theorem on each particle
and summing, the work is the difference in total kinetic energy, which is

W (t1 → t2) = T (t2)− T (t1)

=
1

2

∑
α

mα

(
vα(t2)

)2 − 1

2

∑
α

mα

(
vα(t1)

)2

=
∑
α

ˆ
Cα
F ext
α drα +

∑
α

∑
β 6=α

ˆ
Cα
Fαβ · drα

which can also be simplified with the notation

W (1→ 2) = T (t2)− T (t1) =
∑
α

ˆ 2

1

F ext
α · drα +

∑
α

ˆ 2

1

Fαβ · drα

where 1 and 2 are not points, but rather configurations of the particles of the entire
system.

If we would like to define a potential energy, we require that both external and internal
forces are conservative.

Definition 2.4.9 (Total Potential Energy of a System). Assume that all forces in a N -
particle system are conservative. For each pair of particles αβ, the potential energy Uαβ
determines the potential of α within the force field generated by β. That is,

Fαβ(rα) = −∇αUαβ(rα − rβ)

where ∇α represents the del operator with respect to the coordinates of α. Additionally,
let U ext

α be the potential of α within the force field generated by the net external force.

F ext
α (rα) = −∇αU

ext
α (ri)
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Therefore, the total potential energy is

U = U int + U ext =
∑
α

∑
β>α

Uαβ(rα − rβ) +
∑
α

U ext
α (rα)

2.5 Oscillations
Almost any system that is displaced from a position of stable equilibrium exhibits oscil-
lations. If the displacement is small, the oscillations are almost always of the type called
simple harmonic.

2.5.1 Hooke’s Law

Theorem 2.5.1 (Hooke’s Law). The force exerted by a spring has the form (confined to
the x-axis)

Fx(x) = −kx
where x is the displacement of the spring from its equilibrium length and k is a positive
number called the force constant, dependent on the type of spring.

1. If k > 0 then the equilibrium at x = 0 is stable. We can see this because when x = 0
there is no force, when x > 0 (displacement to the right) the force is negative (to
the left), and when x < 0 the force is positive. We call this type of force a restoring
force.

2. If k < 0, the force would be away from the origin, and the equilibrium would be
unstable, in which case we do not expect to see oscillations.

By focusing on the x-component, we can see that Fx(x) is a conservative field, and there-
fore we can define the potential (which is just the antiderivative) as

U(x) =
1

2
kx2

Corollary 2.5.1.1 (General Validity of Hooke’s Law for Small Displacements). Consider
an arbitrary conservative one-dimensional systsm which is specified by a coordinate x and
has potential energy U(x). Let there be a stable equilibrium position x = x0 for which
we can let x0 = 0 without loss of generality. Then, assuming that U is analytic, we can
write

U(x) = U(0) + U ′(0)x+
1

2
U ′′(0)x2 + . . .

as long as x is small, we can approximate U with the first three terms of the series. The
first term is a constant, and since we can always subtract a constant from U(x) without
affecting any physics, we may as well define U(0) = 0. Because x = 0 is an equilibrium
point, U ′(0) = 0 and the second term is automatically 0. Finally, since the equilibrium is
stable, it is concave up and therefore U ′′(0) > 0. Renaming U ′′(0) as k, we can see that
for small displacements it is a good approximation to take

U(x) =
1

2
kx2

Therefore, for sufficiently small displacements from stable equilibrium, Hooke’s law is
always valid.
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2.5.2 Simple Harmonic Motion

Let us examine the equation of motion for a mass m that is displaced from a position of
stable equilibrium. Let us consider a card on a frictionless track attached to a fixed spring,
choosing the one-dimensional frame so that the equilibrium position is at x = 0.

Note that there are other systems that have the same model as this one, such as a
pendulum swinging back and forth. Qualitatively, we can interpret this motion as a
particle swinging back and forth around an equilibrium point in a potential scalar field,
or using the tub analogy, water flowing back and forth the KE and PE tubs.

Lemma 2.5.2 (Equation of Simple Harmonic Motion). We know that we can approximate
the potential energy by Hooke’s law to get Fx(x) = −kx. Thus the equation of motion is

mẍ = −kx =⇒ ẍ = − k
m
x

Let us introduce the constant ω =
√
k/m and rewrite the differential equation as

ẍ = −ω2x

which has general solution

x(t) = C1e
iωt + C2e

−iωt ⇐⇒ x(t) = B1 cos(ωt) +B2 sin(ωt)

where B1 = C1 + C2, B2 = i(C1 − C2).

Since we are working in the real number line, let us focus on the equation

x(t) = B1 cos(ωt) +B2 sin(ωt)

Simple calculations show that

1. The initial displacement is x(0) = B1

2. The initial velocity is x′(0) = ωB2

If I start the oscillations by pulling the cart aside to x = x0 and releasing it from rest
v0 = 0), then B2 = 0 and only the cosine terms survives, so that

x(t) = x0 cos(ωt)
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If I launch the cart from the origin (x0 = 0) by giving it a kick at t = 0 with velocity of
v0, only the sine term survives and

x(t) =
v0

ω
sin(ωt)

Definition 2.5.1 (Phase-Shifted Cosine Solution). To visualize what happens when a
cart has initial displacement x0 with initial velocity v0, we first define A =

√
B2

1 +B2
2

and δ = arctan(B1/B2).

We can rewrite the general equation of motion as

x(t) = A

(
B1

A
cos(ωt) +

B2

A
sin(ωt)

)
= A

(
cos(δ) cos(ωt) + sin(δ) sin(ωt)

)
= A cos(ωt− δ)

This equivalent form shows that the cart is oscillating with amplitude A, but instead of
it being a simple cosine, it is a cosine that is horizontally shifted. That is, the oscillations
lag behind the simple cosine by the phase shift δ.
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Energy of Simple Harmonic Oscillators

Since we have worked in a conservative vector field in R (by neglecting friction), me-
chanical energy should be conserved, by the law of conservation of energy. Since x(t) =
A cos(ωt− δ), the kinetic energy is

T =
1

2
mẋ2 =

1

2
mω2A2 sin2(ωt− δ)

=
1

2
kA2 sin2(ωt− δ)

From the force field Fx(x) = −kx and its associated potential field U = 1
2
kx2, we can see

that the potential energy as a function of time is

U =
1

2
k
(
x(t)

)2
=

1

2
kA2 cos2(ωt− δ)

Adding both gets

E = T + U =
1

2
kA2

which is consistent with our law.

2.5.3 Two-Dimensional Oscillators

In multiple dimensions, the possibilities for oscillation are considerable richer than in
one-dimension.

Definition 2.5.2 (Isotropic Harmonic Oscillator). An isotropic harmonic oscillator is an
oscillator for which the restoring force is proportional to the displacement from equilib-
rium, with the same constant of proportionality in all directions.

F = −kr =⇒

{
Fx = −kx
Fy = −ky

This is just a generalization of Hooke’s law in multiple dimensions. This force is a central
force directed towards the equilibrium position, which (without loss of generality) we take
to be the origin by choosing an appropriate frame.

Example 2.5.1 (2-Dimensional Isotropic Oscillator). A two-dimensional isotropic oscil-
lator is (at least approximately) a ball bearing rolling near the bottom of a large spherical
bowl.
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Example 2.5.2 (3-Dimensional Isotropic Oscillator). A proton or neutron moving within
the nucleus of an atom is an example of a three-dimensional isotropic oscillator.

Lemma 2.5.3 (Equation of Isotropic Harmonic Motion). With the equation of motion
F = mr̈, we can see that{

ẍ = −ω2x

ÿ = −ω2y
=⇒

{
x(t) = Ax cos(ωt− δx)
y(t) = Ay cos(ωt− δy)

where ω =
√
k/m, and the four constants Ax, Ay, δx, δy are determined by the initial

conditions of the problem. To visualize this, we can see that Ax, Ay determine how "far
out" the particle reaches in its oscillation, and the δx, δy determines the relative shift in
oscillation.

However, by redefining the origin of time, we can have the system start when the x-
component of the velocity is 0 (that is, when δx = 0). However, this does not guarantee
that δy = 0. Therefore, the simplest form for the general solution is

x(t) = Ax cos(ωt)

y(t) = Ay cos(ωt− δ)

where δ = δy−δx is the relative phase of the x and y oscillations. This δ value determines
the delay (shift) in oscillation between the x and y-components of the two-dimensional
oscillating particle. We show the motions of anisotropic oscillators as δ varies. However,
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note that since both the x and y components have the same frequencies, we are left with
relatively simple motions.

1. When δ = 0, then x(t) and y(t) rise and fall in step, moving along the line segment
that joins (Ax, Ay) to (−Ax,−Ay).

2. When δ = π/2, then x and y oscillate out of step, with x at an extreme when y = 0,
and vice versa.

3. For other values of δ, the point (x, y) moves in a slanting ellipse.

Definition 2.5.3 (Anisotropic Harmonic Oscillator). In an anisotropic harmonic oscil-
lator, the components of the restoring force are proportional to the components of the
displacement, but with different constants of proportionality. That is, we have

mẍ = −
(
kx
ky

)
x =⇒

{
ẍ = −ω2

xx

ÿ = −ω2
yy

where there are now different frequencies for the different axes: ωx =
√
kx/m, ωy =√

ky/m.

Example 2.5.3 (3-Dimensional Anisotropic Oscillator). The force felt by an atom dis-
placed from its equilibrium position in a crystal of low symmetry, where is experiences
different force constants along the different axis is an anisotropic harmonic oscillator.

Lemma 2.5.4 (Equation of Anisotropic Harmonic Motion). The solutions to the anisotropic
differential equations is a

x(t) = Ax cos(ωxt)

y(t) = Ay cos(ωyt− δ)

Because of the two different frequencies, there is a much richer variety of possible motions.

1. If ωx/ωy is rational, then the motion is periodic, resulting in a path called a Lissajous
figure. In the figure below, we have ωx/ωy = 2 and so the x motion repeats itself
twice as often as the y motion.

2. If ωx/ωy is irrational, then the motion is called quasiperiodic, since the components
are periodic but the two periods are incompatible, and so the motion of r is not.
That is, when ωx/ωy =

√
2, we have
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2.5.4 Dampened Oscillations

We now introduce resistive forces that will damp the oscillations. There are several
possibilities for the resistive force.

1. Ordinary sliding friction is approximately constant in magnitude, but always di-
rected opposite of the velocity.

2. The resistance offered by a fluid, such as air or water, depends on the velocity in a
complicated way, but as we saw before, it is a reasonable approximation to assume
that the resistive force is proportional to v or v2.

We will assume that the resistive force is proportional to v.

Definition 2.5.4 (Dampened Simple Harmonic Oscillator). Consider an object in one
dimension, such as a cart attacehd to a spring, that is subject to Hooke’s force −kx and
a resistive force −bẋ. The net force on the object is −bẋ − kx and Newton’s second law
gives

mẍ = −bẋ− kx =⇒ mẍ+ bẋ+ kx = 0

which becomes a second degree linear homogeneous differential equation. We divide both
sides by m and rewrite the equation as

ẍ+ 2βẋ+ ω2
0x = 0 where β =

b

2m
,ω0 =

√
k

m

Note that

1. β is called the damping constant, which is a convenient way to characterize the
strength of the dampening force (greater β means greater dampening).

2. ω0 is the systems natural frequency, the frequency at which it would oscillate if there
were no resistive force present.

Lemma 2.5.5 (Equation of Dampened Harmonic Motion). The general solution to the
differential equation of dampened simple harmonic motion is

x(t) = e−βt
(
C1 exp

(√
β2 − ω2

0 t
)

+ C2 exp
(
−
√
β2 − ω2

0 t
))

Clearly, if there is no damping (i.e. β = 0), then we are left with the familiar formula for
the undampened harmonic oscillator.

x(t) = C1e
iω0t + C2e

−iωt
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Weak Damping

This first type of damping is when the damping force is weak in the sense that even
though it slows down the particle’s motion, the particle still passes the equilibrium point
with every oscillation. More specifically, suppose that

β < ω0

Then, we can write√
β2 − ω2

0 = i
√
ω2

0 − β2 = iω1 where ω1 =
√
ω2

0 − β2

The parameter ω1 is a frequency that is less than the natural frequency ω0, and with this
notation the solution becomes

x(t) = e−βt
(
C1e

iω1t + C2e
−iω1t

)
= e−βt · A cos(ω1t− δ)

which is really just the product of a harmonic function with an exponentially decaying
function. The graph of the solution would look like

where for larger β the more rapidly the oscillations die out.

Strong Damping

Strong damping happens when the motion is so damped that it completes no oscillations.
When the dampening constant β is large, i.e.

β > ω0

our solution of motion becomes

x(t) = C1 exp

(
−
(
β −

√
β2 − ω2

0

)
t

)
+ C2 exp

(
−
(
β +

√
β2 − ω2

0

)
t

)
which results in the following graph.
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Note that as an oscillator was kicked from the origin at t = 0, it slid out to a maximum
displacement and then slid ever more slowly back again, returning to the origin only in
the limit t→ +∞.

Critical Damping

The boundary between weak and strong damping is called critical damping, when

β = ω0

This leads to there being a double root in the characteristic polynomial of the differential
equation

ẍ+ 2βẋ+ ω2
0x = 0 =⇒ ẍ+ 2βẋ+ β2x = 0

and by variation of constants, we can see that the general solution is of the form

x(t) = C1e
−βt + C2te

−βt

= e−βt
(
C1 + C2t)

Since the e−βt factor dominates the decay of oscillations as t→∞, we can say that x(t)
decays at about the rate of e−βt.

Comparing all three, notice that

1. Oscillations with weak damping decay exponentially at the rate of e−βt =⇒ decay
parameter = β

2. Oscillations with critical damping decay exponentially at the rate of e−βt =⇒
decay parameter = β

3. Oscillations with strong damping decay exponentially at the rate of eβ−
√
β2−ω2

0 =⇒
decay parameter = β −

√
β2 − ω2

0

It follows that oscillations die out most quickly when damping is critical, as seen in the
graph that plots the decay parameter with respect to the damping constant.

2.5.5 Driven Damped Oscillations

Any natural oscillator would come to rest due to the damping forces. Therefore, in order
for the oscillations to continue, one must arrange some external "driving" force to maintain
them.
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Definition 2.5.5 (External Driving Force). If we denote the external driving force by
F (t) and we if assume as before that the damping force has the form −bv, then the net
force on the oscillator is F (t) = −bv(t)−kx(t)+F (t), resulting in the differential equation

mẍ+ bẋ+ kx = F

which can be rewritten
ẍ+ 2βẋ+ ω2

0x = f(t)

where f(t) = F (t)/m, β = b
2m
, ω2

0 = k/m. This is clearly a inhomogeneous linear differ-
ential equation.

Now, we specialize to the case that the driving force f(t) is a sinusoidal function of
time.

f(t) = f0 cos(ωt)

Therefore, we are left with solving the differential equation

ẍ+ 2βẋ+ ω2
0x = f0 cos(ωt)

which has solution
x(t) = A cos(ωt− δ) + C1e

r1t + C2e
r2t

where

A =

√
f 2

0

(ω2
0 − ω2)2 + 4β2ω2

and δ = arctan

(
2βω

ω2
0 − ω2

)
Note that the exponential terms, called transient terms, are the solutions of the corre-
sponding homogeneous differential equation, which we have found to decay exponentially
as t → ∞. Therefore, the long-term behavior of our solution is dominated by the cosine
term, and therefore the particular solution

x(t) = A cos(ωt− δ)

is what we are usually concerned. Clearly, we can adjust this equation of motion for cases
of weak/strong damping.

Definition 2.5.6 (Attractor). Let us study the effects the transient terms. Clearly, the
values of r1, r2 depend on the initial conditions x0 and v0, and so these initial conditions
will have a big effect on the motion at first.
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The transient motion is clearly visible, but after a while only the long-term motion re-
mains, oscillating sinusoidally at exactly the drive frequency ! Furthermore, the initial
differences disappear and the motion settles down to the same sinusoidal motion of the
particular solution irrespective of the initial conditions. Therefore, the motions corre-
sponding to several different initial conditions are "attracted" to the particular motion,
hence the name attractor.

2.5.6 Fourier Series

Definition 2.5.7 (τ -periodic Functions). A function f is τ -periodic if it has period of
length τ . That is,

f(t+ τ) = f(t) for all t

The following list of function are clearly τ -periodic.

cos(2πt/τ), cos(4πt/τ), cos(6πt/τ), . . .

sin(2πt/τ), sin(4πt/τ), sin(6πt/τ), . . .

which can be written more compactly (setting ω = 2π/τ) as

cos(nωt), sin(nωt) for n = 0, 1, 2, . . .

Theorem 2.5.6 (Fourier’s Theorem). Every τ -periodic function f can be expressed as the
series

f(t) =
∞∑
n=0

(
an cos(nωt) + bn sin(nωt)

)
called a Fourier series. Furthermore, the coefficients an can be computed with the for-
mulas

a0 =
1

τ

ˆ τ/2

−τ/2
f(t) dt, an =

2

τ

ˆ τ/2

−τ/2
f(t) cos(nωt) dt for n ≥ 1

along with the bn’s being

b0 = 0, bn =
2

τ

ˆ τ/2

−τ/2
f(t) sin(nωt) dt for n ≥ 1

This is quite surprising, since it means that the the arbitrary functions, which don’t even
need to be continuous (like the one on the left), can be represented as the sum of smooth
ones.

56



It also presents an excellent approximation by retaining the first few terms.

Definition 2.5.8 (Fourier Series Solution of Driven Oscillator). Given the differential
equation of motion

ẍ+ 2βẋ+ ω2
0x = f

let the driving force f be written in its Fourier series form

f(t) =
∞∑
n=0

fn cos(nωt)

Then, the Fourier series solution to the differential equation is

x(t) =
∞∑
n=0

An cos(nωt− δn)

where
An =

fn√
(ω2

0 − n2ω2)2 + 4β2n2ω2
, δn = arctan

(
2βnω

ω2
0 − n2ω2

)
To summarize, the steps to finding the Fourier series solution to the linear inhomogeneous
differential equation is to:

1. Find the coefficients fn of the Fourier series for the given driving force f(t)

2. Calculate the quantities An and δn with the formulas above.

3. Write down the solution x(t) as the Fourier series.

2.6 Calculus of Variations

2.7 Lagrangian Mechanics

2.7.1 Constraints

We may infer that all problems in classial mechanics have been reduced to solving the
system of differential equations

mir̈i = F
(e)
i −

∑
j

Fji
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by substituting the known forces acting on the particle. However, we must take a look
at the constraints that limit the motion of the system. Some examples of constraints
are:

1. Dealing with rigid bodies, which is a system of particles that can only be moved
through isometries.

2. Gas molecules constrained within a container are constrained by the walls of the
container.

3. A particle allowed to move only within a certain surface or manifold.

Definition 2.7.1. If the constraints can be expressed as equations connecting the coor-
dinates of the particles (and possibly the time) having the form

f
(
r1, r2, ..., t

)
= 0 (2.3)

then the constraints are said to be holonomic.

Example 2.7.1. The constraints of rigid bodies are holonomic since it can be expressed
with the equations (

ri − rj
)2 − c2

ij = 0

Example 2.7.2. A particle constrained to move along a surface is a holonomic constraint,
defined by the equation of the surface.

Example 2.7.3. The walls of a gas container is a nonholonomic constraint.

Example 2.7.4. The constraint describing the motion of a particle placed on a sphere is
nonholonomic, since it can be described with the inequality

r2 − a2 ≥ 0

Definition 2.7.2. Constraint equations that contain time as an explicit variable (meaning
that the physical constraints are changing) are called rheonomous. Ones that are not
explicitly dependent on time are called scleronomous.

Note that if the constraint moes as a reaction to the particle’s motion, then the time
paramater is really dependent on the components of the particle’s radius vector. This
means that the system is scleronomous.

f
(
r1, r2, ..., t

)
= f

(
r1, r2, ..., t(r1, r2, ...)

)
For more complicated systems, it is necessary to step away from Cartesian coordinates
and use a basis transformation to convert them to generalized coordinates with a certain
degree of freedom.

A system ofN particles in three dimensional space has 3N independent coordinates, which
translates to 3N degrees of freedom. Given k holonomic constraints given in the form (1),
the system has 3N−k degrees of freedom. A convenient way to integrate these constraint
equations is with transformation equations. With 3N − k degrees of freedom, we define
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the new set of independent variables q1, q2, ..., q3N−k. This induces a transformation T
from the q-variables to the r-variables.

T :
(
q1, q2, ..., q3N−k

)
7→
(
r1(q), r2(q), ..., r3N(q)

)
where q = (q1, q2, ..., q3N−k). Equivalently, we write the radius vectors of each particle in
terms of the new coordinates, with possibly a time variable t. This gives the set of N
transformation equations

r1 = r1

(
q1, q2, ..., q3N−k, t

)
r2 = r2

(
q1, q2, ..., q3N−k, t

)
... = ...

rN = rN
(
q1, q2, ..., q3N−k, t

)
which constraints the motion of the particles implicitly. It is assumed that we can always
invert the transformation. That is, let Q ⊂ R3 be the constrained space. Given T : Q −→
R3, the restriction of T−1 onto the image of T is well-defined and surjective

T−1 : Im(T ) ⊂ R3 −→ Q

Furthermore, note that T is a homeomorphism. This leads to a very important realization
that Q is (3N − k)-manifold embedded in the 3N -manifold R. This set Q consisting
of points that represent viable configurations of the system is called the configuration
manifold of the system. The existence of the chart mappings guarantees that every point is
locally paramaterizable with new coordinates (which, in this case, is the q-variables).

Example 2.7.5. In the case that a particle is constrained to move on the surface of a
sphere, two angles θ, φ representing latitude and longitude are obvious possible generalized
coordinates.

Example 2.7.6. A double pendulum moving in a plane can be represented by two angles.

Example 2.7.7. A disk rolling vertically on the horizontal xy-plane.

Holonomic constraints therefore allow us to use the tools in manifold theory to model
systems of equations. However, there is no standardized method of tackling systems with
nonholonomic constraints. Therefore, it is almost always assumed that constraints are
holonomic, and this doesn’t greatly limit the applicability of the theory.

2.7.2 D’Alembert’s Principle and Lagrange’s Equations

Definition 2.7.3. A system is in equilibrium if the total force on each particle vanishes.
That is, if Fi = 0 for all i.

Definition 2.7.4. A virtual (infinitesmial) displacement of a system refers to a change
in the configuration of a system as the result of any infinitesmal change of the coordinates
δri, consistent with the forces and constraints imposed on the system at given instance t.

Note that this displacement is called virtual to distinguish it from an actual displacement
of a system occurring in the time interval dt, during which the forces and constraints may
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be changing. To solidify this concept of a virtual displacement and its difference from
the actual displacement, consider the configuration manifold Q. The time evolution of
the system can be modeled with a path function q(t) on Q with paramater time. The
actual displacement of the system is modeled by an infinitesimal displacement on the
curve.

However, we can define another path γ (a "virtual curve" as opposed to the real curve)
along which the system evolves. Again, this must be consistent with the actual constraints,
or equivalently, γ cannot "leave" the configuration manifold.

Now, suppose that that we are working with a system that is in equilibrium. Since the
total force on each particle vanishes, then clearly the dot product of the force in direction
δri, which is the virtual work of the particle over displacement δri, vanishes, too. Summing
over all particles, ∑

i

Fi · δri = 0

We decompose Fi into the applied force F (a)
i and the force of constraint fi. Then,∑

i

Fi · δri = 0 =⇒
∑
i

F
(a)
i · δri +

∑
i

fi · δri = 0

Let us now restrict the system such that the net virtual work of the forces of constraint
is 0.

It is preferred to simplify the mechanics of a system (e.g. paramaterizing it) in such a
way that the forces of constraint disappear. It is a common problem that the forces of
constraint are unknown a priori, so we try to have them vanish. Looking at the time-
evolution path through the configuration manifold, we can interpret the assumption above
as saying that the vectors of the forces of constraint are perpendicular to the surface of
the manifold.

Example 2.7.8. A particle constrained to move on a surface has a form of constraint
perpendicular to the particle’s displacement (e.g. a normal force) =⇒ fi · δri = 0, where
δri is an infinitesimal virtual displacement on the surface.

Theorem 2.7.1 (Principle of Virtual Work). This reduces the above equation to∑
i

F
(a)
i · δri = 0

which states that a condition for equilibrium of a system is that the virtual work of the
applied forces vanishes.

We can write this in a different way. The equation of motion can be rewritten as

Fi = ṗi =⇒ Fi − ṗi = 0

which states that particles in the system will be in equilibrium under a force equal to the
actual force plus a "reversed effective force" −ṗi. This leads to∑

i

(
Fi − ṗi

)
· δri = 0

=⇒
∑
i

(
F

(a)
i − ṗi · δri +

∑
i

fi · δri = 0
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where F (a)
i represents the applied forces and fi represents the constraint forces. We again

restrict our work to systems where the virtual work of the forces of constraints vanishes,
to get ∑

i

(
F

(a)
i − ṗi

)
· δri = 0

Example 2.7.9. In the diagram, we can see that the normal force FN is the constraint
force, while friction Ff and gravity Fg are applied forces.

FN
Ff

Fg

Furthermore, this system has the property that fi ·δri = 0, since the normal force is always
perpendicular to the back-and-forth movement of the block. Note that if the box leaves the
surface and into the air (which is viable, since the system isn’t constrained by the ramp
and ground), the normal force then vanishes and is still consistent with the system.

If the system is in equilibrium, then

F = Ff + FN + Fg = 0

and the virtual displacement from, say point A to point B, denoted δr, cancels out with
the total force F (since F = 0). That is,

F · δr = 0 · δr = 0

Therefore, the virtual displacement of a system in equilibrium is δr with component dis-
placement δri and the virtual work always 0.

Definition 2.7.5. Let M be the configuration manifold of a mechanical system, with
t0, t1 ∈ R time constants, q0, q1 ∈M, and

P (M) ≡
{
γ ∈ C∞([t0, t1],M) | γ(t0) = q0, γ(t1) = q1

}
For each path γ ∈ P (M) and ε0 > 0, a variation of γ is a function

Γ : [t0, t1]× [−ε0, ε] −→M

such that for every ε ∈ [−ε0, ε0],

Γ(·, ε) ∈ P (M) and Γ(t, 0) = γ(t)

Alternatively, we can imagine the variation Γ as an infinitesimal homotopy of γ inM.

Going back to D’Alembert’s principle, we let Fi = F
(a)
i and have∑

i

(
Fi − ṗi

)
· δri = 0

Since
ri = ri(q1, q2, ..., qn, t)
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with generalized coordinates qi (assuming independent coordinates), we use the multi-
variate chain rule to get

Vi ≡
dri
dt

=

(∑
k

∂ri
∂qk

q̇k

)
+
∂ri
∂t

Analogously, we find the displacement

δri =
∑
j

∂ri
∂qj

δqj

Note that no variation of time, δt, is involved here since virtual displacement by definition
considers displacements of the coordinates. Therefore, in generalized coordinates, the
virtual work of Fi is ∑

i

Fi · δri =
∑
i,j

Fi ·
∂fi
∂qj

δqj

=
∑
j

Qjδqj, where Qj =
∑
i

Fi
∂ri
∂qj

Note that even though Qjδqj must always have the dimensions of work, the Q’s do not
necessarily need to have the dimensions of force since the q’s need not have dimensions
of length.

Example 2.7.10. Qj may be a value of torque Nj and dqj a differential angle dθj, which
makes Njdθj a differential of work.

We now evaluate ∑
i

ṗiδri =
∑
i

mir̈iδri =
∑
i,j

mir̈i
∂ri
∂qj

δqj

Using the product rule for derivatives, we get∑
i

mir̈i
∂ri
∂qj

=
∑
i

(
d

dt

(
miṙi

∂ri
∂qj

)
−miṙi

d

dt

(∂ri
∂qj

))
By equality of partial derivatives,

d

dt

(
∂ri
∂qj

)
=
∂ṙi
∂qj

=

(∑
k

∂2ri
∂qj∂qk

q̇k

)
+

∂2ri
∂qj∂t

=
∂vi
∂qj

Remember that we are deriving with respect to generalized q-coordinates.

Lemma 2.7.2. In this type of system,

∂vi
∂q̇j

=
∂ri
∂qj

Proof. To be done. �
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Using the previous lemma, we get∑
i

mir̈i =
∑
i

(
d

dt

(
mivi

∂vi
∂q̇j

)
−mivi

∂vi
∂qj

)

=
∑
i

(
d

dt

(
∂

∂q̇j

(1

2
miv

2
i

))
− ∂

∂qj

(
1

2
miv

2
i

))
So rewriting D’Alembert’s principle, we have

∑
j

(
d

dt

(
∂

∂q̇j

(∑
i

1

2
miv

2
i

))
− ∂

∂qj

(∑
i

1

2
miv

2
i

)
−Qj

)
δqj

Letting T =
∑

i
1
2
miv

2
i , we get

∑
j

[(
d

dt

(∂T
∂qj

)
− ∂T

∂qj

)
−Qj

]
δqj = 0 (2.4)

So far, no restriction has been made in the system constraints other than they be workless
in a virtual displacement. In the case that the constraint is holonomic, the generalized
variables qj will be completely independent of each other (with the constraints implicitly
contained within the transformation of coordinates). This means that any virtual dis-
placement δqj is independent of δqk (j 6= k)., so the only way that (2) can be 0 is if all
the individual elements are 0 for every j = 1, 2, ..., n. That is,

∀j = 1, 2, ..., n,
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
−Qj = 0

If the forces can be derived from a certain scalar potential function V (i.e. F is a conser-
vative vector field), then

F = −∇iV =⇒ Qj =
∑
i

Fi
∂ri
∂qj

= −
∑
i

∇iV
∂ri
∂qj

But this last expression is just the partial derivative of the function −V (r1, r2, ..., rn, t)
with respect to qj. So,

Qj = −∂V
∂qj

However, note that the field cannot be conservative if V is a function of time. So, V must
be invariant under time for the above equations to hold.

As defined, the potential V does not depend on the generalized velocities. Hence, we
can include a term V in the partial derivative with respect to q̇j without changing the
outcome. This leads to

d

dt

(
∂(T − V )

∂q̇j

)
− ∂(T − V )

∂qj
= 0

Definition 2.7.6. The Lagrangian, denoted L, is defined

L = T − V

where T is the kinetic energy and V is the potential energy of the system.
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Theorem 2.7.3 (Lagrange’s Equations).

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0

Note that for a particular set of equations of motion there is no unique choice of La-
grangian such that Lagrange’s equations lead to the equations of motions in the given
generalized coordinates. In fact, if L(q, q̇, t) is an appropriate Lagrangian, and F (q, t) is
any differentiable function of the generalized coordinates and time, then

L′(q, q̇, t) = L(q, q̇, t) +
∂F

∂t

is a Lagrangian also resulting in the same equations of motion. There are other methods
to find other Lagrangians, too.

64



Chapter 3

Electromagnetism

65



Chapter 4

General Relativity

66



Chapter 5

Quantum Mechanics

67



Chapter 6

Quantum Field Theory

68



Chapter 7

String Theory

69



Appendix A

Further Readings

1. Herbert Goldstein. Classical Mechanics

70


	Introduction
	Classical Mechanics
	Elementary Principles
	Frames
	Newton's Laws of Motion
	Systems of Particles and Total Linear Momentum
	Newton's Laws in 2-Dimensional Polar Coordinates

	Projectiles and Charged Particles
	Trajectory and Range in a Linear Medium
	Trajectory and Range in a Quadratic Medium
	Motion of a Charge in a Magnetic Field

	Momentum, Angular Momentum
	Angular Momentum of a Single Particle
	Angular Momentum of Several Particles

	Energy
	Kinetic Energy and Work
	Potential Energy and Conservative Forces
	Summary
	Energy for One-Dimensional Systems
	Central Forces
	Energy of Interaction of Two Particles

	Oscillations
	Hooke's Law
	Simple Harmonic Motion
	Two-Dimensional Oscillators
	Dampened Oscillations
	Driven Damped Oscillations
	Fourier Series

	Calculus of Variations
	Lagrangian Mechanics
	Constraints
	D'Alembert's Principle and Lagrange's Equations


	Electromagnetism
	General Relativity
	Quantum Mechanics
	Quantum Field Theory
	String Theory
	Further Readings

