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Let’s first talk about why we need analysis in general in the first place. Algebra allows us to define certain
algebraic structures, which are essentially sets with operations. These operations are defined to have a finite
number of arguments. For example, let’s take a look at the negation x 7→ −x and the addition x, y 7→ x+ y
operations in a group G. We can compose these operations up to any finite length n, removing the parentheses
due to associativity, but note that the “sum” below is not a single operation. It is a composition of n − 1
operations.

x1 + x2 + . . .+ xn ∈ G (1)
− (−(. . . (−x))) ∈ G (2)

This is still well defined due to closure, but what if we wanted to do this an infinite number of times?

x1 + x2 + . . . =? (3)
. . . (−(−x)) =? (4)

For someone who has learned about sequences and series in high school, this may not be a big jump in
logic, but it is. The objects above are not even well-defined and trying to define them with algebraic tools
is equivalent to the famous Zeno’s paradox. So we simply need to add more tools in order to define these
new mathematical objects, which we call series. To define series, we need to first define sequences. Can we
do this with algebra? Yes, since we can simply model it as a function.

Definition 0.1 (Sequence)

A sequence is a function f : N→ X. We usually denote a sequence by writing out the first few terms
of the sequence, followed by an ellipsis.

a1 = f(1), a2 = f(2), . . . (5)

or as an indexed set over the naturals {ai}i∈N.

Therefore, we can consider series as a sequence of finite sums, each element which is well-defined.

x1, x1 + x2, x1 + x2 + x3, . . . (6)

For any n ∈ N, we can get the value of an =
∑n

i=1 ai, but can we say something about the limiting behavior
of an? That is, maybe we can just slap a value x onto this series such that it doesn’t “break” any of the
rules we have in the finite sense. Unfortunately, it is not possible to define such values for all series, but it is
possible for some of them, which we call convergent series. To rigorously determine which ones are convergent
and which ones are not, we need the tools of topology and analysis. Defining the concept of sequences that
model infinitely composed operations is what allows us to define differentiation and integration.

Great, we’ve motivated the need for analysis, but before jumping straight into real analysis, let’s talk about
what analysis in general works with. It studies functions of the form f : X → Y , and minimally both
X,Y must be Banach spaces, i.e. complete normed vector spaces over some field F. Almost all flavors of
analysis, including real (R), complex (C), multivariate (Rn), p-adic, and functional (infinite-dimensional
Banach spaces) analysis require at least a Banach space structure. Why are Banach spaces so great? Well if
we were to define convergence in X or Y , then it only makes sense to talk about convergence with respect to a
topology. So X,Y must at least be topological spaces. It would also be bad if we were to take a sequence in X
and find out that it converges to some element outside of X. Therefore, we want a notion of completeness in
the sense that all sequences that “get closer,” i.e. Cauchy sequences, actually converge in X. Unfortunately,
while convergence of sequences is preserved under homeomorphisms (and is thus a topological property),
convergence of Cauchy sequences is not.1 Furthermore, the notion of uniform convergence is a metric space
property, not a topological one. Therefore, the concept of distances is crucial to the construction of analysis.
As for the norm, I’m still not sure why we need this.2

1Consider the sequence an = 1/(n+1) in (0, 1) and the map f(x) = 1/x to the set (1,+∞). an is Cauchy but f(an) is not.
2Aspinwall and Ng told me this, but I’m not sure why. The Frechet derivative seems like it can be purely defined with a

metric.
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But in college courses such as real and complex analysis, why do we say we work over the fields R and C
rather than the Banach spaces R and C? This is because of the following theorem.

Theorem 0.1 ()

Every field F is a 1-dimensional vector space over itself.

Therefore, when we talk about the field R, we are really treating it as a vector space R over the field R.3
Every other structure beyond this is a “bonus” property that gives us extra tools to prove stronger properties.
The most notable is the total ordering on R, which allows us to define upper/lower bounds and other real-
analysis specific theorems like the intermediate value theorem or the mean value theorem. Other structures
include the inner product or the measure.

Now that we’ve taken in the big picture, for each type of analysis, we should construct the underlying relevant
Banach space. At the very least, we can with the tools of set theory and algebra define the rationals Q as
an ordered field over the quotient space Z×Z/ ∼. Furthermore, Q itself is a normed vector space (over Q)4
and the only thing we need now is completeness.

1. If the norm on Q is defined as the normal absolute value (Euclidean norm), completing it gives R as
an ordered field which also has a compatible order as that of Q. We study functions mapping to and
from R with single-variable real analysis.

2. If we take the p-adic norm, then completing it with respect to this gives the p-adic numbers, which
also forms a field but loses the ordering. We deal with functions over the p-adics with p-adic analysis.

3. We can construct C by taking R2 and endowing it with a bit more structure. We get complex analysis.

4. We can construct Rn and Cn by easily defining its vector space structure and then endowing it with
a norm, and showing that it is complete with respect to the norm-induced metric. This is known as
multivariate analysis.

5. With all these defined, we can define Banach function spaces like Lp and perform analysis on operators
f : Lp → Lq. This is functional analysis.

What we have talked about so far was Cauchy completeness, but there is a different type of completeness
called Dedekind completeness, also equivalently known as the least-upper-bound (LUB) property, defined
only on ordered sets (with no other structure). It turns out that in an ordered field, the two forms of
completeness are equivalent.5 Therefore, many real analysis textbooks tend to use Dedekind completeness
when constructing the reals, but Cauchy completeness is in a sense more “fundamental.” We will go through
both independent constructions of R involving both types of completeness since both are used in future
theorems.

1. Construction from Cauchy Sequences. We verify that Q is a field and endow it with the standard
Euclidean metric d(x, y) = |x−y|. We can then construct a new quotient space S of Cauchy sequences
in Q, define all the ordered field operations/relations, and finally show that S satisfies Cauchy com-
pleteness. Most would end here and claim that this is R, but we must also prove the Archimedean
property with this order. Once done, now we can truly claim S = R.

2. Construction from Dedekind Cuts. We verify that Q is a field, put an order on it, and verify that it is an
ordered field. We then construct a new set D of Dedekind cuts from Q, define the compatible ordered
field operations/relations, and show that this new set D satisfies the least-upper bound property. We
claim that D = R.

3Thanks to Prof. Lenny Ng for clarifying this.
4Note that while we define the norm and metric to usually map to R+, R isn’t even defined yet and so to avoid circular

definitions, we define the norm on the rationals to have codomain Q.
5Actually, this is not true. Dedekind completeness is equivalent to Cauchy completeness plus the Archimedean property. An

example of a Cauchy-complete non Archimidean field is the field F of rational functions over R, with positive cone consisting
of those functions f/g such that the leading coefficients of f, g have the same algebraic sign. The Cauchy completion of this
into the equivalence classes of Cauchy sequences in F results in a non-Archimedean field.
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1 The Real Numbers
By constructing Q and its topology in my algebra and topology notes, we can talk about convergence. The
first question to ask (if you were the first person inventing the reals) is “how do I know that there exists
some other numbers at all?” The first clue is trying to find the side length of a square with area 2. As we
see, this number is not rational.

Theorem 1.1 (
√
2 is Not Rational)

There exists no x ∈ Q s.t. x2 = 2.

Proof.

We can “imagine” that a square with area 2 certainly exists, but the fact that its side length is undefined
is certainly unsettling. I don’t know about you, but I would try to “invent”

√
2. We can maybe do this in

multiple ways.

1. I write out the decimal expansion one by one, which gives our first exposure to sequences.

1, 1.4, 1.41, 1.414, . . . (7)

It is clear that on Q, this sequence does not converge. Our intuition tells that that if the terms get closer
and closer to each other, they must be getting closer and closer to something, though that something
is not in Q. This motivates the definition for Cauchy completeness.

2. I would write out maybe some nested intervals so that
√
2 must lie within each interval.

[1, 2] ⊃ [1.4, 1.5] ⊃ [1.41, 1.42] ⊃ . . . (8)

This motivates the definition of nested-interval completeness.

3. I would define the set of all rationals such that x2 < 2, and try to define
√
2 as the max or supremum

of this set. We will quickly find that neither the max nor the supremum exists in Q, and this motivates
the definition for Dedekind completeness.

All three of these methods points at the same intuition that there should not be any "gaps" or "miss-
ing points" in the set that we will construct to be R. This contrasts with the rational numbers, whose
corresponding number line has a "gap" at each irrational value.

1.1 Dedekind Completeness

Definition 1.1 (Dedekind Cut)

A Dedekind cut is a partition of the rationals Q = A ⊔A′ satisfying the three properties.a
1. A ̸= ∅ and A ̸= Q.b
2. x < y for all x ∈ A, y ∈ A′.
3. The maximum element of A does not exist in Q.

The minimum of A′ may exist in Q, and if it does, the cut is said to be generated by minA′.
aThis can really be defined for any totally ordered set.
bBy relaxing this property, we can actually complete Q to the extended real number line.

Note that in Q, there will be two types of cuts:

1. ones that are generated by rational numbers, such as

A = {x ∈ Q | x < 2/3}, A′ = {x ∈ Q | x ≥ 2/3} (9)

5/ 203



Real Analysis Muchang Bahng Spring 2025

2. and the ones that are not

A = {x ∈ Q | x2 < 2}, A′ = {x ∈ Q | x2 ≥ 2} (10)

We can intuitively see that the set of all Dedekind cuts (A,A′) will “extend” the rationals into a bigger set.
We can then define some operations and an order to construct this into an ordered field, and finally it will
have the property that we call “completeness.”

Definition 1.2 (Dedekind Completeness)

A totally ordered algebraic field F is complete if every Dedekind cut of F is generated by an element
of F.

Theorem 1.2 ()

Q is not Dedekind-complete.

Proof.

The counter-example is given above for the cut

A = {x ∈ Q | x2 < 2}, A′ = {x ∈ Q | x2 ≥ 2} (11)

Now we have the tools to define the reals, giving us the beefy theorem.

Theorem 1.3 (Reals as the Dedekind-Completion of Rationals)

Let R be the set of all Dedekind cuts (A,A′) of Q of Q. For convenience we can uniquely represent
(A,A′) with just A since A′ = Q \ A. By doing this we can intuitively think of a real number as
being represented by the set of all smaller rational numbers. Let A,B be two Dedekind cuts. Then,
we define the following order and operations.

1. Order. A ≤R B ⇐⇒ A ⊂ B.
2. Addition. A+R B := {a+Q b | a ∈ A, b ∈ B}.
3. Additive Identity. 0R := {x ∈ Q | x < 0}.
4. Additive Inverse. −B := {a− b | a < 0, b ∈ (Q \B)}.
5. Multiplication. If A,B ≥ 0, then we define A×RB := {a×Q b | a ∈ A, b ∈ B, a, b ≥ 0}∪0R. If A

or B is negative, then we use the identity A×B = −(A×R−B) = −(−A×RB) = (−A×R−B)
to convert A,B to both positives and apply the previous definition.

6. Multiplicative Identity. 1R = {x ∈ Q | x < 1}.
7. Multiplicative Inverse. If B > 0, B−1 := {a×Q b−1 | a ∈ 1R, b ∈ (Q \B)}. If B is negative, then

we compute B−1 = −((−B)−1) by first converting to a positive number and then applying the
definition above.

We claim that (R,+R,×R,≤R) is a totally ordered field, and the canonical injection ι : Q→ R defined

ι(q) = {x ∈ Q | x < q} (12)

is an ordered field isomorphism. Finally, by construction R is Dedekind-complete.

Definition 1.3 (Least Upper Bound Property)

A totally ordered algebraic field F (must it be a field?) is complete if every nonempty set of F having
an upper bound must have a least upper bound (supremum) in F .
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Theorem 1.4 (LUB is Equivalent to GLB)

A set (X,≤) has the least upper bound property iff it has the greatest lower bound property.a

aEvery set bounded below has a greatest lower bound.

Proof.

We will prove one direction since the other is the same logic. Let S ⊂ X be a nonempty set that is
bounded below by some l ∈ X. Let L ⊂ X be the set of all lower bounds of S. Since l exists, it is
nonempty. Furthermore, L is bounded above by any element of S. Due to LUB property L has a
least upper bound, call it z = supL. We claim that z = inf S.

1. z is a lower bound of S. Assume that it is not. Then there exists s ∈ S s.t. s < z. But by
construction s is an upper bound for L and so z s not the least upper bound, a contradiction.

2. z is a greatest lower bound. Assume that z is not. Then there exists a z′ ∈ X s.t. z < z′ ≤ s
for all s ∈ S. But since z′, z are lower bounds, this means z, z′ ∈ L by definition and z < z′

contradicts the fact that z is an upper bound of L.
We are done.

Theorem 1.5 (Dedekind Completeness Equals Least-Upper-Bound Property)

Dedekind completeness is equivalent to the least upper bound property.

Proof.

Definition 1.4 (Archimidean Principle)

An ordered ring (X,+, ·,≤) that embeds the naturals Na is said to obey the Archimedean principle
if given any x, y ∈ X s.t. x, y > 0, there exists an n ∈ N s.t. ι(n) · x > y. Usually, we don’t care
about the canonical injection and write nx > y.

aas in, there exists an ordered ring homomorphism ι : N → X

By the canonical injections N → Z → Q → R, we can talk about whether this set has the Archimedean
property. In fact Dedekind completeness does imply it.

Theorem 1.6 (Reals are Archimedean)

R satisfies the Archimedean principle.

Proof.

Assume that this property doesn’t hold. Then for any fixed x, nx < y for all n ∈ N. Consider the set

A =
⋃
n∈N

(−∞, nx), B = R \A (13)

A by definition is nonempty, and B is nonempty since it contains y. Then, we can show that
a ∈ A, b ∈ B =⇒ a < b using proof by contradiction. Assume that there exists a′ ∈ A, b′ ∈ B s.t.
a′ > b′. Since a′ ∈ A, there exists a n′ ∈ N s.t. a′ ∈ (−∞, n′x) ⇐⇒ a′ < n′x. But by transitivity of
order, this means b′ < n′x ⇐⇒ b′ ∈ (−∞, n′x) =⇒ b′ ∈ A.
Going back to the main proof, we see that A is upper bounded by y, and so by the least upper bound
property it has a supremum z = supA.
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1. If z ∈ A, then by the induction principlea z + x ∈ A, contradicting that z is an upper bound.
2. If z ̸∈ A, then by the induction principleb z − x ̸∈ A =⇒ z − x ∈ B. Since every element of

B upper bounds A and since x > 0, this means that z − x < z is a smaller upper bound of A,
contradicting that z is a least upper bound.

Therefore, it must be the case that nx > y for some n ∈ N.
aNote that N is defined recursively as 1 ∈ N and if n ∈ N, then n+ 1 ∈ N.
bThe contrapositive of the recursive definition of N is: if n ̸∈ N, then n− 1 ̸∈ N.

1.2 Cauchy Completeness

Definition 1.5 (Cauchy Sequence)

A sequence an in a metric space (X, d) is a Cauchy sequence if for every ϵ > 0, there exists an N
s.t.

d(ai, aj) < ϵ (14)

for every i, j > N . We call this Cauchy convergence.

Note that it is not sufficient to say that a sequence is Cauchy by claiming that each term becomes arbitrarily
close to the preceding term. That is,

lim
n→∞

|xn+1 − xn| = 0 (15)

For example, look at the sequence

an =
√
n =⇒ an+1 − an =

1√
n+ 1 +

√
n
<

1

2
√
n

(16)

However, it is clear that an gets arbitrarily large, meaning that a finite interval can contain at most a finite
number of terms in {an}.

It is trivial that convergence implies Cauchy convergence, but the other direction is not true. Therefore, we
would like to work in a space where these two are equivalent, and this is called completeness.

Definition 1.6 (Cauchy Completeness)

A metric space (X, d) is complete if every Cauchy sequence in that space converges to an element in
X.

Theorem 1.7 ()

Q is not Cauchy-complete.

Proof.

Let an be the largest number x up to the nth decimal expansion such that x2 does not exceed 2. The
first few terms are

1.4, 1.41, 1.414, . . . (17)

Therefore, we can construct the reals as equivalence classes over Cauchy sequences. Rather than using the
order, we take advantage of the metric.
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Theorem 1.8 (Reals as the Cauchy-Completion of the Rationals)

Let R be the quotient space of all Cauchy sequences (xn) of rational numbers with the equivalence
relation (xn) = (yn) iff their difference tends to 0.a That is, for every rational ϵ > 0, there exists an
integer N s.t. for all naturals n > N , |xn − yn| < ϵ.

1. Order. (xn) ≤R (yn) iff x = y or there exists N ∈ N s.t. xn ≤Q yn for all n > N .
2. Addition. (xn) + (yn) := (xn + yn).
3. Additive Identity. 0R := (0Q).
4. Additive Inverse. −(xn) := (−xn).
5. Multiplication. (xn)×R (yn) = (xn ×Q yn).
6. Multiplicative Identity. 1R := (1).
7. Multiplicative Inverse. (xn)

−1 := (x−1
n ).

We claim that (R,+R,×R,≤R) is a totally ordered field, and the canonical injection ι : Q→ R defined

ι(q) = (q) (18)

is an ordered field isomorphism. Finally, by construction R is Cauchy-complete.
aThis equivalence class reflects that the same real number can be approximated in many different sequences. In

fact, this shows by definition that 1, 1, . . . and 0.9, 0.99, 0.999, . . . are the same number!

1.3 Nested Intervals Completeness
The final way we prove is using nested-intervals completeness.

Definition 1.7 (Nested Interval Completeness, Cantor’s Intersection Theorem)

Let F be a totally ordered algebraic field. Let In = [an, bn] (an < bn) be a sequence of closed intervals,
and suppose that these intervals are nested in the sense that

I1 ⊃ I2 ⊃ I3 ⊃ . . .

where
lim

n→+∞
bn − an = 0

F is complete if the intersection of all of these intervals In contains exactly one point. That is,

∞⋃
n=1

In ∈ F

Note that defining nested intervals requires only an ordered field. One may look at this and try to ask if
this is a specific instance of the following conjecture: The intersection of a nested sequence of nonempty
closed sets in a topological space has exactly 1 point. This claim may not even make sense, actually. If we
define nested in terms of proper subsets, then for a finite topological space a sequence cannot exist since we
will run out of open sets and so this claim is vacuously true and false. If we allow Sn = Sn+1 then we can
just select X ⊃ X ⊃ . . ., which is obviously not true. However, a slightly weaker claim is that every proper
nested non-empty closed sets has a non-empty intersection is a consequence of compactness.

Theorem 1.9 ()

Q is not nested-interval complete.
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Proof.

Consider the intervals [ai, bi] where ai is the largest number x up to the nth decimal expansion such
that x2 does not exceed 2, and bi is the smallest number x up to the nth decimal expansion such that
x2 is not smaller than 2. The first few terms are

[1.4, 1.5], [1.41, 1.42], [1.414, 1.415], . . . (19)

Therefore, we can complete Q. It turns out that this is equivalent to the construction using Dedekind cuts,
and by definition this new set is nested interval complete. However, like Cauchy completeness, this actually
does not imply the Archimedean property.

1.4 Properties of the Real Line
Now that we have completed it, we can define the real numbers.

Definition 1.8 (The Real Numbers)

The set of real numbers, denoted R, is a totally ordered complete Archimedean field.

It seems that the real numbers is any set that satisfies the definition above. Does this mean that there are
multiple real number lines?

Example 1.1 (Multiple Reals?)

For example, let us construct three distinct sets satisfying these axioms:
1. A line L with + associated with the translation of L along itself and · associated with the

"stretching/compressing" of the line around the additive origin 0.
2. An uncountable list of numbers with possibly infinite decimal points, known as the decimal

number system.
. . . ,−2.583 . . . , . . . , 0, . . . , 1.2343 . . . , . . . ,

√
2, . . . (20)

3. A circle with a point removed, with addition and multiplication defined similarly as the line.

We will show that there is only one set, up to isomorphism, that satisfies all these properties.

Theorem 1.10 (Uniqueness)

R is unique up to field isomorphism. That is, if two individuals construct two ordered complete
Archimedean fields RA and RB , then

RA ≃ RB (21)

Proof.

The proof is actually much longer than I expected, so I draw a general outline.a We want to show
how to construct an isomorphism f : RA → RB .

1. Realize that there are unique embeddings of N in RA and RB that preserve the inductive
principle, the order, closure of addition, and closure of multiplication, the additive identity, and
the multiplicative identity. Call these ordered doubly-monoid (since it’s a monoid w.r.t. + and
×) homomorphisms ιA, ιB .

2. Construct an isomorphism f1 : ιA(N) → ιB(N) that preserves the inductive principle, order,
addition, and multiplication. This is easy to do by just constructing f1 = ιB ◦ ι−1

A .
3. Extend f1 to the ordered ring isomorphism f2 by explicitly defining what it means to map

additive inverses, i.e. negative numbers.
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4. Extend f2 to the ordered field isomorphism f3 by explicitly defining what it means to map
multiplicative inverses, i.e. reciprocals.

5. Extend f3 to the ordered field isomorphism on the entire domain RA and codomain RB . There
is no additional operations that we need to support, but we should explicitly show that this is
both injective and surjective, which completes our proof.

aFollowed from here.

Corollary 1.1 (Dedekind and Cauchy Completness are Equivalent for Reals)

Let RD,RC be the Dedekind and Cauchy completion of Q. Then RD ≃ RC .a

aNote that this is only true for totally ordered Archimidean fields! The two completeness properties are not equal
in general!

The second new property is that the reals are uncountable.

Theorem 1.11 (Cantor’s Diagonalization)

The real numbers are uncountable.

Proof.

We proceed by contradiction. Suppose the real numbers are countable. Then there exists a bijection
f : N→ R. This means we can list all real numbers in [0, 1] as an infinite sequence.a

f(1) = 0.a11a12a13 . . .

f(2) = 0.a21a22a23 . . .

f(3) = 0.a31a32a33 . . .

...

where each aij is a digit between 0 and 9.
Now construct a new real number r = 0.r1r2r3 . . . where:

rn =

{
1 if ann ̸= 1

2 if ann = 1
(22)

This number r is different from f(n) for every n ∈ N, since r differs from f(n) in the nth decimal
place. Therefore r ∈ [0, 1] but r /∈ range(f), contradicting that f is surjective. Thus our assumption
that the real numbers are countable must be false.

aThis must be explicitly proven, but we can take the set of all Cauchy sequences of rationals in their decimal
expansion and construct the reals this way.

Provide examples of ordered, Cauchy-complete fields that are not Archimedean.

1.5 Roots, Exponentials, and Logarithms
Now we will focus on some other operations that become well-defined in the reals. We know that xn for
n ∈ N denotes repeated multiplication and x−1 denotes the multiplicative inverse. We need to build up on
this notation. As a general outline, we will show that x−n is well defined, then xq, q ∈ Q is well-defined, and
finally xr, r ∈ R is well-defined. For the naturals, we have defined xn as the repeated multiplication of n. It
is trivial that the canonical injection ι0 : N→ R commutes with the exponential map of naturals. We prove
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that ι1 : Z→ R also commutes.

Lemma 1.1 (Integer Exponents)

We have
1. For x1, . . . , xn ∈ R, (x1 . . . xn)

−1 = x−1
n . . . x−1

1 .
2. For x ∈ R, x > 0, (xn)−1 = (x−1)n. This value is denoted x−n.
3. For x ∈ R and w, z ∈ Z, xw+z = xwxz.
4. For w, z ∈ Z, xwz = (xz)w = (xw)z.

Proof.

Listed.
1. The proof is trivial, but for n = 2 and x1 = x, x2 = y, we see that by associativity,

(x−1x−1)(xy) = y−1(x−1x)y = y−1y = 1 and we know inverses are unique.
2. Set xi = x using (1).
3. If w, z > 0 this is trivial by the associative property. If either or both are negative, say

w < 0 < z, then we set w′ = −w > 0 and using (2) we know that

xwxz = (x−1)w
′
xz = x−w′+z = xw+z (23)

by associativity in the second last equality.

Therefore, we have successfully defined xz for all z ∈ Z, and if z is negative, we’re allowed to “swap” the −1
and |z| in the exponents. Now we want to extend this into rational exponents, first by proving the existence
and uniqueness of nth roots for any real. The proof is a little involved, but the general idea is that we want
to use the LUB property to define the nth root as the supremum of a set.

Theorem 1.12 (Existence of Nth Roots)

For any real x > 0 and every n ∈ N there is one and only one positive real y ∈ R s.t. yn = x. This is
denoted x1/n.

Proof.

Let E be the set consisting of all reals t ∈ R s.t. tn < x. We show that
1. it is nonempty. Consider t = x/(1 + x). Then 0 ≤ t < 1 =⇒ tn ≤ t < x. Thus t ∈ E and E is

nonempty.
2. it is bounded. Consider any number s = 1+ x. Then sn ≥ s > x, so s ̸∈ E, and s = 1+ x is an

upper bound of E.
Therefore, E is a nonempty set that is upper bounded, so it has a least upper bound, called y = supE.
We claim that yn = x, proving by contradiction. For both cases, we use the fact that the identity
bn − an = (b− a)(bn−1 + bn−2a+ . . .+ an−1) gives the inequality

bn − an < (b− a)nbn−1 for 0 < a < b (24)

1. Assume yn < x. Then we choose a fixed 0 < h < 1 s.t.

h <
x− yn

n(y + 1)n−1
(25)

Then by putting a = y, b = y + h, we have

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x− yn (26)

and thus yn < (y + h)n < x. This means that y + h ∈ E, and so y is not an upper bound.

12/ 203



Real Analysis Muchang Bahng Spring 2025

2. Assume yn > x. Then we set a fixed number

k =
yn − x

nyn−1
(27)

Then 0 < k < y. If we take any t ∈ R s.t. t ≥ y−k, this implies that tn ≥ (y−k)n =⇒ −tn ≥
−(y − k)n, and so

yn − tn ≤ yn − (y − k)n < knyn−1 = yn − x (28)

Thus tn > x and t ̸∈ E. So it must be the case that t < y − k, and so y − k is an upper bound
of E, contradicting that y is least.

At this point, rooting has been introduced as sort of an independent map from exponentiation. We show
that they have the nice property of commuting.

Lemma 1.2 (Rooting and Exponentiation Commute)

For p ∈ Z, q ∈ N and x ∈ R with x > 0, we have

(xp)1/q = (x1/q)p (29)

Proof.

If p > 0, then let r = (xp)1/q. By definition rq = xp. Let s = x1/q By definition sq = x. Therefore
rq = (sq)p = sqp from the lemma on integer exponents. But since roots are well-defined and unique

r = (rq)1/q = (sqp)1/q = sp =⇒ (xp)1/q = (x1/q)p (30)

If p = 0, this is trivially 0, and if p < 0 the by the same logic with p = −p′ for p′ > 0 and y = x−1 > 0.
we know

(xp)1/q =
(
(y−1)−p′)1/q

= (y−(−p′))1/q = (yp
′
)1/q (31)

= (y1/q)p
′
= ((x−1)1/q)p

′
= (x1/q)−p′

= (x1/q)p (32)

Theorem 1.13 (Rational Exponential Function)

Given m, p ∈ Z and n, q ∈ N, prove that

(bm)1/n = (bp)1/q (33)

Hence it makes sens to define br = (bm)1/n, since every element of the equivalence class r of each
rational number maps to the same value.

Proof.

Since m/n = p/q =⇒ mq = np,

bmq = bnp =⇒ (bm)q = (bp)n (34)

=⇒ bm = ((bm)q)1/q = ((bp)n)1/q (35)

=⇒ bm = ((bp)1/q)n (36)

=⇒ (bm)1/n = (bp)1/q (37)
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Therefore we can define for any r ∈ Q

xr = xm/n = (xm)1/n = (x1/n)m (38)

where the final equality holds from the commutativity of rooting and exponentiation.

It turns out that this is a homomorphism.

Corollary 1.2 (Rational Exponential Function is a Homomorphism)

The rational exponential function is a homomorphism. That is, given r, s ∈ Q and x ∈ R,

xr+s = xr · xs (39)

Proof.

Let r = m/n, s = p/q. Then

xr+s = xm/n+p/q = x
mq+np

nq (addition on Q)

= (xmq+np)1/nq (exp and roots commute)

= (xmq + xnp)1/nq (int exp lemma)

= (xmq)1/nq(xnp)1/nq (int exp lemma)

= xmq/nqxnp/nq (exp and roots commute)

= xm/nxp/q (relation from Q)

With rational exponents defined, we can use the least upper bound property to define a consistent extension
of a real exponent.

Lemma 1.3 ()

If r ∈ Q with r ≥ 0, then for x ∈ R, x > 1, 1 ≤ br.

Proof.

Let r = m/n. Then xr = xm/n = (xm)1/n. Since 1 < x, and m ≥ 0, we have

1 ≤ x ≤ x2 ≤ . . . ≤ xm =⇒ 1 ≤ bm (40)

Now set y = xm/n and assume that y < 1. Then

xm = yn < yn−1 < . . . < y < 1 (41)

and so xm < 1, which is a contradiction. So it must be the case that y > 1.

Lemma 1.4 (Monotonicity of Rational Exponents)

If x, y ∈ R, then for any rational r ∈ Q with r < x + y, there exists a p, q ∈ Q s.t. p < x, q < y and
p+ q = r. The converse is true as well.

14/ 203



Real Analysis Muchang Bahng Spring 2025

Proof.

r < x + y =⇒ r − y < x. By density of Q in R, we can choose r − y < p < x. Then −r + y >
−p > x =⇒ r − r + y > r − p > r − x =⇒ y > r − p > r − x, and we set q = r − p. We are done.
The converse is trivial since given p, q ∈ Q with p < x, q < y, then by the ordered field properties
p+ q < x+ y.

Corollary 1.3 (Real Exponential Function)

Given x ∈ R, we define
B(x) := {xq ∈ R | q ∈ Q, q ≤ x} (42)

We claim that given r ∈ R,
xr := supB(r) (43)

is well-defined and is a homomorphism extension of the rational exponential function. That is,

supB(x+ y) = supB(x) · supB(y) (44)

Proof.

To show that xr := supB(r) where B(r) = {xt ∈ R | t ∈ Q, t ≤ r},
1. We show it’s an upper bound. Assume it wasn’t. Then xr < xt for some t ∈ Q satisfying t ≤ r.

But t ≤ r =⇒ 0 ≤ r − t, and by the previous lemma, 1 ≤ xr−t. So 1 ≤ xr−t = xrx−t =
xr(xt)−1 =⇒ xt ≤ xr, which is a contradiction.

2. We show that it is least. Assume that it is not. Then ∃r′ ∈ Q s.t. xt ≤ xr′ and r′ < r. Now let
s ∈ Q be an element between r′ and r, which is guaranteed to exist due to density of rationals
in reals. But s < r, so by definition xs ∈ B(r), but

0 < s− r′ =⇒ 1 < bs−r′ (45)

=⇒ br
′
(br

′
)−1 < bs(b−r′) (46)

=⇒ 1 < bs(br
′
)−1 (47)

=⇒ br
′
< bs (48)

and so br
′
is not an upper bound for B(r). By contradiction, br is least.

Since this is defined, the analogous definition for real numbers is consistent with that of hte rationals,
and it is upper bounded by the Archimedean principle, so such a supremum must exist. Note that t
is rational. For the second part, from the previous lemma and the homomorphism properties of the
rational exponent,

B(x+ y) = B′(x+ y) := {bp+q ∈ R | p, q ∈ Q, p ≤ x, q ≤ y} (49)
= {bpbq ∈ R | p, q ∈ Q, p ≤ x, q ≤ y} (50)

(51)

Therefore we can treat B and B′ as the same set.
1. Prove upper bound supB(x+ y) ≤ supB(x) supB(y). Given α ∈ B′(x + y), there exists

pα, qα ∈ Q (with pα < x, qα < y) s.t. bpαbqα = α. But

bpαbqα ≤ sup
pα

{bpα} · sup
qα

{bqα} = supB(x) supB(y) (52)

2. To prove least, assume there exists K ∈ R s.t. supB′(x+ y) ≤ K < supB(x) supB(y). Then,
since the image of bx is always positive, we assume 0 < K. We bound its factors as so:
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K < supB(x) supB(y) =⇒ K/ supB(x) < supB(y). By density of the rationals, there exists
a β ∈ Q, s.t.

K

supB(x)
< β < supB(y) (53)

This means K/β < supB(x) and β < supB(y). But this means that there exists ϕ, γ ∈
B(x), B(y) s.t. K/β < ϕ, β < γ =⇒ K = (K/β) · β < ϕγ =⇒ ϕγ ∈ B′(x+ y) by definition.
So K is not an upper bound.

Furthermore, this is an isomorphism, and the inverse is defined. Let’s define this analytically.

Theorem 1.14 (Logarithm)

For b > 1 and y > 0, there is a unique real number x s.t. bx = y. We claim

x = sup{w ∈ Rbw < y} (54)

x is called the logarithm of y to the base b.

Proof.

We use the inequality bn − 1 ≤ n(b − 1) for all n ∈ N.a By substituting b = b1/n (valid since
b > 1 ⇐⇒ b1/n > 1) so b− 1 ≥ n(b1/n − 1). Now set some t > 1, and by Archimidean principle, we
can choose some n ∈ N s.t. n > b−1

t−1 . Then n(t− 1) > b− 1, and with the inequality derived we get

n(t− 1) > b− 1 ≥ n(b1/n − 1) =⇒ t > b1/n (55)

This allows us to prove 2 things.
1. If w satisfies bw < y, then bw+(1/n) < y for sufficiently large n. Setting t = yb−w (which is

greater than 1 since bw < y) gives y · b−w > b1/n =⇒ bwb1/n < y =⇒ bw+(1/n) < y.
2. If w satisfies bw > y, then bw−(1/n) > y for sufficiently large n. Setting t = bwy−1 (which is

greater than 1 since bw > y) gives bwy−1 > b1/n =⇒ bw−(1/n) > y.
Now we can prove existence. Let A the set of all w s.t. bw < y. We claim that x = supA.

1. Assume that bx < y. We know that there exists n ∈ N s.t. bx+(1/n) < y =⇒ x + (1/n) ∈ A,
contradicting that x is an upper bound.

2. Assume that bx >. We know that there exists n ∈ N s.t. bx−(1/n) > y =⇒ x− (1/n) is also an
upper bound for A, contradicting that x is least. Therefore bx = y.

We now prove uniqueness. Assume that there are two such x’s , call them x, x′. By total ordering
and x ̸= x′, WLOG let x > x′ =⇒ x − x′ > 0 =⇒ bx−x′

> 1. By density of rationals, since we
can choose r ∈ R s.t. 0 < r < x − x′, we have 1 < br < bx−x′

and so B(r) ⊂ B(x − x′). Since
1 < bx−x′

=⇒ 1 · bx′
< bx−x′ · bx′

= bx, we have bx
′
< bx and they cannot both by y. So x = x′.

aWe prove by induction. For n = 1 b1 − 1 ≤ 1(b − 1). Assume that this holds for some n. Then bn+1 − 1 =
bn+1 − b+ b− 1 = b(bn − 1)+ (b− 1) ≥ bn(b− 1)+ (b− 1) = (bn+1)(b− 1) ≥ (n+1)(b− 1), where the last step follows
since b ≥ 1 =⇒ bn ≥ n =⇒ bn+ 1 ≥ n+ 1.

1.6 Some Algebraic Inequalities
We also introduce various inequalities that may be useful for producing future results. The following lemmas
can be proved with elementary algebra on the field of reals.
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Lemma 1.5 (Bernoulli’s Inequality)

For any x ∈ R and n ∈ N, we have
(1 + x)n ≥ 1 + nx (56)

Lemma 1.6 (Young’s Inequalities)

If a > 0 and b > 0, and the numbers p and p are such that p ̸= 0, 1 and q ̸= 0, 1, and 1
p + 1

q = 1, then

a
1
p b

1
q ≤ 1

p
a+

1

q
b if p > 1

a
1
p b

1
q ≥ 1

p
a+

1

q
b if p < 1

and equality holds in both cases if and only if a = b.

Lemma 1.7 (Holder’s Inequalities)

Let xi ≥ 0, yi ≥ 0 for i = 1, 2, ..., n, and let 1
p + 1

q = 1. Then,

n∑
i=1

xiyi ≤
(∑

i=1

xp
i

) 1
p
(∑

i=1

yqi

) 1
q

for p > 1

n∑
i=1

xiyi ≥
(∑

i=1

xp
i

) 1
p
(∑

i=1

yqi

) 1
q

for p < 1, p ̸= 0

Lemma 1.8 (Minkowski’s Inequalities)

Let xi ≥ 0, yi ≥ 0 for i = 1, 2, ..., n. Then,( n∑
i=1

(xi + yi)
p

) 1
p

≤
( n∑

i=1

xp
i

) 1
p

+

( n∑
i=1

ypi

) 1
p

when p > 1

( n∑
i=1

(xi + yi)
p

) 1
p

≥
( n∑

i=1

xp
i

) 1
p

+

( n∑
i=1

ypi

) 1
p

when p < 1, p ̸= 0

1.7 The Extended Reals and Hyperreals
Great! We have officially constructed the reals, and we can finally feel satisfied about defining metrics,
norms, and inner products as mappings to the codomain R. Now let’s make the concept of infinite numbers
a bit more rigorous. In short, what we do is just add the numbers ±∞ to R, which we call the extended
reals, and try and extend the properties from R to the extended reals. We will see that not all properties
can be transferred.

Theorem 1.15 (Extended Real Number Line)

The extended real number line is the set R := R∪{−∞,+∞}. We define the following operations.
1. Order. −∞ ≤ x and x ≤ +∞ for all x ∈ R.
2. Addition. +∞−∞ = 0. x+∞ = +∞ and x−∞ = −∞ for all x ∈ R.

17/ 203



Real Analysis Muchang Bahng Spring 2025

3. Multiplication.

x×∞ =


+∞ if x > 0

0 if x = 0

−∞ if x < 0

(57)

It turns out that this is still Dedekind-complete, which is nice. Unfortunately we lose a lot of structure.
1. this is not even a field since the multiplicative inverse of ±∞ is not defined.
2. the Archimedean principle does not hold
3. we cannot define a metric nor a norm.
4. we can define the order topology, however.

The loss of the field property is quite bad, and we might want to recover this. Therefore, we can add more
elements that serve to be the multiplicative inverse of infinity. We call these inverses infinitesimals and the
new set the hyperreal numbers.

Theorem 1.16 (Hyperreals)

The hyperreals

In fact, when Newton first invented calculus, the hyperreals were what he worked with, and you can sur-
prisingly build a good chunk of calculus with this. Even though this is a dead topic at this point, a lot of
modern notation is based off of this number system, so it’s good to see how it works. For example, when we
write the integral ∫

f(x) dx (58)

we are saying that we are taking the uncountable sum of the terms f(x) dx, the multiplication of the real
number f(x) and the infinitesimal number dx living in the hyperreals. Unfortunately, we cannot fully
construct a rigorous theory of calculus with only infinitesimals. However, in practice (especially physics)
people tend to manipulate and do algebra with infinitesimals, so having a good foundation on what you can
and cannot do with them is practical. While the focus won’t be on smooth infinitesimal analysis (SIA), I
will include some alternate constructions later purely with infinitesimals.

1.8 Euclidean Space
Congratulations! We have rigorously constructed both the reals and complex numbers, and this becomes the
cornerstone to construct other fundamental sets. Now we consider spaces of the form Rn or Cn, which we
call Euclidean spaces, and construct them. This is actually quite easy since we understand linear algebra.

Definition 1.9 (Convex Sets)

A set S is convex if for every point x, y ∈ S, the point

z = tx+ (1− t)y ∈ S (59)

where 0 ≤ t ≤ 1.
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2 Euclidean Topology
With the construction of the real line and the real space, the extra properties of completeness, norm, and
order (for the real line) allows us to restate these topological properties in terms of these “higher-order”
properties. It also proves much more results than for general topological spaces. Therefore, the next few
sections will focus on reiterating the topological properties of R and Rn (this can be done slightly more
generally for metric spaces, but we talk about this in point-set topology). In this section, we will restate
the notion of open sets, limit points, compactness, connectedness, and separability. Then we can continue
in the next section sequences and their limits, and after that we describe continuity. Once this is done, we
can focus constructing the derivative and integral, which are unique to Banach spaces.

2.1 Open Sets
It is well-known that the set of open-balls of a metric space (X, d) is indeed a topology, which we prove in
point-set topology. Once we prove this, we have access to a whole suite of theorems on topological spaces
that we can just apply to Rn. We will restate many of these topological theorems for completeness but will
not prove them. However, if any of these theorems use any other structure, such as order/metrics/norms/-
completeness, we will have to prove them.

Definition 2.1 (Topology)

Let X be a set and T be a family of subsets of X. Then T is a topology on Xa if it satisfies the
following properties.

1. Contains Empty and Whole Set :
∅, X ∈ T (60)

2. Closure Under Union. If {Uα}α∈A is a class of sets in T , then⋃
α∈A

Uα ∈ T (61)

3. Closure Under Finite Intersection: If U1, . . . , Un is a finite class of sets in T , then

n⋂
i=1

Ui ∈ T (62)

A topological space is denoted (X,T ).
aI will use script letters to denote topologies and capital letters to denote sets.

Theorem 2.1 (Euclidean Topology)

Let τR (which we denote as T ) be the set of subsets S of (Rn, || · ||) satisfying the property that if
x ∈ S, then there exists an open ϵ-ball B(x, ϵ) s.t. B ⊂ S. T is a topology of Rn.

Proof.

We prove the following three properties.
1. ∅,Rn are open.
2. For any collection {Gα}α of open sets, ∪αGα is open.
3. For any finite collection G1, . . . , Gn of open sets, ∩ni=1Gi is open.

Listed.
1. Let x ∈ ∪αGα. Then, x ∈ Gk for some k and since Gk is open, there exists a Bϵ(x) ⊂ Gk ⊂
∪αGα, proving that ∪αGα is open.
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2. Let x ∈ ∩ni=1Gi. Then, x ∈ Gi for every i, and so for each Gi, there exists an ϵi > 0 s.t.
Bϵi(x) ⊂ Gi. Since the set {ei} is finite, we can take

ϵ = min
i
{ϵi}

and see that Bϵ(x) ⊂ Gi for all i, which implies that Bϵ(x) ⊂ ∩ni=1Gi. Since we have proved
the existence of ϵ, ∩ni=1Gi is open.

Definition 2.2 (Open Set)

An open set is an element of T .
1. An open neighborhood, or sometimes just the neighborhood, of x ∈ Rn is an open set Ux

containing x.
2. A punctured neighborhood is U◦

x = Ux \ {x}.

Theorem 2.2 (Equivalence to Open Ball Topology)

T is equal to the topology T ′ generated by the basis B of open balls

B(x, r) := {y ∈ Rn | ||x− y|| < r} (63)

Proof.

Let T be the Euclidean topology and T ′ be the open ball topology.
1. We show T ⊂ T ′.
2. We show T ′ ⊂ T .

By defining the topology, we have automatically defined a bunch of topological objects and properties. For
clarification, we will restate them.

Corollary 2.1 ()

An open ball is an open set.

Proof.

Given x ∈ Br(p), we can imagine that x will always have some space between it and the boundary.
We want to show that there exists some ϵ > 0 s.t. Bϵ(x) ⊂ Br(p). That is, given any point y ∈ Bϵ(x),
we can show that y ∈ Br(p). Since ||x − p|| < r, there exists some space 0 < r − ||x − p||. There
always exists a real number 0 < ϵ < r − ||x− p||, so given y ∈ Bϵ(x), we can bound

||y − p|| = ||y − x+ x− p|| ≤ ||y − x||+ ||x− p|| ≤ ϵ+ ||x− p|| < r (64)

Example 2.1 ()

Here are some examples of sets which are open and not open.
1. U = {(x, y) ∈ R2 : x2 + y2 ̸= 1} is open since for every point x ∈ U , we just need to find a

radius ϵ > 0 that is smaller than its distance to the unit circle.
2. (a, b) × (c, d) ⊂ R2 is open since given a point x, we can take the minimum of its distance

between the two sides of the rectangle and construct an open ball.
3. S = {(x, y) ∈ R2 : xy ̸= 0} is open since given a point x ∈ S, we can take the minimum of the

distance between it and the x and y axes.
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4. The set of all complex z such that |z| ≤ 1 is not open since we cannot construct open balls at
the boundary points that are fully contained in the set.

5. The set S = {1/n}n∈N is not open since given any point x = 1/n, we can construct an open
ball with radius ϵ < 1/(n+ 1), which contains irrationals that are not in S.

Definition 2.3 (Interior Point)

A point p ∈ S is an interior point if there exists an neighborhood N of p such that N ⊂ S.

An interior point means that we can always contain the point in S with some “breathing room." By definition
an open set is a set where all of its points are interior points. A set is then said to be open if every point has
this breathing room. This can be useful when defining differentiation at a point within an open set, since
we can always find a neighborhood to take limits on.

Now that we have defined the Euclidean topology, we will prove that the features of topological objects can
be reduced to features in Rn.

Theorem 2.3 (Convexity)

An open ball is convex in a normed vector space.

Proof.

The normed part is important here, as the properties of the metric is not sufficient. Given Br(p),
x, y ∈ Br(p) implies that ||x− p|| < r and ||y − p|| < r. Therefore,

||tx+ (1− t)y − p|| = ||tx− tp+ (1− t)y − (1− t)p|| (65)
≤ t||x− p||+ (1− t)||y − p|| (66)
= tr + (1− t)r = r (67)

What happens if we weaken it to a metric?

2.2 Limit Points and Closure

Definition 2.4 (Limit Point)

A point p ∈ Rn is a limit point of S ⊂ Rn if every punctured neighborhood of p has a nontrivial
intersection with X.a The set of all limit points of S is denoted S′.

aThe definition just means that if we take a point and draw smaller and smaller circles around it, the circle itself
should still overlap with S, no matter how small it gets.

Theorem 2.4 ()

Let A1, . . . , An be a finite collection of sets. Then

n⋃
i=1

A′
i =

( n⋃
i=1

Ai

)′
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Proof.

Let the LHS be W and the RHS be V . If x ∈W , x ∈ A′
i for some i, and so for all ϵ > 0, there exists

a B◦
ϵ (x) s.t.

B◦
ϵ (x) ∩Ai ̸= ∅ =⇒ B◦

ϵ (x) ∩
( n⋃

i=1

Ai

)
̸= ∅

which means that x ∈ V . Now assume that x ∈ V . Then for all ϵ > 0, there exists a B◦
ϵ (x) s.t.

B◦
ϵ (x) ∩

( n⋃
i=1

Ai

)
̸= ∅

which implies that B◦
ϵ (x) ∩Ai ̸= ∅ for some i, which means that x ∈ A′

i ⊂W .

A closed set can be defined in many equivalent ways for arbitrary topological spaces. The more general proof
is done in topology, but we still prove it in the context of analysis.

Definition 2.5 (Closed Set)

A closed set S ∈ Rn is a set that contains all of its limit points.

Theorem 2.5 (Alternative Definition of Closed Set)

A set S is closed iff Sc is open.

Proof.

We prove both ways:
1. (→) Given that S is closed, then let x ∈ Sc. x is not a limit point of S since if it were, then it

would be in S, and so there exists a punctured open neighborhood B◦
ϵ (x) of x s.t. S∩B◦

ϵ (x) = ∅.
Since x ̸∈ S, we also have S∩Bϵ(x) = ∅, which implies that Bϵ(x) ⊂ Sc. Since for every x ∈ Sc,
there exists a Bϵ(x) ⊂ Sc, Sc is open.

2. (←) For simplicity, it suffices to prove if S open, then Sc is closed. Given that S is open, we
have for every x ∈ S, there exists Bϵ(x) ⊂ S, which implies that Bϵ(x) ∩ Sc = ∅. Since there
exists an Bϵ(x) that does not contain points in Sc, x cannot be a limit point of Sc, and so there
exists no limit points of Sc in S. Therefore, all limit points of Sc are in Sc, proving that Sc is
closed.

Theorem 2.6 ()

We have the following topological properties:
1. For any collection {Fα}α of closed sets, ∩αFα is closed.
2. For any finite collection F1, . . . , Fn of open sets, ∪ni=1Fi is closed.

Proof.

Listed.
1. Let x be a limit point of ∩αFα, and we want to show that x ∈ ∩αFα. By definition of limit

points, for every ϵ > 0, we have

Bϵ(x) ∩
(⋂

α

Fα

)
which means that Bϵ(x) ∩ Fα ̸= ∅ for all α. This means that x is a limit point for every Fα,
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and since they are all closed, x ∈ Fα for all α, which implies that x ∈ ∩αFα.

We can intuitively see a few properties about this. First, a finite set S of points does not have any limit
points, since if we draw small enough circles around a p ∈ S, then at some point the circle will not contain
any more points (remember that we’re talking about deleted neighborhoods). Following this, we can deduce
that a limit point must always have an infinite number of points close to it, as in no matter how small the
circle gets, there are always an infinite number of points contained within that circle. This also means that
if p is a limit point, then we can construct a sequence of points in S that converges to p, since every open
ball with smaller and smaller radii will still have points in S.

Theorem 2.7 ()

If p is a limit point of S, then every neighborhood of p contains infinitely many points of S. The
converse is also true trivially.

Proof.

Assume p is a limit point and that there exists a finite number of points within a deleted neighborhood
B◦

r (p). Then, we can enumerate them p1, p2, . . . , pn by their distances to p, with

d(p1, p) ≤ d(p2, p) ≤ . . . ≤ d(pn, p) (68)

Since p1 ̸= p, we have d(p1, p) > 0 and so, we can choose an 0 < ϵ < d(p1, p) s.t. B◦
ϵ (p) does not

contain any of the pi’s. This neighborhood does not contain any elements of S and so p is not a limit
point.

Corollary 2.2 ()

A finite set has no limit points.

Proof.

If S is a finite set, then every neighborhood of every point p in Rn will have at most finite points,
which, by the previous theorem, is not a limit point.

We show a very useful result that will make things much more convenient when proving the following
theorems and exercises. This is quite intuitive, since it shows that the limit points of a finite union of sets
is the same as the finite union of the limit points of each set. This is clearly not true for infinite unions:

1. Look at the countable set Q ⊂ R. Each {q}′ = ∅, but Q′ = R.

2. Look at the uncountable set R. Each {x ∈ R}′ = ∅, but R′ = R.

Now, we give two more definitions for convenience of deriving open and closed sets from any arbitrary set.

Definition 2.6 (Closure)

Given a set S, let the set of all limit points of S be denoted S′. The closure of S is the set S = S∪S′.
It is the smallest closed set that contains S.

Definition 2.7 (Interior)

Given a set S, the interior of S is denoted S◦, the set of all interior points of S. It is the largest
open set that is within S.
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Theorem 2.8 ()

Let E be a nonempty set of real numbers which is bounded above. Let y = supE. Then y ∈ E.
Hence y ∈ E if E is closed.

Proof.

Assume that y is not a limit point of E. Then, there exists some ϵ > 0 s.t. (y − ϵ, y + ϵ) does not
intersect with E. This means that y − ϵ is an upper bound of E, and so y is not the supremum.

Theorem 2.9 ()

If X is a metric space and E ⊂ X, then
1. E is closed.
2. E = E if and only if E is closed.
3. E ⊂ F for every closed set F ⊂ X such that E ⊂ F . That is, if E ⊂ F closed, then “increasing"

the size of E to its closure will not make it greater than F .

Proof.

Listed.
1. Let x be a limit point of E. Then, for every ϵ > 0, we have Bϵ(x) ∩ E ̸= ∅, which means that

either Bϵ(x) ∩ E ̸= ∅ (in which case x ∈ E′ =⇒ x ∈ E and we are done) or Bϵ(x) ∩ E′ ̸= ∅.
We wish to prove that in the latter case, x being a limit point of E′ still implies that x is a
limit point of E. Since Bϵ(x)∩E′ ̸= ∅, there must exist a y ∈ Bϵ(x)∩E′. Since y ∈ E′, we can
construct an open ball Bδ(y) containing elements of E, and since Bϵ(x) is open, we can contain
Bδ(y) entirely within Bϵ(x). Therefore,

Bδ(y) ∩ E ̸= ∅ =⇒ Bϵ(x) ∩ E ̸= ∅

therefore, x ∈ E′ =⇒ x ∈ E.
2. If E is closed, then E′ ⊂ E =⇒ E = E ∪E′ = E. If E = E = E ∪E′, then E′ ⊂ E =⇒ E is

closed.
3. Since E ⊂ F , it suffices to prove that E′ ⊂ F . Consider a limit point x of E. Then every

punctured open neighborhood of x satisfies B◦
ϵ (x) ∩ E ̸= ∅. But since E ⊂ F , we have

B◦
ϵ (x) ∩ F ̸= ∅

and so x is also a limit point of F . But since F is closed, x ∈ F . Therefore, E = E ∪ E′ ⊂ F .

The first two statements (1) and (2) imply the following.

Corollary 2.3 ()

The closure of the closure of E is equal to the closure of E.

Proof.

We know that E ⊃ E, so we must prove that E ⊂ E, which is equivalent to proving that E
′ ⊂ E.

Let x ∈ E
′
, i.e. is a limit point of E. Then, for every ϵ > 0, we have Bϵ(x) ∩ E ̸= ∅. Pick a point y

from this intersection, and since Bϵ(x) is open, we can construct an open ball Bδ(y) fully contained
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in Bϵ(x). Since y ∈ E, y is a limit point of E, which implies

Bδ(y) ∩ E ̸= ∅ =⇒ Bϵ(x) ∩ E ̸= ∅ (69)

and therefore x is a limit point of E, x ∈ E.

2.3 Compactness

Definition 2.8 (Open Cover)

An open cover of a set E in a metric space X is a collection {Gα} of open subsets of X such that
E ⊂ ∪αGα.

Definition 2.9 (Compact Set)

A subset S of a metric space X is said to be compact if every open cover of S contains a finite
subcover.

While openness behaves differently depending on its embedding space, compactness stays constant. There-
fore, we don’t have to worry about talking about which space a compact set is embedded in.

Theorem 2.10 (Compactness is Preserved Under Subspace Topology)

Suppose K ⊆ Y ⊆ X. Then K is compact relative to X if and only if K is compact relative to Y .

Proof.

We can prove bidirectionally.
1. Suppose that K is compact in X. Then given any open cover {Uα}α of K, there exists a finite

subcover {Ui}i. Now let there exist an open cover {Vα} in Y , but every Vα = Uα ∩ Y for some
Uα open in X. Therefore, we can take the finite subcover {Vi = Vi ∩ Y }i.

2. Suppose that K is compact in Y . Then given any open cover {Vα} of K, there exists a finite
subcover {Vi}i. Now let there exist an open cover {Uα} in X. Then we set {Vα = Uα ∩ Y }α,
which has a finite subcover {Vi = Ui∩Y }, and therefore we can take {Ui} as our finite subcover
in X.

Theorem 2.11 ()

A finite union of compact sets is compact.

Proof.

It suffices to prove for two sets A,B by induction. Take an arbitrary cover L of A ∪ B. Then L is
a cover of A, so it has a finite subcover F ⊂ L . It is also a cover of B, so it has a finite subcover
G ⊂ L . Therefore, F ∪ G ⊂ L is a cover of A ∪ B, and since it is the union of finite covers, it is
finite.

As we will see in the following theorems, compact sets behave well with closed sets. In fact, compactness is
in a form a stronger notion than closedness.
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Theorem 2.12 ()

Compact subsets of metric spaces are closed.

Proof.

We would like to show that if A is compact in X, then Ac is open. What we would like to do is if we
have some x ∈ Ac, then we must prove that there exists some open set Bϵ(x) that is disjoint with A.
For every point a ∈ A, we can construct an open balls Va = Bd(x,a)/2(a) and Ua = Bd(x,a)/2(x). We
know that if y ∈ Bd(x,a)/2(a), then assuming y ∈ Bd(x,a)/2(x) will give

d(x, a) ≤ d(x, y) + d(y, a) <
d(x, a)

2
+

d(x, a)

2
= d(x, a) (70)

which is absurd. Since {Va}a∈A forms an open covering of A, then by compactness we can take a
finite subcover Va1

, . . . , Van
, along with the respective neighborhoods of x Ua1

, . . . , Uan
. Since we

have established

Vai ∩ Uai = ∅ =⇒
n⋂

i=1

Vai ∩
( n⋃

i=1

Uai

)
= ∅ (71)

and since ∩ni=1Vai
is open (as it is the intersection of open sets) and disjoint from an open cover of A

and hence from A, we have proved that Ac is open, and so A is closed.

Theorem 2.13 ()

Closed subsets of compact sets are compact.

Proof.

Let C ⊂ K ⊂ X with K compact and C closed. Then let {Uα} be an open cover of C. Then Cc is
open in X, and so {Uα} ∪ {Cc} is an open cover of K, so it has a finite subcover S.

1. If Cc ̸∈ S, then we have a finite subcover of C.
2. If Cc ∈ S, then we can take the element out to get a finite subcover of C.

Therefore we have constructed a way to make a finite subcover. C is compact.

Corollary 2.4 ()

If F is closed and K is compact, then F ∩K is compact.

The general notion of compactness6 for topological spaces is not needed for analysis. Rather, we make use
of the following theorem which allows us to focus on the compactness of subsets in Euclidean spaces Rn.

Theorem 2.14 (Heine-Borel)

Let E ⊂ Rk. The following are equivalent.
1. E is closed and bounded
2. E is compact.

6According to Terry Tao, a compact set is "small," in the sense that it is easy to deal with. While this may sound
counterintuitive at first, since [0, 1] is considered compact while (0, 1), a subset of [0, 1], is considered noncompact. More
generally, a set that is compact may be large in area and complicated, but the fact that it is compact means we can interact
with it in a finite way using open sets, the building blocks of topology. That finite collection of open sets makes it possible to
account for all the points in a set in a finite way. This is easily noticed, since functions defined over compact sets have more
controlled behavior than those defined over noncompact sets. Similarly, classifying noncompact spaces are more difficult and
less satisfying.
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3. Every infinite subset of E has a limit point in E.

Example 2.2 ()

An open set in R2 is not compact. Take the open rectangle R = (0, 1)2 ⊂ R2. There exists an infinite
cover of R

R =

∞⋃
n=0

(
0, 1
)
×
(
0,

2n+1 − 1

2n+1

)
that does not have a finite subcover.

Clearly, the limit point of an open set is its boundary points. Note that a sequence of points can also have
a limit point.

Theorem 2.15 (Bolzano-Weierstrass Theorem)

Every bounded sequence in Rn has a limit point.

Proof.

The fact that the infinite sequence is bounded means that there exists some closed subset I ∈ Rn

that contains all point of the sequence. By definition I is compact, so by the Heine-Borel theorem,
every cover of I has a finite subcover.
Now, assume that there exists an infinite sequence in I that is not convergent, i.e. has no limit point.
Then, each point xi ∈ I would have a neighborhood U(xi) containing at most a finite number of
points in the sequence. We can define I such that the union of the neighborhoods is a cover of I.
That is,

I ⊂
∞⋃
i=1

U(xi)

However, since every U(xi) contains at most a finite number of points, we must have an infinite open
neighborhoods to cover I =⇒ we cannot have a finite subcover. This contradicts the fact that I is
compact.

In fact, compactness actually implies completeness.

Theorem 2.16 ()

Compact metric spaces are complete.

So far, we’ve been pretty abstract about compact sets. In general, it’s pretty easy to prove that a set is
not compact. We just need to find one example of an open cover that does not have a finite subcover. To
prove that set is compact, we must show that for every open cover, we can get a finite subcover. This
sounds quite daunting, but here is a special theorem that can start us off, and the theorems above allow us
to construct more compact sets. We will need the third interpreation of completeness of the reals: nested
intervals completeness.

Theorem 2.17 (Nested Intervals Theorem)

If {In = [an, bn]} in R is a sequence of nested closed intervals, then

∞⋂
i=1

In ̸= ∅ (72)
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Proof.

Note that {an} is bounded above by b1. Therefore by LUB property it must have a supremum, call
it x = supn{an}. Then, we see that an ≤ x ≤ bn for all n, and so x is in the intersection.

Corollary 2.5 ()

Every closed interval is compact.

Proof.

Let I = [a, b]. Then if x, y ∈ I, |x− y| ≤ b− a = δ. Now by contradiction, suppose that there exists
an open cover {Uα} of I which contains no finite subcover of I. Then letting c = (a+ b)/2, at least
one of the two intervals [a, c], [c, b] cannot have a finite subcovering (otherwise their finite union can
be covered). WLOG let it be [a, c]. We keep subdividing and get the sequence of nested intervals.

I ⊃ I1 ⊃ I2 ⊃ . . . (73)

We know that In is not covered by any finite subcollection of {Uα} and if x, y ∈ In, then |x−y| < 2−nδ.
From the nested intervals theorem, there exists a point z lying in every In. There must then be an
open neighborhood Uz in the open cover, and by definition of openness there exists a ϵ > 0 s.t.
z ∈ Bϵ(z) ⊂ Uz. By the Archimidean property, we can set n so large that 2−nδ < ϵ and this means
that Bϵ(z) ⊃ In, which contradicts the fact that In is not covered by a finite subcollection. Therefore
I is compact.

2.4 Connectedness

Definition 2.10 (Separate, Connected Sets)

Two subsets A and B of a metric space X are said to be separated if both A ∩ B and A ∩ B are
empty, i.e. if no point of A lies in the closure of B and no point of B lies in the closure of A.

Example 2.3 ()

It is clear that separate sets imply disjointness. However, this is not true for the other way around.
1. (0, 1) and [1, 2) are disjoint but not separate.
2. The rationals and irrationals are disjoint, but not separate.

Theorem 2.18 ()

A subset E of the real line R is connected if and only if it has the following property: if x ∈ E, y ∈ E
and x < z < y, then z ∈ E.

Proof.

28/ 203



Real Analysis Muchang Bahng Spring 2025

2.5 Separability

2.6 Perfect Sets

Definition 2.11 (Perfect Sets)

A set P is perfect if it is closed and all of its points are limit points of P . In other words, the limit
points of P and P itself coincide.

P ′ = P (74)

Theorem 2.19 ()

Let P be a nonempty perfect set in Rk. Then P is uncountable.
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3 Sequences in Euclidean Space
We have already defined sequences, but we’ll add to our vocabulary to describe and classify sequences and
series. To make this chapter a bit more self-contained, we redefine sequences and series.

Definition 3.1 (Sequence)

A sequence on a space X is a function f : N → X. We usually denote the sequence as (xn), where
xn = f(n).a

aNote that (xn) as a sequence is different from {xn} as a set.

Definition 3.2 (Constant Sequence)

Let X be any set.
1. {xi} is a constant sequence if xi = x for all i
2. {xi} is an ultimately constant sequence if xi = x for all i > N for some N ∈ N. If x = 0

(assuming that an identity exists), then {ai} is finary.

3.1 Convergence in Metric Topologies
Now that we have defined sequences, we want to talk about their convergence, and if they do converge, what
they converge to.

Definition 3.3 (Limit of Sequence in Topological Space)

A number x ∈ R is called the limit of the sequence {xn}, written

lim
n→∞

xn = x (75)

if for every neighborhood Ux there exists an index N such that xn ∈ Ux for all n > N . If x is the
limit of (xn), then we say that (xn) converges to x. If the limit of (xn) is not well defined or finite,
then we say that (xn) is divergent.

Note that x being the limit of a sequence (xi) is stronger than the claim that x is a limit point of {xi}. If
we consider the sequence 0, 1, 0, 1, . . ., we can see that both 0 and 1 are limit points, but the limit does not
exist. We would like to define some notion of limit points in the language of sequences. We can precisely do
this by treating a sequence as a set and talking about subsequential limits.

Definition 3.4 (Subsequences)

A subsequence of {an} is a sequence {aγk
}, where {γk} is a strictly increasing infinite subset of N.

Definition 3.5 (Partial Limits)

The partial limit of a sequence {xn} is the limit of any of its subsequence.
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n

an

Figure 1: Two partial limits of the sequence an = 1/n for n odd and n/2 for n even, is +∞ and 0.

Lemma 3.1 (Partial Limits Equivalent to Limit Point)

Given a sequence (xn), x is a limit point of {xn} iff there exists a subsequence of (xn) that converges
to x.

Immediately from the properties of the metric topology we know the following.

Definition 3.6 (Limit of a Sequence in Metric Space)

x is the limit of (xn) if for every ϵ > 0, there exists an index N ∈ N such that

d(xn, x) < ϵ∀n > N (76)

The next few theorems help us develop some intuition behind convergence of sequences. This is where the
concept of limit points from topology becomes connected to sequences. In here, a limit point of a sequence
is a viable candidate for which a sequence converges to.

Theorem 3.1 (Sufficient Conditions for Convergence in Metric Space)

Let {xn} be a sequence in a metric space X.
1. {xn} converges to x ∈ X if and only if every neighborhood of x contains xn for all but finitely

many n.
2. If {xn} converges to x, then x is unique.
3. If {xn} converges, then {xn} is bounded.
4. If E ⊂ X and x is a limit point of E, then there exists a sequence {xn} in E that converges to

x.

Proof.

Listed.
1. ( =⇒ ) Let pn → p ∈ X. Then, for every ϵ > 0, there exists N ∈ N s.t. d(p, pn) < ϵ for all

n > N . Given neighborhood Bϵ(p), xn ∈ Bϵ(p) for all n > N =⇒ at most N elements are
not in Bϵ(p). ( ⇐= ) Now for any ϵ > 0, let every Bϵ(p) contain all but finitely many pn.
Enumerate them {xnk

}Kk=1, and let
α = max{nk}

This means that there exists an α ∈ N s.t. pn ∈ Bϵ(p) for all n > α, which implies that pn → p.
2. Assume {pn} converges to p, p′ ∈ X, with p ̸= p′. Then for all ϵ > 0 there exists N1, N2 ∈ N
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s.t. d(p, pn) < ϵ for all n > N1 and d(p′, pn) < ϵ for all n > N2. This means that there exists a
N = max{N1, N2} satisfying the above. Since p ̸= p′, set ϵ = d(p, p′)/2. Then,

d(p, pn) <
d(p, p′)

2
and d(p′, pn) <

d(p, p′)

2

which implies that by adding both sides and invoking triangle inequality, we have

d(p, p′) ≤ d(p, pn) + d(p′, pn) < d(p, p′)

which is absurd.
3. Choose any ϵ > 0. Then from (a), Bϵ(x) contains all but finitely many V = {xnk

}Kk=1. Take

M = max{ϵ, d(xn1
, x), . . . , d(xnK

, x)}

and so d(x, xn) < M for all n ∈ N.a
4. We can explicitly construct one. Let p ∈ E′. Then choose ϵ = 1, 1

2 ,
1
3 , . . . and for every ϵ > 0,

Bϵ(p) ∩ E ̸= ∅. Choose a pn within this intersection for every ϵ = 1
n . Then, we have {pn}

contained in E. We want to show that this converges to p. Take any ϵ > 0, then there exists
N ∈ N s.t. 0 < 1

N < ϵ, and for every n > N , 1
n < 1

N < ϵ. Therefore, for every n > N ,

pn ∈ B1/n(p) ⊂ Bϵ(p)

which means that pn ∈ Bϵ(p) for all n > N , implying that limn→∞ pn = p.
aThis is also a direct result of every metric topology being Hausdorff.

Lemma 3.2 ()

{xn} converges to x if and only if every subsequence of {xn} converges to x.

Proof.

Let pn → p. Then, take any subsequence {pnk
} of {pn}. For any ϵ > 0, there exists a N ∈ N s.t.

d(p, pn) < ϵ for all n > N . Since N is finite and the nk’s are unbounded, there must exist a K ∈ N
s.t. nk > N if k > K. Therefore, given any ϵ > 0, we have proved the existence of a K ∈ N s.t.
k > K =⇒ nk > N , which implies by convergence of pn, that

d(pnk
, p) < ϵ (77)

which by definition means that pnk
converges to p. Now, for the other direction, given {pn} with

every subsequence converging to p, we can take the subsequence {pn} itself (nk = k), which converges
to p.

Theorem 3.2 ()

If {xn} is a sequence in a compact metric space X, then some subsequence of {xn} converges to a
point of X.

Proof.
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Corollary 3.1 (Bolzano-Weierstrass Theorem)

Every bounded sequence in Rn contains a convergent subsequence.

Proof.

It suffices to prove that there exists a monotonic sequence within a bounded sequence {xn}.

Theorem 3.3 (Nested Compact Sets)

Listed.
1. If E is the closure of a set E in a metric space X, then

diamE = diamE

2. If Kn is a sequence of compact sets in X s.t. Kn ⊃ Kn+1 for n ∈ N and if

lim
n→∞

diamKn = 0

then ∩∞n=1Kn consists of exactly one point.

So far, we have talked about the limits of a sequence, which may or may not exist. But we do know from
3.2.2 that there always exists a subsequence that is either convergent or tends to ±∞. In this section, we
focus on these subsequential limits. Here is our first result.

Theorem 3.4 ()

The subsequential limits of a sequence (xn) in a metric space form a closed subset of X.

Proof.

Let E be the set of subsequential limits and y ∈ E′ be a limit point of E. We must show that y ∈ E.a
We will construct a subsequence (xnk

) that converges to y. Given any ϵ > 0, we can see that the
Bϵ/2(y)∩E ̸= ∅, so choose an element zϵ. Furthermore, zϵ means that it is a limit point of {xn}, and
so Bϵ/2(z) ∩ {xn} ≠ ∅, call this x(ϵ). Therefore, by the triangle inequality,

|y − x(ϵ)| ≤ |y − z|+ |z − x(ϵ)| = ϵ

2
+

ϵ

2
= ϵ (78)

and so we can take a point from the sequence (xn) for every ϵ. Now we do this for ϵ = 1/n, and
choose nk that is greater than its previous by restricting the sequence to that past nk−1. Doing this
gives a subsequence which converges to y. Therefore y ∈ E.

aIntuitively, we can see that y is infinitesimally close to E, which consists of points infinitesimally close to {xn},
and so y should be infinitesimally close to {xn}.

3.2 Convergence in Reals
The properties of a general metric space give us some general conditions to determine whether a sequence
converges in Rn. To add to our toolbox in determining convergence, we will focus on sufficient conditions for
convergence in R, which has the additional properties of being an ordered field. These additional structures
unlock a whole new suite of theorems in convergence. Why do we want to focus on just real-valued, i.e.
numerical, sequences? First is that since Rn is constructed as the product topology of R, we can prove a
lot about continuity of functions in Rn by proving limits in R, and letting the construction of the product
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topology do the rest. Second, the codomain of many natural structures such as inner products, norms, and
measures lie in the reals, and we often need to prove convergence of these values.

3.2.1 Completeness

So far, in order to show that a sequence is convergent, we must identify a real number first and then show
using the ϵ-δ definition that it converges. This might be overkill in a case where we just want to prove
that a sequence converges, but we don’t care what it converges to. Unsurprisingly, we use the fact that the
sequence lives in the reals. We can determine convergence by using Cauchy-completeness, which gives us the
“theorem” (though it is really a fact by construction).

Theorem 3.5 (Cauchy-Convergence Criterion)

A cauchy sequence in R converges.

The second result is an immediate consequence of Dedekind completeness, which is equivalent to Cauchy
completeness in the reals.

Definition 3.7 (Monotonic Sequences)

Let X be an ordered set. {xn} is
1. increasing if xn+1 > xn for all n.
2. decreasing if xn+1 < xn for all n.
3. nondecreasing if xn+1 ≥ xn for all n.
4. nonincreasing if xn+1 ≤ xn for all n.

Sequences of these types are called monotonic.

Lemma 3.3 (Convergence Criterion for Monotonic Sequences)

In order for a nondecreasing (nonincreasing) sequence to be convergent, it is necessary and sufficient
that it is bounded above (or below).

Proof.

It satisfies to prove the first case, as the second case can be done similarly without much difficulty.
Let xn ≤ xn+1. Then the set {xn} is bounded above in R, which has the least upper bound property,
and so there exists a least upper bound x. We claim that the sequence converges to x. For every
ϵ > 0, since it is least, there exists at least one xN ∈ (x − ϵ, x). By monotonicity, this means that
xn ∈ (x− ϵ, x) for all n ≥ N , and so the sequence converges to x.

3.2.2 Properties of Order

We are able to see how both Cauchy and Dedekind completeness of the reals define convergence in R. Now
let’s squeeze a bit more out of the total ordering to gain some properties of convergence and divergence.

Theorem 3.6 (Preservation of Ordering Between Sequences and Limits)

Given convergent sequences {xn} and {yn}, if

lim
n→∞

xn < lim
n→∞

yn (79)

then there exists an index N ∈ N such that xn < yn for all n > N .
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Proof.

Given xn → x, yn → y and x < y(∈ R), then for every ϵ > 0, there exists N1, N2 ∈ N s.t. d(x, xn) < ϵ
for all n > N1 and d(y, yn) < ϵ for all n > N2. Setting N = max{N1, N2}, we can say the same
for all n > N . We choose ϵ = y−x

2 > 0. Then, there exists N ∈ N s.t. xn ∈ (x − ϵ, x + ϵ) and
yn ∈ (y − ϵ, y + ϵ) for all n > N . Therefore, if a ∈ (x− ϵ, x+ ϵ) and b ∈ (y − ϵ, y + ϵ), then

a < supBϵ(x) = x+ ϵ = y − ϵ = inf Bϵ(y) < b

which implies that xn < yn for all n > N .

Theorem 3.7 (Squeeze Theorem for Sequences)

Given sequences {xn}, {yn}, {zn} such that

xn ≤ yn ≤ zn

for all n > N , if {xn} and {zn} both converge to the same limit, then the sequence {yn} also converges
to that limit. That is,

lim
n→∞

xn = lim
n→∞

zn = A =⇒ lim
n→∞

yn = A

Proof.

We first prove that if there exists a N ∈ N s.t. an ≤ bn for all n > N , then limn→∞ an = a ≤ b =
limn→∞ bn. Assume this weren’t true, that a > b. Then for ϵ = a−b

2 > 0, there must exist M ∈ N s.t.
an ∈ (a− ϵ, a+ ϵ) and bn ∈ (b− ϵ, b+ ϵ) for all n > M . But

bn < sup(b− ϵ, b+ ϵ) = b+ ϵ = a− ϵ = inf(a− ϵ, a+ ϵ) < an (80)

which contradicts an ≤ bn. Therefore, a ≤ b. Therefore, we can use this to get

A = lim
n→∞

xn ≤ lim
n→∞

yn ≤ lim
n→∞

zn = A =⇒ lim
n→∞

yn = A (81)

Note that while a convergent sequence can be visualized quite easily by the Cauchy convergence criterion,
there are many way in which a sequence can be divergent.

1. Increasing/decreasing indefinitely

2. Oscillating between two constant values

3. Oscillating between a value tending to +∞ and a value tending to −∞

4. Many other classes of divergence

Definition 3.8 (Sequence Tending to Infinity)

The sequence {xn} tends to positive infinity if for each number c there exists N ∈ N such that
xn > c for all n > N . It is denoted

xn → +∞ or lim
n→∞

xn = +∞ (82)

We define sequences that tend to negative infinity similarly. And {xn} tends to infinity if for
each c there exists N ∈ N such that |xn| > c for all n > N , which is written

xn →∞ (83)
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Note that
xn → +∞ or xn → −∞ =⇒ xn →∞ (84)

but the converse is not necessarily true. The simple example is the sequence xn = (−1)nn. Also, it is
important to know that a sequence may be unbounded and yet not tend to +∞, −∞, or ∞.

Example 3.1 (Unbounded Sequence that Doesn’t tend to ∞)

The sequence xn = n(−1)n is divergent yet does not tend to positive infinity, negative infinity, nor
infinity.

However, if a sequence is unbounded we can find a convergent subsequence that does tend to infinity.

Theorem 3.8 ()

If (xn) is not bounded above then it has a subsequence xnk
→ +∞.

Proof.

We can construct such a subsequence.

Therefore, we can construct a subsequential limit to ±∞ if (xn) is not bounded. If it is bounded, then by
the Bolzano-Weierstrass theorem it contains a convergent subsequence. Therefore, we have the following.

Corollary 3.2 ()

From each sequence of real numbers there exists either a convergent subsequence or a subsequence
tending to infinity.

Example 3.2 ()

We claim that
lim

n→∞
n
√
n = 1 (85)

3.3 Arithmetic

Theorem 3.9 (Arithmetic on Limits)

Given that {xn}, {yn} are numerical sequences with yn ̸= 0 for all n, and let

lim
n→∞

xn = A, lim
n→∞

yn = B ̸= 0

then,

lim
n→∞

(xn + yn) = A+B

lim
n→∞

(cxn) = cA

lim
n→∞

(xn · yn) = A ·B

lim
n→∞

xn

yn
=

A

B

It immediately follows that the set of all convergent sequences in RN is a subspace of RN.
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Proof.

Assume that
lim
n→∞

xn = A and lim
n→∞

yn = B ̸= 0

This means that for every ϵ > 0, there exists N1, N2 ∈ N such that

|xn −A| < ϵ for all n > N1

|yn −B| < ϵ for all n > N2

Therefore, for a given ϵ, we wish to prove that there exists a N such that for all n > N ,

1.|(xn + yn)− (A+B)| < ϵ

2.|cxn − cA| < ϵ

3.|(xnyn)− (AB)| < ϵ

4.

∣∣∣∣xn

yn
− A

B

∣∣∣∣ < ϵ

1. By the triangle inequality, we can see that

|(xn + yn)− (A+B)| = |xn −A|+ |yn −B|

Since we can choose the error between xn and A for n > N1, and yn and B for n > N2 as small
as we want, we set it to ϵ/2. Then, we have

|(xn + yn)− (A+B)| = |xn −A|+ |yn −B| < ϵ

2
+

ϵ

2
= ϵ

for all n > N = max{N1, N2}. Therefore, for a given ϵ, there exists an N such that

|(xn + yn)− (A+B)| < ϵ for all n > N

2. This proof is easy. For a given ϵ, we choose the error to be ϵ
c .

|xn −A| < ϵ

c
for all n > N1

Then, there exists natural number N1 such that

|cxn − cA| < c|xn −A| = c
ϵ

c
= ϵ for all n > N1

3. We first observe that since the limit of {yn} exists, it must be bounded by a value, say B. That
is,

|yn| < Y for all n ∈ N

Then, we see that

|xnyn −AB| = |(xnyn −Ayn) + (Ayn −AB)|
< |xnyn −Ayn|+ |Ayn −AB|
= |yn||xn −A|+ |A||yn −B|

Suppose ϵ > 0 is given. Then, we can set the error bounds freely; there exists N1, N2 ∈ N such
that

|xn −A| < ϵ

2Y
for all n > N1

|yn −B| < ϵ

2|A|
for all n > N2
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Then, we can see that

|xnyn −AB| ≤ |yn||xn −A|+ |A||yn −B| < Y · ϵ

2Y
+ |A| ϵ

2|A|
= ϵ

for all n > N = max{N1, N2}.
4. We use the estimate∣∣∣∣AB − xn

yn

∣∣∣∣ = |xn||yn −B|+ |yn||xn −A|
y2n

· 1

1− δ(yn)
, δ(yn) =

|yn −B|
|yn|

For a given ϵ > 0, we find natural numbers N1, N2 such that

|xn −A| < min
{
1,

ϵ|B|
8

}
for all n > N1

|yn −B| < min
{ |B|

4
,

ϵB2

16(|A|+ 1)

}
for all n > N2

From this we can deduce that

|xn| = |xn −A+A| < |xn −A|+ |A| < |A|+ 1

and

|B| = |yn +B − yn| < |yn|+ |B − yn|

=⇒ |yn| > |B| − |yn −B| > |B| − |B|
4

>
|B|
2

=⇒ 1

|yn|
<

2

|B|

=⇒ 0 < δ(yn) =
|yn −B|
|yn|

<
|B|/4
|B|/2

=
1

2

=⇒ 1− δ(yn) >
1

2

=⇒ 0 <
1

1− δ(yn)
< 2

So, we can substitute

|xn| ·
1

y2n
· |yn −B| < (|A|+ 1) · 4

B2
· ϵ ·B2

16(|A|+ 1)
=

ϵ

4∣∣∣∣ 1yn
∣∣∣∣ · |xn −A| < 2

|B|
· ϵ|B|

8
=

ϵ

4

into the final equation to get∣∣∣∣AB − xn

yn

∣∣∣∣ < ϵ for all n > N = max{N1, N2}

Example 3.3 ()

We claim that
lim

n→∞

n

qn
= 0 if q > 1
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Since xn = n
qn =⇒ xn+1 = n+1

nq xn for n ∈ N. Since

lim
n→∞

n+ 1

nq
= lim

n→∞

(
1 +

1

n

)
1

q
= lim

n→∞

(
1 +

1

n

)
· lim
n→∞

1

q
= 1 · 1

q
=

1

q
< 1

there exists an index N such that n+1
nq < 1 for n > N . Thus, we have

xn > xn+1 = xn ·
n+ 1

nq
for n > N

which means that the sequence will be monotonically decreasing from index N on. The terms of the
sequence

xN+1 > xN+2 > xN+3 > . . .

are positive (bounded below) and are monotonically decreasing, so it must have a limit.
Finding the actual limit is easy. Let x = limn→∞ xn. It follows from the relation xn+1 = n+1

nq xn that

x = lim
n→∞

(
xn+1

)
= lim

n→∞

(
n+ 1

nq
xn

)
= lim

n→∞

n+ 1

nq
· lim
n→∞

xn =
1

q
x

which implies that
(
1− 1

q

)
= 0 =⇒ x = 0.

Definition 3.9 (Cauchy Product)

The Cauchy Product is the direct convolution of two sequences.

Definition 3.10 (Recursive Sequence)

Sometimes, a sequence may be defined recursively, where the nth term contains a combination of
the n− 1 terms before it.

3.4 Limsup and Liminf
The superior and inferior limits represent some sort of "bound" on the sequence in the long run. That is,
on the long run, the terms of the sequence (xn) cannot be greater than its superior limit and cannot be less
than its inferior limit. With this interpretation, the following definition should be clear.

Definition 3.11 (Inferior, Superior Limits)

The superior/inferior limit of a sequence (xn) is defined in the equivalent ways.
1. Given that E is the set of all partial limits, the limsup/liminf is the supremum/infimum of E.

lim sup
n→∞

xn := sup{E} lim inf
n→∞

xn := inf{E} (86)

2. The limsup/liminf is the limit of the sequence of supremums/infimums of the elements up to k.

lim sup
n→∞

xn := lim
n→∞

sup
k≥n

xk lim sup
n→∞

xn := lim
n→∞

inf
k≥n

xk (87)
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(a) In order to find the limsup, we first look the whole se-
quence in N and find the supremum. We now "decrease"
our domain from N to {2, . . .}, then {3, . . .}, then {4, . . .}
and so on, continuing to label the supremum of the se-
quence. The limit of this sequence of supremums is the
limsup.

(b) The 5 red lines marked in the middle (along with
infinitely many others) are viable partial limits because
one can choose a subsequence such that all of its points
after a certain n lie in some ϵ-neighborhood of the limit.
Therefore, we claim that the limsup/inf is the supremum
of this set E.

Figure 2: Two ways to visualize the superior and inferior limits of the divergent sequence xn =
(

1
x+1

+

0.5
)
sin(2πx). The left is the limit of the supremum, and the right is the supremum of the closed set of

subsequential limits.

Example 3.4 (Computing Limsup and Liminf)

We give some basic examples.
1. Let xn = (−1)n. Then E = {−1,+1} and

lim sup
n→∞

xn = 1, lim inf
n→∞

xn = −1 (88)

2. Let xn = (−1)n/[1 + (1/n)]. Then

lim sup
n→∞

xn = 1, lim inf
n→∞

xn = −1 (89)

Let’s give two warnings. First, limsup and liminfs do not behave like limits under addition and multiplication.
That is,

lim supxn + lim sup yn ̸= lim supxn + yn (90)

Example 3.5 (Counterexamples of Arithmetic Consistency of Limit superior)

Consider (xn) = (−1)n and yn = (−1)n+1. Then

lim supxn = lim sup yn = 1, lim inf xn = lim inf yn = −1 (91)

But (xn + yn) = 0, so
lim supxn + yn = lim inf xn + yn = 0 (92)

Second, note that even though we are talking about subsequential limits, the limsup and liminf are not
subsequential limits! It is the supremum of subsequential limits E, which may or may not be in E.

Example 3.6 (Limsup that is not attained by any subsequential limit)

This should be a sequence not in R.

However, in R, it turns out that the limsup and liminf are both contained in E, so we are fine.
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Lemma 3.4 ()

If (xn) is a sequence in R, then
1. the limsup is indeed a subsequential limit, i.e. lim supxn ∈ E.
2. If x > lim supxn, then ∃N ∈ N s.t. n ≥ N =⇒ xn < x.

Proof.

For the first claim, there are two cases to consider. If (xn) is unbounded from above, then ∃(xnk
) such

that xnk
→ +∞ =⇒ ∞ = lim supxn ∈ E. If (xn) is bounded from above, then the subsequential

limits of (xn) are either in (xn) or they are limit points of xn. This implies that the set E consists of
points either in {xn} or are limit points of the set {xn} =⇒ supE is in E since it’s a limit point.
For the second claim, if there are infinitely many terms of the sequence larger than x, then we could
find a subsequence (xnk

) with xnk
> x for all k. Therefore (xn) has a subsequential limit which must

be ≥ x. Every subsequential limit of (xnk
) is also a subsequential limit of (xn). This contradicts

lim supxn = supE.

Theorem 3.10 (Requirements of Partial Limits for Limit to Exist)

Here are two results in which we can use partial limits to determine if a sequence has a limit or not.
1. A sequence has a limit or tends to ±∞ if and only if its inferior and superior limits are the

same.
lim supxn = lim inf xn = x =⇒ lim

n→+∞
xn = x (93)

2. A sequence converges if and only if every subsequence of it converges.

Proof.

For (1), we pick x + ϵ > x. Then every term past some N1 must be less than x + ϵ. By the same
logic, we have N2 for x− ϵ < x. So take N = max{N1, N2}, which is contained in the ϵ-ball around
x.

Theorem 3.11 (Ordering on Subsequential Limits)

If sn ≤ tn for n ≥ N , where N is fixed, then

lim inf
n→∞

sn ≤ lim inf
n→∞

tn

lim sup
n→∞

sn ≤ lim inf
n→∞

tn

Example 3.7 ()

We claim
lim
n→∞

n1/n = 1 (94)

We can consider xn = n1/n − 1 and want to show that xn → 0. We have xn ≥ 0. If n > 1, then
n = (xn + 1)n ≥ x2

n ·
n(n−1)

2 from the binomial theorem. This means that

x2
n ≤

2

n− 1
=⇒ 0 ≤ xn ≤

√
2

n− 1
→ 0 (95)

And so by the squeeze theorem, xn → 0.
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Example 3.8 ()

If x > 1, α ∈ R, then

lim
n→+∞

nα

xn
= 0 (96)

3.5 Convergence Tests for Real Series

Definition 3.12 (Series over R)

Given a sequence of real numbers (xn), the series (of partial sums) is the sequence

(sn) =

n∑
k=1

xk (97)

The sum of the series is the limit of (sn). Usually we define (sn) implicitly and use the summation
notation.

∞∑
n=1

xn := lim
n→∞

sn (98)

1. If the sequence (sn) converges to s, the series is convergent, written∑
xn < +∞ (99)

2. If the sequence does not converge, it is divergent.
3. If the series of partial sums of (|xn|) converges, then it is said to be absolutely convergent.a

∞∑
n=1

|xn| (100)

aClearly, every absolutely convergent series because
∣∣∑∞

n=1 an
∣∣ ≤ ∑∞

n=1 |an|.

We must reiterate a few warnings here. Note that the series
∑

xn is simply notation and should not be
treated as an “infinite sum.” Such a thing does not exist for algebraic structures which have finary operations.
More specifically, given a series, we cannot in general split nor combine series, and we cannot reindex nor
rearrange (an infinite number of) terms. However, we can manipulate each term for a fixed index.

Example 3.9 (Disasters of Reindexing and Rearranging)

Let us take the series
∑

0. We clearly know that the corresponding sequence of partial sums 0, 0, . . .
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is convergent to 0. But if we do this series of steps.

∞∑
n=1

0 =

∞∑
n=1

n− n (Can manipulate terms)

=

∞∑
n=1

n−
∞∑

n=1

n (Cannot split series)

= 1 +

∞∑
n=2

n−
∞∑

n=1

n (Can take 1st term out)

= 1 +

∞∑
n=1

(n+ 1)−
∞∑

n=1

n (Cannot reindexing)

= 1 +

∞∑
n=1

(n+ 1)− n (Cannot combine series)

= 1 +

∞∑
n=1

1 (Can manipulate terms)

= 1 +∞ = +∞ (101)

The wrong steps show that the series is divergent.

We have seen the consequences of these mistakes that beginners make and are often on popular media.
However, note that we can always do splitting, combining, reindexing, and rearranging for finite sums, which
are algebraically defined. Later on, we will show that some of these operations are allows for series that we
know are convergent.

Since the convergence of a series is equivalent to convergence of its sequence of partial sums, applying the
Cauchy convergence criterion to the sequence {sn} leads to the following theorem.

Theorem 3.12 (Cauchy Convergence Criterion for Series)

The series a1 + . . .+ an + . . . converges if and only if for every ϵ > 0 there exists N ∈ N such that for
all m ≥ n > N ,

|an + . . .+ am| < ϵ (102)

Corollary 3.3 (nth Term Test)

A necessary (but not sufficient) condition for convergence of the series a1 + . . . an + . . . is that the
terms tend to 0 as n→∞. That is, it is necessary that

lim
n→∞

an = 0 (103)

Proof.

It suffices to set m = n in the Cauchy convergence criterion. This would mean that for every ϵ > 0
there exists a N ∈ N such that

|an| = |an − 0| < ϵ for all n > N (104)

which, by definition, means that {an} converges to 0.

Nothing so far is really suprising here. The Cauchy convergence criterion really just follows from the definition
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of Cauchy completeness, and the nth term test is pretty trivial. The way that we will build up convergence
tests is by proving some special cases of convergence and then using the direct comparison test to then
classify further series.

Example 3.10 (Telescoping Series)

A telescoping series is a series in which the partial sums can cancel out. An example is the series
of partial sums of the sequence (xn) =

1
n(n+1) . In here, the series term is

sn =

n∑
k=1

1

k(k + 1)
(105)

=

n∑
k=1

1

k
− 1

k + 1
(106)

=

n∑
k=1

1

k
−

n∑
k=1

1

k + 1
(107)

=

n∑
k=1

1

k
−

n+1∑
k=2

1

k
(108)

=
1

1
+

( n∑
k=2

1

k

)
−
( n∑

k=2

1

k

)
− 1

n+ 1
(109)

= 1 +

( n∑
k=2

1

k
− 1

k

)
− 1

n+ 1
(110)

= 1−
( n∑

k=2

0

)
− 1

n+ 1
(111)

= 1− 1

n+ 1
(112)

Note that all of the examples that we have done here are for finite sums, so they are all legal.

Example 3.11 (Geometric Series)

The series
∑∞

n=0 q
n is called a geometric series.

1 + q + q2 + . . .+ qn + . . . (113)

is called the geometric series. We can see that
1. |q| ≥ 1 ⇐⇒

∑
qn is divergent. |q| ≥ 1 =⇒ |q|n ≥ 1, and so the terms qn does not converge

to 0, and the nth term test is not met.
2. |q| < 1 ⇐⇒

∑
qn is convergent. We can use the identity

sn = 1 + q + . . .+ qn−1 =
1− qn

1− q
=⇒ lim

n→∞

1− qn

1− q
=

1

1− q
(114)

since limn→∞ qn = 0 if |q| < 1.

The Cauchy convergence criterion can be used to prove the direct comparison test.
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Theorem 3.13 (Direct Comparison Test)

For some fixed N , if
1. If |xn| ≤ yn for all n ≥ N and

∑
yn converges, then

∑
xn converges.

2. If xn ≥ yn ≥ 0 for all n ≥ N and
∑

yn diverges, then
∑

xn diverges.

Example 3.12 (Comparison with Telescoping Series)

We can prove the special case a geometric series with the direct comparison test. We claim that∑∞
n=1

1
n2 is finite. We can see that

1

n2
≤ 2

n(n+ 1)
(115)

where the series of the terms in the RHS is telescoping and therefore converges. So by the direct
comparison test,

∑
1
n2 converges.

Now we prove another corollary of the Cauchy convergence criterion.

Theorem 3.14 (Cauchy Condensation Test)

If a1 ≥ a2 ≥ . . . ≥ 0, the series
∑∞

n=1 an converges if and only if the series

∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + . . . (116)

converges.

Proof.

Letting Ak = a1 + a2 + . . . + ak and Sn = a1 + 2a2 + . . . + 2na2n , it is clear that by adding up the
inequalities

a2 ≤ a2 ≤ a1

2a4 ≤ a3 + a4 ≤ 2a2

4a8 ≤ a5 + a6 + a7 + a8 ≤ 4a4

. . .

2na2n+1 ≤ a2n+1 + . . .+ a2n+1 ≤ 2na2n ,

we get
1

2
(Sn+1 − a1) ≤ A2n+1 − a1 ≤ Sn (117)

Since the sequences {Ak} and {Sk} are nondecreasing, and hence from the inequalities we can conclude
that they are either both bounded above (which means that they are both convergent since it is a
bounded, nondecreasing series) or both unbounded above (which means that they are both divergent
since they are nondecreasing and unbounded).

Corollary 3.4 (p-series Test)

The series
∞∑

n=1

1

np
(118)

converges for p > 1 and diverges for p ≤ 1.a
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aThis sort of reminds you of u-substitution. For example, look at
∫∞
1 f(t) dt =

∫∞
0 euf(eu) du, where the convergence

of LHS ⇐⇒ convergence of RHS.

Proof.

Suppose p ≥ 0. By the previous theorem, the series converges or diverges simultaneously with the
series

∞∑
k=0

2k
1

(2k)p
=

∞∑
k=0

(21−p)k (119)

which is really just a geometric series. A necessary and sufficient condition for the convergence of
this series is that 21−p < 1, that is, p > 1.
Now suppose p ≤ 0. The series is then clearly divergent since all of the terms are larger than 1.

Example 3.13 (Harmonic Series)

The harmonic series
1 +

1

2
+

1

3
+ . . .+

1

n
+ . . . (120)

seems at first glance to be converging since the terms converge to 0. However, it does not pass the
Cauchy condensation test since

∞∑
n=1

2nxn =

∞∑
n=1

2n
1

2n
=

∞∑
n=1

1 = +∞ (121)

As you can see, this increases logarithmically, so in early calculators it was hard to numerically detect
divergence (you would have to double the number of series terms to get a linear increase).

3.6 Ratio and Root Tests
Now we introduce the root and ratio tests, which are derived by the comparison test with a geometric series.
The ratio test is used more day-to-day, but not as decisive as the root test. Both tests have a similar flavor.

Theorem 3.15 (Ratio Test)

Suppose the limit limn→∞
∣∣an+1

an

∣∣ = α exists for the series
∑∞

n=1 an. Then,
1. α < 1 =⇒

∑
an converges absolutely.

2. α > 1 =⇒
∑

an diverges.
3. α = 1 =⇒

∑
an is inconclusive.

Alternatively, if
1. lim sup |an+1/an| = α < 1, then

∑
an converges

2. If ∃N s.t. |an+1/an| ≥ 1 for all n ≥ N , then
∑

an diverges.

Proof.

Since lim sup
∣∣an+1

an

∣∣ = α < 1, fix any α < β < 1. Then ∃N s.t. if n > N , |an+1/an| < β. So
|aN+1| < β|aN | =⇒ |aN+2| < β2|aN |. So letting C = |aN |, for all m ≥ N ,

|am| ≤
C

βN
βm =⇒ |am| ≤ C̃βm for all m ≥ N (122)

So
∑

an converges by comparison test since
∑

βm <∞ when β < 1.
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Theorem 3.16 (Root Test)

Let
∑∞

n=1 an be a given series and
α = lim sup

n→∞

n
√
|an| (123)

Then,
1. α < 1 =⇒

∑
an converges.

2. α > 1 =⇒
∑

an diverges.
3. α = 1 =⇒

∑
an is inconclusive.

Proof.

Listed.
1. If lim sup n

√
|an| = α < 1, take any α < β < 1. Then ∃N ∈ N s.t. if n ≥ N , then |an|1/n <

β ⇐⇒ |an| < βn. Since β < 1,
∑

βn <∞, and by comparison test,
∑

an converges.
2. Suppose α > 1. Then lim sup |an|1/n = α > 1. So there exists a subsequence (ank

) s.t.
(|ank

|1/nk) → α > 1. This means ∃N s.t. for n ≥ N , |ank
|1/nk > 1 =⇒ |ank

| > 1. But this
fails the nth term test.

3. We do not claim anything and so there’s nothing to prove.

Example 3.14 (Root Test Inconclusive Results)

Consider
∑

1
n = +∞, but from the root test

n

√
1

n
→ 1, so α = 1 (124)

Consider
∑

1
n2 < +∞, but from from the root test

n

√
1

n2
=

(
1

n1/n

)2

→ 1, so α = 1 (125)

Example 3.15 ()

The sequence
∑

cn

n! always converges for c ∈ R.

Theorem 3.17 (Weierstrass M-test for Absolute Convergence)

Let
∑∞

n=1 an and
∑∞

n=1 bn be series. Suppose there exists an index N ∈ N such that |an| ≤ bn for all
n > N . Then,

∞∑
n=1

bn converges =⇒
∞∑

n=1

an converges absolutely (126)

We finally conclude by giving a theorem about the convergence of some special sequences.

Theorem 3.18 (Special Sequences)

Some special sequences:
1. If p > 0, then limn→∞

1
np = 0.

2. If p > 0, then limn→∞ n
√
p = 1.

3. limn→∞
n
√
n = 1.
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4. If p > 0 and α is real, then limn→∞
nα

(1+p)n = 0.
5. If |x| < 1, then limn→∞ xn = 0.

3.7 Euler’s Number and Trigonometric Functions

Definition 3.13 (Euler’s Number)

We define Euler’s number as

e :=

∞∑
n=0

1

n!
(127)

The first thing we should do is show that it converges, this is a one-liner.
∞∑

n=0

1

n!
= 1 + 1 +

∞∑
n=2

1

n!
≤ 2 +

∞∑
n=2

1

n(n− 1)
(128)

Theorem 3.19 (Euler’s Number as a Limit)

We have

lim
n→+∞

(
1 +

1

n

)n

= e (129)

Proof.

Let us define the sequence

tn =

n∑
k=0

1

k!
, sn =

(
1 +

1

n

)n

(130)

We know that tn → e, and we want to show that sn → e. We do this with the squeeze theorem.
1. We can see that

sn =

(
1 +

1

n

)n

(131)

=

n∑
k=0

(
n

k

)
1n−k

(
1

n

)k

(132)

= 1 + 1 +
n(n− 1)

2!

1

n2
+

n(n− 1)(n− 2)

3!

1

n3
+ . . . (133)

= 1 + 1 +
1

2!
(1)

(
1− 1

n

)
+

1

3!
(1)

(
1− 1

n

)(
1− 2

n

)
+ . . .+

1

n!
(1)

n−1∏
k=1

(
1− k

n

)
(134)

≤ 1

0!
+

1

1!
+

1

2!
+

1

3!
+ . . .+

1

n!
= tn (135)

and so sn < tn =⇒ lim sup sn ≤ lim sup tn = e.
2. Let m ≤ n be fixed. Then,

sn ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ . . .+

1

m!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− m− 1

n

)
(136)

since we are just taking the first m positive terms of the element. Therefore, letting n → +∞
and keeping m fixed, we get

lim inf
n→+∞

sn ≥ 1 + 1 +
1

2!
+ . . .+

1

n!
for all m ∈ N (137)
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which implies lim inf sn ≥ tm for all m ∈ N, and now letting m → +∞, we have lim inf sn ≥
lim inf tm = e.

Now we prove the irrationality of e. It is usually extremely difficult to prove that an arbitrary number is
irrational, e.g. πe or πee .

Theorem 3.20 (e is Irrational)

e is irrational.

Proof.

Letting tn =
∑n

k=0
1
k! , we have

e− tn =

∞∑
k=n+1

1

k!
(138)

=
1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 3)(n+ 2)
+ . . .

)
(139)

<
1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 2)2
+ . . .

)
︸ ︷︷ ︸

geometric

(140)

=
1

(n+ 1)!

(
1

1− (1/(n+ 2)!)

)
(141)

=
1

n!n
· (n+ 2)n

(n+ 1)2︸ ︷︷ ︸
<1

(142)

=
1

n!n
(143)

Note that we can combine and split sums since we know that e is convergent. Now suppose that
e = p/q. Then,

0 < q!(e− tq) <
1

q
(144)

But q!e is an integer and q!tq is also an integer. So we have q! · pq , an integer, between 0 and 1, which
is a contradiction.

Since we have defined some number e ∈ R, we know that exponential exist, and therefore we the function
x 7→ ex is well-defined. In fact, it is so important that we have a separate name for it.

Definition 3.14 (Exponential Function)

The exponential function is generally referred to as the function x 7→ ex.

There is a nice series representation.

Theorem 3.21 (Exponential Function as a Series)

We have

ex =

∞∑
n=0

xn

n!
(145)
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Proof.

Now that this is done, we can define the trigonometric functions formally as such.

Definition 3.15 (Trigonometric Functions)

We have

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+

x5

5!
− · · · (146)

(147)

cosx =

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+

x4

4!
− · · · (148)
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4 Limits and Continuity of Functions
We now extend our analysis to real-valued functions over a metric space. The ones that we will be particularly
interested in are continuous functions. But before this, let’s introduce a new notation. Given a metric space
X, we will talk about a variable x approaching a particular value a ∈ X, denoted x → a. But this isn’t
clear. When we talk about the concept of something approaching another thing, we have two definitions.

1. A sequence can approach to its limit, which is a point.

2. A point can be a limit point of a set.

When we write x→ a, we are talking about some indeterminate variable x and a point a, it isn’t immediately
clear what this means. As we will soon define, this will refer to a neighborhood of a or equivalently to all
sequences converging to a. So we can think of x→ a as notation for all sequences (xn)→ a.

Definition 4.1 (Constant and Ultimately Constant Functions)

Given a real-valued function f : E −→ R defined on domain E ⊂ R,
1. f is a constant function if f(x) = A for all x ∈ E
2. f is called ultimately constant as x→ a if it is constant in some deleted neighborhood Ů(a),

where a is a limit point of E.

Definition 4.2 (Bounded and Ultimately Bounded Functions)

Given a real-valued function f : E −→ R defined on domain E ⊂ R,
1. f is bounded, bounded above, or bounded below respectively if there is a number C ∈ R

such that |f(x)| < C, f(x) < C, or C < f(x) for all x ∈ E.
2. f is ultimately bounded, ultimately bounded above, or ultimately bounded below as

x→ a if it is bounded, bounded above, or bounded below in some deleted neighborhood ŮE(a).

Example 4.1 (Unbounded but Ultimately Bounded)

The function
f(x) = sin

1

x
+ x cos

1

x
(149)

for x ̸= 0 is not bounded on the domain of definition, but it is ultimately bounded as x→ 0.

4.1 Limits of Functions

Definition 4.3 (Limit of a Function)

Let f : X → Y be a map between metric spaces, with E ⊂ X and p ∈ E′ (note the limit point!). We
say f(x)→ q as x→ p, i.e.

lim
x→p

f(x) = q (150)

if it meets the following equivalent conditions.
1. ϵ-δ Definition. If ∀ϵ > 0, ∃δ > 0 s.t. 0 < dX(x, p) < δ =⇒ dY (f(x), q)) < ϵ.a

51/ 203



Real Analysis Muchang Bahng Spring 2025

X Y

f

f−1(Bϵ(q))

B̊δ(p)

p

Bϵ(q)

q
ε

Figure 3: Said in one line, the preimage of any open ball around y = f(x) must contain some open deleted
open ball around x.

2. Sequential Definition. If for all sequences (xn)→ p, f(xn)→ q.

X Y

f
p

(xn)

(yn) q

(f(xn))

(f(yn))

Figure 4: For every sequence that converges to the left, the new sequence mapped through f converges to q.
Note that we choose the points xn to be in the "deleted" neighborhood E \ a (neighborhood E with point a
removed) to force us to choose a sequence that is not a, a, . . .. That is, it forces us to choose different points
for the sequence.

aNote that the strictly inequality 0 < dX(x, p) is important to ensure that x ̸= p, since functions can jump at p.

Proof.

We prove equivalence.
1. (→). Assume limx→p f(x) = q. Let (xn) ∈ E s.t. xn → p with xn ̸= p. We wish to show that

f(xn) → q. Let ϵ > 0. Then ∃δ > 0 s.t. 0 < dX(x, p) < δ =⇒ dY (f(x), q) < ϵ. Since δ > 0,
by definition ∃N ∈ N s.t. if n ≥ N , dX(xn, p) < δ =⇒ dY (f(xn), q).

Sometimes, the ϵ-δ definition is good, but a lot of the times the sequential definition is good enough and
more insightful.

Example 4.2 (Limit of the Signum Function)

The function sgn: R −→ R defined

sgnx =


1, x > 0

0, x = 0

−1, x < 0

(151)

has no limit as x→ 0.
First, it is ludicrous that the limit would be any number that is not {−1, 0, 1}. If we assume that
A ̸∈ {−1, 0, 1}, then we can choose any arbitrarily small ϵ-neighborhood of A that does not include
the three numbers. Clearly, there doesn’t exist any δ > 0 such that the deleted δ-neighborhood of 0
maps to a set completely contained in the ϵ-neighborhood of A. That is,

sgn
(
Ůδ(0)

)
= {−1, 1} ̸⊂ Uϵ(A) (152)

It doesn’t even intersect the ϵ-neighborhood at all.
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1. If A = 1, we can construct a ϵ-neighborhood VA for ϵ = 1
2 . Clearly, there exists no open

neighborhood U0 of 0 that is entirely mapped to V , since U0 contains both negative numbers
and 0 and hence must be mapped to 0,−1.

2. Similarly, given the (ϵ = 1
2 )-neighborhood of A = −1, there exists no open neighborhood U0 of

0 that is entirely mapped to it, since U0 contains both positive numbers and 0 and hence must
be mapped to 0, 1.

3. Finally, given the (ϵ = 1
2 )-neighborhood of A = 0, there exists no open neighborhood U0 of 0

that is entirely mapped to it, since U0 contains both positive and negative numbers and hence
must be mapped to ±1.

Therefore, the limit does not exist.

Example 4.3 (Limit of Absolute Value of Signum Function)

We will show that
lim
x→0
|sgnx| = 1 (153)

We construct a ϵ-neighborhood Uϵ(1) around 1. Given this neighborhood, we can imagine choosing
the deleted δ-neighborhood Ůδ(0) around 0. Since every element in Ůδ(0) maps to 1, it is clearly in
Uϵ. In fact, for arbitrarily small ϵ > 0, we can choose any δ > 0 since everything in R \ 0 maps to 1.
We can visualize this in R2 as

Theorem 4.1 (Arithmetic on Limits of Functions)

Given two numerical valued functions f, g : E ⊂ R −→ R with a common domain where g(x) ̸= 0 for
all x ∈ E, let

lim
x→a

f(x) = A, lim
x→a

g(x) = B (154)

then,

lim
x→a

(f + g)(x) = A+B

lim
x→a

(cf)(x) = cA

lim
x→a

(f · g)(x) = A ·B

lim
x→a

(
f

g

)
(x) =

A

B

Proof.

Cauchy sequence criterion for a limit immediately proves this.

We end this with a theorem connecting the relationship between a limit of a function as x → a and its
ultimate behavior as x→ a.

Theorem 4.2 ()

Let f : E −→ R be a function. Then,
1. f is ultimately the constant A as x→ a implies that limx→a f(x) = A.
2. limx→a f(x) implies that f is ultimately bounded as x→ a.
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Definition 4.4 (Infinitesimal Function)

A function f : E ⊂ R −→ R is said to be infinitesimal as x→ a if

lim
x→a

f(x) = 0

Lemma 4.1 (Sums, Products of Infinitesimals)

It is clear that if α, β are infinitesimal as x→ a, then
1. α+ β is infinitesimal as x→ a
2. α · β is infinitesimal as x→ a

Furthermore, if α is infinitesimal and β is ultimately bounded as x → a, then the product α · β is
infinitesimal as x→ a.

Proof.

We prove all three statements.
1. Assume that α and β are infinitesimal as x → a. Then, let us fix a small ϵ > 0. This

means that for every ϵ
2 there exists an open deleted neighborhood Ů ′(a) such that its image

α
(
Ů ′(a)

)
⊂ U ′

ϵ/2(0) ⊂ R. Additionally, for every ϵ
2 there exists an open deleted neighborhood

Ů ′′(a) such that its image β
(
Ů ′′(a)

)
⊂ U ′

ϵ/2(0) ⊂ R. Thus, for the deleted neighborhood

Ů(a) ⊂ Ů ′(a) ∪ Ů ′′(a)

we can see that for all x ∈ Ů(a),

|(α+ β)(x)| = |α(x) + β(x)| ≤ |α(x)|+ |β(x)| < ϵ

2
+

ϵ

2
= ϵ

and hence (α+ β)
(
Ů(a)

)
⊂ Uϵ(0).

2. This case is a special case of assertion 3. That is, every function that has a limit is ultimately
bounded.

3. Since β(x) is ultimately bounded, this means that there exists a constant M and an open deleted
neighborhood Ů ′(a) ⊂ E such that for all x ∈ Ů ′(a), its image is bounded: |β(x)| < M . Let
us fix a small ϵ > 0. Then, by definition of the limit, for every ϵ

M there exists an open deleted
neighborhood Ů ′′(a) such that its image β

(
Ů ′′(a)

)
⊂ Uϵ/M (0) ⊂ R. Therefore, for the deleted

neighborhood
Ů(a) ⊂ Ů ′(a) ∪ Ů ′′(a)

we can see that for all x ∈ Ů(a),

|(α · β)(x)| = |α(x)β(x)| = |α(x)||β(x)| < ϵ

M
·M = ϵ

Therefore, (α · β)
(
Ů(a)

)
⊂ Uϵ(0).

Note that in proving these properties of the limits, we have used the following fact about open deleted
neighborhoods around a.

1. Ů(a) is not the empty set.

2. Given open deleted neighborhoods Ů ′(a) and Ů ′′(a), there exists an open deleted neighborhood in the
intersections of these neighborhoods.

Ů(a) ⊂ Ů ′(a) ∪ Ů ′′(a)
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Theorem 4.3 (Representation of a Convergent Function as a Shift of its Infinitesimal)

Given a function f : E ⊂ R −→ R, its limit exists and

lim
x→a

f(x) = A (155)

if and only if f can be represented as

f(x) = A+ α(x) (156)

where α is infinitesimal as x → a. We can visualize this theorem by thinking of a function f that
results from a "shift" of an infinitesimal.

a
α

A
f

Figure 5: Shift of f(x) = 1
2
x sin(3x) + 2.

Finally, we reiterate some limit theorems already stated for sequences, but now corresponding to functions.
Interpreting the function limit as the Cauchy sequence definition of limits renders the proofs of these theorems
trivial.

Theorem 4.4 (Bounds on Limits of Functions)

If the functions f, g : E → R are such that

lim
x→a

f(x) = A < B = lim
x→a

g(x) (157)

then there exists a deleted neighborhood Uδ(a) in E at each point of which f(x) < g(x).

Theorem 4.5 (Squeeze Theorem for Limits of Functions)

Given the functions f, g, h : E ⊂ R −→ R such that

f(x) ≤ g(x) ≤ h(x) for all x ∈ E (158)

then,
lim
x→a

f(x) = lim
x→a

h(x) = C =⇒ lim
x→a

g(x) = C (159)
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4.2 Asymptotic Behavior of Functions

Definition 4.5 (Little-O Notation)

The function f : E −→ R is said to be infinitesimal compared with the function g : E −→ R
as x→ a, written (by abuse of notation) f = o(g) as x→ a, if

lim
x→a

f(x)

g(x)
= 1

or in other words, if f/g is an infinitesimal function as x → a. Therefore, f = o(1) as x → a means
that f is infinitesimal as x→ a. a

aNote that writing f = o(g) is again, an abuse of notation. f = o(g) is really a shorthand way of writing that f is
in the class of functions that is infinitesimal compared with the function g.

Intuitively, f = o(g) means that the ratio between f(x) and g(x) will tend to infinity as x → a (this does
not mean that f will be infinitely greater than g, however!).

Example 4.4 (Linear vs Quadratic)

For example, looking at the two functions f(x) = x2 and g(x) = x, we have
1. x2 = o(x) as x→ 0 (since x2

x = x is infinitesimal as x→ 0)
2. x = o(x2) as x→∞ (since x

x2 = 1
x is infinitesimal as x→∞)

We can visualize g/f(x) tending to infinity within a neighborhood of 0 and f/g(x) tending to infinity
within a neighborhood of ∞.

x

y

f(x) = 1
4x

2

g(x) = x

1
4
x2 = o(x)

as x → 0

x = o( 1
4
x2)

as x → ∞

Figure 6

Definition 4.6 (Orders of Infinitesimals, Infinities)

If f = o(g) and g is infinitesimal as x→ a, then f is an infinitesimal of higher order than g as
x → a. Furthermore, if f and g are infinite functions as x → a and f = o(g) as x → a, then g is a
higher order infinity than f as x→ a.
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Definition 4.7 (Big-O Notation)

By abuse of notation, f = O(g) as x→ a means that

lim
x→a

f(x)

g(x)
=∞ (160)

or in other words, f/g is ultimately bounded as x→ a. In particular, f = O(1) as x→ a means that
f is bounded within a certain neighborhood U(a) of a.

Definition 4.8 (Functions of Same Order)

The functions f and g are of the same over as x→ a, written

f ≍ g as x→ a (161)

if f = O(g) and g = O(f) as x → a. Intuitively, this means that the ratio between f and g within
some deleted neighborhood of a is finite.
Note that the condition that f and g be of the same order as x → a is (by definition of ultimately
bounded functions) equivalent to the condition that there exist c1, c2 > 0 and an open neighborhood
U(a) such that the relations

c1|g(x)| ≤ |f(x)| ≤ c2|g(x)| (162)

is true for x ∈ U(a).

Definition 4.9 (Asymptotic Equivalence of Functions)

For functions f and g, if

lim
x→a

f(x)

g(x)
= 1 (163)

we say that f behaves asymptotically like g as x→ a, or that f is equivalent to g as x→ a,
written

f ∼ g as x→ a (164)

Moreover, ∼ is an equivalence relation, which means that
1. f ∼ f as x→ a
2. f ∼ g as x→ a =⇒ g ∼ f as x→ a
3. f ∼ g and g ∼ h as x→ a =⇒ f ∼ h as x→ a

We list a few examples in order to develop some sort of visual intuition for when two functions are asymp-
totically equivalent.

Example 4.5 (Both Converges at Finite Value to Nonzero Finite Value)

If f(a) = g(a) ̸= 0, then f ∼ g trivially since the ratio of f and g converges to 1 within a neighborhood
of a.
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x

y

a

Figure 7

Example 4.6 (Both Converges at Finite Value to 0)

When f(a) = g(a) = 0, it may be f may be equivalent to g or one function may be infinitesimally
smaller than the other.

g(x) = x

f(x) = sin(x)

(a) When f(x) = sinx and g(x) = x, then f ∼ g since we
see that limx→0

sin x
x

= 1, and so sinx ∼ x as x → 1.

f(x) = x2

g(x) = x3

(b) When f(x) = x2 and g(x) = x3, then limx→0
x3

x2 = 0,
and so x3 ̸∼ x2. In fact, x3 = o(x2).

f(x) = x2

g(x) = x4

(c) When f(x) = x2 and g(x) = x4, then limx→0
x4

x2 = 0,
and so x4 ̸∼ x2. In fact, x4 = o(x2).

f(x) = x2

g(x) = 0.5x2

(d) When f(x), g(x) = x2, 0.5x2, then limx→0
0.5x2

x2 = 1
2
.

So 0.5x2 ̸∼ x2.

Figure 8: Examples of different scenarios.
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Example 4.7 (Analyzing at Infinity)

When analyzing the behavior of functions as x → ∞, we can picture the two graphs of f and g on
the plane and "zoom out" to see if the ratio of the values converge to 1. This would mean that as
x→∞, we should see the graphs overlapping more and more.

f(x) = x2

g(x) = x2 + 20x+ 120

−10 10

100

(a) Comparison of f(x) = x2 and g(x) = x2 + 10x+ 100

1012f g

−106 106

(b) Asymptotic behavior with g/f ≈ 1

Figure 9: taking f(x) = x2 and g(x) = x2 + 10x + 100, we can see that the discrepancy is high around a
neighborhood of x = 0. But as x → +∞, we get limx→+∞

x2+10x+100
x2 = 1, and so the graphs look like they

are overlapping. Notice that even though the absolute difference |(x2 + 10x+ 100)− x2| = |10x+ 100| tends
to infinity, this difference increases infinitesimally compared to f and g.

From this, we can see that if f ∼ g as x→ a, then their difference

f − g = o(g) = o(f) (165)

That is, (f − g)(x) is infinitesimal compared to g or f (doesn’t matter which one we compare it to). This
leads to our next section, where we formalize this concept with absolute and relative errors.

4.2.1 Approximations of Functions

It is useful to note that since the relation limx→a γ(x) = 1 is equivalent to

γ(x) = 1 + α(x), where lim
x→a

α(x) = 0 (166)

the relation f ∼ g as x→ a is equivalent to saying that

f(x)

g(x)
= γ(x), where lim

x→a
γ(x) = 1 (167)

which implies
f(x) = g(x) + α(x)g(x) = g(x) + o(g(x)) as x→ a (168)

or, symmetrically,
g(x) = f(x) + α(x)f(x) = f(x) + o(f(x)) as x→ a (169)

This means that f can be exactly represented by another function g, plus another (error) function o(g(x))
that is infinitesimal compared to g.

59/ 203



Real Analysis Muchang Bahng Spring 2025

g

f

x

(a) Functions f , g, and their difference

f − g = o(g)

x

(b) Behavior of f − g (little-o of g)

Figure 10: Visualization of asymptotic behavior where f − g = o(g)

Note that it is not a sufficient condition that the error function be infinitesimal! The error function f−g must
be infinitesimal compared to g! This tells us that not only does the error function decrease infinitesimally,
but also is infinitesimal compared to the approximation function we already have, which is in general a much
stronger claim. This representation of certain types functions will provide the foundation for differential
calculus when we talk about "good" approximations for a function.

Definition 4.10 (Relative Error)

Since f ∼ g as x→ a means that

f(x) = g(x) + α(x)g(x) = g(x) + o(g(x)) (170)

we can define the relative error of g as an approximation of f to be

|α(x)| =
∣∣∣∣f(x)− g(x)

g(x)

∣∣∣∣ (171)

Clearly, since f ∼ g, the relative error must be infinitesimal as x→ a.

We use the following lemma to check whether two functions are asymptotically equivalent.

Lemma 4.2 ()

f ∼ g as x→ a if and only if the relative error of g is infinitesimal as x→ a.

Example 4.8 ()

We claim that
x2 + x =

(
1 +

1

x

)
x2 ∼ x2 as x→∞ (172)

We see that the absolute error of this approximation |(x2 + x) − x2| = |x| tends to infinity, but the
relative error |x|

x2 = 1
|x| → 0 as x→∞.

Theorem 4.6 (Prime Number Theorem)

Let π(x) be the number of prime numbers strictly less than x. Then π ∼ x
ln x as x → +∞, or more

60/ 203



Real Analysis Muchang Bahng Spring 2025

precisely,

π(x) =
x

lnx
+ o

(
x

lnx

)
as x→ +∞ (173)

Example 4.9 ()

It is a fact that limx→0
sinx
x = 1, so we have sinx ∼ x as x→ 0. So,

sinx = x+ o(x) as x→ 0 (174)

The following theorem proves useful when computing limits.

Theorem 4.7 ()

If f ∼ f̃ as x→ a, then
lim
x→a

f(x)g(x) = lim
x→a

f̃(x)g(x) (175)

provided one of these limits exist.

Theorem 4.8 (Properties of o(g) and O(g) Functions)

For x→ a,
1. o(f) + o(f) = o(f)
2. o(f) is also O(f)
3. o(f) +O(f) = O(f)
4. O(f) +O(f) = O(f)
5. If g(x) ̸≡ 0, then

o(f(x))

g(x)
= o

(
f(x)

g(x)

)
, and

O(f(x))

g(x)
= O

(
f(x)

g(x)

)
(176)

4.3 Continuous Functions

Definition 4.11 (Continuity of a Function)

A function f is continuous at point a if for any neighborhood V
(
f(a)

)
of f(a), there is a neigh-

borhood U(a) of a whose image under the mapping f is contained in V
(
f(a)

)
.

Generalizing this, we say that a function is (globally) continuous if the preimage of every neigh-
borhood in its codomain is an open set in its domain.

Lemma 4.3 (Existence of Limits of Continuous Functions)

f : E −→ R is continuous at a ∈ E, where a is a limit point of E if and only if

lim
x→a

f(x) = f(a) (177)

Proof.

The limit equaling f(a) means that, by definition, for any arbitrarily small deleted neighborhood of
f(a), denoted Uf(a) \ f(a), its preimage will be an open neighborhood of a, which itself will contain
an open set.
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This also means that we can use the Cauchy limit definition to defined continuity of a function at a point.
That is, for any sequence {an} of point in codomain E which converges to point a, the function f is continuous
at a if the corresponding sequence {f(an)} converges to f(a).

Theorem 4.9 ()

This means that the continuous functions commute with the operation of passing to the limit at a
point.

lim
x→a

f(x) = f
(
lim
x→a

x
)

(178)

Lemma 4.4 (Properties of Continuous Functions)

Let f : Rn −→ Rm, g : Rm −→ Rp with c ∈ R.
1. f continuous at x0 =⇒ cf continous at x0.
2. f, g continuous at x0 =⇒ f + g continuous at x0.
3. Let m = 1. f, g continuous at x0 =⇒ fg continuous at x0.
4. f continuous at x0 and f(x) ̸= 0∀x ∈ Rn =⇒ 1/f continuous at x0.
5. If f(x) =

(
f1(x), f2(x), ..., fn(x)

)
coordinate-wise, then

f continuous at x0 ⇐⇒ f1, f2, ..., fm continuous at x0 (179)

6. f continuous at x0 and g continuous at y0 = f(x0) =⇒ g ◦ f continuous at x0.

Proof.

This is an immediate result of the equivalence of a function being continuous at point a and its limit
at point a existing.

Theorem 4.10 (Local Properties of Continuous Functions)

Let f : E −→ R be a function that is continuous at the point a ∈ E. Then,
1. f is bounded in some neighborhood U(a).
2. If f(a) ̸= 0, then in some neighborhood U(a) all the values of the function have the same sign

as f(a).
3. If the function g : U(a) ⊂ E −→ R is defined in some neighborhood of a and is continuous at

a, then the following functions

(f + g)(x)

(f · g)(x)(
f

g

)(
x
)

where g(a) ̸= 0

are also defined in U(a) and continuous at a.
4. If the function g : Y −→ R is continuous at a point b ∈ Y and f is such that f : E −→ Y ,

f(a) = b, and f is continuous at a, then the composite function

g ◦ f : E −→ R

is defined on E and continuous at a. This is easy to see because given the open neighborhood of
g(b), we know for a fact that Uδ(a) maps completely into Uϵ(b), and that Uϵ(b) maps completely
into Uκ(g(b)) and so the composition of these mappings must mean that Uδ(a) maps completely
into Uκ(g(b)).
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Example 4.10 ()

An algebraic polynomial

P (x) = a0x
n + a1x

n−1 + a2x
n−2 + . . .+ an−1x+ an (180)

is a continuous function on R. Since f(x) = x and f(x) = c are continuous functions, by induction
on x, we can multiply them together to find that f(x) = xn is continuous, which implies that axn is
continuous, which implies that the sums of these functions are also continuous.

4.3.1 Intermediate and Extreme Value Theorem

Unlike local properties, the global property of a function is a property involving the entire domain of definition
of the function.

Theorem 4.11 (Compact Sets to Compact)

If f : X → Y is continuous and K ⊂ X is compact, then f(K) is compact in Y .

Proof.

Corollary 4.1 (Extreme Value Theorem)

A continuous real-valued function over a compact set attains its maximum and minimum.

Theorem 4.12 (Intermediate Value Theorem)

If a function f is continuous on an open interval and assumes values f(a) = A, f(b) = B, then for
any number C ∈ (A,B), there is a point c between a and b such that f(c) = C.

a c b

f(a)

f(b)

f(c)

f

Figure 11: Illustration of a continuous function with a root in the interval [a, b]

Proof.

This following proof provides a very simple algorithm for finding the zero of the equation f(x) = 0 on
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an interval whose endpoints has values with opposite signs. Note that the colloquial description of the
intermediate value theorem, that is is impossible to pass continuously from positive to negative values
without assuming the value 0 along the way), assumes more than they state. That is, this theorem is
actually dependent on the domain of definition: that is is a closed interval, or more generally, that it is
connected.

4.3.2 Inverse Function Theorem

We begin by introducing this intuitive lemma.

Lemma 4.5 ()

A continuous mapping f : E −→ R of a closed interval E = [a, b] into R is injective if and only if the
function f is strictly monotonic on [a, b].
Furthermore, every strictly monotonic function f : X ⊂ R −→ R (for arbitrary X) has an inverse

f−1 : f(X) ⊂ R −→ R

with the same kind of monotonicity on f(X) that f has on X.

Lemma 4.6 (Criterion for Continuity of a Monotonic Function)

A monotonic function f : E −→ R defined on a closed interval E = [a, b] is continuous if and only if
its set of values f(E) is the closed interval with endpoints f(a) and f(b).
Note that both conditions imply that there are no points of discontinuities in the graph of f .

Theorem 4.13 (Inverse Function Theorem)

A function f : X −→ R that is strictly monotonic on a set X ⊂ R has an inverse f−1 : Y −→ R
defined on the set Y = f(X) of values of f . The function f−1 : Y −→ R is monotonic and has the
same type of monotonicity on Y that f has on X.

If in addition, X is a closed interval [a, b] and f is continuous on X, then the set Y = f(X) is the
closed interval with endpoints f(a) and f(b) and the function f−1 : Y −→ R is continuous on it.

Example 4.11 (Sin and Arcsin)

The function f(x) = sinx is increasing and continuous on the closed interval
[
− π

2 ,
π
2

]
. Hence, the

restriction to the closed interval
[
− π

2 ,
π
2

]
has an inverse x = f−1(y), called the arcsin, and denoted

by x = arcsin y.
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x

y

−π −π
2

π
2

π

−1

1 f(x) = sin(x)

f−1(x) = arcsin(x)

Figure 12: This function is defined on the closed interval
[
− sin

(
− π

2

)
, sin

(
− π

2

)]
= [−1, 1] and increases

continuously from −π
2

to π
2
.

4.4 Uniform Continuity
Roughly speaking, a function f is uniformly continuous if it is possible to guarantee that f(x) and f(y) be as
close to each other as we please by requiring only that x and y be sufficiently close to each other. Intuitively,
uniform continuity says that given any two points x, y in the domain where their distance is arbitrarily small
(δ apart), we can guarantee that the distance between f(x), f(y) is at maximum some arbitrarily small ϵ.

Definition 4.12 (Uniform Continuity)

A function f : E −→ R is uniformly continuous on a set E ⊂ R if for every ϵ > 0, there exists
δ > 0 such that ∣∣f(x1)− f(x2)

∣∣ < ϵ (181)

for all points x1, x2 ∈ E such that |x1 − x2| < δ.

Example 4.12 (Uniformly Continuous)

The following visual shows the radical function f(x) =
√
x defined on R+. We can see that it satisfies

uniform continuity because the graph does not escape the top and/or bottom of the ϵ × δ window,
no matter where the box is located on the graph. More strictly speaking, no matter what we set the
ϵ (how long the box is), uniform continuity says that we can choose a sufficient δ (width of the box)
such that the graph does not escape the top/bottom of the window no matter where the window is.

f(x) =
√
xε

δ

Figure 13: Graph of f(x) =
√
x with ε-δ rectangles at various points
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Example 4.13 (Not Uniformly Continuous)

We can clearly see that the function f(x) = 1/x is not uniformly continuous, since the graph escapes
the ϵ × δ window at some point (marked in red). More strictly speaking, given any length ϵ of the
window, we cannot create a thin-enough δ box that will contain the graph, since as x → 1, the
function becomes unbounded. That is, arbitrarily thin boxes don’t help when the slope is arbitrarily
steep.

f(x) = 1
x

f(x) = 1
x

Figure 14: Graph of f(x) = 1
x

with epsilon-delta boxes and magnified view

To compare uniform continuity with regular continuity, we can adapt this alternate (yet equivalent interpre-
tation): Let there exist function f : E −→ R. Given any ϵ > 0, we can choose a δ > 0 such that given any
point x ∈ E and f(x), as long as a second point y is δ away from x, then f(y) is ϵ away from f(x). This
visualization would lead to there being a 2ϵ× 2δ window around point x. Therefore, given a certain ϵ > 0,
the way we choose δ is only dependent on ϵ, and so it must be a function of ϵ:

δ = δ(ϵ) (182)

However, in continuity, there just has to exist some δ-neighborhood of x such that its image is contained in
the ϵ-neighborhood of f(x).

x

f(x) 2ε

2δ

(a) Uniform continuity means that the box above does not
change dimensions no matter where the point is (hence, the
name uniform).

(b) In continuity, there are no restrictions on the dimensions
of this box. It just has to exist for every point, through a
function of ϵ.

Figure 15: Uniform continuity vs continuity.

With this intuition, it is easy to see the result below.
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Lemma 4.7 (Uniform Continuity Implies Continuity)

If f is uniformly continuous on the set E, it is continuous at each point of that set. However, the
converse is not generally true.

Example 4.14 ()

Let f : R −→ R, f(x) = 3x+7. Then f is uniformly continuous. Choose ϵ > 0. Let δ = ϵ/3. Choose
x, y ∈ R and assume |x− y| < δ. Then,

|f(x)− f(y)| = |3x+ 7− 3y − 7| = 3|x− y| < 3δ = ϵ (183)

Example 4.15 ()

Let f : (0, 4) ⊂ R −→ R, f(x) = x2. Then f is uniformly continuous on (0, 4). Choose ϵ > 0. Let
δ = ϵ/8. Choose x, y ∈ (0, 4) and assume |x− y| < δ. Then,

|f(x)− f(y)| = |x2 − y2| = (x+ y)|x− y| < (4 + 4)|x− y| = 8δ = ϵ (184)

A natural question one might ask is: under what assumptions is the converse true?

Theorem 4.14 (Cantor’s Theorem on Uniform Continuity)

A function that is continuous on a compact set is uniformly continuous on that set.

Proof.

Theorem 4.15 (Uniformly Continuous Function is Linearly Bounded)

If f : R→ R is uniformly continuous, then there exists constants, a, b ∈ R such that |f(x)| ≤ a+ b|x|
for all x ∈ R.

Proof.

Since f is uniformly continuous, for every ϵ > 0 there exists a δ > 0 s.t.

|x− y| < δ =⇒ |f(x)− f(y)| < ϵ (185)

for all x, y ∈ R. Then, setting y = 0 and ϵ = 1, we have some δ > 0 s.t.

|x| < δ =⇒ |f(0)− f(x)| < 1 (186)

Now for any k ∈ N, take |x| < kδ. Then we can construct a sequence (xi = i |x|k )ki=0, where x0 = 0
and xk = |x|, and from the triangle inequality followed by uniform convergence, we have

|xi − xi+1| =
|x|
k

<
kδ

k
= δ =⇒ |f(0)− f(x)| ≤

k−1∑
i=0

|f(xi)− f(xi+1)| <
k−1∑
i=0

1 = k (187)

and so we come to the result
|x| < kδ =⇒ |f(0)− f(x)| < k (188)

Now set m(x) = min{k ∈ N | |x| < kδ}. It must be nonempty by the Archimedean property, so it’s
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lower bounded by 1.

|x| < δm(x) =⇒ |x|
δ

< m(x) =⇒ m(x) ≤ |x|
δ

+ 1 (189)

where the final implication comes from m(x) being minimum. Therefore,

|f(x)| ≤ |f(0)|+ |f(x)− f(0)| ≤ |f(0)|+m(x) ≤ |f(0)|+ |x|
δ

+ 1 (190)

and we have found such a = |f(0)|+ 1, b = 1
δ .

4.5 Lipshitz and Holder Continuity
In both examples, the function satisfied an inequality of form

|f(x1)− f(x2)| ≤M |x1 − x2| (191)

this is called the Lipshitz inequality. Lipshitz continuity is a strong form of uniform continuity for functions.
Intuitively, a Lipshitz continuous function is limited in how fast it can change (by the Lipshitz constant).

Definition 4.13 (Lipshitz Continuous Function)

Given f : E ⊂ R −→ R, f is Lipshitz continuous if there exists a M > 0—called the Lipschitz
constant—such that for all x, y ∈ E,

|f(x)− f(y)| ≤M |x− y| (192)

Note that Lipshitz continuity pops up as a very natural extension of uniform continuity. The inequality
above just means that given an ϵ, we can choose a δ such that a linear multiple of δ is always greater than
ϵ. This means that Lipshitz continuity is just uniform continuity such that the δ function is linear:

δ = δ(ϵ) =
1

M
ϵ (193)

ε

δ = 2ε

(a) M = 1
2

ε

δ = ε

(b) M = 1

ε

δ = 1
2
ε

(c) M = 2

Figure 16: Relationship between slope M and the ratio of δ to ε

Definition 4.14 (Bi-Lipshitz Continuity)

A function f : E ⊂ R is Bi-Lipshitz continuous if there exists constant M ≥ 1 such that for all
real x, y ∈ E,

1

M
|x− y| ≤ |f(x)− f(y)| ≤M |x− y|

It immediately follows that for x ̸= y, |f(x) − f(y)| cannot equal 0, which means that a bilipshitz

68/ 203



Real Analysis Muchang Bahng Spring 2025

map is injective. A bilipshitz map is really just Lipshitz map with its inverse also being Lipshitz.

Theorem 4.16 ()

A bilipshitz map f is a homeomorphism onto its image.

Definition 4.15 (Holder Continuity)

Given f : E ⊂ R→ R, f is α-Holder continuous if there exists a C > 0 such that for all x, y ∈ E,

|f(x)− f(y)| ≤M |x− y|α (194)

4.6 Discontinuity
If the function f : E −→ R is not continuous at a point of E, then this point is called a point of disconti-
nuity, or simply a discontinuity of f . That is, a is a point of discontinuity of f if for some neighborhood
V (f(a)) of f(a), there exists no neighborhood of a whose image under the mapping f is contained in V (f(a)).
There are three types of discontinuities, ranging from least to most extreme.7

Definition 4.16 (Removable Discontinuity)

A removable discontinuity is characterized by the fact that the limit limx→a f(x) = A exists, but
A ̸= f(a).

x

y

−2 −1 1 20

Figure 17: A function with a removable discontinuity at x = 1. The function is defined as f(x) = x2−1
x−1

for
x ̸= 1 and f(1) = 1. The limit of the function as x approaches 1 is 2 (shown by the open circle), but the
function value at x = 1 is 1 (shown by the filled circle).

This means that we can modify f and define a new function f̃ : E −→ R as

f̃(x) =

{
f(x), x ∈ E \ a
A, x = a

(195)

which would be continuous on E.

7Note that strictly speaking, a removable discontinuity is really a discontinuity of first kind, but in this context we distinguish
them.
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Definition 4.17 (Jump/Step Discontinuity, of First Kind)

A discontinuity of first kind, also known as a jump/step discontinuity, is characterized by both
the left and right-hand limits

lim
x→a−0

f(x) and lim
x→a+0

f(x) (196)

existing, but at least one of them is not equal to the value f(a) that the function assumes at a.

x

y

−2 −1 1 20

1

2

3

Figure 18: A function with a step discontinuity at x = 0. The function is defined as f(x) = 1 + 0.25x2 for
x < 0 and f(x) = 2+ 0.25x2 for x ≥ 0. The limit from the left limx→0− f(x) = 1 is shown by the open circle,
while the function value at x = 0 is f(0) = 2 shown by the filled circle. The dashed line highlights the jump
in value.

Definition 4.18 (Essential Discontinuity, of Second Kind)

A discontinuity of second kind, also known as an essential discontinuity, is characterized by at
least one of the two limits

lim
x→a−0

f(x) and lim
x→a+0

f(x) (197)

not existing.

x

y

−2 −1 1 2

−2
−1

1

2

(a) The function f(x) = 1
x

has an infinite discontinuity
at x = 0

x

y

−2 −1 1 2

−1

1

(b) The function f(x) = |1.5 sin
(
1
x

)
| has an oscillatory

discontinuity at x = 0

Figure 19: Examples of discontinuities of the second kind, where the limit does not exist as x approaches the
point of discontinuity

Example 4.16 (Dirichlet Function)

The Dirichlet function, defined

D(x) =

{
1, if x ∈ Q
0, if x ∈ R \Q

(198)
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is discontinuous at every point, and obviously all of its discontinuities are of second kind, since in
every interval there are both rational and irrational numbers and therefore there exists no limit at
any point a ∈ R.
More specifically, given any point a ∈ R, assume that a is rational. We can set ϵ = 0.1-neighborhood
around the value 1, but no matter how small we let δ, the interval (a − δ, a + δ) will contain both
rationals and irrationals, meaning that it will map to {0, 1} always, which is not fully contained in
(0.9, 1.1).

Here is a slightly more interesting example.

Example 4.17 (Riemann Function)

Let the Riemann function R be defined

R(x) =

{
1
n , if x = m

n ∈ Q, where gcd(m,n) = 1

0, if x ∈ R \Q
(199)

We first note that for any point a ∈ R, any bounded neighborhood U(a) of it, and any number
N ∈ N, the neighborhood U(a) contains only a finite number of rational numbers ⋗n, where n < N .
By shrinking the neighborhood, we can assume that the denominators of all rational numbers in the
neighborhood are larger than N , since rationals with larger denominators have smaller gaps between
them. Thus, at any point x ∈ U(a) \ a, we have∣∣R(x)∣∣ < 1

N
(200)

and therefore limx→aR(x) = 0 at any point a ∈ R \ Q. Hence, the Riemann function is continuous
at any irrational number.
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5 Differentiation of Single-Variable Functions

5.1 Definition using Limits or Infinitesimals
In general, there are two ways that we define a derivative: as a limit and with infinitesimals. In a standard
analysis course we use limits, but in differential equations physicists tend to use the language of infinitesimals.
This is where our introduction of the hyperreals in smooth infinitesimal analysis (SIA) will be useful.

Definition 5.1 (Differentiation as a Limit)

Given f : [a, b] ⊂ R→ R, for x ∈ [a, b], define the difference quotient as

f(x)− f(y)

x− y
(201)

If the following limit exists, we define it’s value—called the derivative of f at x—as

f ′(x) := lim
y→x

f(x)− f(y)

x− y
(202)

and say f is differentiable at x. If f is differentiable at x for every x ∈ E, then f is said to be
differentiable over E.

So if the derivative exists, we can just treat it as a new function g(x) = f ′(x). Often, textbooks introduce
the limit as

f ′(x) := lim
h→0

f(x+ h)− f(x)

h
(203)

These two are equivalent definitions since the following two different quotients

ϕ(y) =
f(x)− f(y)

x− y
, γ(h) =

f(x+ h)− f(x)

h
(204)

are related in the sense that ϕ(y) = γ(y − x). So the following two limits exist simultaneously (or fail to
exist simultaneously). It turns out that if they do both exist, then

lim
y→x

ϕ(y) = lim
y→x

γ(y − x) = lim
y→0

γ(y) = lim
h→0

γ(h) (205)

where the only nontrivial equality is the second equality, which is true (should be shown). Now we present
the second method using infinitesimals.

Definition 5.2 (Diferentiable Function)

A function f : E ⊂ R −→ R is differentiable at a given point x (that is a limit point of E) if there
exists a linear function h 7→ df(x)h (called the differential of f) and an infinitesimal α(x;h) = o(h)
as h→ 0, such that

f(x+ h)− f(x) = df(x)(h) + α(x;h)

Note that x is fixed; what we are really interested here is the h value. Furthermore,
1. ∆x(h) ≡ (x+ h)− x = h is called the increment of the argument
2. ∆f(x;h) ≡ f(x+ h)− f(x) is called the increment of the function

They are often denoted (inappropriately) by the symbols ∆x and ∆f(x) representing functions of h.
The differential and the infinitesimal can be visualized below.
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Definition 5.3 (Derivative)

Given function f : E ⊂ R −→ R, the number

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

is called the derivative of the function f at x. This equality can also be written in the equivalent
form:

f(x+ h)− f(x)

h
= f ′(x) + α(h)

where α is infinitesimal as h→ 0. This also also equivalent to:

f(x+ h)− f(x) = f ′(x)h+ o(h)

where the error term o(h)→ 0 as h→ 0.

Note that we have defined the differentiability of a function at a point and the existence of its derivative at
a point completely separately. But it turns out that the existence of this arbitrary number f ′(x) we call the
"derivative," defined

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

actually has an equivalent form of

f(x+ h)− f(x) = f ′(x)h+ o(h)

But since f ′(x) is in R, the function h 7→ f ′(x)h is linear and o(h) is infinitesimal, so it is in the form

f(x+ h)− f(x) = df(x)(h) + α(x;h)

which, by definition, means that it is differentiable! Therefore, we have determined the equivalence between
the differentiability of a function at a point and the existence of its derivative at the same point. Furthermore,
this function h 7→ f ′(x)h is precisely the differential of f , meaning that

df(x)(h) = f ′(x)h

Furthermore,
∆f(x;h)− df(x)(h) = α(x;h)

and α(x;h) = o(h) as h → 0, or in other words, the difference between the increment of the function and
the value of the function df(x) in h is an infinitesimal of higher order than the first in h. For this reason, we
say that the differential is the principal linear part of the increment of the function.
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In particular, if f(x) ≡ x, then we have f ′(x) ≡ 1 and

dx(h) = 1 · h = h

Substituting this equality into df(x)(h) = f ′(x)h, we get

df(x)(h) = f ′(x) dx(h)

or without the input parameter h,
df(x) = f ′(x) dx

Note that this is an equality between two functions of h. From this, we obtain the familiar Leibniz notation
of the derivative:

df(x)(h)

dx(h)
= f ′(x) ⇐⇒ df(x)

dx
= f ′(x)

That is, the function df(x)
dx , which is the ratio of the functions df(x) and dx, is constant and equals f ′(x).

Let us try to construct successive approximations to an arbitrary function f : E −→ R at a given limit point
x0. That is, we find a function g such that

f = g + o(g)

Depending on what g is, we can construct better approximations of f .

Example 5.1 (Constant Approximation)

The 0th order approximation is when g is a constant. That is, g ≡ c0 for some c0 ∈ R. This means

f(x) = c0 + o(c0) = c0 + o(1) as x→ x0 (206)

More precisely, we want this difference f(x)− c0 to be o(1) as x→ x0, which means that it is simply
infinitesimal. Visualizing this, we can see that given a constant approximation (labeled in blue) to
a function at x0, its error term (labeled in green) is in fact, infinitesimal. All this boils down to the
fact that

lim
x→x0

f(x) = c0

If the function is continuous at x0, then

lim
x→x0

f(x) = f(x0)

and naturally c0 = f(x0). Both the continuous (left) and noncontinuous case (right) is shown, but in
most cases, we will assume continuity.
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Example 5.2 (Linear Approximation)

The 1st order approximation is a linear function that approximates f as

f(x) = c0 + c1(x− x0) + o(x− x0) as x→ x0 (207)

Following the previous logic, assuming f continuous means that c0 = f(x0). Furthermore, as x→ x0

f(x) = c0 + c1(x− x0) + o(x− x0) =⇒ c1 =
f(x)− c0 − o(x− x0)

x− x0
(208)

=⇒ c1 =
f(x)− c0
x− x0

− o(x− x0)

x− x0
(209)

=⇒ c1 =
f(x)− c0
x− x0

− o(1) (210)

=⇒ c1 = lim
x→x0

f(x)− c0
x− x0

= f ′(x0) (211)

But this just means that f ′(x0) = c1, Note that before, we have proved the equivalence of the
existence of a derivative at x0 with differentiability at x0 (which itself means that there exists a linear
approximation df(x)(h) that is a function of h). Here, we have created a linear approximation with
respect to x = x0 + h, rather than h (shifted the function).
Therefore, the function

α(x) = f(x0) + f ′(x0)(x− x0)

provides the best linear approximation to the function f in a neighborhod of x0 in the sense that for
any other function β(x) of the form

β(x) = c0 + c1(x− x0)

we have f(x)− β(x) ̸= o(x− x0) as x→ x0. The graph of the function α is the straight line

y − f(x0) = f ′(x0)(x− x0)

This leads to the definition of our familiar tangent line.

Definition 5.4 (Tangent Line)

If a function f : E −→ R is differentiable at a point x0 ∈ E, the line defined by

y − f(x0) = f ′(x0)(x− x0) (212)

is called the tangent to the graph of f at the point (x0, f(x0)).

Tangent spaces.

Definition 5.5 (Tangent Space)

Given function f : E −→ R and a point x0 ∈ E, the increment of the argument h = x − x0 can be
regarded as a vector attached to the point x0 and defining the transition from x0 to x0 + h. h is
called a tangent vector, and the set of all such vectors as Tx0

R. Similarly, we denote Ty0
R the set

of all displacement vectors from the point y0 along the y-axis.
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Then, we can see that the differential is a mapping

df(x0) : Tx0R −→ Tf(x0)R

Note that that there are two functions to pay attention to here:
1. The true increment of f , defined h 7→ f(x0 + h)− f(x0) = ∆f(x0;h) (labeled in green).
2. The differential h 7→ f ′(x0)h = df(x0)(h), which gives the increment of the tangent to the graph

for increment h in the argument (labeled in red).

Example 5.3 ()

Let f(x) = sinx. Then we will show that f ′(x) = cosx.

lim
h→0

sin (x+ h)− sin(x)

h
= lim

h→0

2 sin
(
h
2

)
cos
(
x+ h

2

)
h

= lim
h→0

cos
(
x+

h

2

)
· lim
h→0

sin
(
h
2

)(
h
2

) = cos(x)

Here, we have used the theorem on the limit of a product, the continuity of the function cos(x), the
equivalence sin t ∼ t as t→ 0, and the theorem on the limit of a composite function.

Example 5.4 ()

We will show that cos′(x) = − sin(x).

lim
h→0

cos(x+ h)− cos(x)

h
= lim

h→0

−2 sin
(
h
2

)
sin
(
x+ h

2

)
h

= − lim
h→0

sin
(
x+

h

2

)
· lim
h→0

sin
(
h
2

)(
h
2

) = − sin(x)

Lemma 5.1 (Differentiability Implies Continuity)

If f is differentiable at x, it is continuous at x.

Proof.

If f is differentiable at x, then the derivative

f ′(x) = lim
y→x

f(x)− f(y)

x− y
(213)
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exists. Therefore,

0 = f ′(x) · 0 = f ′(x)
(
lim
y→x

x− y
)

(214)

= lim
y→x

f(x)− f(y)

x− y
· lim
y→x

x− y (215)

= lim
y→x

f(x)− f(y)

x− y
(x− y) (216)

= lim
y→x

f(x)− f(y) (217)

which implies that f(x) = limy→x f(y), and hence f is continuous at x.

Therefore, we can see that the set of differentiable functions is a subset of the set of continuous functions.

5.2 Rules of Differentiation

Lemma 5.2 (Arithmetic)

If f and g are differentiable at x, then
1. f + g is differentiable at x with

(f + g)′(x) = f ′(x) + g′(x) (218)

2. fg is differentiable at x with

(fg)′ = f ′(x)g(x) + f(x)g′(x) (219)

3. f/g is differentiable at x with(
f

g
)

)′

(x) =
f ′(x)g(x)− f(x)g′(x)

g(x)2
(220)

Proof.

The proof for addition is pretty trivial, so we will prove for multiplication and division. For products,
let’s not take the quotient just yet.

(fg)(x)− (fg)(y) = f(x)g(x)− f(y)g(y) (221)

We know something about f(x)− f(y) and g(x)− g(y), so try to put it into this form.(
f(x)− f(y)

)
g(x) + f(y)

(
g(x)− g(y)

)
(222)

Therefore,
(fg)(x)− (fg)(y)

x− y
=

f(x)− f(y)

x− y︸ ︷︷ ︸
exists

g(x) + f(y)
g(x)− g(y)

x− y︸ ︷︷ ︸
exists

(223)

So by taking limits, f is continuous so f(y)→ x as y → x, and we finally have

f ′(x)g(x) + f(x)g′(x) (224)

For the quotient rule, it suffices to show from the product rule that (1/g)′(x) = − g′(x)
g(x)2 .
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In proving properties of differentiability, it is useful to observe that

lim
y→x

f(x)− f(y)

x− y
⇐⇒ f(x)− f(y) = (x− y)(f ′(x) + E) (225)

for some function E where limy→x E(x) = 0. This is known as Taylor’s formula. This is similar to the
decomposition of sequences into a constant plus an infinitesimal sequence.

From this, we can find the derivative of polynomials.

Corollary 5.1 (Polynomial Derivatives)

The following are true.
1. The derivative of a constant function is 0
2. The derivative of the identity function f(x) = x is 1.
3. The derivative of f(x) = xn is nxn−1.
4. The derivative of a polynomial f(x) = anx

n + . . .+ a0 can then be found.

Proof.

Theorem 5.1 (Chain Rule)

Let f : [a, b] ⊂ R→ R be a differentiable function, fix x ∈ [a, b], and assume differentiable g : I → R
where f(x) ∈ I. Then, h = g ◦ f is differentiable at x with the derivative

h′(x) = g′(f(x))f ′(x) (226)

Proof.

We have
g
(
f(x)

)
− g
(
f(y)

)
=
(
f(x)− f(y)

)(
g′(f(x)) + Ef(y)→f(x)

)
(227)

Now we divide by x− y.

g(f(x))− g(f(y))

x− y
− f(x)− f(y)

x− y
·
(
g′(f(x)) + Ef(y)→f(x)

)
(228)

Now if x→ y, then f is continuous, which implies f(y)→ f(x) and so E → 0, and so by taking this
limit, the above evaluates to

f ′(x) · g′(f(x)) (229)

We could have also done

g(f(x))− g(f(y))

x− y
=

g(f(x))− g(f(y))

f(x)− f(y)
· f(x)− f(y)

x− y
→ g′(f(x)) · f ′(x) (230)

Theorem 5.2 (Differentiation of Inverse Functions over R)

Let E1, E2 ⊂ R, and f : E1 −→ E2 and f−1 : E2 −→ E1 be mutually inverse and continuous at points
x0 ∈ E1 and f(x0) = y0 ∈ E2. If f is differentiable at x0 and f ′(x0) ̸= 0, then f−1 also differentiable
at the point y0, and (

f−1
)−1

(y0) =
(
f ′(x0)

)−1 ⇐⇒ df−1(y0) =
(
df(x0)

)−1
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E1

E2

f

x0

y0

f ′(x0)

E2

E1

f−1

y0

x0

(f−1)′(x0) =
1

f ′(x0)

Figure 20: Relationship between a function f and its inverse f−1, showing how their derivatives are related

Note that if we knew in advance that f−1 was differentiable at y0 (which is a stronger hypothesis),
we can find immediately by the identity

(f−1 ◦ f)(x) = x

and the theorem on the differentiation of a composite function that

(f−1)′(y0) · f ′(x0) = 1

Note that if the hypothesis was satisfied, but f ′(x0) = 0, then f−1 would not be differentiable since it would
have an undefined differential.

x

y

f ′(x0) = 0

f
y

x

(f−1)′(x0) =?

f−1

Figure 21: A function through three points and its inverse relation

5.2.1 Basic Properties; Derivatives of Composite, Inverse Functions

Theorem 5.3 (Arithmetic)

If functions f, g : E −→ R are differentiable at a point x ∈ E, then
1. their sum is differentiable at x, and

d(f + g)(x) = df(x) + dg(x) ⇐⇒ (f + g)′(x) = (f ′ + g′)(x)
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2. their product is differentiable at x, and

d(f · g)(x) = g(x)df(x) + f(x)dg(x) ⇐⇒ (f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x)

3. their quotient is differentiable at x if g(x) ̸= 0, and

d
(f
g

)
(x) =

g(x)df(x)− f(x)dg(x)

g2(x)
⇐⇒

(
f

g

)′

(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)

It is clear that c · df(x) = d(cf)(x), it is clear that the derivative is a linear operator from the space
of all functions differentiable at x0 the space of all functions.

Proof.

Since f and g are differentiable at x, there exists the differential df(x)(h) = f ′(x)h and dg(x) = g′(x)h
where

f(x+ h) = f(x) + df(x)(h) + o(h) = f(x) + f ′(x)h+ o(h)

g(x+ h) = g(x) + dg(x)(h) + o(h) = g(x) + g′(x)h+ o(h)

From this relation, we can clearly see that a certain property of the differential automatically implies
the same property of the derivative. (Remember that f ′(x) and g′(x) are not functions! They are
scalars defined on fixed point x.)

1. Even though this derivation may be a bit long, every step is included to minimize ambiguity.

(f + g)(x+ h)− (f + g)(x) =
(
f(x+ h) + g(x+ h)

)
−
(
f(x) + g(x)

)
=
(
f(x+ h)− f(x)

)
+
(
g(x+ h)− g(x)

)
=
(
df(x)(h) + o(h)

)
+
(
dg(x)(h) + o(h)

)
=
(
f ′(x)h+ o(h)

)
+
(
g′(x)(h) + o(h)

)
=
(
f ′(x) + g′(x)

)
h+ o(h)

= (f ′ + g′)(x)(h) + o(h)

= d(f + g)(x)h+ o(h)

2. For the product rule, we have

(f · g)(x+ h)− (f · g)(x) = f(x+ h)g(x+ h)− f(x)g(x)

=
(
f(x) + df(x)(h) + o(h)

)(
g(x) + dg(x)(h) + o(h)

)
− f(x)g(x)

=
(
f(x) + f ′(x)h+ o(h)

)(
g(x) + g′(x)h+ o(h)

)
− f(x)g(x)

Expanding this gives(
f ′(x)g(x) + f(x)g′(x)

)
h+

(
f(x) + g(x)

)
o(h)+

f ′(x)g′(x)h2 +
(
f ′(x) + g′(x)

)
ho(h) +

(
o(h)

)2
but note that since f(x), g(x), f ′(x), g′(x) are constants, we see that
(a)

(
f(x) + g(x)

)
o(h) = o(h) because

lim
h→0

(
f(x) + g(x)

)
o(h)

h
=
(
f(x) + g(x)

)
lim
h→0

o(h)

h
= 0

(b) f ′(x)g′(x)h2 = o(h) since

lim
h→0

f ′(x)g′(x)h2

h
= f ′(x)g′(x) lim

h→0
h = 0
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(c)
(
f ′(x) + g′(x)

)
ho(h) = o(h) because

lim
h→0

(
f ′(x) + g′(x)

)
ho(h)

h
=
(
f ′(x) + g′(x)

)
lim
h→0

o(h) = 0

In fact, this term is of o(h2).
(d) We can see that (o(h))2 = o(h) since

lim
h→0

(o(h))2

h
= lim

h→0

o(h)

h
· lim
h→0

o(h) = 0 · 0 = 0

In fact, (o(h))2 = o(h2).
Therefore, the above simplifies to

(f · g)(x+ h)− (f · g)(x) =
(
f ′(x)g(x) + f(x)g′(x)

)
h+ o(h)

But this means that the differential (best approximation) d(f · g)(x) must be

(f · g)′(x)(h) = (f · g)′(x)h =
(
f ′(x)g(x) + f(x)g′(x)

)
h

3. Since the function g(x) ̸= 0 at point x, then by continuity we can assume that there exists a
neighborhood U(x) where the image of that neighborhood does not vanish. That is, we can
guarantee that g(x + h) ̸= 0 for sufficiently small values of h. We assume h is small in the
following computations.(

f

g

)
(x+ h)−

(
f

g

)
(x) =

f(x+ h)

g(x+ h)
− f(x)

g(x)

=
1

g(x)g(x+ h)

(
f(x+ h)g(x)− f(x)g(x+ h)

)
=

(
1

g2(x)
+ o(1)

)((
f(x) + f ′(x)h+ o(h)

)
g(x)

− f(x)
(
g(x) + g′(x)h+ o(h)

))
=

(
1

g2(x)
+ o(1)

)((
f ′(x)g(x)− f(x)g′(x)

)
h+ o(h)

)
=

f ′(x)g(x)− f(x)g′(x)

g2(x)
h+ o(h)

Note that here we have used the continuity of g at the point x and the fact that g(x) ̸= 0 to
deduce that

lim
h→0

1

g(x)g(x+ h)
=

1

g2(x)
⇐⇒ 1

g(x) + g(x+ h)
=

1

g2(x)
+ o(1)

where o(1) is infinitesimal as h→ 0.

Theorem 5.4 (Chain Rule)

Let there be functions f : E1 ⊂ R −→ E2 ⊂ R is differentiable at a point x ∈ E1 and the function
g : E2 ⊂ R −→ R is differentiable at point y = f(x) ∈ E2, with respective differentials

df(x) : TxR −→ TyR
dg(y) : TyR −→ Tg(y)R
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Then the composite function g◦f : E1 −→ R is differentiable at x, and d(g◦f)(x) : TxR −→ Tg◦f(x)R
is

d(g ◦ f)(x) = dg(y) ◦ df(x) ⇐⇒ (g ◦ f)′(x) = g′
(
f(x)

)
◦ f ′(x)

Proof.

We will denote the increment of the argument with the variables h and t. Then, by differentiability
of f and g, we have

f(x+ h)− f(x) = f ′(x)h+ o(h) as h→ 0

g(y + t)− g(y) = g′(y)t+ o(t) as t→ 0

Since the function o(t) can be represented as o(t) = γ(t)t, where γ = o(1) and hence is infinitesimal
as t→ 0, meaning that we can assume γ(0) = 0 (since o(t) is defined for t = 0).
We can think of the displacement of x as like a chain reaction: Asx 7→ x+h, f(x) 7→ f(x+h), which
we could interpret as y 7→ y + t and hence means that g(y) 7→ g(y + t). So, setting f(x) = y and
f(x+h) = y+ t, by differentiability and hence continuity of f at point x, we can conclude that t→ 0
as h→ 0. So, we have

γ
(
f(x+ h)− f(x)

)
= γ

(
(y + t)− y

)
= γ(t) = α(h)→ 0 as h→ 0

Thus, we get

o(t) = γ(t)t = γ
(
f(x+ h)− f(x)

)(
f(x+ h)− f(x)

)
= α(h)

(
f ′(x)h+ o(h)

)
= α(h)f ′(x)h+ α(h)o(h)

= o(h) + o(h) = o(h) as h→ 0

(g ◦ f)(x+ h)− (g ◦ f)(x) = g
(
f(x+ h)

)
− g
(
f(x)

)
= g(y + t)− g(y)

= g′(y)t+ o(t)

= g′
(
f(x)

)(
f(x+ h)− f(x)

)
+ o
(
f(x+ h)− f(x)

)
= g′

(
f(x)

)(
f ′(x)h+ o(h)

)
+ o
(
f(x+ h)

)
− f(x)

)
= g′

(
f(x)

)(
f ′(x)h

)
+ g′

(
f(x)

)(
o(h)

)
+ o
(
f(x+ h)− f(x)

)
Since g′

(
f(x)

)(
o(h)

)
is really just a constant multiplied by a function that is o(h), it is o(h). o

(
f(x+

h) − f(x)
)
. As for o

(
f(x + h) − f(x)

)
, we see that since f(x + h) − f(x) = t, a function that is

o
(
f(x+ h)− f(x)

)
becomes infinitesimal compared to t as t→ 0. As already stated before, we have

o
(
f(x+ h)− f(x)

)
= o(h) as h→ 0

and thus, we proved that

(g ◦ f)(x+ h)− (g ◦ f)(x) = g′(y)f ′(x)h+ o(h)

=
(
dg(y) ◦ df(x)

)
(h) + o(h)
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5.3 Theorems of Differentiable Functions

Theorem 5.5 (Local Extrema of Differentiable Functions Have Vanishing Derivative)

Let f : [a, b] → R and assume f has a local maximum at c ∈ (a, b) with f differentiable at c. Then
f ′(c) = 0.

Proof.

Let us pick two sequences—a left one and a right one—that converges to x from either side.
1. If x > c (with x sufficiently close to c), then f(c) ≥ f(x) and so

f(c)− f(x)

c− x
≤ 0 =⇒ f ′(c) = lim

c−x

f(c)− f(x)

c− x
≤ 0 (231)

2. If x < c, then f(c) ≥ f(x) and so

f(c)− f(x)

c− x
≥ 0 =⇒ f ′(c) = lim

c−x

f(c)− f(x)

c− x
≥ 0 (232)

So 0 ≤ f ′(c) ≤ 0 =⇒ f ′(c) = 0.

Note that it is generally not true that f ′(c) = 0 if c = a or c = b, i.e. at the endpoints.

Theorem 5.6 (Rolle’s Theorem)

Suppose f : [a, b] → R is differentiable on (a, b). Then, if f(a) = f(b), then there exists a c ∈ (a, b)
such that f ′(c) = 0.

Proof.

Since f is continuous on [a, b], it has to attain its global max and min values somewhere in [a, b].
If either is in (a, b), then the derivative is 0. If max and min are attained on {a, b}, then since
f(a) = f(b), this implies that f(x) = f(a) for all x ∈ [a, b], which implies f ′(x) = 0.

Theorem 5.7 (Mean Value Theorem)

Assume f : [a, b]→ R is differentiable. Then there exists a c ∈ (a, b) for which

f ′(c) =
f(b)− f(a)

b− a
⇐⇒ f ′(c)(b− a) = f(b)− f(a) (233)

Proof.

Just use Rolle’s on
g(x) = f(x)−

[
f(b)− f(a)

b− a
(x− a) + f(a)

]
(234)

which satisfies g(a) = g(b) = 0, and so there must exist some c ∈ (a, b) such that g′(c) = 0, i.e.

f ′(c)− f(b)− f(a)

b− a
= 0 =⇒ f ′(c) =

f(b)− f(a)

b− a
(235)

Geometrically, this means that there exists a tangent line somewhere at ζ ∈ (a, b) that is parallel the secant
line connecting the two points

(
a, f(a)

)
and

(
b, f(b)

)
.
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Some remarks:

1. Physically, if x is interpreted as time and f(b)−f(a) as the amount of displacement over the time b−a
of a particle moving along the line, this theorem says that the velocity f ′(x) of the particle at some
time ζ ∈ (a, b) is such that if the particle had moved with constant velocity f ′(ζ) over the whole time
interval, it would have been displaced by the same amount f(b) − f(a). We call f ′(ζ) the average
velocity over the time interval [a, b].

2. Note that the Mean Value Theorem is important in that it connects the increment of a function over
a finite interval with the derivative of the function on that interval. Up to now, we have characterized
only the local (infinitesimal) increment of a function in terms of the derivative or differential at a given
point. MVT connects the increment of a function over a finite interval with the derivative of the
function.

The MVT actually leads to multiple useful corollaries.

Theorem 5.8 (Derivative of a Monotonic Function)

Given function f : [a, b] −→ R that is differentiable on (a, b),

f ′(x) > 0 =⇒ f is increasing
f ′(x) ≥ 0 ⇐⇒ f is nondecreasing
f ′(x) ≡ 0 ⇐⇒ f is constant
f ′(x) ≤ 0 ⇐⇒ is nonincreasing
f ′(x) < 0 =⇒ f is decreasing

Note the one-sided direction for the strict inequalities.a The reverse implication is a bit weaker.

f is increasing =⇒ f ′(x) ≥ 0

f is decreasing =⇒ f ′(x) ≤ 0

aThink of the function f(x) = x3, which is strictly increasing, but has derivative f ′(0) = 0 at x = 0.

Proof.

If x1 < x2 are two points of the interval, then the MVT

f(x2)− f(x1) = f ′(ζ)(x2 − x1) (236)

shows that the sign of the left hand side must equal that of the right.

Corollary 5.2 (Derivative of a Constant Function)

A function that is continuous on a closed interval [a, b] is constant on it if and only if its derivative
equals 0 at every point of the interval [a, b] or the open interval (a, b).
Therefore, if the derivatives f ′

1(x) and f ′
2(x) of two functions f1(x) and f2(x) are equal on some

interval (that is, f ′
1(x) = f ′

2(x) on the interval), then the difference

(f1 − f2)(x) = f1(x)− f2(x) (237)

is constant.

84/ 203



Real Analysis Muchang Bahng Spring 2025

Proof.

Given constant function f , the MVT equation

0 = f(x2)− f(x1) = f ′(ζ)(x2 − x1) (238)

implies that f ′(ζ) = 0 for all x1, x2 ∈ E. It follows that by the arithmetic properties of the derivative,
given two functions f1, f2 with the same derivative on an interval, the derivative of their difference
(f1 − f2)

′ = 0, and therefore must be constant on that interval.

Theorem 5.9 (IVT For Derivatives)

Suppose f : [a, b]→ R is a real and differentiable function and suppose f ′(a) < λ < f ′(b). Then there
exists x ∈ (a, b) such that f ′(x) = λ.a

ai.e. f doesn’t have to be continuous, but it must have a middle value.

Proof.

Let g(x) = f(x)− λx. Then g is differentiable with g′(x) = f ′(x)− λ. But this implies that
1. g′(a) = f ′(a)− λ < 0, which implies that

g(t1)− g(a)

t1 − a
< 0 =⇒ g(t1)− g(a) < 0 =⇒ g(t1) < g(a) (239)

for some t1 > a sufficiently close to a.
2. g′(b) = f ′(b)− λ > 0, which implies that

g(t2)− g(b)

t2 − b
> 0 =⇒ g(t2)− g(b) > 0 =⇒ g(t2) > g(b) (240)

for some t2 < b sufficiently close to b.
By the mean value theorem there exists x ∈ (a, b) s.t. g′(x) = 0 =⇒ f ′(x) = λ.

Corollary 5.3 (Derivatives Cannot Have Jump Discontinuities)

You can’t have a jump discontinuitya for derivatives.
aAlso called a discontinuity of the first kind.

That is, the derivative of a differentiable function cannot “jump,” so it’s like the IVT of derivatives. However,
it may as well have discontinuities of the second kind.

Example 5.5 (Derivative Might Jump if Not Differentiable)

A non-example is f(x) = |x|. It is not differentiable over [−1, 1], and so we see a jump in the
derivative.

The following theorem is a useful generalization of Lagrange’s theorem.

Theorem 5.10 (Cauchy’s Finite-Increment Theorem)

Let x = x(t) and y = y(t) be functions that are continuous on a closed interval [α, β] and differentiable
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on the open interval (α, β). Then, there exists a point τ ∈ [α, β] such that

x′(τ)
(
y(β)− y(α)

)
= y′(τ)

(
x(β)− x(α)

)
(241)

If in addition x′(t) ̸= 0 for each t ∈ (α, β), then x(α) ̸= x(β) and we have the equality

y(β)− y(α)

x(β)− x(α)
=

y′(τ)

x′(τ)
(242)

5.4 Extrema and Concavity
Similarly, we can connect the concepts of extrema and derivatives.

Theorem 5.11 (First Derivative Test)

Let function f : E −→ R be defined in a neighborhood U(x0) of point x0, which is continuous at x0

and differentiable in Ů(x0), a deleted neighborhood of x0. (Note that this is broader hypothesis than
just assuming that f be differentiable at x0.) Let

Ů−(x0) ≡ {x ∈ U(x0) | x < x0}, Ů+(x0) ≡ {x ∈ U(x0) | x > x0}

That is, Ů−(x0) is the left portion of Ů(x0) and Ů+(x0) is the right portion of Ů(x0). Then,
1. (x0, f(x0)) is strict local minimum if f ′(x) < 0 in Ů−(x0) and f ′(x) > 0 in Ů+(x0).
2. (x0, f(x0)) is strict local maximum if f ′(x) > 0 in Ů−(x0) and f ′(x) < 0 in Ů+(x0).
3. (x0, f(x0)) has no extremum at x0 if f ′(x) > 0 in both Ů−(x0), Ů

+(x0), or if f ′(x) < 0 in both
Ů−(x0), Ů

+(x0).

Note that if there is a discontinuity at a point x0, then this theorem does not apply. For example, (x0, f(x0))
in the graph below is a local minimum, even though the derivatives to the left of x0 are positive and those
to the right of x0 are negative (within neighborhood U(x0)). Similarly, (x0, g(x0)) is a local maximum, even
though the derivative to the left and to the right of x0 are both positive.

Theorem 5.12 (2nd, nth Derivative Test)

Let function f : E −→ R be defined on a neighborhood U(x0) of x0 has derivatives of order up to n
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inclusive at x0. If its derivatives up to the (n− 1)th order vanishes

f ′(x0) = f ′′(x0)... = f (n−1)(x0) = 0

but the nth derivative at x0 does not vanish

f (n)(x0) ̸= 0

then
1. n is odd =⇒ there is no local extremum at x0

2. n is even =⇒ there is a local extremum at x0

(a) f (n)(x0) > 0 =⇒ it is a strict local minimum
(b) f (n)(x0) < 0 =⇒ it is a strict local maximum

Definition 5.6 (Convex, Concave Functions)

A function f : (a, b) −→ R defined on an open interval (a, b) ⊂ R is convex if the inequality

f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2)

holds and concave, or convex upward, if the inequality

f(α1x1 + α2x2) ≥ α1f(x1) + α2f(x2)

holds for all pairs of points x1, x2 ∈ (a, b) and any numbers α1, α2 ≥ 0 such that α1 + α2 = 1. If this
inequality is strict whenever x1 ̸= x2 and α1α2 ̸= 0, the function is said to be strictly convex and
strictly concave, respectively.

Note that using induction on the number of points, we get a primitive form of Jensen’s inequality.

Lemma 5.3 (Jensen’s Inequality)

If f : (a, b) −→ R is a convex function, x1, ..., xn are points of (a, b), and α1, ..., αn are nonnegative
numbers such that α1 + ...+ αn = 1, then

f(α1x1 + ...+ αnxn) ≤ α1f(x1) + ...+ αnf(xn) (243)

The following is also another equivalent condition for a function to be convex over (a, b).

Theorem 5.13 ()

A function f : (a, b) −→ R that is differentiable on the open interval (a, b) is convex on (a, b) if and
only if its graph contains no points below any tangent drawn to it.

Theorem 5.14 (2nd Derivatives of Convex Functions)

Given a function f : (a, b) −→ R that is differentiable in its domain,
1. f is convex ⇐⇒ f ′ is nondecreasing on (a, b) ⇐⇒ f ′′ ≥ 0 on (a, b)
2. f is strictly convex ⇐⇒ f ′ is increasing on (a, b) ⇐⇒ f ′′ > 0 on (a, b)
3. f is concave ⇐⇒ f ′ is nonincreasing on (a, b) ⇐⇒ f ′′ ≤ 0 on (a, b)
4. f is strictly concave ⇐⇒ f ′ is decreasing on (a, b) ⇐⇒ f ′′ < 0 on (a, b)
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Definition 5.7 (Inflection Point)

Let f : E −→ R be a function defined and differentiable on a neighborhood U(x0). If the function
is convex downward (resp. upward) on the set Ů−(x0) = {x ∈ U(x0) | x < x0} and convex upward
(resp. downward) on Ů+(x0) = {x ∈ U(x0) | x > x0}, then the point(

x0, f(x0)
)

is called a inflection point of the graph.

x

y

f ′′ > 0

f ′′ < 0

inflection
point

Ů−(x0) Ů+(x0)

Figure 22: Curve with changing concavity and inflection point at π

5.5 Theorems of Continuously Differentiable Functions
Now continuously differentiable functions are called smooth functions, denoted f ∈ C1([a, b]).

Theorem 5.15 (C1 Implies Lipschitz)

A continuously differentiable function is Lipschitz continuous.

Proof.

Example 5.6 ()

Suppose f is twice-differentiable on R and that M0,M1,M2 are the least upper bounds of |f(x)|,
|f ′(x)|, and |f ′′(x)|. Then M2

1 ≤ 4M0M2.

Theorem 5.16 (L’Hopital’s Rule)

Suppose f, g are continuously differentiable functions with f(c) = g(c) = 0 and g′(c) ̸= 0. Then,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
(244)
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Proof.

We have

lim
x→c

f(x)

g(x)
= lim

x→c

f(x)− f(c)

g(x)− g(c)
(245)

= lim
x→c

f(x)−f(c)
x−c

g(x)−g(c)
x−c

(246)

=
limx→c

f(x)−f(c)
x−c

limx→c
g(x)−g(c)

x−c

(247)

= lim
x→c

f ′(x)

g′(x)
(248)

Example 5.7 ()

Let f(x) = sinx and g(x) = −0.5x. Then, the function

h(x) =
f(x)

g(x)
=

sinx

−0.5x
(249)

is clearly undefined at x = 0. However, we can solve the limit using L’Hopital’s rule to get

lim
x→0

sinx

−0.5x
= lim

x→0

cosx

−0.5
= −2 (250)

Therefore, h : R \ 0 −→ R can be completed to continuous function on all of R by defining the
extension:

H(x) ≡

{
h(x), x ̸= 0

−2, x = 0
(251)

5.6 Higher Order Derivatives
Note that the mean value theorem states that given differentiable f : [a, b]→ R, there exists a c ∈ (a, b) s.t.

f(b) = f(a) + f ′(c)(b− a) (252)

which is like a first order approximation. We would like to attain a second order approximation using the
fact that f is twice differentiable. To do this, recall how we proved the MVT. We subtracted a linear function
from f(x) to get a new function g(x) satisfying g(a) = g(b) = 0. We will do the same here.

Theorem 5.17 (Taylor’s Theorem of 2nd Order)

If f is twice differentiable on [a, b], then

f(b) = f(a) + f ′(b)(b− a) +
f ′′(c)

2
(b− a)2 (253)

for some c ∈ (a, b). This is like a mean value theorem for the second order, where only the final term
is dependent on c.
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Proof.

Let us define the function

g(x) := f(x)− f(a)− f ′(a)(x− a)−M(x− a)2 (254)

where M was chosen such that g(b) = 0. Now notice that

g(a) = f(a)− f(a)− 0− 0 = 0 (255)
g′(a) = f ′(a)− f ′(a)− 0 = 0 (256)

and so by using Rolle’s theorem on g, there exists a c1 ∈ (a, b) s.t.

g′(c1)(b− a) = g(b)− g(a) = 0− 0 = 0 =⇒ g′(c1) = 0 (257)

therefore, we can use Rolle’s theorem again on g′ and claim there exists a c ∈ (a, c1) s.t.

g′′(c)(c1 − a) = g′(c1)− g′(a) = 0− 0 = 0 =⇒ g′′(c) = 0 (258)

This gives us all we need. By taking the double derivative of g, we get

0 = g′′(c) = f ′′(c)− 2M =⇒ M =
f ′′(c)

2
(259)

and substituting this in gives

0 = g(b) = f(b)− f(a)− f ′(a)(b− a)− f ′′(c)

2
(b− a)2 (260)

We can continue this process to get a nth order approximation.

Theorem 5.18 (Taylor’s Theorem)

Suppose f : [a, b]→ R, is nth differentiable over [a, b] and f (n+1) exists over (a, b). Then there exists
a c ∈ (a, b) s.t.

f(b) =

( n∑
k=0

f (k)(a)

k!
(b− a)k

)
+

f (n+1)(c)

(n+ 1)!
(b− a)n+1 (261)

Where
εf := (262)

Proof.

We do the exact same process. Let us define

P (x) =

n∑
k=0

f (k)(a)

k!
(x− a)k (263)

and set
g(x) := f(x)− P (x)−M(x− a)n+1 (264)

where M was chosen such that g(b) = 0. Now notice that evaluating on g gives us

g(a) = g′(a) = g′′(a) = . . . = g(n)(a) = 0 (265)

So by using Rolle’s theorem on g, there exists a c1 ∈ (a, b) s.t. g′(c1) = 0. Therefore we can use
Rolle’s theorem on g′ to show there exists a c2 ∈ (a, c1). We keep doing this until we show that there
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exists a c ∈ (a, b) s.t. g(n)(c) = 0. With this, we can directly evaluating the nth derivative of g to
find

0 = g(n)(c) = f (n)(c)− n!M =⇒ M =
f (n)(c)

n!
(266)

We can continue this pattern to get a quadratic approximation of f in the form

f(x) = c0 + c1(x− x0) + c2(x− x0)
2 + o

(
(x− x0)

2
)

as x→ x0 (267)

As we have done in the previous subsection, we can derive (assuming continuity of f) c0 = f(x0), c1 = f ′(x0).
To derive what c2 should be, we see that the equation above implies

c2 =
f(x)− c0 − c1(x− x0)− o

(
(x− x0)

2
)

(x− x0)2
=

f(x)− c0 − c1(x− x0)

(x− x0)2
− o(1) (268)

which means
c2 = lim

x→x0

f(x)− c0 − c1(x− x0)

(x− x0)2
(269)

Extending this, if we are seeking a polynomial Pn(x0;x) = c0 + c1(x− x0) + . . .+ cn(x− x0)
n such that

f(x) = c0 + c1(x− x0) + . . .+ cn(x− x0)
n + o

(
(x− x0)

n
)

as x→ x0 (270)

we would find

c0 = lim
x→x0

f(x) (271)

c1 = lim
x→x0

f(x)− c0
x− x0

(272)

c2 = lim
x→x0

f(x)− c0 − c1(x− x0)

(x− x0)2
(273)

. . . = . . . (274)

cn = lim
x→x0

f(x)− (c0 + . . .+ cn−1(x− x0)
n−1)

(x− x0)n
(275)

We formalize the order of these approximations by analyzing their error bound.

Definition 5.8 (nth Order Contact)

If f, g : E −→ R are continuous at point x0 and (f − g)(x) = o
(
(x − x0)

n
)

as x → x0, then we say
that f and g have nth order contact at x0, or more precisely, contact of order at least n.
The following visual shows approximations g of an arbitrary function f that have 0th (left), 1st
(middle), and 2nd (right) order contact at x0.
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Lemma 5.4 (Leibniz’ Formula)

Let u(x) and v(x) be functions having derivatives up to order n inclusive on a common set E. Then,

(uv)(n) =

n∑
m=0

(
n

m

)
u(n−m)v(m)

This means that given a polynomial Pn(x) = c0 + c1(x− x0) + . . .+ cn(x− x0)
n, then

Pn(x0) = 0

P ′
n(x0) = 1!c1

P ′′
n (x0) = 2!c2

. . . = . . .

P (n)
n (x0) = n!cn

P (k)
n (x0) = 0 for k > n

and thus the polynomial Pn(x) can be written as

Pn(x) = P (0)
n (x0) +

1

1!
P (1)
n (x0)(x− x0) +

1

2!
P (2)
n (x0)(x− x0)

2 + . . .+
1

n!
P (n)
n (x0)(x− x0)

n

5.6.1 Taylor’s Formula

From the following results one may deduce that the more derivatives of two functions coincide (including the
derivative of the 0th order) at a point, the better these functions approximate each other in a neighborhood
of that point. Using Leibniz’s rule, approximations up to a certain degree at a point can be expressed as a
polynomial

Pn(x0;x) = Pn(x0) +
P ′
n(x0)

1!
(x− x0) + ...+

P
(n)
n (x0)

n!
(x− x0)

n

where each coefficient of the polynomial

Definition 5.9 (Taylor Polynomial)

If a function f : E −→ R has derivatives of all orders n ∈ N at a point x0, the unique series

Pn(x0;x) = f(x0) +
f ′(x0)

1!
(x− x0) + ...+

f (n)(x0)

n!
(x− x0)

n

is the Taylor polynomial of order n of f(x) at x0. We can see that the derivatives of f and Pn

coincide up to order n.

Definition 5.10 (Analytic Functions)

We cannot assume that the Taylor series of an infinitely differentiable function converges to the
function f within a neighborhood U(x0), nor can we assume that it converges at all! These types of
"nice" functions that have a Taylor approximation within the neighborhood of x0 are called analytic
functions and can be written in the form

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) + ...+

f (n)(x0)

n!
(x− x0)

n + rn(x0;x)

where r is called the remainder term.
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Example 5.8 (Infinitely Differentiable, Non-Analytic Function)

A example of a non-analytic function is

f(x) =

{
e−1/x2

if x ̸= 0

0 if x = 0
(276)

which looks like the following.

x

y

−1 1

y = e−
1
x2

Figure 23: Graph of the function y = e
− 1

x2 . This function equals 0 at x = 0 and approaches 1 as |x|
approaches infinity. One can verify that the derivative f (k)(0) = 0 for all k and hence the Taylor series is
identically equal to 0, while f(x) ̸= 0 if x ̸= 0.

The relationship between these different conditions is nicely summarized in the figure.

Taylor series converges to f at x0 ⇐⇒ f is analytic

Taylor series converges at x0

f infinitely differentiable at x0 ⇐⇒ Taylor series of f exists at x0

The following lemma proves why Taylor Polynomials are considered a "good" approximations to analytic
functions.

Lemma 5.5 (Infinitesimality of Functions with Vanishing Derivative up to Order n)

Given a function φ : E −→ R defined on a closed interval E with endpoint x0, let its derivatives
vanish up to order n at x0. That is

φ(x0) = φ′(x0) = . . . = φ(n)(x0) = 0

Then, φ = o
(
(x− x0)

n
)

as x→ x0.

Proof.

We prove by induction. For n = 1, the definition of differentiability states that

φ(x) = φ(x0) + φ′(x− x0) + o(x− x0) as x→ x0

and so we have proved that

φ(x0) = φ′(x0) = 0 =⇒ φ(x) = o(x− x0) as x→ x0
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Now, suppose this assertion has been proved for order n = k − 1 ≥ 1. That is, we have shown that

φ(x0) = . . . = φ(k−1)(x0) = 0 =⇒ φ = o
(
(x− x0)

k−1
)

as x→ x0

Then we must show that this is valid for order n = k ≥ 2. Assume that

φ(x0) = φ′(x0) = . . . = φ(k)(x0) = 0

We can see that this is equivalent to

(φ′)′(x0) = (φ′)(2)(x0) = . . . = (φ′)(k−1) = 0

and therefore by the induction assumption, we have

φ′ = o
(
(x− x0)

k−1
)

as x→ x0

which means that we can put it in form

φ(x) = α(x)(x− x0)
k−1 so that lim

x→x0

φ(x) = lim
x→x0

α(x) = 0

From the mean value theorem and substituting what we have above, we get

φ(x) = φ(x)− φ(x0) = φ′(ζ)(x− x0)

= φ(ζ)(ζ − x0)
k−1(x− x0)

where ζ ∈ (x0, x). However, this implies that |ζ − x0| < |x− x0|, and thus, as x→ x0, ζ → x0, which
then makes α(ζ)→ 0. Since

|φ(x)| ≤ |α(ζ)||x− x0|k−1|x− x0| = |α(ζ)||x− x0|k

This means that φ(x) is bounded by function |α(ζ)||x− x0|k, which is o
(
(x− x0)

k
)
, and so

φ = o
(
(x− x0)

k
)

as x→ x0

By induction, this works for all orders n.

Theorem 5.19 (Peano’s Form of the Remainder)

Given analytic function f : E −→ R, a point x0 ∈ E, and its nth order Taylor polynomial Pn(x0;x)
around x0, Pn is a "good" approximation of f in the fact that its error term is o

(
(x−x0)

n
)
. That is,

f(x) = Pn(x0;x) + o
(
(x− x0)

n
)

as x→ x0

This equation where rn(x;x0) = o
(
(x− x0)

n
)

is called the Peano’s form of the remainder.

Proof.

Since the Taylor polynomial Pn(x0;x) is constructed from the requirement that its derivatives up to
order n inclusive must coincide with the corresponding derivatives of f at x0, it follows that

rn(x0;x0) ≡ f (k)(x0)− P (k)
n (x0;x0) = 0 for k = 0, 1, . . . , n

Using the previous lemma, a this means that rn(x;x0) = o
(
(x− x0)

n
)

as x→ x0.
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Theorem 5.20 (Lagrange Form of the Remainder)

If f : E −→ R has derivatives of order n+ 1 on the open interval with endpoints x0 and x, then

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) + . . .+

f (n)(x0)

n!
(x− x0)

n + rn(x;x0)

where

rn(x;x0) =
f (n+1)(ζ)

(n+ 1)!
(x− x0)

n+1

This form is called Taylor’s formula with the Lagrange form of the remainder. Furthermore,
this form says that if f (n+1)(x) is bounded in a neighborhood of x0, it also implies the formula

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) + . . .+

f (n)(x0)

n!
(x− x0)

n +O
(
(x− x0)

n+1
)

Therefore, we can use this boundedness of f (n+1) to find the maximum error bound

|rn(x;x0)|

of Pn(x;x0).

Proof.

It is a direct result from the lemma. This is actually a generalization of the mean value theorem but
for higher orders.

Corollary 5.4 (Table of Asymptotic Formulas for Elementary Functions)

We write the Maclaurin series (Taylor series around x = 0) for elementary functions. Note that these
error terms are O(xn+1) (bounded compared to xn+1) and o(xn) (infinitesimal compared to xn).

ex = 1 +
1

1!
x+

1

2!
x2 + . . .+

1

n!
xn +O(xn+1)

cosx = 1− 1

2!
x2 +

1

4!
x4 − . . .+

(−1)n

(2n)!
x2n +O(x2n+2)

sinx = x− 1

3!
x3 +

1

5!
x5 − . . .+

(−1)n

(2n+ 1)!
x2n+1 +O(x2n+3)

coshx = 1 +
1

2!
x2 +

1

4!
x4 + . . .+

1

(2n)!
x2n +O(x2n+2)

sinhx = x+
1

3!
x3 +

1

5!
x5 + . . .+

1

(2n+ 1)!
x2n+1 +O(x2n+3)

ln (1 + x) = x− 1

2
x2 +

1

3
x3 − . . .+

(−1)n

n
xn +O(xn+1)

(1 + x)α = 1 +
α

1!
x+

α(α− 1)

2!
x2 + . . .+

α(α− 1) . . . (α− n+ 1)

n!
xn +O(xn+1)
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6 Riemann Integration
We would like to define an integral. We do this essentially by defining the Riemann sums for a particular
partition, which is a number in R. If we consider the set of all such Riemann sums, somehow bound them in
a way. Then we define the upper and lower Riemann sums, and then consider the set of all Riemann sums.
By doing so, we can construct two sets that are lower bounded and

Definition 6.1 (Partition)

Let [a, b] be an interval. A partition P of [a, b] is a set of P = {x0, . . . , xn} (note that this is finite!)
s.t.

a = x0 ≤ x1 ≤ . . . ≤ xn−1 ≤ xn = b (277)

with ∆xi = xi − xi−1 for i = 1, . . . , n.

In some textbooks, we also define a partition with distinguished points which simply is a partition P along
with some set of ξi’s that land in each interval. This allows for extra degrees of freedom for choosing points.

The natural way to define the Riemann integral is as the limit of the finite Riemann sums as partitions
gets finer and finer. But we must be careful in saying what “finer” means. It is not simply as the number
of partitions n → ∞, since this may lead to multiple subsequential values of convergence by increasing the
partition within different subsets of [a, b].

0 4

(a)

0 4

n→∞

(b)

0 4

· · ·

(c)

0 4

(d)

0 4

n→∞

(e)

0 4

· · ·

(f)

Figure 24: Upper (top row) and lower (bottom row) Riemann sums with refinement of partition. In the upper row,
the rightmost rectangle remains fixed while other rectangles become thinner. In the lower row, the leftmost rectangle
remains fixed while other rectangles become thinner.

An alternative way is to have the partitions all converge “uniformly” as in the maximum length of an interval
in a partition must go to 0.
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0 4

f

(a) λ(P ) = 2

0 4

f

(b) λ(P ) = 1

0 4

f

(c) λ(P ) = 0.5

Figure 25: Approximating an integral with increasingly fine partitions

A cleaner way it to simply look at the set of all partitions along with the set of the corresponding upper and
lower Riemann sums, and then hope that they behave nicely with each other. This is the approach we will
take.

Definition 6.2 (Riemann Sums with Respect to Partition)

Let P be a partition of [a, b] and f : [a, b]→ R be bounded. Then, the upper and lower Riemann
sum is defined

Mi = sup
∆xi

f(x), mi = inf
∆xi

f(x) (278)

Now define

U(P, f) =

n∑
i=1

Mi∆xi, L(P, f) =

n∑
i=1

mi∆xi (279)

x

y

f

a = x0 x1 x2 x3 x4 b = x5

ξ1 ξ2 ξ3 ξ4 ξ5

f(ξ1)
f(ξ2) f(ξ3)

f(ξ4)

f(ξ5)

∆x1 ∆x2 ∆x3 ∆x4 ∆x5

Figure 26: Riemann sum approximation using sample points ξi within each subinterval. This is known as
a Riemann sum of a partition with distinguished points. The Riemann sum is a mapping that takes in a
partition with distinguished points p = (P, ξ) on the closed interval [a, b] and outputs a number representing
the total area of the Riemann sums.
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Definition 6.3 (Riemann Integral)

Now, given the same assumptions, the upper and lower Rimemann integrals of f(x) are defined∫ b̄

a

f(x) dx := inf
P

U(P, f),

∫ b

ā

f(x) dx := sup
P

L(P, f) (280)

If the upper and lower Riemann integrals are equal, then f is said to be Riemann integrable over
[a, b], denoted f ∈ R([a, b]).a

aWhere R(X) is the set of all Riemann integrable functions over X.

Great, so we’ve defined Riemann integrable functions, but it’s hard to determine whether a function is
Riemann integrable—and if so—what the value of the integral is. We will determine the first problem by
talking about sufficient conditions for Riemann integrability, and then introduce the fundamental theorem
of calculus to address computability.

Definition 6.4 (Refinement)

P ∗ is a refinement of P if P ⊂ P ∗. If P1, P2 are two partitions, then their common refinement
P ∗ = P1 ∪ P2.

P ′

a = x0 x1 x2 x3 b = x4

P ′′

a = y0 y1 y2 y3 y4 y5 b = y6

P̃
a = x0 x01 x1 x11 x12 x2 x3 x31 x32 b = x4

Figure 27: Partitions P ′ and P ′′ with their common refinement P̃

Lemma 6.1 (Fundamental Lemma)

If P ∗ is a refinement of P and f : [a, b]→ R is bounded, then

L(P, f) ≤ L(P ∗, F ) ≤ U(P ∗, F ) ≤ U(P, f) (281)

Proof.

By induction on the number of points we add to P to get P ∗, we might as well assume that P ∗ =
P ∪ {x∗}. So,

P = {a = x0, x1, . . . , xn−1, xn} (282)
P ∗ = {a = x0, x1, . . . , xi−1, xi, x∗, xi+1, . . . , xn−1, xn} (283)

(284)

Now let’s compute L(f, P ∗)− L(f, P ). Since the only intervals affected are [xi, xi+1], we have

L(f, P ∗)− L(f, P ) = inf
[xi,x∗]

f(x)(x∗ − xi) + inf
[x∗,xi+1]

f(x)(xi+1 − x∗)− inf
[xi,xi+1]

f(x)(xi+1 − xi) (285)

=
(

inf
[xi,x∗]

f(x)− inf
[x∗,xi+1]

f(x)︸ ︷︷ ︸
>0

)
(x∗ − xi) +

(
inf

[x∗,xi+1]
f(x)− inf

[xi,xi+1]︸ ︷︷ ︸
>0

)
(xi+1 − x∗)

(286)
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which is therefore greater than 0.

Theorem 6.1 (Lower and Upper Integrals as Bounds of Each Other)

We claim ∫ b

ā

f(x) dx ≤
∫ b̄

a

f(x) dx (287)

Proof.

Given P1, P2 partitions, let P ∗ = P1 ∪ P2 be their common refinement. Then, from the theorem
above,

L(P2, f) ≤ L(P ∗, f) ≤ U(P ∗, f) ≤ U(P, f) (288)

So taking the supremum over all partitions P2 and fixing P1 gives∫ b

ā

f(x) dx = sup
P2

L(P2, f) ≤ sup
P2

U(P1, f) = U(P1, f) (289)

Then taking the infimum over all partitions P1 gives us∫ b

ā

f(x) dx = inf
P1

∫ b

ā

f(x) dx ≤ inf
P1

U(P1, f) =

∫ b̄

a

f(x) dx (290)

where we note that the infimum does not affect the terms that do not depend on P1.

6.1 Conditions for Integrability
We have seen some bounds of the upper and lower integrals, and defined the Riemann integral. However,
checking Riemann integrability is quite tedious, since we have to take the supremum and infimum over all
possible partitions. The following theorem is extremely useful as it only requires us to find one partition
given some ϵ. This is because that the Riemann integral, as complicated as the formula is, is still a limit of
a function. That means that we can apply the Cauchy criterion to it to determine convergence.

Theorem 6.2 (Cauchy Criterion for Riemann Integrability)

f ∈ R iff ∀ϵ > 0, there exists partition P such that U(P, f)− L(P, f) < ϵ.

Proof.

We prove bidirectionally. The reverse implication is easy, but for the forward direction you must use
refinements.

1. (←). Pick any partition P . Since

L(f, P ) ≤
∫ b

ā

f(x) dx ≤
∫ b̄

a

f(x) dx ≤ U(f, P ) (291)

This implies that

0 ≤
∫ b̄

a

f(x) dx−
∫ b

ā

f(x) dx ≤ U(f, P )− L(f, P ) < ϵ (292)

and since any nonnegative number less than any positive number must be 0 (since there are no
infinitesimals in R), the LHS is 0, and the result is proven.
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2. (→). f is Riemann integrable, so∫ b̄

a

f(x) dx =

∫ b

ā

f(x) dx ⇐⇒ inf
P

U(f, P ) = sup
Q

L(f,Q) (293)

for partitions P,Q. So we can find P that gets really close to the infimum and same for Q close
to the supremum, i.e. there exists a P,Q, such that

U(f, P ) <

∫ b̄

a

f(x) dx+
ϵ

2
, L(f,Q) >

∫ b

ā

f(x) dx− ϵ

2
(294)

Now take the common refinement P ∗ = P ∪Q, and so by the fundamental lemma,∫ b

ā

f(x) dx− ϵ

2
< L(f,Q) ≤ L(f, P ∗) ≤ U(f, P ∗) ≤ U(f, P ) <

∫ b̄

a

f(x) dx+
ϵ

2
(295)

which implies that 0 ≤ U(f, P ∗)− L(f, P ∗) < ϵ.

Note that a necessary condition of f being Riemann integrable is that f is bounded. In fact it is defined
that way. You may know that a sufficient condition of integrability is that it is continuous, but we can prove
something slightly weaker.

Definition 6.5 (Oscillation)

Given an interval I, the oscillation of f on I is defined

osc
I
(f) := sup

I
(f)− inf

I
(f) (296)

Intuitively, a function f is Riemann integrable if we can make U(f, P )− L(f, P ) as small as we wish. This
is the case if we can find a sufficiently refined partition P such that the oscillation on f on each interval is
small.

Lemma 6.2 (Functions with Vanishing Osillations are Riemann Integrable)

Let f be a bounded on a closed interval [a, b]. If, for every ϵ > 0, there exists a partition P such that

n−1∑
i=0

osc
[xi,xi+1]

f < ϵ (297)

then f is Riemann integrable.

Proof.

Given ϵ > 0, choose ϵ/(b− a). By assumption we can find a partition P in which the total oscillation
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is bounded above by ϵ/(b− a). Therefore,

U(P, f)− L(P, f) =

n−1∑
i=0

sup
[xi,xi+1]

f(x)∆xi −
n−1∑
i=0

inf
[xi,xi+1]

f(x)∆xi (298)

=

n−1∑
i=0

( sup
[xi,xi+1]

f(x)− inf
[xi,xi+1]

f(x))∆xi (299)

<

n−1∑
i=0

osc
[xi,xi+1]

f∆xi (300)

≤
n−1∑
i=0

ϵ

b− a
∆xi (301)

=
ϵ

b− a

n−1∑
i=0

∆xi (302)

=
ϵ

b− a
(b− a) = ϵ (303)

Here is a classic example of a non-integrable function.

Example 6.1 (Non-Integrability of the Dirichlet Function)

The Dirichlet function

D(x) ≡

{
1, for x ∈ Q
0, for x ∈ R \Q

(304)

on the interval [0, 1] is not integrable on that interval. For any partition P of [0, 1] we can find in
each interval ∆i both a rational point ξ′i and an irrational point ξ′′i . Then, we can see that the lower
and upper Riemann sums do not necessarily converge to each other since

σ(f ;P, ξ′) =

n∑
i=1

1 ·∆xi = 1 while σ(f ;P, ξ′′) =

n∑
i=1

0 ·∆xi = 0 (305)

as λ(P )→ 0.

Example 6.2 ()

Is there a function f that is discontinuous on a dense set of [0, 1] but still Riemann integrable?

With this, we can use the uniform continuity of continuous functions over a compact set to place a bound
on the oscillation of each subinterval—and thus a bound on the oscillation of the whole interval.

Theorem 6.3 (Continuous Functions are Riemann Integrable)

f continuous on [a, b] =⇒ f is Riemann integrable on [a, b].

Proof.

If f is continuous, then by EVT it is bounded and uniformly continuous. Therefore we can take the
evenly-partitioned intervals of [a, b] and by uniform continuity, the oscillation tends to 0, and we are
done.
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Perhaps more explicitly, we wish to show that for all ϵ > 0, there exists partition P s.t. U(P, f) −
L(P, f) < ϵ. Now let ϵ > 0, and since it’s uniformly continuous, take δ > 0 s.t.

|x− y| < δ =⇒ |f(x)− f(y)| < ϵ

2(b− a)
(306)

Let N ∈ N be so large that b−a
N < δ. Now consider the partition of [a, b] given by xi = a+ b−a

N i for
0 ≤ i < N . Intuitively, we want these subintervals to be so small that f will not deviate too widely.
So it better be the case that b−a

N < δ. So, we have

U(P, f)− L(P, f) =

n∑
i=1

sup
[xi,xi+1]

f(x)∆xi −
n∑

i=1

inf
[xi,xi+1]

f(x)∆xi (307)

=

n∑
i=1

( sup
[xi,xi+1]

f(x)− inf
[xi,xi+1]

f(x))∆xi (308)

<

N−1∑
i=0

ϵ

2(b− a)
∆xi (309)

=
ϵ

2(b− a)
· (b− a) <

ϵ

2
< ϵ (310)

We can actually make a stronger claim.

Corollary 6.1 (Integrability of Discontinuous Functions)

If a bounded function f on a closed interval [a, b] is continuous everywhere except at a finite set of
points, then f ∈ R[a, b].

Corollary 6.2 (Integrability of Monotonic Functions)

A bounded monotonic function on a closed interval is integrable on that interval.

Theorem 6.4 (Continuous Compositions of Integrable Functions are Integrable)

Let f ∈ R([a, b]). Assume ϕ : R→ R is continuous. Then ϕ ◦ f ∈ R([a, b]).

Proof.

Since f ∈ R([a, b]) is bounded, let |f(x)| ≤ M for all x ∈ [a, b] for some M ≥ 0. Now let K =
supt∈[−M,M ] ϕ(t), which exists since [−M,M ] is compact and ϕ is continuious. ϕ is also uniformly
continiuous on [−M,M ].
Now let ϵ > 0. Then there exists a δ > 0 s.t. |t− s| < δ =⇒ |ϕ(t)− ϕ(s)| < ϵ. Consequently,

|f(x)− f(y)| < δ =⇒ |ϕ(f(x))− ϕ(f(y))| < ϵ (311)

Since f ∈ R([a, b]), we can find a partition P of [a, b] s.t.

U(f, P )− L(f, P ) < δ2 =⇒
n−1∑
i=1

(
sup

[xi,xi+1]

f − inf
[xi,xi+1]

f
)
∆xi < δ2 (312)
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Let

A = {i | sup
[xi,xi+1]

f − inf
[xi,xi+1]

f < δ} (313)

B = {i | sup
[xi,xi+1]

f − inf
[xi,xi+1]

f ≥ δ} (314)

Colloquially, we can think of A as the “good” intervals with small oscillations, and B as the “bad”
intervals with larger oscillations. So,∑

i∈B

∆xi =
1

δ

∑
i∈B

δ∆xi ≤
1

δ

∑
i∈B

osc
[xi,xi+1]

∆xi <
1

δ
δ2 = δ (315)

Now, compute

U(ϕ(f), P )− L(ϕ(f), P ) =
∑
i

osc[xi,xi+1](ϕ(f))∆xi (316)

=
∑
i∈A

osc[xi,xi+1](ϕ(f))∆xi +
∑
i∈B

osc[xi,xi+1](ϕ(f))∆xi (317)

In the good sets, if f(x)’s are within δ of each other, the oscillation by uniform continuity implies
osc(ϕ(f)) < ϵ. In the bad set, we have osc[xi,xi+1](ϕ(f)) < 2K, so the above can be bounded by

′′ ≤ ϵ
∑
i∈A

∆xi +
∑
i∈B

2K∆xi (318)

≤ ϵ(b− a) + 2Kδ (319)
< ϵ(b− a+ 2K) (320)

where the penultimate step is due to
∑

i∈B ∆xi < δ.

However, contrary to intuition, f, g both integrable does not imply that g ◦ g is integrable. We present a
counterexample.

Example 6.3 (Composition of Integrable Functions May Not be Integrable)

Consider the functions

|sgn|(x) ≡

{
1 x ̸= 0

0 x = 0

and the Riemann function

R(x) ≡

{
1
n x = m

n ∈ Q, gcd(m,n) = 1

0 x ∈ R \Q

We can see that R is continuous at all irrational points and discontinuous at all rational points except
0, meaning that it is integrable (Q has measure zero). Then, the composition of these two functions
is precisely the Dirichlet function

D(x) = |sgn| ◦ R

which is not integrable.
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6.2 Linearity over Functions and Intervals of the Integral
The most important properties of integrable functions is that it is a vector space, and the definite integral
is a linear map.

Theorem 6.5 (The Vector Space of Integrable Functions)

The set of Riemann integrable functions R[a, b] over closed interval [a, b] is a vector space. That is,
given f, g ∈ R[a, b] and c ∈ R, then

1. (f + g) ∈ R[a, b]
2. (cf) ∈ R[a, b]

which makes R([a, b]) into a R-vector space.

Proof.

We prove the following properties of a vector space.
1. If c ∈ R and f ∈ R, then we wish to show that cf ∈ R and

∫
cf = c

∫
f .

(a) If c > 0, then U(cf, P ) = cU(f, P ), and L(cf, P ) = cL(f, P ).
(b) If c < 0, then U(cf, P ) = cL(f, P ), and L(cf, P ) = cU(f, P ).

So, for all ϵ > 0, we can find P s.t.

U(f, P )− L(f, P ) <
ϵ

c
=⇒ U(cf, P )− L(cf, P ) < ϵ (321)

and so cf ∈ R
2. If f1, f2 ∈ R, then

oscE(f1 + f2) ≤ oscE(f1) + oscE(f2) since

{
supE(f1 + f2) ≤ supE(f1) + supE(f2)

infE(f1 + f2) ≥ infE(f1) + infE(f2)
(322)

for all E ⊂ [a, b], which implies that f1 + f2 ∈ R.

Theorem 6.6 (Integral is a Linear Map)

For fixed a, b ∈ R with a < b, f 7→
∫ b

a
f is a linear map on R([a, b]), i.e. a dual vector.

Proof.

Removing the a, b for convenience, we first show that
∫
f1 + f2 =

∫
f1 +

∫
f2. Let ϵ > 0. Then there

exists Pi s.t.

U(fi, Pi) <

∫
fi + ϵ (323)

for i = 1, 2. Define P = P1 ∪ P2 as the common refinement. Then

U(fi, P ) <

∫
fi + ϵ (324)

and so ∫
f1 + f2 ≤ U(f1 + f2, P ) ≤ U(f1, P ) + U(f2, P ) (325)

≤ 2ϵ+

∫
f1 +

∫
f2 (326)
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which implies
∫
f1 + f2 ≤

∫
f1 +

∫
f2. To prove the other way, we see that∫

(−f1) + (−f2) ≤
∫

(−f1) +
∫

(−f2) (327)

and so
−
∫

f1 + f2 ≤ −
(∫

f1 +

∫
f2

)
=⇒

∫
f1 + f2 ≥

∫
f1 +

∫
f2 (328)

For scalar multiplication, we can do similarly.

Theorem 6.7 ()

Given that f ∈ R([a, b]),
1. fg ∈ R[a, b]
2. |f | ∈ R[a, b]
3. |

∫
f | ≤

∫
|f |.a

aThis will later allow us to define inner products on function spaces.

Proof.

Listed.
1. A nice trick is that

fg =
1

4

(
(f + g)2 − (f − g)2

)
(329)

which is in R([a, b]) since the sum, difference, and squaring functions are all continuous, and
hence the composition ϕ(f, g) is Riemann integrable.

2. ϕ(x) = |x| is continuous, so ϕ(f) ∈ R.
3. Note that if f ≥ 0, then

∫ b

a
f ≥ 0. Consider |f | − f and |f |+ f , both ≥ 0. They are integrable

as the image of f composed with continuous functions. So we have∫
|f |+ f ≥ 0 =⇒

∫
|f | ≥ −

∫
f (330)∫

|f | − f ≥ 0 =⇒
∫
|f | ≥

∫
f (331)

and so taking the maximum of the right hand side gives
∫
|f | ≥ |

∫
f |.

Example 6.4 ()

Consider the space X = C([a, b]). Define d : X ×X → R+
0 as

d(f, g) :=

∫ b

a

|f(x)− g(x)| dx (332)

Then d is a metric. Note that in R([a, b]), it is not a metric since d(f, g) = 0 ̸ ⇐⇒ f = g. Consider
two functions that are different in 1 point.

Theorem 6.8 (Restrictions of Integrable Functions)

The restriction of f in any [c, d] ⊂ [a, b], denoted f
∣∣
[c,d]

, is in R[c, d]
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Proof.

Theorem 6.9 (Integral is Additive Over Intervals)

We have
∫ c

a
+
∫ b

c
=
∫ b

a
.

Proof.

Let P be a partition of [a, b]. If c ∈ P , then we can view P = P1 ∪ P2. If c ̸∈ P , consider P ∪ {c}.
Then we have

U(f, P ) = U(f, P1) + U(f, P2) (333)
U(f, P ) = L(f, P1) + L(f, P2) (334)

So f ∈ R([a, c]), f ∈ R([c, b]).

6.3 Monotonicity, Mean Value Theorem, and Change of Basis
We now show and prove the method what we call "u-substitution" for definite integration.

Theorem 6.10 (Change of Variable)

If φ : [α, β] −→ [a, b] is a continuously differentiable mapping such that φ(α) = a and φ(β) = b,
then for any continuous function f(x) on [a, b] the function f

(
φ(t)

)
φ′(t) is continuous on the closed

interval [α, β] and ∫ b

a

f(x) dx =

∫ β

α

f
(
φ(t)

)
φ′(t) dt

Proof.

We prove a slightly weaker form of the theorem with the additional hypothesis that φ is strictly
monotonic.

Theorem 6.11 (Change of Variable, U-Substitution)

Let f ∈ R([a, b]) and φ : [c, d] → [a, b] is a strictly increasing continuous function. Then, g(y) =
(f ◦ φ)(y) ∈ R([c, d]), and ∫ d

c

g(y) dy =

∫ b

a

f(x) dx (335)

Proof.

Lemma 6.3 (Monotonicity of the Integral)

If a ≤ b, f1, f2 ∈ R[a, b], and f1(x) ≤ f2(x) for every x ∈ [a, b], then∫ b

a

f1(x) dx ≤
∫ b

a

f2(x) dx (336)
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This immediately implies that given constants m,M such that m ≤ f(x) ≤ M at each x ∈ [a, b], we
have

m · (b− a) ≤
∫ b

a

f(x) dx ≤M · (b− a) (337)

In particular, if 0 ≤ f(x) on [a, b], then

0 ≤
∫ b

a

f(x) dx (338)

Theorem 6.12 (Mean Value Theorem of the Integral)

Given f ∈ R[a, b], with
m = inf

x∈[a,b]
f(x), M = sup

x∈[a,b]

f(x) (339)

Then
1. there exists a number µ ∈ [m,M ] such that∫ b

a

f(x) dx = µ · (b− a) (340)

2. Furthermore, if f ∈ C[a, b], it there exists a point ξ ∈ [a, b] such that∫ b

a

f(x) dx = f(ξ)(b− a) (341)

Theorem 6.13 (Bonnet’s Formula)

If f, g ∈ R[a, b] and g is a monotonic function on [a, b], then there exists a point ξ ∈ [a, b] such that∫ b

a

(f · g)(x) dx = g(a)

∫ ξ

a

f(x) dx+ g(b)

∫ b

ξ

f(x) dx (342)

6.4 Fundamental Theorem of Calculus
Let f ∈ R[a, b], and let us choose an x ∈ [a, b] in order to construct the function

F (x) ≡
∫ x

a

f(t) dt (343)

which is called an integral with a variable upper limit. By doing this, we can “upgrade” a Riemann integrable
function f to a continuous function F .

Theorem 6.14 (First Fundamental Theorem of Calculus)

Define F : [a, b]→ R by

F (x) :=

∫ x

a

f(t) dt (344)

Then
1. F is continuous.
2. If F is continuous at x0, then F ′(x0) = f(x0).
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t

y

a x

f(x)

F ′(x) = f(x)

F (x)

Figure 28: This theorem amazingly tells us that the rate at which the integral F is increasing at x (represented
by the increasing area under the curve of f) is equal to the value of f at the point x itself!

Proof.

Listed.
1. Since f ∈ R([a, b]), let M = supx∈[a,b] |f(x)| < +∞. WLOG let x, y ∈ [a, b] with x < y. Then,

we can use the “trick” by writing the difference of F as an integral, which follows from linearity
of the integral over an interval. So, we have

|F (x)− F (y)| =
∣∣∣∣ ∫ y

x

f(t) dt

∣∣∣∣ ≤ ∫ y

x

|f(t)| dt (345)

≤
∫ y

x

M dt = M |y − x| (346)

So given ϵ > 0, we can take δ = ϵ/M and F is continuous.
2. Now let’s claim

lim
h→0

1

h

(
F (x0 + h)− F (x0)− f(x0)h

)
= 0 ⇐⇒ F ′(x0) = f(x0) (347)

since if the limit exists, we can add f(x0) to both sides. The term in the limit is

1

h

∣∣∣∣ ∫ x0+h

a

f(t) dt−
∫ x0

a

f(t) dt− f(x0)h

∣∣∣∣ ≤ 1

h

∣∣∣∣ ∫ x0+h

x0

f(t) dt− hf(x0)

∣∣∣∣ (348)

Now we do a trick that is simple but powerful. Notice that hf(x0) =
∫ x0+h

x0
f(x0) dt, so we can

join it with the integral.a So,

′′ =
1

h

∣∣∣∣ ∫ x0+h

x0

f(t)− f(x0) dt

∣∣∣∣ (349)

≤ 1

h

∫ x0+h

x0

∣∣f(t)− f(x0)
∣∣ dt (350)

≤ 1

h

∫ x0+h

x0

sup
t∈[x0,x0+h]

∣∣f(t)− f(x0)
∣∣ dt (351)

Note that the supremum term in the integral is just a number, so evaluating it and taking the
limit as h→ 0 gives

sup
t∈[x0,x0+h]

|f(t)− f(x0)| → 0 as h→ 0 (352)

since f is continuous at x0.
aElgindi talked about how simple tricks can go a long way, e.g. the guy who was a master of Cauchy-Schwarz

inequality.
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Corollary 6.3 ()

Every bounded function f : [a, b] −→ R on the closed interval [a, b] and has only a finite number of
points of discontinuity has a primitive, and every primitive of f on [a, b] has the form

F(x) :=
∫ x

a

f(t) dt+ c

where c is a constant.

Theorem 6.15 (Second Fundamental Theorem of Calculus)

Let f be a real-valued function on a closed interval [a, b] with F any primitive of f on [a, b]. If f is
Riemann-integrable (i.e. f bounded with finite points of Lebesgue measure zero) on [a, b], then∫ b

a

f(x) dx = F
∣∣b
a
≡ F(b)−F(a) (353)

t

y

c a b

f(t)

F (a)
F (b)

Figure 29: Graphical illustration of the Fundamental Theorem of Calculus, showing how the definite integral
equals the difference of antiderivative values.

Proof.

We already know that a bounded function on a closed interval having a finite number of discontinuities
is integrable, and by the corollary, we are guaranteed an existence of a primitive F(x) of the function
f on [a, b] with the form

F(x) ≡
∫ x

a

f(t) dt+ c (354)

Setting x = a, we find that c = F(a), and so

F(x) ≡
∫ x

a

f(t) dt+ F(a) (355)

Evaluating F at x = b gives ∫ b

a

f(t) dt = F(b)−F(a) (356)

Now a direct application of the fundamental theorem of calculus is the integration by parts. By the product
rule of differentiation, we have

(u · v)′(x) = (u′ · v)(x) + (u · v′)(x) (357)

where by hypothesis, u′ · v, u · v′ are continuous and hence integrable on [a, b]. Using the linearity of the
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integral and the 2nd fundamental theorem of calculus, we get

(u · v)(x)
∣∣b
a
=

∫ b

a

(u′ · v)(x) dx+

∫ b

a

(u · v′)(x) dx (358)

Theorem 6.16 (Integration by Parts)

Suppose F,G : [a, b]→ R are differentiable, with F ′ = f,G′ = g ∈ R([a, b]). Then∫ b

a

F (x)g(x) dx = F (x)G(x)
∣∣b
a
−
∫ b

a

f(x)G(x) dx (359)

Proof.

Theorem 6.17 (Integral Form of the Remainder)

If f : E −→ R has continuous derivatives up to order n on the closed interval [a, x], then Taylor’s
formula holds

f(x) = f(a) +
f ′(a)

1!
(x− a) + . . .+

f (n−1)(a)

(n− 1)!
(x− a)n−1 + rn−1(a;x) (360)

where
rn−1(a;x) =

1

(n− 1)!

∫ x

a

f (n)(t)(x− t)n−1 dt (361)

This form is called Taylor’s formula with the integral form of the remainder.

Proof.

Using the 2nd fundamental theorem and the definite integration by parts formula, we can carry out
the following chain of transformations, assuming continuity and differentiability when needed.

f(x)− f(a) =

∫ x

a

f ′(t) dt

= −
∫ x

a

f ′(t)(x− t)′ dt

= −f ′(t)(x− t)
∣∣x
a
+

∫ x

a

f ′′(t)(x− t) dt

= f ′(a)(x− a)− 1

2

∫ x

a

f ′′(t)
(
(x− t)2

)′
dt

= f ′(x− a)− 1

2
f ′′(t)(x− t)2

∣∣x
a
+

1

2

∫ x

a

f ′′′(t)(x− t)2 dt

= f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 − 1

2 · 3

∫ x

a

f ′′′(t)
(
(x− t)3

)′
dt

= . . .

= f ′(a)(x− a) + . . .+
1

(n− 1)!
f (n−1)(a)(x− a)n−1 + rn−1(a;x)

where rn−1(a;x) is given by the integral formula mentioned.
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6.5 Integration over Paths and Rectifiable Curves

Definition 6.6 (Integration For Vector Valued Functions)

A function f : [a, b]→ Rd is Riemann integrable if f = (f1, . . . , fd) and each component fi : [a, b]→ R
is in R([a, b]). The integral is defined∫ b

a

f(x) dx =

(∫ b

a

f1, . . . ,

∫ b

a

fd

)
(362)

Now since the codomain is Rd, we can use the Euclidean norm |v| :=
(∑

i v
2
i

)1/2 on it.

Theorem 6.18 ()

If f ∈ R([a, b],Rd), then |f | ∈ R([a, b],Rd) and∣∣∣∣ ∫ f

∣∣∣∣ ≤ ∫ |f | (363)

Proof.

If f ∈ R([a, b],Rd), then fi ∈ R([a, b]), and so

|f | =
√
f2
1 + . . . f2

d ∈ R (364)

since x 7→ x2 and x 7→
√
x are continuous. Now consider the vector v =

∫ b

a
f . Then

|v| =
∣∣∣∣ ∫ b

a

f

∣∣∣∣ =⇒ |v|2 =

d∑
j=1

v2j =

d∑
j=1

vj

∫ b

a

fj (365)

=

∫ b

a

d∑
j=1

vjfj (366)

=

∫ b

a

d∑
j=1

vjfj (367)

=

∫ b

a

⟨v, f(t)⟨ dt (368)

≤
∫ b

a

|v| |f(t)| dt (369)

and so

|v|2 ≤ |v| ·
∫ b

a

|f(t)| dt =⇒ |v| ≤
∫ b

a

|f(t)| dt (370)

Definition 6.7 (Curve)

A curve is a function γ : [0, 1]→ Rd.
1. If γ(0) = γ(1), then it is a closed curve.
2. If γ is injective, then it is called a simple curve.

Curves are usually continuous but does not have to be.
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Example 6.5 ()

The curve can have different parameterizations and/or image. For example, the two are different
curves with the image in S1 ⊂ R2.

γ(t) = (cos(2πt), sin(2πt)) (371)
γ̃(t) = (cos(4πt), sin(4πt)) (372)

Definition 6.8 (Length of a Curve)

Given a curve γ : [0, 1]→ Rd and partition P of [0, 1], let

Λ(γ, P ) =

N∑
i=1

|γ(xi)− γ(xi−1)| (373)

i.e. the sum of the straight line distances between the curves. The length of the curve is defined as

Λ(γ) := sup
P

Λ(γ, P ) (374)

If the length is finite, then we call this a rectifiable curve.

Example 6.6 ()

Consider the curve given by

γ(t) =

(
t, t sin

1

t

)
(375)

γ is continuous but γ(t) < +∞.

For most continuous curves, this is not finite, but there is a sufficient condition for it to be finite.

Theorem 6.19 (C1 Curves are Rectifiable)

If γ : [0, 1]→ Rd is continuously differentiable, then γ is rectifiable, and

Λ(γ) =

∫ 1

0

|γ′(t)| dt (376)

Proof.

Since γ′(t) is continuous, then |γ′(t)| is continuous and |γ′(t)| is Riemann integrable. Now is P is any
partition of [0, 1], then

Λ(x, P ) =

n∑
i=1

|γ(ti)− γ(ti−1)| =
n∑

i=1

∣∣∣∣ ∫ ti

ti−1

γ′(s) ds

∣∣∣∣ (Fund. Thm. of Calc.)

≤
n∑

i=1

∫ ti

ti−1

|γ′(s)| ds (377)

=

∫ tn

t0

|γ′(s)| ds (378)

So we’ve proved one inequality. Now we prove the other. Let ϵ > 0 be given. Then since γ′(t) is
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continuous on compact [0, 1], it must be uniformly continuous on [0, 1]. So ∃δ > 0 s.t.

|s− t| < δ =⇒ |γ′(s)− γ′(t)| < ϵ (379)

Now take a partition P of [0, 1] s.t. |ti − ti−1| < δ for each 1 ≤ i ≤ N . ...

Figure 30: We can visualize this by partitioning the interval [a, b] into the intervals ∆i, each with point ξi ∈ ∆i.
This would partition the path to Γ(∆i), each with points Γ(ξi), and at each point Γ(ξi), we can imagine the velocity
vector of the curve. By taking the magnitude of this vector Γ′(ξi), we multiply it by the length of the interval ∆xi

to get one rectangle, creating an approximation for one partition of the path.

Corollary 6.4 (Length of the Graph of a C1 Function)

An immediate result of this formula is the formula for the length of a graph of a function f : [a, b] −→ R
in R2, by looking at the paramaterization t 7→ (t, f(t).

Λ(γ) =

∫ b

a

√
1 + (f ′(t))2 dt (380)

The question on the effect of paramaterization on the integral now arises.

Definition 6.9 (Admissible Change of Parameter)

The path Γ̃ : [α, β] −→ R3 is obtained from Γ : [a, b] −→ R3 by an admissible change of parameter
if there exists a smooth mapping

T : [α, β] −→ [a, b]

such that T (α) = a, T (β) = b, T ′(τ) > 0 (that is, the reparamaterization T is monotonic) on [α, β],
and

Γ̃ = Γ ◦ T

The series of mappings can be represented with the following commutative diagram, where Iα,β =
[α, β] ⊂ R and Ia,b = [a, b] ⊂ R.

Iα,β Ia,b

R3

T

Γ̃
Γ
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Figure 31: Note that the points are labeled 0, 1, 2, 3, 4, 5 do not represent numerical values, but rather the
order in which the points are paramaterized. We can see from this ordering that T is monotonic.

Theorem 6.20 (Invariance of Arclength Integral under Admissible Change of Parameters)

If a smooth path Γ̃ : [α, β] −→ R3 is obtained from a smooth path Γ : [a, b] −→ R3 by an admissible
change of parameter, then the lengths of the two paths are equal. That is, a∫ b

a

|Γ′(t)| dt =
∫ β

α

|Γ̃′(t)| dt ≡
∫ β

α

|(Γ ◦ T )′(t)| dt (381)

6.6 Improper Integrals
Due to some limitations of the Riemann integral, we cannot integrate over "singularities" where either the
interval or the function is unbounded. We develop the tools of improper integration to deal with this problem;
there are two types of improper integrals.

Definition 6.10 (Improper Integral of Unbounded Interval)

Suppose the function x 7→ f(x) is defined on the interval [a,+∞) and is integrable on every closed
interval [a, b] contained in that interval. Then, we call the following term∫ +∞

a

f(x) dx ≡ lim
b→+∞

∫ b

a

f(x) dx

the improper Riemann integral of f over the interval [a,+∞) and∫ b

−∞
f(x) dx ≡ lim

a→−∞

∫ b

a

f(x) dx

the improper Riemann integral of f over the interval (−∞, b].If the limit exists, then we say
that the integral converges and diverges otherwise.
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Definition 6.11 (Improper Integral of Unbounded Function)

Suppose the function x 7→ f(x) is defined on the interval [a,B) and integrable on any closed interval
[a, b] ⊂ [a,B). Then, we call the following term∫ B

a

f(x) dx ≡ lim
b→B−

∫ b

a

f(x) dx

the improper Riemann integral of f over interval [a,B) and∫ b

A

f(x) dx ≡ lim
a→A+

∫ b

a

f(x) dx

the improper Riemann integral of f over interval (A, b].

For cohesiveness, we can combine these two definitions of improper integrals into the following one.

Definition 6.12 (Improper Integrals)

Let [a, ω) be a finite or infinite interval and x 7→ f(x) a function defined on that interval and integrable
over every closed interval [a, b] ⊂ [a, ω). Then, by definition∫ ω

a

f(x) dx ≡ lim
b→ω

∫ b

a

f(x) dx

if this limit exists as b → ω, b ∈ [a, ω). Similarly, given the finite or infinite interval (ω, b] with f
integrable over every closed interval [a, b] ⊂ (ω, b], we have∫ b

ω

f(x) dx ≡ lim
a→ω

∫ b

a

f(x) dx

Note that if ω ∈ R and f ∈ R[a, ω], the improper integral is equivalent to the regular Riemann
integral. ∫ ω

a

f(x) = lim
b→ω

∫ b

a

f(x) dx

Lemma 6.4 (Properties of the Improper Integral)

Suppose f, g are functions defined on interval [a, ω) (without loss of generality, we let ω be the upper
limit of integration) and integrable on every closed interval [a, b] ⊂ [a, ω). Suppose the improper
integrals ∫ ω

a

f(x) dx and
∫ ω

a

g(x) dx

are well-defined.
1. For any λ1, λ2 ∈ R the function (λ1f +λ2g)(x) is integrable in the improper sense on [a, ω) and∫ ω

a

(λ1f + λ2g)(x) dx = λ1

∫ ω

a

f(x) dx+ λ2

∫ ω

a

g(x) dx

2. For any c ∈ [a, ω), ∫ ω

a

f(x) dx =

∫ c

a

f(x) dx+

∫ ω

c

f(x) dx

3. If φ : [α, γ) −→ [a, ω) is a smooth strictly monotonic mapping with φ(α) = a and φ(β)→ ω as
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β → γ−, then the improper integral of the function t 7→ (f ◦ φ)(t)φ′(t) over [α, γ) exists and∫ ω

a

f(x) dx =

∫ γ

α

(f ◦ φ)(t)φ′(t) dt

Convergence of an Improper Integral

Note that by definition, an improper integral∫ ω

a

f(x) dx ≡ lim
b→ω

∫ b

a

f(x) dx

is a limit of the function

F(b) ≡
∫ b

a

f(x) dx

as b→ ω. This means that we can use the Cauchy criterion to determine the convergence of this limit, and
hence, existence of this improper integral.

Theorem 6.21 (Cauchy Criterion for Convergence of an Improper Integral)

If the function x 7→ f(x) is defined on the interval [a, ω) and integrable on every closed interval
[a, b] ⊂ [a, ω), then the integral ∫ ω

a

f(x) dx

converges if and only if for every ϵ > 0 there exists B ∈ [a, ω) such that the relation∣∣∣∣∣
∫ b2

b1

f(x) dx

∣∣∣∣ < ϵ

holds for any b1, b2 ∈ [a, ω) satisfying B < b1 and B < b2.

Proof.

We have ∫ b2

b1

f(x) dx =

∫ b2

a

f(x) dx−
∫ b1

a

f(x) dx = F(b2)−F(b1)

and therefore the condition is simply the Cauchy criterion for the existence of a limit for the function
F(b) as b→ ω.

Definition 6.13 (Absolute Convergence of an Improper Integral)

The improper integral ∫ ω

a

f(x) dx

converges absolutely if the integral ∫ ω

a

|f |(x) dx

converges. Clearly, the inequality ∣∣∣∣∣
∫ b2

b1

f(x) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b2

b1

|f |(x) dx

∣∣∣∣∣
implies that if an improper integral converges absolutely, then it converges.
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This study of absolute convergence reduces to the study of convergence of integrals of nonnegative functions.
The following lemma is useful in determining convergence of such functions.

Lemma 6.5 ()

Let there be a function f defined on interval [a, ω) that is also integrable over every closed interval
[a, b] ⊂ [a, ω). If f(x) ≥ 0 on [a, ω), then the improper integral∫ ω

a

f(x) dx

exists if and only if the function

F(b) ≡
∫ b

a

f(x) dx

is bounded on [a, ω).

Proof.

It is clear that ∫ ω

a

f(x) dx = lim
b→ω
F(b)

If f(x) ≥ 0, then the function F(b) is nondecreasing on [a, ω) and therefore has a limit as b→ ω only
if it is bounded (since every monotonically increasing sequence that is bounded always converges).

This leads to the familiar integral test for convergence of a series.

Theorem 6.22 (Integral Test for Convergence of a Series)

If the function x 7→ f(x) is defined on the interval [1,+∞), nonnegative, nonincreasing, and integrable
on each closed interval [1, b] ⊂ [1,+∞), then the series

∞∑
n=1

f(n) = f(1) + f(2) + . . .

and the integral ∫ +∞

a

f(x) dx

either both converge or both diverge.

We can use the comparison test analogue to determine convergence of improper integrals.

Theorem 6.23 (Comparison Test for Convergence of Improper Integrals)

Suppose the functions f(x), g(x) are defined on the interval [a, ω) and integrable on any closed interval
[a, b] ⊂ [a, ω). If

0 ≤ f(x) ≤ g(x)

on [a, ω), then ∫ ω

a

g(x) dx converges =⇒
∫ ω

a

f(x) dx converges

and the inequality ∫ ω

a

f(x) dx ≤
∫ ω

a

g(x) dx
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holds. Also, ∫ ω

a

f(x) dx diverges =⇒
∫ ω

a

g(x) dx diverges

Improper Integrals with Multiple Singularities

Definition 6.14 (Improper Integral with Both Limits as Singularities)

Given singularities ω1, ω2, the improper integral is defined∫ ω2

ω1

f(x) dx ≡
∫ c

ω1

f(x) dx+

∫ ω2

c

f(x) dx

where c is an arbitrary point in (ω1, ω2).

Example 6.7 (Gaussian Integral)

The integral ∫ +∞

−∞
e−x2

dx =
√
π
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7 Sequences of Functions
Let us slightly extend the notion of limits of sequences with functions.

Definition 7.1 (Pointwise Convergence)

Let E ⊂ R and f, fn : E → R. We say that fn → f pointwise if

lim
n→∞

fn(x) = f(x) for all x ∈ E (382)

The next question to ask is whether properties of functions are preserved under the limit operations. For
example, if the fn’s are continuous, differentiable, or Riemann integrable, is the same true for the limit
function f? What are the relations between f ′

n and f ′ or
∫
fn and

∫
f? To say that a function f is

continuous at a point x means
lim
t→x

f(t) = f(x) (383)

For functions, the analogous result is whether

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t) (384)

Is this true? Let’s look at a few examples.

Example 7.1 (Double Sequence May be Swappable)

Consider the double sequence
(

1
m+n

)
m,n∈N. We can compute the limit as both n,m→ +∞ in many

ways.
1. We can first set m→ +∞, then n→ +∞.
2. We can first set n→ +∞, then m→ +∞.
3. We might want to take n twice as slow as m.

All of these converge to the same value of 0, so there is no problem.

Example 7.2 ()

Let fn(x) = x/n. Then fn → 0 pointwise, where 0 is the 0 function. This is true since for every fixed
x, we can set n so large that x/n < ϵ for any ϵ.

In this case, we are considering a double sequence in R. However, if we fix one value, then it becomes a
sequence of functions, and we already have established that classes of functions form a vector space. In
general, interchanging limits are not allowed.

Example 7.3 (Cannot Exchange Limits Under Pointwise Convergence)

Consider the slightly different sequence
(

m
m+n

)
m,n

.
1. If m >> n, i.e. take the sequence of values (10k, k), then this will approach 1.
2. If n >> m, i.e take the sequence of values (k, 10k), then this will approach 0.
3. In intermediate cases, you can in fact get any number between 0 and 1.

Therefore, in general, the limits are not equal. Even worse, the properties of these functions are violated.
To get equality, we need to make a stronger assumption than simple existence of limits.
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Example 7.4 (Pointwise Limit of Continuous Functions is not Continuous)

Let fn(x) : [0, 1]→ R defined fn(x) = xn. Then,

0 ≤ x < 1 =⇒ xn → 0 as n→∞ (385)
x = 1 =⇒ xn → 1 as n→∞ (386)

So,

fn → f∗(x) :=

{
0 if x < 1

1 if x = 1
(387)

Note that all fn are continuous but f∗ is discontinuous since

lim
x→1

lim
n→∞

fn(x) = 0 ̸= 1 = lim
n→∞

lim
x→1

fn(x) (388)

Example 7.5 (Pointwise Series Sum of Continuous Functions is not Continuous)

Consider

fn(x) =
x2

(1 + x2)n
(389)

and let

f(x) =

∞∑
n=0

fn(x) =

∞∑
n=0

x2

(1 + x2)n
(390)

Since fn(0) = 0, we have f(0) = 0. For x ̸= 0, the series is a convergent geometric series with sum
1 + x2. Therefore,

f(x) =

{
0 if x = 0

1 + x2 if x ̸= 0
(391)

Therefore the sum of a convergent series of continuous functions may not be continuous.

Example 7.6 (Cannot Exchange Integrals and Limits Under Pointwise Convergence)

Consider the function fn : [0, 1] → R defined by fn(0) = fn(1/n) = 0 and fn(1/2n) = 2n, with
everything else linearly interpolated. Then fn → 0 since it is constantly 0 at 0 and for every x > 0,
there exists 1/N < x and so fn(x) = 0 for all n ≥ N . However,

∫ 1

0
fn(x) dx = 1, so

lim
n→∞

∫ 1

0

fn(x) dx ̸=
∫ 1

0

lim
n→∞

fn(x) dx (392)

So integration is not continuous with respect to the topology induced by pointwise convergence.

The problem is not in the construction of the limits or the integral, but with the pointwise convergence.
With pointwise convergence,

1. we cannot exchange two limits, which implies limit of derivatives may not equal to the derivative of
the limit

2. limits do not preserve continuity

3. cannot exchange integrals and limits

4. cannot exchange sums
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Example 7.7 ()

Review. (
1− 1

n

)n

→ e−1 (393)

So now the motivation is to find properties of these sequences of functions that do allow these manipulations.

7.1 Conditions for Uniform Convergence
The problem seems to be that certain points may converge at a much slower rate than others. Therefore,
we want to impose some sort of uniform condition, which says that the values of the function at every point
must converge.

Definition 7.2 (Uniform Convergence)

Given fn : E → R of bounded functions, (fn) is said to converge uniformly to a bounded function
f : E → R if ∀ϵ > 0, there exists N ∈ N s.t.

n ≥ N =⇒ |fn(x)− f(x)| < ϵ for all x ∈ E (394)

the “for all x ∈ E” is the uniform part, which is similar to uniform continuity.

Theorem 7.1 ()

This is an immediate consequence of the definition.

fn → f uniformly on E ⇐⇒ lim
n→∞

sup
x∈E
|fn(x)− f(x)| = 0 (395)

Generally, to prove uniform convergence, you will need to find that |fn(x)− f(x)| is bounded by something
that is independent of x, and it goes to 0 as n→∞. Here is an equivalent condition.

Definition 7.3 (Uniformly Cauchy)

A sequence fn : E → R is called uniformly Cauchy if ∀ϵ > 0, there exists N ∈ N s.t. ∀n,m ≥ N ,

|fn(x)− fm(x)| < ϵ for all x ∈ E (396)

Lemma 7.1 (Cauchy Criterion of Uniform Convergence)

(fn) converges uniformly iff (fn) is uniformly Cauchy.

Proof.

We prove bidirectionally.
1. (→). Suppose (fn) converges uniformly on E, and let f be the limit function. Then there exists

N ∈ N s.t.
n ≥ N =⇒ |fn(x)− f(x)| < ϵ

2
for all x ∈ E (397)

Therefore,

n,m ≥ N =⇒ |fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < ϵ

2
+

ϵ

2
= ϵ (398)

for all x ∈ E.
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2. (←). Suppose the Cauchy criterion holds. For every x ∈ E, the sequence (fn(x))n converges as
a sequence in R. Call this limit f(x). Thus the sequence (fn) converges pointwise to f . Now
for fixed x ∈ E, let ϵ > 0 be given, and choose N ∈ N s.t.

m,n ≥ N =⇒ |fn(x)− fm(x)| < ϵ for all x ∈ E (399)

Fix n and let m→∞. Since fm(x)→ f(x) as m→∞, this gives

|fn(x)− f(x)| ≤ ϵ (400)

which holds for every n ≥ N and x ∈ E. Therefore the pointwise limit f must be the uniform
limit.

Example 7.8 ()

We have uniform convergence

sin(enx)

n
→ 0 since

∣∣∣∣ sin(enx)n

∣∣∣∣ ≤ 1

n
→ 0 (401)

Example 7.9 ()

fn(x) = xn does not converge uniformly to any function in [0, 1]. It suffices to find a sequence
(yn) ⊂ [0, 1] s.t. |fn(yn) − f(yn)| ̸→ 0 as n → ∞. Take yn = 1 − 1

n . Then fn(yn) → 1
e ̸= 0, but

f(yn)→ 1.

Example 7.10 ()

The triangle functions do not converge uniformly since fn is unbounded, i.e. fn(
1
2n ) = 2n, while

fn(
1
n ) = 0. So we can construct two sequences that

(1/2n)→∞, (1/n)→ 0 as n→∞ (402)

Lemma 7.2 (Uniform Convergence Implies Pointwise Convergence)

Uniform convergence implies pointwise convergence.

Proof.

Say fn → f uniformly. Then for every ϵ > 0, there exists a N ∈ N s.t.

n ≥ N =⇒ |fn(x)− f(x)| < ϵ for all x ∈ E (403)

So just fix a point x, take any ϵ > 0, and we have our δ due to uniform convergence.

Theorem 7.2 (Weierstrass M-Test)

Suppose (fn) is a sequence of functions on E, and suppose

|fn(x)| ≤Mn for all x ∈ E (404)

for each n ∈ N. Then if
∑

n Mn converges,
∑

n fn converges uniformly.
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Proof.

If
∑

n Mn converges, then for arbitrary ϵ > 0, we have∣∣∣∣ m∑
i=n

fi(x)

∣∣∣∣ ≤ m∑
i=n

Mn ≤ ϵ (405)

provided n,m ∈ N are large enough. Therefore this is uniformly Cauchy, and so uniformly convergent.

7.2 Consequences of Uniform Continuity
Now we will formalize and prove the manipulations that are unlocked by uniform continuity.

Theorem 7.3 (Limits are Swappable)

Suppose fn → f uniformly over a set E of a metric space. Let x ∈ E′, and suppose that limt→x fn(t) =
An for all n. Then,

1. (An) converges, and
2. we have

lim
t→x

f(t) = lim
n→∞

An ⇐⇒ lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t) (406)

Proof.

Let ϵ > 0, then by uniform continuity, there exists a N ∈ N s.t.

n,m ≥ N =⇒ |fn(t)− fm(t)| < ϵ (407)

Now let t→ x, and since the limit exists, we have

n,m ≥ N =⇒ |An −Am| < ϵ (408)

and so (An) is by definition a Cauchy sequence in R. Say that An → A.
Now we wish to prove that limt→x f(t) = A. Take ϵ > 0, and we wish to show that there exists some
δ > 0 s.t.

|t− x| < δ =⇒ |f(t)−A| < ϵ (409)

Note that by the triangle inequality

|f(t)−A| ≤ |f(t)− fn(t)|+ |fn(t)−An|+ |An −A| (410)

Therefore, we can take ϵ
3 > 0.

1. By uniform convergence of fn → f , there exists a N1 ∈ N s.t.

n ≥ N1 =⇒ |fn(x)− f(x)| < ϵ

3
for all x ∈ E (411)

2. By convergence of An → A, there exists a N2 ∈ N s.t.

n ≥ N2 =⇒ |An −A| < ϵ

3
(412)

3. Therefore, choose N = max{N1, N2}, and for this N , by convergence of fn(t) → An we can
choose a δ s.t.

|x− t| < δ =⇒ |fn(t)−An| <
ϵ

3
(413)

This essentially bounds the three values, and so by choosing the δ in (3), we get

|t− x| < δ =⇒ |f(t)−A| ≤ ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ (414)
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Corollary 7.1 (Uniform Limits of Continuous Functions are Continuous)

If (fn) is a sequence of continuous functions on E, and if fn → f uniformly on E, then f is continuous
on E.

Proof.

Using the sequential definition of continuity, we claim that limt→x f(t) = f(x). We know from the
previous theorem that

lim
t→x

lim
n→∞

fn(t)︸ ︷︷ ︸
=f(t)

= lim
n→∞

lim
t→x

fn(t)︸ ︷︷ ︸
=fn(x)

(415)

where the LHS follows from (fn) being uniformly convergent, which implies pointwise convergence,
and the RHS follows from fn being continuous.

However, the converse is not true. A sequence of continuous functions may converge to a continuous function
though not uniformly.

Theorem 7.4 ()

Suppose K is compact, and
1. (fn) is a sequence of continuous functions on K.
2. (fn) converges pointwise to a continuous function f on K.
3. fn(x) ≥ fn+1(x) for all x ∈ K,n ∈ N.

Then fn → f uniformly on K.

Now let’s move onto integration.

Theorem 7.5 (Limits of Integrals are Integrals of Uniform Limits)

Let (fn) be a sequence of Riemann integrable functions on [a, b]. If fn → f uniformly on [a, b], then
f ∈ R([a, b]) and

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx =

∫ b

a

lim
n→∞

fn(x) dx (416)

Proof.

Let ϵn = sup |fn(x)− f(x)| with the supremum taken over a ≤ x ≤ b. Then,

fn − ϵn ≤ f ≤ fn + ϵn (417)

so the upper and lower integrals of f satisfy∫ b

a

(fn − ϵn) dx ≤
∫ b

ā

f(x) dx ≤
∫ b̄

a

f(x) dx ≤
∫ b

a

(fn + ϵn) dx (418)

Hence, we have

0 ≤
∫ b̄

a

f(x) dx−
∫ b

ā

f(x) dx ≤ 2ϵn(b− a) (419)

and taking n→∞ sets ϵn → 0.
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Corollary 7.2 (Series Function May be Integrated Term by Term)

If fn ∈ R([a, b]), and f is defined

f(x) :=

∞∑
n=1

fn(x) (420)

with the series converging uniformly on [a, b], then∫ b

a

f(x) dx =

∞∑
n=1

∫ b

a

fn(x) dx (421)

Now we move onto differentiation.

Theorem 7.6 ()

Suppose (fn) is a sequence of differentiable functions on [a, b]. If
1. there exists some x0 ∈ [a, b] such that (fn(x0))n converges, and
2. (f ′

n)→ f ′a on [a, b],
Then (fn) converges uniformly to a function f , with

f ′(x) = lim
n→∞

f ′
n(x) (422)

aAt this point, f ′ is just notation since f isn’t even defined.

Proof.

Choose N ∈ N s.t. for n,m ≥ N , the following hold

|fn(x0)− fm(x0)| <
ϵ

2
, |f ′

n(t)− f ′
m(t)| < ϵ

2(b− a)
(423)

which is possible due to convergence of fn(x0) and uniform convergence of the derivative. Then
applying the mean value theorem to the function (fn − fm) gives

|fn(x)− fm(x)− fn(t) + fm(t)| = (fn − fm)′(c)|x− t| (424)

for any x, t ∈ [a, b] and c ∈ (x, t). However, (fn − fm)′ is bounded, so

|fn(x)− fm(x)− fn(t) + fm(t)| ≤ |x− t|ϵ
2(b− a)

≤ ϵ

2
(425)

and therefore we can use the triangle inequality to get

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− fn(x0) + fm(x0)|+ |fn(x0)− fm(x0)| (426)

≤ ϵ

2
+

ϵ

2
= ϵ (427)

and so fn is uniformly Cauchy ⇐⇒ (fn) converges uniformly.
To show the equality of the limit, we fix a point x ∈ [a, b] and define

ϕn(t) =
fn(t)− fn(x)

t− x
, ϕ(t) =

f(t)− f(x)

t− x
(428)

for t ∈ (a, b), t ̸= x. Then,
lim
t→x

ϕn(t) = f ′
n(x) (429)
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and we can see from the above inequality that

|ϕn(t)− ϕ(t)| ≤ ϵ

2(b− a)
(430)

for n,m ≥ N . So we can conclude
ϕ(t) = lim

n→∞
ϕn(t) (431)

Here is an alternative shorter proof of the equality (but not uniform convergence of fn!) where we assume
fn ∈ C1([a, b]).

Proof.

Let’s call the limit of f ′
n to be g to avoid confusion. We know that since f ′

n is continuous, it’s
integrable and by the fundamental theorem of calculus we have

fn(x)− fn(0) =

∫ x

0

f ′
n(t) dx (432)

Since f ′
n → g uniformly and f ′

n ∈ C0, g is continuous and so we can define the function

f(x) := f(0) +

∫ x

0

g(t) dt (433)

But we can see that by uniform convergence, we can swap integrals

f(x)− f(0) =

∫ x

0

g(t) dt (434)

=

∫ x

0

lim
n→∞

f ′
n(t) dt (435)

= lim
n→∞

∫ x

0

f ′
n(t) dt (436)

= lim
n→∞

fn(x)− fn(0) (437)

which implies that f(x) − f(0) = limn→∞ fn(x) − fn(0) and so f(x) = limn→∞ fn(x). But since
f ′ is continuous, the function f defined above is differentiable, with derivative f ′(x) to be whatever
function is in the integral, i.e. g(x). So

f ′(x) = g(x) = lim
n→∞

f ′
n(x) (438)

7.3 Equicontinuous Families
Note that uniform convergence may not be met due to some counterexamples. In general, there are 3 ways
that uniform convergence can fail to happen.

1. Concentration. Note that xn as n→∞ almost converges except at one point.

2. Translation. Consider fn(x) = sin(x− n). Then by increasing n we are shifting it to +∞.

3. Oscillation. Consider fn(x) = sin(nx). As n increases the function oscillates widely. This is sort of
like the worst.8

We would like uniform convergence, so we want conditions to avoid lack of uniform convergence. Keep
in mind to counterexamples. To avoid translation, work with compact space, or if not compact, have the

8It turns out that this is the same as (2) under the Fourier transform.
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functions decay uniformly. To avoid oscillation, we can bound the derivative, which is a restriction on
each function |f ′

n(x)| ≤ M . The Cauchy criterion is too much. To avoid going to infinity, just bound f :
|fn(x)| ≤M for all n ∈ N, x ∈ X.

The bounding of derivatives can be a bit strong. We aren’t always working with differentiable functions, so
we introduce a similar concept.

Definition 7.4 (Equicontinuous Family)

A family of functions F on E is said to be equicontinuous if ∀ϵ > 0 there exists a δ > 0 s.t.

|x− y| < δ =⇒ |f(x)− f(y)| < ϵ (439)

for all x, y ∈ E, f ∈ F .

So this doesn’t even depend on f . You can think of this as uniformly continuous for a class of functions that
doesn’t depend on f . The first class of equicontinuous functions you should know are those with bounded
derivatives.

Lemma 7.3 (Functions with Bounded Derivatives Are Equicontinuous)

Fix M ≥ 0. Then
Fn := {f : [0, 1]→ R | |f ′(x)| ≤M} (440)

is an equicontinuous family.

Proof.

For any f ∈ F , the MVT |f(x)−f(y)| = |f ′(c)(x−y)| for some c ∈ (x, y). But since f ′(c) is bounded
by M , take δ = ϵ/M .

Example 7.11 ()

F = {sin(nx)}n∈N is not equicontinuous on [0, 1] since∣∣∣∣ sin(n π

2n

)
− sin

(
n
π

n

)∣∣∣∣ = 1 (441)

for all n. So setting xn = π
2n , yn = π

n , we have d(xn, yn) → 0 while d(f(xn), f(yn)) ≥ 1. So this is
not equicontinuous.

Definition 7.5 (Uniformly Bounded)

Given a sequence of functions (fn) over E,
1. we say the sequence is pointwise bounded if there exists some function ϕ(x) s.t. |fn(x)| < ϕ(x)

for all x ∈ E,n ∈ N.
2. we say the sequence is uniformly bounded if there exists some M s.t. |fn(x)| ≤ M for all

x ∈ E,n ∈ N.

Lemma 7.4 ()

Uniform boundedness implies pointwise boundedness.
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Proof.

Take ϕ(x) = M .

Lemma 7.5 ()

If K is compact and fn ∈ C(K), with
1. fn pointwise bounded.
2. fn equicontinuous on K

Then {fn} is uniformly bounded.

If (fn) is pointwise bounded on E and E1 is a countable subset of E, it is always possible to find a subsequence
(fnk

) that converges for every x ∈ E1. As an intuitive example, suppose

1. (f2n(q1)) converges

2. (f3n(q2)) converges

3. (f5n(q3)) converges

4. (f7n(q4)) converges

So combining the first two, we have that (f6n(qi)) converges for i = 1, 2. Continuing on, (f30n(qi)) converges
for i = 1, 2, 3. But you can’t do this infinitely. So if you want a single subsequence s.t. all the sequences
converges, we can do

f2, f6, f30, f210, f2310, . . . (442)

Since

1. if you take out f2, it is a subsequence of (f3n) which converges for q2, and

2. if you also take out f6, it is a subsequence of (f6n) which converges for q1, q2, and

3. if you also take out f30, it is a subsequence of (f30n) which converges for q1, q2, q3

so fnk
(qi) converges for all i. Now let’s formalize this argument.

Lemma 7.6 ()

Let (fn) be a sequence of functions on [0, 1] that’s uniformly bounded. Let {qm}∞m=1 be a countable
set of numbers in [0, 1]. Then ∃ a subsequence (fnk

) for which fnk
(qm) is convergent for all m ∈ N.

Proof.

Intuitively, if we find a sequence of functions, we want to look at each point—say 1—and look
at (fn(1))n. (fn(1)) is bounded and so contains a convergent subsequence (fnk

(1))k. Now with this
subsequence, we look at (fnk

(0))k which is bounded and therefore (fnkj
(0))j converges, and (fnkj

(1))j
must converge as a subsequence of convergent (fnk

(1))k. Now do this for all q’s, and we get a single
subsequence that converges for all of them.
For ease of notation, let fij denote the jth term of the ith subsequence. Then there exists (fn,1)n s.t.
(fn,1(q1))n converges. Take a subsequence fn,2 of fn,1 s.t. (fn,2(q2))n converges. Given (fn,k)n, find a
subsequence of it, called (fn,k+1)n for which (fn,k+1(qk+1))n converges. Now (fn,n)n is a subsequence
of the original one (nth term of nth subsequence) for which (fq,n)n is eventually a subsequence of
(fn,j)n for any fixed j.

Now the Ascolli’s theorem gives us conditions to get rid of translation, oscillations, and infinity. To prove the
second statement, we will need a lemma, so we state it now, along with providing a neat trick for constructing
sequences.
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Theorem 7.7 (Arzela-Ascolli’s Theorem)

We claim the following.
1. If a sequence of continuous functions fn : [0, 1] → R (or more generally, over a compact set)

converges uniformly, then they form an equicontinuous family.
2. If a sequence of functions fn : [0, 1] → R is equicontinuous and so uniformly bounded, then it

has a uniformly convergent subsequence.

Proof.

Assume (fn) is uniformly convergent. Then it is uniformly Cauchy. To prove equicontinuity, given a
ϵ > 0 we need to find a δ > 0 for all the functions. Since fn is uniformly Cauchy, ∃N s.t. if n ≥ N ,
then

sup
x∈[0,1]

|fn(x)− fN (x)| < ϵ/3 (443)

Consider the first N functions f1, . . . , fN . They are all continuous on a compact set and so uniformly
continuous. So for each fi, there exists a δi s.t. |x − y| < δi =⇒ |fi(x) − fi(y)| < ϵ. So take
δ = 1

3 mini δi > 0. So for all 1 ≤ i ≤ N ,

|x− y| < δ =⇒ |fi(x)− fi(y)| < ϵ/3 (444)

and for n ≥ N ,

|fn(x)− fn(y)| ≤ |fn(x)− fN (x)︸ ︷︷ ︸
<ϵ/3

+ fN (x)− fN (y)︸ ︷︷ ︸
<ϵ/3

+ fN (y)− fn(y)︸ ︷︷ ︸
<ϵ/3

< ϵ (445)

For the second part, let E = Q ∩ [0, 1]. It is a good thing that E is dense in [0, 1]. Let (fn) be an
equicontinuous on [0, 1] and uniformly bounded. Due to the lemma, there exists a (fnk

)k so that the
fnk

converges pointwise on E (since E is countable). We will now use equicontinuity of (fnk
)k to

prove it’s uniformly Cauchy on [0, 1], which will imply that it’s convergent. To make notation easier
we will call fnk

= gk. Let ϵ > 0. Since gk is equicontinuous, ∃δ > 0 s.t.

|x− y| < δ =⇒ |gk(x)− gk(y)| < ϵ (446)

Since E = {q1, q2, . . .} is dense in [0, 1], {Bδ(qi)}∞i=1 is an open cover of [0, 1]. Since [0, 1] is compact,
there exists a finite subcover

[0, 1] ⊂
N⋃
j=1

Bδ(qij ) (447)

Since (gk(qij )) converges for each 1 ≤ j ≤ N , there exists Mj s.t.

n,m ≥Mj =⇒ |gn(qij − gm(qij ))| < ϵ (448)

Take M = maxj Mj . Now if m,n ≥ M , given x ∈ [0, 1] ∃qi with 1 ≤ i ≤ N so that x ∈ Bδ(qi), and
so

|gn(x)− gm(x)| ≤ |gn(x)− gn(qi)|︸ ︷︷ ︸
<ϵ

+ |gn(qi)− gm(qi)|︸ ︷︷ ︸
<ϵ

+ |gm(qi)− gm(x)|︸ ︷︷ ︸
<ϵ

< 3ϵ (449)

where the first and third inequalities come from equicontinuity, and the middle come from convergence
on E. So by setting δ/3 we are done.
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Example 7.12 ()

An important application is in the existence of minimizers/maximizers for optimization problems
involving functions. To minimize

J(f) =

∫ 1

0

√
1 + f ′(t) dt (450)

is the length of the curve of f : [0, 1]→ R. To minimize the length of the curve, we must search over
a set of functions. So to use EVT, you must know what the compact subsets of functions.

Ascolli’s theorem exactly characterizes these compact subsets. These compact subsets of function spaces is
the closure of equicontinuous functions.

Corollary 7.3 ()

A set of functions K ⊂ C([0, 1]) is compact iff it is, under the supremum metric supx∈[0,1],
1. closed
2. bounded
3. equicontinuous

The first two are needed for finite dimensions. The third condition is for function spaces.

Theorem 7.8 (Contraction Mapping Theorem)

Let (X, d) be a metric space with J : X → X and let there exist c < 1 s.t.

d(J(x), J(y)) ≤ cd(x, y) for all x, y ∈ X (451)

Then there exists a unique x∗ ∈ X s.t. J(x∗) = x∗.

7.4 The Stone-Weierstrass Theorem
The Stone-Weierstrass theorem is a bit more general, while the Weierstrass approximation theorem is for
polynomials.

Theorem 7.9 (Weierstrass Approximation Theorem)

If f ∈ C([a, b]), there exists a sequence of polynomials (pn) that converges uniformly to f .

Lemma 7.7 ()

If f : [0, 1]→ R is continuously differentiable on [0, 1], then

lim
n→∞

∫ 1

0

f(x) sin(nx) dx = 0 (452)

This means that as n→∞, the integral becomes small.

Proof.

Now we prove a stronger version.
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Theorem 7.10 ()

For every f ∈ C([0, 1]),

lim
n→∞

∫ 1

0

f(x) sin(nx) dx = 0 (453)

Proof.

Let ϵ > 0. Then by the Weierstrass approximation theorema, there exists a polynomial p : [0, 1]→ R
for which

sup
x∈[0,1]

|p(x)− f(x)| < ϵ (454)

Now consider∣∣∣∣ ∫ 1

0

f(x) sin(nx) dx

∣∣∣∣ ≤ ∣∣∣∣ ∫ 1

0

p(x) sin(nx) dx

∣∣∣∣+ ∣∣∣∣ ∫ 1

0

(f(x)− p(x)) sin(nx) dx

∣∣∣∣ (455)

≤
∣∣∣∣ ∫ 1

0

p(x) sin(nx) dx

∣∣∣∣+ ϵ (456)

≤ 2ϵ (457)

where the first inequality is the triangle inequality, the second is due to the Weierstrass approximation
theorem, and the third is due to p(x) being infinitely differentiable, and so by the lemma above it is
≤ ϵ.

aaka, the set of polynomials is dense in the set of continuous functions with the supremum metric. Remember
polynomial interpolation, which is for a finite number of points. This is a little different.

Theorem 7.11 ()

Proof.

Suppose for the sake of contradiction that sin(nkx) → g(x) uniformly for subsequence (nk)k. Then
g(x) must be continuous on [0, 1]. Then∫ b

a

g(x)2 dx = lim
n→∞

∫ 1

0

g(x) sin(nkx) dx = 0 (458)

due to the theorem, which implies that g = 0. But since g(nx) = ±1 for some x for all n, we have a
contradiction.

7.5 Approximation of the Identity

Definition 7.6 (Approximation of the Identity)

A family of functions {φϵ} parameterized by ϵ is called an approximation of the identity if
1.
∫∞
−∞ φϵ(y) dy = 1

2. limϵ→0

∫
|y|>δ

φϵ(y) dy = 0 for all δ > 0
3. φϵ ≥ 0.a

aThis condition is flexible, but it makes things a bit easier for now.
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Example 7.13 ()

Consider the functions fϵ satisfying f(−ϵ) = f(ϵ) = 0, f(0) = 1/ϵ, and everything in between linearly
interpolated. Then this is an approximation of the identity.

Example 7.14 ()

Take any φ ≥ 0 s.t.
∫∞
−∞ φ = 1 and define

φϵ =
1

ϵ
φ

(
x

ϵ

)
(459)

which we can think of as squeezing the function horizontally to 0 and making the amplitude very
large. Then we see that ∫ ∞

−∞
φϵ(y) dy =

∫ ∞

−∞

1

ϵ
φ

(
y

ϵ

)
=

∫ ∞

−∞
φ(x) dx = 1 (460)

Fix δ > 0. Then ∫ ∞

δ

φϵ(x) dx =

∫ ∞

δ

1

ϵ
φ

(
x

ϵ

)
dx =

∫ ∞

δ/ϵ

φ(y) dy → 0 as ϵ→ 0 (461)

Since δ is fixed, we have δ/ϵ→ +∞ as ϵ→ 0, and so this integral of the tail above converges to 0.

The approximation of the identity (AoI) has an amazing property.

Theorem 7.12 ()

Let {φϵ} be an AoI. Assume f : R→ R is bounded and continuous. Then

lim
ϵ→0

∫ ∞

−∞
φϵ(y) f(y) dy = f(0) (462)

Figure 32: The triangle has area 1. Now if you integrate the product of φϵ(y) and f(y), it’s like taking the
product and multiplying by f . But as ϵ → 0, the triangle’s area is 1, and at the end you just multiply by
f(0).

Proof.

We have∣∣∣∣ ∫ ∞

−∞
φϵ(y) f(y) dy − f(0)

∣∣∣∣ = ∣∣∣∣ ∫ ∞

−∞
φϵ(y)

(
f(y)− f(0)

)
dy

∣∣∣∣ (463)

≤
∣∣∣∣ ∫ δ

−δ

φϵ(y)
(
f(y)− f(0)

)
dy

∣∣∣∣+ ∣∣∣∣ ∫
|y|>δ

φϵ(y)
(
f(y)− f(0)

)
dy

∣∣∣∣ (464)

≤ sup
y∈[−δ,δ]

|f(y)− f(0)|+ 2M

∫
|y|>δ

φϵ(y) dy (465)

where the final step follows from the left integral is less than sup[−δ,δ] |f(y)− f(0)|, and for the right
integral, we have f(y)− f(0) ≤ 2 sup |f | ≤ 2M . Since you don’t know the limit exists, you take the
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limsup,

lim sup
ϵ→0

∣∣∣∣ ∫ ∞

−∞
φϵ(y) f(y) dy − f(0)

∣∣∣∣ ≤ sup
y∈[−δ,δ]

|f(y)− f(0)| → 0 as δ → 0 (466)

Corollary 7.4 (Convolution)

If {fϵ} is an AoI with f bounded and continuous and x ∈ R, we have

lim
ϵ→0

∫ ∞

−∞
φϵ(y) f(x− y) dy = f(x) (467)

This is called the convolution of f with φϵ.

Definition 7.7 (Dirac Delta Function)

φϵ → δ0 as ϵ→ 0, the Dirac delta function. This is a limit.

Theorem 7.13 ()

Consider the functions

φn(x) =

{
cn(1− x2)n if x ∈ [−1, 1]
0 else

, cn =

(∫ 1

−1

(1− x2)n dx

)−1

(468)

Then, ∫ 1

−1

φn(x) =

∫ ∞

−∞
φn(x) dx = 1 (469)

so {φn} is an approximation of the identity.

Proof.

Note that cn is chosen such that
∫∞
−∞ φn(x) dx = 1 and φn ≥ 0. We want to show∫

|x|>δ

φn(x) dx→ 0 as n→∞ for all δ > 0 (470)

We claim that cn ≤ 10
√
n. since we wish to upper bound the multiplicative inverse of an integral, it

suffices to lower bound the inverse—i.e. the integral itself.∫ 1

−1

(1− x2)n dx = 2

∫ 1

0

(1− x2)n dx ≥ 2

∫ 1/
√
n

0

(1− x2)n dx (471)

≥ 2

∫ 1/
√
n

0

(1− nx2) dx (472)

where the last inequality follows from the binomial inequality (1− s)n ≥ 1− sn. Therefore, the final
integral is now computable, so it equals

′′= 2

(
x− nx3

3

)∣∣∣∣1/
√
n

0

=
4

3

1√
n

=⇒ cn ≤
(
4

3

1√
n
)−1 <

√
n (473)
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Now we have ∫
|x|>δ

φn(x) dx = 2

∫ +∞

δ

φn(x) dx (474)

= 2

∫ 1

δ

cn(1− x2)n dx (475)

≤ 20
√
n

∫ 1

δ

(1− x2)n dx (476)

≤ 20
√
n(1− δ2)n → 0 as n→∞ (477)

Note that we could have claim that the bound be cn ≤ (10
√
n)1000 and this would still be true.

Theorem 7.14 (Stone-Weierstrass Theorem)

Let f ∈ C([a, b]). Then ∀ϵ > 0, ∃ a polynomial p s.t.

d(f, p) := sup
x∈[a,b]

d
(
f(x), p(x)) < ϵ (478)

This is equivalent to saying that R[x] is dense in C([a, b]), or that for any f ∈ C([a, b]), ∃ sequence
(pn) of polynomials s.t. pn → p uniformly on [a, b].

Proof.

By translation and dilation, it suffices to take [a, b] = [−1, 1]. This is because translation/dilations
are automorphisms (?). It also suffices to consider only f for which f(−1) > 0 and f(1) = k for some
number k. This is because we can always replace f with f̃ defined by

f̃(x) := f(x)−
(
(1 + x)f(1) + (1− x)f(−1)

2

)
(479)

Let’s extend f by 0 outside of [−1, 1]. f is now a bounded continuous function R implying that f is
uniformly continuous. Then we can take the integral.

φn(x) =

{
(1−x2)n∫
(1−x2)n dx

if x ∈ [−1, 1]
0 else

(480)

Since f is bounded, uniformly continuous on R, and since {φ} is an approximation of the identity,∫ ∞

−∞
φn(t)f(x− t) dt→ f(x) (481)

and so pn is defined on [− 1
2 ,

1
2 ] with pn → f uniformly.

Now we can use the exact same strategy to prove convergence of Fourier series.

Definition 7.8 (L2 Inner Product)

The L2 inner product is defined on C([a, b]) as

⟨f, g⟩ := 1

b− a

∫ b

a

f(x)g(x) dx (482)
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where f, g are complex valued.

We know that orthonormal bases behave nicely. We present one particularly important one.

Lemma 7.8 ()

The functions {einx}n∈Z are orthonormal in C([0, 2π]).

Proof.

We have for n,m ∈ Z

⟨einx, eimx⟩ = 1

2π

∫ 2π

0

einxeimx dx =
1

2π

∫ 2π

0

einxe−imx dx =
1

2π

∫ 2π

0

ei(n−m)x dx (483)

So if n = m, then ⟨f, g⟩ = 1. If not, then

⟨f, g⟩ = 1

2πi(n−m)
ei(n−m)x

∣∣∣∣2π
0

= 0 (484)

and we are done.

Lemma 7.9 ()

Define

φN (x) =

N∑
k=−N

eikx (485)

Then, the family {φN}∞N=0 forms an AoI. This is called a generalized AoI.

With this, we can prove that any sufficiently smooth (i.e. C1) functions can be approximated with Fourier
series.
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8 Multivarite Functions

8.1 Continuity

8.2 Frechet Derivative
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9 Integration of Differential Forms
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10 Exercises

10.1 The Real Numbers

Exercise 10.1 (Math 531 Spring 2025, PS2.1)

Prove that the set of all matrices of the form:[
a −b
b a

]
, (486)

with a, b ∈ R forms a field with the usual sum and product operations of matrices. What does this
field resemble? Give extensions to 3× 3 and 4× 4 matrices.

Solution 10.1

Exercise 10.2 (Math 531 Spring 2025, PS2.2)

Why can’t the field of complex numbers (with its usual operations) be made into an ordered field?

Solution 10.2

Solution is shown as theorem.

Exercise 10.3 (Math 531 Spring 2025, PS2.3)

Prove there are no finite ordered fields.

Solution 10.3

Solution is shown as theorem.

Exercise 10.4 (Math 531 Spring 2025, PS2.4)

Prove that if x and n are natural numbers, then

xn − 1 = (x− 1)(1 + x+ x2 + ...+ xn−1). (487)

Solution 10.4

We use the commutative addition and multiplication, plus distributive property in Z.

(x− 1)

( n−1∑
i=0

xi

)
= x

n−1∑
i=0

xi −
n−1∑
i=0

xi (488)

=

n∑
i=1

xi −
n−1∑
i=0

xi (489)

= xn +

n−1∑
i=1

xi −
n−1∑
i=1

xi − 1 (490)

= xn − 1 (491)
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Exercise 10.5 (Math 531 Spring 2025, PS2.7)

Prove that there is no q ∈ Q for which
q2 + q = 4. (492)

Solution 10.5

Assume that such a q ∈ Q in canonical form exists. Then by the field properties, since 1
4 ∈ Q,

q2 + q +
1

4
= 4 +

1

4
=

17

4
∈ Q (493)

But by distributive properties, (q + 1
2 )

2 ∈ Q. We claim that there exists no rational x = a/b (a, b
coprime) s.t. x2 = 17/4. If there were, then clearly a ̸= 0 and

a2

b2
=

17

4
=⇒ 4a2 = 17b2 (494)

=⇒ 2|b, and so b = 2b′ for some b′ ∈ N (495)

=⇒ a2 = 17(b′)2 (496)
=⇒ 17|a and so a = 17a′ for some a′ ∈ Z (497)

=⇒ 17(a′)2 = (b′)2 (498)

which implies that 17|b′, but this contradicts the assumption that a, b are coprime. Therefore q+ 1
2 ̸∈

Q =⇒ q ̸∈ Q.

Exercise 10.6 (Math 531 Spring 2025, PS2.8)

Let X be an ordered set with the least upper bound property. Prove that X has the greatest lower
bound property.

Solution 10.6

Shown in theorem above.

Exercise 10.7 (Math 531 Spring 2025, PS2.9)

Prove that if x, y ∈ Q we have that
||x| − |y|| ≤ |x− y|. (499)

Solution 10.7

By subadditivity of the norm we have

|x| ≤ |x− y|+ |y| =⇒ |x| − |y| ≤ |x− y| (500)
|y| ≤ |y − x|+ |x| =⇒ |y| − |x| ≤ |y − x| (501)

But |y − x| = | − 1(x− y)| = | − 1| · |x− y| = |x− y|, and so

max{|x| − |y|, |y| − |x|} ≤ |x− y| (502)

and the LHS is the definition of the norm ||x| − |y|| in Q.
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Exercise 10.8 (Rudin 1.1)

If r is rational (r ̸= 0) and x is irrational, prove that r + x and rx are irrational.

Solution 10.8

If we assume that rx = t and r + x = s are rational, then this violates the field axioms of Q since
then x = tr−1 and x = s+ (−r) are rational.

Exercise 10.9 (Rudin 1.2)

Prove that there is no rational number whose square is 12.

Solution 10.9

Assume that there exists a number p/q such that p and q are both not even. Then,(
p

q

)2

= 12 =⇒ p2 = 12q2 = 3(2q)2 (503)

So p much be even p = 2p′. Therefore, p′2 = 3q2, and q must be odd. This means that p′ must be
odd. We can rewrite the equation

p′2 − q2 = 2q2 =⇒ (p′ + q)(p′ − q) = 2q2 (504)

where the left hand side is divisible by 4 but the right hand side is divisible by at most 2, leading to
a contradiction.

Exercise 10.10 (Rudin 1.3)

Prove that the axioms of multiplication imply the following.
1. If x ̸= 0 and xy = xz, then y = z.
2. If x ̸= 0 and xy = x, then y = 1.
3. If x ̸= 0 and xy = 1, then y = x−1.
4. If x ̸= 0, then (x−1)−1 = x.

Solution 10.10

Listed.
1. xy = xz =⇒ 1

x · xy = 1
xxz =⇒ y = z

2. xy = x =⇒ 1
xxy = 1

xx =⇒ y = 1
3. xy = 1 =⇒ 1

xxy = 1
x1 =⇒ y = 1

x
4. (x−1)−1 · x−1 = 1 =⇒ (x−1)−1 · x−1 · x = 1 · x =⇒ (x−1)−1 = x

Exercise 10.11 (Rudin 1.4)

Let E be a nonempty subset of an ordered set; suppose α is a lower bound of E and β is an upper
bound of E. Prove that α ≤ β.
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Solution 10.11

Since E is nonempty, we choose any x ∈ E. By definition, α ≤ x and x ≤ β, and by transitive
property of orderings, we have α ≤ β.

Exercise 10.12 (Rudin 1.5)

Let A be a nonempty set of real numbers which is bounded below. Let −A be the set of all numbers
−x, where x ∈ A. Prove that

inf A = − sup(−A) (505)

Solution 10.12

We would like to prove that inf A ≤ − sup(−A) and inf A ≥ − sup(−A). For the first part, we start
off with the definition of the infimum.

inf A ≤ x ∀x ∈ A =⇒ − inf A ≥ −x ∀x ∈ A

=⇒ − inf A ≥ x∀x ∈ −A
=⇒ − inf A ≥ sup(−A)

=⇒ inf A ≤ − sup(−A)

For the second part, we start with the definition of the supremum.

sup(−A) ≥ x∀x ∈ −A =⇒ sup(−A) ≥ −x∀x ∈ A

=⇒ − sup(−A) ≥ x∀x ∈ A

=⇒ − sup(−A) ≤ inf A

Exercise 10.13 (Rudin 1.6)

Fix b > 1.
1. If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

(bm)1/n = (bp)1/q. (506)

Hence it makes sense to define br = (bm)1/n.
2. Prove that br+s = brbs if r and s are rational.
3. If x is real, define B(x) to be the set of all numbers bt, where t is rational and t ≤ x. Prove that

br = supB(r) (507)

when r is rational. Hence it makes sense to define

bx = supB(x) (508)

for every real x.
4. Prove that bx+y = bxby for all real x and y.

Solution 10.13

Proved in theorem above.
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Exercise 10.14 (Rudin 1.7)

Fix b > 1, y > 0, and prove that there is a unique real x such that bx = y, by completing the following
outline. (This x is called the logarithm of y to the base b.)

1. For any positive integer n, bn − 1 ≥ n(b− 1).
2. Hence b− 1 ≥ n(b1/n − 1).
3. If t > 1 and n > (b− 1)/(t− 1), then b1/n < t.
4. If w is such that bw > y, then b−(1/n) < y for sufficiently large n; to see this, apply part (c)

with t = y · b−w.
5. If bw > y, then bw−(1/n) > y for sufficiently large n.
6. Let A be the set of all w such that bw < y, and show that x = supA satisfies bx = y.
7. Prove that this x is unique.

Solution 10.14

Proved in theorem above.

Exercise 10.15 (Rudin 1.8)

Prove that no order can be defined in the complex field that turns it into an ordered field.

Solution 10.15

Note that if x ≥ 0, then −x ≤ 0 for all x of any ordered field. Since if x ≥ 0 and −x > 0,
then x − x > 0, which is absurd. Therefore, one of either i or −i should be greater than 0. But
i2 = (−i)2 = −1, so this means that −1 > 0, which implies that 0 < 1. But either 1 or −1 must ≥ 0.

Exercise 10.16 (Rudin 1.9)

Equip C with the dictionary order. That is, given z = a + bi and w = c + di, z < w if a < c, or if
a = c and b < d. Does this ordered set have a least upper bound property?

Solution 10.16

No it does not. Consider the set S = {a+ bi ∈ C | a ≤ 3}. S is bounded by 4, but it doesn’t have a
least upper bound. Given any 3+bi, this is not an upper bound since we can construct 3+(b+ϵ)i ∈ S.
Given any a+ bi where a > 3, we can always find a lower bound of form a+(b− ϵ)i that also bounds
S.

Exercise 10.17 (Rudin 1.10)

Suppose z = a+ bi, w = u+ iv, and

a =

(
|w|+ u

2

)1/2

and b =

(
|w| − u

2

)1/2

(509)

Prove that z2 = w if v ≥ 0 and that (z̄)2 = w if v ≤ 0. Conclude that every complex number (with
one exception!) has two complex square roots.
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Solution 10.17

We can calculate

z2 = (a2 − b2) + 2abi = u+
√
v2i =

{
u+ vi if v ≥ 0

u− vi if v ≤ 0
(510)

Since if we assume v ≥ 0, then we have z2 = w. We also get

z̄2 = (a2 − b2)− 2abi = u−
√
v2i =

{
u− vi if v ≥ 0

u+ vi if v ≤ 0
(511)

and assuming v ≤ 0, we have z̄2 = w. Therefore, every complex number w has both ±z as its square
root if v ≥ 0, ±z̄ if v ≤ 0, and just one root if z = 0.

Exercise 10.18 (Rudin 1.11)

If z is a complex number, prove that there exists an r ≥ 0 and a complex number w with |w| = 1 s.t.
z = rw. Are w and r always uniquely determined by z?

Solution 10.18

If z = 0, then r = 0 and there is no unique w. If z = a+ bi ̸= 0, then define

r = |z| = (a2 + b2)1/2, w =
1

r
z (512)

which proves existence. As for uniqueness, assume that there are two forms

z = rw = r′w′ (513)

Then, w = r′

r w
′ =⇒ |w| =

∣∣ r′
r

∣∣|w′| = 1, which implies that r′/r = 1 and so r = r′. This means that
w = w′.

Exercise 10.19 (Rudin 1.12)

If z1, . . . , zn are complex, prove that

|z1 + z2 + . . .+ zn| ≤ |z1|+ . . .+ |zn| (514)

Solution 10.19

By induction, it suffices to prove |z1 + z2| ≤ |z1|+ |z2|. We have

|z1 + z2|2 = (z1 + z2)(z1 + z2)

= (z1 + z2)(z̄1 + z̄2)

= z1z̄1 + z1z̄2 + z2z̄1 + z2z̄2

= |z1|2 + |z2|2 + z1z̄2 + z2z̄1

= |z1|2 + |z2|2 + 2(ac+ bd)

≤ |z1|2 + |z2|2 + 2
√
a2 + b2

√
c2 + d2 (Schwartz)

= |z1|2 + |z2|2 + 2|z1||z2|
= (|z1|+ |z2|)2
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since both sides are positive, we can take their square root to get the desired result.

Exercise 10.20 (Rudin 1.13)

If x, y are complex, prove that ∣∣|x| − |y|∣∣ ≤ |x− y| (515)

Solution 10.20

Since both sides are nonnegative, we can square both sides. Note that due to Cauchy Schwartz
inequality, 2|x||y| ≥ xȳ + yx̄ since expanding them gives

2
√

a2 + b2
√
c2 + d2 ≥ 2(ac+ bd) (516)

Therefore, the following inequality is true:

|x|2 + |y|2 − 2|x||y| ≤ xx̄+ yȳ − xȳ − yx̄ (517)

which reduces to form (|x| − |y|)2 ≤ |x− y|2.

Exercise 10.21 (Rudin 1.14)

If z is a complex number s.t. |z| = 1, that is such that zz̄ = 1, compute

|1 + z|2 + |1− z|2 (518)

Solution 10.21

Compute.
(1 + z)(1 + z̄) + (1− z)(1− z̄) = 1 + z + z̄ + zz̄ + 1− z − z̄ + zz̄ = 4 (519)

Exercise 10.22 (Rudin 1.15)

Under what conditions does equality hold in the Schwarz inequality?

Solution 10.22

If they are antiparallel, since
⟨x, y⟩ = ||x||||y|| cos θ (520)

Exercise 10.23 (Rudin 1.16)

Suppose k ≥ 3, x,y ∈ Rk, |x− y| = d > 0, and r > 0. Prove:
a) If 2r > d, there are infinitely many z ∈ Rk s.t.

|z− x| = |z− y| = r

b) If 2r = d, there is exactly one such z.
c) If 2r < d, there is no such z.

144/ 203



Real Analysis Muchang Bahng Spring 2025

Solution 10.23

Exercise 10.24 (Rudin 1.17)

Prove that
|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2 (521)

Solution 10.24

This is trivial if we simply expand

|x+ y|2 + |x− y|2 = ⟨x+ y,x+ y⟩+ ⟨x− y,x− y⟩ (522)
= ⟨x,x⟩+ 2⟨x,y⟩+ ⟨y,y⟩+ ⟨x,x⟩ − 2⟨x,y⟩+ ⟨y,y⟩ (523)
= 2⟨x,x⟩+ 2⟨y,y⟩ (524)

= 2|x|2 + 2|y|2 (525)

Exercise 10.25 (Rudin 1.18)

If k ≥ 2 and x ∈ Rk, prove that there exists y ∈ Rk s.t. y ̸= 0, but x · y = 0. Is this also true if
k = 1?

Solution 10.25

Let x ∈ Rk and ℓ ∈ Rk∗, the dual space. By Riesz representation theorem, we can define the canonical
isomorphism ℓ 7→ y between these two spaces as

ℓ(x) = (x, y) (526)

Since y ̸= 0 by assumption, ℓ ̸= 0, and so its rank is at least 1. Since ℓ maps to R, the rank has to
be 1. By rank nullity theorem, we have

dimN(ℓ) = k − rank(ℓ) = k − 1 (527)

and so there exists nontrivial annihilators ℓ of x, which can be mapped to a nontrivial y ∈ Rk.

Exercise 10.26 (Rudin 1.19)

Suppose a,b ∈ Rk. Find c ∈ Rk and r > 0 s.t.

|x− a| = 2|x− b| (528)

if and only if |x− c| = r.

Solution 10.26

If we draw out the circle, it must contain two points on the line drawn by connecting A and B. Since
it must be symmetric, its center and radius can then be easily calculated to be

r =
2

3
|b− a|, c =

1

3
(4b− a) (529)
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Exercise 10.27 (Zorich 2.2.1)

Using the principle of induction, show that
1. the sum x1 + . . .+ xn of real numbers is defined independently of the insertion of parentheses

to specify the order of addition.
2. the same is true of the product x1 . . . xn

3. |x1 + . . .+ xn| ≤ |x1|+ . . .+ |xn|
4. |x1 . . . xn| ≤ |x1| . . . |xn|
5. For any n,m ∈ N such that m < n, (n−m) ∈ N.
6. (1 + x)n ≥ 1 + nx for x > −1 and n ∈ N, equality holding for when n = 1 or x = 0.
7. (a+ b)n = an +n C1a

n−1b1 + . . .+ bn (aka binomial theorem).

Solution 10.27

Listed.
1. Let n denote the number of elements in the sum. We prove by strong law of induction. The

base case for when n = 1, 2, 3 is trivially true.

x1 = x1 (identity)
x1 + x2 = x1 + x2 (identity)

(x1 + x2) + x3 = x1 + (x2 + x3) (associativity)

Then, the sum of n = k parameters is defined by k − 2 pairs of parentheses defining the order
of the sum. These parentheses define a sequence of k − 1 2-fold additions. Now, assume that
the claim is true for

Sn ≡ x1 + . . . xn for n = 1, 2, . . . , k (530)

Then, for a specific sum Sk+1 of k+ 1 elements with k− 1 parentheses, we can reduce the sum
to its final 2-fold addition

Sk+1 ≡ (x1 + . . .+ xi)︸ ︷︷ ︸
φ1

+(xi+1 + . . .+ xk+1)︸ ︷︷ ︸
φ2

(531)

Since i, k − i+ 1 < k, by the strong law φ1 and φ2 are independent of the order of sum.
2. Exactly identical to (a).
3. By the triangle inequality |x1 + x+ 2| ≤ |x1|+ |x2|. Now, assume for n = k is true. Then, let

Sk = x1 + . . .+ xk, so

|x1 + . . .+ xk + xk+1| = |Sk + xk+1| ≤ |Sk|+ |xk+1| ≤
k+1∑
i=1

|xi| (532)

4. Same as (c).
5. Let us fix m to be any element of N. Then, the base case is for n = m+ 1 (which is in N since

it is inductive), so
n−m = (m+ 1)−m = 1 ∈ N (533)

Now, given that for some integer n ≥ m+ 1, n−m ∈ N is true, we have

(n+ 1)−m = n+ (1−m) (associativity)
= n+ (−m+ 1) (commutativity)
= (n−m) + 1 (associativity)

where (n−m) + 1 ∈ N by inductive property of N.
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6. We prove by induction. For n = 1, it is trivial that (1 + x)1 ≥ 1 + 1 · x. Now assume that the
claim is true for some k ∈ N. Then,

(1 + x)k+1 = (1 + x)k(1 + x) ≥ (1 + kx)(1 + x)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x

where equality holds if x = 0 =⇒ 1k+1 = 1k · 1 = 1 or n = 1 =⇒ trivial case.
7. The base case for n = 1 is trivial since (a+ b)1 =

(
1
0

)
a+

(
1
1

)
b. We introduce Newton’s identity.(

k

j − 1

)
+

(
k

j

)
=

k!

(j − 1)!(k − j + 1)!
+

k!

j!(k − j)!

= k!

(
j

j!(k − j + 1)!
+

k − j + 1

j!(k − j + 1)!

)
= k! · k + 1

j!(k − j + 1)!

=
(k + 1)!

j!(k − j + 1)!
=

(
k + 1

j

)
Now assuming that the binomial formula holds for some n = k, we have

(a+ b)k+1 = (a+ b)k(a+ b) (534)

=

( k∑
j=0

(
k

j

)
ajbk−j

)
(a+ b) (535)

=

k∑
j=0

(
k

j

)
aj+1bk−j +

k∑
j=0

(
k

j

)
ajbk−j+1 (536)

=

(
k

0

)
a0bk+1 +

(
k

k

)
aj+1b0 +

k−1∑
j=0

(
k

j

)
aj+1bk−j +

k∑
j=1

(
k

j

)
ajbk−j+1 (537)

=

(
k + 1

0

)
a0bk+1 +

(
k + 1

k + 1

)
aj+1b0 +

k∑
j=1

[(
k

j − 1

)
+

(
k

j

)]
ajbk−j+1 (538)

=

k+1∑
j=0

(
k + 1

j

)
ajbk−j+1 (539)

Exercise 10.28 (Zorich 2.2.3)

Show that an inductive set is not bounded above.

Solution 10.28

Assume that a X is a nonempty inductive set that is bounded above. By definition, there exists a
number B ∈ R such that maxX < B. Then, this means that there exists no numbers in [B,B + 1).
Since X is inductive, this means that there cannot exist any elements of X in the interval [B− 1, B),
and similarly for the interval [B−2, B), and so on, meaning that if x ∈ X, then x ̸∈ [B−k,B−k+1)
for all k ∈ Z. By the Archimidean principle, this implies that X = ∅, contradicting our assumption.
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Exercise 10.29 (Zorich 2.2.4)

Prove the following.
1. An inductive set is infinite (that is, equipollent with one of its subsets different from itself).
2. The set En = {x ∈ N |x ≤ n} is finite.

Solution 10.29

Listed.
1. Assume that an inductive set X is finite =⇒ X is bounded above (we can choose upper bound

B = maxX + 1). But from 2.2.3, an inductive set cannot be bounded above, contradicting our
assumption.

2. It is trivial that E1 = {1} is finite since cardE1 = 1. Now, if for some k, Ek is finite with
cardinality ek, then cardEk+1 = ek + 1, which implies finiteness.

Exercise 10.30 (Zorich 2.2.5)

Listed.
1. Let m,n ∈ N and m > n. Their greatest common divisor gcd(m,n) = d ∈ N can be found in

a finite number of steps using the following algorithm of Euclid involving successive divisions
with remainder.

m = q1n+ r1

n = q2r1 + r2

r1 = q3r2 + r3

. . . = . . .

rk−2 = qkrk−1 + rk

rk−1 = qk+1rk + 0

Then d = rk
2. If d = gcd(m,n), one can choose numbers p, q ∈ Z such that pm+ qn = d.

Solution 10.30

Listed.
1.
2. Letting n = r0, notice that the equations above satisfy for i = 0, 1, . . .

ri = qi+2ri+1 + ri+2 =⇒ ri − qi+2ri+1 = ri+2 (1)

Note that the second-to-last equation allows us to write rk as a linear combination of rk−2 and
rk−1: rk = rk−2−qkrk−1. Now by applying (1), we can reduce the above to a linear combination
of rk−3 and rk−2.

rk = rk−2 − qkrk−1

= rk−2 − qk(rk−3 − qk−1rk−3)

= (1 + qk−1qk)rk−2 − qkrk−3

and repeatedly doing this allows us to reduce rk to a linear combination q0r0 + q1r1. By the
ring properties of Z, the new linear coefficients are also in Z. Reducing one last time using the
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first equation in the Euclidean algorithm gives

rk = q0r0 + q1r1

= q0n+ q1(m− q1n)

= q1m+ (q0 − q1)n

= pm+ qn

Exercise 10.31 (Zorich 2.2.9)

Show that if the natural number n is not of the form km, where k,m ∈ N, then the equation xm = n
has no rational roots.

Solution 10.31

Assume that there is a rational solution x = p/q, with p, q ∈ N of the equation. Then,(
p

q

)m

=
pm

qm
= n =⇒ pm = qmn (540)

By the fundamental theorem of arithmetic, the exponents of the prime factors of pm must all be
multiples of m, and so it must be so for the right hand side =⇒ x must be of form x = km for some
k. This is a contradiction.

Exercise 10.32 (Zorich 2.2.12)

Knowing that m
n ≡ m · n−1 by definition, where m ∈ Z and n ∈ N, derive the “rules” for addition,

multiplication, and division of fractions, and also the condition for two fractions to be equal.

Solution 10.32

We can construct a Q as a quotient space Z× N/ ∼, where ∼ is an equivalent relation where

(q1, p1) ∼ (q2, p2) iff q1p2 = p1q2 (541)

which is the familiar equivalence relation from “simplifying” a fraction. We define addition and
multiplication as the following

(a, b) + (c, d) = (ad+ bc, bd)

(a, b) · (c, d) = (ac, bd)

which turns out to be algebraically closed in Q. The additive identity is the equivalence class 0 =
{(0, c) | c ∈ N}, and the multiplicative identity is the equivalence class 1 = {(c, c) | c ∈ N}. It is easy to
check that + is commutative, the additive inverse is −(a, b) = (−a, b), and the multiplicative inverse
is (a, b)−1 = (b, a). We can subtract and divide these elements of Q, called “fractions,” as such:

(a, b)− (c, d) = (a, b) + (−(c, d)) = (a, b) + (−c, d) = (ad− bc, bd)

(a, b)÷ (c, d) = (a, b) · (c, d)−1 = (a, b) · (d, c) = (ad, bc)
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Exercise 10.33 (Zorich 2.2.13)

Verify that the rational numbers Q satisfy all the axioms for real numbers except for the axiom of
completeness.

Solution 10.33

From continuing the steps of 2.2.14, we can prove Q is an algebraic field (associativity, commutativity
of addition and multiplication, along with distributive property).We can actually define the order
relation ≤Q in two ways:

1. (a, b) ≤ (c, d) iff ad ≤Z bc, where ≤Z is the order relation on Z (which can be defined much
more simply).

2. Recognizing that Q ⊂ R, we define the canonical injection map i : Q −→ R and by abuse of
language, endow the relation ≤Q as the restriction of ≤R onto Q. That is, for (a, b), (c, d) ∈ Q,

(a, b) ≤Q (c, d) iff i(a, b) ≤R i(c, d) (542)

The ordering for the 1st step can be checked for consistency.
1. (a, b) ≤ (a, b) since ab ≤ ab (true in Z)
2. (a, b) ≤ (c, d), (c, d) ≤ (a, b) means that ad ≤ bc and bc ≤ ad =⇒ ad = bc (true in Z)
3. (a, b) ≤ (c, d) ≤ (e, f) implies ad ≤ bc, cf ≤ de. Multiplying positive (important that f > 0!)

to the first inequality gives adf ≤ bcf , and multiplying positive b to the second gives bcf ≤ bde,
and by interpreting ≤ as the ordering defined on Z, we use transitive property of ≤Z to get
adf ≤ bde =⇒ af ≤ be ⇐⇒ (a, b) ≤ (e, f).

4. For any (a, b), (c, d) ∈ Q, (a, b) ≤ (c, d) or (a, b) ≥ (c, d), which is equivalent to ad ≤ bc or
ad ≥ bc, which is true in Z.

It is easy to prove (a, b) ≤ (c, d) =⇒ (a, b) + (p, q) ≤ (c, d) + (p, q), and 0Q ≤ (a, b), (c, d) =⇒
0Q ≤ (a, b) · (c, d). However, Q is not complete. We prove this by showing that the subset X = {x ∈
Q |x2 ≤ 2} ⊂ Q does not satisfy the least upper bound property. Assume that there is a least upper
bound c ∈ Q. c ̸=

√
2 (you should know how to prove irrationality of

√
2!), we have either c >

√
2 or

c <
√
2.

1. Let c <
√
2 ⇐⇒ c −

√
2 > 0. By the Archimidean principle, there exists a k ∈ N such that

0 < 1
k < c−

√
2. Then, 1

k ∈ Q and Q is a field, so c− 1
k ∈ Q.

c− 1

k
< c− c+

√
2 =
√
2 (543)

So c is not least and so it must be the case that c <
√
2.

2. Let c <
√
2 ⇐⇒

√
2 − c > 0. By the Archimidean principle, there exists a k ∈ N such that

0 < 1
k <
√
2− c. Then, c+ 1

k ∈ Q and

c+
1

k
< c+ (

√
2− c) = c (544)

So c is not an upper bound.
Note that given a well-defined c = supX and in the case where c <

√
2, we have 2 − c2 > 0, so we

can choose a well-defined δ satisfying (by Archimidean principle)

0 < δ < min

{
1,

2− c2

2c+ 1

}
(545)

which gives us

(c+ δ)2 = c2 + δ(2c+ δ)

< c2 + δ(2c+ 1) (δ < 1)

< c2 + (2− c2) = 2

meaning that c is not an upper bound. Similarly for when c >
√
2.
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Exercise 10.34 (Zorich 2.2.15)

Prove the equivalence of these two statements.
1. If X and Y are nonempty sets of R having the property that x ≤ y for every x ∈ X, y ∈ Y ,

then there exists c ∈ R such that x ≤ c ≤ y for all x ∈ X and y ∈ Y .
2. Every set X ⊂ R that is bounded above has a least upper bound.

Solution 10.34

Let S1 be the first statement and S2 the second.
1. (S2 =⇒ S1). Let X ⊂ R be a set that is bounded above, and Y is a set such that x ≤ y for

all x ∈ X, y ∈ Y . Then, by LUB principle, there exists c = supX ∈ R. Now, we claim that
c ≤ y for all y ∈ Y . Assume it doesn’t: then there exists y′ ∈ Y such that y′ < c. But since we
assumed x ≤ y for all x ∈ X, y ∈ Y , we have x ≤ y′ for all x ∈ X, which means that y′ is an
upper bound of X. But y′ < c, contradicting the given fact that c was the least upper bound.

2. (S1 =⇒ S2). Given a nonempty set X ⊂ R, we wish to show the existence of supX. We are
guaranteed the existence of nonempty set Y ⊂ R such that x ≤ y for all x ∈ X, y ∈ Y , which
implies that X must be bounded above. Then, by S1, there must exist a c ∈ R such that

x ≤ c ≤ y for all x ∈ X, y ∈ Y (546)

We claim that c = supX. It is an upper bound of X since x ≤ c for all x ∈ X. It is least since
the set of all upper bounds of X is Y , and c ≤ y for all y ∈ Y .

Exercise 10.35 (Olmsted 1.15)

Prove Dedekind’s Theorem: Let the real numbers be divided into two nonempty sets A and B
such that (i) if x ∈ A and if y ∈ B, then x < y and (ii) if x ∈ R then either x ∈ A or x ∈ B, then there
exists a number c (which may belong to either A or B) such that any number less than c belongs to
A and any number greater than c belongs to B.

Solution 10.35

This is really the same statement as Zorich 2.2.15.a, the original statement of completeness, but with
the extra condition that the sets A = X,B = Y must be disjoint.

Exercise 10.36 (Olmsted 1.7)

If x is an irrational number, under what conditions on the rational numbers a, b, c, d is (ax+b)/(cx+d)
rational?

Solution 10.36

Note that a trivial solution is a = b = c = d = 1 which gives 1. Since

ax+ b

cx+ d
=

acx+ ad− ad+ bc

cx+ d
= a+

bc− ad

cx+ d
(547)

for the above to be rational it is necessary that 1/(cx + d) is rational. But this cannot be the case,
which leaves us with the condition that bc = ad.
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Exercise 10.37 (Olmsted 1.8)

Prove that the system of integers satisfies the axiom of completeness.

Solution 10.37

Let S ⊂ Z be bounded from above. It must have a maximum element (justify?), call it c. Then we
claim that c ∈ Z is the least upper bound. Being the maximum, it is an upper bound, and c is least
since the next smallest element is c − 1, which is less than c ∈ S, and therefore cannot be an upper
bound.

Exercise 10.38 (Zorich 2.2.16/Olmsted 1.16)

Prove the following.
1. If A ⊂ B ⊂ R, then supA ≤ supB and inf A ≥ inf B.
2. Let R ⊃ X ̸= ∅ and R ⊃ Y ̸= ∅. If x ≤ y for all x ∈ X, y ∈ Y , then X is bounded above , Y is

bounded below, and supX ≤ inf Y .
3. If the sets X,Y in (b), are such that X ∪ Y = R, then supX = inf Y .
4. If X and Y are the sets defined in (c), then either X has a maximal element or Y as a minimal

element.
5. Show that Dedekind’s theorem is equivalent to the axiom of completeness.

Solution 10.38

Listed.
1. Let

A′ = {x ∈ R |x ≥ a ∀a ∈ A}
B′ = {x ∈ R |x ≥ b ∀b ∈ B}

where we can easily verify that B′ ⊂ A′. By definition, we get supB = minB′ and supA =
minA′. But since B′ ⊂ A′, for any b′ ∈ B′, there exists an a′ ∈ A′ such that a′ ≤ b′, which
implies that supB = minB′ ≤ minA′ = supA.

2. X is bounded above by any element of Y . Y is bounded below by any element of X. By the
completion axiom, there exists a c ∈ R such that

x ≤ c ≤ y for all x ∈ X, y ∈ Y (548)

Since c is an upper bound of X, supX ≤ c by definition, and since c is a lower bound of Y ,
inf Y ≥ c by definition. Therefore, supX ≤ c ≤ inf Y .

3. From completeness there exists a c ∈ R such that x ≤ c ≤ y for all x ∈ X, y ∈ Y . Y is, by
definition, the set of all upper bounds of X (i.e. every upper bound of X is in Y , unlike Y
defined in 2.2.16.b). Since c ≤ y for all y ∈ Y , c is minimal and so c = supX. X is the set of all
lower bounds of Y by definition, so c ≥ x for all x ∈ X =⇒ c = inf Y . So, inf Y = c = supX.

4. We know that there exists c = inf Y = supX. Since X ∪ Y = R, c must be in at least X or Y .
If c ∈ X, then c = supX = maxX, and if c ∈ Y , then c = inf Y = minY .

5. This is the same statement as Zorich 2.2.15.a (an iff equivalence, not just one way implying).

Exercise 10.39 (Olmsted 1.13)

Let S be a nonempty set of numbers bounded above, and let x be the least upper bound of S. Prove
that x has the two properties corresponding to an arbitrary positive number ϵ:

1. every element s ∈ S satisfies the inequality s < x+ ϵ
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2. at least one element s ∈ S satisfies the inequality s > x− ϵ

Solution 10.39

Listed.
1. x is an upper bound =⇒ s ≤ x for all s ∈ S, which implies that s ≤ x < x+ ϵ.
2. By definition, x− ϵ cannot be an upper bound, so x− ϵ ≥ s for all s ∈ S is not true. Therefore,

there must exist one s ∈ S such that s > x− ϵ.

Exercise 10.40 (Zorich 2.2.18)

Let −A be the set of numbers of the form −a, where a ∈ A ⊂ R. Show that sup(−A) = − inf(A).

Solution 10.40

If A is unbounded below, then − inf A =∞ and −A is unbounded above, implying that supA =∞.
Now assume that A is bounded below, then by completeness, it must have a greatest lower bound.
Let us define the set B = {b ∈ R | b ≤ a ∀a ∈ A}. From 2.2.16.b, we have b ≤ inf A ≤ a for all
a ∈ A, b ∈ B. Multiplying by −1 gives −b ≥ − inf A ≥ −a for all a ∈ A, b ∈ B, which is equivalent to
saying

a ≤ − inf A ≤ b for all a ∈ −A, b ∈ −B (549)

by definition of −A,−B. − inf A is clearly an upper bound of −A, and since

B = {b ∈ R | b ≤ a ∀a ∈ A}
= {b ∈ R | − b ≥ −a ∀a ∈ A}
= {b ∈ R | − b ≥ a ∀a ∈ −A}

implies that −B = {b ∈ R | b ≥ a ∀a ∈ −A} is the set of all upper bounds of A. So, − inf A is the
least upper bound of −A, i.e. − inf A = sup(−A).

Exercise 10.41 (Zorich 2.2.21)

Show that the set Q(
√
n) of numbers of the form a+ b

√
n where a, b ∈ Q, n is a fixed natural number

that is not the square of any integer, is an ordered set satisfying the principle of Archimedes but not
the axiom of completeness.

Solution 10.41

The order on Q(
√
n) can be embedded from the ordering on the reals by defining the canonical

injection map i : Q(
√
n) −→ R and defining for any x, y ∈ Q(

√
n),

x ≤Q(
√
n) y ⇐⇒ i(x) ≤R i(y) (550)

Now, let h > 0 be any fixed real number, and x = (a, b) = a + b
√
n. By the Archimidean principle,

we can find a k ∈ Z such that

(k − 1)h ≤ x ≤ kh for some x ∈ Q(
√
n) ⊂ R (551)

We now show that Q(
√
n) is not complete since it doesn’t satisfy the LUB property. Since there

are infinite prime numbers in N, choose a prime number p that is not a factor of n. Then, we are
guaranteed that pn is not a perfect square, and can define the set

X = {x ∈ Q(
√
n) |x <

√
pn} ⊂ Q(

√
n) (552)
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and assume that c = c1 + c2
√
n = supX exists (c1, c2 ∈ Q). Clearly, c ̸= √pn ̸∈ Q(

√
n).

1. Assume c <
√
pn ⇐⇒ 0 <

√
pn − c ∈ R. By the Archimidean principle, there exists a k ∈ N

such that 0 < 1
k <
√
pn− c. Then, we can verify that c+ 1

k = (c1 +
1
k ) + c2

√
n ∈ Q(

√
n) and

c+
1

k
< c+

√
pn− c =

√
pn =⇒ c+

1

k
∈ X (553)

implies that c is not an upper bound. So we must turn to case 2.
2. Assume c >

√
pn ⇐⇒ c−√pn > 0. By AP, there exists a k ∈ N such that 0 < 1

k < c−√pn.
Then, we can verify that c− 1

k ∈ Q(
√
n) and

c− 1

k
> c− c+

√
pn =

√
pn (554)

implies that c− 1
k is an upper bound of X, so c is not least.

Therefore, by contradiction, c does not exist.

Exercise 10.42 (Zorich 2.2.22)

Let n ∈ N and n > 1. In the set En = {0, 1, . . . , n−1}, we define the sum and product of two elements
as the remainders when the usual sum and product in R are divided by n. With these operations on
it, the set En is denoted Zn.

1. Show that if n is not a prime number, then there are nonzero numbers m, k ∈ Zn such that
m · k = 0, i.e. there exist nonzero zero divisors.

2. Show that if p is prime, then there are no zero divisors in Zp and Zp is a field.
3. Show that, no matter what the prime p, Zp cannot be ordered in a way consistent with the

arithmetic operations on it.

Solution 10.42

Listed.
1. n is composite implies that there exist 1 < m, k < n such that n = mk. These factors m, k are

precisely the zero divisors of Zn since mk = n ≡ 0 (mod n).
2. With p prime, assume that there are nontrivial zero divisors 1 < m, k < p in Zp. Then, mk ≡ 0

(mod n) =⇒ mk = lp for some l ∈ N. But this implies that m or k must divide p, which is
impossible since 1 < m, k < p. Then prove field axioms.

3. For any field, we must have 0 ≤ 1, because if not, then

0 > 1 =⇒ 0 < 1−1 · 1 = 1−1 =⇒ 0 · 0 < 1−1 · 1−1 = 1 (555)

So, 0 ≤ 1 implies that 0 ≤ 1 ≤ 2 ≤ . . . ≤ p− 1. But

0 + 1 ≤ (p− 1) + 1 = 0 (556)

is false, so any ordering is impossible.

Exercise 10.43 (Zorich 2.2.23)

Show that if R and R′ are two models of the set of real numbers and f : R −→ R′ (with f ̸≡ 0′) is a
mapping such that f(x+ y) = f(x) + f(y) and f(x · y) = f(x) · f(y) for any x, y ∈ R. Prove that f
is an order-preserving isomorphism.
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Solution 10.43

Let 0, 0′ be the additive identity of R,R′, respectively, and 1, 1′ the multiplicative identity. We claim
that f(0) = 0′ since

f(0) = f(0 + 0) (definition of additive identity)
= f(0) + f(0) (homomorphism over +)

which implies that f(0) + f(0) = f(0) = 0′ + f(0). Since f(0) lives in field R′, its additive identity
−f(0) is well defined, and we get f(0) = f(0) + f(0) + (−f(0)) = 0′ + f(0) + (−f(0)) = 0′. We also
claim that f(1) = 1′ since

f(1) = f(1 · 1) (definition of multiplicative identity)
= f(1) · f(1) (homomorphism over ·)

which implies that f(1) ·f(1) = 1′ ·f(1). Since f(1) lives in field R′, its multiplicative identity f(1)−1

is well defined, and we get f(1) = f(1) · f(1) · f(1)−1 = 1′ · f(1) · f(1)−1 = 1′. Now that we have
proved mapping of identities, this implies the mapping of inverses.

0′ = f(0) = f(x− x) = f(x) + f(−x) =⇒ f(−x) = −f(x)
1′ = f(1) = f(x · x−1) = f(x) · f(x−1) =⇒ f(x−1) = f(x)−1

With these conditions, we have proved that f is a homomorphism of fields. Now we prove that f is
a bijection, but first, we claim that f(x) = 0′ =⇒ x = 0. Assume that there exists a nonzero x ∈ R
such that f(x) = 0′. Then, x−1 is well defined, and

f(x) · f(x−1) = f(x) · f(x)−1 = 0′

f(x) · f(x−1) = f(x · x−1) = f(1) = 1′

which implies that 0′ = 1′. So, f(1) = 1′ = 0′, and so for all k ∈ R, f(k) = f(k · 1) = f(k) · f(1) =
f(k) · 0′ = 0′ =⇒ f ≡ 0′, leading to a contradiction of the assumption that f ′ ̸≡ 0′.

1. (f injective). Assume f is not injective, i.e. there exists distinct x1, x2 ∈ R s.t. f(x1) = f(x2).
Then, using that fact f(x) = 0 =⇒ x = 0,

0 = f(x1)− f(x2) = f(x1 − x2) =⇒ x1 − x2 = 0 =⇒ x1 = x2 (557)

2. (f surjective). Let y be any nonzero element in R′ (clearly if y = 0′ then its preimage is 0) and
y−1 its multiplicative inverse. Assume there exists no x ∈ R satisfying f(x) = y, meaning that
there exist no x satisfying

f(x)· = y · y−1 = 1′ (558)

But since f maps inverses to inverses, we can choose x = (y−1)−1, which leads to

f(x) · y−1 = ( (559)

Finally, we prove that f is order preserving. Assume that x ≤ y ⇐⇒ 0 ≤ y − x , we wish to prove
that

f(x) ≤ f(y) ⇐⇒ 0 ≤ f(y)− f(x) = f(y − x) (560)

Therefore, since this preservation of ordering is really the statement 0 ≤ y − x =⇒ 0 ≤ f(y − x),
it suffices to prove that 0 ≤ x =⇒ 0 ≤ f(x). Now, assume that we have a x such that f(x) < 0′.
Adding it with the equation f(1) = 1′ gives us

f(x+ 1) < 1′ (561)

It is easy to prove that 0 ≤ x ⇐⇒ 0 ≤ x−1. Now assume that 0 > f(x). INCOMPLETE
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Exercise 10.44 (Density of Rationals in R)

Prove that for any two distinct a < b ∈ R, there exists an infinite number of rational numbers between
a and b.

Solution 10.44

Since a < b, then b− a > 0 and by the Archimidean principle, there exists a k ∈ N such that

0 <
1

k
< b− a =⇒ 1 < kb− ka (562)

which implies that the length of [ka, kb) greater than 1. By the inductive property of Z, there must be
an integer p ∈ [ka, kb). If there were not, then this would imply that [ka+1, kb+1) and [ka−1, kb−1)
had no integers and repeating would mean that there were no integers in R. Therefore,

ka ≤ p < kb =⇒ a ≤ p

k
< b (563)

for all a, b ∈ R, with p/k ∈ Q. If a is irrational we can replace the ≤ to <, leaving a ≤ p
k < b, and if

a is rational, we can construct another rational a+ 1
k ∈ (a, b).

Exercise 10.45 (Nested Interval Lemma)

With the fact that R is complete, prove the following.
1. For a sequence of closed nested intervals I1 ⊃ I2 ⊃ . . . of R, there exists a point c ∈ R belonging

to all these intervals.
2. Furthermore, if the hypothesis also satisfies the fact that for any ϵ > 0, there exists a k ∈ N

such that |Ik| < ϵ (i.e. the length of the intervals decreases to 0), then the point c common to
all sets is unique.

Solution 10.45

Listed.
1. Let In = [an, bn], with an < bn finite for all n ∈ N. For all n ∈ N, we have In = [an, bn] and can

take the two subsets Xn = (−∞, an) and Yn = (bn,∞), where x ≤ y for every x ∈ Xn, y ∈ Yn.
We also have the fact that R = Xn ∪ In ∪ Yn. Since R is complete, there exists a c such that
x ≤ c ≤ y for all x ∈ X, y ∈ Y . But x ≤ c ⇐⇒ c ̸∈ Xn and c ≤ y ⇐⇒ c ̸∈ Yn, so for all
n ∈ N, c must be in In.

2. Since we have proved (a), it now suffices to prove uniqueness of c. Let there be two distinct
points c1, c2 ∈ R belonging to these intervals. Without loss of generality, assume c1 − c2 > 0,
and choose

ϵ =
c1 − c2

3
(564)

Then, there should exist a k ∈ N such that |Ik| < ϵ. Since Ik must contain c1, it must be a
subset of [c1 − ϵ, c1 + ϵ] (should be able to see why) and similarly for c2.

Ik ⊂
[
c1 −

c1 − c2
3

, c1 +
c1 − c2

3

]
=

[
2c1 + c2

3
,
4c1 − c2

3

]
= L

Ik ⊂
[
c2 −

c1 − c2
3

, c2 +
c1 − c2

3

]
=

[
−c1 + 4c2

3
,
c1 + 2c2

3

]
= M

But since c1 > c2 =⇒ c1+2c2
3 < 2c1+c2

3 , L and M are disjoint =⇒ Ik, as a subset of both,
leaves us with Ik = ∅, contradicting that it is a closed interval.
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Exercise 10.46 ()

Compactness of Closed Interval in R Prove that any system of open intervals covering (i.e. an open
cover of) a closed interval contains a finite subsystem that covers the closed interval. Another way
to state this is by saying that every closed interval of R is compact.

Solution 10.46

A closed interval with a finite open covering is trivially compact since any subcovering is also finite.
We only need to deal with when a closed interval I = [a, b] has an infinite open covering {Uα}α∈A,
which means that the set of indices A is infinite. Assume that there exists no finite covering of I.
Then, we divide I into two halves

I1 =
[
a,

a+ b

2

]
, I2 =

[a+ b

2
, b
]

(565)

and define a subcovering for each of them. That is, we can define A1 ⊂ A and A2 ⊂ A such that
{Uα}α∈A1

⊂ {Uα}α∈A is a covering of I1 and {Uα}α∈A2
⊂ {Uα}α∈A is a covering of I2. At least

one of A1 or A2 must be infinite, since if they were both finite, then we can define a finite covering
{Uα}α∈A1∪A2 of I. Choose the interval with the infinite covering and repeat this procedure, which
will result in a nested interval that decreases in length by a half.

I ⊃ I1 ⊃ I2 ⊃ . . . (566)

By the nested interval lemma, there exists a unique point c common to all these intervals. But since
c ∈ [a, b], the open cover {U} should contain an open interval (c− δ1, c+ δ2) containing c. We wish to
prove that this interval is a superset of some Ik in the sequence above, contradicting the fact that Ik
has an infinite cover. Since the length of each Ii decreases arbitrarily (i.e. we can choose any ϵ > 0
and find a Ik with length less than ϵ), we choose ϵ = 1

2 min{δ1, δ2}, and we should be able to find
some Ik that is a subinterval of [c− ϵ, c+ ϵ], which itself is a subinterval of (c− δ1, c+ δ2).

Ik ⊂
[
c− 1

2
min{δ1, δ2}, c+

1

2
min{δ1, δ2}

]
⊂ (c− δ1, c+ δ2) (567)

Therefore, (c−δ1, c+δ2) is a finite cover of Ik, contradicting the fact that all Ik’s have infinite covers.

Exercise 10.47 (Bolzano-Weierstrass Theorem)

Prove that every bounded infinite set of real numbers has at least one limit point. (A limit point p
of set X is a point such that every open neighborhood of p contains an infinite number of elements
of X).

Solution 10.47

Let the set of points be denoted X, and let a be the lower bound and b be the upper bound. Then,
X ⊂ [a, b] = I. Now divide [a, b] into halves [a, a+b

2 ] ∪ [a+b
2 , b]. At least one of the halves must have

an infinite number of points; choose the interval with infinite points as I1 and doing this repeatedly
gives the nested sequence

I ⊃ I1 ⊃ I2 ⊃ . . . (568)

By the nested interval lemma, there exists at least one point c ∈ R that is in all these intervals.
Furthermore, since |Ii| = 1

2i (b− a) decreases to 0, we can choose a ϵ > 0 and find an interval Ik with
|Ik| < ϵ. We claim that c is a limit point of X. Given an ϵ, we wish to prove that there are an infinite
number of points within the ϵ-neighborhood (c−ϵ, c+ϵ) of c. Since we can find some Ik with |Ik| < ϵ,
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we can see that
Ik ⊂ (c− ϵ, c+ ϵ) (569)

and therefore the ϵ-neighborhood of c contains Ik, which contains an infinite number of points in X.
We can construct another proof that is dependent on the compactness lemma. This construction
will be useful for problem 2.3.4. Let X be a given subset of R, and it follows from the definition of
boundedness that X is contained in some closed interval I ⊂ R. We show that at least one point of I
is a limit point of X. Assume that it is not. Then each point x ∈ I would have a neighborhood U(x)
containing at most a finite number of points from X. The totality of such neighborhoods {U(x)}
constructed for the points x ∈ I forms an open covering of X. Since I is closed, it is compact and
therefore we can find a finite subcovering {Ui(x)}i of open intervals that cover I and therefore cover
X. This open cover {Ui(x)}i of X is a finite union of sets that each contain at most a finite number
of points from X, so the covering of X contains a finite number of points from X, a contradiction
that X contains infinite points.

Exercise 10.48 (Zorich 2.3.1)

Show that
1. if I is any system of nested closed intervals, then

sup{a ∈ R | [a, b] ∈ I} = α ≤ β = inf{b ∈ R | [a, b] ∈ I}

and
[α, β] =

⋂
[a,b]∈I

[a, b]

2. if I is a system of nested open intervals (a, b), the intersection⋂
(a,b)∈I

(a, b)

may happen to be empty.

Solution 10.48

Listed.
1. (May be tempted to say that a1 ≤ a2 ≤ . . ., but this assumes that the indexing set I is

countable). We claim that for any two intervals [an, bn] and [am, bm] in I,

an ≤ bm

Assume that an > bm. Then bn ≥ an > bm ≥ am implies that [an, bn] and [am, bm] are disjoint,
contradicting the fact that they are nested. Now given that X is the set of an’s and Y is the
set of bn’s, we have x ≤ y for all x ∈ X, y ∈ Y . So by 2.2.16.b, we have supX ≥ inf Y .
To prove the second statement, we show that trying to “expand” the interval [α, β] will lead
to a contradiction. Since α is the LUB, given any ϵ > 0, there exists a (al, bl) ∈ X such that
α − ϵ < al < α, which implies that [α, β] ⊂ [al, β] ⊂ [α − ϵ, β]. Assuming that this extended
interval is the intersection, we should be able to choose any point in [α− ϵ, β] and find that it
is in every element of I. We choose a point in [α − ϵ, al), which is not in the interval (al, bl).
We do the same for β 7→ β + ϵ. We also check that “shrinking” the interval [α, β] 7→ [α + ϵ, β]
is no good, since we can find an element in [α, α+ ϵ) that is in every interval in I.

2. Take the system of nested open intervals

(0, 1) ⊃ (0,
1

2
) ⊃ (0,

1

3
) . . . (0,

1

n
) ⊃ . . .
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Take their infinite intersection, denote it S, and assume that some ϵ ∈ (0, 1) is in S. Since ϵ is
a real number, by the Archimidean principle there exists a k ∈ N such that 1

k < ϵ. Therefore,
ϵ ̸∈ (0, 1

k ) =⇒ ϵ ̸∈ S.

Exercise 10.49 (Zorich 2.3.2)

Show that
1. from a system of closed intervals covering a closed interval it is not always possible to choose a

finite subsystem covering the interval.
2. from a system of open intervals covering a open interval it is not always possible to choose a

finite subsystem covering the interval.
3. from a system of closed intervals covering a open interval it is not always possible to choose a

finite subsystem covering the interval.

Solution 10.49

We show with the interval (0, 1) or [0, 1]. Using linear transformations it is easy to generalize this to
any other interval (a, b) or [a, b].

1. Consider the infinite covering

[0, 1] =
[
0,

1

2

]
∪
[1
2
,
3

4

]
∪
[3
4
,
7

8

]
∪ . . .

2. Consider the infinite covering

(0, 1) =
(
0,

1

2

)
∪
(1
2
,
3

4

)
∪
(3
4
,
7

8

)
∪ . . .

3. Consider the infinite covering

(0, 1) =
[
0,

1

2

]
∪
[1
2
,
3

4

]
∪
[3
4
,
7

8

]
∪ . . .

Exercise 10.50 (Zorich 2.3.3)

Show that if we only take the set Q of rational numbers instead of the complete set R of real numbers,
with the definitions of closed, open, and neighborhood of a point r ∈ Q to mean respectively the
corresponding subsets of Q, then none of the three lemmas is true.

Solution 10.50

We prove only for the nested interval lemma. We choose the series of nested intervals(√
2− 1

n
,
√
2 +

1

n

)
with n ∈ N. Assume that there is a r ∈ Q such that

r ∈
(√

2− 1

n
,
√
2 +

1

n

)
for all n ∈ N

which is equivalent to saying that
∣∣r−√2∣∣ < 1

n for all n ∈ N. Clearly, r ̸=
√
2, and by the Archimidean

principle, there exists a k ∈ N such that

0 <
1

k
< |r −

√
2|
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which contradicts the above.

Exercise 10.51 (Zorich 2.3.4)

Show that the three lemmas above are equivalent to the axiom of completeness.

Solution 10.51

Note that from the proofs, completeness implies nested interval lemma, which implies compactness
of closed intervals, which implies the Bolzano-Weierstrass theorem. So, it is sufficient to prove that
Bolzano-Weierstrass theorem implies completeness to determine equivalence. There are not a lot of
direct proofs, so we prove that Weierstrass implies nested interval, which implies completeness.

1. (Weierstrass =⇒ Nested) Assume that we have R with the Bolzano-Weierstrass theorem. Take
the series of nested closed intervals

I = [a, b] ⊃ I1 = [a1, b1] ⊃ I2 = [a2, b2] ⊃ . . .

We see that a ≤ ai ≤ b, so the infinite sequence of monotonically nondecreasing values ai is
bounded. Therefore, it must have a limit point, which we will denote as c. We claim that
ai ≤ c for all ai. Since if it were not, then c < ai for some i, and choosing ϵ = 0.5(ai − c), the
ϵ-neighborhood of c will not contain aj for j ≥ i since

c < ai =⇒ 0.5c < 0.5ai =⇒ c+ ϵ = 0.5c+ 0.5ai < ai < ai+1 < . . .

. With similar reasoning, we can conclude that bi ≥ c for all bi. This implies that ai ≤ c ≤ bi
for all i which is equivalent to saying that c ∈ [ai, bi] = Ii for all i ∈ N.

2. (Nested =⇒ LUB Principle) Let X ⊂ R be a set that is bounded above, with b1 any upper
bound. Since X is nonempty, there exists a1 ∈ X that is not an upper bound (otherwise, X
would be a singleton set and it trivially has a least upper bound). Consider the well-defined
interval [a0, b0]. Take the mean m0 = 0.5(a0 + b0), and if m0 is an upper bound, set it to b1
(with a1 = a0) and a1 if else (with b1 = b0). Then, we have a sequence of nested intervals

[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ . . .

of decreasing lengths |Ik| = 1
2k
(b− a). All of them must contain a unique common point c ∈ R

by the nested intervals lemma, which implies that

a0 ≤ a1 ≤ a2 ≤ . . . ≤ c ≤ . . . ≤ b2 ≤ b1 ≤ b0

I claim two things:
(a) c is an upper bound for X. Suppose it were not, then there exists some x ∈ X such that

c < x, and let the distance between them be ϵ = x− c > 0. By AP, we can choose k ∈ N
such that 1

k < ϵ. All the bn are upper bounds of X, so we have x ≤ bn. Subtracting c on
both sides gives

0 < x− c = ϵ ≤ bn − c ≤ |In| =
1

2n
(b0 − a0)

where the last inequality follows from c ∈ In = [an, bn], so the maximum distance it can
be from the endpoint bn is |In|. The inequality above holds for all n ∈ N, so increasing n
arbitrarily should decrease 1

2n (b0 − a0) past ϵ. To formalize this, we use the inequality

1

2n
<

1

n
for all n ∈ N

and so we have
ϵ ≤ bn − c <

1

n
(b0 − a0)
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We choose the natural number n = ⌈ 2(b0−a0)
ϵ ⌉, which does not satisfy the inequality above

since
ϵ <

1

n
(b0 − a0) =

1

⌈2(b0 − a0)/ϵ⌉
(b0 − a0) ≤

ϵ

2(b0 − a0)
(b0 − a0) =

ϵ

2

This leads to a contradiction.
(b) We now prove that c is least. Assume that c is not least =⇒ there exists an upper bound

B such that B < c and x ≤ B for all x ∈ X. INCOMPLETE

Exercise 10.52 (Zorich 2.4.1)

Show that the set of real numbers has the same cardinality as the points of the interval (−1, 1).

Solution 10.52

We define the bijective map ρ : (−1, 1) −→ R

p(x) =

{
0 if x = 0
1
x if x ̸= 0

Exercise 10.53 (Zorich 2.4.2)

Give an explicit one-to-one correspondence between
1. the points of two open intervals
2. the points of two closed intervals
3. the point of a closed interval and an open interval
4. the points of the closed interval [0, 1] and R

Solution 10.53

Listed.
1. ρ : (a, b) −→ (c, d) defined

ρ(x) =
d− c

b− a
(x− a) + c

2. the extension of ρ defined on (a) to [a, b]
3. From (a) and (b), it suffices to prove a bijection from (0, 1) to [0, 1]. We extract a countably

infinite sequence from (0, 1), say

x1 =
1

3
, x2 =

1

4
, . . . , xi =

1

i+ 2

Then, we define bijection ρ : (0, 1) −→ [0, 1] as

ρ(x) =


x if x ̸∈ {xi}
0 if x = x1 = 1

2

1 if x = x2 = 1
3

xi−2 if x = xi for i > 2

Colloquially, we extract a copy of N from (0, 1) and use the bijection N ≃ N∪ {0,−1} to “shift”
the terms.

4. We compose the bijections ρ1 : [0, 1] −→ (0, 1) and ρ2 : (0, 1) −→ R.
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Exercise 10.54 (Zorich 2.4.3)

Show that
1. every infinite set contains a countable subset
2. the set of even integers has the same cardinality as the set of all natural numbers
3. the union of an infinite set and an at most countable set has the same cardinality as the original

infinite set.
4. the set of irrational numbers has the cardinality of the continuum
5. the set of transcendental numbers has the cardinality of the continuum

Solution 10.54

Listed.
1. Let A be an infinite set. By axiom of choice, choose a0 ∈ A. Then, A \ {a0} ̸= ∅ since A is

infinite. By induction, assume you have chosen a0, a1, . . . , ak ∈ A. Then, since A is infinite,
A \ {a0, a1, . . . , ak} ̸= ∅, so we can choose ak+1 ∈ A \ {a0, . . . , ak}. Thus, we have constructed
a countable subset {ak}k∈N of A.

2. Given the quotient ring 2Z, define the bijection ρ : 2Z −→ N as

p(x) =

{
x+ 2 if x ≥ 0

−x− 1 if x < 0

3. From (a), we can extract a countable set from original set A, call it X. Since the product of
countable sets is countable (N ∪ N is countable), we can define a bijection ρ̃ : X −→ X ∪ B.
Therefore, we can define a bijection ρ : A −→ A ∪B as

ρ(x) =

{
x if x ∈ A \X
ρ̃(x) if x ∈ X

4. Q is countable and R is uncountable. So, R \Q must be uncountable since if it were countable,
then the union of the rationals and irrationals, which is R, would be countable.

5. It suffices to prove that the set of algebraic numbers (numbers that are possible roots of a
polynomial with integer coefficients with leading coefficient nonzero) is countable, since we can
apply (d) right after. The set of all kth degree polynomials with integer coefficients is isomorphic
to Zk through the map

akx
k + ak−1x

k−1 + . . .+ a2x
2 + a1x

1 + a0 7→ (ak−1, ak−2, . . . , a1, a0)

and the union of these countable sets (minus the 0 map)

P =

( ∞⋃
k=1

Zk

)
\ {0} =

(
Z \ {0}

)
∪ Z2 ∪ . . .

is countable. For any element in Zk, there are at most k real roots, and so we can define the set
of roots of an element z ∈ Zk ⊂ P as a j-tuple of algebraic numbers, which can have at most
j = k roots.

r(z) = (r1z, r2z, . . . , rjz)︸ ︷︷ ︸
j≤k

Therefore, the union of all these j-tuples for all z ∈ P⋃
z∈P

r(z) =

∞⋃
k=1

⋃
z∈Zk

r(z)

is a countable union of a countable union of finite sets, making it countable.
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Exercise 10.55 (Zorich 2.4.4)

Show that
1. the set of increasing sequences of natural numbers has the same cardinality as the set of fractions

of the form 0.α1α2 . . .
2. the set of all subsets of countable set has cardinality of the continuum

Solution 10.55

Listed.
1. Given a sequence of increasing naturals S = (n1, n2, . . .), we can define a binary expansion

0.α1α2 . . . where αi = 1 if and only if i ∈ N is in S and αi = 0 if not. This is clearly a bijection.
2. The set of all segments of increasing natural is equipotent with 2N, since the elements of each

sequence define a subset of N. Cantor’s diagonalization argument proves that the set of infinite
binary expansions is uncountable, and by (a), this proves that 2N is uncountable.

This is very interesting since N ≃ R, but 2N ≃ R, and the set of all infinite q-ary expansions is
equipotent to R too.

Exercise 10.56 (Zorich 2.4.5)

Show that
1. the set P(X) of subsets of a set X has the same cardinality as the set of all functions f : X −→
{0, 1}.

2. for a finite set X of n elements, cardP(X) = 2n

3. one can write cardP(X) = 2cardX , which implies cardP(N) = 2cardN = cardR
4. for any set X, cardX < 2cardX

Solution 10.56

Listed.
1. An element Y ∈ P(X) is a subset of X by definition. Letting

fY (x) =

{
0 if x ̸∈ Y

1 if x ∈ Y

we can construct the bijective map Y 7→ fY .
2. We can prove this using the identity (which can be proved using induction)

n∑
k=0

(
n

k

)
= 2n

3. Let F (X; {0, 1}) be the set of all binary valued functions from X to {0, 1}. From (a),
cardP(X) ≃ F (X; {0, 1}). Each binary-valued function f is determined by the assignment
f(x) for each x ∈ X. Since f(x) has two possible values, the assignment of f(x) for all x ∈ X
has {0, 1}cardX possible choices. This gives another bijection F (X; {0, 1}) ≃ {0, 1}cardX , so

P(X) ≃ {0, 1}cardX =⇒ cardP(x) = card({0, 1}cardX) = 2cardX

4. If X is finite, then letting n = cardX, we can simply prove n < 2n by induction (which we will
not do here). If X is countable, then P(X) is uncountable (from 2.4.4) and so using (c),

cardX = cardN < cardR = cardP(X) = 2cardX

For uncountable sets (and for the two cases mentioned above), we can use Cantor’s theorem,
which states that cardX < cardP(X), and so using (c), we have cardX < cardP(X) = 2cardX .
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Exercise 10.57 (Zorich 2.4.6)

Let X1, . . . , Xm be a finite system of finite sets. Show that

card

( m⋃
i=1

Xi

)
=
∑
i1

cardXi1 −
∑
i1<i2

card(Xi1 ∩Xi2) + . . .

∑
i1<i2<i3

card(Xi1 ∩Xi2 ∩Xi3)− . . .+ (−1)m−1 card(X1 ∩ . . . ∩Xm)

=

m∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

Xij

)

Solution 10.57

Ignoring Russell’s paradox (defining the universe set of all sets), we can use the commutative, asso-
ciative, and distributive properties of ∪,∩ on the algebra of sets. We prove using induction on m.
For m = 1, we trivially have cardX1 = cardX1, and for m = 2, we claim

card(X1 ∪X2) = card(X1) + card(X2)− card(X1 ∩X2)

X1 and X2 \X1 are clearly exclusive sets by definition, with X1 ∪X2 = X1 ∪ (X2 \X1), so

card(X1 ∪X2) = card
(
X1 ∪ (X2 \X1)

)
= card(X1) + card(X2 \X1) (2)

By definition, the set X2 \X1 and X1∩X2 are disjoint and satisfies X2 = (X2 \X1)∪ (X1∩X2) (also
by definition), so

card(X2) = card(X2 \X1) + card(X1 ∩X2) (3)

and substituting (3) into (2) gives the claim for m = 2. Assuming that the claim is satisfied for some
m, we have

card

(m+1⋃
i=1

Xi

)
= card

([ m⋃
i=1

Xi

]
∪Xm+1

)

= card

( k⋃
i=1

Xi

)
+ card(Xm+1)− card

([ m⋃
i=1

Xi

]
∩Xm+1

)
(claim for m = 2)

= card

( k⋃
i=1

Xi

)
+ card(Xm+1)− card

( m⋃
i=1

(Xi ∩Xm+1)

)
(distributive prop.)

=

m∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

Xij

)
+ card(Xm+1)

−
m∑

k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

(Xij ∩Xm+1)

)
With a bit of thought, we can see that the kth term of the second summation contributes to adding
another term to the k+1th summation term of the first. Therefore, we must try to shift the summation
over by 1 index. Let us simplify this by taking the summations and extracting the first and last term,
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respectively. We have

m∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

Xij

)
=

∑
1≤i1...ik≤m

card(Xi1)

+

m∑
k=2

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

Xij

)
and

m∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

(Xij ∩Xm+1)

)

=

m∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

([ k⋂
j=1

Xij

]
∩Xm+1

)

=
m−1∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

(Xij ∩Xm+1)

)
+ (−1)m−1 card

(m+1⋂
j=1

Xj

)

=

m∑
k=2

∑
1≤i1...ik≤m

(−1)k−2 card

( k−1⋂
j=1

(Xij ∩Xm+1)

)
+ (−1)m−1 card

(m+1⋂
j=1

Xj

)
So subtracting the summations gives

m∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

Xij

)
−

m∑
k=1

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

(Xij ∩Xm+1)

)
+ |Xm+1|

=
∑

1≤i1...ik≤m

card(xi) +

m∑
k=2

∑
1≤i1...ik≤m

(−1)k−1 card

( k⋂
j=1

Xij

)
+ card(Xm+1)

+

m∑
k=2

∑
1≤i1...ik≤m

(−1)k−1 card

( k−1⋂
j=1

(Xij ∩Xm+1)

)
+ (−1)m card

(m+1⋂
j=1

Xj

)

=
∑

1≤i1...ik≤m+1

card(Xi) +

m∑
k=2

∑
1≤i1...ik≤m

(−1)k−1

[
card

( k⋂
j=1

Xij

)

+ card

([ k−1⋂
j=1

Xij

]
∩Xm+1

)]
+ (−1)m card

(m+1⋂
j=1

Xj

)

and since the set of sequences of k terms bounded by m+ 1 (of form 1 ≤ i1 . . . ik ≤ m+ 1) is the set
of sequences of k terms bounded by m (of form 1 ≤ i1 . . . ik ≤ m) unioned with the set of sequences
of k terms with max element m+ 1 (of form 1 ≤ i1 . . . ik = m+ 1), we have

∑
1≤i1...ik≤m

(−1)k−1

[
card

( k⋂
j=1

Xij

)
+ card

([ k−1⋂
j=1

Xij

]
∩Xm+1

)]
=

∑
1≤i1...ik≤m+1

card

( k⋂
j=1

Xij

)
and therefore, substituting the above and observing that the independent terms are the first and last
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terms of the summation gives

card

(m+1⋃
i=1

Xi

)
=

∑
1≤i1...ik≤m+1

card(Xi) +

m∑
k=2

∑
1≤i1...ik≤m+1

(−1)k−1 card

( k⋂
j=1

Xij

)

+ . . .+ (−1)m card

(m+1⋂
j=1

Xj

)

=

m+1∑
k=1

∑
1≤i1...ik≤m+1

(−1)k−1 card

( k⋂
j=1

Xij

)

Exercise 10.58 (Zorich 2.4.7)

On the closed interval [0, 1] ⊂ R, describe the sets of numbers x ∈ [0, 1] whose ternary representation
x = 0.α1α2 . . ., αi ∈ {0, 1, 2} has the property.

1. α1 ̸= 1
2. α1 ̸= 1 and α2 ̸= 1
3. For all i ∈ N, αi ̸= 1 (the Cantor set)

Solution 10.58

Listed.
1. [0, 1

3 ) ∪ [ 23 , 1)
2. [0, 1

9 ) ∪ [ 29 ,
3
9 ) ∪ [ 69 ,

7
9 ) ∪ [ 89 , 1)

3. Made by recursively removing the middle third of every partitioned intervals.

Exercise 10.59 (Zorich 2.4.8)

Show that
1. the set of numbers x ∈ [0, 1] whose ternary representation does not contain 1 has the same

cardinality as the set of all numbers whose binary representation has the form 0.β1β2 . . .
2. the Cantor set has the same cardinality as the closed interval [0, 1]

Solution 10.59

Listed.
1. We can define a bijection 0.α1α2 . . . 7→ 0.β1β2 . . . as αi = 0 ⇐⇒ βi = 0 and αi = 1 ⇐⇒ βi =

2.
2. The map above defines a bijection between the Cantor set and the set of all infinite binary

expansions in [0, 1], which is uncountable by Cantor’s diagonalization theorem.

10.2 Euclidean Topology

Exercise 10.60 (Math 531 Spring 2025, PS5.1)

We know what it means for a metric space (X, d) to be compact. We say that it is sequentially
compact if every sequence in (X, d) has a convergent subsequence. Prove that a metric space is
compact if and only if it is sequentially compact.
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Solution 10.60

We prove bidirectionally.
1. (→). Assume that X is compact and let (xn) be a sequence in X. For any ϵ > 0, let

Cϵ := {Bϵ(x) | x ∈ X} (570)

be an open cover of open balls. Then there exists a finite subcover Fϵ ⊂ Cϵ. There is a countable
sequence (xn), with each point in at least one open set in C . By the pigeonhole principle, at
least one open set must be hit infinitely many times, call this B(x∗, ϵ). Now consider for ϵ = 1

n
for n ∈ N.

2. (←).

Exercise 10.61 (Math 531 Spring 2025, PS5.2)

Give an example of a sequence of real numbers xn for which

|xn+1 − xn| → 0 (571)

as n→∞, but xn is not convergent.

Solution 10.61

Consider the sequence

xn =

n∑
i=1

1

i
(572)

It is the case that xn+1 − xn = 1/(n+ 1) which tends to 0, but this is a harmonic series which is not
convergent.

Exercise 10.62 (Math 531 Spring 2025, PS5.3)

Let {xn}∞n=0 be a sequence of real numbers. Assume that

|xn+1 − xn| ≤ c|xn − xn−1| (573)

for all n ≥ 1, for some fixed c < 1. Prove that xn is convergent. Hint: you may want to use the
formula that you proved in a previous homework for 1 + c+ c2 + · · ·+ cN .

Solution 10.62

Exercise 10.63 (Math 531 Spring 2025, PS5.4)

Let xn be a sequence of rational numbers defined recursively by:

x0 = 1 (574)

xn+1 =
1

xn + 2
(575)

when n ≥ 0. The first few terms of this sequence are 1, 1
3 ,

3
7 , . . . Prove that the sequence is convergent

and find its limit.
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Solution 10.63

Exercise 10.64 (Math 531 Spring 2025, PS5.5)

As we know, every bounded sequence of real numbers has a convergence subsequence.
1. Let’s say we have two sequences an and bn that are bounded. Find a single sequence of indices
{nk} so that both ank

and bnk
are convergent. This is called a common convergent subsequence

for an and bn.
2. Show that for any finite number of bounded sequences of real numbers, we can find a common

convergent subsequence.
3. Now suppose have a sequence of bounded sequences. Find a common convergent subsequence.

What does this remind you of?

Solution 10.64

Exercise 10.65 (Math 531 Spring 2025, PS5.6)

Given a sequence of real numbers xn, we can define the sequence of its means by:

x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . . (576)

Call the sequence of means yn. Prove that if xn → x, then yn → x. Discuss the examples xn = (−1)n,
xn = n, xn = (−1)nn, and xn = (−1)n

√
n. The fourth example shows that it is possible to average

out chaotic behavior (so long as it isn’t focused in one direction). The third example shows that this
is impossible if the system becomes too chaotic.

Solution 10.65

Exercise 10.66 (Math 531 Spring 2025, PS4.1)

Let (X, d) be a metric space. Assume that K is compact and F is closed in (X, d). Assume K∩F = ∅.
Prove that

inf
x∈F,y∈K

d(x, y) > 0. (577)

Show by an example that this number could be zero if K is only assumed to be closed (rather than
compact).

Solution 10.66

K ∩F = ∅ =⇒ K ⊂ F c with F c open. This means that for every x ∈ K ⊂ F c, there exists a rx > 0
s.t. B(x, rx) ⊂ F c ⇐⇒ B(x, rx) ∩ F = ∅.
Now we take the covering {B(x, rx

2 ) | x ∈ K}, and since K is compact there must be a finite
subcovering, which we denote C = {B(xi,

ri
2 ) | i = 1, . . . n}. Denote r∗ = min{ri}, which is positive

since we take the minimum of a finite number of positive elements.
Now for any x ∈ K and y ∈ F , x must be in some B(xi,

ri
2 ) ⇐⇒ d(x, xi) <

ri
2 ⇐⇒ −d(x, xi) > − ri

2 .
With the same i, since B(xi, ri) is disjoint from F , we have d(xi, y) ≥ ri. Therefore, by the triangle
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inequality,

d(x, y) ≥ d(xi, y)− d(xi, x) = ri −
ri
2

=
ri
2
≥ r∗

2
(578)

and thus we have found a nontrivial lower bound.

Exercise 10.67 (Math 531 Spring 2025, PS4.2)

Consider R with the usual metric. Find an open cover of Q that does not cover R.

Solution 10.67

Q = (−∞,
√
2) ∪ (

√
2,+∞).

Exercise 10.68 (Math 531 Spring 2025, PS4.3)

R is not compact with the usual metric since it is not bounded. Let us, however, define the following
metric on R:

d∗(x, y) =
|x− y|

(1 + |x|)(1 + |y|)
. (579)

Verify that (R, d∗) is a metric space. Prove that all subsets of (R, d∗) are bounded. Show that R still
isn’t compact with this metric. What is the problem?

Solution 10.68

We first verify metric.
1. Since |x− y| ≥ 0, 1 + |x| ≥ 1, 1 + |y| ≥ 1, d∗(x, y) ≥ 0. We also see that

d∗(x, y) = 0 ⇐⇒ |x− y| = 0 ⇐⇒ x = y (580)

2. It is symmetric since

d∗(x, y) =
|x− y|

(1 + |x|)(1 + |y|)
=

|y − x|
(1 + |y|)(1 + |x|)

= d∗(y, x) (581)

3. It satisfies triangle inequality since

d∗(x, y) + d∗(y, z) =
|x− y|

(1 + |x|)(1 + |y|)
+

|y − z|
(1 + |y|)(1 + |z|)

(582)

=
|x− y|(1 + |z|) + |y − z|(1 + |x|)

(1 + |x|)(1 + |y|)(1 + |z|)
(583)

=
|x− y|+ |x− y| · |z|+ |y − z|+ |y − z| · |x|

(1 + |x|)(1 + |y|)(1 + |z|)
(584)

≥ |x− z|+ (|x| − |y|) · |z|+ (|y| − |z|) · |x|
(1 + |x|)(1 + |y|)(1 + |z|)

(585)

=
|x− z|+ |x||y| − |y||z|

(1 + |x|)(1 + |y|)(1 + |z|)
(586)

=
(1 + |y|)|x− z|

(1 + |x|)(1 + |y|)(1 + |z|)
(587)

=
|x− z|

(1 + |x|)(1 + |z|)
(588)

= d∗(x, z) (589)
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where the inequality comes from |x− y|+ |y − z| ≥ |x− z|, |x− y| ≥ ||x| − |y|| ≥ |x| − |y|, and
|y − z| ≥ ||y| − |z|| ≥ |y| − |z|.

This is bounded since for any x, y ∈ R, we can show that the numerator is bounded by the denomi-
nator. Since both are positive from (1), it suffices to prove |x− y|2 ≤ (1 + |x|)2(1 + |y|)2.

(1 + |x|)2(1 + |y|)2 = (1 + 2|x|+ |x|2)(1 + 2|y|+ |y|2) (590)

= 1 + 2|x|+ 2|y|+ 4|x||y|+ |x|2 + |y|2 + 2|x||y|2 + 2|y||x|2 + |x|2|y|2 (591)

≥ |x|2 + |y|2 + 2|x||y| (592)

≥ |x|2 + |y|2 − 2xy (593)

= |x− y|2 (594)

where the first inequality holds since all the terms in the expansion are nonnegative and the second
holds since |x||y| ≥ xy. Therefore, d∗(x, y) ≤ 1. R is still not compact since we can construct the set
of open balls Br(0) around 0 w.r.t. d∗. Consider the cover

C = {B1− 1
n
(0)}n∈N,n≥2 (595)

Now assume that there is a finite subcover. Then there must be a maximum index N ∈ N in this
cover. I claim that this does not cover R. Consider the element y = N − 1 ∈ R. The distance is

d∗(x, y) =
|0− (N − 1)|

(1 + |0|)(1 + |N − 1|)
=

N − 1

N
= 1− 1

N
(596)

and so y ̸∈ C . Hence C is not a cover of R.

Exercise 10.69 (Math 531 Spring 2025, PS4.4)

Consider the set X = R ∪ {Gandalf}. Define a metric d∗ on X by:

d∗(x, y) =
|x− y|

(1 + |x|)(1 + |y|)
(597)

for x, y ∈ R, while

d∗(Gandalf, x) =
1

1 + |x|
, (598)

for all x ∈ R. Verify that d∗ is a metric on X (you don’t have to do much for this, since you already
did part of it in the previous problem). Prove that (X, d∗) is a compact metric space.

Solution 10.69

Exercise 10.70 (Math 531 Spring 2025, PS4.5)

Let X be any set and endow it with the metric d(x, y) = 1 if x ̸= y and d(x, x) = 0. Check that this
is a metric. Find all compact sets in (X, d).

Solution 10.70

It trivially satisfies nonnegativity since it’s either 0 or 1, and d(x, x) = 0. It is symmetric as well. As
for triangle inequality this is trivial. All compact sets are finite sets.

170/ 203



Real Analysis Muchang Bahng Spring 2025

Exercise 10.71 (Math 531 Spring 2025, PS3.1)

Determine for each of the following sets, whether or not it is countable. Justify your answers
1. The set of all functions f : {0, 1} → N.
2. The set Bn of all functions f : {1, ..., n} → N
3. The set C = ∪n∈NBn

4. The set of all functions f : N→ {0, 1}.
5. The set of all functions f : N → {0, 1} that are “eventually zero” (We say that f is eventually

zero if there exists some N ≥ 1 so that f(n) = 0 for all n ≥ N .)
6. G the set of all functions f : N→ N that are eventually constant.

Solution 10.71

Listed.
1. Countable since bijective to N× N. We define the bijection as

(a0, a1) ∈ N× N 7→ f(i) = ai (599)

2. Countable since bijective to Nn. We define the bijection as

(a1, . . . , an) ∈ Nn 7→ f(i) = ai (600)

3. Countable since we proved that Bn is countable, and a countable union of countable sets are
countable from Rudin Theorem 2.12.

4. Uncountable since we can create a bijection from the set of all sequences (ai) of 0 or 1, which
from Rudin Theorem 2.14 is uncountable.

(ai)i∈N 7→ f(i) = ai (601)

5. Countable. Call this set B, and call the set of functions f that have their final 1 at index k to
be Ak. Then,

B = ∪∞k=1Ak (602)

where A0 = A1 = 1, and |Ak| = 2k−1 for k ≥ 2. Since B is the countable union of at most
countable sets, B must be countable.

6. Countable. Call this set B. Let Ak be the set of functions that are eventually constant to
value k. Let Aki be the set of functions that are always k starting from index i (where i is the
smallest element). Since everything is determined to be k at i and beyond, Aki can be divided
up into the first i− 1 elements of any natural number, followed by a sequence of k’s. Therefore
|Aki| ≈ Ni−1, where ≈ means equipotent, and so Aki is countable. Therefore since countable
unions of countable sets are countable,

Ak =

∞⋃
i=1

Aki is countable =⇒ B =

∞∑
k=1

Ak is countable (603)

Exercise 10.72 (Math 531 Spring 2025, PS3.2)

Tell if the following subsets A ⊂ R (with the usual metric d(x, y) = |x− y|) are open or closed. Also,
find (i) the limit points of A, (ii) the interior of A, (iii) Ā.

1. A = Q
2. A = (0, 1]
3. A = {1, 1

2 ,
1
4 , ...}

4. A = {0, 1, 1
2 ,

1
4 , ...}

5. A = Z
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Solution 10.72

Listed. We denote A′ as the limit points of A and the interior as Ao.
1. Not open nor closed. A′ = R, Ao = ∅. Ā = R.
2. Not open nor closed. A′ = [0, 1], Ao = (0, 1). Ā = [0, 1].
3. Not open nor closed. A′ = {0}, Ao = ∅. Ā = {0} ∪A.
4. Closed. A′ = {0}, Ao = ∅. Ā = A.
5. Closed. A′ = ∅. Ao = ∅. Ā = A.

Exercise 10.73 (Math 531 Spring 2025, PS3.3)

Prove the following statements subsets A,B of a general metric space (X, d).
• A ∪B = Ā ∪ B̄.
• Show by example that A ∩B ̸= Ā ∩ B̄.

Solution 10.73

For the first part, we show bidirectionally.
1. A ∪B ⊂ A ∪ B. Let x ∈ A ∪B. If x ∈ A ∪ B, then it must be the case that either x ∈ A ⊂

(A ∪ A′) = A or x ∈ B ⊂ (B ∪ B′) = B, which means x ∈ A ∪ B. Now assume not. Then
x ∈ (A ∪B)′. Therefore, for any r > 0, we know that B(x, r) ∩ (A ∪B) ̸= ∅. Now let us take a
sequence (rn = 1

n )n∈N, and for each rn we have some element xn ∈ (A∪B). Given that we have
a countably infinite sequence of xn, each which may be in A or B, by the pigeonhole principle
either A or B must be hit infinitely many times. If xn ∈ A infinitely many times, then x ∈ A,
and analogous for B.

2. A∪B ⊂ A ∪B. WLOG let x ∈ A. If x ∈ A, then x ∈ (A∪B) ⊂ A ∪B. If x ̸∈ A, then x ∈ A′.
Therefore for every r > 0, B(x, r) ∩A ̸= ∅. But this means

∅ ≠ (B(x, r) ∩A) ∪ (B(x, r) ∩B) = B(x, r) ∩ (A ∪B) =⇒ x ∈ (A ∪B)′ ⊂ A ∪B (604)

For a counterexample, consider the sequences

A = (xn) =
1

n
B = (yn) = −

1

n
(605)

for n ∈ N. A = A ∪ {0}, B = B ∪ {0}, and so A ∩B = {0}. However, A ∩B = ∅ =⇒ A ∩B = ∅.

Exercise 10.74 (Math 531 Spring 2025, PS3.4)

Consider the set of rationals in canonical form (such that numerator and denominator are relatively
prime) with potential distance:

d1(
p1
q1

,
p2
q2

) = |q1 − q2|. (606)

Is this a metric? Prove that the following defines a metric

d2(
p1
q1

,
p2
q2

) = |p1 − p2|+ |q1 − q2|. (607)

Solution 10.74

This is not a metric since
d1

(
2

1
,
3

1

)
= 1− 1 = 0 (608)
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when 2/1 ̸= 3/1. For d2, we show that it satisfies the three properties.
1. Nonnegativity. Since it is the sum of 2 absolute values which are norms and therefore nonneg-

ative, it must be nonnegative by ordered field properties. We see that

p1
q1

=
p2
q2
⇐⇒ p1 = p2 and q1 = q2 (609)

⇐⇒ |p1 − p2| = |q1 − q2| = 0 (610)
⇐⇒ |p1 − p2|+ |q1 − q2| = 0 (611)

2. For symmetricity, note that

d2

(
p1
q1

,
p2
q2

)
= |p1 − p2|+ |q1 − q2| = |p2 − p1|+ |q2 − q1| = d2

(
p1
q1

,
p2
q2

)
(612)

3. For triangle inequality, we see that for any p1/q1, p2/q2, p3/q3,

d2

(
p1
q1

,
p3
q3

)
= |p1 − p3|+ |q1 − q3| (613)

= |(p1 − p2) + (p2 − p3)|+ |(q1 − q2) + (q2 − q3)| (614)
≤ |p1 − p2|+ |p2 − p3|+ |q1 − q2|+ |q2 − q3| (subadditivity of norm)

= d2

(
p1
q1

,
p2
q2

)
+ d2

(
p2
q2

,
p3
q3

)
(615)

Exercise 10.75 (Math 531 Spring 2025, PS3.5)

Let M = {x1, ..., x3} be a set with three points. Describe the set of all metrics on M . What if M
has four points?

Solution 10.75

If M has 3 points call them x1, x2, x3, then the metric is completely defined by the three values

d(x1, x2) = d(x2, x1) (616)
d(x2, x3) = d(x3, x2) (617)
d(x3, x1) = d(x3, x1) (618)

where d(x, x) = 0. We must make sure that the triangle inequality satisfies for these 3 numbers.
Therefore we can think of this as the set of all triangles in R2 (that are equivalent under translation
and rotation, but not permutation of points).
Similarly for 4 points, we can visualize the metrics as the set of all tetarhedra in R3 (since each face
is a triangle, and therefore for any three points the triangle inequality is guaranteed to be satisfied),
equivalent under translation and rotation, but not permutation of the 4 points.

Exercise 10.76 (Math 531 Spring 2025, PS3.6)

Let P be a polynomial of degree n ≥ 1. Prove that if P (0) = 0, then P (x) = xQ(x), for some
polynomial Q of degree n − 1. Deduce that if P (a) = 0, then we can write P (x) = (x − a)Q(x) for
some Q of degree n− 1.
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Solution 10.76

A nth degree polynomial will have the form

p(x) =

n∑
i=0

cix
i (619)

Since p(0) = c0 = 0 =⇒ c0 = 0. This means that

p(x) =

n∑
i=1

cix
i = x

n−1∑
i=0

ci+1x
i where Q(x) =

n−1∑
i=0

ci+1x
i (620)

If p(a) = 0, we can construct f(x) = p(x + a), where f is a polynomial since the expansion does
not increase its degree. Since f(x) = p(a) = 0, by above f can be factorized f(x) = xg(x) for some
(n−1)th degree polynomial g, and by substitution this means that p(x) = f(x−a) = (x−a)g(x−a).

Exercise 10.77 (Math 531 Spring 2025, PS3.7)

Consider all polynomials P : R→ R of degree less than or equal to n. Call this set Pn. Let’s define
potential distances on Pn.

d1(p, q) = |p(0)− q(0)|. (621)

Show this defines a distance on P0 but not on Pn for n ≥ 1. Now consider

dN (p, q) =

N∑
j=0

|p(j)− q(j)| (622)

Show that this defines a distance on Pn, for every n ≤ N . What does the solution say about
polynomials of degree N?

Solution 10.77

If n = 0, Pn is a set of constant functions P , where each constant function P is determined completely
by its value at any point, e.g. 0. We check the properties.

1. d1(p, q) ≥ 0 since we take the norm at the end. We can see that

d1(p, q) = 0 ⇐⇒ |p(0)− q(0)| (623)
⇐⇒ p(0) = q(0) (624)
⇐⇒ p = q (625)

2. It is clearly symmetric.

d1(p, q) = |p(0)− q(0)| = |q(0)− p(0)| = d1(q, p) (626)

3. It satisfies the triangle inequality by subadditivity of the norm.

d1(p, r) = |p(0)− r(0)| (627)
= |(p(0)− q(0)) + (q(0)− r(0))| (628)
≤ |p(0)− q(0)|+ |q(0)− r(0)| (629)
= d1(p, q) + d1(q, r) (630)

It doesn’t satisfy for Pn because consider p(x) = x and q(x) = x2. They are not the same function
but d1(p, q) = |p(0)− q(0)| = 0. For dN defined on Pn for n ≤ N , we verify the properties.
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1. This is the sum of norms, so it must be nonnegative. Now we see that if p = q, then p(x) =
q(x) =⇒ |p(x)−q(x)| = 0 =⇒ dN (p, q) = 0. For the other way around, suppose dN (p, q) = 0.
Then from problem 3.8, we are solving the linear equation 0 = V b − V c, where b, c are the
vectors representing the coefficients of p, q, and V is the Vandermonde matrix with ai = i. By
linearity, this is equivalent to solving 0 = V (b − c), and since we showed that V is invertible
(since ai’s are distinct), V has a trivial kernel and therefore b− c = 0 ⇐⇒ b = c =⇒ p = q.

2. Symmetricity is trivial.

dN (p, q) =

N∑
j=0

|p(j)− q(j)| =
N∑
j=0

|q(j)− p(j)| = dN (q, p) (631)

3. For triangle inequality,

dN (p, r) =

N∑
j=0

|p(j)− r(j)| (632)

=

N∑
j=0

|(p(j)− q(j)) + (q(j)− r(j))| (633)

≤
N∑
j=0

|p(j)− q(j)|+ |q(j)− r(j)| (634)

=

N∑
j=0

|p(j)− q(j)|+
N∑
j=0

|q(j)− r(j)| (635)

= dN (p, q) + dN (q, r) (636)

This shows that we need to “sample” more points from higher-degree polynomials to get the metric
as they are higher-dimensional.

Exercise 10.78 (Math 531 Spring 2025, PS3.8)

Given distinct numbers a0, ..., aN and numbers b0, ..., bN , prove that there exists a polynomial P of
degree N with the property that

P (ai) = bi, (637)

for 0 ≤ i ≤ N . The most direct way to solve this problem, in my view, is to write the system
equations you are trying to solve as a linear system for the coefficients of P . This will give you some
matrix M that depends on the numbers a0, ..., aN . The key is to show that the determinant of this
matrix is non-zero. It turns out that the determinant of this matrix is equal to∏

0≤i<j≤N

(ai − aj), (638)

up to a potential − sign depending on how you defined M . Prove this and deduce the result.

Solution 10.78

We can write the system of equations using the Vandermonde matrix V ∈ R(N+1)×(N+1) and c is the
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vector of coefficients of P .

b = V c ⇐⇒


b0
b1
...
bN

 =


1 a0 a20 . . . aN0
1 a1 a21 . . . aN1
...

...
. . .

...
1 aN a2N . . . aNN



c0
c1
...
cN

 (639)

To calculate the determinant of V , we prove using induction. Clearly for N = 1 we have

det

(
1 a0
1 a1

)
= a1 − a0 (640)

Now assume that this formula holds for some N − 1 ∈ N. Then for N , we can take V and subtract
a0 times the ith column from the (i+ 1)st column. This gives us

V =


1 0 0 . . . 0

1 a1 − a0 a21 − a0a1 . . . aN1 − a0a
N−1
1

1 a2 − a0 a22 − a0a2 . . . aN2 − a0a
N−1
2

...
...

...
. . .

...
1 aN − a0 a2N − a0aN . . . aNN − a0a

N−1
N

 (641)

When calculating the determinant, we can perform the cofactor expansion by the first row, and then
for each ith row factor out (ai − a0) to get

detV =

N∏
j=1

(aj − a0) det


1 a1 . . . aN−1

1

1 a2 . . . aN−1
2

...
...

. . .
...

1 aN . . . aN−1
N

 (642)

which is the (N−1)×(N−1) Vandermonde matrix. Therefore, we can apply our inductive hypothesis
to get

detV =

N∏
j=1

(aj − a0)
∏

1≤i<j≤N

(aj − ai) =
∏

0≤i≤j≤N

(aj − ai) (643)

Note that this has a 0 determinant iff ai = aj for some i ̸= j. Therefore sicne ai’s are distinct, it
must be nonzero. Therefore, this matrix is nonsingular, i.e. invertible, and we can solve the matrix
equation to get

c = V −1b (644)

which from linear algebra is guaranteed to exist and is unique.

Exercise 10.79 (Rudin 2.1)

Prove that the empty set is a subset of every set.

Solution 10.79

It must suffice that if x ∈ ∅, then x ∈ A for any arbitrary set A. This is vacuously true, since the
initial condition is never met.
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Exercise 10.80 ()

Show that the empty function f : ∅ → X, where X is an arbitrary set, is always injective. If X = ∅,
then f is bijective.

Solution 10.80

Given distinct x, y ∈ ∅, f(x) ̸= f(y) is vacuously true, but if X ̸= ∅, then there exists a w ∈ X with
no preimage. If X = ∅, then the statement for all w ∈ X, there exists an x ∈ ∅ s.t. f(x) = w is
vacuously true.

Exercise 10.81 (Rudin 2.2)

A complex number z is said to be algebraic if there are integers a0, a1, . . . , an, not all zero, such that

a0z
n + a1z

n−1 + . . .+ an−1z + an = 0. (645)

Prove that the set of all algebraic complex numbers is countable. Hint: For every positive integer N
there are only finitely many equations with

n+ |a0|+ |a1|+ . . .+ |an| = N (646)

Solution 10.81

Consider all polynomials s.t. n +
∑n

i=0 |ai| = N . There is only a finite number of them, and each
polynomial has at most n distinct complex roots. So this set is finite, an unioning over all N ∈ N
gives an at most countable set of roots.

Exercise 10.82 (Rudin 2.3)

Prove there exists real numbers which are not algebraic.

Solution 10.82

From the previous exercise, if there were no no real numbers which are not algebraic, then every real
number is algebraic. This contradicts the fact that the set of all complex numbers is countable.

Exercise 10.83 (Rudin 2.4)

Is the set of all irrational real numbers countable?

Solution 10.83

No. Assume that it is countable. We have Q countable. Then, by assumption, we must have
R = Q ∪ Qc be the union of countable sets, which must be countable, contradicting the fact that it
is uncountable.

Exercise 10.84 (Rudin 2.5)

Construct a bounded set of real numbers which exactly 3 limit points.
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Solution 10.84

We can construct the union of 3 sequences that converge onto the limit points 0, 1, 2.{ 1
n

}
n∈N ∪

{ 1
n
+ 1}n∈N ∪

{ 1
n
+ 2
}
n∈N (647)

Exercise 10.85 ()

Prove that the union of the limit points of sets is equal to the limit points of the union of the sets.

m⋃
k=1

A′
k =

(
m⋃

k=1

Ak

)′

(648)

Solution 10.85

Exercise 10.86 (Rudin 2.6)

Let E′ be the set of all limit points of a set E. Prove that E′ is closed. Prove that E and E have the
same limit points. (Recall that E = E ∪ E′). Do E and E′ always have the same limit points?

Solution 10.86

Listed.
1. Let x be a limit point of E′. Then, for every ϵ > 0, U = Bϵ(x) ∩ E′ ̸= ∅. Take a y ∈ U . Since

y ∈ Bϵ(x), which is open, we can construct an open ball Bδ(y) ⊂ Bϵ(x). Since y ∈ E′, Bδ(y)
must contain elements of E, which means that Bϵ(x) must also contain elements of E, and so
x is a limit point of E =⇒ x ∈ E′ and E′ is closed.

2. To prove that E′ ⊂ E
′
, we know that if x ∈ E′, then for every ϵ > 0, there exists a B◦

ϵ (x)
that has a nontrivial intersection with E which means that it has a nontrivial intersection with
E ∪ E′. To prove that E

′ ⊂ E′, we know that if y ∈ E
′
, then for every δ > 0 there exists a

Bδ(x) that has a nontrivial intersection with E. If Bδ(x) intersects E then we are done. If
Bδ(x) intersects E′, then we can find a y ∈ E′ ∩Bδ(x). Since Bδ(x) is open, we can construct
Bε(y) ⊂ Bδ(x) and since y ∈ E′, we know that Bε(y) contains an element of E, which means
that Bδ(x) contains an element of E. Therefore, E′ = E

′
.

3. No. Consider the set E = {1/n}n∈N. E′ = {0}, but E′′ = ∅.

Exercise 10.87 (Rudin 2.7)

Let A1, A2, . . . be subsets of a metric space.
1. If Bn = ∪ni=1Ai, prove that B̄n = ∪ni=1Āi for n = 1, 2, 3, . . .
2. If B = ∪∞i=1Ai, prove that B̄ ⊃ ∪∞i=1Āi.

Solution 10.87

Listed.
1. We will prove that Bn ⊆ ∪ni=1Ai and ∪ni=1Ai ⊆ Bn. If x ∈ Bn, then x ∈ ∪ni=1Ai. Therefore,
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assume that x ∈ B′
n. Then for every ϵ > 0, there exists a B◦

ϵ (x) s.t.

B◦
ϵ (x) ∩Bn ̸= ∅ =⇒ B◦

ϵ (x) ∩
( n⋃

i=1

An

)
̸= ∅

This means that there exists some i = i(ϵ), a function of ϵ, s.t. B◦
ϵ (x)∩Ai ̸= ∅. However, this i

may change if we unfix ϵ. We have so far proved that just for one ϵ > 0 there exists an i. Now
if we take a sequence of ϵ = 1, 1

2 ,
1
3 , . . ., we have a sequence of i(ϵ)’s living in {1, . . . , n}. By the

pigeonhole principle, there must be at least one i that is hit infinitely many times, and so we
can choose this i, that works for all ϵ > 0 =⇒ x ∈ A′

i ⊆ ∪ni=1Ai. If x ∈ ∪ni=1Ai, then there
exists an Ai s.t. x ∈ Ai. If x ∈ Ai, then we are done. If x ∈ A′

i, then for every ϵ > 0, there
exists a B◦

ϵ (x) s.t.

B◦
ϵ (x) ∩Ai ̸= ∅ =⇒ B◦

ϵ (x) ∩
( n⋃

i=1

Ai

)
̸= ∅

and so x ∈ B′
n ⊂ Bn.

2. x ∈ ∪∞i=1Ai =⇒ x ∈ Ai for some i. If x ∈ Ai, then x ∈ B and we are done. If x ∈ A′
i, then for

every ϵ > 0 there exists Bϵ(x) s.t.

B◦
ϵ (x) ∩Ai ̸= ∅ =⇒ B◦

ϵ (x) ∩
( ∞⋃

i=1

Ai

)
̸= ∅

and so B◦
ϵ (x) ∩B ̸= ∅ =⇒ x ∈ B′ ⊂ B.

Exercise 10.88 (Rudin 2.8)

Is every point of every open set E ⊂ R2 a limit point of E? Answer the same question for closed sets
in R2.

Solution 10.88

Yes for open. Given any x ∈ U open, there always exists an ϵ > 0 s.t.

B◦
ϵ (x) ⊂ Bϵ(x) ⊂ U (649)

and so B◦
ϵ (x) has a nontrivial intersection with U . If U is closed, then no. Note that for closed U , we

have that every limit point is in U , but not every point in U is a limit point. Consider the isolated
point U = {x}. x is not a limit point of U .

Exercise 10.89 (Rudin 2.9)

Let E◦ denote the set of all interior points of E in X. Prove the following:
(a) E◦ is always open.
(b) E is open if and only if E◦ = E.
(c) If G ⊆ E and G is open, then G ⊂ E◦.
(d) Prove that the complement of E◦ is the closure of the complement of E.
(e) Do E and Ē always have the same interiors?
(f) Do E and E◦ always have the same closures?
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Solution 10.89

Listed.
1. We assume that E◦ is not open (this does not mean that E◦ is necessarily closed!). That is,

there exists an x ∈ E◦ s.t. we can’t construct an open ball Bϵ(x) ⊆ E◦. Since x ∈ E◦ ⊂ E,
by definition of an interior point we can construct a Bϵ(x) ⊂ E. But from our assumption
Bϵ(x) ̸⊂ E◦. We choose a y ∈ Bϵ(x) \ E◦. Since Bϵ(x) is open, there exists a δ > 0 s.t.

Bδ(y) ⊂ Bϵ(x) ⊂ E

But the fact that we can construct an open ball around y means that y ∈ E◦, leading to a
contradiction.

2. If E is open, then by definition E ⊂ E◦. Now E◦ ⊂ E holds for all sets since E◦ must be
composed of points from E. If E = E◦, then for every x ∈ E, x ∈ E◦, so by definition there
exists an ϵ > 0 s.t. Bϵ(x) ⊂ E, which means that E is open.

3. Let x ∈ G open. Then there exists an ϵ > 0 s.t. Bϵ(x) ⊂ G, and so Bϵ(x) ⊂ E. Since we can
always construct an open ball around x contained within E, x ∈ E◦ and G ⊂ E◦.

4. ((E◦)c ⊂ Ec) If x ∈ (E◦)c, then there exists no ϵ > 0 s.t. Bϵ(x) ⊂ E. Then, for any ϵ > 0,
Bϵ(x) ̸⊂ E =⇒ Bϵ(x) ∩ Ec ̸= ∅ =⇒ x ∈ Ec ⊂ Ec. (Ec ⊂ (E◦)c)) If x ∈ Ec, then x ∈ Ec or
x ∈ Ec′. If x ∈ Ec, note E◦ ⊂ E =⇒ (E◦)c ⊃ Ec =⇒ x ∈ (E◦)c. If x ∈ Ec′, then for all
ϵ > 0 Bϵ(x) ∩ Ec ̸= ∅ =⇒ Bϵ(x) ̸⊂ E =⇒ x ∈ E◦.

5. No. Consider the rationals Q ⊂ R. Q◦ = ∅ but Q◦
= R◦ = R. It is true and straightforward

to prove that E◦ ⊂ E
◦
. Let x ∈ E◦. Then there exists an ϵ > 0 s.t. Bϵ(x) ⊂ E =⇒ Bϵ(x) ⊂

E =⇒ x ∈ E
◦
.

6. No. Consider Q ⊂ R. Then Q = R and Q◦ = ∅ = ∅.

Exercise 10.90 (Rudin 2.10)

Let X be an infinite set. For p ∈ X and q ∈ X, define

d(p, q) =

{
1 if p ̸= q

0 if p = q
(650)

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed?
Which are compact?

Solution 10.90

This is a metric since clearly it satisfies symmetry and the fact that d(p, p) = 0. The triangle inequality

d(p, r) ≤ d(p, q) + d(q, r) (651)

is trivially satisfied if p = r, and if p ̸= r, then either p ̸= q or q ̸= r, and so the RHS ≥ 1. An open
ϵ-ball around x ∈ X is either X, when ϵ > 1, or {x} when ϵ ≤ 1. Therefore
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Exercise 10.91 (Rudin 2.11)

For x ∈ R and y ∈ R, define

d1(x, y) = (x− y)2

d2(x, y) =
√
|x− y|

d3(x, y) = |x2 − y2|
d4(x, y) = |x− 2y|

d5(x, y) =
|x− y|

1 + |x− y|

Determine, for each of these, whether it is a metric or not.

Solution 10.91

Listed. Positive semidefiniteness and symmetry are easy to check.
1. The triangle inequality gives

d1(x, z) ≤ d1(x, y) + d1(y, z) ⇐⇒ (x− z)2 ≤ (x− y)2 + (y − z)2

⇐⇒ 0 ≤ (x− y)(y − z)

which is not satisfied if x < y < z, so this is not a valid metric.
2. The triangle inequality gives

√
|x− z| ≤

√
|x− y|+

√
|y − z|, and since both sides are positive

this inequality is equivalent to squaring both sides to get

|x− z| ≤ |x− y|+ |y − z|+ 2
√
|x− y||y − z|

which is true since |x − z| ≤ |x − y| + |y − z| of the Euclidean distance satisfies the triangle
inequality and 0 ≤

√
|x− y||y − z|.

3. This does not satisfy triangle inequality, as taking 0, 1, 2 gives

d3(0, 2) = 4 > 1 + 1 = d3(0, 1) + d3(1, 2)

4. This does not satisfy symmetry.
5. For simplicity, let us set A = |x− y|, B = |y − z|, C = |x− z|. Then, we get

C

1 + C
≤ A

1 +A
+

B

1 +B
⇐⇒ C ≤ A+B + 2AB +ABC

where C ≤ A+B is true by triangle inequality of Euclidean distance, 0 ≤ AB, and 0 ≤ ABC.
Intuitively, we want a metric that doesn’t “blow up" the distance between x and y. More precisely, we
want a valid metric d(x, y) to be O(|x− y|). Having something like a quadratic growth rate (x− y)2

will blow the distance d(x, z) up too much overpowering the individual d(x, y) + d(y, z).

Exercise 10.92 (Rudin 2.12)

Let K ⊂ R consist of 0 and the numbers 1/n for n = 1, 2, 3, . . .. Prove that K is compact directly
from the definition (without using the Heine-Borel theorem).
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Solution 10.92

Every open cover of K must have an open set G s.t. 0 ∈ G. Since G is open, there exists an open
neighborhood Bϵ(0) ⊂ G around 0. By the Archimidean principle, there exists an N ∈ N s.t.

ϵN > 1 =⇒ ϵ >
1

N
(652)

and so, Bϵ(0) contains all points {1/n} for n > N . For the rest of the points 1, 1/2, . . . , 1/N , we can
simply construct a finite cover over each of them, hence getting a finite cover.

Exercise 10.93 (Rudin 2.13)

Construct a compact set of real numbers whose limit points form a countable set.

Solution 10.93

Consider the set

E =

{(
1

10

)n

+

(
1

10

)n+k

: n ∈ {0} ∪ N, k ∈ N
}
∪ {0} (653)

This is clearly bounded by 0 and 1.1. Let us represent the elements of this set by (n, k). We can
show that

(n1, k1) > (n2, k2) (654)

if n1 < n2 or n1 = n2 and k1 < k2. Therefore, to prove closedness, we must prove that every limit
point is a point in E. We can do this by proving that a point not in E cannot be a limit point.
Choose any x ̸∈ E. Then, due to the ordering, we can see that there exists a (n, k) s.t.

A =

(
1

10

)n

+

(
1

10

)n+k

< k <

(
1

10

)n

+

(
1

10

)n+k+1

= B (655)

and so we can take ϵ = min{k − A,B − k} and show that Bϵ(x) does not contain A nor B, and so
has an empty intersection with E. Therefore, it cannot be a limit point of E and is closed. Since E
is bounded and closed in R, it is compact. Its limit points contain 1, 0.1, 0.01, . . . , 0 (simply by fixing
n and letting k →∞, and so E′ is infinite. We have just shown that since E is closed, E′ ⊂ E. But
E is countable, so E′ is countable.

Exercise 10.94 (Rudin 2.14)

Given an example of an open cover of the segment (0, 1) which has no finite subcover.

Solution 10.94

Consider

(0, 1/2) ∪
( ∞⋃

i=1

[
1− 1

2i
, 1− 1

2i+1

))
(656)

Exercise 10.95 (Rudin 2.15)

Solution 10.95
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Exercise 10.96 (Rudin 2.16)

Regard Q, the set of all rational numbers, as a metric space, with d(p, q) = |p− q|. Let E be the set
of all p ∈ Q s.t. 2 < p2 < 3. Show that E is closed and bounded in Q but is not compact. Is E open
in Q?

Solution 10.96

E is clearly bounded by 0 and 2 since 02 < 2 < p2 < 3 < 22. It is closed and we can show this by
showing that Ec is open. Let x ∈ Ec. Then, x2 < 2 or x2 > 3.

1. x2 < 2 ⇐⇒ −
√
2 < x <

√
2. Now let ϵ = min{

√
2−x, x+

√
2} > 0. Then by the Archimidean

property there exists a n ∈ N s.t. 0 < 1
n < ϵ. Therefore, the image of B1/n(x) ⊂ Q will map

onto (0, 2).
2. x2 > 3 ⇐⇒ x >

√
3 or x < −

√
3. If x >

√
3, then by AP there exists a n ∈ N s.t.

x − 1
n >

√
3 =⇒ (x − 1

n )
2 > 3. If x < −

√
3, then by AP there exist n ∈ N s.t. x + 1

n <

−
√
3 =⇒ (x+ 1

n )
2 > 3. Either way, the image of B1/n(x) will map within Ec.

It is not compact because E is not closed in R. The limit points of E in R is [
√
2,
√
3]∪ [−

√
3,−
√
2],

which contains irrationals and is clearly not a subset of E. Since it is not closed in R, it is not compact
in R, and it is not compact in Q ⊂ R. It is open because

E =
(
(
√
2,
√
3) ∪ (−

√
3,
√
2)
)
∪Q ⊂ R (657)

which is the union of open (
√
2,
√
3) ∪ (−

√
3,
√
2)
)

and subset Q ⊂ R, and so it is open.

Exercise 10.97 (Rudin 2.17)

Let E be the set of all x ∈ [0, 1] whose decimal expansion consists of only the digits 4 and 7. Is E
countable? Is E dense in [0, 1]? Is E compact? Is E perfect?

Solution 10.97

Exercise 10.98 (Rudin 2.18)

Is there a nonempty perfect set in R which contains no rational number?

Solution 10.98

Exercise 10.99 (Rudin 2.19)

Listed.
1. If A and B are disjoint closed sets in some metric space X, prove that they are separated.
2. Prove the same for disjoint open sets.
3. Fix p ∈ X, δ > 0, define A to be the set of all q ∈ X for which d(p, q) < δ. Define B similarly,

with > in place of <. Prove that A and B are separated.
4. Prove that every connected metric space with at least two points is uncountable.
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Solution 10.99

Listed.
1. This is trivial with the fact that the closure of the closure of A is the closure of A.
2. Let A,B be open. We wish to show that if x ∈ A′, then x ̸∈ B. Assume x ∈ B. Then there

exists ϵ > 0 s.t. Bϵ(x) ⊂ B. But B ∩ A = ∅ =⇒ Bϵ(x) ∩ A = ∅ and so x ̸∈ A′, which is a
contradiction.

3. Clearly, A ∩ B = ∅. Not let x ∈ A =⇒ there exists ϵ > 0 s.t. Bϵ(x) ⊂ A =⇒ Bϵ(x) ∩ B =
∅ =⇒ x ∈ B′. We can prove similarly to show that x ∈ B =⇒ x ̸∈ A′.

4. Assume X is countable (solutionis very similar for finite). Then, we can enumerate a X =
{xi}∞i=1. We wish to show that X can be decomposed into the union of an open ball and
the interior of its complement as shown in (3). We fix p ∈ X. Then, we take the set D =
{d(p, x)}x ̸=p ⊂ R. Since D is a countable subset of R, there must exist some α > 0 s.t. α ̸∈ D.
This α partitions the distances into two sets, and we can define

X = {q ∈ X | d(p, q) < α} ∪ {q ∈ X | d(p, q) > α}

and by (3), these two sets are separated, which means that X is not connected, leading to a
contradiction.

Exercise 10.100 (Rudin 2.20)

Are closures and interiors of connected sets always connected? Look at subsets of R2.

Solution 10.100

The interiors are not always connected. Consider the two closed balls B1((1, 0)) and B1((−1, 0)) as
subsets of R2. They are connected but their interiors, which are the two open balls, are not connected.
As for closures, they are always connected. Let W be connected. Then for any partition A∪B = W ,
A ∩ B ̸= ∅ WLOG. Consider W = W ∪ W ′ and take any partition W = C ∪ D. Then, label
A = C ∩W,A∗ = C ∩W ′, B = D ∩W,B∗ = D ∩W ′. This implies that C = A ∪ A∗, D = B ∪ B∗,
and A ∪B = W (which is connected). Then, we can show that

C ∩D = (A ∪A∗ ∩D) = (A ∪A∗) ∩D = (A ∩D) ∪ (A∗ ∩D)

= (A ∩B) ∪ (A ∩B∗) ∪ (A∗ ∩D)

which cannot be empty since by connectedness of W , A ∩B ̸= ∅. Therefore, W is connected.

Exercise 10.101 (Rudin 2.21)

Let A and B be separated subsets of some Rk. Suppose a ∈ A, b ∈ B and define

p(t) = (1− t)a+ tb (658)

for t ∈ R. Put A0 = p−1(A), B0 = p−1(B).
1. Prove that A0 and B0 are separated subsets of R.
2. Prove that there exists a t0 ∈ (0, 1) s.t. p(t0) ̸∈ A ∪B.
3. Prove that every convex subset of Rk is connected.

Solution 10.101
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Exercise 10.102 (Rudin 2.22)

A metric space is called separable if it contains a countable dense subset. Show that Rk is separable.

Solution 10.102

Consider the set Qk ⊂ Rk. It is a finite Cartesian product (and hence, a countable union) of countable
Q, and so it is countable. Qk is dense in Rk since given any x ∈ Rk, we claim x is a limit point of
Qk. Given any ϵ > 0, we can construct B◦

ϵ (x). For each coordinate xi, by density of rationals in R
we can choose a qi ∈ Q s.t. 0 < d(xi, qi) < ϵ/k. Then, using triangle inequality, we can take the
distances between each coordinate changed from xi to qi. Let qk be the vector x with the components
x1, . . . , xk changed to q1, . . . , qk, respectively.

d(x, q) = d(x, q1) + d(q1, q2) + . . .+ d(qk−1, qk) <
ϵ

k
+ . . .+

ϵ

k
= ϵ (659)

and so q ∈ B◦
ϵ (x). Hence the intersection of Qk and B◦

ϵ (x) for any ϵ > 0 is nontrivial, so x is a limit
point of Qk.

Exercise 10.103 (Rudin 2.23)

A collection {Vα} of open subsets of X is said to be a base for X if the following is true: For every
x ∈ X and every open set G ⊂ X such that x ∈ G, we have x ∈ Vα ⊂ G for some α. In other words,
every open set in X is the union of a subcollection of {Vα}. Prove that every separable metric space
has a countable base.

Solution 10.103

Since X is separable it contains a countable dense subset, call it S. Then for every x ∈ S, we can
look at the set of all open balls with center x and rational radii, call it B. Then B is countable. Now
consider an open set U . By definition, for every x ∈ U , there exists an ϵ > 0 s.t. Bϵ(x) ⊂ U . By AP,
we can find a n ∈ N s.t. 0 < 1

n < ϵ, and therefore we can find an open ball B ∈ B s.t. B(x) ⊂ U . We
claim that

W :=
⋃
x∈U

B(x) = U (660)

If x ∈ U , then by construction it is contained in B(x) ⊂ ∪x∈UB(x), and so U ⊂W . If x ∈W , then it
is in B(x), which is fully contained in U and so W ⊂ U . Therefore every open set can be constructed
by a countable union of open balls in countable B.

Exercise 10.104 (Rudin 2.24)

Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

Solution 10.104

We fix δ > 0. Choose x1 ∈ X. Then choose x2 ∈ X s.t. d(x1, x2) ≥ δ, and keep doing this until we
choose xj+1 ∈ X s.t. d(xj+1, xi) ≥ δ for all i ∈ 1, . . . , j.

1. We claim that this must stop after a finite number of steps. Assume it doesn’t. Then by
assumption V = {xi}∞i=1 should have a limit point in X, denote it x. Choose δ

2 > 0. Then,
B◦

δ/2(x)∩V ̸= ∅. This intersection can only have one point since if it had two x′, x′′, then since

185/ 203



Real Analysis Muchang Bahng Spring 2025

both are in Bδ/2(x), then

d(x′, x′′) ≤ d(x′, x) + d(x, x′′) ≤ δ

2
+

δ

2
= δ

and since they are both in V , then d(x′, x′′) ≥ δ, which is a contradiction. Since there is a finite
number of points in Bδ/2(x) of V , x cannot be a limit point. So this must terminate at some
finite J <∞.

2. Denote W = {xi}Ji=1. Then, Bδ = {Bδ(x) | x ∈ W} must cover X, since if it didn’t, there
would exist a y ∈ X s.t. d(y, x) ≥ δ for all x ∈W , and we can add another element in W .

3. Consider δ = 1, 1/2, 1/3, . . . and construct the same cover

Bk = {B1/k(xki) | i = 1, . . . , Jk}

which is finite. Therefore, B = ∪∞k=1Bk must be countable.
4. We claim that countable {xki}k,i is dense. Consider any x ∈ X. For every ϵ > 0, we can find

an arbitrarily large n ∈ N s.t. 0 < 1
n < ϵ. Since Bn is an open cover, there must exist some xni

s.t. x ∈ B1/n(xni), which by symmetry implies that xni ∈ B1/n(x) ⊂ Bϵ(x). Therefore, there
always exists an xni in every Bϵ(x), and so Bϵ(x) ∩ {xki} ̸= ∅ =⇒ x is a limit point of {xki}
and so it is dense.

Exercise 10.105 (Rudin 2.25)

Prove that every compact metric space K has a countable base, and that K is therefore separable.

Solution 10.105

For every n ∈ N, let us consider an open covering Fn := {B1/n(xn) | xn ∈ K}. Since K is compact,
it has a finite subcovering

Gn := {B1/n(xni) | i = 1, . . . , k(n)} (661)

Now consider the union G = ∪ni=1Gn, which is countable. We claim that G is a base. Consider any
open set U . Then for every x ∈ U , we want to show that x is contained in a B1/n(xni) ⊂ U . Since
U is open , there exists a ϵ > 0 s.t. Bϵ(x) ⊂ U . Now by AP, there exists a n ∈ N s.t. 0 < 1

n < ϵ
2 .

Therefore B1/n(x) ⊂ Bϵ(x). Since G is an open covering, there must exist some B1/n(xni) that
contains x. Now we wish to show that B1/n(xni) is fully contained in U . Let y ∈ B1/n(xni). Then,
by triangle inequality,

d(y, x) = d(y, xni) + d(xni, x) <
1

n
+

1

n
< ϵ (662)

and therefore x ∈ B1/n(xni) ⊂ Bϵ(x). Therefore, for every x ∈ U , we can construct an open ball of
G containing x and contained in U , proving that this is a base.
We claim that the set of all P = {xni}n,i forms a countable dense subset. This is clearly countable
since G is countable. We must prove that the closure of P = K. Let x ∈ K. Given any ϵ > 0, we
wish to show that Bϵ(x)∩P ̸= ∅. Since Bϵ(x) is open, it can be covered by a subcollection of G , and
so their centers must be in Bϵ(x), proving that Bϵ(x) ∩P ̸= ∅. Therefore, x is a limit point of P.

Exercise 10.106 (Rudin 2.26)

Solution 10.106
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Exercise 10.107 (Rudin 2.27)

Solution 10.107

Exercise 10.108 (Rudin 2.28)

Solution 10.108

Exercise 10.109 (Rudin 2.29)

Prove that every open set in R is the union of an at most countable collection of disjoint segments.

Solution 10.109

Let U ⊂ R be open. Then for all x ∈ U there exists ϵ > 0 s.t. (x − ϵ, x + ϵ) ⊂ U . Now since R
is separable (by exercise Rudin 2.22), it has a countable dense subset Q. Consider all segments of
rational radius and rational centers

B = {(q − p, q + p) ⊂ R | q, p ∈ Q} (663)

This is clearly countable. We claim that every open U can be expressed as the union of a subset
of B. Now by AP, there exists n ∈ N s.t. 0 < 1

n < ϵ
2 , so for all x ∈ U , there exists n ∈ N s.t.

(x − 1
n , x + 1

n ) ⊂ U . Now since Q is dense in R, x ∈ Q′ =⇒ (x − 1
n , x + 1

n ) ∩ Q ̸= ∅. Say r is in
this intersection. Then, by symmetry of metric, x ∈ (r− 1

n , r+
1
n ). Therefore, for all x ∈ U , we have

found an open ball in B that contains x. Now, we must show that this actually is fully contained in
U . This is easy, since if y ∈ B1/n(r), then

d(y, x) ≤ d(y, r) + d(r, x) ≤ 1

n
+

1

n
< ϵ (664)

and so B1/n(r) is complete contained in the ϵ-ball around x, which is a subset of U . So for all x ∈ U ,
we found an open set Ux ∈ B covering x and fully contained in U , which means that ∪x∈UUx = U .
Now for some intervals B1, B2 ∈ B, if B1 ∩B2 ̸= ∅, take their union, which is another segment, and
keep doing this until Bi ∩Bj ̸= ∅ for all i, j. The cardinality of this new pruned set will be less than
or equal to B, which is countable, and so this must be at most countable.

10.3 Sequences in Euclidean Space

Exercise 10.110 (Math 531 Spring 2025, PS4.6)

Consider the set of all bounded sequences of real numbers. That is, we consider sequences {xn} for
which

sup
n∈N
|xn| (665)

exists. For example, the sequence {1, 2, 3, . . .} does not belong to the set, but the sequence
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{1,− 1
2 ,

1
3 ,−

1
4 , . . .} does. Call this set X. Endow it with a metric:

d({xn}, {yn}) = sup
n∈N
|xn − yn|. (666)

Explain why this is a metric. Make sure to explain why the supremum on the right hand side exists.

Solution 10.110

Exercise 10.111 (Math 531 Spring 2025, PS4.7)

Consider the metric space (X, d) from the previous problem. Is B1({0}) a compact set? Here, {0} is
just the sequence of zeros: {0, 0, 0, 0, . . .}.

Solution 10.111

Exercise 10.112 (Rudin 3.1)

Prove that convergence of {xn} implies convergence of {|xn|}. Is the converse true?

Solution 10.112

If {xn} converges to x, then for all ϵ > 0, there exists a N ∈ N s.t. |xn− x| < ϵ if n > N . We use the
inequality

∣∣|xn| − |x|
∣∣ ≤ |xn − x| to show that then for every ϵ > 0 there exists a N ∈ N s.t.∣∣|xn| − |x|

∣∣ ≤ |xn − x| ≤ ϵ

and so {|xn|} converges to |x|.

Exercise 10.113 (Rudin 3.2)

Calculate
lim
n→∞

√
n2 + n− n

Solution 10.113

We can compute

lim
n→∞

√
n2 + n− n = lim

n→∞
(
√

n2 + n− n) ·
√
n2 + n+ n√
n2 + n+ n

= lim
n→∞

n√
n2 + n+ n

where
An =

n√
n2 + 2n+ 1 + n

≤ n

2n+ 1
≤ n√

n2 + n+ n
≤ n√

n2 + n
=

n

2n
=

1

2
= Cn

Cn is ultimately constant. It suffices to prove that An limits to 1
2 by showing that

n

2n+ 1
=

n/n

(2n+ 1)/n
=

1

2 + 1
n

where { 1n} is infinitesimal.
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Exercise 10.114 (Rudin 3.3)

If s1 =
√
2 and

sn+1 =
√

2 +
√
sn

for n = 1, 2, . . ., prove that {sn} converges and that sn < 2 for n = 1, 2, . . ..

Solution 10.114

We can show that sn < 2 by induction. s1 =
√
2 < 2, so the base case is proved. Now, given that

sn < 2,
√
sn < 2 =⇒ 2 +

√
sn < 2 +

√
2 < 4 =⇒ sn+1 =

√
2 +
√
sn < 2 and we are done.

Exercise 10.115 (Rudin 3.4)

Find the upper and lower limits of the sequence {sn} defined by

s1 = 0; s2m =
s2m−1

2
; s2m+1 =

1

2
+ s2m.

Solution 10.115

Exercise 10.116 (Rudin 3.5)

For any two real sequences {an}, {bn}, prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn,

provided the sum on the right is not of the form ∞−∞.

Solution 10.116

Exercise 10.117 (Rudin 3.6)

Investigate the behavior (convergence or divergence) of Σan if
(a) an =

√
n+ 1−

√
n;

(b) an = (
√
n+ 1−

√
n)/n;

(c) an = ( n
√
n− 1)n;

(d) an = 1
1+zn , for complex values of z.

Solution 10.117

Exercise 10.118 (Rudin 3.7)

Prove that the convergence of Σan implies the convergence of∑ √
an
n

,

if an ≥ 0.
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Solution 10.118

Exercise 10.119 (Rudin 3.8)

If Σan converges, and if {bn} is monotonic and bounded, prove that Σanbn converges.

Solution 10.119

Exercise 10.120 (Rudin 3.9)

Find the radius of convergence of each of the following power series:
(a)

∑
n3zn,

(b)
∑

2n

n! z
n,

(c)
∑

2n

n2 z
n,

(d)
∑

n3

3n z
n.

Solution 10.120

Exercise 10.121 (Rudin 3.10)

Suppose that the coefficients of the power series
∑

anz
n are integers, infinitely many of which are

distinct from zero. Prove that the radius of convergence is at most 1.

Solution 10.121

Exercise 10.122 (Rudin 3.11)

Suppose an > 0, sn = a1 + · · ·+ an, and Σan diverges.
(a) Prove that

∑ an

1+an
diverges.

(b) Prove that

aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ 1− sN

sN+k

and deduce that
∑ an

sn
diverges.

(c) Prove that

an
s2n
≤ 1

sn−1
− 1

sn

and deduce that
∑ an

s2n
converges.

(d) What can be said about ∑ an
1 + nan

and
∑ an

1 + n2an
?
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Solution 10.122

Exercise 10.123 (Rudin 3.12)

Suppose an > 0 and Σan converges. Put

rn =

∞∑
m=n

am.

(a) Prove that

am
rm

+ · · ·+ an
rn

> 1− rn
rm

if m < n, and deduce that
∑ an

rn
diverges.

(b) Prove that

an√
rn

< 2(
√
rn −

√
rn+1)

and deduce that
∑ an√

rn
converges.

Solution 10.123

Exercise 10.124 (Rudin 3.13)

Prove that the Cauchy product of two absolutely convergent series converges absolutely.

Solution 10.124

Exercise 10.125 (Rudin 3.14)

If {sn} is a complex sequence, define its arithmetic means σn by

σn =
s0 + s1 + · · ·+ sn

n+ 1
(n = 0, 1, 2, . . .).

(a) If lim sn = s, prove that limσn = s.
(b) Construct a sequence {sn} which does not converge, although limσn = 0.
(c) Can it happen that sn > 0 for all n and that lim sup sn =∞, although limσn = 0?
(d) Put an = sn − sn−1, for n ≥ 1. Show that

sn − σn =
1

n+ 1

n∑
k=1

kak.

Assume that lim(nan) = 0 and that {σn} converges. Prove that {sn} converges. [This gives a
converse of (a), but under the additional assumption that nan → 0.]

(e) Derive the last conclusion from a weaker hypothesis: Assume M <∞, |nan| ≤M for all n, and
limσn = σ. Prove that lim sn = σ, by completing the following outline:
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If m < n, then

sn − σn =
m+ 1

n−m
(σn − σm) +

1

n−m

n∑
i=m+1

(sn − si).

For these i,

|sn − si| ≤
(n− i)M

i+ 1
≤ (n−m− 1)M

m+ 2
.

Fix ε > 0 and associate with each n the integer m that satisfies

m ≤ n− ε

1 + ε
< m+ 1.

Then (m+ 1)/(n−m) ≤ 1/ε and |sn − si| < Mε. Hence

lim sup
n→∞

|sn − σ| ≤Mε.

Since ε was arbitrary, lim sn = σ.

Solution 10.125

Exercise 10.126 (Rudin 3.15)

Definition 3.21 can be extended to the case in which the an lie in some fixed Rk. Absolute convergence
is defined as convergence of Σ|an|. Show that Theorems 3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45,
3.47, and 3.55 are true in this more general setting. (Only slight modifications are required in any of
the proofs.)

Solution 10.126

Exercise 10.127 (Rudin 3.16)

Fix a positive number α. Choose x1 >
√
α, and define x2, x3, x4, . . ., by the recursion formula

xn+1 =
1

2

(
xn +

α

xn

)
.

(a) Prove that {xn} decreases monotonically and that limxn =
√
α.

(b) Put εn = xn −
√
α, and show that

εn+1 =
ε2n
2xn

<
ε2n
2
√
α

so that, setting β = 2
√
α,

εn+1 < β

(
ε1
β

)2n

(n = 1, 2, 3, . . .).

(c) This is a good algorithm for computing square roots, since the recursion formula is simple and
the convergence is extremely rapid. For example, if α = 3 and x1 = 2, show that ε1/β < 1

10
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and that therefore

ε5 < 4 · 10−16, ε6 < 4 · 10−32.

Solution 10.127

Exercise 10.128 (Rudin 3.17)

Fix α > 1. Take x1 >
√
α, and define

xn+1 =
α+ xn

1 + xn
= xn +

α− x2
n

1 + xn
.

(a) Prove that x1 > x3 > x5 > · · · .
(b) Prove that x2 < x4 < x6 < · · · .
(c) Prove that limxn =

√
α.

(d) Compare the rapidity of convergence of this process with the one described in Exercise 16.

Solution 10.128

Exercise 10.129 (Rudin 3.18)

Replace the recursion formula of Exercise 16 by

xn+1 =
p− 1

p
xn +

α

p
x−p+1
n

where p is a fixed positive integer, and describe the behavior of the resulting sequences {xn}.

Solution 10.129

Exercise 10.130 (Rudin 3.19)

Associate to each sequence a = {αn}, in which αn is 0 or 2, the real number

x(a) =

∞∑
n=1

αn

3n
.

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44.

Solution 10.130

Exercise 10.131 (Rudin 3.20)

Suppose {pn} is a Cauchy sequence in a metric space X, and some subsequence {pni} converges to a
point p ∈ X. Prove that the full sequence {pn} converges to p.
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Solution 10.131

Exercise 10.132 (Rudin 3.21)

Prove the following analogue of Theorem 3.10(b): If {En} is a sequence of closed nonempty and
bounded sets in a complete metric space X, if En ⊃ En+1, and if

lim
n→∞

diam En = 0,

then
⋂∞

1 En consists of exactly one point.

Solution 10.132

Exercise 10.133 (Rudin 3.22)

Suppose X is a nonempty complete metric space, and {Gn} is a sequence of dense open subsets of
X. Prove Baire’s theorem, namely, that

⋂∞
1 Gn is not empty. (In fact, it is dense in X.) Hint: Find

a shrinking sequence of neighborhoods En such that En ⊂ Gn, and apply Exercise 21.

Solution 10.133

Exercise 10.134 (Rudin 3.23)

Suppose {pn} and {qn} are Cauchy sequences in a metric space X. Show that the sequence {d(pn, qn)}
converges. Hint: For any m,n,

d(pn, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn);

it follows that

|d(pn, qn)− d(pm, qm)|

is small if m and n are large.

Solution 10.134

Exercise 10.135 (Rudin 3.24)

Let X be a metric space.
(a) Call two Cauchy sequences {pn}, {qn} in X equivalent if

lim
n→∞

d(pn, qn) = 0.

Prove that this is an equivalence relation.
(b) Let X∗ be the set of all equivalence classes so obtained. If P ∈ X∗, Q ∈ X∗, {pn} ∈ P, {qn} ∈ Q,

define

∆(P,Q) = lim
n→∞

d(pn, qn);
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by Exercise 23, this limit exists. Show that the number ∆(P,Q) is unchanged if {pn} and {qn}
are replaced by equivalent sequences, and hence that ∆ is a distance function in X∗.

(c) Prove that the resulting metric space X∗ is complete.
(d) For each p ∈ X, there is a Cauchy sequence all of whose terms are p; let Pp be the element of

X∗ which contains this sequence. Prove that

∆(Pp, Pq) = d(p, q)

for all p, q ∈ X. In other words, the mapping φ defined by φ(p) = Pp is an isometry (i.e., a
distance-preserving mapping) of X into X∗.

(e) Prove that φ(X) is dense in X∗, and that φ(X) = X∗ if X is complete. By (d), we may identify
X and φ(X) and thus regard X as embedded in the complete metric space X∗. We call X∗ the
completion of X.

Solution 10.135

Exercise 10.136 (Rudin 3.25)

Let X be the metric space whose points are the rational numbers, with the metric d(x, y) = |x− y|.
What is the completion of this space? (Compare Exercise 24.)

Solution 10.136

10.4 Limits and Continuous Functions

10.5 Differentiation of Single-Variable Functions

10.6 Riemann Integration

10.7 Sequences of Functions

10.8 Multivariate Functions

10.9 TBD

Exercise 10.137 (Math 531 Spring 2025, PS6.1)

Give a direct proof that
∞∑

n=1

1

k2 + k
(667)

converges and find the exact value of the series.

Solution 10.137

Exercise 10.138 (Math 531 Spring 2025, PS6.2)

Suppose that an is a sequence of non-negative real numbers and suppose that
∑∞

n=1 an converges.
Prove that there exists a sequence bn with limn→∞ bn = +∞ so that

∑∞
n=1 anbn is still convergent.
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Solution 10.138

Exercise 10.139 (Math 531 Spring 2025, PS6.3)

Prove that
∑∞

n=1
sin(n)

n convergesa. Hint: Use summation by parts and the fact that sin(x) =
1
2i (exp(ix)− exp(−ix)) where i =

√
−1.

aHere, we are going to assume that we know a little bit about trigonometric functions!

Solution 10.139

Exercise 10.140 (Math 531 Spring 2025, PS6.4)

Fix c ∈ (0,∞).
• Assume xn is a sequence of numbers with xn → 0. Prove that

cxn → 1. (668)

• Deduce that, if xn → x, then
cxn → cx, (669)

for any x ∈ R.

Solution 10.140

Exercise 10.141 (Math 531 Spring 2025, PS6.5)

For every z ∈ C, verify that the series

E(z) =

∞∑
n=0

zn

n!
(670)

converges. Prove that for every z, w ∈ C we have that E(z)E(w) = E(z+w). Deduce that, for q ∈ Q,
we have that E(q) = eq. Deduce that E(x) = ex, for all x ∈ R.

Solution 10.141

Exercise 10.142 (Math 531 Spring 2025, PS6.6)

Let X be a complete metric space. Suppose that f : X → X is such that d(f(x), f(y)) ≤ 1
2d(x, y) for

all x, y ∈ X.
(a) Prove that f is continuous
(b) Pick any x0 ∈ X. Define a sequence of points {xn} in X by:

xn+1 = f(xn). (671)

Prove that {xn} converges. Hint: use a previous homework assignment.
(c) Denote the limit of {xn} by x. Prove that f(x) = x.
(d) Prove that if f(y) = y and f(x) = x then x = y.
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Solution 10.142

Exercise 10.143 (Math 531 Spring 2025, PS6.7)

Does there exist a continuous function f : [0, 1)→ R that is onto? If so, construct one from scratch.
If not, prove such a function cannot exist.

Solution 10.143

Exercise 10.144 (Math 531 Spring 2025, PS7.1)

If a function f : [0, 1] → R is continuous, it is uniformly continuous. This means that, given ϵ > 0,
there exists δ(ϵ) > 0 so that

d(x, y) < δ(ϵ)⇒ d(f(x), f(y)) < ϵ. (672)

• Prove that if f(x) = 1 for all x, we can take δ(ϵ) = +∞.
• Prove that if f(x) = Mx, we can take δ(ϵ) = ϵ

M .
• Prove that if f(x) =

√
x, we can take δ(ϵ) = ϵ2

4 .
• Prove that if f(x) = x

x+1 , we can take δ(ϵ) = ϵ.
• Prove that if f(x) = xN , for some N ∈ N, then we can take δ(ϵ) = ϵ

N .
You cannot use differentiation for Problem 1. Do everything from scratch.

Solution 10.144

Exercise 10.145 (Math 531 Spring 2025, PS7.2)

Let X be a general metric space. A function f : X → Y is called compact if the image of every closed
ball Br(x) is compact in Y . Prove that any continuous f : Rn → Rn is compact. Give an example of
a discontinuous function f : R→ R that is compact.

Solution 10.145

Exercise 10.146 (Math 531 Spring 2025, PS7.3)

Prove that if f : R → R sends connected sets to connected sets and compact sets to compact sets,
then it is continuous. Hint: Assume that f : R → R sends every connected set to a connected set.
Assume also that f is discontinuous at some x ∈ R. Find a compact set K so that f(K) is not
compact.

Solution 10.146

Exercise 10.147 (Math 531 Spring 2025, PS7.4)

• Let X be a general metric space and assume K ⊂ X is compact. Let f : K → K and assume
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that
d(f(x), f(y)) < d(x, y) (673)

for all x ̸= y ∈ K. Show that there exists x ∈ K with f(x) = x.
• Find a function f : [0,∞) → [0,∞) with the property that |f(x) − f(y)| < |x − y|, for all

non-equal x, y ∈ [0,∞), but for which there is no point x ∈ [0,∞) for which f(x) = x.
Hint for the first part: define the function g : K → R by g(x) = d(f(x), x). First prove that g is
continuous. Then deduce that g must attain its minimum at some x∗. Then show g(f(x∗)) < g(x∗)
unless f(x∗) = x∗. Conclude that f(x∗) = x∗.

Solution 10.147

Exercise 10.148 (Math 531 Spring 2025, PS7.5)

Coming back to Problem 1 above, assume that f is differentiable on [0, 1] and that |f ′(x)| ≤ M for
every x ∈ [0, 1]. Prove that we can take δ(ϵ) = ϵ

M .

Solution 10.148

Exercise 10.149 (Math 531 Spring 2025, PS7.6)

A function f : X → X is said to be Hölder continuous of degree α for some α ∈ (0,∞) if there exists
M > 0 so that

d(f(x), f(y)) ≤ C · d(x, y)α. (674)

Prove that if f is Hölder continuous of degree α > 0, then f is continuous. Give an example of a
function on R that is Hölder continuous of degree 1

2 but not of degree 1. Prove that continuously
differentiable functions [0, 1] are Hölder continuous of degree 1. Prove that the only functions on R
that are Hölder continuous of degree larger than 1 are constants.

Solution 10.149

Exercise 10.150 (Math 531 Spring 2025, PS7.7)

Suppose that f : [0, 2] → [0, 2] is twice differentiable. Suppose f(0) = 0, f(1) = 1, and f(2) = 2.
Prove that there exists c ∈ (0, 2) so that f ′′(c) = 0.

Solution 10.150

Exercise 10.151 (Math 531 Spring 2025, PS7.8)

Suppose that f is differentiable on [0, 1] satisfies:

f ′(x) = f(x). (675)

• Prove that f is automatically infinitely differentiable.
• Let M = max{f(x) : x ∈ [0, 1]}. Why does M exist? Similarly, let M(ϵ) = max{|f(x)| : x ∈
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[0, ϵ]}.
• Prove that for all x ∈ [0, ϵ], we have that

|f(x)| ≤M(ϵ)x+ |f(0)|. (676)

• Deduce that if f(0) = 0, we have that

M

(
1

2

)
= 0. (677)

Similarly, deduce that M(c) = 0 for all c ∈ [0, 1].
• What you have just proved is that if f ′(x) = f(x) while f(0) = 0, it follows that f(x) = 0 for

all x.
• Assume that E : R→ [0,∞) is differentiable and

|E′(t)| ≤ CE(t). (678)

Prove that if E(0) = 0, then E(t) = 0 for all t.

Solution 10.151

Exercise 10.152 (Math 531 Spring 2025, PS8.1)

Prove that if f : [0, 1]→ R is differentiable and f ′ > 0 on [0, 1], then f is strictly increasing on [0, 1].

Solution 10.152

Exercise 10.153 (Math 531 Spring 2025, PS8.2)

Explain why if x(t) represents the position of a particle at time t, x′(t) is called the velocity of the
particle, x′′(t) is called its acceleration, and x′′′(t) is called its jerk.

Solution 10.153

Exercise 10.154 (Math 531 Spring 2025, PS8.3)

A function f : R→ R is said to be T periodic if f(t+ T ) = f(t), for all t ∈ R. Now, given a function
f̃ defined on [0, T ), we can always extend f̃ to be T periodic in the following way. First, we can write

R =
⋃
n∈Z

[nT, (n+ 1)T ). (679)

Then define for t ∈ [nT, (n+ 1)T ) :
f(t) = f̃(t− nT ). (680)

• Show that f defined this way is T periodic.
• Suppose f̃ is continuous on [0, T ). Does this mean that its extension f will also be continuous

on R? What condition do you have to add?
• Suppose f̃ is continuously differentiable on [0, T ). What conditions do you have to put on f̃ to

ensure that f is continuously differentiable? How about k-times continuously differentiable?
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Solution 10.154

Exercise 10.155 (Math 531 Spring 2025, PS8.4)

Assume f : R→ R is differentiable and |f ′(x)| ≤ 1
1+x2 . Prove that

lim
x→∞

f(x) (681)

exists. You are not allowed to use integration. Hint: How do you prove convergence without knowing
what the limit is?

Solution 10.155

Exercise 10.156 (Math 531 Spring 2025, PS8.5)

In a previous homework assignment, we defined the function

E(x) =

∞∑
n=0

xn

n!
. (682)

We proved it is continuous, satisfies E(z + w) = E(z)E(w) for all z, w ∈ C, and then deduced that
for all x ∈ R, we have that E(x) = ex.

• Prove that E′(0) = 1. Hint: write H(x)−H(0)
x = 1

x

∑∞
n=1

xn

n! =
∑∞

n=1
xn−1

n! . Then prove that

lim
x→0

∞∑
n=1

xn−1

n!
= 1. (683)

• By studying the difference quotient, prove that E′(x) = E(x) for all x ∈ R. This is much easier
than the preceding point.

• Prove that limx→∞ E(x) =∞ and limx→−∞ E(x) = 0.
• Prove that E : (−∞,∞)→ (0,∞) is 1-1 and onto.
• Let L = E−1 : (0,∞)→ (−∞,∞). Prove that

L′(t) =
1

t
, (684)

for all t ∈ (0,∞).

Solution 10.156

Exercise 10.157 (Math 531 Spring 2025, PS8.6)

For each k ∈ N, consider
∑N

j=1 j
k. It turns out that this can be expressed as a polynomial of degree

k + 1 in N . For example,
N∑
j=1

j0 = N, (685)
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is a polynomial of degree 1 in N . Similarly,

N∑
j=1

j =
N(N + 1)

2
=

N2

2
+

N

2
, (686)

is a polynomial of degree 2 in N . If we write:

N∑
j=1

jk = a0 + a1N + a2N
2 + ...+ ak+1N

k+1, (687)

what is the value of ak+1? Hint: divide by Nk+1 and take the limit as N →∞.

Solution 10.157

Exercise 10.158 (Math 531 Spring 2025, PS9.1)

Fix E ⊂ R and take a sequence of functions fn : E → R. Assume that every subsequence of fn has a
subsequence converging uniformly to f : E → R. Prove that fn → f uniformly.

Solution 10.158

Exercise 10.159 (Math 531 Spring 2025, PS9.2)

In the following, each bullet point is a separate question. Give examples of sequences of functions
fn : E → R for which:

• E = [0, 1] and |fn(x)| ≤ 1 for all n ∈ N and x ∈ E, but fn has no uniformly convergent
subsequence.

• E = [0, 1] and all the fn are differentiable and |f ′
n(x)| ≤ 1 for all x and n, but fn has no

uniformly convergence subsequence.
• E = R, |fn(x)|+ |f ′

n(x)| ≤ 1 for all x and n, but fn has no uniformly convergent subsequence.

Solution 10.159

Exercise 10.160 (Math 531 Spring 2025, PS9.3)

Assume we have a twice differentiable function f : [0,∞) → R. Assume that f ′′(x) > 0 for all
x ∈ [0,∞), while f ′(0) ≥ 0. Prove that limx→∞ f(x) = +∞.

Solution 10.160
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Exercise 10.161 (Math 531 Spring 2025, PS9.4)

We proved that the function E : C→ C defined by:

E(z) =

∞∑
k=0

zk

k!
(688)

satisfies E(z + w) = E(z)E(w). Let us now investigate the real and imaginary parts of E(it), where
t ∈ R. Let us call the real part C(t) and the imaginary part S(t).

• Prove that E(z) = E(z), for every z ∈ C.
• Deduce that |E(it)| = 1 for all t ∈ R and thus:

C(t)2 + S(t)2 = 1, (689)

for all t ∈ R.
• Prove that C(−t) = C(t) for all t and that S(−t) = −S(t) for all t.
• Prove that C(0) = 1 and S(0) = 0, while C ′(t) = −S(t) and S′(t) = C(t), for all t ∈ R.
• Deduce that C ′′(t) = −C(t) and prove that there must be some t > 0 for which C(t) = 0.

(Hint: Use Problem 3)
• Prove that there is a smallest t∗ > 0 for which C(t∗) = 0.
• Define π = 2t∗ so that C(π2 ) = 0. Since S is increasing on [0, t∗], deduce that S(π2 ) = 1.
• Now use the formula E(z + w) = E(z)E(w) to deduce that

C(t+ 2π) = C(t), S(t+ 2π) = S(t), (690)

for all t ∈ R.
• It is now reasonable to unveil that C and S are none other but our old friends: cos and sin.

Solution 10.161

Exercise 10.162 (Math 531 Spring 2025, PS9.5)

Let us take X to be the set of continuous functions on [0, 1
2 ]. As shown in class, X can be made into

a complete metric space with the distance function:

d(f, g) = sup
x∈[0, 12 ]

|f(x)− g(x)| (691)

Let us also define J : X → X by:

J(f)(x) = 1 +

∫ x

0

f(t)dt. (692)

• Prove that indeed J : X → X.
• Prove that for every f, g ∈ X, we have that

d(J(f), J(g)) ≤ 1

2
d(f, g). (693)

• Deduce that there is a unique f∗ ∈ X for which J(f∗) = f∗, using Homework 6, Problem 6.
• Define the sequence fn by fn = J(fn−1) for n ≥ 1, while f0 ≡ 1. Find a nice formula for fn.

What then is f∗? (Look at Homework 6, Problem 6 again).
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Solution 10.162

Exercise 10.163 (Math 531 Spring 2025, PS9.6)

• Prove that

lim
n→∞

∫ 1

0

sin(nt)dt = 0. (694)

• Let f : [0, 1]→ R be continuously differentiable. Prove that

lim
n→∞

∫ 1

0

f(t) cos(nt)dt = 0. (695)

Solution 10.163

Exercise 10.164 (Math 531 Spring 2025, PS9.7)

Prove that the curve γ : [0, 1]→ R2 defined by:

γ(t) = (t, t sin(
1

t
)) (696)

is not rectifiable. Hint: show that if we restrict the curve to [ϵ, 1], then the resulting curve is rectifiable
and its length can be computed readily using the formula:∫ 1

ϵ

|γ′(t)|dt ≥
∫ 1

ϵ

1

t
| cos(1

t
)|dt− 1. (697)

Next, prove that ∫ 1

ϵ

1

t
| cos 1

t
|dt ≥ 1

1000
log

1

ϵ
, (698)

for all ϵ > 0 small. Then conclude that γ isn’t rectifiable.

Solution 10.164
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