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1 Systems

The theory of ordinary differential equations allows us to study all evolutionary processes satisfying three
properties.

1. Deterministic; that is, the entire past and future is determined by its present state.

2. Finite-dimensionality; that is, the number of parameters needed to describe any state is finite.

3. Differentiability; that is, the phase space of has the structure of a differentiable manifold.

The motion of a system in classical mechanics can be described using ordinary differential equations.
However, quantum mechanics, impact theory, fluid mechanics, and heat transfer do not satisfy all three
properties.

1.1 Phase Spaces, Phase Flows

Definition 1.1. Given a system that can be represented by a finite number of 1-dimensional parameters
x1, x2, ..., xn, each in their respective spaces X1, X2, ..., Xn, respectively, the phase space of the system
is the set

S ≡
n∏

i=1

Xi

Notice that each element s ∈ S represents one specific state of the system. While obvious, it should
explicitly be stated that

dimS = n

The abstract notion of a phase space is extremely useful, since we can now model states of the system
as points in S. As stated before, we can form a general theory and treat S as a differentiable manifold,
but for simplicity, we will treat S = Rn.
The motion of the entire system can be described by the motion of a point over a curve in the phase
space. Since the system is deterministic, the entire motion over this curve is determined by the point
itself.

Definition 1.2. Therefore, we can assign a velocity vector at each point s ∈ S that models the motion
of the point, called the phase velocity vector. The set of all phase velocity vectors in S is called the
phase velocity vector field in the phase space S. This vector field defines the differential equation of the
process.

Since we are trying to model the motion of a point through S, it is often convenient to paramaterize the
motion as a curve with the time parameter t. This creates a well-defined curve (blue curves in the figure
above) in a new space that now has a time-axis.

Definition 1.3. Given a phase space S, the extended phase space of a system is the space

S ⊕ R

where R represents the new time axis, with parameter t. Note that within this theory, negative values
of t are well-defined, and dim (S ⊕ R) = n+ 1.
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The parameterized curve, called the integral curve, is defined with the mapping

t 7→
(
t, φ(t)

)
where φ is the path of the particle through S.

But rather than focusing on the integral curve itself, it is useful to visualize the entire phase velocity field
continuously (since we’ve assumed differentiability) ”morphing” with respect to time. This represents a
change in the entire system as time passes by.

With this visual in mind, we can see that there may be multiple integral curves that can go through
S⊕R. To determine a unique integral curve, it may be necessary to define an initial point that represents
an initial condition.
However, there may be some systems that are invariant under time. For example, swinging a pendulum
or the movement of a particle is only dependent on the position and velocity of the pendulum and
particle. Whether we let go of the pendulum at t = 0 or t = 1 does not matter. This is what we call an
autonomous system.

Definition 1.4. An autonomous, or time-homogeneous, system is a system where the phase space does
not have a time parameter. We can visualize this type of system as one where the phase velocity vector
does not morph at all.
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Example 1.1 (1-Dimensional Autonomous System). Another special type of system is one that produces
a one dimensional constant phase field that changes in the same way everywhere with respect to time.
We can visualize it as a vector field in R that stays constant as time passes (left). Since it may be hard
to visualize vectors in R, we can view them as slopes.

Example 1.2 (1-Dimensional General System). A one dimensional system can be visualized as the initial
vector field of R at t = 0 gradually morphing as time passes.

Example 1.3 (1-Dimensional Non-Autonomous Constant System). Let ν be a constant, one-dimensional
non-autonomous phase velocity field that changes with respect to time t.
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Then, the function φ in which its graph
(
t, φ(t)

)
precisely overlaps the integral curves of ν can be computed

by Barrow’s formula

φ(t) = x0 +

ˆ t

t0

ν(τ) dτ

Where (t0, x0) is the initial condition of the system, and τ is a dummy variable representing time.

It is also worthwhile to note that we can define the function to exist within a certain subset of the phase
space and to be defined over a certain time interval within R, rather than requiring it to be defined on
the whole space itself. We will denote the time interval I ⊂ R and the subset U ⊂ S.

1.1.1 Dimensionality vs Order

Definition 1.5 (Dimensionality of a System). The dimensionality of the phase space of a system is
dependent upon many things:

1. the dimension of the space that we are working in

2. the number of particles or bodies that we observe

3. other factors, like orientation, that may add extra parameters

But colloquially, the more things we have to keep track in the system, the higher the dimensionality.

Definition 1.6 (Order of a System). Formally, the order of a differential equation is the highest order
derivative that is contained within the equation. It has nothing to do with how many moving parts there
are (i.e. dimensionality) and more with the rule that each moving part follows.

Example 1.4. We will state a couple examples of how many dimensions certain systems would have:

1. A point particle moving in three dimensional space in a constant force field would have 3 spatial
dimensions (each represented by a second order differential equation). Note that a constant force
field means that acceleration is also constant, so acceleration is not taken into account.

6/ 68



Ordinary Differential Equations Muchang Bahng August 2021

2. A rigid body in 3-space has 6 parameters (3 for its center of mass and 3 for its orientation).

Therefore, a system of 3 rigid bodies in 3-space has a total of 6 × 3 = 18 dimensions, where each
body is individually following F = ma where the force F is given by the gravitational force. This
gives a second order differential equation for each body in terms of the positions of the other bodies.

1.2 First Order Differential Equations

The simplest types of differential equations are systems that contain parameters displacement and first
derivative (velocity). Note that this does not necessarily mean that the dimension of the phase space is
1.

Definition 1.7 (n-dimensional First Order Differential Equation). An n-dimensional first order differ-
ential equation is an equation of the form

y′ = f(t, y)

where y is an n-dimensional vector representing the displacement parameters of the system, t is the time
parameter, and

f(t0, ·) : Rn −→ Rn

is an n-dimensional vector field that determines the phase velocity field of S at time t = t0. It can also
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be written explicitly as a system as 
y′1
y′2
...
y′n

 =


f1(t, y)
f2(t, y)

...
fn(t, y)


This equation defines an n-dimensional phase velocity field that morphs as time passes, which is used to
model the movement of the n-dimensional system. Simply put, the velocity vector that determines the
evolution of the system is completely dependent on the current state of the system (value of y) and the
time (value of t).
The solution to this system is a smooth map φ : I ⊂ R −→ U ⊂ Rn defined by the integral curve
t 7→ (t, φ(t)) in the extended phase space that satisfies the equation

φ′(t) = f
(
t, φ(t)

)
1.2.1 Basic One-Dimensional Examples

Example 1.5 (Normal Reproduction). Assume that the size of a biological population is y and that the
rate of reproduction is proportional to the number of organisms present. This is expressed by the first
order differential equation of dimension 1

y′ = ky, k > 0

The solution to the equation, given initial conditions (t0, y0) is

φ(t) = ek(t−t0)y0

Example 1.6 (Explosion Equation). If we assume that the rate of reproduction is proportional to the
number of pairs of individuals, we get the differential equation

y′ = ky2

The integral curves of this equation shoot off to infinity in a finite time, while the integral curves of the
normal reproduction system reaches infinite when t is infinite.

Example 1.7 (Logistic Curve). Due to limiting factors that may restrict the rate of growth of a popu-
lation, we modify the equation to the following logistic equation.

x′ = (1− x)x

Both the direction field and the integral curves are shown.
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Example 1.8 (Harvest Quotas). Now, we model a situation where we harvest a part of the population.
Let us first assume that the rate of harvest is constant. This leads to the differential equation

x′ = (1− x)x− c

The quantity c represents the rate of harvesting and is called the quota. For different values of c, this
results in the integral curves.

However, if we harvest with a relative quota, represented by the equation

x′ = (1− x)x− px

for 0 < p < 1, this leads us to an integral curve with a stable equilibrium point.

1.2.2 Additional Examples

Example 1.9 (Lotka-Volterra Model). The simplest model describing the predator-prey relationship
between two species is described by the system of differential equations (also a 2-dimensional first order
differential equation).

x′ = kx− axy
y′ = −ly + bxy

The phase space with its velocity vector field can be defined by defining the vector(
kx− axy
−ly + bxy

)
at each point in R2, labeled with the x and y axes.
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Note that we have graphed the model such that the two parameters x, y are shown and not the time, but
note that the time parameter t very much exists in this autonomous model.

The blue curve is the solution to this system, which describes the evolution of the autonomous system as
time passes.

Example 1.10 (Pendulums). Small oscillations of a pendulum can be approximated, using Taylor ap-
proximations, to get the differential equation

x′′ = −kx

By scaling the coefficient k, we can make it equal to 1 to get

x′′ = −x

The phase space of this system is 2 dimensional, with parameters x1 = x and x2 = x′. This creates the
autonomous system of first order differential equations

x′1 = x2, x
′
2 = −x1

This leads to the phase velocity vector field shown below.

A more accurate equation for the undampened pendulum system (by scaling k again) is

θ′′ = − sin θ

Clearly, the solution to this system, given initial value of (x∗1, x
∗
2), is a helix.
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This equation can be represented as the autonomous system

x′1 = x2, x
′
2 = − sinx1

which creates the phase velocity vector field

Example 1.11 (Small Oscillations of Spherical Pendulums). A spherical pendulum adds another dimen-
sion of movement (another dimension of angle and angular velocity), therefore inducing a system where
the phase space is 4 dimensional. For small oscillations, the differential equations

x′′ = −x, y′′ = −y

is represented with the system

x′1 = x2, x
′
2 = −x1, x′3 = x4, x

′
4 = −x3

where x1 = x, x2 = x′, x3 = y, x4 = y′.

1.3 Existence Theory

Before we introduce methods to solve differential equations, we will state and prove conditions for
existence and uniqueness of solutions. We will only prove existence in the simplest case.

Theorem 1.1 (Existence of Solutions in a First-Order System with Phase Space Dimensionality of 1).
Let f and ∂f/∂y be C0 functions in a given region U ∈ R2, with (t0, y0) ∈ D. This means that
Then, there exists an interval I containing t0 and exactly 1 solution φ of the differential equation

y′ = f(t, y)

passing through (t0, y0). The solution exists for values of t for all points
(
t, φ(t)

)
∈ U . φ is also a

continuous function with respect to (t, t0, y0).

In order to state the proof, we will introduce some lemmas.

Lemma 1.2. φ is a solution to y′ = f(t, y) with φ(t0) = y0 on interval I if and only if φ satisfies the
solution y of the equation

y(t) = y0 +

ˆ t

t0

f
(
s, y(s)

)
ds, t ∈ I (1)

Proof. (→) φ is a solution of y′ = f(t, y), with φ(t0) = y0 =⇒ φ′(t) = f
(
t, φ(t)

)
=⇒

ˆ t

t0

φ′(s) ds =

ˆ t

t0

f
(
s, φ(s)

)
ds

=⇒ φ(t) = φ(t0) +

ˆ t

t0

f
(
s, φ(s)

)
ds = y0 +

ˆ t

t0

f
(
s, φ(s)

)
ds

(←) y(t) is a solution of (1) =⇒ y(t) is continuous by the fundamental theorem of calculus. Since f is
also continuous, y(t) is differentiable.

=⇒ y′(t) =
d

dt

(
y0 +

ˆ t

t0

f
(
s, y(s)

)
ds

)
= f

(
t, y(t)

)
Putting t = t0, y(t0) = y0, this implies that y is a solution of φ′(t) = f(t, y). ■
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The previous lemma allows us to establish the existence of a solution using (1), which is generally easier.
We now define the Lipshitz inequality for functions of two variables.

Definition 1.8. Let f(t, y) be a continuous, bounded function in region D. For all (t, y1), (t, y2) ∈ D,
if f satisfies the inequality

|f(t, y2)− f(t, y1)| ≤ K|y2 − y1|
then f is said to satisfy the Lipshitz condition in D.

Now, we define a series of successive approximations

φ0(t) = y0, φj+1(t) = y0 +

ˆ t

t0

f
(
s, φj(s)

)
ds

We hope that this sequence will eventually converge onto the actual φ, but we must propertly define the
φj ’s such that the points remain in the region D.

Lemma 1.3. Let α = min{a, b
M }. Then, the successive approximations φj are defined on the interval I

given by |t− t0| < α, and on this interval

|φj(t)− y0| ≤M |t− t0| < b, j = 0, 1, 2, ... (2)

Proof. Clearly, φ0(t) is defined on I and satisfies (2). Now assuming that for n ≥ 1, φn is defined and
satisfies (2) =⇒ the point

(
t, φ(t)

)
∈ D for t ∈ I. To prove that

(
t, φn+1(t)

)
∈ D, we already know

t ∈ I, so we must show that |φn+1(t)− y0| < b. Using the intermediate value theorem,

|φn+1(t)− y0| =
∣∣∣∣ˆ t

t0

f
(
s, φj(s)

)
ds

∣∣∣∣
≤
∣∣∣∣ˆ t

t0

|f
(
s, φj(s)

)
| ds
∣∣∣∣

≤M |t− t0| < Mα <≤ b

We specifically assign α because first, (2) implies that the successive approximations also have slopes
bounded by the cone of the lines with slope M and −M through points (t0, y0). The length α of I
depends on where these lines meet D. Either way, the φj ’s remain in the rectangles. ■

Now, we can prove an existence theorem.

Theorem 1.4. Suppose f and ∂f/∂y are continuous and bounded on the rectangle D satisfying the
Lipshitz condition. That is,

|f(t, y)| ≤M,
∣∣∣∂f
∂y

∣∣∣ ≤ K
Then, the sucessive approximations φj (defined previously) converge uniformly on the interval I = (t0 −
α, t0 + α) to a solution φ of the differential equation y′ = f(t, y) with φ(t0) = y0.

Proof. The second lemma shows that φj are defined on the interval I. Now, we define the difference
between φj adn φj+1 in the interval [t0, t0 + α] and [t0 − α, t0]. Using the Lipshitz condition,

rj(t) = |φj+1(t)− φj(t)| =
∣∣∣∣ˆ t

t0

f
(
s, φj(s)

)
− f

(
s, φj−1(s)

)
ds

∣∣∣∣
≤
ˆ t

t0

|f
(
s, φj(s)

)
− f

(
s, φj−1(s)

)
| ds

≤ K
ˆ t

t0

φj(s)− φj−1(s) ds

= K

ˆ t

t0

rj−1(s) ds, j = 1, 2, ...

When j = 0,

r0(t) = |φ1(t)− φ0(t)| =
∣∣∣∣ˆ t

t0

f
(
s, φ(s)

)
ds

∣∣∣∣
≤
ˆ t

t0

|f
(
s, φ(s)

)
ds ≤M(t− t0)
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Now, using induction, we prove that

rj(t) ≤
MKj(t− t0)j+1

(j + 1)!
, j = 0, 1, 2, ...; t0 ≤ t ≤ t0 + α

The base case suffices. When j = 0,
r0(t) ≤M(t− t0)

Now assume that the statement is true for j = p− 1, for p ≥ 1. Then,

rp(t) ≤ K
ˆ t

t0

rp−1(s) ds ≤ K
ˆ t

t0

MKp−1(s− t0)p

p!
ds

=
MKp

p!
·
(
(s− t0)p+1

p+ 1

∣∣∣∣t
t0

)
=
MKp(s− t0)p+1

(p+ 1)!
, t0 ≤ t ≤ t0 + α

■

Integrating this fact into the main proof, we have

rj(t) ≤
MKj |t− t0|j+1

(j + 1)!
=
M(K|t− t0|)j+1

K(j + 1)!

<
Mαj+1Kj+1

K(j + 1)!

=
M(Kα)j+1

K(j + 1)!

This implies that

∞∑
j=0

rj(t) =
M

K

∞∑
j=0

(Kα)j+1

(j + 1)!

=
M

K
eαK

This implies that
∞∑
j=0

(
φj+1(t)− φj(t)

)
absolutely and uniformly converges in the interval I where |t− t0| < α to some function of t, determined
arbitrarily by φ(t).
To see the rate and error bound of convergence, we already defined

φ(t) = φ0(t) +

∞∑
n=0

(
φn+1(t)− φn(t)

)
=⇒ φ(t)− φj(t) =

∞∑
n=0

(
φn+1(t)− φn(t)

)
=⇒ |φ(t)− φj(t)| ≤

∞∑
n=j

|φn+1(t)− φn(t)|

≤
∞∑
n=j

rn(t) ≤
M

K

∞∑
n=j

(Kα)n+1

(n+ 1)!

≤ M

K

(Kα)j+1

(j + 1)!

∞∑
n=0

(Kα)n

n!
=
M

K

(Kα)j+1

(j + 1)
eKα
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It is clear that

ϵj =
(Kα)j+1

(j + 1)!
→ 0 as j →∞

To prove continuity of φ(t) on I, we let ϵ > 0 and assign

φ(t+ h)− φ(t) = φ(t+ h)− φj(t+ h) + φj(t+ h)− φj(t) + φj(t)− φ(t)

which, by the triangle inequality, implies that

=⇒ |φ(t+ h)− φ(t)| ≤ |φ(t+ h)φj(t+ h)|+ |φj(t+ h)− φj(t)|+ |φj(t)− φ(t)|
≤ 2εj + |φj(t+ h)− φj(t)|

Choosing j sufficiently large and |h| sufficiently small, using

lim
j→∞

εj = 0

and continuity of φj(t), we can make

|φ(t+ h)− φ(t)| ≤ |φj(t+ h)− φj(t)| < ε, as h→ 0

=⇒ φ(t) is continuous since the limit exists at t that matches the actual value.
To show that the φ(t) satisfies the integral equation in the first lemma, we see that

lim
j→∞

φj(t) = φ(t) =⇒ lim
j→∞

ˆ t

t0

f
(
s, φj(s)

)
ds =

ˆ t

t0

f
(
s, φ(s)

)
ds

=⇒ lim
j→∞

φj+1(t) = lim
j→∞

(
y0

ˆ t

t0

f
(
s, φj(s)

)
ds

)
=⇒ φ(t) = y0 +

ˆ t

t0

f
(
s, φ(s)

)
ds

Using the first lemma, we see that φ therefore satisfies the differential equation y′ = f(t, y) with initial
conditions φ(t0) = y0.

Corollary 1.4.1. The error committed by φj(t) satisfies the estimate

|φ(t)− φj(t)| ≤
M

K

(Kα)j+1

(j + 1)!
eKα ∀t ∈ I

In fact, the conditions of this theorem implies the uniqueness of solutions of y′ = f(t, y). However, we
can prove existence without uniqueness.

Theorem 1.5. Suppose f ∈ C0 in rectangle R with f bounded; that is, |f(t, y)| ≤ M for all (t, y) ∈ R.
Let α = min{a, b/M}. Then, there exists a solution φ of differential equation

y′ = f(t, y)

with φ(t0) = y0 existing on interval |t− t0| < α.

Now, we prove the uniqueness of solutions.

Lemma 1.6 (Gronwall Inequality). Let K > 0 be a constant, and f, g ∈ C0 be nonnegative on interval
α ≤ t ≤ β satisfying

f(t) ≤ K +

ˆ t

α

f(s) g(s) ds ∀t ∈ [α, β]

Then,

f(t) ≤ K exp

(ˆ t

α

g(s) ds

)
∀t ∈ [α, β]
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Proof. Let

U(t) = K +

ˆ t

α

f(s) g(s) ds =⇒ U(α) = K

Then, f(t) ≤ U(t), which implies, by the fundamental theorem of calculus and g(t) ≥ 0, that

U ′(t) = f(t) g(t) ≤ U(t) g(t) (α ≤ t ≤ β)
=⇒ U ′(t)− U(t) g(t) ≤ 0

which implies

U ′(t)

(
− exp

(ˆ t

α

g(s) ds
))
− U(t) g(t)

(
− exp

(ˆ t

α

g(s) ds
))

=

(
U(t)

(
− exp

(ˆ t

α

g(s) ds
)))′

≤ 0

=⇒
ˆ t

α

d

dr

(
U(r)

(
− exp

(ˆ r

α

g(s) ds
)))

dr

= U(t) exp
(
−
ˆ t

α

g(s) ds
)
− U(α) ≤ 0

=⇒ f(t) ≤ U(t) ≤ U(α) exp
( ˆ t

α

g(s) ds
)
= K exp

(ˆ t

α

g(s) ds
)

■

Theorem 1.7. Let f, ∂f/∂y ∈ C0 be bounded in rectangle R ≡ {(t, y) | |t− t0| < α, |y − y0| < b}. Then
there exists at most one solution of y′ = f(t, y) satisfying φ(t0) = y0.

Proof. Since the hypothesis of this theorem establishes the existence of at least one solution φ, it suffices
to prove that any two solutions are equal. Assume that φ1, φ2 are two different solutions on a common
interval J . By the first lemma, we have for all t ∈ J

φ1(t) = y0 +

ˆ t

t0

f
(
s, φ1(s)

)
ds

φ2(t) = y0 +

ˆ t

t0

f
(
s, φ2(s)

)
ds

which implies (using the Lipshitz condition) that

φ2(t)− φ1(t) =

ˆ t

t0

f
(
s, φ2(s)

)
− f

(
s, φ1(s)

)
ds

=⇒ |φ2(t)− φ1(t)| ≤
∣∣∣∣ ˆ t

t0

|f
(
s, φ2(s)

)
− f

(
s, φ1(s)

)
| ds
∣∣∣∣

≤ K
∣∣∣∣ˆ t

t0

|φ2(s)− φ1(s)|
∣∣∣∣

Using Gronwall’s inequality and setting K = 0, g(s) = 1, and f(t) = |φ2(t)− φ1(t)|, we have

≤ K
∣∣∣∣ˆ t

t0

|φ2(s)− φ1(s)|
∣∣∣∣ ≤ 0 · exp

(ˆ t

α

1 ds

)
= 0

=⇒ |φ2(t)− φ1(t)| = 0 =⇒ φ1 = φ2, a contradiction. ■

Finally, we prove continuity of f with respect to initial conditions.

Theorem 1.8. let f, ∂f/∂y ∈ C0 be bounded in region D and satisfy the Lipshitz condition. Let φ be
the solution of y′ = f(t, y) with φ(t0) = y0 and let ψ be the solution of y′ = f(t, y) with ψ(t̂0) = ŷ0.
Assume that φ and ψ both exist on interval [a, b]. Then for each ε > 0, there exists a δ > 0 such that if
|t− t̂| < δ and |y − ŷ| < δ, then

|φ(t)− ψ(t̂)| < ε, a < t, t̂ < b
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2 Methods of Solution

2.1 Basic Methods for First Order Scalar-Valued DEQs

2.1.1 Variables Separable

Definition 2.1 (Separable DEQs and Solution). A differential equation in the form

y′ = g(t)h(y)

is called a variables-separable equation.
Assume that given solution φ, h

(
φ(t)

)
̸= 0 for all t ∈ I. Then, we rearrange the equation and integrate

either indefinitely or definitely, where y = φ(t). Note that there is no difference between finding solutions
using indefinite or definite integration.

φ′(t) = g(t)h(φ(t)) =⇒ y′

h(y)
= g(t)

1. Indefinitely, we can use substitution y = φ(t) to get
ˆ

φ′(t)

h(φ(t))
dt =

ˆ
g(t) dt =⇒

ˆ
1

h(y)
dy =

ˆ
g(t) dt

This can be remembered with the mnemonic

dy

dt
= g(t)h(y) =⇒ 1

h(y)
dy = g(t)dt =⇒

ˆ
1

h(y)
dy =

ˆ
g(t)dt

2. Definitely, we can use the same substitution y = φ(s), where y0 = φ(t0), to get

ˆ t

t0

φ′(s)

h(φ(s))
ds =

ˆ t

t0

g(t) dt =⇒
ˆ y

y0

1

h(ỹ)
dỹ =

ˆ t

t0

g(t̃) dt̃

where we can treat ỹ and t̃ as dummy variables.

Both methods define the solution implicitly, but it may or may not be possible to solve it explicitly
as y = φ(t). However, by the implicit function theorem, we can guarantee the existence of a function
y = φ(t) within a neighborhood of (t0, y0).

2.1.2 First Order Linear Equations

Definition 2.2 (First-Order Linear DEQ and Solution). A differential equation of the form

y′ + a1(t)y = b(t)

is called a first order linear differential equation.
To solve this, we assume that there is a function µ(t), called the integrating factor, with the property
that

µ(t)a1(t) = µ′(t)

This can be calculated with the following derivation =

µ′(t)

µ(t)
= a1(t) =⇒

(
lnµ(t)

)′
= a1(t)

=⇒ lnµ(t) =

ˆ
a1(t) dt+ k

=⇒ µ(t) = e
´
a1(t) dt+k = ke

´
a1(t) dt

Okay, now what? Well multiplying this integrating factor on both sides conveniently gives us a left hand
side in the form of the product rule of differentiation.

µ(t)b(t) = µ(t)y′ + µ(t)a1(t)y

= µ(t)y′ + µ′(t)y

=
(
µ(t)y(t)

)′
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Integrating both sides gives us

µ(t)y(t) =

ˆ
µ(t)b(t) dt+ c

Summarizing, the solution, if it exists, has explicit form of

y(t) =
1

µ(t)

(ˆ
µ(t)b(t) dt+ c

)
, µ(t) = ke

´
a1(t) dt

2.1.3 Exact Equations

Definition 2.3 (Exact DEQs and Solutions). Let ψ : R2 −→ R be a C1 function with partial derivatives
ψt and ψy. A differential equation of the form

ψt(t, y) + ψy(t, y)y
′ = 0

is called an exact differential equation. The left hand side can be transformed as such:

ψt(t, y) + ψy(t, y)y
′ =

d

dt
ψ
(
t, y(t)

)
= 0

This implies that the solution can be written implicitly as

ψ
(
t, y(t)

)
= c

2.1.4 Bernoulli Differential Equations

Definition 2.4 (Bernoulli DEQs and Solutions). A differential equation of the form

y′ + p(t) y = q(t) yn

is called a Bernoulli differential equation. To solve this, we first divide by yn to get

y−ny′ + p(t) y1−n = q(t)

and use the substitution v = y1−n, v′ = (1− n)y−ny′ to plug into the equation and get

1

1− n
v′ + p(t)v = q(t)

This is a first order linear differential equation that we can solve for v and solve back for y.

2.2 2nd Order Equations Solvable by 1st Order Methods

A small class of 2nd order differential equations, which have the general form

y′′ = f(t, y, y′)

can be reduced by substitution to a system of first order differential equations. There are two types of
equations:

1. Equation of form y′′ = g(t, y′) can be solved with the substitution p = y′ to create the new equation

p′ = g(t, p)

which may be solved for p using any of the first order methods. We can then integrate p again to
find y, adjusting the extra constant to satisfy the initial conditions φ(t0) = y0. That is, if p = ψ(t)
is the solution,

φ(t) = y0 +

ˆ t

t0

ψ(s) ds
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2. Equation of form y′′ = h(y, y′) can be transformed into a pair of first order equations (i.e. a first
order vector-valued equation). That is, let φ be the solution such that φ(0) = y0, φ

′(0) = z0. We
substitute

p(t) = φ′(t) =⇒ p′(t) = φ′′(t)

Assuming we found a solution y = φ(t), suppose we can invert it to a function of y. That is,
t = s(y). This implies that

y′ = φ′(t) = p(t) = p
(
s(y)

)
≡ q(y)

Then,

φ′′(t) = p′(t) =
dq

dy
φ′(t) =

dq

dy
p(t) =

dq

dy
q(y)

which implies that the equation can be decomposed to the following system of linear equations

dq

dy
q(y) = h

(
y, q(y)

)
y′ = q(y)

We first find the solution of the first equation (which may not always be possible). If z0 = 0, q ≡ 0
may be a solution =⇒ φ(t) = y0. If q ≡ 0 is not a solution, we find q = ψ(t), substitute it into the
second equation to find the solution (using variables separable), and then verify it by substituting
φ into the original second order differential equation.

2.3 Numerical Methods: Euler’s Algorithm

Definition 2.5 (Euler’s Algorithm). Given a differential equation y′ = f(t, y), we follow these steps to
create an approximation graph passing through (t0, y0).

1. Let the interval be [t0, t0 + α]. Divide the interval into n (not necessarily equally spaced) sub-
intervals [ti, ti+1] (for simplicity, assume equally spaced).

2. At each point (ti, yi), calculate the slope of the graph mi by plugging the values into the equation
f(ti, yi).

3. From each point (ti, yi), calculate (ti+1, yi+1) using the straight-line graph

yi+1 = yi +mi(ti+1 − ti) = yi + f(ti, yi)(ti+1 − ti)

This create a piecewise linear function that serves as an approximation for the true integral curve.

Theorem 2.1 (Error Bound for Euler’s Algorithm). The cumulative error bound for Euler’s algorithm
is

n∑
k=1

|Tk| =
1

2
Mh2n =

1

2
αMh
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Proof. Let φ(t) be the exact solution. At (tk, yk) and (tk+1, yk+1),

φ(tk+1) = φ(tk) +

ˆ tk+1

tk

f
(
t, φ(t)

)
dt

The formula for the approximate solution is

yk+1 = yk + (tk+1 − tk)f(tk, yk)

Therefore, the local error per point is

Tk ≡ |φ(tk+1)− yk+1|

=

∣∣∣∣ˆ tk+1

tk

f
(
t, φ(t)

)
dt− (tk+1 − tk)f(tk, yk)

∣∣∣∣
We wish to establish an upper bound on Tk. For convenience of notation, let us denote F (t) = f

(
t, φ(t)

)
.

This means that

Tk =

∣∣∣∣ ˆ tk+1

tk

F (t) dt− (tk+1 − tk)F (tk)
∣∣∣∣

The mean value theorem says that there exists some sk ∈ (tk, t) such that

F (t)− F (tk) = (t− tk)F ′(sk)

which implies that

ˆ tk+1

tk

F (t) dt =

ˆ tk+1

tk

F (tk) + (t− tk)F ′(sk) dt

=

ˆ tk+1

tk

(t− tk)F ′(s) dt+ (tk+1 − tk)F (tk)

=⇒ Tk =

∣∣∣∣ˆ tk+1

tk

(t− tk)F ′(sk) dt

∣∣∣∣
Let

M ≡ max
t0≤t≤t0+α

∣∣F ′(t)
∣∣

Then,

F ′(t) =
∂F

∂t

(
t, φ(t)

)
+

(
∂F

∂y

(
t, φ(t)

))
· φ′(t)

=
∂F

∂t

(
t, φ(t)

)
+

(
∂F

∂y

(
t, φ(t)

))
f
(
t, φ(t)

)
Using the triangle inequality, we get

M ≤ max
R

∣∣∣∂F
∂t

(t, y)
∣∣∣+max

R

∣∣∣∂F
∂y

(t, y)
∣∣∣ ·max

R

∣∣∣f(t, y)∣∣∣
This means that the bound for M can be calculated explicitly with the inequality above. It can be
checked that

M ≤
ˆ tk+1

tk

(t− tk) dt =
M

2
(tk+1 − tk)2

Assuming equal subdivisions, we can let tk+1 − tk = h = α
n and conclude that

Tk ≤
1

2
Mh2

Therefore, the cumulative error bound is

n∑
k=1

|Tk| =
1

2
Mh2n =

1

2
αMh

■
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3 Linear Differential Equations

Definition 3.1 (nth Order Linear DEQ). A nth order linear differential equation has the form

a0(t)y
(n) + a1(t)y

(n−1) + . . .+ an−1(t)y
′ + an(t)y = f(t)

where a0, a1, . . . , an, f ∈ C0 over interval I ⊂ R. Using the linear operator

Ln : Cn(R) −→ C0(R), Ln(y) ≡ a0y(n) + a1y
(n−1) + . . .+ an−1y

′ + any

where

Ln(y)(t) ≡
( n∑

i=0

aiy
(n−i)

)
(t) =

n∑
i=0

ai(t)y
(n−i)(t)

the DEQ can be written as
Ln(y)(t) = f(t), or Ln(y) = f

The DEQ is said to be homogeneous iff f = 0 and inhomogeneous iff f ̸= 0.

In general linear differential equations are important since it is often the case that we reduce nonlinear
differential equations to linear ones with approximations. For example, the equation for the pendulum
is approximated as

d2θ

dt2
+
g

L
sin θ = 0 =⇒ d2θ

dt2
+
g

L
θ = 0

for small θ.

Example 3.1. Consider the equation

ty′′ + cos (t)y′ +
(
1− 1

1 + t

)
y = 2t

1− 1
1+t is discontinuous at t0 = −1, and this equation is not of second order at t = 0. Therefore, valid

intervals I must be a subset of
(−∞,−1) ∪ (−1, 0) ∪ (0,∞)

for which there exists a unique solution.

3.1 Solving Homogeneous Linear DEQs

This entire section is grounded in this theorem.

Theorem 3.1 (The Fundamental Set). It can be seen that the set of functions y = φ(t) that are solutions
to the homogeneous equation Ln(y) = 0 is simply just the kernel of Ln, which is a subset of Cn(R). Then,

dimkerL = n

The basis of kerL is called the fundamental set, and given that {φ1, φ2, . . . , φn} is this basis, the general
solution is a linear combination of them.

φ =
∑
i

kiφi, ki ∈ R

This reduces the problem of finding a general solution to just finding n linearly independent ones.

Definition 3.2 (Wronskian). Let f1, f2, . . . , fn be of class Cn−1(R) in interval I ⊂ R. Then, the
Wronskian is defined

W (f1, f2, . . . , fn) ≡ det

 f1 . . . fn
...

. . .
...

f
(n−1)
1 . . . f

(n−1)
n


A simple application of the Wronskian is shown.
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Theorem 3.2. Let φ1, φ2, . . . , φn be any n special solutions of the nth order linear homogeneous equation
L(y) = 0. Then, the set is linearly independent if and only if

W (φ1, . . . , φn) ̸= 0

Note that this theorem only works when the φi’s are known to be solutions.

Proof. Suppose that W (φ1, . . . , φn)(t) ̸= 0 for all t ∈ I and that φ1, . . . , φn are linearly dependent. This
means that there exists a nontrivial linear combination summing up to 0, and differentiating the equation
on both sides gives the following (by abuse of notation, we will denote W as the Wronskian matrix, not
the determinant):

W (φ1, . . . , φn)


b1
b2
...
bn

 =


0
0
...
0

 ⇐⇒

b1φ1(t) + b2φ2(t) + . . .+ bnφn(t) = 0

b1φ
′
1(t) + b2φ

′
2(t) + . . .+ bnφ

′
n(t) = 0

. . .

b1φ
(n−1)
1 (t) + . . .+ bnφ

(n−1)
n (t) = 0

For each fixed t ∈ I, by hypothesis W is nonsingular, meaning that the only solution satisfying Wb = 0
is when b = 0 itself. But this contradicts our assumption that b ̸= 0, and so we have proved that

W (φ1, . . . , φn) ̸= 0 =⇒ φ1, . . . , φn linearly independent

Now, given that W (φ1, . . . , φn)(t) = 0 for some t0 ∈ I, assume that φ1, . . . , φn are linearly independent.
W (φ1, . . . , φn)(t0) (interpreted as a matrix) is singular, the kernel of W (φ1, . . . , φn)(t0) is nontrivial;
that is, there exists a nontrivial solution b ̸= 0 to

W (φ1, . . . , φn)(t0)

b1...
bn

 =

0
...
0


To show linear dependence of the φi’s, we define a solution ψ of the DEQ above as

ψ(t) = b1φ1(t) + b2φ2(t) + . . .+ bnφn(t)

where (b1, . . . , bn)
T is any solution of W (t0)b = 0 above. Since the system above tells us that

ψ(t0) = 0, ψ′(t0) = 0, . . . , ψ(n−1)(t0) = 0

it follows that ψ = 0 for all t ∈ I is a solution. This means that we have found b1, . . . , bn such that

ψ =

n∑
i=1

biφi(t) = 0

contradicting the assumption that φi’s were linearly independent. Therefore,

W (φ1, . . . , φn) = 0 for some t0 ∈ I =⇒ φ1, . . . , φn linearly dependent

■

3.1.1 Homogeneous Equations with Constant Coefficients

Let us have the nth order linear homogeneous equation with constant coefficients ki ∈ R.

Ln(y) ≡ k0y(n) + k1y
(n−1) + . . .+ kn−1y

′ + kny = 0

Now, assume that a solution in the form ezt is valid for z ∈ C (explained later). Then,

L(ezt) = k0(e
zt)(n) + k1(e

zt)(n−1) + . . .+ kn−1(e
zt)′ + kn(e

zt)

= k0z
nezt + k1z

n−1ezt + . . .+ kn−1ze
zt + kne

zt

= ezt
(
k0z

n + k1z
n−1 + . . .+ kn−1z + kn

)
= 0
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Definition 3.3 (Characteristic Polynomial). Given the linear DEQ Ln(y) = 0, the characteristic poly-
nomial of Ln is

n∑
i=0

kiz
n−i

Since ezt ̸= 0 for all values of z, we must find all zeroes of the characteristic polynomial. By the
fundamental theorem of algebra, there exists n solutions in C, but it turns out that we can turn them
into real solutions using the following lemma.

Lemma 3.3. Given that we have complex valued solution φ to L(y) = 0, where

φ = ez
∗t = e(α+βi)t = eαt

(
cosβt+ i sinβt

)
and z∗ is a complex solution to the characteristic polynomial, the functions

Re(φ) = eαt cosβt

Com(φ) = eαt sinβt

are real solutions to the DEQ.

Proof. Since z∗ = α + βi is a zero of the polynomial, its complex conjugate z∗ = α − βi is also a zero,
meaning that the following two functions are solutions.

φ = e(α+βi)t = eαt
(
cosβt+ i sinβt

)
φ = e(α−βi)t = eαt

(
cosβt− i sinβt

)
By linearity of kerL, the following are also solutions

Re(φ) =
φ+ φ

2
, Com(φ) =

φ− φ
2

■

Lemma 3.4. Given differential equation L(y) = 0, let its characteristic polynomial have real root z∗

with multiplicity m > 1. Then, all the following are also real solutions of the DEQ:

ez
∗t, tez

∗t, t2ez
∗t, . . . , tm−1ez

∗t

If this root z∗ is complex then its complex conjugate z∗ must also be a root of multiplicity m, and so in
addition to ez

∗t, . . . , tm−1ez
∗t, the following are also (complex) solutions of L(y) = 0.

ez
∗t = ez∗t, tez

∗t = tez∗t, t2ez
∗t = t2ez∗t, . . . , tm−1ez

∗t = tm−1ez∗t

and we can construct a basis of real-valued functions from these 2(m− 1) functions.

Re(ez
∗t),Re(tez

∗t),Re(t2ez
∗t), . . . ,Re(tm−1ez

∗t)

Com(ez
∗t),Com(tez

∗t),Com(t2ez
∗t), . . . ,Com(tm−1ez

∗t)

We can summarize all this in the following theorem.

Theorem 3.5 (Solving Homogeneous Linear DEQs with Constant Coefficients). Let

Ln(y) ≡
n∑

i=0

aiy
(n−i) = a0y

(n) + a1y
(n−1) + ...+ an−1y

′ + any = 0, ai ∈ R

be a nth order linear DEQ with constant coefficients and let

pn(z) = a0z
n + a1z

n−1 + . . .+ . . .+ an−1z + an

be its characteristic polynomial with distinct roots z1, z2, . . . , zs(s ≤ n), each root zi ∈ C having multi-
plicity mi. Note that

∑
j mj = n and

pn(z) =

s∏
i=1

(z − zi)mi
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Then, the n functions form the complex fundamental set of the solutions of Ln(y) = 0.

{ez1t, tez1t, ..., tm1−1ez1t,

ez2t, tez2t, ..., tm2−1ez2t,

...................................

ezst, tezst, ..., tms−1ezst

If any function twezvt (for 0 ≤ w ≤ ms−1, 1 ≤ v ≤ s) is complex, then its conjugate twezvt is also in the
fundamental set and we can change the basis of the span of complex functions into the following basis of
real functions having the same span:

{twezvt, twezvt} =⇒ {Re(twezvt),Com(twezvt)}

Example 3.2. The solutions to the equation y′′ + y′ + y = 0 is

φ1(t) = exp
(−1 + i

√
3

2
t
)
, φ2(t) = exp

(−1− i√3
2

t
)

This implies, by the previous theorem, that the fundamental set of real solutions is

Re
(
φ1(t)

)
= Re

(
e−

1
2 t
(
cos
(√3

2

)
+ i sin

(√3
2

))
t

)
= e−

1
2 t cos

(√3
2
t
)

Com
(
φ1(t)

)
= e−

1
2 t sin

(√3
2
t
)

We state the 2nd-order case separately since it is seen often in physical phenomena.

Corollary 3.5.1 (Solutions to 2nd-Order Linear DEQs). Every solution φ of y′′ + py′ + qy = 0 with
p, q ∈ R and p2 ̸= 4q is defined on −∞ < t <∞ and has the form

φ(t) = c1e
z1t + c2e

z2t

where z1, z2 are roots of the equation z2 + pz + q = 0. Furthermore,

1. If p2 > 4q, then z1, z2 ∈ R and are distinct.

2. If p2 < 4q, then z1, z2 ∈ C with z1 = z̄2 =⇒ if z1 = α + βi is a solution, a general solution can
be expressed

φ(t) = eαt
(
a1 cosβ(t) + a2 sinβ(t)

)
3. If p2 = 4q, then z2 + pq + p = 0 has a double root at z = −p

2 =⇒ a solution is e−
p
2 t. The other

solution is of the form, te−
p
2 t, making the general solution

(a1 + a2t)e
− p

2 t

Proof. (1) and (2) are quite trivial. For (3), we know that φ(t) = e−
p
2 t is a solution, and we will try to

construct another linearly independent solution. This important process that we will employ is analogous
to the reduction of order process that will be explained later. We assume that the second solution is of
form

ψ(t) = e−
p
2 tw(t)

Assume that ψ(t) is a solution of y′′ + py′ + qy = 0. Then manually differentiating, we get

ψ(t) = e−
p
2 tw(t)

ψ′(t) = e−
p
2 tw′(t)− p

2
e−

p
2 tw(t)

ψ′′(t) = e−
p
2 tw′′(t)− pe−

p
2 tw′(t) +

p3

4
e−

p
2 tw(t)
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Plugging these into the differential equation and simplifying gives us

ψ′′(t) + pψ′(t) + qψ(t) = e−
p
2 t

(
w′′(t) +

(
q − p2

4

)
w(t)

)
= e−

p
2 tw′′(t) = 0

Note that by hypothesis, p2 = 4q. Since e−
p
2 t ̸= 0,

w′′(t) = 0 =⇒ w(t) = a1 + a2t =⇒ ψ(t) = e−
p
2 t(a1 + a2t)

■

3.1.2 Reduction of Order

We elaborate on the method used in the previous section and introduce the reduction of order method.

Theorem 3.6 (Reduction of Order of 2nd-Order Linear DEQs). Given the homogeneous linear differ-
ential equation with nonconstant coefficients

L2(y) = a0(t)y
′′ + a1(t)y

′ + a2(t)y = 0

where a0, a1, a2 are C0 on I and a0(t) ̸= 0 on I, assume that we know a solution φ1. Then, the second
solution is

φ2(t) = φ1(t)

ˆ t

t0

1

φ2
1(σ)

exp

(
−
ˆ σ

t0

a1(s)

a0(s)
ds

)
dσ

Proof. Since we know solution φ1, we assume that the second solution is of form φ2(t) = w(t)φ1(t) and
try to find a nonconstant function satisfying the DEQ. Since,

φ2 = wφ1

φ′
2 = w′φ1 + wφ′

1

φ′′
2 = w′′φ1 + 2w′φ′

1 + wφ′′
1

We have
L2(φ2) = a0φ1w

′′ + (2a0φ
′
1 + a1φ1)w

′ + wL2(φ1) for all t ∈ I
But since L2(φ1) = 0,

L2(φ2) = a0φ1w
′′ + (2a0φ

′
1 + a1φ1)w

′

But notice that this is a first-order linear equation in w′! What we have essentially done is use the fact
that L2(φ1) = 0 to ”reduce” the the DEQ from a second-order equation to a first-order one. Letting
v = w′ gives

v′ +

(
2
φ′
1

φ1
+
a1
a0

)
v = 0

Separating variables we obtain the solution

v(t) =
1

φ2
1(t)

exp

(
−
ˆ t

t0

a1(s)

a0(s)
ds

)
=⇒ w(t) =

ˆ t

t0

1

φ2
1(σ)

exp

(
−
ˆ σ

t0

a1(s)

a0(s)
ds

)
dσ

■

This process can be repeated for higher order equations, we show it for 3rd-order equations.

Theorem 3.7 (Reduction of Order of 3rd-Order DEQs). Given the homogeneous linear differential
equation with nonconstant coefficients

L3(y) = a0(t)y
′′′ + a1(t)y

′′ + a2(t)y
′ + a3(t)y = 0

where a0, a1, a2, a3 are C0 on i and a0(t) ̸= 0 on I, assume that we know a solution φ1. Then, the second
and third solutions are

φ2 = φ1

ˆ t

t0

γ1(s) ds, φ3 = φ1

ˆ t

t0

γ2(s) ds

where γ1, γ2 are the solutions of differential equation

a0φ1v
′′ + (3a0φ

′
1 + a1φ1)v

′ + (3a0φ
′′
1 + 2a1φ

′
1 + a2φ1)v = 0
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Proof. We assume that the second solution is of form φ2(t) = w(t)φ1(t) and compute the derivatives

φ2 = wφ1

φ′
2 = w′φ1 + wφ′

1

φ′′
2 = w′′φ1 + 2w′φ′

1 + wφ′′
1

φ′′′
2 = w′′′φ1 + 3w′′φ′

1 + 3w′φ′′
1 + wφ′′′

1

Substituting these into L3 = 0 and simplifying gives

L3(φ2) = a0φ1w
′′′ + (3a0φ

′
1 + a1φ1)w

′′ + (3a0φ
′′
1 + 2a1φ

′
1 + a2φ1)w

′ + wL3(φ1) for all t ∈ I

Again, since L3(φ1) = 0, we get

L3(φ2) = a0φ1w
′′′ + (3a0φ

′
1 + a1φ1)w

′′ + (3a0φ
′′
1 + 2a1φ

′
1 + a2φ1)w

′

which is really just a 2nd order equation in w′. Substituting v = w′ gives us

L3(φ2) = a0φ1v
′′ + (3a0φ

′
1 + a1φ1)v

′ + (3a0φ
′′
1 + 2a1φ

′
1 + a2φ1)v

Therefore, we have successfully reduced the order of this DEQ. Upon finding the two solutions γ1, γ2,
the solution will be of form

φ2 = φ1

ˆ t

t0

γ1(s) ds, φ3 = φ1

ˆ t

t0

γ2(s) ds

■

3.1.3 Cauchy-Euler’s Equation

Definition 3.4. A Cauchy-Euler equation of order n has the form

tny(n) + a1t
n−1y(n−1) + a2t

n−2y(n−2) + ...+ an−1ty
′ + any = 0, ai ∈ R

There are two ways we can explicitly solve for this equation. Since the most common Cauchy-Euler
equation is the second-order one, we will solve the following

t2y′′ + aty′ + by = 0

1. A trial solution y = tm can be used to directly solve for basic solutions (guess and check method).
We assume a trial solution y = tm. Differentiating it gives

y′(t) = mtm−1, y′′(t) = m(m− 1)tm−2

Substituting into the original equation and simplifying gives:

t2
(
m(m− 1)tm−2

)
+ at

(
mtm−1

)
+ b
(
tm
)
= 0 =⇒ m2 + (a− 1)m+ b = 0

There are three possible cases:

(a) Two distinct roots m1,m2:
y = c1x

m1 + c2x
m2

(b) One repeated root m:
y = c1x

m lnx+ c2x
m

Note that this solution is found using the reduction of order.

(c) Complex conjugate roots α± βi:

y = c1x
α cos(β lnx) + c2x

α sin(β lnx)

This can be easily derived by using Euler’s formula.

2.
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Consider the equation of the form
We can use substitution |t| = es to reduce the equation to have constant coefficients.

1. t > 0, t = es =⇒ s = log(t), y(t) = y(es) = w(s) = w
(
log(t)

)
. This implies that

dy

dt
=
dw

ds

ds

dt
=

1

t

dw

ds

=⇒ d2y

dt2
= − 1

t2
dw

ds
+

1

t

d

dt

(
dw

ds

)
=

1

t2

(
d2w

ds2
− dw

ds

)
=⇒ substituting,

d2w

ds2
− dw

ds
+ a1

dw

ds
+ a2w(s) = 0

=⇒ w′′ + (a1 − 1)w′ + a2w = 0

2. When t < 0, the procedure is similar.

This results in the equation L(w) = 0 having the general solution{
c1e

z1s + c2e
z2s z1 ̸= z2 roots of z2 + (a1 − 1)z + a2 = 0

(c1 + c2s)e
z1s z1 = z2 roots of ”

This means that the solution of L(y) = 0 is one of{
φ(t) = c1|t|z1 + c2|t|z2
φ(t) = (c1 + c2 log |t|)|t|z1

If t ∈ C, ez log |t| = |t|2, assuming that z = α+ βi. This means that

|t|2 = e(α+βi) log |t| = eα log |t|( cos (β log |t|) + i sin (β log |t|)
)

= |t|α
(
cos (β log |t|) + i sin (β log |t|)

)
3.2 Solving Inhomogeneous Linear DEQs

Definition 3.5 (Inhomogeneous Linear DEQ). An inhomogeneous linear equation is a linear differential
equation in the form

Ln(y) = f

where f ̸= 0. f ̸= 0 usually denotes that there is an external force acting on the system.

Example 3.3 (Dampened Linear Mass-Spring System with Periodic External Force). The dampened
linear mass-spring system subjected to given periodic external force A cosωt is represented by the linear
DEQ

y′′ + by′ +
k

m
y =

A

M
cosωt

The following theorem provides insight into the structure of the solutions for these systems.

Theorem 3.8. Suppose ψp is a particular solution of Ln(y) = f on I and suppose φ1, φ2, ..., φn are n
linearly independent solutions of the homogeneous equation

Ln(y) = 0

Then, every solution ψ of Ln(y) = f has general form

ψ = ψp +

n∑
i=1

ciφi

That is, the set of all solutions is an n dimensional affine subspace within the space of all continuous
functions.

Proof. Let ψp be a particular solution of Ln(y) = f and ψ0 be any solution of Ln(y) = 0. Then,
ψ0 ∈ kerLn, which means that by linearity of Ln,

Ln(ψp + kψ0) = Ln(ψp) + kLn(ψ0) = f + 0 = f

■

We have reduced the problem of solving inhomogeneous DEQs into solving the homogeneous version and
finding a particular solution.
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3.2.1 Variation of Constants

We now attempt to find a particular solution ψp for a second order linear inhomogeneous equation. The
great thing about the method below is that as long as the functions a0 ̸= 0, a1, a2, f are continuous over
certain interval I ⊂ R, it always provides us with a specific solution.

Theorem 3.9 (Variation of Constants Formula for 2nd-Order Linear DEQs). Given inhomogeneous
linear DEQ

L2(y) = a0(t)y
′′ + a1(t)y

′ + a2(t)y = f

where a0, a1, a2, f are all continuous on I, assume that we have the general solution φ = c1φ1 + c2φ2 for
L2(y) = 0. Then, a particular solution ψp for L2(y) = f is given by the Variation of Constants formula

ψp = φ1(t)

(
−
ˆ t

t0

f(s)φ2(s)

a0(s)W (φ1, φ2)(s)
ds

)
+ φ2(t)

( ˆ t

t0

f(s)φ1(s)

a0(s)W (φ1, φ2)(s)
ds

)

= ψp(t) =

ˆ t

t0

f(s)
(
φ2(t)φ1(s)− φ1(t)φ2(s)

)
a0(s)W (φ1, φ2)(s)

ds

Proof. We assume that the particular solution is of the form

ψp = u1φ1 + u2φ2

and that we have found these functions u1, u2. This assumption is quite arbitrary, but we will see why
this works later. This implies that

ψ′
p = (u1φ1 + u2φ2)

′ = u1φ
′
1 + u2φ

′
2 + u′1φ1 + u′2φ2

ψ′′
p = u1φ

′′
1 + u2φ

′′
2 + 2u′1φ1 + 2u′2φ

′
2 + u′′1φ2 + u′′2φ2

With these derivatives, we can expand out the equation L2(ψp) = f to get

L2(ψp) = L2(u1φ1 + u2φ2) = a0(u1φ1 + u2φ2)
′′ + a1(u1φ1 + u2φ2)

′ + a0(u1φ1 + u2φ2)

= ...

= a0
(
(φ1u

′′
1 + φ2u

′′
2) + 2(φ′

1u
′
1 + φ′

2u
′
2)
)
+ a1(φ1u

′
1 + φ2u

′
2) = f

We would like to obtain some sort of relation from this last equation. If we assume that

φ1u
′
1 + φ2u

′
2 = 0

for all t ∈ I, then (φ1u
′
1 + φ2u

′
2)

′ = φ1u
′′
1 + φ2u

′′
2 + φ′

1u
′
1 + φ′

2u
′
2 = 0 and thus

a0
(
(φ1u

′′
1 + φ2u

′′
2) + 2(φ′

1u
′
1 + φ′

2u
′
2)
)
+ a1(φ1u

′
1 + φ2u

′
2) = f =⇒ φ′

1u
′
1 + φ′

2u
′
2 =

f

a

Notice our line of reasoning so far: Assuming the existence of a solution of form ψp = u1φ1 + u2φ2

(and that φ1u
′
1 + φ2u

′
2 = 0) implies that φ′

1u
′
1 + φ′

2u
′
2 = f

a . However, we can reason backwards and

state this: If we can find two equations u1, u2 satisfying φ1u
′
1 + φ2u

′
2 = 0 and φ′

1u
′
1 + φ′

2u
′
2 = f

a , then
φp = u1φ2 + u2φ2 satisfies L2(φp) = f on I. So assume that there exists u1, u2 such that (written in
matrix form) (

φ1 φ2

φ′
1 φ′

2

)(
u′1
u′2

)
=

(
0

f/a0

)
Using Cramer’s rule, we solve for u′1, u

′
2 and integrate to get u1, u2.

u′1 =
1

W (φ1, φ2)
det

(
0 φ2

f/a0 φ′
2

)
=

−fφ2

a0W (φ1, φ2)
=⇒ u1(t) =

ˆ t

t0

−f(s)φ2(s)

a0(s)W (φ1, φ2)(s)
ds

u′2 =
1

W (φ1, φ2)
det

(
φ1 φ′

1

0 f/a0

)
=

fφ1

a0W (φ1, φ2)
=⇒ u2(t) =

ˆ t

t0

f(s)φ1(s)

a0(s)W (φ1, φ2)(s)
ds

Therefore,

ψp(t) = u1(t)φ1(t) + u2(t)φ2(t) =

ˆ t

t0

f(s)
(
φ2(t)φ1(s)− φ1(t)φ2(s)

)
a0(s)W (φ1, φ2)(s)

ds

■
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Theorem 3.10 (Variation of Constants Formula). For an nth order linear differential equation

Ln(y) = a0(t)y
(n) + a1(t)y

(n−1) + . . .+ an−1(t)y
′ + an(t)y = f

Let the fundamental set of its homogeneous counterpart Ln(y) = 0 be φ1, . . . , φn. Then, upon solving the
system 

φ1 φ2 . . . φn

φ′
1 φ′

2 . . . φ′
n

...
...

. . .
...

φ
(n−1)
1 φ

(n−1)
2 . . . φ

(n−1)
n



u′1
u′2
...
u′n

 =


0
...
0

f/a0


for u′1, u

′
2, . . . , u

′
n, we find ψp to be

ψp(t) =

n∑
i=1

ui(t)φi(t) =

n∑
i=1

(ˆ t

t0

u′i(s) ds
)
φi(t)

4 Series Solutions of Linear Equations

A wider class of differential equations has solutions that can be expanded into a power series than ones
that can be solved in closed form (that is, expressed in terms of elementary functions).

Example 4.1. Given the differential equation

y′′ = − sin (y)− y′, φ(0) = π

4
, φ′(0) = 0

Assuming that φ is an analytic function, we can write the Taylor series

φ(t) = φ(0) + φ′(0)t+ ... =

∞∑
j=0

φ(j)(0)

j!
tj

We can solve for each derivative manually by plugging it into the equation

φ′′(0) = − sin
(
φ(0)

)
− φ′(0) = −

√
2

2

φ′′′(0) = − cos
(
φ(0)

)
φ′′(0)− φ′′(0) =

√
2

2

φ(4)(0) = sin
(
φ(0)

)(
φ′(0)

)2 − cos
(
φ(0)

)
φ′′(0)− φ(3)(0) =

1−
√
2

2

Doing this recursively, the expansion of the solution φ begins with the terms

φ(t) =
π

4
−
√
2

2

t2

2!
+

√
2

2

t3

3!
+

1−
√
2

2

t4

4!
+ ...

4.1 Review of Power Series

Every power series
∞∑

n=0

cnt
n

has a radius of convergence R ≥ 0 over C. Some more properties:

1. The series converges absolutely for |t| < R.

2. Assigning f(t) =
∑
cnt

n for |t| < R, f ∈ C∞, then

f (k)(t) =

∞∑
n=k

n!

k!
cnt

n−k

with radius of convergence also R.
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3. If [a, b] is the interval of convergence, then

ˆ b

a

f(s) ds =

∞∑
n=0

cn

ˆ b

a

sn ds

In particular, ˆ t

0

f(s) ds =

∞∑
n=0

cn
n+ 1

tn+1

which also has a radius of convergence R.

4. Identity theorem for power series. If g(t) =
∑
dnt

n is another power series with ROC = R̃, and
f(t) = g(t) on some interval in which the series both converge, then dn = cn for all n. In particular,
if the sum of a power series is 0 for all t ∈ I, then every coefficient in the series must be 0.

5. f, g converge =⇒ f + g converges within the ROC of both f and g.

6. f, g converges =⇒ fg converges within the ROC of both f and g.

Definition 4.1. f is analytic at t = a if and only if it can be expanded into a Taylor series

f(t) =

∞∑
n=0

cn(t− a)n, cn =
f (n)(n)

k!

with radius of convergence R > 0.

It is assumed that the reader is familiar with basic convergence tests such as the ratio test and the
comparison test.

Lemma 4.1. Let f, g be analytic functions. That is, they can be expressed

f(t) =

∞∑
n=p

cn(t− a)n, g(t) =

∞∑
n=q

dn(t− a)n

Without loss of generality, suppose p < q and dq ̸= 0. Then, f and g are linearly independent on every
interval I in which f, g converges.

Proof. This proof is trivial using linear algebra since f is expressed using more basis vectors. ■

4.2 2nd Order Linear Equations w/ Analytic Coefficients

Example 4.2. Despite what we have learned, the differential equation

y′′(t)− ty = 0, φ(t0) = a, φ′(t0) = b

cannot be solved with any of the previous methods, but there does exist unique solutions for all t. We
wish to find a solution using a new method. Assume that φ(t) is analytic at t = t0. That is, it can be
expanded

φ(t) = c0 + c1(t− t0) + c2(t− t0)2 + . . . =

∞∑
k=0

ck(t− t0)k

that converges in an interval |(t− t0)| < A (we will not worry about convergence yet). We can calculate

φ′′(t)− tφ(t) =
∞∑
k=2

k(k − 1)ck(t− t0)k−2 −
∞∑
k=0

ck(t− t0)k+1

= 2c2 +

∞∑
k=3

(
k(k − 1)ck − ck−3

)
(t− t0)k−2 = 0
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if and only if φ(t) is a solution of y′′ − ty = 0. This implies that

2c2 = 0, k(k − 1)ck − ck−3 = 0

=⇒ c2 = 0, c3 =
1

2 · 3
c0, c4 =

1

3 · 4
c1, c5 =

1

4 · 5
c2, ...

=⇒


c3m = (1)(4)...(3m−2)

(3m)! c0

c3m+1 = (2)(5)(8)...(3m−1)
(3m+1)! c1

c3m+2 = 0

which proves us an explicit definition of φ dependent on initial conditions a = φ(0) = c0, b = φ′(0) = c1.
Therefore, a candidate for a solution is

φ(t) = aφ1(t) + bφ2(t)

= a

(
1 +

∞∑
m=1

(1)(4)...(3m− 2)

(3m)!
(t− t0)3m

)
+ b

(
1 +

∞∑
m=1

(2)(5)...(3m− 1)

(3m+ 1)!
(t− t0)3m+1

)
We can see that this infinite series converges for |(t− t0)| <∞.

Theorem 4.2 (Existence of Analytic Solutions of 2nd-Order Linear DEQs of Analytic Coefficients).
Given equation (with leading coefficient 1)

y′′ + p(t)y + q(t)y = f(t)

If p, q, f are analytic at t0, then there exists a unique solution φ satisfying φ(t0) = a, φ′(t0) = b. This
solution is analytic at t = t0, with expansion

φ(t) =

∞∑
k=0

ck(t− t0)k

converging for at least those values of t converging on p, q and f . The coefficients ck can be determined
recursively by direct substitution into the differential equation.

Notice that this series method can be very useful computationally. For values close to t0, we can calculate
the series up to a certain number of coefficients to gain a good approximation of the actual function.

Example 4.3 (Legendre Equation). Given the equation

(1− t2)y′′ − 2ty′ + α(α+ 1)y = 0

with α a given constant. In order to determine whether this differential equation has a series solution
about t = 0, we use the previous theorem. We modify the equation to

y′′ − 2t

1− t2
y′ +

α(α+ 1)

1− t2
y = 0 (t ̸= ±1)

The coefficient functions are indeed analytic. That is,

− 2t

1− t2
= −2t(1 + t2 + t4 + ...) = −2t

∞∑
k=0

t2k

α(α+ 1)

1− t2
= α(α+ 1)

∞∑
k=0

t2k

with a radius of convergence of 1. Therefore, the conditions of the theorem are satisfied, and the Legendre
equation has a unique analytic solution satisfying φ(0) = a, φ′(0) = b for all a, b.

4.3 Singular Points of Linear Equations

Many differential equations which arise in applications, the so-called equations of mathematical physics,
fail to satisfy the hypotheses of the theorem stating the existence of analytic solutions. That is, there
are points t = t0 where the coefficients are not analytic (usually because it is unbounded). They usually
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pop up when we divide the entire equation by the leading coefficient a0(t), which leads to one of the
non-leading coefficients to become un-analytic when it is of the form

ai(t)

a0(t)

We formalize this below

Definition 4.2 (Singular Point). t = t0 is a singular point of the differential equation

Ln(y) = a0(t)y
(n) + a1(t)y

(n−1) + . . .+ an−1(t)y
′ + an(t)y = 0

if a0, a1, . . . , an are analytic at t0 and a0(t0) = 0, but a1, . . . , an are not all zero at t0. A point that is
not a singular point is called an ordinary point.

In relation to the theorem on the existence of analytic solutions, we would like to clarify that given
singular point t0 and non-singular point t1,

At t = t1 =⇒ Analytic solution exists (theorem)

At t = t0 =⇒ Analytic solution could exist or not

That is, the theorem tells us that given equation

y′′ + p(t)y + q(t)y = f(t)

where p, q, f are analytic at t1 (i.e. t1 is ordinary), we are guaranteed the existence of a analytic solution
in a neighborhood of t1. However, if p, q are somehow not analytic, then there may or may not be an
analytic solution. This will be elaborated in the following example.

Example 4.4 (Nonexistence of Analytic Solutions in 1st-Order Cauchy-Euler Equation). Consider the
first-order Cauchy-Euler equation centered around t = t0

(t− t0)y′ + ay = 0

where a is a constant. Then, there cannot be an analytic solution to this DEQ at t = t0 since the
coefficients of the equivalent, equation

y′ = − a

t− t0
y

A special solution for this DEQ is y = (t− t0)−a, which is graphed (along with the phase velocity vector
space/slope field) for when a > 0, a = 0, and a < 0.

Given that a > 0, we can see that the solution is clearly unbounded at t = t0, so there does not exist an
analytic function. However, if a ≤ 0, then there does exist an analytic function.
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Example 4.5 (Nonexistence of Analytic Solutions in 2nd-Order Cauchy-Euler Equation). Consider the
second-order Cauchy-Euler equation centered around t = t0

(t− t0)2y′′ + (t− t0)a1y′ + a2y = 0

where a1, a2 are constants. Then, we can see that there cannot be analytic solutions to this DEQ at t = t0
since the coefficients of the equivalent, normalized equation

y′′ +
a1

t− t0
y′ +

a2
(t− t0)2

y = 0

are unbounded at t = t0. However, in a neighborhood of any point t1 ̸= t0, there does exist analytic
solutions. Assuming a1 = a2 = 1, we can see that the solution y = φ(t) = cos(ln (t− t0))+sin(ln (t− t0))
oscillates infinitely as t→ t0.

Furthermore, by setting this up as a system of first order equations using y = y, x = y′, we get

y′ = x

x′ = y′′ = − a1
t− t0

x− a2
(t− t0)2

y

Normalizing a1 = a2 = 1, we give the phase velocity vector field for the three time periods t = t0 −
1, t0, t0 + 1.

The behavior of the solutions near the singular point t0 (whether it is actually analytic or not) depends
on how rapidly a0(t) approaches zero as t → t0. For this reason, we distinguish two different types of
singular points, with the first being the regular one.

Definition 4.3 (Regular Singular Point). The point t0 is called a regular singular point of the equation

Ln(y) = a0(t)y
(n) + a1(t)y

(n−1) + . . .+ an−1(t)y
′ + an(t)y = 0
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if it is a singular point and if

p1(t) =
a1(t)

a0(t)
, p2(t) =

a2(t)

a0(t)
, . . . , pn(t) =

an(t)

a0(t)

have the property that (t− t0)p1(t), (t− t0)2p2(t), . . . , (t− t0)npn(t) are all analytic at t0. It immediately
follows that the equation Ln(y) = 0 has a regular singular point at t = t0 if and only if it can be written
in the form:

a0(t)y
(n) + a1(t)y

(n−1) + . . .+ an−1(t)y
′ + an(t)y = 0

=⇒ y(n) +
a1(t)

a0(t)
y(n−1) + . . .+

an−1

a0(t)
(t)y′ +

an(t)

a0(t)
y = 0

=⇒ (t− t0)ny(n) + (t− t0)n
a1(t)

a0(t)
y(n−1) + . . .+ (t− t0)n

an−1

a0(t)
(t)y′ + (t− t0)n

an(t)

a0(t)
y = 0

=⇒ (t− t0)ny(n) + (t− t0)n−1

(
(t− t0)

a1(t)

a0(t)

)
y(n−1) + . . .+

(
(t− t0)n

an(t)

a0(t)

)
y = 0

=⇒ (t− t0)ny(n) + (t− t0)n−1α1(t)y
(n−1) + . . .+ (t− t0)αn−1(t)y

′ + αn(t)y = 0

Therefore, the equation Ln(y) = 0 has a regular singular point if it can be written in the form

n∑
i=0

(t− t0)n−iαi(t)y
(n−i) = 0, αi(t) = (t− t0)i

ai(t)

a0(t)

where the αi’s are analytic at t = t0. If a singular point t = t0 is not regular, then it is called an irregular
singular point.

Example 4.6. We list three examples of equations and their corresponding singular points.

1. The Euler equation
(t− t0)2y′′ + (t− t0)a1y′ + a2y = 0

is the simplest example of an equation which has a regular singular point at t = t0.

2. The equation

t2y′′ +
3

2
ty′ + ty = 0

has t = 0 as a regular singular point because p(t) = 3
2t , q(t) = 1

t have the property that tp(t) =
3
2 , t

2q(t) = t are both analytic everywhere.

3. The equation
(t− 1)3y′′ + 2(t− 1)2y′ − 7ty = 0

does not have a regular singular point at t = 1.

4.3.1 Change of Basis

To simplify the process, we can perform a change of basis

t 7→ x = t− t0

which allows us to transform the singular point t0 to the origin without changing the form of the equation
in any essential way. Therefore, we would let

αi(x) = αi(t0 + x) for all i = 1, 2, . . . , n

which are analytic at x = 0 since αi is analytic at t = t0. Furthermore, we define

y(x) = y(t0 + x)

and by the chain rule, we have

dy

dx
= y′(t0 + x) = y′(t),

d2y

dx2
= y′′(t0 + x) = y′′(t), . . . ,

dny

dx
= y(n)(t0 + x) = y(n)(t)
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Therefore, the equation simplifies as such:

(t− t0)ny(n) + (t− t0)n−1α1(t)y
(n−1) + . . .+ (t− t0)αn−1(t)y

′ + αn(t)y = 0 (3)

=⇒ xnȳ(n)(x) + xn−1ᾱ1(x)ȳ
(n−1)(x) + . . .+ xᾱn−1(x)ȳ

′(x) + ᾱn(x)ȳ = 0 (4)

Therefore, if ȳ(x) is a solution of the second equation with regular singular point x = 0, then the function
y(t) = ȳ(t− t0) is a solution of the first equation with regular singular point t = t0.
Therefore, we will assume that such a preliminary simplification has been made, and without loss of
generality, we will consider a nth order homogeneous linear differential equation with regular singular
point (changed accordingly to be at t = 0) to be of form

tny(n) + tn−1α1(t)y
(n−1) + . . .+ t2αn−2(t)y

′′ + tαn−1(t)y
′ + αn(t)y = 0

where the αi’s are given functions analytic at t = 0 and having power series expansions

αi(t) =

∞∑
k=0

αikt
k

which converge in some interval |t| < r.

4.3.2 Examples

Example 4.7. The following DEQ can be changed as such

2ty′′ + y′ + ty = 0 =⇒ t2y′′ +
1

2
ty′ +

1

2
t2y = 0

= t2y′′ + tα1(t)y
′ + α2(t)y = 0

where

α1(t) =
1

2
, α2(t) =

1

2
t2

which are both analytic at t = 0, making t = 0 a regular singular point. If both α1, α2 were constants,
this following equation would be the Euler equation, making one of the solutions to be of form |t|z. But
since α2 is not a constant, we attempt to find a solution of form

|t|z
∞∑
k=0

ckt
k, c0 ̸= 0

where the constants z, ck are determined by substitution into the differential equation within some interval
of convergence around t = 0. Since t = 0 is a singular point, we separate the cases t > 0 and t < 0. We
first consider the case t > 0 and try the following solution of φ and its derivatives (assuming φ ∈ C2):

φ(t) = tz
∞∑
k=0

ckt
k =

∞∑
k=0

ckt
z+k

φ′(t) =

∞∑
k=0

ck(z + k)tz+k−1

φ′′(t) =

∞∑
k=0

ck(z + k)(z + k − 1)tz+k−2

We substitute this into the equation and simplify it, where we set the indicial polynomial as f(z) = z(z− 1
2 )

(we can find this by looking at the quadratic term in z having coefficient c0).

0 = t2φ′′(t) +
1

2
tφ′(t) +

1

2
t2φ(t)

= c0z

(
z − 1

2

)
tz + c1(z + 1)

(
z +

1

2

)
tz+1 +

∞∑
k=0

(
(z + k)

(
z + k − 1

2

)
ck +

1

2
ck−2

)
tz+k

= tz

(
c0f(z) + c1f(z + 1)t+

∞∑
k=2

(
f(z + k)ck +

1

2
ck−2

))
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The equality implies that every coefficient of every power of t vanishes on the right hand side. Since we
assumed c0 ̸= 0, we have

f(z) = 0

c1f(z + 1) = 0

f(z + k)ck +
1

2
ck−2 = 0 for k = 2, 3, 4, . . .

f(z) = 0 =⇒ z = 0 or z = 1
2 .

1. When z = 1
2 , this must mean that c1 = 0 in order to satisfy the equation c1f(z + 1) = 0. We can

rewrite the relation f(z + k)ck + 1
2ck−2 = 0 as

ck =
−1

2f(k + 1
2 )
ck−2 = − 1

2k(k + 1
2 )
ck−2

Remember that c0 ̸= 0 is arbitrary and that c1 = 0, so we can manually calculate

c2m−1 = 0

c2m = (−1)m c0
2 · 4 · 6 . . . 2m · 5 · 9 . . . (4m+ 1)

= (−1)mc0
( m∏

i=1

2i(4i+ 1)

)−1

for m = 1, 2, . . .. Substituting these quantities into the series φ(t) = tz
∑∞

k=0 ckt
k gives one candi-

date for a solution of the differential equation for t > 0:

φ1(t) = t1/2

(
1 +

∞∑
m=1

(−1)m
( m∏

i=1

2i(4i+ 1)

)−1

t2m

)
Note that the c0, which is just a constant factor, has been normalized to 1.

2. When z = 0, we find that c1 = 0 (c0 still arbitrary), but we rewrite the relation f(z+k)ck+
1
2ck−2 =

0 as

ck =
−1

2f(k)
ck−2 = − 1

2k(k − 1
2 )
ck−2

Leading to

c2m−1 = 0

c2m = (−1)m c0
2 · 4 · 6 . . . 2m · 3 · 7 . . . (4m− 1)

= (−1)mc0
( m∏

i=1

2i(4i− 1)

)−1

for m = 1, 2, . . .. Substituting and normalizing c0 = 1, we obtain the second candidate for a solution
of the DEQ when t > 0 as

φ2(t) = 1 +

∞∑
m=1

(−1)m
( m∏

i=1

2i(4i− 1)

)−1

t2m

Using the ratio test, we can find out that for the series φ1, φ2,∣∣∣∣am+1

am

∣∣∣∣→ 0 as m→∞

where am is the mth term of the series. Therefore, both φ1, φ2 converges within (−∞,∞). Therefore,
we have found solutions of the form

|t|z
∞∑
k=0

ckt
k

for when t > 0 (the value t = 0 must be omitted because the differential equation has no meaning at the
singular point t = 0). It is easy to prove that φ1 and φ2 are linearly independent. The above calculations
are all valid for t < 0 if tz is replaced by |t|z = ez log |t|, and still leads to the same solutions φ1, φ2 for
the interval (−∞, 0).
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Therefore, we can see that the assumption that a given DEQ has a solution of the form

|t|z
∞∑
k=0

ckt
k

leads to a quadratic equation in z, the indicial equation, and each root of the indicial equation leads
to two linearly independent solutions of the differential equation. However, an indicial polynomial may
have a double root, which will require extra work to find the second solution.

Example 4.8. The differential equation ty′′ + y′ + y = 0, which may be written as

t2y′′ + ty′ + ty = 0

Clearly, t = 0 is a regular singular point. Assuming the existence of solution of the form φ(t) =
|t|z
∑∞

k=0 ckt
k on some interval, we consider the case t > 0. With some steps omitted, we have

t2φ′′(t) + tφ′(t) + tφ(t) = tz
(
f(z)c0 +

∞∑
k=1

(
f(k + z)ck + ck−1

)
tk
)

where the indicial polynomial is f(z) = z2, having a double root z = 0. Since every term on the right
hand side vanishes, we have

f(k + z)ck + ck−1 = 0 =⇒ ck = −ck−1

k2
, k = 1, 2, 3, . . .

=⇒ ck = c0

k∏
i=1

− 1

i2

By substituting in the ck’s, we have (for t > 0)

φ(t) = 1 + tz
∞∑
k=1

( k∏
i=1

− 1

i2

)
tk

Similar calculations show that the same solution pops up for t < 0. The ratio test tells us that the interval
of convergence for φ(t) is (−∞,∞). We will talk about how to find the second solution later.

Note in the previous example that although the differential equation makes no sense at the singular point
t = 0, the function defined by the series

∞∑
k=0

ckt
k

is well defined

Example 4.9. The DEQ ty′′ + ty′ − y = 0, which can be rewritten as

t2y′′ + t2y′ − ty = 0

has t = 0 has a regular singular point. When t > 0, we calculate

2y′′ + t2y′ − ty == tz
(
f(z)c0 +

∞∑
k=1

(
f(k + z)ck + (k + z − 2)ck−1

)
tk
)

where f(z) = z(z − 1). For every term to vanish, z = 0 or z = 1.

1. Taking z = 1, we have

ck = − (k − 1)ck−1

k(k + 1)
, k = 1, 2, . . .

which gives ck = 0 and taking c0 = 1, have have solution φ1(t) = |t|, which is clearly convergent.

2. When z = 0, the recursion formula becomes

k(k − 1)ck + (k − 2)ck−1 = 0, k = 1, 2, . . .

But taking k = 1, c1 must be determined from the relation

0 · c1 − c0 = 0

But since c0 ̸= 0, this is impossible and there can be no solution of the assumed form corresponding
to the root z = 0. However, a solution of a different form does exist.
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4.3.3 Regular Singular Point Theorem

We can neatly summarize our theory of finding solutions of equation with singular points with the
following theorem.

Theorem 4.3 (Regular Singular Point Theorem of 2nd-Order Homogeneous Linear DEQs). Consider
the differential equation

t2y′′ + tα1(t)y
′ + β(t)y = 0

where α1, β are analytic at regular singular point t = 0 and have expansions

α(t) =

∞∑
k=0

αkt
k, β(t) =

∞∑
k=0

βkt
k

which converge for |t| < r for some r > 0. Let z1, z2 be the roots of the indicial equation

f(z) = z(z − 1) + α0z + β0 = 0

with Re(z1) ≥ Re(z2). Then, there is always a solution of the form

φ1(t) = |t|z1
∞∑
k=0

ckt
k (c0 = 1)

in the punctured interval 0 < |t| < r whose coefficients ck can be determined recursively from the equations

f(z1 + k)ck = −
k−1∑
j=0

(
(j + z)αk−j + βk−j

)
cj , k = 1, 2, . . .

As for the second solution, there are three possible cases:

1. If z1 ̸= z2, z1 − z2 ̸∈ Z, then there is a second, linearly independent solution of the form

φ2(t) = |t|z2
∞∑
k=0

ĉkt
k (ĉ0 = 1)

also in the punctured interval 0 < |t| < r. The coefficients ĉk can also be solved using the recursive
formula above, with z1 replaced by z2 and ck replaced by ĉk.

2. If z1 = z2, then the second (linearly independent) solution is of form

φ2(t) = |t|z1+1

( ∞∑
k=0

bkt
k

)
+ φ1(t) log |t|

valid for 0 < |t| < r, whose coefficients bk can be determined by direct substitution into the DEQ.

3. If z1 − z2 ∈ N, then there is a second linearly independent solution of form

φ2(t) = |t|z2
( ∞∑

k=0

bkt
k

)
+ aφ1(t) log |t|

valid for 0 < |t| < r, where a is a constant (possibly 0) and the coefficients bk can be determined
by direct substitution into the DEQ.

Note that it is simpler in practice to substitute the assumed formula of the solution into the DEQ than
to use the recursive formulas to solve for the coefficients.
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4.3.4 The Bessel Equation

Definition 4.4 (Bessel Equation). The Bessel equation arises in a natural way in many mathematical
physics problems having axial/cylindrical symmetry, and is written in the form

Ln(y) = t2y′′ + ty′ + (t2 − p2)y = 0

where constant p ∈ C and Re(p) ≥ 0. The point t = 0 is a regular singular point, and the equation is of
form t2y′′ + tα(t)y′ + β(t)y = 0.

Definition 4.5. Recall the gamma function

Γ(z) =

ˆ ∞

0

e−xxz−1 dx, Re(z) > 0

and its properties:

1. Γ(z) is well defined and continuous for Re(z) > 0.

2. Γ(1) = 1,Γ( 12 ) =
√
π

3. Γ(z) = (z − 1)Γ(z − 1) for Re(z) > 1 from integration by parts.

4. Γ(z) = z! for z ∈ N.

5. We can define Γ for negative non-integer numbers z using the recursion formula

Γ(z) =
Γ(z + k)

z(z + 1) . . . (z + k − 1)

by choosing a positive integer k such that Re(z+k) > 0. Therefore, we can define Γ for all complex
numbers z except for when Re(z) ∈ {0,−1,−2,−3, . . .}. The graph of Γ in R× R is shown.

Theorem 4.4 (The Bessel Function). Given the Bessel equation

t2y′′ + ty′ + (t2 − p2)y = 0, p ∈ C,Re(p) ≥ 0

where t = 0 is a regular singular point.
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1. If p ̸∈ N ∪ {0}, then the following Bessel functions of the first kind J (of index p,−p)

Jp(t) =

∣∣∣∣ t2
∣∣∣∣p ∞∑

m=0

(−1)m

m!Γ(p+m+ 1)

(
t

2

)2m

J−p(t) =

∣∣∣∣ t2
∣∣∣∣−p ∞∑

m=0

(−1)m

m!Γ(m− p+ 1)

(
t

2

)2m

are two linearly independent solutions for 0 < |t| <∞.

2. If p = 0, then the Bessel function of the first kind and second kind, both of index 0

J0(t) =

∞∑
m=0

(−1)m

(m!)2

(
t

2

)2m

K0(t) = −
∞∑

m=1

(
(−1)m

(m!)2

(
1 +

1

2
+ . . .+

1

m

)(
t

2

)2m
)

+ J0(t) log t

are two linearly independent solutions for 0 < |t| <∞.

3. If p is a positive integer n, then the Bessel function of the first kind of index n and the Bessel
function of the second kind K (of index n)

Jn(t) =

∣∣∣∣ t2
∣∣∣∣n ∞∑

m=0

(−1)m

m!Γ(n+m+ 1)

(
t

2

)2m

Kn(t) = −
1

2

∣∣∣∣ t2
∣∣∣∣−n( n−1∑

k=0

(n− k − 1)!

k!

(
t

2

)2k

+
1

n!

(
1 +

1

2
+ . . .+

1

n

)(
t

2

)2n
)

− 1

2

(
t

2

)n ∞∑
k=0

(−1)k

k!(k + n)!

((
1 + . . .+

1

k

)
+
(
1 +

1

2
+ . . .+

1

k + n

))( t
2

)2k

+ Jn(t) log |t|

Proof. We now derive the solutions to this Bessel equation. By the regular singular point theorem, since

α(t) = 1, β(t) = −p2 + t2

which both converge for |t| <∞, the indicial equation is

f(z) = z(z − 1) + z +−p2 = z2 − p2

which has zeroes z1 = p, z2 = −p (remember we assumed (Re(p) ≥ 0). If p ̸= 0 and if z1 − z2 = 2p is
not a positive integer (i.e. p is not 0, an integer, or a half-integer), there exists two linearly independent
solutions φ1, φ2 of the equation, valid for 0 < |t| <∞, of the form

φ1(t) = |t|p
∞∑
k=0

ckt
k (c0 ̸= 0)

φ2(t) = |t|−p
∞∑
k=0

ĉkt
k (ĉ0 ̸= 0)

where coefficients ck, ĉk are determined recursively by substitution. We first compute φ1 and assume
t > 0. Substituting

φ′
1(t) =

∞∑
k=0

ck(p+ k)tp+k−1, φ′′
1 =

∞∑
k=0

ck(p+ k)(p+ k − 1)tp+k−2

into the equation and simplifying gives

L2

(
φ1(t)

)
= tp

(
f(p)c0 + f(p+ 1)c1t+

∞∑
k=0

(
f(p+ k)ck + ck−2

)
tk
)

= 0
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for which we conclude that

f(p+ 1)c1 = 2p+ 1 = 0 =⇒ p = −1

2
or c1 = 0

But since Re(p) ≥ 0, this means that c1 = 0. We use the recursive relations

f(p+ k)ck + ck−2 = k(2p+ k)ck + ck−2 = 0

which implies that

c2m−1 = 0

c2m =
(−1)mc0

22mm!(p+ 1)(p+ 2) . . . (p+m)

for m = 1, 2, . . .. Therefore, the solution can be written as

φ1(t) = c0|t|p
(
1 +

∞∑
m=1

(−1)mt2m

22mm!(p+ 1)(p+ 2) . . . (p+m)

)
Since we can let c0 be any nonzero constant, we define it using the Gamma function as

c0 =
1

2pΓ(p+ 1)

resulting in the solution

Jp =

∣∣∣∣ t2
∣∣∣∣p ∞∑

m=0

(−1)m

m!Γ(p+m+ 1)

(
t

2

)2m

called the Bessel function of the first kind of index p. It is well defined for all t ∈ R and satisfies the
DEQ for 0 < |t| <∞. ■

4.3.5 Singularities at Infinity

We can also study the behavior of solutions of the equation

L2(y) = y′′ + p(t)y′ + q(t)y = 0

as |t| → ∞ by making the change of variable t = 1/x and studying the behavior of solutions of the
resulting equation as x→ 0. Thus, we let φ be a solution of the original DEQ for |t| > R and let

ψ(x) = φ(
1

x
), p̄(x) = p(

1

x
), q̄(x) = q(

1

x
)

which should all be well-defined for |x| < 1/R. By the chain rule, we have

φ′(t) = − 1

t2
ψ′(x) = −x2ψ′(x)

φ′′(t) =
1

t4
ψ′′(x) +

2

t3
ψ′(x) = x4ψ′′(x) + 2x3ψ′(x)

Substituting this in shows that ψ satisfies the new equation

L̄2(z) = x4z′′ +
(
2x3 − x2p̄(x)

)
z′ + q̄(x)z = 0

in which x is the independent variable and z is the function. Therefore, if ψ satisfies L̄2(z) = 0 and if
φ(t) = ψ(1/t), then φ satisfies L2(y) = 0. Our results lead to the following theorem.

Theorem 4.5 (Singularities at Infinity). ∞ is an ordinary point, a regular singular point, or an irregular
singular point for the equation L2(y) = 0 if and only if 0 is respectively an ordinary point, a regular
singular point, or an irregular singular point for the equation L̄2(z) = 0.

Example 4.10. Given the equation

y′′ + ay′ + by = 0, a, b ∈ R

The change of variable t = 1/x transforms this equation to

x4z′′ + (2x3 − ax2)z′ + bz = 0

which has an irregular singular point at x = 0. Therefore, the original equation has an irregular singular
point at t =∞.
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5 Systems of DEQs

5.1 First-Order Systems

We expand on the theory of solving first order differential equations by studying systems of them, which
can be worked on using vector algebra/calculus.

Definition 5.1 (System of 1st Order Equations). A system of n first order equations can be put in the
form

y′ = f(t, y)


y′1 = f1(t, y1, y2, . . . , yn)

y′2 = f2(t, y1, y2, . . . , yn)

. . .

y′n = fn(t, y1, y2, . . . , yn)

where f : D ⊂ R × Rn −→ Rn is defined in some (n + 1)-dimensional region D (R being the time
continuum and Rn being the n-dimensional phase space). That is, at a certain time t = t0,

f(t0, ·) : Rn −→ Rn

determines the phase velocity vector field of Rn for that instance of time. If the system is autonomous,
then the vector field does not morph. As shown before, we can visualize the following.

1. System with 1-dimensional phase space (i.e. a system of one equation)

2. System with 2-dimensional phase space (two equations). The solution shown is

φ : R −→ R2, y = φ(t) ⇐⇒
(
y1
y2

)
=

(
φ1

φ2

)
(t) =

(
φ1(t)
φ2(t)

)
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3. Systems with higher-dimensional phase spaces are harder to visualize, but we just imagine a time
continuum R where at each point t0 ∈ R, there is a vector space Rn with a vector field f(t0, ·) :
Rn −→ Rn associated with it. In the visual below, the phase space are shown to be R3 (when it
is really Rn), with D being represented by its cross sections in the time axis (e.g. Dt0 is the cross
section of D at t = t0). The solution curve φ isn’t explicitly shown (only the points on the curve
at times t = t0, t1, t2), but it would be of form

φ : R −→ R3, y = φ(t) ⇐⇒

y1y2
y3

 =

φ1

φ2

φ3

 (t) =

φ1(t)
φ2(t)
φ3(t)



To find the solution of the system means to find the n equations y1 = φ1(t), y2 = φ2(t), . . . , yn = φn(t),
which is equivalent to finding the vector-valued path function

y = φ(t) =

φ1(t)
...

φn(t)

 , φ : I ⊂ R −→ Rn

such that

1. the point
(
t, φ(t)

)
∈ D for each t ∈ I

2. φ′(t) exists for each t ∈ I

3. φ′(t) = f
(
t, φ(t)

)
for every t ∈ I
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To solve an initial value problem for the system with initial condition

φ(t0) = η, η ∈ Rn and (t0, η) ∈ D

means to find a solution φ of the system such that φ(t0) = η.

The study of first order equations is quite nice because we can reduce a high-order scalar differential
equation of form

y(n) = g(t, y, y′, . . . , y(n−1))

to the following system with a change of variable y1 = y, y2 = y′, . . . , yn = y(n−1).
y1
y2
...

yn−1

yn


′

=


y2
y3
...
yn

g(t, y1, y2, . . . , yn)

 ⇐⇒


y′1 = y2

y′2 = y3

. . .

y′n−1 = yn

y′n = g(t, y1, y2, . . . , yn)

Example 5.1. We can write

2y′′ − 5y′ + y = 0, y(3) = 6, y′(3) = −1

We can define the following functions to get{
x1(t) = y(t)

x2(t) = y′(t)
=⇒

{
x′1 = y′ = x2

x′2 = y′′ = − 1
2x1 +

5
2x2

This gives the matrix equation(
x1
x2

)′

=

(
0 1
−1/2 5/2

)(
x1
x2

)
,

(
x1
x2

)
(3) =

(
6
−1

)
Solving this system is equivalent to finding a function φ : R −→ R2 satisfying the equation.

It naturally extends that a system of high-order scalar differential equations can be reduced to a system
of systems (creating a larger system) of first-order differential equations.

Example 5.2. The system

y′′ = sin (t)y′ + 2y − 4

y′′′ = ety′′ − 2 sin (4πt)y

can be reduced (with substitution y1 = y, y2 = y′, y3 = y′′) to

y′1 = y2

y′2 = y3

y′2 = sin(t)y2 + 2y1 − 4

y′3 = ety3 − 2 sin (4πt)y1

Note that even though this system consists of first-order equations, it cannot be put simply into vector
form since there are two equations involving y′2. We can attempt to solve the system excluding y′2 = y3

Theorem 5.1 (Existence, Uniqueness of Solutions in a System of First-Order DEQs). Given the system
of first-order DEQs

y′ = f(t, y)

Let the partial derivatives of f : R× Rn −→ Rn

∂f

∂yk
, k = 1, 2, . . . , n

be continuous in D. That is, for a given t = t0, the phase velocity vector field f(t0, ·) : Rn −→ Rn is
C1. Then, given any initial point (t0, η) ∈ D, there exists a unique solution φ of the system y′ = f(t, y)
satisfying the initial condition φ(t0) = η. The solution φ exists for any interval I containing t0 for which
the points

(
t, φ(t)

)
lie in D. Furthermore, the solution φ is continuous with respect to t0, t, and η.
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We briefly state a useful result.

Lemma 5.2 (Gronwall Inequality). Let K ≥ 0 be a constant and f, g be nonnegative C0 functions on
some interval α ≤ t ≤ β satisfying the inequality

f(t) ≤ K +

ˆ t

α

f(s)g(s) ds for α ≤ t ≤ β

Then,

f(t) ≤ K exp

(ˆ t

α

g(s) ds

)
for α ≤ t ≤ β

5.2 Linear Systems of DEQs

Remember that higher-order systems can be reduced to a system of first-order DEQs, so it makes sense
to talk about a system of first-order linear DEQs.

Definition 5.2 (Linear Systems of DEQs). The system y′ = f(t, y) linear in the components of y has
the form

y′1 = a11(t)y1 + a12(t)y2 + . . .+ a1n(t)yn + g1(t)

y′2 = a21(t)y1 + a22(t)y2 + . . .+ a2n(t)yn + g2(t)

... =
...

y′n = an1(t)y1 + an2(t)y2 + . . .+ ann(t)yn + gn(t)

which can be represented as a matrix equation, where A : R −→ Mat(n× n,R), g : R −→ Rn.

y′ = A(t)y + g(t) ⇐⇒


y1
y2
...
yn


′

=


a11(t) a12(t) . . . a1n(t)
a21(t) a22(t) . . . a2n(t)

...
...

. . .
...

an1(t) an2(t) . . . ann(t)



y1
y2
...
yn

+


g1(t)
g2(t)
...

gn(t)


It is actually true that there exists a unique solution to this linear system as long as η is finite. This is
formalized in the theorem below.

Theorem 5.3 (Existence of Unique Solutions of Linear Systems). Let matrix-valued function A(t) and
vector valued function g(t) be continuous on some interval a ≤ t ≤ b. Then, if a ≤ t0 ≤ b and if |η| <∞,
the system of linear DEQs

y′ = A(t)y + g(t)

has a unique solution y = φ(t) satisfying initial condition φ(t0) = η and existing on the interval a ≤ t ≤ b.
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5.2.1 Homogeneous Linear Systems of DEQs

Note that a first-order homogeneous linear system is of form

y′ = A(t)y

Note that the scalar analogue of a homogeneous first-order linear DEQ can be changed to the above form
as such

a0(t)y
′ + a1(t)y = 0 =⇒ a0(t)y

′ = −a1(t)y

=⇒ y′ = −a1(t)
a0(t)

y

where we treat y, y′ as 1-dimensional vectors, and −a1(t)/a0(t) as a 1× 1 matrix.
Just as in the scalar case, the solutions to the linear system forms a vector space.

Theorem 5.4 (Fundamental Set of Solutions). Given the first-order linear homogeneous system

y′ = A(t)y

with A : R −→ Mat(n × n,C) being continuous over interval I ⊂ R, the solutions of this system over I
form an n-dimensional subspace within C1(R,Cn), the space of all continuously differentiable functions
mapping R −→ Cn. The basis of this space is called the fundamental set of solutions.

Proof. We can rearrange the system as

−y′1 + a11(t)y1 + a12(t)y2 + . . .+ a1n(t)yn = 0

−y′2 + a21(t)y1 + a22(t)y2 + . . .+ a2n(t)yn = 0

... =
...

−y′n + an1(t)y1 + an2(t)y2 + . . .+ ann(t)yn = 0

and put it into matrix form

a11(t) . . . a1n(t) −1 . . . 0
...

. . .
...(t)

...
. . .

...
an1(t) . . . ann(t) 0 . . . −1




y1
...
yn
y′1
...
y′n


= 0

The kernel of this linear mapping has dimension n. ■

Example 5.3 (4th Order DEQ into System of 1st-Order DEQs in Matrix Form). We can write the
following homogeneous 4th order differential equation

y(4) + 3y′′ − sin (t)y′ + 8y = t2, y(0) = 1, y′(0) = 2, y′′(0) = 3, y(3)(0) = 4

into the system by making the substitutions

x1 = y =⇒ x′1 = y′ = x2

x2 = y′ =⇒ x′2 = y′′ = x3

x3 = y′′ =⇒ x′3 = y(3) = x4

x4 = y(3) =⇒ x′4 = y(4) = −8y + sin (t)y′ − 3y′′ + t2 = −8x1 + sin (t)x2 − 3x3 + t2

which leads to the matrix equation

x′ =


0 1 0 0
0 0 1 0
0 0 0 1
−8 sin(t) −3 0

x+


0
0
0
t2

 , x(0) =


1
2
3
4


45/ 68



Ordinary Differential Equations Muchang Bahng August 2021

Definition 5.3 (Solution Matrix, Fundamental Matrix). Given that φ1, φ2, . . . , φn : R −→ Rn are n
solutions to the homogeneous matrix differential equation y′ = A(t)y, the n × n matrix whose columns
are solutions is called a solution matrix.
Then n × n matrix with its columns being the n linearly independent solutions on I is called the
fundamental matrix.

Φ =

 | | . . . |
ϕ1 ϕ2 . . . ϕn
| | . . . |

 =


ϕ11(t) ϕ21(t) . . . ϕn1(t)

ϕ12(t) ϕ22(t)
. . . ϕn2(t)

...
...

. . .
...

ϕ1n(t) ϕ2n(t) . . . ϕnn(t)


Note that a fundamental matrix is not unique (that is, two different fundamental matrices Φ, Φ̃ can
exist), but since the column space of Φ and Φ̃ are the same, we can change any fundamental matrix into
another with a linear change of basis. That is, given the passive transformation matrix P ,

Φ = P−1Φ̃P

Furthermore, the fundamental matrix Φ(t) has the property that any solution of the matrix DEQ can
be expressed as a linear combination of the column space of Φ(t). That is, every solution ψ(t) can be
constructed as

ψ(t) = Φ(t)c, c =

c1...
cn


Theorem 5.5 (Abel’s Formula). If Φ is a solution matrix of y′ = A(t)y on I and if t0 is any point of
I, then

detΦ(t) = detΦ(t0) exp

(ˆ t

t0

n∑
j=1

ajj(s) ds

)
for every t ∈ I

It immediately follows that since t0 is arbitrary, either

1. detΦ(t) ̸= 0 for each t ∈ I, or

2. detΦ(t) = 0 for every t ∈ I

Corollary 5.5.1. A solution matrix Φ of the matrix equation

y′ = A(t)y

on interval I is a fundamental matrix if and only if

detΦ(t) ̸= 0 for every t ∈ I

Practically, this means that to test whether a solution matrix is a fundamental matrix, it suffices to
evaluate its determinant at one point!

Note that this corollary has a very close relationship with the previously mentioned theorem on how the
Wronskian is used to determine the linear independence of solutions to a linear DEQ Ln(y) = 0. More
specifically, if we take a nth order linear DEQ satisfying the hypothesis of the Wronskian theorem, we
can change it to a system of first-order linear equations and apply the previous corollary to determine
linear independence of solutions. Both approaches are exactly the same.

5.2.2 Linear Inhomogeneous Systems

It is obvious that due to the forcing term g(t) (representing the external force on the system), the form
of solution of the inhomogeneous system

y′ = A(t)y + g(t)

is
φ(t) = ψ(t) + Φ(t)c
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where ψ is a special solution to the DEQ over interval I. Since we know how to find the fundamental
matrix Φ, all it remains is to find ψ. We can do this using the multivariate variation of constants formula.
For notational purposes, we write for vector valued functions f : R −→ Rn, where f1, f2, . . . , fn are the
basis functions,

ˆ b

a

f(x) ds =


´ b
a
f1(x) ds
...´ b

a
fn(x) ds


Theorem 5.6 (Multivariate Variation of Constants Formula). Given the inhomogeneous first-order
linear system

y′ = A(t)y + g(t)

if Φ is the fundamental matrix of its homogeneous counterpart y′ = A(t)y on interval I ⊂ R, then the
special function given by the variation of constants formula

ψ(t) = Φ(t)

ˆ t

t0

Φ−1(s)g(s) ds

is the unique solution of the original DEQ satisfying the initial condition on I

ψ(t0) = 0

(Notice that Φ−1 is always well defined since Φ is nonsingular) This means that every solution ϕ of the
DEQ has the form

ϕ(t) = ψ(t) + ϕh(t)

where φh is the solution of the homogeneous system satisfying the same initial condition at t0 as φ (e.g.
φh(t0) = η). This makes it such that the initial conditions are met:

φ(t0) = ψ(t0) + φh(t0) = 0 + η = η

5.3 Linear Systems with Constant Coefficients

If the homogeneous system
y′ = A(t)y

has constant coefficients (i.e. A consists of constant terms), then we can obtain an explicit formula of
the fundamental matrix.
Also, to reduce confusion,

1. Ax will be used to denote matrix A multiplied by vector x

2. xA will be used to denote scalar x multiplied to matrix A (row vector multiplication will not be
seen in this section)

Theorem 5.7 (Fundamental Matrix of a Linear System with Constant Coefficients). Given the system
of n linear equations

y′ = Ay, A ∈ Mat(n× n,C)
the matrix

Φ(t) = e(t−t0)A =

∞∑
m=0

((t− t0)A)m

m!

is the fundamental matrix with Φ(t0) = I on (−∞,∞).

Proof. Φ(t0) = I is obvious from substitution. Assuming t0 = 0, we differentiate At : R −→ Mat(n×n,R)
with respect to t to get (

etA
)′

= A+
tA2

1!
+
t2A3

2!
+ . . .+

tk−1Ak

(k − 1)!
+ . . . = AetA

This means that given any constant vector c ∈ Rn, we have(
etA
)′
c = AetAc =⇒

(
etAc

)′
= A(etAc)

and so etA is a solution matrix. Furthermore, since detΦ(0) = det I = 1, it is a fundamental matrix (by
the corollary to Abel’s formula). ■
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Note that given an arbitrary matrix A, it is stupid to calculate eA explicitly. Rather, we can use a change
of basis to put it into Jordan Canonical Form J .

A = P−1JP

Then, it is clear that

eA = eP
−1JP = P−1eJP

Finding the eigendecomposition of a linear mapping, which may require working over the field C (or by
introducing generalized eigenvectors over R). This entire process is talked in detail in the linear algebra
chapter.
Another trick that may work in some cases is the following lemma.

Lemma 5.8. If two n× n matrices commute, then

eM · eP = eM+P

Proof. Trivial using the Baker-Campbell-Hausdorff formula. ■

Finally, we mentioned a greatly simplified variation of constants formula for the case when we solve a
inhomogeneous system of linear DEQs with constant coefficients.

Corollary 5.8.1 (Multivariate Variation of Constants Formula for Constant Coefficient Systems). Given
inhomogeneous system of N linear DEQs

y′ = Ay + g(t), A ∈ Mat(n× n,R), g ∈ C0

with initial conditions φ(t0) = η, then a specific solution of the system is

ψ(t) =

ˆ t

t0

e(t−s)Ag(s) ds, where ψ(t0) = 0

meaning that the general solution to this equation is

φ(t) = e(t−t0)Aη +

ˆ t

t0

e(t−s)Ag(s) ds −∞ < t <∞

where φ(t0) = η.

Example 5.4. Given the initial value problem

y′ = Ay + g(t) ⇐⇒
(
y′1
y′2

)
=

(
2 1
−1 4

)(
y1
y2

)
+

(
e3t

1

)
, φ(0) = η

Then, we have

Φ(t) = etA = e3t
(
1− t t
−t 1 + t

)
Φ(t)Φ−1(s) = e(t−s)A = e3(t−s)

(
1− (t− s) t− s
−(t− s) 1 + (t− s)

)
e(t−s)Ag(s) = e3t

(
1− (t− s) + e−3s(t− s)
−(t− s) + e−3s(1 + t− s)

)
Therefore,

φ(t) = e3t
(
1− t t
−t 1 + t

)
η + e3t

ˆ t

0

(
1− (t− s) + e−3s(t− s)
−(t− s) + e−3s(1 + t− s)

)
ds

which can be easily evaluated.
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5.3.1 Asymptotic Behavior of Solutions

In many cases, in order to apply the variation of constants formula

φ(t) = e(t−t0)Aη +

ˆ t

t0

e(t−s)Ag(s) ds −∞ < t <∞

and others derived from it, we must know how the matrix etA behaves. For example, in order to measure
the growth of solutions of as t→∞, we need to estimate

lim
t→∞

φ(t)

where | · | is the L-1 norm. But this cannot be done without knowing a useful estimate of |etA|.

Theorem 5.9. Given λ1, λ2, . . . , λk are distinct eigenvalues of A, where λj has multiplicity nj and
n1 + . . .+ nk = n, let ρ be any real number such that

ρ > max
j=1,...,k

(
Re(λi)

)
Then, there exists a constant K > 0 such that

|etA| ≤ Ketρ for 0 ≤ t <∞

Its applications really lies within its corollary.

Corollary 5.9.1. If all eigenvalues of A have real parts negative, then every solution φ(t) of the system

y′ = Ay

approaches 0 as t→ +∞. More precisely, there exists constants K̃ > 0, σ > 0 such that

|φ(t)| < K̃e−σt, (0 ≤ t <∞)

Theorem 5.10 (Upper Bound on Growth Rate of Solutions of Nonhomogeneous Linear System with
Constant Coefficients). Suppose that in the linear inhomogeneous system

y′ = Ay + g(t)

the function g(t) grows no faster than an exponential function; that is, there exists real constants M >
0, T ≥ 0, and a ∈ R such that

|g(t)| ≤Meat for all t ≥ T
Then, every solution φ of the system grows no faster than an exponential function. That is, there exists
real constants K > 0, b such that

|φ(t)| ≤ Kebt for all t ≥ T
The derivative φ′(t) also grows no faster than an exponential function.

6 Laplace Transforms

Laplace transforms extends our toolkit for solving linear differential equations (and systems of them) by
reducing an initial value problem into an algebra problem, which can be summarized by the diagram
below, where L represents the transform.

Algebra Problem Y (t)

DEQ Problem y = φ(t)

solution

L

solution

L

Laplace transforms also allows us to work with piecewise continuous functions.
The method of Laplace Transforms does not actually allow us to solve new types of differential equations.
Rather, it is useful because it enables us to find one particular solution of the differential equation which
satisfies the initial conditions directly, rather than first finding the general solution and then using the
initial conditions to determine constants.
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Definition 6.1 (Functions of exponential growth at infinity). A function on 0 < t <∞ is said to be of
exponential growth at infinity if it satisfies

|f(t)| ≤Mect

for some real constants M > 0 and c, for all sufficiently large t.

Definition 6.2 (Function Class Λ). The class Λ of functions is defined as those functions on 0 < t <∞
which are

1. absolutely integrable on 0

2. piecewise continuous on (0,∞)

3. of exponential growth at infinity

Clearly, the functions 1, t, tn(n ∈ N), sin t, cos t, ezt(z ∈ C) are in class Λ, but et
2 ̸∈ Λ.

Definition 6.3 (Laplace Transform). Let f ∈ Λ. The Laplace transform of f is denoted L{f(t)} or
F (t), defined

F (s) ≡
ˆ ∞

0

f(t)e−st dt = lim
A→∞

f(t)e−st dt

Sometimes, the Laplace transform may be defined by setting the lower limit to −∞.

F (t) ≡
ˆ ∞

−∞
f(t)e−st dt

Example 6.1. The Laplace transformation of constant function 1 is

ˆ ∞

0

e−st dt = lim
A→∞

ˆ A

0

e−st dt = lim
A→∞

(
1

s
− e−sA

s

)
=

1

s
(Re(s) > 0)

Clearly, the integral does not converge for Re(s) ≤ 0. The Laplace transform of ezt is

L(ezt) = 1

s− z
(Re(s) > Re(z))

From the examples before and our notation of the transform, we can see and prove the following.

Proposition 6.1 (Linearity of the Laplace Transform). The Laplace transform is a linear map with
respect to its function argument. That is,

L{af + bg} = aL{f}+ bL{g}

This means that if f : R −→ C is a complex-valued function

f(t) = u(t) + iv(t)

Then,
L
(
f(t)

)
= L

(
u(t) + iv(t)

)
= L

(
u(t)

)
+ iL

(
v(t)

)
That is,

Re
(
(L(f(t))

)
= L(Re(f(t))),Com

(
(L(f(t))

)
= L(Com(f(t)))

6.1 Common Laplace Transforms

Example 6.2. Given z = α+ iβ ∈ C, with α, β ∈ R, and f(t) = ezt, we have

L(ezt) = L(eαteiβt) = L
(
eαt cosβt+ ieαt sinβt

)
=

1

s− z
=

1

z − α− iβ

=
s− α+ iβ

(s− α)2 + β2
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By linearity, we can take the real and complex parts of this transform to get

L
(
eαt cosβt

)
=

s− α
(s− α)2 + β2

(5)

L
(
eαt sinβt

)
=

β

(s− α)2 + β2
(6)

Taking α = 0 gives us

L
(
cosβt

)
=

s

s2 + β2
, L

(
sinβt

)
=

β

s2 + β2
Re(s) > 0

To compute the Laplace transforms functions of some other forms, we can use the following theorem.

Theorem 6.2. The Laplace transform of a function f in the class Λ has derivatives of all orders, given
by

F (k)(s) = (−1)k
ˆ ∞

0

tke−stf(t) dt, k = 1, 2, . . .

Furthermore, f(t) ∈ Λ =⇒ tkf(t) ∈ Λ for every positive integer k, and its Laplace transform is given
by

L
(
tkf(t)

)
= (−1)

Corollary 6.2.1. It follows immediately that

L
(
tk
)
= (−1)k d

k

dsk

(
1

s

)
=

k!

sk+1
(Re(s) > 0)

L
(
tkezt

)
= (−1)k d

k

dsk

(
1

s− z

)
=

k!

(s− z)k+1
(Re(s) > Re(z))

Another theorem for computing Laplace transforms.

Theorem 6.3. If the function f ∈ Λ has a Laplace transform F , then for any constant a ∈ C,

L
(
eatf(t)

)
= F (s− a)

Proof. It is easy to prove that eatf(t) ∈ Λ, since

|f(t)| ≤Mect =⇒ |eatf(t)| ≤ eαtMect =Me(a+c)t

and thus eatf(t) is of exponential growth at infinity. Calculating the Laplace transform, we get

L
(
eatf(t)

)
=

ˆ ∞

0

e−steatf(t) dt =

ˆ ∞

0

e−(s−a)tf(t) dt = F (s− a)

■

We conclude this subsection by providing a table of common Laplace transforms.

Theorem 6.4 (Table of Common Laplace Transforms). Here we have some common transforms, where
a ∈ R is a constant. Note that the gamma function

Γ(t) ≡
ˆ ∞

0

e−x xt−1 dx

is an extension of the factorial function to the real numbers.

1. f(t) = eat =⇒ F (t) = 1
s−a

2. f(t) = tn, n ∈ N =⇒ F (t) = n!
sn+1

3. f(t) = tp, p > −1 =⇒ F (t) = Γ(p+1)
tp+1

4. f(t) = sin(at) =⇒ F (t) = a
t2+a2
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5. f(t) = cos(at) =⇒ F (t) = t
t2+a2

6. f(t) = t sin(at) =⇒ F (t) = 2at
(t2+a2)2

7. f(t) = t cos(at) =⇒ F (t) = t2−a2

(s2+a2)2

8. f(t) = sin(at+ b) =⇒ F (t) = t sin(b)+a cos(b)
t2+a2

9. f(t) = cos(at+ b) =⇒ F (t) = t cos(b)−a sin(b)
t2+a2

6.1.1 Laplace Transforms of Derivatives

Now that we know how to calculate Laplace transforms, we must extend this to derivatives of functions
in order to integrate it within differential equations.

Lemma 6.5. Let f be a differentiable function in the class Λ whose derivative also belongs to the class
Λ, and let the Laplace transform of f be F . Then,

L
(
f ′(t)

)
= sF (s)− f(0)

Proof. We use the definition of Laplace transform and integrate by parts to get

L
(
f ′(t)

)
=

ˆ ∞

0

e−stf ′(t) dt = lim
A→∞

e−stf ′(t) dt

= lim
A→∞

(
e−stf(t)

∣∣A
0
+

ˆ A

0

se−stf(t) dt

)
= −f(0) + s

ˆ ∞

0

e−stf(t) dt = sF (s)− f(0)

where we used the fact (f ∈ Λ =⇒ f is of exponential growth at infinity) that

lim
A→∞

e−sAf(A) = 0

for sufficiently large Re(s). ■

Definition 6.4 (The Class Λk). For each positive integer k, define Λk to be the class of Ck((0,∞))
(defined over (0,∞)) functions in Λ whose derivatives up to order k also belong to Λ. That is,

Λk = {f ∈ Ck((0,∞)) | f, f ′, f ′′, . . . , f (k) ∈ Λ}

Theorem 6.6 (Laplace Transform of Derivatives). If f ∈ Λk for some positive integer k, and if F is
the Laplace transform of f , then for any 1 ≤ j ≤ k,

L
(
f (j)(t)

)
= sjF (s)−

j∑
i=1

sj−if (i−1)(0)

= sjF (s)− sj−1f(0)− sj−2f ′(0)− . . .− sf (j−2)(0)− f (j−1)(0)

Proof. Using the lemma, proof by induction on j for any fixed k. ■

Note that in order to solve a differential equation using Laplace transforms, we must know the initial
values φ(0), φ′(0), . . . at t = 0 (must be at 0!) for us to simplify the algebraic equation that is produced.
This is shown in the examples.

Example 6.3. Given the first-order differential equation with initial conditions

y′ + ay = 0, φ0(0) = y0

where a, y0 are given constants. Assuming that the solution is in the class Λ1, we try to find this using
Laplace transforms. Let Y0(s) = L(φ0). Then,

L
(
φ′
0(t) + aφ0(t)

)
= L

(
φ′
0(t)

)
+ aL

(
φ0(t)

)
= sY0(s)− φ0(0) + aY0(s) = 0
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So,

(s+ a)Y0(s) = y0 =⇒ Y0(s) =
y0
s+ a

Now the only problem remaining is to find a function whose Laplace transform is this expression. By
direct verification, we can see that φ0(t) = y0e

−at is indeed the solution.

Example 6.4. The Laplace transform of the nonhomogeneous first-order linear DEQ

y′ + ay = f(t), φ(0) = y0

is (where Y (s) = L(φ))

sY (s)− φ(0) + aY (s) = F (s) =⇒ Y (s) =
y0
s+ a

+
F (s)

s+ a

Therefore, we must find a function which has this expression as its Laplace transform. By the previous
example, we know that t0e

−at satisfies the first term, but we have no method as yet of finding a function
whose Laplace transform is

F (s)

s+ a

This suggests that we will need a method of finding a function whose Laplace transform is the product of
two given functions F (s) and 1/(s+ a).

This final example shows what would happen if we tried to take the Laplace transform of linear DEQ
with nonconstant coefficients.

Example 6.5. Taking the Laplace transform of

y′ + 2ty = 0, ψ(0) = y0

gives (where L(ψ) = Z(s))
sZ(s)− ψ(0)− 2Z ′(s) = 0

While in the previous problems the equation was greatly simplified into an algebraic problem, here we
have a differential equation which is no simplier than the original problem.

Clearly, this example suggests that the usefulness of the Laplace transform method is limited mainly to
equations with constant coefficients.

6.2 Heaviside Step, Dirac Delta Functions

Definition 6.5 (Heaviside Step Function). A Heaviside (step) function, denoted as H, I, or u, is defined

H(x) ≡

{
0 x < 0

1 x ≥ 0

Clearly, it can be horizontally translated c units to result in the function H(t− c) = uc which is 1 if t ≥ c
and 0 otherwise.
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Looking back a Heaviside step functions, we can combine them to create more complicated models. For
example, we can redefine the piecewise function

f(t) =


−4 t < 6

25 6 ≤ t < 8

16 8 ≤ t < 30

10− t ≥ 30

in terms of Heaviside functions as such

f(t) = −4 + 29u6(t)− 9u8(t)− 6u30(t)

This is analogous to a ”switch” that we can turn on or off. Furthermore, we can use Heaviside functions
to ”shift” functions horizontally a certain length c while turning them ”off” for values of t < c and ”on”
for values t ≥ c. This can be written as

g(t) ≡ uc(t) f(t− c)

To find the Laplace transform of g(t), we can evaluate it as such.

L{uc(t) f(t− c)} =
ˆ ∞

0

e−stuc(t)f(t− c) dt

=

ˆ ∞

c

e−stf(t− c) dt

Substituting u = t− c gives

L{uc(t) f(t− c)} =
ˆ ∞

0

e−s(u+c)f(u) du

= e−cs

ˆ ∞

0

e−suf(u) du

= e−csF (s)

This leads to the following formulas.

Theorem 6.7. The Laplace transforms for Heaviside functions are:

L{uc(t)f(t− c)} = e−ctF (t)

L{uc(t)} =
e−ct

t

Definition 6.6 (Dirac Delta Function). The Dirac delta function is a generalized function or distribution
that models forces exerted over small time frames. It can be thought of as a function δ satisfying the
properties

1.δ(t− a) = 0, t ̸= a

2.

ˆ a+ε

a−ε

δ(t− a) dt, ε > 0

3.

ˆ a+ε

a−ε

f(t)δ(t− a) dt = f(a), ε > 0

Alternatively, it may be evaluated as the limit of a Gaussian distribution centered at a where σ → 0.
That is,

δ(t) = lim
σ→0

Normal(a, σ2)
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To apply the Dirac delta function in Laplace transforms, we calculate

L{δ(t− a)} =
ˆ ∞

0

e−stδ(t− a) dt = e−as

given that a > 0.

Proposition 6.8. More generally, we have

L{uc(t)f(t− c)} = e−csF (s)

where F is the Laplace transform of f .

Lemma 6.9. The derivative of the Heaviside function ua(t) is the Dirac delta function centered at a.
That is,

u′a(t) = δ(t− a)

Proof. With a bit of background in probability, the cumulative distribution function (CDF) of the Dirac
delta function is defined ˆ t

−∞
δ(u− a) du =

{
0 t < a

1 t ≥ a

But this is precisely the definition of the Heaviside function. By the fundamental theorem of calculus,
we have

u′a(t) =
d

dt

ˆ t

−∞
δ(u− a) du = δ(t− a)

■

6.3 Inverse Laplace Transform

Definition 6.7 (Inverse Laplace Transform). The Inverse Laplace transform is the inverse of a Laplace
transform. That is,

L
(
f(t)

)
= F (s) =⇒ L−1

(
F (s)

)
= f(t)

Now, as we have mentioned in the previous examples, we would like to derive a certain method to find
the inverse transform of a function.

Theorem 6.10 (Inverse Laplace Transforms of Products of Functions). We assume that we are given
two functions f(t), g(t), with their Laplace transforms { = F (s), } = G(s). Then,

L
(ˆ t

0

f(t− v)g(v) dv
)

= F (s)G(s)

That is, given the function F (s)G(s) (with their respective inverse transforms known), its inverse Laplace
transform is

L−1
(
F (s)G(s)

)
=

ˆ t

0

f(t− v)g(v) dv

given by the convolution integral of f and g.
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Proof. We let H(s) = F (s)G(s) and try to find the function h(t) where L(h) = H(s). If there is such as
function h, then

L
(
h(t)

)
=

ˆ ∞

0

e−sth(t) dt

= F (s)G(s) =

ˆ ∞

0

e−suf(u) du

ˆ ∞

0

e−svg(v) dv

where Re(s) > σ = max (α, β), where F (s) = L(f) for Re(s) > α and G(s) = L(g) for Re(s) > β
(α, β ∈ R). Since each integral converges absolutely for Re(s) > σ, we can write the product of the two
integrals as the iterated integral (using Fubini’s theorem)

ˆ ∞

0

e−sth(t) dt =

ˆ ∞

0

ˆ ∞

0

e−s(u+v)f(u)g(v) du dv

=

ˆ ∞

0

g(v)

(ˆ ∞

0

e−s(u+v)f(u) du

)
dv

=

ˆ ∞

0

g(v)

(ˆ ∞

0

e−stf(t− v) dt
)
dv

=

ˆ ∞

0

e−st

(ˆ t

0

f(t− v)g(v) dv
)
dt

where the second to last step was done by making the change of variable u + v = t for Re(s) > σ.
Therefore,

F (s)G(s) =

ˆ ∞

0

e−sth(t) dt =

ˆ ∞

0

e−st

(ˆ t

0

f(t− v)g(v) dv
)
dt

=⇒ h(t) =

ˆ t

0

f(t− v)g(v) dv

■

Proposition 6.11. L is a linear operator.

L−1{aF + bG} = aL−1{F}+ bL−1{G}

Corollary 6.11.1. The only function in the class Λ whose Laplace transform is identically 0 is the zero
function.

Example 6.6. We compute

L−1

(
1

s2 − 1

)
= L−1

(
1

(s+ 1)(s− 1)

)
Since

L−1

(
1

s− 1

)
= et, L−1

(
1

s+ 1

)
= e−t

we have

L−1

(
1

(s+ 1)(s− 1)

)
=

ˆ t

0

et−ue−u du = et
ˆ t

0

e−2u du =
1

2

(
et − e−t

)
We can also compute it using partial fraction decomposition and by using the linearity of L−1.

L−1

(
1

s2 − 1

)
=

1

2

(
L−1

(
1

s− 1

)
− L−1

(
1

s+ 1

))

=
1

2

(
et − e−t

)
Example 6.7. We compute

L−1

(
1

s2(s2 + 1)

)
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we know that

L−1

(
1

s2

)
= t, L−1

(
1

s2 + 1

)
= sin t

So,

L−1

(
1

s2(s2 + 1)

)
=

ˆ t

0

(t− u) sinu du = t

ˆ t

0

sinu du−
ˆ t

0

u sinu du = t− sin t

Using partial fractions, we have

L−1

(
1

s2(s2 + 1)

)
= L−1

(
1

s2

)
− L−1

(
1

s2 + 1

)
= t− sin t

Example 6.8. Here is an example where we use only partial fractions. Since

G(s) =
86s− 78

(s+ 3)(s− 4)(5s− 1)
= − 3

s+ 3
+

2

s− 4
+

5

5s− 1

we have

L−1{G(s)} = L−1{− 3

s+ 3
+

2

s− 4
+

5

5s− 1
}

= −3e−3t + 2e4t + et/5

Therefore, for rational functions of the form
N(s)

D(s)

where N,D are polynomials with the degree of N less than the degree of D, we can take advantage of
partial fractions to compute its inverse Laplace transform.

Example 6.9. Solve the following differential equation.

2y′′ + 3y′ − 2y = te−2t, y(0) = 0, y′(0) = −2

We take the Laplace transforms of all the terms in the differential equation to get

2
(
t2Y (t)− ty(0)− y′(0)

)
+ 3
(
tY (t)− y(0)

)
− 2Y (t) =

1

(t+ 2)2

which, after simplification, gives

(2t2 + 3t− 2)Y (t) + 4 =
1

(t+ 2)2

Solving for Y , we get

Y (t) =
1

(2t− 1)(t+ 2)3
− 4

(2t− 1)(t+ 2)

=
1

125

(
−96
s− 1

2

+
96

s+ 2
− 10

(s+ 2)2
− 25

(s+ 2)3

)
The inverse transform of this gives

y(t) =
1

125

(
− 96e

t
2 + 96e−2t − 10te−2t − 25

2
t2e−2t

)
We now deal with Heaviside functions in this next example.

Example 6.10. Solve the following initial value problem.

2y′′ + 10y = 3u12(t)− 5δ(t− 4), y(0) = −1, y′(0) = −2

We take the Laplace transform

2
(
t2Y (t)− ty(0)− y′(0)

)
+ 10Y (t) =

3e−12t

t
− 5e−4t

=⇒ (2t2 + 10)Y (t) + 2t+ 4 =
3e−12t

t
− 5e−4t
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and solve for Y

Y (t) = 3e−12t

(
1

t(2t2 + 10)

)
− 5e−4t

(
1

2t2 + 10

)
− 2t+ 4

2t2 + 10

= 3e−12t

(
1

10t
− 1

10(t2 + 5)

)
− 5e−4t

(
1

2t2 + 10

)
− 2t+ 4

2t2 + 10

= 3e−12tF (t)− 5e−4tG(t)−H(t)

Using the rules for inverse transforming Dirac delta functions, we can get

y(t) = 3u12(t)f(t− 12)− 5u4(t)g(t− 4)− h(t)

where

f(t) =
1

10
− 1

10
cos (
√
5t)

g(t) =
1

2
√
5
sin (
√
5t

h(t) = cos (
√
5t) +

2√
5
sin (
√
5t

In general, the best tool for systematically solving inverse Laplace transforms is a table, experience, and
luck.
Finally, we conclude by saying that not every type of function is necessarily the Laplace transform of
some other function. For example, this theorem:

Theorem 6.12. If f belongs to the class Λ and if F (s) is its Laplace transform, then

lim
Re(s)→∞

F (s) = 0

Furthermore, not only does F (s) → 0 as s → ∞, but in fact |sF (s)| remains bounded as Re(s) → ∞.
Clearly, not all functions have this property.

Proof. Since f ∈ Λ, it is of exponential growth at infinity, meaning |f(t)| ≤Mect for some M > 0, c and
sufficiently large t. This means that

|F (s)| ≤M
ˆ ∞

0

|e−st|ect dt

=M

ˆ ∞

0

e−Re(s)tect dt =
M

Re(s)− c
, (Re(s) > c)

and it is clear that this limit approaches 0 as Re(s)→∞. ■

In actuality, it is often impossible to find the inverse transform for a general function explicitly.

7 Numerical Methods of Solving DEQs

In many problems the only effective method for obtaining information about the solution of a differential
equation is to use a numerical approximation procedure. In this section, we will talk about

1. the Euler Method and modified Euler Method

2. the Milne Method

3. Runge-Kutta Methods

For simplicity, we constrain our view to single first-order differential equations.
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7.1 The Euler Method and Modified Euler Method

Given the first-order differential equation

y′ = f(t, y) with initial conditions φ(t0) = y0

we wish to find an approximation to the value of the solution φ at t = t0 + T . By the fundamental rule
of calculus, we know that assuming that f(t, y) is C1 for t ∈ (t0, t0 + T ),

φ(t) = φ(t0) +

ˆ t

t0

φ′(s) ds

= y0 +

ˆ t

t0

f
(
s, φ(s)

)
ds

In visual terms, we just take y0 and add the area under the derivative curve φ′(s) from t0 to whatever t
we would like.

Since we know y0, finding f(t0+T ) rests entirely on solving the integral representing the area under the
velocity curve. Euler’s method is simply doing this with left-hand Riemann sums. Note that while it is
conventional that a the rectangles have the same width, they do not necessarily need to be.

1. 2 Riemann rectangles (even and uneven).

2. 3 Riemann rectangles (even and uneven).
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3. 4 Riemann rectangles (even and uneven).

In fact, the question of the best choice of unequal spacing is a major unsolved mathematical problem.
We formalize this algorithm in the following steps.

Theorem 7.1 (Euler’s Method). Given the first order DEQ y′ = f(t, y) with initial conditions φ(t0) =
y0, say that we would like to approximate the value of φ(t0 + T ). Then, the Euler method gives us steps:

1. Divide the interval [t0, t0+T ] into N (not necessarily equal) subintervals by specifying intermediate
points

t0 < t1 < t2 < . . . < tN−1 < tN = t0 + T

For simplicity of calculations later, we will assume equal spacing, with spacing h = T/N .

2. Looking at points tk and tk+1 for k = 1, . . . , N − 1, we can approximate the value of yk+1 with yk
using Riemann rectangles.

yk+1 = yk +

ˆ tk+1

tk

f
(
s, φ(s)

)
ds =⇒ yk+1 = yk + (tk+1 − tk)f(tk, yk)

=⇒ yk+1 = yk + hf(tk, yk)
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3. Use step 2 to find y1, then y2, and so on until yN ≈ φ(tN ) = φ(t0 + T ) is found. Then terminate.

Furthermore, for some constant M , the local truncation error of the Euler method (for each step) is

|Tk| ≤
1

2
Mh2

that is, no greater than a constant multiple of h2, while the cumulative truncation error of it is

|φ(tn)− yn| ≤
1

2
Mh2N =

1

2
MTh

that is, no greater than a constant multiple of h.

Since the cumulative error bound is bounded by a linear function of h, we can make the error as small
as we want by making the h arbitrarily small. However, the truncation error for Euler’s method is too
large and is not used in applications. Rather, it is more efficient to use a more sophisticated method of
approximation where the cumulative truncation error is no greater than a constant multiplied by some
higher power of h.
An obvious improvement is to change the method of approximation of integrals from left-hand Riemann
sums (taken at the start point of each interval) to Riemann rectangles taken at the midpoint of each
interval. This method of approximation is called midpoint quadrature

Theorem 7.2 (Modified Euler’s Method). Given the first order DEQ y′ = f(t, y) with initial conditions
φ(t0) = y0, say that we would like to approximate the value of φ(t0 + T ).Then, the modified Euler’s
method gives us steps:
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1. Divide the interval [t0, t0 +T ] into N equal subintervals (of length h), where N is an even number,
by specifying intermediate points

t0 < t1 < t2 < . . . < tN−1 < tN = t0 + T

2. Rather than integrating over one subinterval [tk, tk+1], we integrate over two subintervals [tk, tk+2]
and approximate it using the value of the function at tk+1, the midpoint of the interval. That is,

yk+2 = yk +

ˆ tk+2

tk

f
(
s, φ(s)

)
ds =⇒ yk+2 = yk + (tk+2 − tk)f(tk+1, yk+1)

=⇒ yk+2 = yk + 2hf(tk+1, yk+1)

Note that the modified Euler’s method expresses yk+2 in terms of both yk and yk+1. This is a
problem, since in the first step we know only y0 but not y1 in order to calculate y2. Therefore, we
must solve for y1 with some other method, such as Euler’s method or approximating using Taylor
series (provided the function is analytic).

3. Use step to to find y2, then y4, then y6, and so on until yN ≈ φ(tN ) = φ(t0 + T ) is found. Then
terminate.

Furthermore, for some constant M , the local truncation error of the modified Euler method (for each
step) is

|Tk| ≤
M

3
h3

that is, no greater than a constant multiple of h2, while the cumulative truncation error of it is no great
than a constant multiple of h2.

Example 7.1 (Comparison of Euler Algorithm and Modified Version on Approximating e). By setting
h = 0.1, we estimate e where φ(1) = e. Remember the differential equation with this solution is y′ =
f(t, y) = y. Using Euler’s method we have

yk+1 = yk + 0.1yk = 1.1yk

Doing this iteratively 10 times starting at y0 = 1 gives us 1.110 = 2.593. However, using the modified
Euler’s method, we have

yk+2 = yk + 0.2f(tk+1, yk+1)

We can first approximate y1 = φ(0.1) = 1 + 0.1 + 1
2 (0.1)

2 + . . . using a power series expansion, giving
y1 ≈ 1.105 (correct to 3 decimal places). Since f(t, y) = y, we get

yk+2 = yk + 0.2yk+1

Calculating these values y2, y3, . . ., we get e ≈ 2.713, which is considerably better than the 2.593 approx-
imation.
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Another way to approximate definite integrals is to use trapezoidal sums as a method of approximation.

ˆ tk+1

tk

f
(
s, φ(s)

)
ds ≈ h

2

(
f(tk, φ(tk)) + f(tk+1, φ(tk+1))

)

Theorem 7.3 (Improved Euler’s Method). Given the first order DEQ y′ = f(t, y) with initial conditions
φ(t0) = y0, say that we would like to approximate the value of φ(t0+T ), then the improved Euler method
gives us steps:

1. Divide the interval [t0, t0+T ] into N (not necessarily equal) subintervals by specifying intermediate
points

t0 < t1 < t2 < . . . < tN−1 < tN = t0 + T

For simplicity of calculations later, we will assume equal spacing, with spacing h = T/N .

2. Looking at points tk and tk+1 for k = 1, . . . , N − 1, we can approximate the value of yk+1 with yk
using trapezoids.

yk+1 = yk +

ˆ tk+1

tk

f
(
s, φ(s)

)
ds =⇒ yk+1 = yk +

h

2

(
f(tk, yk) + f(tk+1, yk+1

)
Note that the improved Euler method expresses yk+1 implicitly rather than explicitly. There are
methods for dealing with implicit formulas, but we leave it at this.

3. Use step 2 to find y2, then y3, and so on until yN
∑
φ(tN ) is found.

7.2 The Milne Method

The Milne method gives us a quadratic approximation to certain integrals.

Lemma 7.4 (Simpson’s Rule). Simpson’s rule gives the approximation

ˆ tk+2

tk

f
(
s, φ(s)

)
ds ≈ h

3

(
f(tk, φ(tk)) + 4f(tk+1, yk+1) + f(tk+2, yk+2)

)
Proof. This approximation pops up from attempting to find a quadratic graph of best fit for arbitrary
function y = f(t, φ(t)). For convenience, we assign F (t) = f(t, φ(t)). Now, we must determine constants
a, b, c so that the parabola

y = a+ b(s− tk+1) + c(s− tk+1)
2

with vertex (tk+1, a) passes through the points (tk, F (tk)), (tk+1, F (tk+1)), (tk+2, F (tk+2)).
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Since h = tk+2 − tk+1 = tk+1 − tk, we have the set of conditions

F (tk) = a− bh+ ch2

F (tk+1) = a

F (tk+2) = a+ bh+ ch2

We can solve this system to get

a = F (tk+1), c =
F (tk+2)− 2F (tk+1) + F (tk)

2h2

We then integrate this quadratic approximation

ˆ tk+2

tk

(
a+ b(s− tk+1) + c(s− tk+1)

2
)
ds =

(
as− b

2
(s− tk+1)

2 +
c

3
(s− tk+1)

3

)∣∣∣∣tk+2

tk

= 2ah+
2

3
ch3

Note that we do not even need to find the value of b. Substituting the solutions a, c in, we get Simpson’s
Rule. ■

Theorem 7.5 (Milne Method). Given the first order DEQ y′ = f(t, y) with initial conditions φ(t0) = y0,
say that we would like to approximate the value of φ(t0 + T ). Then, the Milne method gives us steps:

1. Divide the interval [t0, t0+T ] into N (not necessarily equal) subintervals by specifying intermediate
points

t0 < t1 < t2 < . . . < tN−1 < tN = t0 + T

For simplicity of calculations later, we will assume equal spacing, with spacing h = T/N .

2. Rather than integrating over one subinterval [tk, tk+1], we integrate over two subintervals [tk, tk+2]
and approximate it using Milne’s formula:

yk+2 = yk +

ˆ tk+2

tk

f
(
s, φ(s)

)
ds

=⇒ yk+2 = yk +
h

3

(
f(tk, φ(tk)) + 4f(tk+1, yk+1) + f(tk+2, yk+2)

)
Note that this solves for yk+2 implicitly (which isn’t a problem when dealing with linear equations),
and you need to know both yk and yk+1 in order to calculate yk+2.

3. Use step 2 to find y2, y3, . . . until yN ≈ φ(tN ) is found. Then terminate.

Furthermore, the cumulative truncation error of the Milne method is no greater than a constant multiple
of h4.

We can now state a very important theorem on error bounds of one-step methods (applying to the Euler
method, but not to the Milne method).
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Theorem 7.6 (Truncation Error Bounds on One-Step Methods). Suppose that f(t, y) ∈ C1 for t0 ≤
t ≤ t0 + T and all y. Suppose

y1, y2, . . . , yN

are the approximations calculated by some one-step method with step length h to the solution φ of

y′ = f(t, y), φ(t0) = y0

If the local truncation error is no greater than ϵ, then the cumulative truncation error is no greater than
a constant multiple of ϵ/h.

This theorem shows that if the local truncation error of a one-step process is no greater than a constant
multiple of hp, then the cumulative truncation error is no grater than a constant multiple of hp−1.
Analogous results can be proved for two-steps methods (and for methods involving any finite number
of steps). Therefore, the accuracy of approximation is improved if a method whose truncation error
involves a higher power of h is used.

7.3 Stability, Consistency, and Convergence

Definition 7.1 (Round-Off Errors). When we use a numerical method to obtain an approximation to
the solution of a differential equation, we are trying to find a set of numbers

y1, y2, y3, . . . , yN

defined by the method, where yN is the final approximation. However, due to the floating-point nature
of numbers in computers, we actually round-off all numbers calculated to a specific number of significant
figures, obtaining a slightly different set of numbers

z1, z2, z3, . . . , zN

the difference
rk = |zk − yk|, k = 1, 2, . . . , N

is called the round-off error. The h value is also called the mesh.

Definition 7.2 (Finite-Difference Methods). Finite-difference methods are a class of numerical tech-
niques for solving differential equations by approximating derivatives with finite differences. Both the
spatial domain and time interval are discretized (i.e. broken up into a finite number of steps), and the
value of the solution at these discrete points is approximated by solving algebraic equations containing
finite differences and values from nearby points.

Definition 7.3 (Consistency, Stability, Convergence). We now define three common terms that describes
numerical methods.

1. Consistency : A finite difference method is considered consistent if by reducing the mesh and time
step size, the truncation error terms could be made to approach 0. In this case the solution to the
difference equation would approach the true solution of the DE.

2. Stability : A finite difference approximation is stable if the errors (truncation, round-off, etc.) decay
(i.e. remain bounded, preferably within some deducible function) as the computation proceeds from
one marching step to the next.

3. Convergence: The solution to the finite difference approximation approaches the true solution of
the DE when the mesh is refined (step size reduced). This means that the approximation yN tend
to the actual solution as h→ 0.

Every method mentioned in this section is convergent. Obviously, a method which is not convergent
is useless for obtaining numerical approximations. It is possible to give conditions for stability and
consistency of numerical methods which are easy to verify. If we do this, we can use the following
theorem to prove convergence.

Theorem 7.7 (Lax Equivalence Theorem). A finite difference approximation method satisfying con-
sistency (meaning truncation error approaches 0 when step size and mesh size goes to 0) and stability
(meaning error goes on diminishing as time step passes) is convergent.

It turns out that the Milne method may be numerically instable, which is why it is not always suitable,
despite its small truncation error.
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7.4 Runge-Kutta Methods

Let us revisit Taylor polynomials that serve as approximations to differentiable functions. Let φ be the
solution of the differential equation

y′ = f(t, y), φ(t0) = y0

Assuming that φ has a continuous second derivative on the interval [t0, t0 + T ], we can use Taylor’s
theorem (with the Lagrange form of the remainder) to write the first order approximation centered at
t0.

φ(t) = φ(t0) + (t− t0)φ′(t0) +
(t− t0)2

2!
φ′′(ζ)

for some ζ ∈ (t0, t). If t1 = t0 + h, then

φ(t1) = φ(t0) + hφ′(t0) +
h2

2!
φ′′(ζ)

= φ(t0) + hf(t0, y0) +
h2

2!
φ′′(ζ)

≈ y0 + hf(t0, y0)

where the approximation is gotten by neglecting the term h2

2! φ
′′(ζ). If we divide the interval [t0, t0 + T ]

into N subintervals of length h by defining the partition points tk = t0 + kh (k = 0, 1, . . . , N), we can
use this procedure to obtain an iterative formula

yk+1 = yk + hf(tk, yk)

with local truncation error h2

2! φ
′′(ζ). This first-order approximation is, of course, just Euler’s algorithm.

If we look at the second degree Taylor expansion

φ(t) = φ(t0) + (t− t0)φ′(t0) +
(t− t0)2

2!
φ′′(t0) +

(t− t0)3

3!
φ′′′(ζ)

we can ignore the error term but we still have to deal with the second order term. We can evaluate
φ′′(t0) by differentiating φ′(t) = f(t, φ(t)) using the chain rule, which gives

φ′′(t) = ft
(
t, φ(t)

)
+ fy

(
t, φ(t)

)
φ′(t)

= ft
(
t, φ(t)

)
+ fy

(
t, φ(t)

)
f
(
t, φ(t)

)
Where ft and fy represents the partial derivatives with respect to t and y, respectively. Note that when
computing ft(t, φ(t)), we should keep φ(t) constant, and when computing fy(t, φ(t)), we should keep t
constant while deriving with respect to y = φ(t). Do not get confused by this. This ultimately leads to
the iterative approximation formula

yk+1 = yk + hf(tk, yk) +
h2

2!

(
ft(tk, yk) + fy(tk, yk)f(tk, yk)

)
with local truncation error h3

3! φ
′′′(ζ). This is a plausible means of obtaining numerical approximations,

but it suffers from the disadvantage of having to calculate derivatives of f , which isn’t easy for a computer
to do. This problem persists for procedures using higher-order Taylor approximations.
The Runge-Kutta method is an attempt to obtain formulas equivalent to Taylor approximations which
do not involve derivatives of f . There are many variations of Runge-Kutta methods, but we will describe
the most common version.

Theorem 7.8 (Runge-Kutta Method). Given the first order DEQ y′ = f(t, y) with initial conditions
φ(t0) = y0, say that we would like to approximate the value of φ(t0+T ). Then, the Runge-Kutta method
gives us steps:

1. Divide the interval [t0, t0+T ] into N (not necessarily equal) subintervals by specifying intermediate
points

t0 < t1 < t2 < . . . < tN−1 < tN = t0 + T

For simplicity of calculations later, we will assume equal spacing, with spacing h = T/N .
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2. Given the value yk, we can approximate the value yk+1 using the one-step process

yk+1 = yk +
h

6
(p1 + 2p2 + 2p3 + p4)

where

p1 = f(tk, yk) p2 = f

(
tk +

h

2
, yk +

hp1
2

)
p3 = f

(
tk +

h

2
, yk +

hp2
2

)
p4 = f(tk+1, yk + hp3)

The term 1
6 (p1 + 2p2 + 2p3 + p4) represents an ”average” slope of φ over the interval [tk, tk+1]. More

specifically,

1. p1 is the slope at t1

2. p2 is an approximation of the slops at the midpoint of the interval obtained by means of the Euler
method

3. p3 is a second approximation to the slope at the midpoint

4. p4 is an approximation to the slope at tk+1 obtained by means of the Euler method with slope p3.

Even though it requires a lot of calculations, it is an explicit one-step procedure that does not require
calculation of derivative of f . Furthermore, it is equivalent to a 4th order Taylor formula, and the local
truncation error of the Runge-Kutta method is no greater than a constant multiple of h5.

Example 7.2 (Deriving a Runge-Kutta Formula equivalent to 2nd-Order Taylor Formula). Earlier in
this subsection, we have found that the second order approximation formula for φ is

yk+1 = yk + hf(tk, yk) +
h2

2!

(
ft(tk, yk) + fy(tk, yk)f(tk, yk)

)
which requires us to compute derivatives. We will demonstrate how to obtain a Runge-Kutta formula
equivalent to this 2nd-order Taylor formula. We will assume a method of form

yk+1 = yk + h
(
af(tk, yk) + bf

(
tk + αh, yk + βhf(tk, tk)

))
where a, b, α, β are constants to be determined. By Taylor’s theorem for functions of two variables we
write

f
(
tk + αh, yk + βhf(tk, yk)

)
= f(tk, yk) + αhft(tk, yk) + βhf(tk, yk)fy(tk, yk) +Rh2

where R is a remainder term involving the second-order partial derivatives of f . Substituting this into
the original form gives

yk+1 = yk + h(a+ b)f(tk, yk) + h2
(
αbft(tk, yk) + βbf(tk, yk)fy(tk, yk)

)
+Rbh3

Comparing this with the original approximation formula for φ (with derivatives), we can compare each
term and see that if

a+ b = 1, , αb =
1

2
, βb =

1

2

then the approximations obtained by these two formulas differ only by the term Rbh3. Thus, any quadru-
ples of constants satisfying these conditions is a Runge-Kutta formula of the desired type. For example,
choosing a = 1

2 , b =
1
2 , α = 1, β = 1, gives

yk+1 = yk +
h

2

(
f(tk, yk) + f(tk+1, yk + hf(tk, yk))

)
which is equivalent in accuracy to a three-term Taylor formula. Also note that this formula is similar to
the improved Euler method.
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7.5 Numerical Methods for Systems and Equations of Higher Order

Everything in this section had been designed for first-order equations, but these methods are equally
suitable for systems of differential equations. We can write a system of equations as a vector equation

y′ = f(t, y) ⇐⇒


y′1 = f1(t, y1, y2, . . . , yn)

y′2 = f2(t, y1, y2, . . . , yn)
... =

...

y′n = fn(t, y1, y2, . . . , yn)

where y ∈ Rn and f : Rn × R −→ Rn. We can apply the approximation methods developed in this
chapter to the system by applying them to each component in the vector equation.

Example 7.3. Consider the system

u′ = v, v′ = g(t, u, v)

This can be written in form

y′ = f(t, y) ⇐⇒
(
u
v

)′

=

(
v

g(t, u, v)

)
The Euler method applied to this system leads to a pair of iterative formulas(

uk+1

vk+1

)
=

(
uk
vk

)
+ h

(
vk

g(tk, uk, vk)

)
=⇒

{
uk+1 = uk + hvk

vk+1 = vk + hg(tk, uk, vk)

Therefore, once we are given initial values u0 and v0, and once we have found both uk and vk, we can
use this to compute uk+1 and vk+1.

As we have seen before, higher order equations can be treated as a system of first-order DEQs, which
can then be solved numerically on each component equation.
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