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This is a course on database languages (SQL, XML, JSON) and database management systems (Postgres,
MongoDB).

Definition 0.1 (Data Model)

A data model is a notation for describing data or information, consisting of 3 parts.
1. Structure of the data. The physical structure (e.g. arrays are contiguous bytes of memory or

hashmaps use hashing). This is higher level than simple data structures.
2. Operations on the data. Usually anything that can be programmed, such as querying (opera-

tions that retrieve information), modifying (changing the database), or adding/deleting.
3. Constraints on the data. Describing what the limitations on the data can be.

There are two general types: relational databases, which are like tables, and semi-structured data models,
which follow more of a tree or graph structure (e.g. JSON, XML). We’ll cover in the following order:

1. The theory of relational algebra.

2. Practical applications with SQL.

3. Theory and practice of XML.

4. Theory and practice of JSON.

1 Theory of Relations
The most intuitive way to store data is with a table, which is called a relational data model, which is the norm
since the 1990s. We will first talk about the structure, then the operations, and finally some constraints.

1.1 Structure

Definition 1.1 (Relation)

A relation is a set or multiset R with the following data structure.
1. Each element r ∈ R is called a tuple/row, with the form r = (a1 ∈ T1, . . . , an ∈ Tn). Despite

its name and our use of indices, the tuple itself is not ordered.
2. Each Ti is a primitivea type (e.g. int float, string, but not a list or set).b
3. Each Ti is given an alphanumeric name Ai as a variable, called the attribute. We denote A

as the set of the attribute of relation R.
4. The schema of R tells us a summary of its structure: R(A1 T1, A2 T2, . . . , An Tn).
5. Given a time parameter t, Rt represents the instance of the relation R at time t.

Given these names, we can visualize relations as tables, tuples as rows, and attributes as columns.

We introduce this in this abstract way because there are many implementation differences between DBMSs.
For example, the set of available primitive types may differ, or we may be able to define attribute names
with special characters. Even in temporal databases, we may also keep track of the history of its instances
rather than just the current instance.

Example 1.1 (Schemas)

Here are a few schemas, which has the name of the relation followed by the attributes and its types.

1 Beer (name string, brewer string)
2 Serves (bar string, price float)

aloosely defined here
bNote that this is also a form of constraint on our data, but the types are usually defined under structure.
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Note that this is analogous to a function declaration in C++.

Definition 1.2 (Compatiblity)

Two relations R and S are compatible, denoted R ≃ S, if they have the same schema (same set of
attribute types and names).

While we have not talked about any types yet, there is a common one that we should mention now.

Definition 1.3 (Null)

A null value, denoted with ω indicates an unknown but not empty value. The specific behavior of
this value will be covered when we get into SQL implementations.

1.2 Operations and Relational Algebra
We have just defined sets, and the natural thing to do is to construct functions on sets, i.e. what operations
are legal. We introduce this with relational algebra, which gives a powerful way to construct new relations
from given relations. Simply put, an algebra is an algebraic structure with a set of operands (elements) and
operators.1

Definition 1.4 (Relational Algebra)

A relational algebra consists of a set of operations O grouped into 4 broad categories.
1. Set Operations. Union, intersection, and difference.
2. Removing. Selection removes tuples and projection removes attributes.
3. Combining. Cartesian products, join operations.
4. Renaming. Doesn’t affect the tuples, but changes the name of the attributes or the relation

itself.

Let’s take a look at each of these operations more carefully, using the following relation.

bar beer price
The Edge Budweiser 2.50
The Edge Corona 3.00
Satisfaction Budweiser 2.25

Figure 1: The example relation, which we will denote serves, which we will use to demonstrate the following
operations.

1.2.1 Set Operations

Definition 1.5 (Union)

Given R ≃ S, R ∪ S is the set/multiset of tuples in either R or S.

Definition 1.6 (Intersection)

Given R ≃ S, R ∩ S is the set/multiset of tuples in both R or S.

1Not the technical definition.
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Definition 1.7 (Difference)

Given R ≃ S, R− S is the set of tuples in R but not S, or the multiset that keeps track of counts in
R and S.

Note that this set is not minimal.

Lemma 1.1 ()

Given R ≃ S,

R ∩ S = R− (R− S) (1)
= S − (S −R) (2)
= R ▷◁ S (3)

Proof.

The natural join will check for all attributes in each schema, but sine we assumed that they had the
same schema, it must check for equality over all attributes.

Example 1.2 (Symmetric Difference of Relations)

Let R(A,B,C) = {(1, 2, 3), (4, 2, 3), (4, 5, 6), (2, 5, 3), (1, 2, 6)} and
S(A,B,C) = {(2, 5, 3), (2, 5, 4), (4, 5, 6), (1, 2, 3)}
Compute (R− S) ∪ (S −R) (symmetric difference). Identify one tuple in the result.

1. (4, 5, 6) This tuple appears in both R and S, so it’s not in the symmetric difference.
2. (2, 5, 3) This tuple appears in both R and S, so it’s not in the symmetric difference.
3. (1,2,6) This tuple appears only in R, so it’s in R - S and thus in the symmetric difference.
4. (1, 2, 3) This tuple appears in both R and S, so it’s not in the symmetric difference.

1.2.2 Projection and Selection

Definition 1.8 (Selection)

The selection operator σp filters the tuples of a relation R by some condition p.

σp(R) (4)

It must be the case that p is deducible by looking only at that row, but it may not be (e.g. the
condition where the count of an attribute in the row passes a threshold).

Definition 1.9 (Projection)

Given that L ⊂ A is a a subset of R’s attributes, the projection operator πL filters the attributes
of a relation R.

πL(R) (5)

Example 1.3 (Projection Operation)

Given R(A,B,C) = {(1, 2, 3), (4, 2, 3), (4, 5, 6), (2, 5, 3), (1, 2, 6)}
Compute πC,B(R) and identify one tuple.
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1. (4, 2)
2. (3,2) This is correct.
3. (4, 2, 3) Projection onto C,B should only have two attributes, not three.
4. (2, 3) This reverses the specified projection order of C,B.

1.2.3 Product and Join

Definition 1.10 (Cartesian Product)

The cartesian product of two not-necessarily compatible relations R and S is the relation

R× S = {r ∈ S, s ∈ S} (6)

which has a length of |R| × |S|. It is commutative (again, tuples are not ordered despite its name),
and if S and R have the same attribute name n, then we usually prefix it by the relation to distinguish
it: S.n,R.n.

Definition 1.11 (Theta-Join)

The theta-join with join condition/predicate p gives

R ▷◁p S = σp(R× S) (7)

If p consists of only equality conditions, then it is called an equi-join.

Example 1.4 (Conditional Join Query)

Given R(A,B) = {(1, 2), (3, 4), (5, 6)} and
S(B,C,D) = {(2, 4, 6), (4, 6, 8), (4, 7, 9)}
Compute the join with conditions R.A < S.C AND R.B < S.D.

1 SELECT A, R.B, S.B, C, D
2 FROM R, S
3 WHERE R.A < S.C AND R.B < S.D

1. (5, 6, 2, 4, 6) This doesn’t satisfy R.A < S.C as 5 > 4.
2. (1, 2, 4, 4, 6) The values don’t properly satisfy both conditions.
3. (5, 6, 4, 6, 9) Doesn’t satisfy conditions as 5 < 6.
4. (1,2,4,7,9) Valid result as 1 < 7 and 2 < 9, satisfying both conditions.

Definition 1.12 (Natural/Inner Join)

In a θ-join, if p is not specified (R ▷◁ S), then this is called a natural join. The p is automatically
implied to be R.A = S.A for all A ∈ R.A ∩ S.A, and if R.A ∩ S.A = ∅, then this is reduced to the
cartesian product.

Example 1.5 (Natural Join Operation)

Given R(A,B) = {(1, 2), (3, 4), (5, 6)} and
S(B,C,D) = {(2, 4, 6), (4, 6, 8), (4, 7, 9)}
Find R ▷◁ S and identify one resulting tuple.
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1. (1, 2, 6, 8) The values don’t match on the joining attribute B.
2. (5, 6, 7, 8) Not a valid join result as these values don’t align on B.
3. (1, 2, 4, 8) The values don’t match properly in the join condition.
4. (3,4,6,8) Valid join result as B=4 matches between R and S, and remaining values align

correctly.

Lemma 1.2 (Deletion of Duplicate Attribute in Natural Join)

There is a difference between a natural join and a theta-join with its explicitly written join predicate
counterpart. Say that R and S both have attribute A.

1. In theta-join, R ▷◁p S will contain R.A and S.A.
2. In natural join, R ▷◁ S will contain A only.

Example 1.6 (Simple Filter)

Find all the addresses of the bars that Ben goes to.

name address
The Edge 108 Morris Street
Satisfaction 905 W. Main Street

Table 1: Bar Information

drinker bar times_a_week
Ben Satisfaction 2
Dan The Edge 1
Dan Satisfaction 2

Table 2: Frequents Information

We do the following.
πaddress

(
Bar ▷◁name=bar σdrinker=Dan(Frequents)

)
(8)

There is an extension of relational algebra that uses more join operators. We introduce them now. While
natural/inner joins result in a relation of matching tuples in the two operands, and outer join contains these
tuples and additionally some tuples formed by extending an unmatched tuple in one of the operands.

Definition 1.13 (Left Outer Join)

A left outer join R ▷◁ S results in the set of all tuples in R, plus those in S that matches (equal in
shared attributes) with R. If a r doesn’t match with any S, then we fill the S attributes with ω.

R ▷◁ S = (R ▷◁ S) ∪ ((R− πR.A(R ▷◁ S))× {(ω, . . . , ω)}) (9)

Definition 1.14 (Right Outer Join)

A right outer join R ▷◁ S results in the set of all tuples in S, plus those in r ∈ R that matches
(equal in shared attributes) with some s ∈ S. If a s ∈ S doesn’t match with any r ∈ R, then we fill
the R attributes with ω.

R ▷◁ S = (R ▷◁ S) ∪ ({(ω, . . . , ω)} × (R− πR.A(R ▷◁ S))) (10)
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Definition 1.15 (Full Outer Join)

A full outer join R ▷◁ S results in the set of all tuples where their is a match in either left or right
tables. If a r ∈ R doesn’t match with a s, or a s doesn’t match with a r, we fill those values in with
null.

R ▷◁ S = (R ▷◁ S) ∪ (R ▷◁ S) (11)

Figure 2: Nice diagram from W3Schools.

Example 1.7 (Outer Join)

Consider the following relations.
Name EmpId DeptName
Harry 3415 Finance
Sally 2241 Sales
George 3401 Finance
Harriet 2202 Sales
Tim 1123 Executive

DeptName Manager
Sales Harriet
Production Charles

We demonstrate the join operations.
1. Left outer join.

Name EmpId DeptName Manager
Harry 3415 Finance ω
Sally 2241 Sales Harriet
George 3401 Finance ω
Harriet 2202 Sales Harriet
Tim 1123 Executive ω

2. Right outer join.
Name EmpId DeptName Manager
Sally 2241 Sales Harriet
Harriet 2202 Sales Harriet
ω ω Production Charles

3. Full outer join.
Name EmpId DeptName Manager
Harry 3415 Finance ω
Sally 2241 Sales Harriet
George 3401 Finance ω
Harriet 2202 Sales Harriet
Tim 1123 Executive ω
ω ω Production Charles
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1.2.4 Renaming

Definition 1.16 (Renaming)

Given a relation R,
1. ρS(R) means that you are chaning the relation name to S.
2. ρ(A1,...,An)(R) renames the attribute names to (A1, . . . , An).
3. ρS(A1,...,An)(R) renames the relation name to S and the attribute names to (A1, . . . , An).

It does not really adding any processing power. It is only used for convenience.

1.2.5 Monotonicity

Definition 1.17 (Monotone Operators)

An operator O(R) is monotone with respect to input R if increasing the size (number of rows/tuples)
of R does not decrease the output relation O.

R ⊂ R′ =⇒ O(R) ⊂ O(R′) (12)

Example 1.8 (Monotone Operators)

Let’s go through to see if each operator is monotone.
1. Selection is monotone.
2. Projection is monotone.
3. Cross Product is monotone.
4. Join is monotone.
5. All joins are monotone w.r.t. all parameters.
6. Union is monotone.
7. Intersection is monotone.
8. Difference R− S is monotone w.r.t. R but not monotone w.r.t. S.

Example 1.9 (Getting maximum of an attribute)

Given a schema R(a, b, c), how do we find the maximum of a? This is hard to come up in the first
time since we are not allowed to compare across lines. However, we can do the following:

1. Take the cross product of R1(a1, b1, c1)×R2(a2, b2, c2).
2. Select all tuples that are not maxes by selecting all rows where a1 < a2. The resulting rows will

contain only those that are not maximums.
Therefore, we do the following

max
a

(R) = [πa(R)× πa(R)]− σa1<a2
[πa7→a1

(R)× πa 7→a2
(R)] (13)

The minimum can be solved analogously.

Notice that the maxatt operator is not monotone, since the old answer is overwritten.

{oldmax} ̸⊂ {newmax} (14)

Generally, whenever we want to construct a non-monotone operator, we want to use the set difference since
the composition of monotones is monotone.

You should determine when to project, before or after the difference.
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1.3 Constraints
Like mathematical structures, relational databases would not be very useful if they didn’t have any structure
on them. Our final database property after structure and operations are constraints, which can also be written
in relational algebra. Through it may not seem obvious, all constraints can be written with what we call set
constraints.

Definition 1.18 (Set Constraints)

There are two ways in which we can use relational algebra to express constraints. If R and S are
relations, then

1. R = ∅ constrains R to be empty.
2. R ⊂ S constrains R to be a subset of S.a

There are three main constraints we will look at:

1. domain constraints

2. key constraints

3. referential integrity

1.3.1 Domain Constraints

There is not much to say here. We have already looked at this constraint when defining the type T of an
attribute A. That is, an instance of an attribute A must be of type T : a ∈ T .

Definition 1.19 (Domain Constraints)

We can also constrain the domain of a certain attribute r of relation R. Let C(r) be the constraint.
Then,

σnot C(r)(R) = ∅ (15)

1.3.2 Key Constraints

Definition 1.20 (Key)

A set of attributes K ⊂ A form a key for a relation
1. if we do not allow two tuples in any relation instance to have the same values in all attributes

of the key (i.e. in general).
2. no proper subset of K can also be a key for any relation instance, that is, K is minimal.a

A relation may have multiple keys, but we typically pick one as the primary key and underline all
its attributes in the schema, e.g. Address(street, city, state, zip).

While we can make a key with a set of attributes, many databases use artificial keys such as unique ID
numbers for safety.

Example 1.10 (Keys of User Relation)

Given the schema User(uid, name, age),
1. uid is a key of User
2. age is not a key (not an identifier) even if the relation at the current moment all have different

aNote that this is technically unnecessary, since we can write R− S = ∅. We can also write R = ∅ ⇐⇒ R ⊂ ∅.
aBy minimal we do not mean that the number of attributes in K is minimal. It is minimal in the sense that no proper subset

of K can be a key.
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ages.
3. {uid, name} is not a key (not minimal)

Definition 1.21 (Key Constraints)

If we have the key K = (k1, . . . , km) ⊂ A of a relation R, we can express this constraint as such. We
rename R to copies R1, R2, denote K′ = A−K, and write

σR1.K=R2.K and R1.K′ ̸=R2.K′(R1 ×R2) = ∅ (16)

That is, if we found a r1 ∈ R1, r2 ∈ R2 that matched in the key attributes, then it must be the case
that r1 = r2. But if they are equal in the rest of the attributes, they will be projected out.

1.3.3 Referential Integrity

Definition 1.22 (Referential Integrity Constraints)

One way that we can use this is through referential integrity constraints, which asserts that a value
appearing as an attribute r in relation R also should appear in a value of an attribute s in relation
S. That is,

πr(R) ⊂ πs(S) (17)

1.4 Functional Dependencies
A generalization of keys is functional dependencies. Since it can be viewed as another form of key constraint,
it is included here, but it is also a method of describing relationships within data, which will be useful in
effective designing of databases.

Definition 1.23 (Functional Dependency)

Given a relation R with attributes A, let a = (a1, . . . , an),b = (b1, . . . , bm) ⊂ A. Then, the constraint

a 7→ b (18)

also called “a functionally determines b,” means that if two tuples agree on a, then they must
agree on b. We say that R satisfies a FD f : a 7→ b or a set of FDs F = {f} if this constraint is
satisfied.

From this, we can see that the term “functional” comes from a literal function being defined on the input a.

Lemma 1.3 (FDs as Key Constraints)

Note that the functional dependency a 7→ b also implies the key constraint

σR1.a=R2.a and R1.b̸=R2.b′(R1 ×R2) = ∅ (19)

Definition 1.24 (Superkey)

A set of attributes k of a relation R is called a superkey if

k 7→ r− k (20)

If no k′ ⊂ k functionally determines r, then it is a key.
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Example 1.11 (Clarification of Minimal Meaning)

Given a relation R(A,B,C,D,E, F ) with functional dependencies

AEF 7→ C,BF 7→ C,EF 7→ D,ACDE 7→ F (21)

We can see that every attribute not on the right hand side (C,D, F ) must be a key. If we do a bit of
testing out, we can see that

1. ABEF is a key.
2. ABCDE is also a key since even though it has 5 attributes, it is minimal in the sense that no

proper subset functionally determines every other attribute.

1.4.1 Structure on Spaces of Functional Dependencies

To introduce additional structure, we will introduce two spaces.

1. Given a relation R, let us consider the set of all FDs F = F (R) on R. This is clearly a large set, which
increases exponentially w.r.t. the number of attributes in R.

2. Let us denote the set of all relations R satisfying F as RF , which is an infinite set.

Theorem 1.1 (Armstrong Axioms)

Let’s prove a few properties of FDs, which have nice structure.
1. Splitting and Combining. The two sets of FDs are equal.

{a 7→ b} ⇐⇒ {a 7→ bi | i = 1, . . . ,m} (22)

2. Trivial FDs. Clearly elements of a uniquely determines its own attributes.

a 7→ b =⇒ a 7→ b− a (23)

or can also be written as
b ⊂ a =⇒ a 7→ b (24)

3. Augmentation.
a 7→ b =⇒ a, c 7→ b, c (25)

4. Transitivity. If a 7→ b,b 7→ c, then
a 7→ c (26)

Proof.

Trivial.

It is also possible to put a partial order on F .

Definition 1.25 (Partial Order)

Given two FDs f and g, consider the set of all relations R satisfying f and g, denoted as Rf and Rg.
1. Then f =⇒ g iff Rf ⊂ Rg.
2. f ⇐⇒ g iff Rf = Rg.

Moreover, we can use this structure on F to induce structure on the set of attributes r.
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Definition 1.26 (Closure of Attributes)

The closure of r under a set of FDs F is the set of attributes b s.t.

RF = Rb (27)

We denote this as b = r+. To actually compute the closure, we take a greedy approach by starting
with r and incrementally adding attributes satisfying F until we cannot add any more.

Theorem 1.2 (Implication of Functional Dependencies)

If we want to know where one FD f : a 7→ b follows from a set F of functional dependencies,
1. We compute the closure a+ w.r.t. F .
2. If b ⊂ a+, then f follows from F .

Alternatively, we can also use the Armstrong axioms above to derive all implications.

1.4.2 Projections of Functional Dependencies

If we have a relation R with a set of FDs F , and we project R′ = πr′(R), then the set of FDs F ′ that hold
for R′ consists of

1. The FDs that follow from F , and

2. involve only attributes of R.

Calculating the FDs that hold is not trivial, and the calculations of the FDs for R′ is exponential in the
number of attributes of R′.

Theorem 1.3 (Calculating Projections of Functional Dependencies)

Given a relation R and its set of functional dependencies F , let R′ = π(R) be a projection.
1. Let G be the set of FDs that we construct that hold for R′. Initially it is empty.
2. For each set of attributes r that is a subset of the attributes of R1, compute r+. This compu-

tation is performed w.r.t. the set of FDs in S, and may involve attributes in the schema of R
but not in R′. Add to G all nontrivial FDs r → A such that A is both in r+ and an attribute
in R′.

This gives our projection, but it may not be minimal. To make it minimal, repeat the two steps,
independently.

1. If there is an FD g in G that follows from the other FDs in G, remove g.
2. Let g = a 7→ b be an FD in G, with at least 2 attributes in a, and let a′ be a with one of its

attributes removed. If g′ = a′ 7→ b follows from the FDs in G (including g), then replace g with
g′.

Once neither step can be done, we have a minimal set.

Example 1.12 (Computing FDs for Projections)

Suppose R(A,B,C,D) has FD’s A → B, B → C, and C → D. Suppose also that we wish to project
out the attribute B, leaving a relation R1(A,C,D). In principle, to find the FD’s for R1, we need to
take the closure of all eight subsets of {A,C,D}, using the full set of FD’s, including those involving
B. However, there are some obvious simplifications we can make.

• Closing the empty set and the set of all attributes cannot yield a nontrivial FD.
• If we already know that the closure of some set X is all attributes, then we cannot discover any

new FD’s by closing supersets of X.
Thus, we may start with the closures of the singleton sets, and then move on to the doubleton sets
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if necessary. For each closure of a set X, we add the FD X → E for each attribute E that is in X+

and in the schema of R1, but not in X.
First, {A}+ = {A,B,C,D}. Thus, A → C and A → D hold in R1. Note that A → B is true in R,
but makes no sense in R1, because B is not an attribute of R1.
Next, we consider {C}+ = {C,D}, from which we get the additional FD C → D for R1. Since
{D}+ = {D}, we can add no more FD’s, and are done with the singletons.
Since {A}+ includes all attributes of R1, there is no point in considering any superset of {A}. The
reason is that whatever FD we could discover, for instance AC → D, follows from an FD with only
A on the left side: A → D in this case. Thus, the only doubleton whose closure we need to take is
{C,D}+ = {C,D}. This observation allows us to add nothing. We are done with the closures, and
the FD’s we have discovered are A → C, A → D, and C → D.
If we wish, we can observe that A → D follows from the other two by transitivity. Therefore a
simpler, equivalent set of FD’s for R1 is A → C and C → D. This set is, in fact, a minimal basis for
the FD’s of R1.

2 Design Theory for Relational Databases
Okay, we know all that is needed to define a database, but not how to work practically well with it yet.
Given some set of data or some structure, we must find an optimal way to store it, within either one or
multiple relations. How should we do this? The first step is to categorize the potential problems.

2.1 Anomalies and Decomposition

Definition 2.1 (Anomaly)

Beginners often try to cram too much into a relation, resulting in anomalies of three forms.
1. Redundancies. Information repeated unnecessarily in several tuples.
2. Updates. Updating information in one tuple can leave the same information unchanged in

another (which violates referential integrity).
3. Deletion. If a set of values becomes empty, we may lose other information as a side effect

(another violation of referential integrity).

Example 2.1 (Redundancies)

Let’s try to see where these anomalies came from. Consider a non-trivial FD a 7→ b where a is not a
superkey. Since a is not a superkey, there are attributes, say c that are not functionally determined
by a. Therefore, there are multiple combinations of a,b, c which have the same a,b but not c, leading
to redundancy.

a b c
x y z1
...

...
...

x y z100

Table 3: Redundant information in a and b attributes.

If Ta, Tb are both 4-byte integers, we have just wasted 400 bytes of space. It seems that most of the
redundancy comes from using a and b too many times. If we had two relations R and S.

To eliminate these anomalies, we want to decompose relations, which involve splitting R into two new
relations R1, R2.
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Definition 2.2 (Decomposition)

Given relation with schema R(A), we can decompose R into two relations R1(A1) and R2(A2) such
that

1. A = A1 ∪A2 (not necessarily disjoint)
2. R1 = πA1

(R)
3. R2 = πA2(R)

There are two types of decomposition:
1. lossy decomposition of R to R1, R2 means that joining R1, R2 does not give us R.
2. lossless decomposition indeed gives us back R.

Theorem 2.1 (Decomposition)

Any decomposition R1, R2 of R satisfies

R ⊂ R1 ▷◁ R2 (28)

Proof.

If R1.A ∩R2.A = ∅, then R ⊂ R1 ×R2 for sure. If there is some overlap, then given some r ∈ R, we
will be able to find r1 ∈ R1 and r2 ∈ R2, and they will definitely join in their overlapping attribute,
giving R.

Therefore, we should be worried about if our decomposition will create new tuples since it will never delete
relevant ones.

Example 2.2 (Lossy and Lossless Decomposition)

Consider the relation

X Y Z
a b c1
a b c2
a1 b c2

Projecting to (X,Y ) and (X,Z) gives us a lossless decomposition.

X Y
a b
a1 b

X Z
a c1
a c2
a1 c2

X Y Z
a b c1
a b c2
a1 b c2

While projecting to (X,Y ) and (Y, Z) gives us a lossy one since we get (a1, b, c1) when joining the
decompositions, which is not in the original relation.

X Y
a b
a1 b

Y Z
b c1
b c2

X Y Z
a b c1
a b c2
a1 b c1
a1 b c2

Generally, the intuition behind trying to find a lossless decomposition is this: For a value of a certain
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attribute X that is in both decompositions R1 and R2, we want only one instance of a value on one
side. For example,

1. in the lossless decomposition, notice how for overlapping attribute X, for each instance a, a1,
we had 1 of each on the left relation, and however many on the right.

2. in the lossy decomposition, notice how we have two b’s on the left and two b’s on the right for
the lossy decomposition. Rather, we want something like 1 b vs multiple b’s.

2.1.1 Boyce-Codd Normal Form

This decomposition eliminated the redundancy anomaly, and for attributes X and Z, it eliminated the
deletion and update anomalies. Let’s formalize the conditions needed to decompose such a relation, and how
we should actually decompose it.

Definition 2.3 (BNCF)

BCNF is defined in two equivalent ways:
1. A relation R is in BNCF iff whenever there is a nontrivial FD a 7→ b, it is the case that a is a

superkey for R.
2. Given a relation R with a set of nontrivial functional dependencies F = {a 7→ b}, it is in BCNF

if for every a, a+ is the set of all attributes of R.
Note that since there are multiple keys, a does not always have to include the same key.

Example 2.3 (Non-BNCF Form)

The table below is not in BCNF form since

(title, year) 7→ (length, genre, studioName) (29)

Is a functional dependency where the LHS is not a superkey (the key is title, year).

title year length genre studioName starName
Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone With the Wind 1939 231 drama MGM Vivien Leigh
Wayne’s World 1992 95 comedy Paramount Dana Carvey
Wayne’s World 1992 95 comedy Paramount Mike Meyers

Table 4: Movie Data

Example 2.4 (BNCF Form)

However, if we decompose this into the following tables, both satisfy BCNF.

title year length genre studioName
Star Wars 1977 124 sciFi Fox
Gone With the Wind 1939 231 drama MGM
Wayne’s World 1992 95 comedy Paramount

Table 5: Simplified Movie Data
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title year starName
Star Wars 1977 Carrie Fisher
Star Wars 1977 Mark Hamill
Star Wars 1977 Harrison Ford
Gone With the Wind 1939 Vivien Leigh
Wayne’s World 1992 Dana Carvey
Wayne’s World 1992 Mike Meyers

Table 6: Movie Titles, Years, and Stars

Algorithm 2.1 (Constructing BCNF of a Relation)

To actually construct this, we act on BCNF violations. Given that we have found a FD a 7→ b that
doesn’t satisfy BCNF (i.e. a is not a superkey) of relation R, we decompose it into the following R1

and R2.
1. We want a to be a superkey for one of the subrelations, say R1. Therefore, we have it satisfy

a 7→ a+, which is satisfied by definition, and set

R1 = πa,a+(R) (30)

2. We don’t want any loss in data, so we take the rest of the attributes not in the closure and
define

R2 = πa,r−a+(R) (31)

We keep doing this until every subrelation satisfies BCNF. This is guaranteed to terminate since we
are decreasing the size of the relations until all attributes are superkeys.

Theorem 2.2 (Lossless Guarantee for BCNF)

If we decompose on a BCNF violation as stated above, then our decomposition is guaranteed to be
a lossless join decomposition.

Proof.

An outline of the proof means that given a BCNF violation a 7→ b, we must show that anything we
project always comes back in the join

R ⊂ πa+(R) ▷◁ πa,r−a(R) (32)

which is proved trivially, and anything that comes back in the join must be in the original relation

πa+(R) ▷◁ πa,r−a(R) ⊂ R (33)

We can use the fact that a 7→ b.

The lossless guarantee makes BCNF very attractive, but it comes with a tradeoff.

Theorem 2.3 (BCNF Does Not Preserve Functional Dependencies)

BCNF may not enforce equivalent functional dependencies over its decomposed relations compared
to its original relation.
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Proof.

We consider a counterexample. Given a schema R(A,B,C) with FDs

f = AB 7→ C, g = C 7→ B (34)

When we decompose based on C 7→ B into R1(C,B), R2(C,A), the join is still lossless because we
kept C in both relations, and when we join the two on C, each C value will match exactly one B
value (due to C → B in R2). However, we cannot enforce AB → C.

It is initially confusing since one may ask that if functional dependencies aren’t preserved, then doesn’t
this mean lossy decomposition? Not exactly, since the lossless join property is independent of dependency
preservation. The lossless join property ensures we can reconstruct the exact original relation through natural
joins, without getting any spurious tuples. Dependency preservation simply means we can’t enforce a FD
when inserting/updating. In fact, this is analogous to some functional dependencies being removed when
projecting a relation.

2.1.2 Recovery and Chase Test

Now let’s talk about properties of general decompositions.

Theorem 2.4 (Any 2-Attribute Relation Satisfies BNCF)

Any 2-attribute relations is in BCNF. Let’s label the attributes a, b and go through the cases.
1. There are no nontrivial FDs, meaning that {A,B} is the only key. Then BCNF must hold since

only a nontrivial FD can violate this condition.
2. a 7→ b holds but not b 7→ a, meaning that a is the only key. Thus there is no violation since a

is a superkey.
3. b 7→ a holds but not a 7→ b. This is symmetric as before.
4. Both hold, meaning that both a and b are keys. Since any FD has at least one of a, b on the

left, this is satisfied.a

From this theorem stating that any 2-attribute relation satisfies BCNF, we can just trivially decompose all
relations into relations R1, . . . , Rn, and we are done, right? Not exactly, since to ensure lossless join, we
must start with the original relation and split only on the BCNF violations. This is what makes it lossless,
and simply splitting arbitrarily will lead to a lossy decomposition. Furthermore, even if it was lossless, it
will destroy most functional dependencies too.

This motivates the need for a general test to see if a decomposition of R is lossless. That is, is it true that
πS1

(R) ▷◁ πS2
(R) ▷◁ · · · ▷◁ πSk

(R) = R? Three important things to remember are:

• The natural join is associative and commutative. It does not matter in what order we join the projec-
tions; we shall get the same relation as a result. In particular, the result is the set of tuples t such that
for all i = 1, 2, . . . , k, t projected onto the set of attributes Si is a tuple in πSi

(R).

• Any tuple t in R is surely in πS1
(R) ▷◁ πS2

(R) ▷◁ · · · ▷◁ πSk
(R). The reason is that the projection of t

onto Si is surely in πSi
(R) for each i, and therefore by our first point above, t is in the result of the

join.

• As a consequence, πS1
(R) ▷◁ πS2

(R) ▷◁ · · · ▷◁ πSk
(R) = R when the FD’s in F hold for R if and only

if every tuple in the join is also in R. That is, the membership test is all we need to verify that the
decomposition has a lossless join.

aNote that BCNF only requires some key to be contained on the left side, not that all keys are.
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Theorem 2.5 (Chase Test for Lossless Join)

The chase test for a lossless join is just an organized way to see whether a tuple t in πS1
(R) ▷◁

πS2
(R) ▷◁ · · · ▷◁ πSk

(R) can be proved, using the FD’s in F , also to be a tuple in R. If t is in the
join, then there must be tuples in R, say t1, t2, . . . , tk, such that t is the join of the projections of
each ti onto the set of attributes Si, for i = 1, 2, . . . , k. We therefore know that ti agrees with t on
the attributes of Si, but ti has unknown values in its components not in Si.

We draw a picture of what we know, called a tableau. Assuming R has attributes A,B, . . . we use a, b, . . . for
the components of t. For ti, we use the same letter as t in the components that are in Si, but we subscript
the letter with i if the component is not in Si. In that way, ti will agree with t for the attributes of Si, but
have a unique value — one that can appear nowhere else in the tableau — for other attributes.

Example 2.5 ()

Suppose we have relation R(A,B,C,D), which we have decomposed into relations with sets of at-
tributes S1 = {A,D}, S2 = {A,C}, and S3 = {B,C,D}. Then the tableau for this decomposition
is:

A B C D
a b1 c1 d
a b2 c d2
a3 b c d

The first row corresponds to set of attributes A and D. Notice that the components for attributes
A and D are the unsubscripted letters a and d. However, for the other attributes, b and c, we add
the subscript 1 to indicate that they are arbitrary values. This choice makes sense, since the tuple
(a, b1, c1, d) represents a tuple of R that contributes to t = (a, b, c, d) by being projected onto {A,D}
and then joined with other tuples. Since the B- and C-components of this tuple are projected out,
we know nothing yet about what values the tuple had for those attributes.
Similarly, the second row has the unsubscripted letters in attributes A and C, while the subscript 2 is
used for the other attributes. The last row has the unsubscripted letters in components for {B,C,D}
and subscript 3 on a. Since each row uses its own number as a subscript, the only symbols that can
appear more than once are the unsubscripted letters.

Remember that our goal is to use the given set of FD’s F to prove that t is really in R. In order to do so,
we "chase" the tableau by applying the FD’s in F to equate symbols in the tableau whenever we can. If we
discover that one of the rows is actually the same as t (that is, the row becomes all unsubscripted symbols),
then we have proved that any tuple t in the join of the projections was actually a tuple of R.

To avoid confusion, when equating two symbols, if one of them is unsubscripted, make the other be the
same. However, if we equate two symbols, both with their own subscript, then you can change either to be
the other. However, remember that when equating symbols, you must change all occurrences of one to be
the other, not just some of the occurrences.

Example 2.6 ()

Let us continue with the decomposition of the previous example, and suppose the given FD’s are
A → B, B → C, and CD → A. Start with the tableau:

A B C D
a b1 c1 d
a b1 c d2
a3 b c d
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Since the first two rows agree in their A-components, the FD A → B tells us they must also agree in
their B-components. That is, b1 = b2. We can replace either one with the other, since they are both
subscripted. Let us replace b2 by b1. Then after applying B → C:

A B C D
a b1 c d
a b1 c d2
a3 b c d

Next, we observe that the first and third rows agree in both columns C and D. Thus, we may apply
the FD CD → A to deduce that these rows also have the same A-value; that is, a = a3. We replace
a3 by a, giving us:

A B C D
a b1 c d
a b1 c d2
a b c d

At this point, we see that the last row has become equal to t, that is, (a, b, c, d). We have proved
that if R satisfies the FD’s A → B, B → C, and CD → A, then whenever we project onto {A,D},
{A,C}, and {B,C,D} and rejoin, what we get must have been in R. In particular, what we get is
the same as the tuple of R that we projected onto {B,C,D}.

Example 2.7 (Chase Test for Lossless-join Decomposition)

Consider relation R(A,B,C,D) with functional dependencies:

A → B, C → D, AD → C, BC → A

We will perform the chase test on decomposition {AB,ACD,BC,BD} to prove it is lossless.
1. Initial chase table with subscript ’a’ for known values and variables for unknown:

A B C D Source
a b c d Original
a b b1 b2 From AB
b3 b4 c d From ACD
b5 b4 c b6 From BC
b7 b b8 d From BD

2. Apply functional dependencies sequentially:
• Apply A → B:

– Where A values match, B values must match
– Rows 1 and 2: since A = a, B must be same
– No change needed as B = b in both

• Apply C → D:
– Where C values match, D values must match
– Rows 1, 3, 4: C = c, so D must be same
– b6 becomes d

Updated table after C → D:
A B C D
a b c d
a b b1 b2
b3 b4 c d
b5 b4 c d
b7 b b8 d
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• Apply AD → C:
– Where A and D match, C must match
– Row 1 and 2: A = a but different D, no change

• Apply BC → A:
– Where B and C match, A must match
– Row 3 and 4: same B (b4) and C (c), so A must match
– b3 becomes b5

3. Final chase table:
A B C D
a b c d
a b b1 b2
b5 b4 c d
b5 b4 c d
b7 b b8 d

4. Conclusion:
• The chase process shows variable equating (b3 = b5)
• The decomposition is lossless because:

– AB and BC share B, enforcing BC → A
– ACD preserves both C → D and AD → C
– Common attributes ensure lossless reconstruction
– Each subrelation preserves relevant FDs

• The natural join: (AB ▷◁ BC) ▷◁ ACD ▷◁ BD recovers R without loss
Therefore, {AB,ACD,BC,BD} is a valid lossless-join decomposition in BCNF.

2.2 The Entity-Relationship Model
We have now learned to decompose relations effectively without anomalies, but it is not clear what these
relations may represent. When designing a database, it isn’t really ideal to just dump all data into a relation
and then try to iteratively decompose it until you get a bunch of relations in BCNF. It’s better to have a
starting plan of what relations you should need and try and construct interpretable relationships between a
pair or set of relations. To do this, Entity-Relationship diagrams are of great help.

Let’s briefly talk about keys again. The most obvious application of keys is allowing lookup of a row by its
key value. A more practical application of keys are its way to link key IDs for one relation to another key
ID of a different relation. For example, we may have two schemas Member(uid, gid) and Group(gid), and
we can join these two using the condition Member.gid = Group.gid.

Definition 2.4 (Entity-Relationship Model)

We can think of every relation as modeling some data or a relationships between data.a This is shown
in an E/R diagram.

1. An entity set is a relation that contains data, represented as a rectangle. Its tuples are called
entities.b

2. A relationship set is a relation that contains relationships (sometimes stored as the key pairs
of two entity sets), represented as a diamond. Its tuples are called relationships.c

3. Attributes are properties of entities or relationships, like attributes of tuples or objects, rep-
resented as ovals. Key attributes are underlined.

Don’t confuse entity sets with entities and relationship sets with relationships.

aSometimes, the line may be blurred, but the designer will have to make the choice.
bThis is analogous to an entity set being a class and entities as objects.
cA minor detail is that relationships aren’t really relations since the tuples in relations connect two entities, rather than the

keys themselves, so some care must be taken to convert the entities into a set of attributes.
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Example 2.8 (E/R Diagram)

Let us model a social media database with the relations
1. Users(uid, name, age, popularity) recording information of a user.
2. Member(uid, gid, from_date) recording whether a user is in a group and when they first

joined.
3. Groups(gid, name) recording information of group.

The ER diagram is shown below, where we can see that the Member relation shows a relationship
between the two entities Users and Groups.

Figure 3: Social media database ER diagram.

Note that the from_date attribute must be a part of the Member relation since it isn’t uniquely
associated with a user (a user can join multiple groups on different dates) or a group (two users can
join a group on different dates). If there is an instance that someone joins, leaves, and rejoins a group,
then we can modify our design by either:

1. overwriting the first date joined
2. making another relation MembershipRecords which has a date also part of the key, which will

capture historical membership.

Therefore, we must determine if a relation models an entity or a relationship. There could also be multiple
relationship sets between the same entity sets, e.g. if Member and Likes associates between Users and
Groups.

2.3 Relationships and Multiplicity
A relationship really stores minimal information in the sense that if you have you know the entities it
connects, that determines everything about the relation.

Theorem 2.6 (Relationships are Functionally Dependent on Connecting Entities)

In a relationship set, each relationship is uniquely identified by the entities it connects. More formally,
if a relationship R connects entities e1 ∈ E1, . . . , en ∈ En with keys k = (k1, . . . , kn), then k is a
superkey of R.

2.3.1 Multiplicity of Binary Relationships

The 4 categories representing the multiplicity just further categorizes how this functional dependency is
realized.
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Definition 2.5 (Multiplicity of 2-Way Relationships)

Given that E and F are entity sets,
1. Many-many : Each entity in E is related to 0 or more entities in F and vice versa. There are

no restrictions, and we have IsMemberOf(uid, gid).a

Figure 4

2. Many-One: Each entity in E is related to 0 or 1 entities in F , but each entity in F is related
to 0 or more in E. If E points to F with a straight arrow, then you can just think that this is
a function, and we have IsOwnedBy(gid, uid). If we have a rounded arrow, this means that
for each group, its owner must exist in Users (so no 0).

Figure 5

3. One-One: Each entity in E is related to 0 or 1 entity in F and vice versa. We can have
either IsLinkedTo(uid, twitter_uid) or IsLinkedTo(uid, twitter_uid) and must choose
a primary key from these two possible keys.

Figure 6

Theorem 2.7 (Multiplicity with Functional Dependencies)

You may notice that multiplicity and functional dependence are very similar that is. If we have two
relations R,S and have a relationship pointing from R to S, then this states the FD r 7→ s! Say that
the keys are kR,kS , respectively. Then, we have

kR 7→ r 7→ s 7→ kS (35)

aNote that this is just a restating of the theorem before.
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Example 2.9 (Movie Stars)

Given the relations
1. Movies(title, year, length, name)
2. Stars(name, address) of a movie star and their address.
3. Studios(name, address)
4. StarsIn(star_name, movie_name, movie_year)
5. Owns(studio_name, movie_name, movie_year)

We have the following ER diagram

Figure 7: Movie stars.

Example 2.10 (Relationship within Itself)

Sometimes, there is a relationship of an entity set with itself. This gives the relations
1. Users(uid, ...)
2. IsFriendOf(uid1, uid2)
3. IsChildOf(child_uid, parent_uid)

This can be modeled by the following. Note that
1. users have no limitations on who is their friend.
2. assuming that all parents are single, a person can have at most one parent, so we have an arrow.

Figure 8

2.3.2 Multiplicity of Multiway Relationships

Sometimes, it is necessary to have a relationship between 3 or more entity sets. It can be confusing to
contruct the relations with the necessary keys. A general rule of thumb for constructing the relation of a
relationship is

1. Everything that the arrows point into are not keys.

2. Everything else are keys. So the arrow stumps are keys.
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Example 2.11 (Movie Stars)

Suppose that we wanted to model Contract relationship involving a studio, a star, and a movie. This
relationships represents that a studio had contracted with a particular star to act in a particular
movie. We want a contract to be owned by one studio, but one studio can have multiple contracts
for different combinations of stars and movies. This gives the relations

1. Stars(name, address)
2. Movies(title, year, length, name)
3. Studios(name, address)
4. Contracts(star_name, movie_name, studio_name)

Figure 9

We can make this even more complex by modifying contracts to have a studio of the star and the
producing studio.

1. Contracts(star_name, movie_name, produce_studio_name, star_studio_name)

Figure 10

Note that contracts can also have attributes, e.g. salary or time period.

Example 2.12 (Social Media)

In a 3-ary relationship a user must have an initiator in order to join a group. In here, the isMemberOf
relation has an initiator, which must be unique for each initiated member, for a given group.

1. User(uid, ...)
2. Group(gid, ...)
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3. IsMemberOf(member, initiator, gid) since a member must have a unique pair of initiator/-
group that they are in.

Figure 11

But can we model n-ary relationships with only binary relationships? Our intuition says we can’t, for the
same reasons that we get lossy decomposition into 2-attribute schemas when we try to satisfy BCNF.

Example 2.13 (N-ary Relationships vs Multiple Binary Relationships)

N-ary relationships in general cannot be decomposed into multiple binary relationships. Consider the
following diagram.

Figure 12: Attempt at reducing nary to binary ER relationships.

1. u1 is in both g1 and g2, so IsMemberOf contains both (u1, g1) and (u2, g2)
2. u2 served as both an initiator in both g1 and g2, so InitiatesFor contains both (g1, u2) and

(g2, u2).
3. But in reality, u1 was initiated by u2 for g1 but not u2 for g2. This contradicts the information

that you would get when joining the IsMemberOf and InitiatesFor relations.
Therefore, combining binary relations may generate something spurious that isn’t included in the
n-ary relationship.

2.4 Subclasses of Entity Sets
Sometimes, an entity set contains certain entities that have special properties not associated with all members
of the set. We model this by using a isa relationship with a triangle.
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Figure 13: There are two types of movies: cartoons and murder-mysteries, which can have their own sub-attributes
and their own relationships.

Suppose we have a tree of entity sets, connected by isa relationships. A single entity consists of components
from one or more of these entity sets, and each component is inherited from its parent.

2.5 Weak Entity Sets
It is possible for an entity set’s key to be composed of attributes, some or all of which belong to another
entity set. There are two reasons why we need weak entity sets.

1. Sometimes, entity sets fall into a hierarchy based on classifications unrelated to the isa hierarchy. If
entities of set R are subunits of entities in set F , it is possible that the names of R-entities are not
unique until we take into account the name of its S-entity.2

2. The second reason is that we want to eliminate multiway relationships, which are not common in
practice anyways. These weak entity sets have no attributes and have keys purely from its supporting
sets.

Definition 2.6 (Weak Entity Set)

A weak entity set R (double rectangles) depends on other sets. It is an entity set that
1. has a key consisting of 0 or more of its own attributes, and
2. has key attributes from supporting entity sets that are reached by many-one supporting

relationships (double diamonds) from it to other sets S.
It must satisfy the following.

1. The relationship T must be binary and many-one from R to S.
2. T must have referential integrity from R to S (since these are keys and therefore must exist in

supporting sets), which is why we have a rounded arrow.
3. The attributes that S supplies for the key of R must be key attributes of S, unless S is also

weak, and it will get keys from its supporting entity set.
4. If there are several different supporting relationships from R to the same S, then each relation-

ship is used to supply a copy of the key attributes of S to help form the key of R.
If an entity set supplies any attributes for its own key, then those attributes will be underlined.

2Think of university rooms in different buildings.
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Example 2.14 ()

To specify a location, it is not enough to specify just the seat number. The room number, and the
building name must be also specified to provide the exact location. There are no extra attributes
needed for this subclass, which is why a isa relationship doesn’t fit into this.

Figure 14: Specifying a seat is not enough to determine the exact location in a university. We must know the
room number and the building to fully identify it. Note that we must keep linking until we get to a regular,
non-weak entity.

We generally want to use a weak entity set if an entity does not have attributes to define itself.

Example 2.15 ()

Say that we want to make a database with the constraints.
1. For states, record the name and capital city.
2. For counties, record the name, area, and location (state)
3. For cities, record the name, population, and location (county and state)
4. Names of states should be unique.
5. Names of counties are unique within a state.
6. Names of cities are unique within a county.
7. A city is always located in a single county.
8. A county is always located in a single state.

Then, our ER diagram may look like

Figure 15: A weakness is that this doesn’t prevent a city in state X from being the capital of another state
Y .

Example 2.16 ()

Design a database with the following.
1. A station has a unique name and address, and is either an express station or a local station.
2. A train has a unique number and engineer, and is either an express or local train.
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3. A local train can stop at any station.
4. An express train only stops at express stations.
5. A train can stop at a station for any number of times during a train.
6. Train schedules are the same every day.

Then, our ER diagram may look like

Figure 16

2.6 Translating ER Diagrams to Relational Designs
One a simple level, converting an ER diagram to a relational database schema is straightforward. Here are
some rules we list.

Theorem 2.8 (Converting Entity Sets)

Turn each entity set into a relation with the same set of attributes.

Theorem 2.9 (Converting Relationships)

Replace a relationship by a relation whose attributes are the keys for the connected entity sets along
with its own attributes. If an entity set is involved several times in a relationship, then its key
attributes are repeated, so you must rename them to avoid duplication.

Theorem 2.10 (Reduce Repetition for Many-One Relationships)

We can actually reduce repetition for many-one relationships. For example, if there is a many-one
relationship T from relation R to relation S, then r functionally determines s, so we can combine
them into one relation consisting of

1. all attributes of R.
2. key attributes of S.
3. Any attributes belonging to relationship T .

Theorem 2.11 (Handling Weak Entity Sets)

To build weak entity sets, we must do three things.
1. The relation for weak entity set W must include its own attributes, all key (but not non-key)

attributes of supporting entity sets, and all attributes for supporting relationships for W .
2. The relation for any relationship where W appears must use the entire set of keys gotten from

W and its supporting entity sets.
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3. Supporting relationships should not be converted since they are many-one, so we can use the
reduce repetition for many-one relationships rule above.

Example 2.17 ()

To translate the seat, rooms, and buildings diagram,

Figure 17

we have
1. Building(name, year)
2. Room(building_name, room_num, capacity)
3. Seat(building_name, room_num, seat_num, left_or_right)

Note that we do not need to convert the relationships since they are contained within the entity set
relations. So ignore double diamonds.

Figure 18: A figure of the movie hierarchy for convenience.

Theorem 2.12 (Converting Subclass Structures)

To convert subclass structure with a isa hierarchy, there are multiple ways we can convert them.
1. E/R Standard. An entity is in all superclasses and only contains the attributes its own subclass.

For each entity set R in the hierarchy, create a relation that includes the key attributes from
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the root and any attributes belonging to R. This gives us
(a) Movies(title, year, length, genre)
(b) MurderMysteries(title, year, weapon)
(c) Cartoons(title, year)

2. Object Oriented. For each possible subtree that includes the root, create one relation whose
schema includes all the attributes of all entity sets in the subtree.
(a) Movies(title, year, length, genre)
(b) MoviesC(title, year, length, genre)
(c) MoviesMM(title, year, length, genre, weapon)
(d) MoviesCMM(title, year, length, genre, weapon)

Additionally, the relationship would be Voices(title, year, starName).
3. Null Values. Create one relation for the entire hierarchy containing all attributes of all entity

sets. Each entity is one tuple, and the tuple has null values for attributes the entity does not
have. We would in here always have a single schema.
(a) Movie(title, year, length, genre, weapon)

Note that the difference between the first two is that in ER, MurderMysteries does not contain the attributes
of its superclass, while in OO, it does.

As you probably notice, each standard has pros and cons. The nulls approach uses only one relation, which
is simple and nice. To filter out over all movies, E/R is nice since we only filter through Movies, whilst in
OO we have to go through all relations. However, when we want to filter movies that are both Cartoons
and Murder Mysteries, then OO is better since we can only select from MoviesCMM rather than having to
go through multiple relations for ER or filter out with further selections in Null. Also, OO uses the least
memory, since it doesn’t waste space on null values on attributes.

Example 2.18 ()

Let’s put this all together to revisit the train station example.

Figure 19: For convenience

We can use the ER standard to define the first 6 regular relations in single rectangles.
1. Train(number, engineer)
2. LocalTrain(number
3. ExpressTrain(number
4. Station(name, address)
5. LocalStation(name)
6. ExpressStation(name)

Then we can construct the weak entity sets.
1. LocalTrainStops(local_train_num, time)
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2. ExpressTrainStops(express_train_num, time)
Then we can construct the relationships (marked with the arrows).

1. LocalTrainStopsAtStation(local_train_number, time, station_name)
2. ExpressTrainStopsAtStation(express_train_number, time, express_station_name)

Note that we can simplify these 10 relations to 8. For example, the LocalTrain and LocalStation
relations are redundant since it can be computed as

LocalTrain = πnumber(Train)− ExpressTrain (36)
LocalStation = πnumber(Station)− ExpressStation (37)

There is a tradeoff since it’s an extra computation when checking. However, if we had used the Null
Value strategy, this would be a lot simpler, and we can use value constraints on the train and station
type, which can be implemented in the DBMS (though not directly in the ER diagram).

3 SQL
SQL (Structured Query Language) is the standard query language supported by most DBMS and is a
syntactically sugared form of relational algebra. It is declarative, where the programmer specifies what
answers a query should return,but not how the query should be executed. The DBMS picks the best
execution strategy based on availability of indices, data/workload characteristics, etc. (i.e. provides physical
data independence). It contrasts to a procedural or an operational language like C++ or Python. The
reason we need this specific query language dependent on relational algebra is that it is less powerful than
general purpose languages like C or Python. These things can all be stored in structs or arrays, but the
simplicity allows the compiler to make huge efficiency improvements.

Just like how we approached relational algebra with structure, operations, and constraints, we will do
the same with SQL, although we will introduce structure with constraints first (it’s natural to talk about
constraints with structure, since you define the constraints when you create the SQL relations). While this
wasn’t talked about much before, SQL actually uses multisets, or bags, by default. It’s operations support
both set and bag operations, and we will cover both of them here. Working with sets or bags is really context
dependent, but it does have a few advantages.

1. To take the union of two bags, we can just add everything into the other without going through to
check for duplicates.

2. When we project relations as bags, we also don’t need to search through all pairs to find duplicates.

This allows for efficiency at the cost of memory.

3.1 Structure and Constraints

Definition 3.1 (Primitive Types)

The primitive types are listed.a
1. Characters. CHAR(n) represents a string of fixed length n, where shorter strings are padded,

and VARCHAR(n) is a string of variable length up to n, where an endmarker or string-length is
used.

2. Bit Strings. BIT(n) represents bit strings of length n. BIT VARYING(n) represents variable
length bit strings up to length n.

3. Booleans. BOOLEAN represents a boolean, which can be TRUE, FALSE, or UNKNOWN.
4. Integers. INT or INTEGER represents an integer.
5. Floating points. FLOAT or REAL represents a floating point number, with a higher precision

obtained by DOUBLE PRECISION.
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6. Datetimes. DATE types are of form ’YYYY-MM-DD’, and TIME types are of form ’HH:MM:SS.AAAA’
on a 24-hour clock.

7. Null. NULL represents a null value.

Before we can even query or modify relations, we should know how to make or delete one.

Theorem 3.1 (CREATE TABLE, DROP TABLE)

We can create and delete a relation using CREATE TABLE and DROP TABLE keywords and inputting
the schema.

1 CREATE TABLE Movies(
2 name CHAR(30),
3 year INT,
4 director VARCHAR(50),
5 seen DATE
6 );
7

8 DROP TABLE Movies;

Theorem 3.2 (DEFAULT)

We can also determine default values of each attribute with the DEFAULT KEYWORD.

1 ALTER TABLE Movies ADD rating INT 0;
2 ...
3 CREATE TABLE Movies(
4 name CHAR(30) DEFAULT ’UNKNOWN’,
5 year INT DEFAULT 0,
6 director VARCHAR(50),
7 seen DATE DEFAULT ’0000-00-00’
8 );

3.1.1 Nulls

We are not guaranteed that we will have all data. What if there are some null values? We need some way
to handle unknown or missing attribute values. One way is to use a default value (like −1 for age), but
this can mess with other operations, such as getting average values of certain groups of users, or can make
computations harder since we have to first filter out users with age=-1 before querying. Another way is to
use a valid bit for every attribute. For example, User(uid, name, age) could map to User(uid, name,
name_valid, age, age_valid), but this is not efficient as well.

A better solution is to decompose the table into multiple relations such that a missing value indicates a
missing row in one of the subrelations. For example, we can decompose User(uid, name, age, pop) to

1. UserID(uid)

2. UserName(uid, name)

3. UserAge(uid, age)

4. UserPop(uid, pop)

aOne thing to note is that keywords are usually written in uppercase by convention.
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This is conceptually the cleanest solution but also complicates things. Firstly, the natural join wouldn’t
work, since compared to a single table with null values, the natural join of these tables would exclude all
tuples that have at least one null value in them.

Definition 3.2 (NULL)

SQL’s solution is to have a special value NULL indicating an unknown but not empty value. It has
the following properties.

1. It holds for every domain (null is the same for booleans, strings, ints, etc.).
2. Any operations like +,−,×, >... leads to a NULL value.
3. All aggregate functions except COUNT return a NULL. COUNT also counts null values.

Theorem 3.3 (Three-Valued Logic)

Here is another way to implement the unknown logic with three-valued logic. Suppose we set True=1,
False=0. Then we can see that given statements x, y which evaluate to 0, 1,

1. x and y is equivalent to min(x, y)
2. x or y is equivalent to max(x, y)
3. not x is equivalent to 1− x

It turns out that if we set unknown=0.5, then this logic also works out very nicely. Check it yourself.

The way operations treat null values is extremely important, and we will add a sentence on how it treats
nulls for each operation.

Example 3.1 (Warnings)

Note that null breaks a lot of equivalences, leading to unintended consequences.
1. The two are not equivalent since if we have nulls, the average ignores all nulls, while the second

query will sum up all non-nulls and divide by the count including the nulls.

1 SELECT AVG(pop) FROM User;
2 SELECT SUM(pop) / COUNT(*) FROM User;

2. The two are also not equivalent since pop = pop is not True, but Unknown, for nulls, so it
would not return nulls. The first query would return all tuples, even nulls.

1 SELECT * from User;
2 SELECT * from User WHERE pop = pop;

3. Never compare equality with null, since this never outputs True. Rather, you should use the
special keywords IS NULL and IS NOT NULL.

1 SELECT * FROM User WHERE pop = NULL; // never returns anything
2 SELECT * FROM User WHERE pop IS NULL; // correct

3.1.2 Modifying Tables

This was not an operation we defined in relational algebra, but it is so essential that we should state it now.
What if we want to add or delete another attribute? This is quite a major change.
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Theorem 3.4 (ALTER TABLE)

We can add or drop attributes by using the ALTER TABLE keyword followed by
1. ADD and then the attribute name and then its type.
2. DROP and then the attribute name.

1 ALTER TABLE Movies ADD rating INT;
2 ALTER TABLE Movies DROP director;

We have briefly saw how to create and drop tables. To update a table, we can do the following.

Definition 3.3 (INSERT)

You can either
1. insert one row

1 INSERT INTO Member VALUES (789, "Muchang")

2. or you can insert the output of a query.

1 INSERT INTO Member
2 (SELECT uid, name FROM User);

Definition 3.4 (DELETE)

You can either
1. delete everything from a table (but not the schema, unlike DROP TABLE).

1 DELETE FROM Member;

2. Delete according to a WHERE condition

1 DELETE FROM Member
2 WHERE age < 18;

3. Delete according to a WHERE condition extracted from another query.

1 DELETE FROM Member
2 WHERE uid IN (SELECT uid FROM User WHERE age < 18);

Definition 3.5 (UPDATE)

You can either
1. Update a value of an attribute for all tuples.

1 UPDATE User
2 SET pop = (SELECT AVG(pop) from User);

2. Update a value of an attribute for all tuples satisfying a WHERE condition.a

1 UPDATE User
2 SET name = ’Barney’
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3 WHERE uid = 182;

3.1.3 Constraints

We mainly use constraints to protect the data integrity and relieve the coder from responsibility. It also tells
the DBMS about the data so it can optimize better.

Definition 3.6 (NOT NULL Constraints)

This tells that an attribute cannot be entered as null (this is already enforced for keys).

1 CREATE TABLE User
2 (uid INTEGER NOT NULL,
3 name VARCHAR(30) NOT NULL,
4 twitterid VARCHAR(15) NOT NULL,
5 age INTEGER,
6 pop FLOAT);

Definition 3.7 (PRIMARY KEY, UNIQUE Key Constraints)

There are multiple ways to identify keys.
1. Use the PRIMARY KEY keyword to make name the key. It can be substituted with UNIQUE. You

can include at most one primary key, but any number of UNIQUE. This means that either name
or id can be used as a key, but we must choose one primary key, so we are restricted to at most
one.

1 CREATE TABLE Movies(
2 name CHAR(30) NOT NULL PRIMARY KEY,
3 id CHAR(30) NOT NULL UNIQUE,
4 year INT NOT NULL,
5 director VARCHAR(50),
6 seen DATE
7 );

2. Use the PRIMARY KEY keyword, which allows you to choose a combination of attributes as the
key. It can be substituted with UNIQUE.

1 CREATE TABLE Movies(
2 name CHAR(30),
3 year INT,
4 director VARCHAR(50),
5 seen DATE,
6 PRIMARY KEY (name, year)
7 );

aNote that this does not incrementally update the values. It updates all at once from the average of the old table from the
subquery.
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Definition 3.8 (Referential Integrity)

Like we said before, a referential integrity means that if an attribute a appears in R, then a must
appear in some other T . That is, there are no dangling pointers, where R.a does exists but T.a
does not. There are names for these:

1. Foreign keys is like R.a, where it must point to a valid primary key, e.g. User.uid or
Group.gid, which are like entity sets.

2. Primary keys are like T.a, where it must exist if R.a exists, e.g. Member.uid or Member.gid,
which are relationships.

In SQl, we must make sure that the referenced columns must be the primary key and the referencing
columns form a foreign key. There are two ways to do it.

1 CREATE TABLE Member (
2 uid INT NOT NULL
3 REFERNECES User(uid), // 1. put the references as you define it
4 gid CHAR(10) NOT NULL, // 2. define the attribute first
5 PRIMARY KEY(uid, gid),
6 FOREIGN KEY (gid) REFERENCES Group(gid)); // 2. then reference it

If you have multi-attribute referential integrity, the second method is better.

1 ...
2 FOREIGN KEY (gid, time) REFERENCES Group(gid, time));

Example 3.2 (Handling Referential Integrity Violations)

Say that you have a referential integrity constraint as above. Then there are two scenarios. If we
insert or update a Member row so it refers to a non-existent User.uid, the DBMS will not allow this.
If we delete or update a User row whose uid is referenced by some Member row, then there are certain
scenarios.

1. Reject. The DBMS will reject this.
2. Cascade. It will ripple changes (on an update) to all referring rows.
3. Set null. It will set all references to NULL.

These options can be specified in SQL.

Definition 3.9 (Tuple/Attribute-Based Checks)

These checks are only associated with a single table and are only checked when a tuple/attribute is
inserted/updated. It rejects if the condition evaluates to False, but True/Unknown are fine (unlike
only True in WHERE conditions!). There are two ways to write this in SQL.

1 CREATE TABLE User(
2 ... // 1. Directly put the check constraint in definition
3 age INTEGER CHECK(age IS NULL OR age > 0),
4 ...
5 );
6

7 CREATE TABLE Member(
8 uid INTEGER NOT NULL, // 2. First define attribute
9 CHECK(uid IN (SELECT uid FROM User)), // 2. Then check it

10 ...
11 )
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Note that in the second example, this is sort of like a referential integrity constraint. However, this
is weaker since it only checks for changes in the Member relation, while the referential integrity
constraint is checked for every change in both the Member and User relations. If a check evaluates
to False, then the DBMS rejects the insertions/updates.

3.2 Basic Relational Algebra Operations
We won’t repeat the definitions of the operations as they are mentioned in the first chapter. We will cover
SQL syntax for both set and bag operations. Note that the way set operations work in SQL is that they
remove duplicates in the operands and then remove duplicates in the result. In bag operations, we can think
of each row a having an implicit count of times ca it appears in the table.

3.2.1 Renaming

Counterintuitively, the first thing we should know how to do is rename. This is because when we do the
rest of these operations, due to naming conflicts, the need to copy a relation, or reduce confusion, we often
rename relations and attributes within these queries.

Definition 3.10 (Renaming)

There are two ways you can rename an attribute or a relation.
1. Explicit, using the AS keyword.

1 old_name AS new_name

2. Implicit, using a space.

1 old_name new_name

Example 3.3 ()

Here’s a more informative example, using syntax that we will learn later. Note that by renaming the
relation, all attributes are renamed as well.

1 SELECT
2 s.id,
3 s.name AS student_name,
4 c.name AS course_name
5 FROM
6 Students s -- rename relation
7 JOIN Courses c -- rename relation
8 ON s.course_id = c.id;

3.2.2 Set/Bag Operations

Definition 3.11 (Union)

The UNION and UNION ALL keywords calculate the set and bag union, respectively. Bag union
sums up the counts from the 2 tables.
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1 (SELECT * FROM Relation1) // {1, 2, 3}
2 UNION
3 (SELECT * FROM Relation2); // {2, 3, 4}
4 // {1, 2, 3, 4}

1 (SELECT * FROM Relation1) // {1, 1, 2}
2 UNION ALL
3 (SELECT * FROM Relation2); // {1, 2, 2}
4 // {1, 1, 1, 2, 2, 2}

UNION and UNION ALL both treat NULLs as equal to each other.

Definition 3.12 (Intersection)

The INTERSECT and INTERSECT ALL keywords calculate the set and bag intersection, respectively.
Bag intersection does a proper-subtracta

1 (SELECT * FROM Relation1) // {1, 2, 3}
2 INTERSECT
3 (SELECT * FROM Relation2); // {2, 3, 4}

1 (SELECT * FROM Relation1) // {1, 1, 2}
2 INTERSECT ALL
3 (SELECT * FROM Relation2); // {1, 2, 2}
4 // {1, 2}

Both treat nulls as equal to each other and will return NULL if it appears on both sides.

Definition 3.13 (Difference)

The EXCEPT and EXCEPT ALL keywords calculate the set and bag difference, respectively. Bag
difference takes the minimum of the two counts.

1 (SELECT * FROM Relation1) // {1, 2, 3}
2 EXCEPT
3 (SELECT * FROM Relation2); // {2, 3, 4}

1 (SELECT * FROM Relation1) // {1, 1, 2}
2 EXCEPT ALL
3 (SELECT * FROM Relation2); // {1, 2, 2}
4 // {1}

Both treat NULLs as equal to each other and will return NULL if it appears more times in the first
table than the second.

Example 3.4 (Interpretation of Except All)

Look at these two operations on the schema Poke(uid1, uid2, timestamp).

1 (SELECT uid1 FROM Poke)
2 EXCEPT
3 (SELECT uid2 FROM Poke);

1 (SELECT uid1 FROM Poke)
2 EXCEPT ALL
3 (SELECT uid2 FROM Poke);

The first operation returns all users who poked others but were never poked, while the second returns
all users who poked others more than they were poked.

3.2.3 Predicates, Projection, Selection

Definition 3.14 (Condition/Predicate)

The condition p used in in selection and joins is implemented with the WHERE keyword. The operations
used in predicates are listed below.

1. Equality is denoted with =, and not equals is denoted with <>. Equality evaluates to true if
both attribute values are not NULL and match.

2. Comparisons is done with >, <, >=, <=.
3. The IN and NOT IN gives you filters that restrict the domain of a certain attribute.

aSubtracts the counts and truncates counts to 0 if negative. So {a, a} − {a, a, a} = {}.

40/ 114



Databases Muchang Bahng Fall 2024

1 SELECT *
2 FROM relation
3 WHERE sex in [’male’, ’female’];

WHERE will only select rows for which the condition is True (not False or unknown).

Both selection and projection, known as queries, is done with the same keyword SELECT, and we can do
both of them at the same time (the DBMS will determine which operation to do first). Unlike set/bag
operations before, SELECT is by default a bag operator.

Definition 3.15 (Selection)

The SELECT and SELECT DISTINCT keywords apply the selection bag and set operator, respectively.
The ∗ species all attributes in the relation.

1 SELECT *
2 FROM relation
3 WHERE
4 p_1 AND p_2 AND ... ;

Definition 3.16 (Projection)

The SELECT and SELECT DISTINCT keywords apply the projection bag and set operator, respectively.
Rather than putting an ∗, we should now specify our desired attributes.

1 SELECT date, age, uid
2 FROM relation

Example 3.5 (Comparing Null values always returns Null)

The two are also not equivalent since pop = pop is not True, but Unknown, for nulls, so it would not
return nulls. The first query would return all tuples, even nulls.

1 SELECT * from User;
2 SELECT * from User WHERE pop = pop;

Example 3.6 (Never Compare Equality with Null)

Never compare equality with null, since this never outputs True. Rather, you should use the special
keywords IS NULL and IS NOT NULL.

1 SELECT * FROM User WHERE pop = NULL; // never returns anything
2 SELECT * FROM User WHERE pop IS NULL; // correct

3.2.4 Products and Joins

All products and joins use bag semantics and to use set semantics just use a SELECT DISTINCT.
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Definition 3.17 (Cartesian Product)

The CROSS JOIN keyword or the , operator is used to calculate the cartesian product of two relations
using bag semantics.

1 SELECT *
2 FROM table1
3 CROSS JOIN table2;
4

5 SELECT *
6 FROM table1, table2;

Definition 3.18 (Theta Join)

A theta join is performed by simply adding a WHERE clause after a cross join, using bag semantics.

1 SELECT *
2 FROM table1, table2
3 WHERE table1.A = table2.B;

Definition 3.19 (Natural/Inner Join)

The JOIN keyword returns records that have matching values in both tables using bag semantics.

1 SELECT * FROM Students s
2 JOIN Courses c ON s.id = c.id;

For inner join, note that NULL attributes do not match each other (as stated in equality predicate)
so they are not included.

Definition 3.20 (Left Outer Join)

LEFT (OUTER) JOIN: Returns all records from the left table R, and the matched records from the
right table S. For a given r ∈ R, if there are no s ∈ S that matches it, then the S attributes will all
be NULL.

1 SELECT * FROM Students s
2 LEFT JOIN Courses c ON s.id = c.id;

This keeps all NULLs on the left table.

Definition 3.21 (Right Outer Join)

RIGHT (OUTER) JOIN: Returns all records from the right table S, and the matched records from the
left table R with potential NULLs. For a given s ∈ S, if there are no r ∈ R that matches it, then the
R attributes will all be NULL.

1 SELECT * FROM Students s
2 RIGHT JOIN Courses c ON s.id = c.id;

This keeps all NULLs on the right table.
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Definition 3.22 (Full Outer Join)

FULL (OUTER) JOIN: Returns all records when there is a match in either left or right table with
potential NULLs.

1 SELECT * FROM Students s
2 FULL OUTER JOIN Courses c ON s.id = c.id;

This keeps all NULLs on the both tables.

Example 3.7 (Motivation for Outer Join)

Take a look at the following motivating example. Suppose we want to find all members and their
respective groups from Group(gid, name), Member(uid, gid), User(uid, name). Then we can
write the query

1 SELECT g.gid, g.name AS gname,
2 u.uid, u.name AS uname
3 FROM Group g, Member m, User u
4 WHERE g.gid = m.gid AND m.uid = u.uid;

This looks fine, but what happens if Group is empty? That is, there is a group in the Group relation
but does not appear in the Member relation. Then, m.gid will evaluate to False and would not appear
in the joined table, which is fine, but what if we wanted to make sure all groups appeared in this
master membership table? If a group is empty, we may want it to just have null values for uid and
uname. In this case, we want to use outer join.

Example 3.8 (Complex Example with Beers)

Given the schemas
1. Frequents(drinker, bar, times_a_week),
2. Serves(bar, beer, price),
3. Likes(drinker, beer),

say that we want to select drinkers and bars that visit the bars at least 2 times a week and the bars
serves at least 2 beers liked by the drinker and count the number of beers served by the bars that are
liked by the drinker. The query is shown below.

1 SELECT F.drinker, F.bar, COUNT(L.beer)
2 FROM Frequents F, Serves S, Likes L
3 WHERE F.drinker = L.drinker
4 AND F.bar = S.bar
5 AND L.beer = S.beer
6 AND F.times_a_week >= 2
7 GROUP BY F.drinker, F.bar
8 HAVING COUNT(L.beer) >= 2

3.3 Arithmetic and Sorting
We can also do arithmetic on columns.
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Definition 3.23 (Arithmetic Operations)

SQL supports
1. Addition using +. It returns NULL if at least 1 of the operands are NULL.
2. Subtraction using -. It returns NULL if at least 1 of the operands are NULL.
3. Multiplication using . It returns NULL if at least 1 of the operands are NULL.
4. Division using /. It returns NULL if at least 1 of the operands are NULL or there is division

by 0 (or may result in error depending on DBMS). For integers it will truncate.
5. Modulo using %. It returns NULL if at least 1 of the operands are NULL.

You can use parentheses to compose operations together.

Example 3.9 (Arithmetic)

Here is a comphrensive example.

1 SELECT
2 price + tax as total_price,
3 salary - deductions as net_salary,
4 price * quantity as total_value,
5 total / count as average,
6 id % 2 as is_odd
7 FROM Orders;

Definition 3.24 (Sorting)

The ORDER BY keyword sorts the relation. In fact, it is more of a display operation since the tuples
in the relation are unsorted by definition.

1. ORDER BY attribute ASC orders in ascending order. This the default.
2. ORDER BY attribute DESC orders in descending order.

3.4 Aggregate Functions

Definition 3.25 (Standard SQL Aggregate Functions)

Aggregate functions compute something from a collection of tuples, rather than a single row.
1. COUNT counts the number of rows, including NULLS, in a query. COUNT(DISTINCT att) counts

the distinct count of an attribute in a query and ignores NULLs.
2. SUM counts the sum of the values of an attribute in a query. It ignores NULL values.
3. AVG is the average. It ignores NULL values.
4. MIN is the minimum of an attribute. It ignores NULL values and only returns NULL if all values

are NULL.
5. MAX is the maximum of an attribute. It ignores NULL values and only returns NULL if all

values are NULL.

Example 3.10 (Calculate Popularity within Age Group)

If we want to find the number of users under 18 and their average popularity, then we can write

1 SELECT COUNT(*), AVG(pop)
2 FROM User
3 WHERE age < 18;
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Example 3.11 (Average is Not Sum/Count)

The two are not equivalent since if we have nulls, the average ignores all nulls, while the second query
will sum up all non-nulls and divide by the count including the nulls.

1 SELECT AVG(pop) FROM User;
2 SELECT SUM(pop) / COUNT(*) FROM User;

3.4.1 Group By

By default, the aggregate function operates on the entire relation. If we want more fine grained control by
looking at a subset of tuples, then we can use the GROUP BY clause.

Definition 3.26 (GROUP BY)

GROUP BY is used when you want to group the query by equal values of the attributes. The syntax is

1 SELECT ... FROM ... WHERE ...
2 GROUP BY age;

To parse this, first form the groups based on the same values of all attributes in the group by clause.
Then, output only one row in the select clause per group. We can look at the following order

1. FROM. Look at where we are querying from.
2. WHERE. Find out if this condition is satisfied to filter the main query.
3. GROUP BY. Group rows according to the values of the GROUP BY columns.
4. SELECT. Compute the select query for each group. The number of groups should be equal to

the number of rows in the final output.
Note that if a query uses aggregation/group by, every column referenced in select must be either
aggregated or a group by column.

Example 3.12 ()

If we want to find the number of users in a certain age and their average popularity, for all ages, then
we can write

1 SELECT age, AVG(pop)
2 FROM Users
3 GROUP BY age;

You don’t necessarily have to report the group by attribute in the select. The two following examples
are perfectly fine, though in the right query, age may not functionally determine AVG(pop).

1 SELECT AVG(pop)
2 FROM User
3 GROUP BY age;

1 SELECT age, AVG(pop)
2 FROM User
3 GROUP BY age, name;

In the example below, this left query is not syntactically correct since name is not in the group by
clause or aggregated. This is true even if age functionally determines name. Neither is the right since
the lack of a group by clause means that the aggregate query is over the entire relation, which has
multiple uid values.
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1 SELECT age, name, AVG(pop)
2 FROM User
3 GROUP BY age;

1 SELECT uid, MAX(pop)
2 FROM User;
3 .

As you can see, this is great to use for aggregate functions. If there is no group by clause, this is equivalent
to grouping everything together.

Example 3.13 ()

Given the relation

A B C
1 1 10
2 1 8
1 1 10
2 3 8
2 1 6
2 2 2

Table 7: Original relation.

Running the query

1 SELECT A, B, SUM(C) AS S
2 FROM R
3 GROUP BY A, B;

gives

A B S
1 1 20
2 1 14
2 3 8
2 2 2

Table 8: Our query.

3.4.2 Having

Definition 3.27 (HAVING)

If you want to filter out groups having certain conditions, you must use the HAVING keyword rather
than WHERE. The syntax is

1 SELECT A, B, SUM(C) FROM ... WHERE ...
2 GROUP BY ...
3 HAVING SUM(C) < 10;

You should look at the HAVING clause after you look at the GROUP BY but before SELECT. HAVING will
only select rows for which the condition is True (not False or null).
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Example 3.14 ()

Given the relation

A B C
1 1 10
2 1 8
1 1 10
2 3 8
2 1 6
2 2 2

Table 9: Original relation.

Running the query

1 SELECT A, B, SUM(C) AS S
2 FROM R
3 GROUP BY A, B
4 HAVING SUM(C) > 8;

gives

A B S
1 1 20
2 1 14

Table 10: Our query.

Example 3.15 ()

Given the schema Sailor(sid, name, age, rating), to find the age of the youngest sailor with
age at least 18, for each rating with at least 2 sailors, we can run the query.

1 SELECT S.rating, MIN(S.age) AS minage
2 FROM Sailors S
3 WHERE S.age >= 18
4 GROUPBY S.rating
5 HAVING COUNT(*) > 1;
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Figure 20: The thought process.

3.5 Nested Queries and Views
3.5.1 Subqueries

We have so far worked with a single query consisting of a single select statement. However, we can extend
this by including queries that have other queries in them. Conceptually, this is easy to understand since we
are just composing more operators in relational algebra.

Definition 3.28 (Subquery)

A subquery is a query contained inside another query.

Definition 3.29 (Correlated Subqueries)

A correlated subquery is a subquery that is an input to a parent query. It is a query that needs a
parameter from the main query and are generally slower to run. They are hard to parse, but generally
you should look in this order (though this is not how the DBMS actually implements it).

1. FROM. Look at where we are querying from and for loop over each row.
2. SELECT. For each row in the outer query, take whatever values/parameters are needed for this

row to input into the subquery.
3. WHERE. Find out if the condition resulting from the subquery is satisfied. If so, keep this.

Definition 3.30 (EXISTS)

The EXISTS(subquery) keyword checks if a subquery is empty or not, and NOT EXISTS checks the
negation.

Example 3.16 (Age)

Given User(name, age), say that we want to get all users whose age is equal to a person named
Bart. Then, we want to select all users from the relation. For each user, we perform the subquery
where this original tuple age coincides the others age and the others name is Bart. The outer query
only returns those rows for which the EXISTS subquery returned true. Then we can write the two
equivalent queries.
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1 SELECT *
2 FROM User as u
3 WHERE EXISTS(SELECT * FROM User
4 WHERE name = "Bart"
5 AND age = u.age);

1 SELECT *
2 FROM User
3 WHERE age IN(SELECT age
4 FROM User
5 WHERE name = ’Bart’);

To understand this, we use the rules from above.
1. FROM. We take each row in the outer query.
2. SELECT. For each row, we take the age from that row.
3. WHERE. The subquery looks for any user named Bart with that same age. If such a user exists,

the row is kept.

Here is a very useful keyword that simplifies complex nested queries, one example of a common table
expression (CTEs).

Definition 3.31 (WITH)

The WITH clause aliases many relations returned from queries.

1 WITH Temp1 AS (SELECT ...),
2 Temp2 AS (SELECT ...)
3 SELECT X, Y
4 FROM Temp1, Temp2
5 WHERE ...

Example 3.17 ()

To extend the Bart age example, we can think of temporarily storing a query of only Bart’s ages, and
then comparing it when doing the main query over User.

1 WITH BartAge AS
2 (SELECT age
3 FROM User
4 WHERE name = ’Bart’)
5 SELECT U.uid, U.name, U.pop,
6 FROM User U, BartAge B
7 WHERE U.age = B.age;

3.5.2 Scalar Subqueries

Definition 3.32 (Scalar Subqueries)

Sometimes, if a query returns 1 scalar, then you can use it in your WHERE clause. You must be sure
that a query will return exactly 1 scalar (not 0 and not more than 1), or there will be a runtime error.

Example 3.18 ()

If we want to compute users with the same age as Bart, we can write

1 SELECT * FROM User
2 WHERE age = (SELECT age from User WHERE name = ’Bart’);
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However, we may not know if Bart functionally determines age, so we must be careful.

3.5.3 Quantified Subqueries

Definition 3.33 (ALL, ANY)

We have the following quantified subqueries, which performs a broadcasting condition.
1. ALL checks if all conditions are true. If any are NULL, then the whole result is NULL.
2. ANY checks if any condition is true. If any are true, then the whole result is true. If all are either

NULL or false, then ANY will return NULL.

Example 3.19 (Popular Users)

Which users are the most popular? We can write this in two ways.

1 SELECT *
2 FROM User
3 WHERE pop >= ALL(SELECT pop from User);
4 .

1 SELECT *
2 FROM User
3 WHERE NOT
4 (pop < ANY(SELECT pop from User));

To review, here are more ways you can do the same query.

1 SELECT *
2 FROM User AS u
3 WHERE NOT EXISTS
4 (SELECT * FROM User
5 WHERE pop > u.pop);

1 SELECT * FROM User
2 WHERE uid NOT IN
3 (SELECT u1.uid
4 FROM User as u1, User as u2
5 WHERE u1.pop < u2.pop);

3.5.4 Views

Definition 3.34 (View)

A view is a virtual table that can be used across other queries. Tables used in defining a view are
called base tables.

Example 3.20 (Jessica’s Circle)

You can create a temporary table that can be used for future queries.

1 CREATE VIEW JessicaCircle AS
2 SELECT * FROM User
3 WHERE uid in (SELECT uid FROM Member WHERE gid = ’jes’);

Once you are done, you can drop this view with

1 DROP VIEW JessicaCircle;

3.6 Recursion
Recursion seems like a foreign concept in relational databases and was not supported until SQL3 , but we
can consider the following motivating example.
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Example 3.21 (Ancestors)

Given a schema Parent(parent, child), we can find Bart’s grandparents with the following query.

1 SELECT p1.parent as grandparent
2 FROM Parent p1, Parent p2
3 WHERE p1.child = p2.parent
4 AND p2.child = ’Bart’;

We can do the same for parents, great grandparents, and so forth, but there is no clean way to get
all of Bart’s ancestors with a single query.

Definition 3.35 (Recursion)

You can implement a recursive query using the WITH RECURSIVE keyword.

Example 3.22 (Recursive Query for Ancestors)

Lines 2-7 defines the relation recursively, and then lines 8-10 is the query using the relation defined
in the WITH clause.

1 WITH RECURSIVE
2 Ancestor(anc, desc) AS
3 ((SELECT parent, child FROM Parent) -- base case
4 UNION
5 (SELECT a1.anc, a2.desc -- recursion step
6 FROM Ancestors a1, Ancestors a2 -- recursion step
7 WHERE a1.desc = a2.anc)) -- recursion step
8 SELECT anc
9 FROM Ancestor

10 WHERE desc = ’Bart’;

4 Index and B+ Trees
So far, we’ve abstracted away the inner workings of the DBMS and was just told to trust it. From here,
we’ll delve into the inner workings of modern DBMS systems, starting with hardware.

4.1 Hardware and Memory Layout
Recall the memory hierarchy, which starts with CPU registers, followed by caches, memory, and a disk. The
speed of read/write, called I/O, determines how fast you can retrieve this data.

Definition 4.1 (Hard Disk)

In SQL queries, the (disk) I/O dominates the execution time, so this must be analyzed first. A typical
hard drive consists of a bunch of disks/platters that are spun by a spindle and read by a disk
head on a disk arm. Each disk is pizza sliced into sectors and donut sliced into tracks (and a
collection of tracks over all disks is a cylinder), and the arm will read one block of information,
which is a logical unit of transfer consisting of one or more blocks (i.e. like a word, which is usually
4 bytes).a

aYou cannot just write 1 byte. You must rewrite the entire block with the 1 byte updated. If we want to write 2 bytes which
are on separate blocks, we must do 2 block writes.
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Definition 4.2 (Access Time)

The access time is the sum of
1. the seek time: time for disk heads to move to the correct cylinder
2. the rotational delay : time for the desired block to rotate under the disk head
3. the transfer time: time to read/write data on the block

This spindle rotation and moving arm is slow, so the times are dominated by the first two.

Note that this is heavily dependent on the data being accessed. Sequential data is extremely fast while
random access is slow. Therefore, we should try to store data that should be accessed together next to each
other in the disk.

Definition 4.3 (Memory, Buffer Pool)

As we expect, the DBMS stores a cache of blocks, called the memory/buffer pool containing some
fixed size of M maximum blocks. We read/write to this pool of blocks (which costs some time per
blocks) and then these dirty (which are written/updated) are flushed back to the disk. It essentially
acts as a middleman between the disk and the programmers, and every piece of data that goes between
the two must go through the memory.

Figure 21: We store the memory address of the block (blue) and a bit indicating whether it is dirty or not
(red).

Therefore, if we want to read N > M blocks, then the first M blocks must be loaded into memory, outputted
into stdout, and then the memory must be refilled with the rest of the blocks. If we have updated a block
in memory, then we should flush it before overwriting this block in memory.3 Replacement strategies won’t
be covered here. Note that unlike algorithms, which focus on the cost of the algorithm after it is read into
memory, we focus on the cost of loading data from the disk into memory.

So how should we increase performance?

1. Disk Layout : Keep related things close together, e.g. in the same sector/block, or same track, or same
cylinder, or adjacent cylinders.

2. Prefetching : When fetching a block from the disk, fetch the next block as well since it’s pretty likely
to access data from the next block. This is basically locality.

3. Parallel I/O : We can have more heads working at the same time.

4. Disk Scheduling Algorithm: e.g. the elevator algorithm sorts the cylinders so that you don’t go back
and forth between cylinders when fetching.

5. Track Buffer : Read/write one entire track at a time.

Now let’s talk about how the actual bytes are stored in memory.

3idk perhaps we can have a overhead bit indicating whether a block is updated, along with the memory address of this block
so it can find it back on the disk.
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Definition 4.4 (Row Major Order, NSM)

We group rows together contiguously in the disk block.a If we have a relation with schema R(INT(4),
CHAR(24), INT(4), DOUBLE(8)), we first store the rows together, with extra space in between since
we might append new attributes, and have a tuple of pointers to the start of each row (orange lines).

Figure 22

Note that VARCHAR still allocates the same number of bytes, but adds padding.

Definition 4.5 (Column Major, PAX)

We group columns together contiguously in the disk block, which allows for optimization since all
types are the same and we can just use pointer arithmetic to get every attribute in O(1) time. We
split the block into chunks and have metadata of pointers that point to the start of the array for each
attribute.

Figure 23

4.2 Search Keys and Index
Now that we’ve seen how the data is actually laid out in memory, we can look under the hood to see what
happens when we make a query as such. Consider the relation schema User(uid, age), along with the two
SQL queries, specifying on the key attribute and a non-key attribute.

1 SELECT *
2 FROM User
3 WHERE uid = 112;

1 SELECT *
2 FROM User
3 WHERE age = 12;

aThis is the most standard storage policy.
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The DBMS will have to go to disk and scan it to find the tuples satisfying the predicate. However, it is a
bit more sophisticated than a simple complete scan.

Definition 4.6 (Search Key)

The search key is simply the attribute on which our query is defined (e.g. uid and age in the
example above). The values (e.g. 112 and 12) are called the search key values.

This is distinct from a closely-related concept called the index, which also refers to attributes. The tuples
may take on some structure depending on the attribute. It may be sorted in one attribute but random in
another.

Definition 4.7 (Index)

This set of attribute values, which really act as pointers, that we use to scan more efficiently on disk
is called the index.

Figure 24: The dense index has 10 values, but there are two Jessicas, so it is indeed dense. The sparse index
is on the uid, and since the relation is sorted (a more specific form of clustering) in the disk, we can use sparse
keys.

Sparse and dense just refers to how much an index “covers” a disk block.
1. A dense index means that there is one index entry for each search key value. One entry may

point to multiple records
2. A sparse index means that there is one index entry for each block. Records must be clustered

according to the search key as shown below, and this can optimize searching.
Note that

1. The sparse index must contain at least the number of blocks, while the dense index must contain
at least the number of unique search key values. Since the sparse index is much smaller, we
may be able to fit it into main memory and not have to pay the I/O cost.

2. A dense index does not require anything on the records, while the sparse requires the data to
be clustered.

3. Lookup is easy on dense since we can directly see if it exists. For sparse, we must first follow the
pointer and scan the block. (e.g. if we wanted to look for 279, we want to look at the address
pointed to by 123, and scan down until we hit it or reach a number greater than 279).

4. Update is usually easier on sparse indices since we don’t need to update the index unless we
add a new block. For dense, if we added a new person Muchang, then we would have to add
Muchang to the dense index.
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Definition 4.8 (Primary vs Secondary Index)

Primary and secondary refers to what the index is over.
1. A primary index is created for the primary key of the relation. Records are usually clustered

by the primary key, so this can be sparse.
2. A secondary index is any index that is not over a primary key and is usually dense.

In SQL, the PRIMARY KEY declaration automatically creates a primary index, and the UNIQUE decla-
ration creates a secondary index.

Example 4.1 (Additional Secondary Indices)

You can also create an additional secondary index on non-key attributes. For example, if you think
that you will query based on popularity often, you can do

1 CREATE INDEX UserPopIndex ON User(pop);

which will create a dense index to speed up lookup at the cost of memory.

4.3 Tree Index
4.3.1 B-Trees

So really, an index is really a set of pointers, but we must be able to store this set of pointers. This leads to
the problem of the index being too big to fit into a block. In this case, we can just create a sparse index on
top of the dense index. This allows us to store a large index across blocks.

Figure 25: We store a sparse index in memory which points to a dense index on disk, which then points to the tuples
of the relation, also on disk.

If the index is still too big, we store another index on top of that, and we have pretty much a tree. This is
called the Index Sequential Access Method (ISAM).

Example 4.2 (Index Traversal in Tree)

If we want to look up 197 in this tree, we traverse down. Note that we have the root node in memory
already, but we would require an IO operation to traverse the pointer to the first block, and then
another IO cost to go to the second.
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Figure 26: An index tree of depth 3.

A problem with this method is also a problem with BSTs. If we want to delete 123 and add 107 ten times,
then we have an unbalanced binary search tree and in extreme cases, this reduces to a linear search.

Figure 27: If this block overflows, then we want to expand this, leading to an unbalanced BST and reducing our
search to linear time.

Definition 4.9 (B Tree)

Therefore, this static data structure is not good, and we must use a more flexible one, called a B-tree.

Figure 28: B-tree. Each node can now hold multiple entries in sorted order. It is height balanced, though we
will not show it here.
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4.3.2 B+ Trees

The actual structure that modern DBMS uses is the slightly more sophisticated B+ tree.

Definition 4.10 (B+ Tree)

While in B trees, the non-leaf nodes are also data, B+ trees divide the nodes into leaf nodes, which
represent the data in this data structure, and the non-leaf nodes, which do not represent data but
index nodes containing index entries.

Figure 29: Note that the 59, which represents both the index and the data value, are repeated. In here,
we assume a block size of 2. The leaf nodes are the indices that point to the tuples in the disk/memory.
Sometimes, we may store the tuple directly in the nodes, which saves us another level of indirection, but this
may cause memory problems if the tuples have too many attributes.

It has the following constraints.
1. The fanout refers the to maximum number of pointers that can come out of each node.

Figure 30: With fanout constraint 4, for index nodes, we have 3 values with 4 pointers representing each
range. For the leaves, we have 3 pointers to the disk addresses plus 1 pointer to the next node.

2. The root is the only node that can store one value. It is special in this way.

Therefore, if we have a fanout of f , the table shows the constraints.

Figure 31: Note that there is a minimum constraint to ensure that the tree is balanced.
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Now let’s describe the implementation behind its supported operations.

Algorithm 4.1 (Lookup)

If we query SELECT * FROM R WHERE k = 179;, we go through the B+ tree’s indices and reach the
leaf node. From here, we can use the pointer to go to the memory address holding this tuple in
memory/disk. If we query k = 32, then we will not find it after reaching 35. If we want to query a
range 32 < k < 179, we start at 32 and use the leaf pointers to go to the next leaf until we hit 179.

Figure 32

In practice, there are much more pointers, so we could start at 179 and go back to 32 if we had
backwards pointers.

Algorithm 4.2 (Insertion)

Insertion onto a leaf node having space is easy.

Figure 33: Note that to traverse this tree, we had to access 3 blocks of memory since for each block, we had
to go to the disk, look up its contents, and retrieve the index of the next block (retrieve the blocks containing
(100), (30), and (30, 35)) Then we have to update this block of (30, 35) and flush it.

When we have a full node, it is more complicated.
1. Say that we have a full node. We can try to push the rest of the leaf nodes to next node having

space, but we are not guaranteed that the neighbors will have space.
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Figure 34

2. We can split the node, called a copy-up. However, this new node now has no pointer. If the
parent node is not full, we can just add the pointer and update its value.

Figure 35

3. If it is full, then we should split the parent node as well. This is called a push-up.

Figure 36

4. This means that we have to update the parent of the parent. If the parent is not full, then we
simply add it, and if it is full, then we split the parent of the parent, and so on. If we reach the
root node, then we just split the root and increase the height of the tree.a

aThis is rare in practice since the fanout is much greater than 3.
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Algorithm 4.3 (Deletion)

Deleting a value is simple if after deletion, the leaf node has at least f/2 pointers (f/2− 1 values).
1. If the node has less than f/2 pointers, then it is too empty. We can adjust by taking adjacent

nodes and moving them from the full nodes to the empty nodes, but this may steal too much
from siblings.

Figure 37

2. The adjacent nodes may be empty as well, and in this case we want to coalesce or merge the
nodes together. This results in a dangling pointer, so we delete the pointer and remove a value
from the parent node.a

Figure 38

3. We keep doing this until the B+ tree requirements are satisfied or we reach the root, at which
point we delete the root node and our B+ tree height decreases by 1.

aIn practice, this is not done every deletion. This reorganizing process can be deferred and the B+ tree property
may temporarily not hold.

Theorem 4.1 (IO Cost of Lookup, Insertion, Deletion)

In general, all these operations have similar runtimes:
1. They require us to go to the bottom of the tree, so it is h operations, where h is the height.
2. We also maybe have +1 or +2 to manipulate the actual records, plus O(h) for reorganization

like we saw before (which is rare if f is large).
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3. Minus 1 if we cache the root in memory, which can be decreased even further if we cache more
blocks.

The actual size of h is roughly logf/2 N , where N is the number of records. f is the fanout, but
the B+ tree properties guarantee that there are at least f/2 pointers, so it is logf/2 N at worst and
logf N at best. f is very large usually so this is quite good.

The reason we use B+ trees rather than B trees is that if we store data in non-leaf nodes, this decreases the
fanout f and increases h. Therefore, records in leaves require more I/Os to access.

4.3.3 Clustered vs Unclustered Index

Note that in a B+ tree, the leaf nodes always store the index in sorted order. This is so we can have fast
lookup in indices. When we go into the disk, however, we may not have this assumption.

Definition 4.11 (Clustered vs Unclustered Index)

If the order of the data records on disk is the same as or close to the order of data entries in an index,
then it is clustered, and otherwise unclustered.

Figure 39: Even if the data entries (leaf nodes) are sorted, the memory addresses of the blocks on disk that
they point to may not be sorted.

Note that the B+ tree is still a search tree! It is sorted. The clustered is a property of the data on
disk (blue squares).

The performance can really depend on whether the index is clustered or unclustered.

4.4 Hash and Composite Index

Definition 4.12 (Hash Index)

So far, we have used tree indices. However, an alternative is to use a hash index which hashes the
search keys for comparison. Hash indices can only handle equality queries.

1. SELECT * FROM R WHERE age = 5; (requires hash index on (age))
2. SELECT * FROM R, S WHERE R.A = S.A; (requires hash index on R.A or S.A)
3. SELECT * FROM R WHERE age = 5 AND name = ’Bob’ (requires hash index on (age, name))

They are more amenable to parallel processing but cannot handle range queries or prefixes, e.g.
SELECT * FROM R WHERE age >= 5;. Its performance depends on how good the hash function is
(whether it distributes data uniformly and whether data has skew).
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Definition 4.13 (Composite Index)

We’ve looked at queries in the form SELECT FROM User WHERE age = 50;, but what if there are
multiple conditions. For example, if we have

1 SELECT * FROM User WHERE age >= 25 AND name = ’B’;

then we can do a couple things:
1. We have the index on (age), at which point the leaf nodes will look something like

25, 25, 25, 26, 26, 28, 29, 29 (38)

We traverse through all the addresses in these leaf nodes and find the ones with name B.
2. If we have a composite index on (age, name), then our leaf nodes will sort them as

(25, A), (25, A), (25, B), (26, A), (26, C), (28, B), (29, A), (29, C) (39)

3. If we index on (name, age), then our leaf nodes will sort them as

(A, 25), (A, 25), (A, 26), (A, 29), (B, 25), (B, 28), (C, 26), (C, 29) (40)

Note that if we had the query SELECT FROM R WHERE age >= 25, then this sorting would not
help since we do not prioritize ordering by age. So we cannot use tree indexing over name, age
for this query.

Example 4.3 ()

Therefore, given a query, there are certain indices that we can use or cannot use for it.
1. If we have a query A >= 5,

(a) Can use hash index in general.
(b) Can use tree index in general.

2. If we have query A >= 5,
(a) Can use tree with index (A).
(b) Can use tree with index (A, B).
(c) Cannot use tree with index (B, A) since A is not prefix.

3. If we have query A = 5,
(a) Can use hash with index (A).
(b) Can use tree with index (A).
(c) Cannot use hash with index (A, B) since hashing this tuple does not allow us to compare

to A or retrieve it. It is one-way and pseudo-random.
(d) Can use tree with index (A, B).

4. If we have A = 5 AND B = 7,
(a) Can use hash with index (A, B).

Each index has its pros and cons, so why not just use both tree and hash indices? The problem is that when
we modify a relation on the disk, we need to update the index as well. Therefore, having too many indices
requires us to update more and takes more disk space.

Okay, so we can’t use too many indices, but are indices always better than table scans? Not exactly.

Example 4.4 (Table Scans Wins)

Consider σA>v(R) and a secondary, non-clustered index on R(A) with around 20% of R satisfying
A > v (could happen even for equality predicates). We need to follow pointers to get the actual result
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tuples.
1. IOs for scan-based selection is simply B(R) (where we can retrieve multiple tuples in this block),

while
2. IOs for index-based selection is the lookup-cost (to traverse down the tree) plus 0.2|R| (since

for each tuple, we do a IO lookup, retrieve it, and then have to retrieve the next tuple which is
likely not in the same block)

So table scan wins if a block contains more than 5 tuples since we might as well grab everything
rather than look them up one by one.

Thankfully, the query optimizer will make these decisions for you.

4.5 Index Only Plans

Definition 4.14 (Index-Only Plans)

There are queries that can be answered only by accessing the index pages and not the data pages,
known as index-only plans. For index-only plans, clustering is not important since we are looking
only at the leaf nodes at most. Therefore, we only need to compute the I/O cost of traversing the
tree and not to access data.
For equality, we can just compute the number of tuples in the index pages where the equality condition
is satisfied. For ranges, we may need to traverse the leaf nodes, which will lead to additional I/O cost
to retrieve the leaf index pages.

Example 4.5 (Index Only Queries)

If we look at the following query
πA(σA>v(R)) (41)

we see that we only care about the value of A and not the rest of the tuples, so we only need to look
at the index pages and not the data itself.

Example 4.6 (Primary Index Clustered According to Search Key)

If we have a primary index, in most cases the actual records are also stored in the index pages/leaf
nodes. If they are clustered according to attribute A, then one lookup can lead to all result tuples in
their entirety. You can just hit a leaf and grab your records as you walk along the leaves.

Example 4.7 (Other Index-Only Queries)

For example, if we just wanted to look at the count of users with age 50, then we don’t need the data.
We can just look at the number of values in the leaf nodes of the B+ tree with this value.

1 SELECT E.do COUNT(*)
2 FROM Emp E
3 GROUP BY E.dno;

If we have an index on (E.dno, E.sal), then the two queries are also index-only plans. However, if
we index on (E.dno), then we need to retrieve E.sal on the data page, incurring more cost.

1 SELECT E.dno, MIN(E.sal)
2 FROM Emp E
3 GROUP BY E.dno;

1 SELECT AVG(E.sal)
2 FROM Emp E
3 GROUP BY E.dno;
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Example 4.8 (Halloween Problem)

The Halloween problem refers to a phenomenon in databases where an update operation causes a
change in the physical location of a row, potentially allowing the row to be visited again later in the
same update operation. Look at the update.

1 UPDATE Payroll
2 SET salary = salary * 1.1
3 WHERE salary <= 25000;

This caused everyone to have a salary of 25000+. This is because when we updated someone with
salary of say 1000, it went to 1100 and is moved further right in the B+ tree. Therefore, this is
revisited again is increased again in the same update. To fix this, we could update the values in
reverse, from the rightmost leaf node to the leftmost one so that increasing values are visited once.
Or we can just create a to-do/done list that keeps track of which ones have been updated.

4.6 Exercises
Now let’s go through a bunch of questions to clarify some of the IO cost computation.

Example 4.9 ()

Assume that we have the query SELECT * FROM User WHERE age = 50; with the following assump-
tions:

1. Assume 12 Users with age = 50.
2. Assume one data page (block) can hold 4 User tuples (so f = 5).
3. Suppose searching for data entry requires 3 IOs in a B+ tree, which contain pointers to the

data records (so h = 3).
If the index is clustered, then we can just traverse down the B+ tree to get to the leaf node containing
the value 50.

1. We have a cost of 3 to traverse down the tree to access the index pages which show the memory
addresses of the tuples on disk.

2. Then, we will find entries and we want to find the cost to access the data pages. There are 12
Users, and for every address, we load the entire block in memory, which will retrieve the other
users of age 50 (since this is clustered). At best, we will retrieve 3 blocks (of 4 tuples each) and
at worst, due to block overlap, we will retrieve 4 blocks and read the rest from memory. This
gives us a cost of +3 or +4.

The total cost is 6. If the index is unclustered, then we are not guaranteed that the data with values
50 will be contiguous, so we will in the worst case have to look at 12 different blocks, leading to a
total cost of 3 + 12 = 15.

Example 4.10 (Index Problem)

Consider a table Orders(OrderID, CustomerID, OrderDate, TotalAmount) with 5,000,000 records
stored in 100,000 disk blocks (=pages or units of I/O). The rows are not sorted on any particular
attribute. There is a clustered B+ tree index on OrderID (the primary key), and an unclustered
B+ tree index on CustomerID.
Assume the following:

• Each node in the B+ trees corresponds to one disk block.
• The OrderID B+ tree has 4 levels (including the root) and 10,000 leaf nodes.
• The CustomerID B+ tree has 5 levels (including the root) and 50,000 leaf nodes.
• You do not have enough space in memory to hold all data pages.
• The root nodes of both B+ trees are always kept in memory.
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• The non-root index nodes and all data pages are initially on disk.
• All the leaves have pointers to the next left node both on the left and the right side.
• All data pages are fully utilized.
• All nodes in B+ trees are also fully utilized.
• Uniformity in all places. You can ignore page boundaries.

Question 1.1
How many disk I/Os are required (index and data) to retrieve all order records for a specific Cus-
tomerID using the index on the CustomerID? Assume there are 100 orders for this customer.
We must access 4 levels, with 5 levels in tree minus 1 for head already in memory (+4). There is only
1 leaf index pages containing the matching entries, since there are 5m records and 50k leaf nodes,
meaning that each leaf node can contain 100 addresses at most when it is a dense index. Given that
there are 100 matches, we just need to use this leaf node to access the disk. This is not clustered, so
we must look through all 100 addresses, reading each block from disk for an addition cost of 100 IOs.
Total is 104 IOs.

Question 1.2
Suppose the Orders table is frequently queried for recent orders, and the performance is critical. The
current clustered index on OrderID is not providing optimal performance for these queries. You are
considering reorganizing the Orders table to cluster it on OrderDate instead.
Assume that orders are uniformly distributed over time. Everything else is the same as in the original
question description (i.e., the number of levels of the new B+ tree indexed on OrderDate
is still 4 and the root is still in memory. And the number of leaf nodes is still 10,000).
Ignore page boundaries.
Consider the following query:

1 SELECT * FROM Orders
2 WHERE OrderDate BETWEEN ’2023-09-01’ AND ’2023-09-30’;

How many disk I/Os are required in the worst case for the following query before and after the
change? What is the impact of the change? Assume that 0.5% of the orders were made in September
2023.
For before, since the data is distributed uniformly, we must in the worst case check all data pages of
the relation on disk.

1. We first have 3 IOs to go down to the leaf (4 levels minus 1 head already in memory).
2. We scan through all 10,000 leaves, but we are already on leaf 1, so need to traverse 9999 pointers

to load each index leaf.
Therefore, the total IO for traversal is 10,002 IOs. If we include the IOs for loading data pages, we
also incur more costs. There are 100,000 disk blocks, so as we load all of them we incur an additional
IO cost of 100,000, giving us 110,002 IOs.
For after, if we cluster on OrderDate, then out of the 100,000 disk blocks, we assume that 0.5% of
them, or 500 of them, will contain the relevant dates. Additionally, we assume that by uniformity,
0.5% of the 10,000 leaf nodes will contain these relevant addresses.

1. We traverse down to the leaf containing the address of the tuple with date attribute 2023-09-01.
This is 3 IOs.

2. We must traverse through the rest of the leaf nodes. Since we are already at the first one, we
must load in an additional 49 leaf blocks, so 49 IOs.

3. As we load in each block, we are loading in a total of 500 data blocks from disk, so an additional
500 IOs.

We end up with 552 IOs. If we exclude the IOs for loading the data pages, we incur fewer cost of
52 IOs since this is only for traversal of the B+ tree.
The difference in these costs is just the first value minus the second value. For example, I can do

10, 002− 552 = 9450 (42)
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reduced IO costs.

Question 1.3
(a) How many disk I/Os are required in the worst case to insert a new order with order ID 2000

and customer ID 200 if updating the clustered index on the Order ID? (i.e., what is the I/O
required for updating the index and inserting data records?)

(b) What would the result be if we updated the unclustered index on the CustomerID?
Assume all memory blocks are being used for this update only. Then we do not throw away an index
page once it is read.
For (a),

1. You should first get 3 IOs to traverse down to the leaf.
2. Then you load the relevant data page from disk onto memory (1 IO).
3. Since this block is full and you want to add a tuple to it, you must split it into two pages. So

you initialize two buffers in memory and write two separate blocks. Then you must write these
blocks back into disk (2 IOs).

4. Then you split the leaf (assuming it’s already in memory) by writing its 2 splits back, again by
splitting it in memory (2 IOs). You this for the next node (since in worst case it’s full), for a
total of 3 more times as you traverse up the tree (6 IOs).

5. You finally want to write a new root into the disk, so you make one in memory and write it (1
IO).

This gives a total of 15 IOs.
For (b), should be 17 or 18?

1. You should first traverse down to the leaf (+4 IOs).
2. Then you take a data page and write it in memory (+1 IO) since you don’t need to split it to

keep the clustering. Then you flush the new page to disk (+2 IOs).
3. Then you split the leaf node by writing its 2 splits back (+2). You do this 4 more times (+8

IOs).
4. You then want to write a new root node (+1). So in total +16 IOs.

5 Query Processing and Optimization

Definition 5.1 (Disk/Memory Blocks)

To set up some notation, let B(R) represent the number of disk blocks that relation R takes up, and
say M is the number of blocks available in our memory. We start off with some simple operations.

Example 5.1 (Basic Block Storage)

Suppose we have relation R with |R| = 1000 and each block can hold 30 tuples. Then B(R) =
⌈1000/30⌉ = 34, or 35 if there is overlap.

Definition 5.2 (Buffer Blocks)

It turns out that whenever we output data to stdout, the blocks need to be stored in a buffer block.
If the buffer block is full, then it is flushed to stdout.

Example 5.2 (Cost of Querying Everything)

If we do SELECT * FROM R, then
1. we are at most retrieving B(R) pages from disk to memory, so our IO cost is B(R).
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2. Our memory cost is 2 pages since we take each page, load it to memory, and put the answer in
the output page. The next page (if any) can overwrite the previously loaded page.

We can stop early if we lookup by key. Remember that this is not counting the cost of writing the
result out.

It turns out that the efficiency of most operations defined on modern DBMS depends on two things: sorting
and hashing. We’ll divide up our analysis this way, focusing on their applications in joining, which tends
to be the mostly used and expensive operation. Note that there are many ways to process the same query.
We can in the most basic sense just scan the entire relation in disk. We can sort it. We can use a tree or
hash index, and so on. All have different performance characteristics and make different assumptions about
the data, so the choice is really problem-dependent. What a DBMS does is implements all alternatives and
let the query optimizer choose at runtime. We’ll talk about the algorithms now and talk about the query
optimizer later.

5.1 Brute-Force Algorithms
We start off with the most brute-force algorithms of theta joins. In here, we describe how to implement it,
its IO cost, and its memory cost. In the following, when we compute R ▷◁p S, R is called the outer table
and S the inner table. Furthermore, another convention is that when we calculate IO cost, we do not factor
in the cost of writing our result back to disk.

5.1.1 Nested Loop Joins

Our first algorithm simply takes in every block from R, and for every tuple r ∈ R, we take in every tuple in
S to calculate the predicate p(r, s).

Algorithm 5.1 (Nested Loop Join)

Nested-loop join just uses a brute-force nested loop when computing R ▷◁p S.

Algorithm 1 Nested loop Join
Require: Outer table R, Inner table S

function NestedLoop(R, S)
for each block BR ∈ R do

load BR into memory block M1

for each tuple r ∈ BR do
for each block BS ∈ S do

load BS into memory block M2

for each tuple s ∈ BS do
if p(r, s) is true then

Write r ▷◁ s into buffer block M3

Flush M3 to stdout when it’s full.
end if

end for
end for

end for
end for

end function

The IO cost of this is
1. B(R) to load R
2. For every tuple r ∈ R, we run through all of s ∈ S, requiring B(S) IOs.
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Therefore
IO = B(R) + |R| ·B(S) (43)

with memory cost 3 (since we use M1,M2,M3 blocks).

This is clearly not efficient since it requires a lot of IOs. We can make a slight improvement by trying to do
as much as we can with the loaded blocks in memory.

Algorithm 5.2 (Block-Based Nested-Loop Join)

Block-based nested-loop join loops over the blocks rather than the tuples in the outer loops.

Require: Outer table R, Inner table S
function BlockNestedLoopJoin(R, S)

for each block BR ∈ R do
load BR into memory block M1

for each block BS ∈ S do
load BS into memory block M2

for each r ∈ BR, s ∈ BS do
if p(r, s) is true then

Write r ▷◁ s into buffer block M3

Flush M3 to stdout when full.
end if

end for
end for

end for
end function

The IO cost of this is
1. B(R) to load R.
2. For every block BR, we run through all of s ∈ S, requiring B(S) IOs.

Therefore
IO = B(R) +B(R) ·B(S) (44)

The memory cost is 3 (since we use M1,M2,M3 blocks).

Algorithm 5.3 (Saturated Block-Based Nested-Loop Join)

The next optimization is to use more memory by basically stuffing the memory with as much of R
as possible, stream S by, and join every S tuple with all R tuples in memory.
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Require: Outer table R, Inner table S
function SatBlockNestedLoopJoin(R, S)

for each set of blocks B = {Bi+1, . . . , Bi+(M−2)} ⊂ R do
load B into memory blocks M1, . . . ,MM−2.
for each BS ∈ S do

load BS into memory block MM−1.
for each r ∈ B, s ∈ BS do

if p(r, s) is true then
Write r ▷◁ s into buffer block MM .
Flush MM to stdout when it’s full.

end if
end for

end for
end for

end function

The total IO cost of this is
1. B(R) to load R.
2. For every set of M − 2 blocks, we run through all of s ∈ S, requiring B(S) IOs.

Therefore
B(R) +

⌈
B(R)

M − 2

⌉
·B(S) ≈ B(R) ·B(S)/M (45)

You want to pick the bigger table as R since you want the smaller table S to be loaded/streamed in
multiple times.

Algorithm 5.4 (Index Nested Loop Join)

If we want to compute R ▷◁R.A=S.B S, the idea is to use the value of R.A to probe the index on S(B).
That is, for each block of R, we load it into memory, and for each r in the block, we use the index on
S(B) to retrieve s with s.B = r.A, and output rs.
The IO runtime, assuming that S is unclustered and secondary, is

B(R) + |R| · (indexlookup) (46)

Since typically the cost of an index lookup is 2-4 IOs, it beats other join methods mentioned later
if |R| is not too big. Since this does not scale at all with S, it is better to pick R to be the smaller
relation. The memory requirement as with other operations is 3 blocks.

5.2 Sort-Based Algorithms
5.2.1 External Merge Sort

Now let’s talk about processing of queries, namely how sorting works in a database system, called external
merge sort. In an algorithm course, we know that the runtime is O(n log n), but this is for CPU comparisons
where the entire list is loaded in memory. This is extremely trivial in comparison to the IO commands we use
in databases, so we will compute the runtime of sorting a relation by an attribute in terms of IO executions.

The problem is that we want to sort R but R does not fit in memory. We divide this algorithm into passes
which deals with intermediate sequences of sorted blocks called runs.

1. Pass 0: Read M blocks of R at a time, sort them in memory, and write out the sorted blocks, which
are called level-0 runs.
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2. Pass 1: Read M − 1 blocks of the level 0 runs at a time, sort/merge them in memory, and write out
the sorted blocks, which are called level-1 runs.4

3. Pass 2: Read M − 1 blocks of the level 1 runs at a time, sort/merge them in memory, and write out
the sorted blocks, which are called level-2 runs.

4. ...

5. Final pass produces one sorted run.

Figure 40

Algorithm 5.5 (External Merge Sort)

The implementation has a lot of details. Not finished yet.

Require: Relation R
function ExternalMergeSort(R)

L = [0] ▷ Array storing number of level-i runs
while while there are blocks to read from R do ▷ First pass

read the next M blocks B = {B1, . . . , BM} at a time and store it in memory.
sort B to generate a level-0 run B(0) = {B′

1, . . . , B
′
M}.

write B(0) to disk.
L[0]+ = 1

end while
while L[−1] ≥ M do

append 0 to L
let B = {B} be the set of previous runs
while there exists blocks to be read in B do

read M − 1 blocks starting from the beginning of each run into memory.
sort them to produce the ith run B(i).
write B(i) to disk.

end while
end while

end function

To compute the cost, we know that
1. in pass 0, we read M blocks of R at a time, sort them, and write out a level 0 run, so there are

⌈B(R)/M⌉ (47)

4The reason we need M − 1 rather than M is that now we are merging. We are not merging in-place so we need this extra
buffer to store as we traverse our pointers down each of the M − 1 blocks.
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level 0 sorted runs, or passes.
2. in pass i, we merge M − 1 level (i − 1) runs at a time, and write out a level i run. We have

M − 1 memory blocks for input and 1 to buffer output, so

Num. of level i runs =
⌈

Num. of level (i-1) runs
M − 1

⌉
(48)

3. The final pass produces 1 sorted run.
Therefore, the number of passes is approximately⌈

logM−1

⌈B(R)

M

⌉⌉
+ 1 (49)

and the number of IOs is 2B(R) since each pass reads the entire relation once and write it once. The
memory requirement is M (as much as possible).

Example 5.3 (Baby Merge)

Assume M = 3, with each block able to hold at most 1 number. Assume that we have an input
(relation)

1, 7, 4, 5, 2, 8, 3, 6, 9 (50)

Then we go through multiple passes.
1. Pass 0 will consist of 3 runs. You load each of the 3 numbers in memory and sort them.

1, 7, 4 7→ 1, 4, 7 (51)
5, 2, 8 7→ 2, 5, 8 (52)
9, 6, 3 7→ 3, 6, 9 (53)

2. Pass 1. You merge them together by first taking 1 and 2, loading them in memory, and then
comparing which one should go first. Once 1 is outputted, then the next number 4 overwrites
1 in memory, and then 2 is outputted, and so on.

1, 4, 7 + 2, 5, 8 7→ 1, 2, 4, 5, 7, 8 (54)
3, 6, 9 (55)

3. Pass 2. Merges the final two relations.

1, 2, 3, 4, 5, 7, 8 + 3, 6, 9 7→ 1, 2, 3, 4, 5, 6, 7, 8, 9 (56)

Therefore, pass 0 uses all M pages to sort, and after that, when we merge, we only use M − 1 pages
to merge the inputs together and 1 page for the output.

Some performance improvements include:

1. Double Buffering. You allocate an additional block for each run, and while you are processing (merging
the relations in memory), you run the IO concurrently and store it in the new block to save some time.

2. Blocked IO. Instead of reading/writing one disk block at a time, we can read/write a bunch of them in
clusters. This is sort of like parallelization where you don’t output just one block, but multiple blocks
done from multiple processing.

The problem with both of these is that we have smaller fan-in, i.e. more passes. Since we are using more
blocks per run than we have, we can look at fewer runs at once.
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5.2.2 Sort Merge Joins

Now that we know how to sort, let’s exploit this to optimize joins beyond nested-loops. We introduce a
naive version of sort-merge join.

Algorithm 5.6 (Naive Sort-Merge Join)

A clever way is to first sort R and S by their join attributes, and then merge. Given that the first
tuples in sorted R,S is r, s, we do repeat until one of the R or S is exhausted.

1. If r.A > s.B, then s = next tuple in S
2. Else if r.A < s.B, then r = next tuple in R.
3. Else output all matching tuples and r, s = next in R,S, which is basically a nested loop.

Therefore, given that it takes sort(R), sort(S) to sort R,S (the equations above is too cluttered to
write), the IO cost consists of

1. Sorting R and S.
2. We then must write R and S to disk in order to prepare for merging, so B(R) +B(S).
3. We then must write R and S back into memory, one at a time, to merge them, so B(R)+B(S).

Therefore, the IO is really just 2B(R) + 2B(S) more than it takes to sort both R and S.

IO = sort(R) + sort(S) + 2B(R) + 2B(S) (57)

which is worst case B(R) ·B(S) when everything joins.

Algorithm 2
Require:

function Func(x)
end function

Example 5.4 (Worst Case)

To see the worst case when the IO cost is B(R) · B(S), look at the following example. By the time
we got to the first 3, we can’t just increment the pointers for both relations. We must scan through
all of the tuples of A with value 3 and all those in B with value 3 and do a nested loop to join them.

Figure 41

We have completely isolated the sorting phase and the merging phase, but we don’t have to do this. Just
like regular merge-sort, we can integrate them together to save IO in the last merge phase.
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Algorithm 5.7 (Optimized Sort-Merge Join)

The algorithm is just slightly modified from the naive implementation. After the final pass from
sorting both R and S, say that we have WR and WS final runs such that

M > WR +WS (58)

We can assume that this is true since if it wasn’t, we can just add another pass of external sort to
reduce one of the W ’s. Then, we can do these 3 things simultaneously.

1. We can load in the next smallest block from R from its runs, merge them together.
2. We can load in the next smallest block from S form its runs, merge them together.
3. We can join the merged blocks in memory and output to the buffer to be flushed.

This saves us the IO cost of writing the sorted runs back into memory and then loading them again
to write, giving us a total IO cost that is equal to that of simply sorting R and S.

IO = sort(R) + sort(S) (59)

The memory varies depending on how many passes, but if R and S are moderately big in that we
need full memory to sort them, then the memory cost is M (we use everything).

Figure 42: Sorting: produce sorted runs for R and S such that there are fewer than M of them total. Then
in merge and join, we merge the runs of R, merge the runs of S, and merge-join the result streams as they
are generated!

Example 5.5 (Two-Pass SMJ)

If SMJ completes in two passes, then the IOs is really cheap since we are basically getting a 2B(R)+
2B(S) cost of a level-0 pass, plus the final merge-join step which takes another B(R) +B(S).

IO = 3(B(R) +B(S)) (60)

If SMJ cannot complete in 2 passes, then we repeatedly merge to reduce the number of runs as
necessary before the final merge and join.

5.2.3 Zig-Zag Join

Definition 5.3 (Zig Zag Join using Ordered Indices)

To compute R ▷◁R.A=S.B S, the idea is to use the ordering provided by the indices on R(A) and S(B)
to eliminate the sorting step of merge-join. The idea is similar to sort-merge join. We start at the
leftmost leaf node of both indices of R and S, and traverse (right) through the leaves, querying both
of the data at leaf a in R and b in S if the leaf values are equal.
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Note that we don’t even have to traverse through all leaves. If we find that a key is large, we can just
start from the root node to traverse, possibly skipping many keys that don’t match and not incurring
all those IO costs. This can be helpful if the matching keys are distributed sparsely.

Figure 43: We see that the B+ tree of B has value 7 while that of A has value 2. Rather than traversing
2 7→ 3 7→ 4 7→ 7, we can just traverse to 7 from the root node of A. This can give us a stronger bound.

5.2.4 Other Sort Based Algorithms

The set union, intersection, difference is pretty much just like SMJ.

For duplicate elimination, you simply modify it so that during both the sort and merge steps, you eliminate
duplicates if you find any.

For grouping and aggregation, you do external merge sort by the group-by columns. The trick is you produce
“partial” aggregate values in each run and combine them using merge.

5.3 Hash-Based Algorithms
5.3.1 Hash Join

Hash joining is useful when dealing with equality predicates: R ▷◁R.A=S.B S.

Definition 5.4 (Hash Join)

The main idea of hash join is that we want to partition R and S by hashing (using a hash function
that maps to M − 1 values) their join attributes and then consider corresponding partitions (that get
mapped to the same hash value) of R and S. If r.A and s.B get hashed to the same number, they
might join, and if they don’t, then they definitely won’t join. The figure below nicely visualizes this.
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Figure 44: Say that the orange points represent the hashed values of r.A and s.B for r, s ∈ R,S. The nested
loop considers all slots (all pairs of orange points between R and S), but hash join considers only those along
the diagonal.

Then, in the probing phase, we simply read in each partition (the set of tuples that map to the
same hash) of R into memory, stream in the corresponding partition of S, compare their values (not
hashes since they are equal), and join if they are equal. If we cannot fit in a partition into memory, we
just take a second hash function and hash it again to divide it into even smaller partitions (parallels
merge-sort join).

Figure 45

Therefore, if the hash join completes in two passes, the IO runtime is

3(B(R) +B(S)) (61)

which is similar to merge-sort join. As for the memory requirement, let’s first assume that in the
probing phase, we should have enough memory to fit one partition of R, i.e. M−1 > ⌈B(R)/(M−1)⌉,
so solving for it roughly gives M >

√
B(R) + 1. We can always pick R to be the smaller relation, so

roughly
M >

√
min{B(R), B(S)}+ 1 (62)
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Theorem 5.1 (Hash vs Sort-Merge Join)

To compare hash join and SMU, note that their IOs are the same, but for memory requirements,
hash join is lower, especially when the two relations have very different sizes.√

min{B(R), B(S)}+ 1 <
√
B(R) +B(S) (63)

Some other factors include the quality of the hash (may not generate evenly sized partitions). Fur-
thermore, hash join does not support inequality joins unlike SMJ, and SMJ wins if either R and/or
S is already sorted. SMJ also wins if the result needs to be in sorted order.

Sometimes, even block nested loop join may win in the following cases.

1. if many tuples join (as in the size of the join is |S| · |R|) since we are doing unnecessary processing in
hash/merge-sort joins.

2. if we have black-box predicates where we may not know the truth/false values of the θ

5.3.2 Other Hash Based Algorithms

The union, difference, and intersection are more or less like hash join.

For duplicate elimination, we can check for duplicates within each partition/bucket.

For grouping/aggregation, we can apply the hash functions to the group-by columns. Tuples in the same
group must end up in the same partition/bucket. Or we may keep a running aggregate value for each group.

To compare the duality of sort and hash, note that

1. in sorting, we have a physical division and logical combination

2. in hashing, we have a logical division and physical combination

When handling large inputs,

1. in sorting we have multi-level merge

2. in hashing we have recursive partitioning

For IO patterns,

1. in sorting we have sequential write and random read (merge)

2. in hashing we have random write and sequential read (partition)

5.4 Exercises
Here are some exercises for calculating IO costs of these joins.

Example 5.6 (Join Operations)

Consider the two tables
1. Orders(OrderID, CustomerID, OrderDate, TotalAmount)
2. Customers(CustomerID, Address)

Orders.CustomerID is a foreign key referring to Customers.CustomerID.
The rows are not sorted on any particular attribute. We want to join the two tables using the attribute
CustomerID:

Orders ▷◁Orders.CustomerID = Customers.CustomerID Customers

The inner and outer tables can be swapped to reduce I/O costs in the following questions.
Assume the following:
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• The cost metric is the number of page/block I/Os unless otherwise noted.
• DO NOT count the I/O cost of writing out the final result unless otherwise noted.
• M = 19 blocks (= pages) available in memory unless otherwise noted.
• Table Orders contains 50,000 records (rows/tuples) on disk. One block can contain 20 Orders-

tuples.
• Table Customers contains 20,000 records (rows/tuples) on disk. One block can contain 10

Customers-tuples.
• Assume uniform distribution for Orders.CustomerID and Customers.CustomerID – i.e. the

same number of Orders-tuples join with a Customers-tuple.
• Ignore page boundary wherever applicable.
• Assume uniform distributions wherever applicable.

Question 2.1
(a) For the Orders and Customers tables, we want to perform a nested-loop join (using 3 memory

blocks). What is the minimum total I/O cost? (Choose the table that will reduce the I/O
cost as the outer table.)

(b) For the Orders and Customers tables, we want to perform a block-based nested-loop join (using
3 memory blocks). What is the minimum total I/O cost?

For (a), we choose R = Customers as the outer table since it is smaller. Therefore, our IO cost is

B(R) + |R| ·B(S) = 2000 + 20, 000 · 2500 = 50, 002, 000 (64)

For (b), we also choose R = Customers as outer since it’s smaller. The IO cost is

B(R) +B(R) ·B(S) = 2000 + 2000 ∗ 2500 = 5, 002, 000 (65)

Question 2.2
(a) If we want to perform an external merge sort on the Orders table, how many level-0 runs does

the external merge sort produce for the Orders table (M=19)?
(b) Continuing with the question (a), how many passes in total does the external merge sort take

(including the first sorting pass)? Show the calculations for each pass (including the number of
runs and size of each run).

(c) What is the total I/O cost of the external merge sort for the Orders table? Remember, do not
count the cost of final write.

(d) Do an improved sort-merge-join, i.e., do merge and join in the same pass when the total num-
ber of sorted runs from Orders and Customers will fit in memory including an output block.
Compute the minimum total I/O cost of sort-merge-join of table Orders and Customers.

For (a), we read M blocks of R at a time, so we need to have ⌈B(R)/M⌉ = ⌈2500/19⌉ = 132 passes.
For (b), we saw that

1. The level 0 pass takes 132 runs.
2. The level 1 pass takes ⌈132/(19− 1)⌉ = 8 runs.
3. At this point we can just run once more since 8 < 18, so our level 2 pass takes 1 run.

So we have 3 passes with 141 runs.
For (c), we have B(R) = 2500 and just compute the following.

1. For level 0, we read all blocks, and write them all out: 2B(R).
2. For level 1, it’s the same thing since we again read all blocks and write them back to disk:

2B(R).
3. For level 2, we just read through and do not include the final write, so B(R).

This is a total of 5B(R) = 5 · 2500 = 12,500 IOs.
For (d),

1. For the first pass, you load all blocks of both relations in memory for the first iteration of sort
merge and then write them to disk, giving us 2(B(R) +B(S)) IOs.

2. The second pass is the same, giving us 2(B(R) +B(S)) IOs.
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3. By the third pass, we complete the sort-merge join giving us B(R) +B(S).
This is a total of 5(B(R) +B(S)) = 5 · (2000 + 2500) = 22,500 IOs.

Question 2.3 Assume uniform distribution for the hash function(s).
(a) For the Orders and Customers tables, we want to perform a multi-pass hash join. How many

passes do we need (including partitioning phase and join phase)?
(b) What is the minimum I/O cost of joining Orders and Customers using a hash join?
(c) What is the minimum number of memory blocks required if we want to perform a 2-pass hash

join? Note that M should be an integer.
For (a), we must partition both relations.

1. In the first partition pass, we
(a) take Customers and have ⌈2000/(19− 1)⌉ = 112 > 18. Each partition contains 112 blocks,

which is too big for our memory, so we must partition again.
(b) take Orders and have ⌈2500/(19− 1)⌉ = 139. Each partition contains 139 blocks, which is

too big for our memory, so we must partition again.
2. In the second partition pass, we

(a) take Customers and have ⌈112/18⌉ = 7 ≤ 18, so we are done since each partition (of a
partition) of 7 blocks can fit in memory.

(b) take Orders and have ⌈139/18⌉ = 8 ≤ 18, so we are done since each partition (of a partition)
of 8 blocks can fit in memory.

3. Finally, we load each partition of Customers in memory (7 blocks), and for each partition, we
just iterate through the corresponding partition of Customers. This is one join pass.

There are a total of 3 passes, or 5 passes if we consider each partition step of each relation as an
individual pass.
For (b), we see that since Orders.CustomerID is a foreign key, we won’t have a case where every row
in Orders will trivially join with every row in Customers. We can compute the steps as such.

1. The 1st partition pass.
(a) For Customers, it requires you to read all blocks (2000 IOs) and then write 112 · 18 blocks

back onto disk (2016 IOs),a or we are just approximating, this is about 2000 IOs as well.
(b) For Orders, it requires you to read all blocks (2500 IOs) and then write 139 ·18 blocks back

onto disk (2502 IOs), or just 2500 IOs as an approximation. This is flushed out as well.
This gives us a total of 2000+ 2016+ 2500+ 2502 = 9018 IOs or with the approximations 9000
IOs.

2. The 2nd partition pass.
(a) For Customers, now you have 18 partitions with each 112 blocks. For each partition, you

load it again (112 IOs) and then partition it again to write back 18 · 7 blocks (126 IOs)
for a total of 238 IOs. You do this 18 times for each partition giving us 238 · 18 = 4284
IOs. Again, we can just approximate it by saying that loading all partitions is 2000 and
writing all is 2000, giving us 4000 IOs.

(b) For Orders, now you have 18 partitions with each 139 blocks. For each partition, you load
it again (139 IOs) and then partition it again to write back 18 · 8 blocks (144 IOs) for a
total of 283 IOs. You do this 18 times for each partition giving us 283 · 18 = 5904 IOs.
Again, we can just approximate it by saying that loading all partitions is 2500 and writing
all is 2500, giving us 5000 IOs.

This gives us a total of 4284 + 5904 = 10188 IOs, or with the approximations 9000 IOs.
3. In the join phase, you load the partitions of R and S with the matching hashes once each to

compare, so we have (not including write)
(a) the partitions of R, which is 18 · 18 · 7 = 2268 IOs, or 2000 IOs approximately.
(b) the partitions of S, which is 18 · 18 · 8 = 2592 IOs, or 2500 IOs approximately.

giving us a total of 4860 IOs.
Therefore, we have a total of 9018 + 10188 + 4860 = 24066 IOs, or if we use our approximations,
it’s simply 5(B(R) +B(S)) = 5 · 4500 = 22,500 IOs.
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For (c), M must satisfy
M ≥ ⌈

√
min{2500, 2000}⌉+ 1 = 46 (66)

giving us M = 46. Checking this is indeed the case, since now the image of our hash function is
{1, . . . , 45}, and assuming uniformity the number of blocks in each partition is ⌈2000/45⌉ = 45, which
is just enough to fit in memory and then use the last block as an input buffer for the bigger relation
when joining.

5.5 Logical Plans
When the DBMS chooses the best way to sort or merge two relations, it needs to choose it immediately.
This can be done crudely by looking at the statistics of the relations that it is working with, but it doesn’t
guarantee that you will get the optimal plan. Therefore, it goes by the principal that you shouldn’t try and
waste time choosing the optimal one, but rather avoid the horrible ones. As a user of this DBMS, we should
also take care in writing queries that are not too computationally or IO heavy. Two general heuristics that
we should follow are:

1. You want to push down, i.e. use as early as possible, selections and projections.

2. You want to join smaller relations first and avoid using cross product, which can be devastating in
memory.

Definition 5.5 (Logical Plan)

To have an approximate sense of how computationally heavy a query is, we can construct a high-level
logical plan, which shows the computation DAG of the relational operators that we will perform for
a query. We can optimize the logical plan by modifying our intermediate steps, such as optimizing
our relational algebra logic or our implementation of SQL.

5.5.1 Query Rewrite

Using what we know, we can get a bit more theoretical and use the following identities in relational algebra.
However, this has already been optimized and only does so much in practice.

Theorem 5.2 (Identities)

The following hold:
1. Selection-Join Conversion: σp(R× S) = R ▷◁p S
2. Selection Merge/Split: σp1

(σp2
R) = σp1∧p2

R
3. Projection Merge/Split: πL1

(πL2
R) = πL1

R, where L1 ⊆ L2

4. Selection Push Down/Pull Up: σp∧pr∧ps
(R ▷◁p′ S) = (σpr

R) ▷◁p∧p′ (σps
S), where:

(a) pr is a predicate involving only R columns
(b) ps is a predicate involving only S columns
(c) p and p′ are predicates involving both R and S columns

5. Projection Push Down: πL(σpR) = πL(σp(πLL′R)), where L′ is the set of columns referenced
by p that are not in L

aThis is not exactly 2000 because 2000/18 = 111.11, which means that after repeatedly flushing out the filled partitions to
disk 111 times, at the end we will have a partially filled buffer block in memory for each of the 18 partitions. This will need to
be flushed out as well.
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Definition 5.6 (SQL Query Rewrite)

We can rewrite SQL queries directly, though this is more complicated and requires knowledge of the
nuances of the DBMS.

1. Subqueries and views may not be efficient, as they divide a query into nested blocks. Processing
each block separately forces the DBMS to use join methods, which may not be optimal for the
entire query though it may be optimal for each block.

2. Unnest queries convert subqueries/views to joins.
Therefore, it is usually easier to deal with select-project-join queries, where the rules of relational
algebra can be cleanly applied.

Example 5.7 (Query Rewrite)

Given the query, we wish to rewrite it.

1 SELECT name
2 FROM User
3 WhERE uid = ANY(SELECT uid FROM Member);

The following is wrong since there may be one user in two groups, so it will be duplicated.a

1 SELECT name
2 FROM User, Member
3 WHERE User.uid = Member.uid;

The following is correct assuming User.uid is a key.

1 SELECT name
2 FROM (SELECT DISTINCT User.uid, name)
3 FROM User, Member
4 WHERE User.uid = Member.uid);

Example 5.8 (Correlated Subqueries)

Look at this query where we want to select all group ids with name like Springfield and having less
than some number of members.

1 SELECT gid
2 FROM Group, (SELECT gid, COUNT(*) AS cnt FROM Member GROUP BY gid) t
3 WHERE t.gid = Group.gid AND min_size > t.cnt
4 AND name LIKE ’Springfield%’;

This is inefficient since for every gid, we are making an entire extra query to select the counts. This
is called a non-correlated query since this subquery is being run independently for every run. It
ends up computing the size of every group, unlike the following one, where it filters out groups named
Springfield first and then computes their size.

1 SELECT gid FROM Group
2 WHERE name LIKE ’Springfield%’
3 AND min_size > (SELECT COUNT(*) FROM Member WHERE Member.gid = Group.gid);

aA bit of review: when testing whether two queries are equal, think about if the two queries treat duplicates, null values,
and empty relations in the same way.
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5.5.2 Search Strategies

Given a set of operations we have to do, the number of permutations that we can apply these operations
grows super-exponentially. The problem of finding the best permutation is called a search strategy.

Example 5.9 (Left-Deep Plans)

Say that we have relations R1, . . . , Rn that we want to join. The set of all sequences in which we can
join them is bijective to the set of all binary trees with leaves Ri. This grows super-exponentially,
reading 30, 240 for n = 6. There are too many logical plans to choose from, so we must reduce this
search space. Here are some heuristics.

1. We consider only left-deep plans, in which case every time we join two relations, it is the outer
relation in the next join.a

Figure 46: Left deep plans have a search space of only n!, which is better than before.

2. We can consider a balanced binary tree, which can be parallel processed, but this causes more
runtime on the CPU in sort-merge joins, you must materialize the result in the disk, and finally
the search space of binary trees may be larger than that of the left-deep tree.

Even left-deep plans are still pretty bad, and so optimizing this requires a bit of DP (dynamic programming),
using Selinger’s algorithm.

Algorithm 5.8 (Selinger’s Algorithm)

Given R1, . . . , Rn, we must choose a permutation from the n! permutations. Say that the cost of the
optimal join of a set R is f(R). Note the recursive formula for some S ⊂ [n].

f({Ri}i∈S) = min
i

f({Rj}j∈S,j ̸=i) + f(Ri, ▷◁j∈S,j ̸=i Rj) (67)

Where we sum up the cost of getting the accumulated relation and add it to the additional cost of
joining once more with Ri. Therefore, given the Ri’s,

1. We compute all f({Ri, Rj}) for i < j (since j > i requires us the larger one to be inner).
2. Then we apply the recursive formula for all 3-combinations and so on, until we get to n-

combinations.

Given a certain logical plan, the DBMS tries to choose an optimal physical plan as we will see later. However,
the globally optimal plan may not be achieved with a greedy approach of first choosing the optimal logical
plan and then its optimal physical plan. Due to the sheer size of the search space, we tend to go for “good”
plans rather than optimal ones.

aNote that since the right/inner relation is the one that is being scanned, we want the right one to be smaller since for each
block of the left relation, we are looping over all blocks of the right relation. Therefore, left-deep plans are much more efficient
since we don’t have to scan the huge relation from the disk multiple times. We can just send it directly to the next join.
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5.6 Physical Plan
The logical plan gives us an abstract view of the operations that we need to perform. It is mainly defined at
the relational algebra or language level. But simply sorting or joining two relations is not done in just one
way (e.g. we can scan, hash, or sort in different ways). Optimizing the logical plan may or may not help in
the runtime, since operations are dependent on the size of the intermediate inputs.

Definition 5.7 (Physical Plan)

The actual sub-decisions needed to execute these operations constitute the physical plan, which is
the actual implementation including even more operations in between each node of the logical plan.
Here are a few terms to know.

1. On the fly. The computations are done in memory and are not written back to disk.
2. (Index) Scan. We scan for index value using a clustered/unclustered index on a B+ tree.
3. Sort. Usually means external merge sort.
4. Filter. Means the same as selection.

The difference between the logical and physical plan is that the logical plan represents what needs to be done
(which we write SQL) and not how (which the DBMS chooses). Consider the two approaches.

Example 5.10 (Query Plans)

Consider the following SQL query:

1 SELECT Group.title
2 FROM User
3 JOIN Member ON User.uid = Member.uid
4 JOIN Group ON Member.gid = Group.gid
5 WHERE User.name = ’Bart’;

πGroup.title

▷◁gid

▷◁uid

σname="Bart"

User

Member

Group

Figure 47: Logical Plan. We first take User, select Bart, and join it to Member over uid. Then we join it
with Group on gid, and finally project the title attribute.
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PROJECT (Group.title)

MERGE-JOIN (gid)

SORT (gid)

MERGE-JOIN (uid)

FILTER (name = "Bart")

SCAN (User)

SORT (uid)

SCAN (Member)

SCAN (Group)

Figure 48: Physical Plan. We first take User and do a scan before filtering/selecting tuples with Bart. We
also scan Member and sort it by uid in order to prepare for merge-join. Once we merge-join over uid, we sort
it again to prepare a second merge-join with Group (which we scan first). Once we do this, we finally project
the title attribute.

5.6.1 SQL Rewrite

At the language level, SQL provides some APIs to force the DBMS to use a certain physical plan if desired.
This requires expertise and should not be done by beginners, however.

5.6.2 Cardinality Estimation

In the physical plan, we need to have a cost estimation for each operator. For example, we know that
SORT(gid) takes O(B(input) · logM B(input)), but we should find out what B, the number of blocks needed
to store our input relation, is. To do this, we need the size of intermediate results through cardinality
estimation.

Usually we cannot do quick and accurate cardinality estimation without strong assumptions, the first of
which is uniformity of data.

Example 5.11 (Selection with Equality Predicates)

Suppose you have a relation R with |R| = 100, 000 tuples. Assume that it has an attribute A taking
integer values in [50, 100) distributed uniformly. Then, there are 50 distinct values, and when we want
to do σA=a(R), then we would expect it to return

|σA=a(R)| = |R|
|πA(R)|

= 2000 (68)

tuples.

The second assumption is independence of the distributions over each attribute.

Example 5.12 (Selection with Conjunctive Predicates)

If we have the same relation R with integer attributes A ∈ [50, 100), B ∈ [10, 20) independently and
uniformly distributed. Then,

|σA=a,B=b(R) =
|R|

|πA(R)| · |πB(R)|
=

100, 000

50 · 10
= 200 (69)
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At this point, we are just using inclusion-exclusion principle and this becomes a counting problem.

Example 5.13 (Negated, Disjunctive Predicates)

We list these identities for brevity. The math is pretty simple.

|σA ̸=a(R)| = |R| ·
(
1− 1

|πA(R)|

)
(70)

and using I/E principle, we have

|σA=a∨B=b(R)| = |R| ·
(

1

|πA(R)|
+

1

|πB(R)|
− 1

|πA(R)| · |πB(R)|

)
(71)

Example 5.14 (Range Predicates)

Range also works similarly, but only if we know the actual bounds of the attribute values.

|σA>a(R)| = |R| · max(R.A)− a

max(R.A)−min(R.A)
(72)

Clearly, if we know that an attribute follows, say a Gaussian or a Poisson distribution, we can just calculate
the difference in the CDFs and scale up by the relation size to get the approximate cardinality. I think this
is what the professor refers to as histogram estimation.

For joins, we need yet another assumption, called containment of value sets. This means that if we are natural
joining R(A,B) ▷◁ S(A,C), every tuple in the smaller (as in fewer distinct values for the join attribute A)
joins with some tuple in the other relation. In other words,

|πA(R)| ≤ |πA(S)| =⇒ πA(R) ⊂ πA(S) (73)

which again is a very strong assumption in general but holds in the case of foreign key joins.

Example 5.15 (Two Way Equi-Join)

With the containment assumption, we have

|R ▷◁A S| = |R| · |S|
max(|πA(R)|, |πA(S)|)

(74)

Think of this as looking at the cross product between the two relations, and then filtering out the
actual tuples that don’t belong there.

5.7 Exercises
Let’s do a more comprehensive exercise.

Example 5.16 (Cost Estimation of Physical Query Plan)

Say we have three relations
1. Student(sid, name, age, addr). T (S) = 10, 000 tuples, B(S) = 1, 000 pages.
2. Book(bid, title, author). T (B) = 50, 000 tuples, B(S) = 5, 000 pages.
3. Checkout(sid, bid, date). T (C) = 300, 000 tuples, B(C) = 15, 000 pages.

And say that the number of author attribute values in Book with 7 ≤ age ≤ 24 is 500 tuples. There
is an unclustered B+ tree index on B.author, a clustered B+ tree index on C.bid, and all index
pages are in memory. Also we assume unlimited memory to simplify things.
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Figure 49: We have the following physical plan.

Okay, so let’s do this. Note that since all index pages are in memory, we are storing the entire B+
tree in memory and don’t need extra IOs to traverse it.

a) For the selection, the author is an unclustered B+ tree. There are 50,000 tuples and 500 distinct
authors. Since we’re querying 1 author, by uniformity we would need to access 100 book which
may all be in their own disk page, so we need 100 IOs.a We end up with an output relation of
100 tuples in memory, so we also have a cardinality of 100.

IO(a) =
T (B)

500
=

50, 000

500
= 100, Card(a) = 100 (75)

b) For the projection on bid, we have already loaded in our relation in memory, so the IO cost is
0. We are still working with 100 pages, so our cardinality is still 100.

IO = 0, Card(b) = 100 (76)

c) Now we do a join with an index-nested loop join on bid. Recall that we want to use the value
of the outer table R.bid to probe the index on the inner table C.bid, which is clustered. We
already have our outer table in memory, and we use the index bid to probe our inner table C.
For each of the 50,000 book tuples in B, there are 300,000 checkout tuples in C, meaning that
there are about 300, 000/50, 000 = 6 checkout per book. For each of the 100 book tuples in (a),
we expect to get 6 checkouts per book. There are 300, 000/15, 000 = 20 checkout tuples per
page, so counting for page boundaries we assume that 6 tuples will fit in at most 2 pages (or
maybe 1). Therefore, we have

IO(c) = 100 · 2 = 200, Card(c) = 100 · 6 = 600 (77)

d) This is done in memory so IO is 0. Note that we have a total of 600 checkout/book tuples.
Since this is a projection, the cardinality also remains the same.

IO(d) = 0, Card(d) = 600 (78)

e) Now we have a block nested loop join. Since (d) is already in memory (on the fly), all we have
to do is load all of S into memory (unlimited), which means our IO cost is B(S) = 1000. We are
joining with the student relation, and since there is 1 student per checkout, our output relation
is still 600 tuples long.

IO(e) = 1000, Card(e) = 600 (79)
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f) Finally we select, and assuming that the ages are uniformly distributed, we expect (20− 12−
1)/(24− 7 + 1) = 7/18 of the relations to remain after selection. IO is 0 since this is on the fly.

IO(f) = 0, Card(f) = 600 · 7

18
≈ 234 (80)

g) Finally, we project onto name. IO is 0 since on the fly. We are projecting on names and
assuming we don’t remove duplicatesb our output relation is still the same length.

IO(g) = 0, Card(g) = 234 (81)

The total cost is 1000 + 200 + 100 = 1300 and the final cardinality is 234.

6 XML
So far, we have talked about relational data, which is a type of structured data with a schema, attributes,
tuples, etc along with their types and constraints. For example, just trying to add a new attribute to a
relation may require you to add the attribute for each tuple if it cannot be null. Some unstructured data
is just plaintext, which doesn’t confirm to any schema, and is on the other extreme end. Some types of
data in between is HTML, XML, or JSON, which we call semi-structured, which may contain sections,
subsections, etc.

Definition 6.1 (XML)

The extensible markup language (XML) is a semi-structured data that is similar to HTML,
where the data self-describes the structure.a

1. There are tags marked by a start (<tag>) and end (</tag>) tags.
2. An element is enclosed by a pair of start and end tags(<t>...</t>), and elements can be

nested (<t><r></r></t>or empty(<t></t>.
3. Elements can also have attributes (<book ISBN="...", price="80.00">).b Attributes must

be unique, i.e. there cannot be duplicate attributes in a tag.
Note that there are some conventions that we must follow to get a well-formed XML document.
First, the tags should be closed appropriately like parantheses matching, and we should not have the
characters < or > as a part of the element. Rather, we should use &lt; and &gt;.

Example 6.1 ()

An example of XML data regarding a book is

1 <?xml version="1.0" encoding="UTF-8"?>
2 <book>
3 <title>The Great Gatsby</title>
4 <author>
5 <firstName>F. Scott</firstName>
6 <lastName>Fitzgerald</lastName>
7 </author>
8 <published>
9 <year>1925</year>

10 <publisher>Charles Scribner’s Sons</publisher>

aIf this was clustered, then each page can store 10 tuples, so we actually need 10 IOs.
bIs this really a realistic assumption?
aThe names and nesting of its tags describe its structure.
bThis is not the same attributes in relational databases.
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11 </published>
12 <genre>Literary Fiction</genre>
13 <price currency="USD">14.99</price>
14 <inStock>true</inStock>
15 <rating>4.5</rating>
16 </book>

This can be represented by a tree.

Figure 50: Tree representation of an XML file.

Let’s do a quick comparison of relations and XML.

1. One advantage of XML is portability/exchangeability, since it self-describes itself, so all you really need
is this text, unlike relations where you should also send the schema and other metadata. On the other
hand, exchanging is problematic.

2. Second, its has flexibility to represent any information (e.g. structured, semi-structured, documents,
etc.). Unlike a relation where each attribute of each tuple is atomic (meaning you can’t place another
relation in there), you can make a new XML tree.

3. Finally, since the data describes itself, you can change the schema easily. In contrast, the schema of a
relational database is always fixed in advance and difficult to change.

4. Almost all major DBMS supports relations, and XML is often implemented as an add-on on top of
relations.

5. Unlike the relational database where the order of the rows don’t matter, the order does matter for
XML.

Definition 6.2 (DTD)

Just because we don’t need metadata does not mean that we cannot define one. This is done with
the document type definitions (DTD), which species the schema and constraints for XML just
like relational databases. It has the following syntax, which should be written in the beginning of the
XML file.
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1 <!DOCTYPE root-element [
2 <!ELEMENT element-name (content-specification)>
3 ]>

Here are the common element specifications.
1. EMPTY: Element has no content
2. ANY: Element can contain any content
3. (#PCDATA): Element contains parsed character data
4. Child elements: Listed in parentheses

with an example of a simple DTD being

1 <!DOCTYPE library [
2 <!ELEMENT library (book+)>
3 <!ELEMENT book (title, author, year)>
4 <!ELEMENT title (#PCDATA)>
5 <!ELEMENT author (#PCDATA)>
6 <!ELEMENT year (#PCDATA)>
7 ]>

Really, this is like a tree directory structure, so to query data, it makes sense to try and traverse the paths.
There are three major query languages for XML, which are

1. XPath, which uses path expressions with conditions and are the building blocks of the rest of the
standards.

2. XQuery, which is XPath plus a full-fledged SQL-like query language.

3. XSLT, or eXtensible Stylesheet Language Transformations and is the recommended style sheet lan-
guage for XML.

6.1 XPath

Definition 6.3 (Basic XPath Constructs)

The syntax for building a XPath is as follows:
1. /: used as a separator between steps in a path (traversing down).
2. name: matches any child element with this tag name.
3. *: matches any child element
4. @name: matches the attribute with this name.
5. @*: matches any attribute
6. //: matches any descendent element of the current element itself.
7. . : matches current element.
8. .. : matches parent element.a

Note that these names are all case sensitive, and another important fact is that NULL evaluates to
NOT (so if there are no elements/attributes), then a condition on that element/attribute will evaluate
to NOT.

Example 6.2 ()

Let’s look at this example, which shows bibliographies for different books.

1 <?xml version="1.0" encoding="UTF-8"?>

aThis is just like when we are navigating directories in a shell.
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2 <bibliography>
3 <book ISBN="ISBN-10" price="70">
4 <title>Foundations of Databases</title>
5 <author>Abiteboul</author>
6 <author>Hull</author>
7 <author>Vianu</author>
8 <publisher>Addison Wesley</publisher>
9 <year>1995</year>

10 <section>abc</section>
11 </book>
12 <book ISBN="ISBN-11" price="20">
13 <title>DBSTS</title>
14 <author>Ramakrishnan</author>
15 <author>Gehrke</author>
16 <publisher>Addison Wesley</publisher>
17 <year>1999</year>
18 <section>
19 <title>bruh</title>
20 </section>
21 </book>
22 <report>
23 <author>Muchang</author>
24 <addon>
25 <author>Jon</author>
26 </addon>
27 </report>
28 </bibliography>

Let’s look at some XPaths.
1. /bibliography/book/author gets all author element reachable via this path.

1 <author>Abiteboul</author>
2 <author>Hull</author>
3 <author>Vianu</author>
4 <author>Ramakrishnan</author>
5 <author>Gehrke</author>

2. /bibliography/book/title gets all book titles reachable via this path.

1 <title>Foundations of Databases</title>
2 <title>DBSTS</title>

3. /bibliography/book/@ISBN gets all book ISBN attributes (we need the to search the attribute,
not the element)

1 ISBN="70"
2 ISBN="ISBN:11"

4. //title returns all title elements, anywhere in the document. Note that the title of the section
is also added.

1 <title>Foundations of Databases</title>
2 <title>DBSTS</title>
3 <title>bruh</title>

5. //section/title returns all section titles, anywhere in the document.
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1 <title>bruh</title>

6. /bibliography/*/author returns all authors in bibliography that is a grandchild of bibliogra-
phy. Note that Muchang is retrieved but not Jon.

1 <author>Abiteboul</author>
2 <author>Hull</author>
3 <author>Vianu</author>
4 <author>Ramakrishnan</author>
5 <author>Gehrke</author>
6 <author>Muchang</author>

7. /bibliography/book[@price<50] returns all books that are children of bibliography with at-
tribute price less than 50.

1 <book ISBN="ISBN-11" price="20">
2 <title>DBSTS</title>
3 <author>Ramakrishnan</author>
4 <author>Gehrke</author>
5 <publisher>Addison Wesley</publisher>
6 <year>1999</year>
7 <section>
8 <title>bruh</title>
9 </section>

10 </book>

8. /bibliography/book[author=’Abiteboul’] returns all books that are children of bibliography
that has an author tag children with element Abiteboul.

9. /bibliography/book[author] returns all books that are children of bibliography with some
child author tag.

10. /bibliography/book[40 <= @price and @price <= 50] returns books with price attribute
between 40 and 50.

11. /bibliography/book[author=’Abiteboul’ or @price >=50] returns books either authored
by Abiteboul or price at least 50. Note that the first condition is on an element and the second
is on an attribute.

12. /bibliography/book[author=’Abiteboul’ or not (@price < 50)] returns books authored
by Abiteboul or price not below 50. Note that this is different from the query above since if a
book does not have a price, then price < 50 is null (which is NOT in XPath), so it returns
the book.

Hopefully you get a good feel for how XPaths work. Here’s a trickier example.

Example 6.3 (Conditions on Any vs All Attributes/Elements)

Say you want to get all books with some price in the range [20, 50]. Then you would think of writing

1 /bibliography/book/[price>=20 and price <=50]

This may not work if we have a XML element of this form, with multiple prices.

1 <book>
2 <title>newbooktitle</title>
3 <price>10</price>
4 <price>70</price>
5 </book>
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since it compares is any element satisfies the conditions. Therefore, we can think of these conditions
all as the any condition over child elements. If we want to use the all condition, we can write

1 /bibliography/book/[price[.>=20 and .<=50]]

Similarly, if we have the query /bibliography/book[author=’A’ and author!=’A’], this is an any
clause, so it will return all books with author A and another author not A.

Definition 6.4 (XPath Operators and Functions)

In conditions, we can use the following operations.
1. Arithmetic: x + y, x - y, x * y, x div y, x mod y
2. contains(x, y) returns true if string x contains string y
3. count(node-set) counts the number of nodes in node-set
4. position() returns the context position (i.e the position of the node amongst its siblings)
5. last() returns the context size (roughly the size of the node-set)
6. name() returns the tag name of the current element

Example 6.4 ()

Some more queries is
1. /bibliography/book[count(section)<10] returns books with fewer than 10 sections.
2. //*[contains(name(), ’Ab’)] returns all elements whose tag names contain Ab (or section?)
3. /bibliography/book/section[position()=1]/title returns the title of the first section in

each book.
4. /bibliography/book/section[position()=last()]/title returns the title of the last sec-

tion in each book.

6.2 XQuery
XQuery is a superset of the XPath, but it also encompasses FLWOR expressions, quantified expressions,
aggregation, sorting, etc. An XQuery expression can even return a new result XML document. Let’s put
the XML example file again for convenience.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <bibliography>
3 <book ISBN="ISBN-10" price="70">
4 <title>Foundations of Databases</title>
5 <author>Abiteboul</author>
6 <author>Hull</author>
7 <author>Vianu</author>
8 <publisher>Addison Wesley</publisher>
9 <year>1995</year>

10 <section>abc</section>
11 </book>
12 <book ISBN="ISBN-11" price="20">
13 <title>DBSTS</title>
14 <author>Ramakrishnan</author>
15 <author>Gehrke</author>
16 <publisher>Addison Wesley</publisher>
17 <year>1999</year>
18 <section>
19 <title>bruh</title>
20 </section>
21 </book>
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22 </bibliography>

Example 6.5 ()

For now, let’s start with a simple XQuery based on XPath. To find all books, we can write the
following, where the first doc refers to the specific document to query.

1 <result>{
2 doc("bib.xml")/bibliography/book
3 }</result>

Note that like Python string interpolation, text outside of {} are copied to output verbatim, while
those inside are evaluated and replaced by the result. We can use conditionals the same way.

1 <result>{
2 doc("bib.xml")/bibliography/book[@price<50]
3 }</result>

which will return

1 <book ISBN="ISBN-11" price="20">
2 <title>DBSTS</title>
3 <author>Ramakrishnan</author>
4 <author>Gehrke</author>
5 <publisher>Addison Wesley</publisher>
6 <year>1999</year>
7 <section>
8 <title>bruh</title>
9 </section>

10 </book>

Definition 6.5 (FLWOR Expressions)

The fundamental building block of XQuery is the FLWOR expression, which stands for:
1. FOR: Iterates over sequences
2. LET: Binds variables to values
3. WHERE: Filters the tuples
4. ORDER BY: Sorts the results
5. RETURN: Constructs the result

Note that only the RETURN clause is mandatory; all others are optional.

Example 6.6 (FLWOR with Loops and Conditionals)

To retreive the titles of books published before 2000, together with their publisher, we can write
either of the following. The logic is pretty self explanatory.
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1 <result>{
2 for $b in /bibliography/book
3 let $p := $b/publisher
4 where $b/year < 2000
5 return
6 <book>
7 { $b/title }
8 { $p }
9 </book>

10 }</result>

1 <result>{
2 for $b in /bibliography/book[year<2000]
3 return
4 <book>
5 { $b/title }
6 { $p/publisher }
7 </book>
8 }</result>
9 .

10 .

which will return

1 <result>
2 <book>
3 <title>Foundations of Databases</title>
4 <publisher>Addison Wesley</publisher>
5 </book>
6 <book>
7 <title>DBSTS</title>
8 <publisher>Addison Wesley</publisher>
9 </book>

10 </result>

Note that $p may be assigned to a set of elements. It does not have to be one element.

Just like XPath, a conditional expression (with where) only checks the any condition.

Example 6.7 (Nested Loops and List Comprehension)

We can also use nested loops to solve the query above, but note the logic. If a book of price < 2000
has 2 publishers, then the book may be returned 2 times. On the other hand, if a book has a price
< 2000 but has no publishers, then a null is really a false, so that book will not be returned.

1 <result>
2 {
3 for $b in /bibliography/book,
4 $p in $b/publisher
5 where $b/year < 2000
6 return
7 <book>{ $b/title }{ $p }</book>
8 }
9 </result>

10 .
11 .
12 .
13 .
14 .

1 <result>
2 <book>
3 <title>Foundations of

Databases</title>
4 <publisher>Addison Wesley</publisher>
5 </book>
6 <book>
7 <title>Foundations of

Databases</title>
8 <publisher>Springer</publisher>
9 </book>

10 <book>
11 <title>DBSTS</title>
12 <publisher>Addison Wesley</publisher>
13 </book>
14 </result>

If we use a comprehension statement, we can let $b be all the books and try to parse them element
by element where its year is < 2000. This is also wrong since the where clause is an any expression,
so if at least 2 book has year < 2000, then it will return all the books. In fact, it doesn’t even return
it in the right format, since it returns all the book titles first and then all the publishers.
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1 <result>
2 {
3 let $b := /bibliography/book
4 where $b/year < 2000
5 return
6 <book>
7 { $b/title }
8 { $b/publisher }
9 </book>

10 }
11 </result>

1 <result>
2 <book>
3 <title>Found of Databases</title>
4 <title>DBSTS</title>
5 <publisher>Addison Wesley</publisher>
6 </book>
7 </result>
8 .
9 .

10 .
11 .

Now that we went over FLWOR, let’s talk about how we can do joins.

Example 6.8 (Explicit Join)

To find all pairs of books that have common authors, we can write

1 <result>
2 {
3 for $b1 in //book
4 for $b2 in //book
5 where $b1/author = $b2/author
6 and $b1/title > $b2/title
7 return
8 <pair>
9 { $b1/title }

10 { $b2/title }
11 </pair>
12 }
13 </result>

Remember that since the where is an any condition, this works to our advantage now. We also use a
string comparison of the authors and titles to remove duplicates. This gives us the result.

1 <result>
2 <pair>
3 <title>Foundations of Databases</title>
4 <title>DBSTS</title>
5 </pair>
6 </result>

We will stop here, but there are more features such as subqueries, existential (some) vs universal (all) queries,
aggregation, conditional, etc.

6.3 Converstion of XML to Relational Data
Relational to XML is trivial, but XML to relational isn’t really since there can be different data types that
are siblings (e.g. books vs articles, vs papers all under bibliography), there may be repeats of the same tag,
and there are both child elements and attributes.

The most trivial thing to do is to store the entire XML in a column (called a CLOB, character large Object
type), but this isn’t useful since it first does not satisfy the condition that each element must be atomic in
a relation. There are two alternatives.
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1. Schema-Oblivious Mapping takes a well-formed XML and converts it to a generic relational schema.
In here, there are more subtypes.

(a) Node/edge based mapping for graphs.

(b) Interval based mapping for trees.

(c) Path based mapping for trees.

2. Schema-Aware Mapping takes a valid XML and converts it to a special relational schema based on
DTD.

Let’s go over the node/edge based mapping. This is quite intuitive since we can visualize a XML structure
as a directed graph.

Figure 51

We can convert the XML to the following 4 relations. We also put the bibliography example to make it
easier to follow along.

1. Element(eid, tag). All elements will have a certain id with their tag type. Note that elements can
have text inside of them, but we will consider this a “child” of the element, stored in the Text relation.

Table 11: Element Table

eid tag
e0 bibliography
e1 book
e2 title
e3 author
e4 author
e5 author
e6 publisher
e7 year

Table 12

2. Attribute(eid, attrName, attrValue). All attributes will need to have their name and type, along
with which eid that they are a part of. Note that there is only one functional dependency (eid,
attrName) -> attrValue.

Table 13: Attribute Table

eid attrName attrValue
e1 ISBN ISBN-10
e1 price 80

3. ElementChild(eid, pos, child). Each element will have a children, with pos referring to the position
of the children. Child references either Element(eid) or Text(tid).
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Table 14: ElementChild Table

eid pos child
e0 1 e1
e1 1 e2
e1 2 e3
e1 3 e4
e1 4 e5
e1 5 e6
e1 6 e7
e2 1 t0
e3 1 t1
e4 1 t2
e5 1 t3
e6 1 t4
e7 1 t5

4. Text(tid, value). All text in an element, with an id value (which cannot be the same as any eid) and
the actual text in the value.

Table 15: Text Table

tid value
t0 Foundations of Databases
t1 Abiteboul
t2 Hull
t3 Vianu
t4 Addison Wesley
t5 1995

Note that we need to invent a lot of ids and need indices for efficiency.

Given this, we can write the equivalent SQL queries from these XPath queries.

1. //title

1 SELECT eid FROM Element WHERE tag=’title’;

2. //section/title

1 SELECT e2.eid
2 FROM Element e1, ElemtnChild c, Element e2
3 WHERE e1.tag = ’section’
4 AND e2.tag = ’title’
5 AND e1.eid = c.eid
6 AND c.child = e2.eid;

Therefore, path expression becomes joins. The number of joins is proportional to the length of the
path expression.
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7 JSON
NoSQL just stands for not SQL or not relational, like XML or JSON.5 This relaxes some constraints and
may be more flexible/efficient, with some popular data stores being MongoDB, CouchDB, Dynamo, etc.
They are designed to scale simple OLTP (online transaction processing) style application loads and provide
good horizontal scalability. An example of where this is used is in pretty much all blockchains. Every
transaction and block is accessible in a JSON format on say etherscan.io.

Definition 7.1 (JSON)

A JSON, short for JavaScript Object Notation, data model is an object with the following
properties:

1. At the top level, it is an array of objects.
2. Each object contains a set of key-value pairs of form {key : value}, where key (attribute)

names should be unique within an object.
3. It supports most primitive types (numbers, strings, double, booleans are stored in quotes e.g.

"true"), along with arrays [...], and finally objects {...} (which defines a recursive struc-
ture).

4. The order is unimportant.
5. You can’t comment in JSON files.

Example 7.1 (Example JSON)

Here is an example with users, groups, and members.

1 {
2 "users": [
3 {"uid": 1, "name": "Bart"},
4 {"uid": 2, "name": "Lisa"}
5 ],
6 "groups": [
7 {"gid": 101, "title": "Skateboarding Club"},
8 {"gid": 102, "title": "Chess Club"}
9 ],

10 "members": [
11 {"uid": 1, "gid": 101},
12 {"uid": 1, "gid": 102},
13 {"uid": 2, "gid": 102}
14 ]
15 }

Definition 7.2 (MongoDB Database)

A database has collections of similarly structured documents, similar to tables of records as opposed
to one big XML document that contains all data.

1. Database is a list of collections. (analogous to a database)
2. Collection is a list a documents (analogous to a table)
3. Document is a JSON object (analogous to a row/tuple)

MongoDB actually stores this data with BSON (Binary JSON), which is the binary encoding of it.

MongoDB provides a rich set of operations for querying and manipulating data.

5I think it’s called this because it’s literally how JS objects are stored and printed.
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Definition 7.3 (find())

The find() operation is MongoDB’s basic query mechanism. It returns a cursor to the matching
documents.

1. Takes a query document that specifies the selection criteria
2. Can include projection to specify which fields to return
3. Supports comparison operators like $eq, $gt, $lt
4. Can query nested documents and arrays

Example 7.2 (Basic Query)

Find all users named "Bart":

1 db.users.find({"name": "Bart"})

Find users with uid greater than 1:

1 db.users.find({"uid": {$gt: 1}})

Definition 7.4 (sort())

The sort() method orders the documents in the result set.
1. Takes a document specifying the fields to sort by
2. Use 1 for ascending order, -1 for descending
3. Can sort by multiple fields
4. Applied after the query but before limiting results

Example 7.3 (Sorting)

Sort users by name in ascending order:

1 db.users.find().sort({"name": 1})

Definition 7.5 (Aggregation Pipeline)

An aggregation pipeline consists of stages that transform sequences of documents. Each stage per-
forms an operation on the input documents and passes the results to the next stage. Despite its
name, it handles more than just aggregation operations.

MongoDB supports several types of pipeline stages:

1. Selection and Filtering ($match)

• Filters documents based on specified conditions

• Similar to find() but within the pipeline context

2. Projection ($project)

• Reshapes documents by including, excluding, or transforming fields

• Can create computed fields

3. Sorting ($sort)
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• Orders documents based on specified fields

• Equivalent to the sort() method

4. Grouping ($group)

• Groups documents by a specified expression

• Supports aggregation operators:

– $sum: Calculates numeric totals

– $push: Accumulates values into an array

5. Document Transformation

• $project/$addFields: Adds computed fields

• $unwind: Deconstructs arrays into individual documents

• $replaceRoot: Promotes an embedded document to the top level

• Array operators:

– $map: Applies an expression to each array element

– $filter: Selects array elements matching a condition

6. Joining ($lookup)

• Performs left outer joins with other collections

Example 7.4 (Basic Pipeline)

A pipeline that finds users in the "Chess Club" and sorts them by name:

1 db.members.aggregate([
2 {$lookup: {
3 from: "users",
4 localField: "uid",
5 foreignField: "uid",
6 as: "user"
7 }},
8 {$match: {"gid": 102}},
9 {$sort: {"user.name": 1}}

10 ])

Example 7.5 (Complex Pipeline)

A pipeline using multiple stages to group and transform data:

1 db.members.aggregate([
2 {$group: {
3 _id: "$gid",
4 members: {$push: "$uid"},
5 count: {$sum: 1}
6 }},
7 {$lookup: {
8 from: "groups",
9 localField: "_id",

10 foreignField: "gid",

99/ 114



Databases Muchang Bahng Fall 2024

11 as: "group_info"
12 }},
13 {$project: {
14 _id: 0,
15 group: {$arrayElemAt: ["$group_info.title", 0]},
16 member_count: "$count",
17 members: 1
18 }}
19 ])

The pipeline stages must be carefully ordered as each stage’s output becomes the input for the next stage.
For optimal performance:

1. Use $match early to reduce the number of documents

2. Place $project and $unwind before $group when possible

3. Consider memory limitations when using $sort

Definition 7.6 ($lookup)

The $lookup operation performs a left outer join to another collection.
1. Must be used within an aggregation pipeline
2. Specifies foreign collection to join with
3. Defines local and foreign fields to join on
4. Results stored in an array field

Example 7.6 (Join Operation)

Join members with users:

1 db.members.aggregate([
2 {$lookup: {
3 from: "users",
4 localField: "uid",
5 foreignField: "uid",
6 as: "user_info"
7 }}
8 ])

Definition 7.7 (Aggregation Operators)

Special operators used within aggregation pipelines for computations.
1. $sum: Calculates sum of numeric values
2. $push: Adds value to an array
3. $avg: Calculates average
4. $first/$last: Returns first/last value in group

Example 7.7 (Aggregation Operators)

Calculate total members and collect group IDs:
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1 db.members.aggregate([
2 {$group: {
3 _id: "$uid",
4 total: {$sum: 1},
5 groups: {$push: "$gid"}
6 }}
7 ])

8 Transactions
So far, we’ve had one query/update on one machine, but this is not the case in reality. In modern systems,
you have users interacting with a database all the time and databases may be prone to failure. These two
situations requires us to develop a safer way of interacting with the database.

Example 8.1 (Simultaneous Interaction)

In an airline, say that we have two parties A and B trying to book the same seat. A looks at the
website, which queries the tuple representing the seat. B does the same. A and B then both book it
at the same time, sending an update request to the database, causing an overbooking.
In a bank, say that we have some events that must be recorded in a database. Say that A = 0 and
B = 100.

1. T1. B sends $100 to A. So A 7→ A+ 100, B 7→ B − 100.
2. T2. The bank sends all users an interest of 6%. A 7→ 1.06A,B 7→ 1.06B.

This is sensitive to order and perhaps at the end we expect A = 100. Consider the following cases.
1. A 7→ A+ 100, B 7→ B − 100, A 7→ 1.06A,B 7→ 1.06B. This is fine.
2. A 7→ A + 100, A 7→ 1.06A,B 7→ 1.06B,B 7→ B − 100. This is not fine since both A and B got

interest and the bank lost $6.

Example 8.2 (Database Crash)

If A 7→ A+ 100 happened first and the bank crashed, then the system would find that A just gained
$100! This is clearly not good, so we must undo what we have done so far.

These two examples hint at some nice properties that we want in our database.

1. Serializability. The first example shows that we do not like parallelism and rather we want things to
run serially in a way such that T1 and T2 occur separately, like a mutex lock. In practice, there are
so many requests that parallelism is a must, so we must find ways to not run serially, but to modify
our parallel computing to make it serializable, as if it is running serially.

2. Atomicity. The second example shows that we want these operations to be atomic, i.e. it is fully done
or not done at all. That is, we do not want to update the disk (which preserves its state upon powering
off) until T1 is completely finished. A simple solution is to do all the operations in memory (which is
wiped upon crashing anyways) and then commit (announce that it is done) these changes. 6

Great, so let’s review some actions that our DBMS should support. To read/write some tuple or relation
X, the disk block containing X must first be brought into memory. X is read/written in memory. If it is
written, it is called a dirty block. Finally, this dirty block must be flushed to disk.

6Committing is not the same as disk writing, actually. It is not necessarily the case that one follows the other, so you can
commit before writing and write before committing. There can also be some completed transactions with updated data still in
memory and therefore lost in crash.
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Definition 8.1 (Actions)

Some examples of actions that can occur in a schedule is:
1. READ: read in a memory block from disk
2. WRITE: write/flush out a dirty memory block
3. COMMIT
4. ABORT

Note that committing is not the same as writing!

Definition 8.2 (Transaction)

The solution to both serializability and atomicity is to use transactions, which is a collection of
one or more operations, called actions, on the database that must be executed atomically as a
whole. At the end of every transaction, the DBMS always puts either a commit (indicating successful
completion) or abort signal.

Definition 8.3 (Schedule)

Now that we’ve cleared up on transactions, a schedule is simply a sequence of actions gotten from
interweaving the transactions on the DBMS. It must obviously be consistent, and two actions from
the same transaction T must appear in the schedule in the same order that they appear in T. Some
terminology to compare schedules:

1. Serial Schedule. No interweaving of transactions.
2. Equivalent Schedule. Two schedules that have the same effect on the database state after

completion.
3. Serializable Schedule. A schedule that is equivalent to a serial schedule.

In a schedule, the transactions are usually written in T, S, . . . and they act on elements (data, tuples
or relations, on disk or memory).

Example 8.3 (Bank Schedule)

For the bank example above, we can construct a serial schedule S1.

1 T1: R(A) W(A) R(B) W(B) C(T1)
2 T2: R(A) W(A) R(B) W(B) C(T2)
3

4 T: R1(A) W1(A) R1(B) W1(B) C(T1) R2(A) W2(A) R2(B) W2(B) C(T2)

and a serializable schedule S2.

1 T1: R(A) W(A) R(B) W(B) C(T1)
2 T2: R(A) W(A) R(B) W(B) C(T2)
3 T: R1(A) W1(A) R2(B) W2(B) R1(B) W1(B) C(T1) R2(B) W2(B) C(T2)

We can verify that S1 ≡ S2 since in the second transaction, we always read in A after it is written
by the first transaction. However, the following is not a serializable schedule since T2 reads the
unmodified A block from disk before flushed by T1.

1 T1: R(A) W(A) R(B) W(B) C(T1)
2 T2: R(A) W(A) R(B) W(B) C(T2)

These properties are a subset of the general ones described here. In the next sections, we will go over
implementing features that ensure each of these properties.
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Definition 8.4 (ACID)

These properties are a subset of the ACID properties.
1. Atomicity. A user can think of a transaction as always executing all actions in one stop or not

executing any at all. In an abort, this can be undone by storing recovery logs and going through
the history to undo.

2. Consistency. Each transaction, when run by itself with no concurrent execution of other actions,
must preserve the consistency of the database.a

3. Isolation. A user should be able to understand a transaction without considering the effect of
any other concurrently running transaction. This allows us to have concurrency control, which
handles multiple transactions by interweaving them in a serializable way (like the bank example
we saw above), and sometimes they may ensure isolation with locks.

4. Durability. Once the DBMS informs the user that a transaction is completed, its effect should
persist.b

It turns out that making one stricter usually leads to a decrease in performance in the other, so we
should maintain some balance. C/I are usually improved in conjunction with concurrency controls,
and A/D are improved using recovery.

8.1 Consistency: Serizability and Precedence Graph
Okay, so we’ve seen in the bank schedule example that serial schedules are trivial to construct and ideally we
want to construct serializable schedules. How do we detect them? Well it turns out checking for serializability
is NP-complete, so we must resort to something called conflict-serializability, which is a stronger condition
but can be solved in polynomial time. Conflict-serializability assures the absence of conflicts, which are
certain properties of schedules that result in a corrupt schedule.

Definition 8.5 (Conflict)

When we interweave actions, conflicts cause schedules to be not equivalent to the serial schedule.
There are 3 types of conflicts.

1. Write-Read (WR): T1 writes A and then T2 reads A before T1 commits. This causes reading
uncommitted (dirty) data.

2. Read-Write (RW): T1 reads A and then T2 writes A before T1 commits. This causes unrepeatable
reads.

3. Write-Write (WW): T1 writes A and then T2 writes A before T1 commits. This overwrites
uncommitted data or lost updates.

4.
Note that RR (read read) has no conflicts since there are no writes.

We can make a precedence graph.

Definition 8.6 (Precedence Graph)

A precedence graph contains
1. a node for each transaction
2. a directed edge from Ti to Tj if an operation of Ti precedes and conflicts with an operation of

Tj in the schedule.

ae.g. if you transfer money from one account to another, the total amount in circulation still remains the same. The
constraints must also be maintained.

bEven if the system crashes before writing to disk, we can recover it by using the history logs and redoing them.
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Example 8.4 (Precedence Graph)

Consider the following schedule between 2 transactions.

1 R1(A) R2(A) W1(A) C1 C2

Then, our precedence graph G(V,E) is defined V = {T1, T2} and E = {(T2, T1)} since there is a RW
conflict. Now consider the following.

1 R1(A) R2(A) W1(A) W2(A) C1 C2

Its precedence graph has both edges (T1, T2) due to R1(A)...W2(A) and (T2, T1) due to R2(A) W1(A).

Theorem 8.1 (Conflict-Serializability)

A schedule is conflict-serializable (which implies serizability) if its precedence graph is acyclic.

Example 8.5 (Not Serializable)

The following schedule is not conflict serializable since T1 7→ T2 from the transactions on A and
T2 7→ T1 from the transactions on B.

1 T1: R(A) W(A) R(B) W(B)
2 T2: R(A) W(A) R(B) W(B)

We established a method to check if a certain schedule S1 is conflict-serializable. Given two serial schedules
S1, S2, we can check if they are equivalent serial schedules as well.

Theorem 8.2 (Equivalent Serial Schedules)

Given 2 serial schedules S1, S2, let G1, G2 be their precedence graphs. If G1 and G2 have a common
existing topological ordering, then S1 ≡ S2.

Theorem 8.3 (Swapping Non-Conflicting Actions Doesn’t Change Precedence Graph)

You can also swap adjacent non-conflicting actions to reach an equivalent serial schedule.
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Figure 52: You can first swap W(B) and R(C) since they act on different elements. You keep swapping to
push the actions of T1 up as far as possible, and if you can get a serial schedule, you are good. Swapping
non-conflicting actions does not affect the precedence graph of the schedule(?)

8.2 Isolation and Concurrency Control
We’ve seen that ideally, we would like to have a schedule that is conflict-serializable. The avoiding of conflicts
is just one problem that we must avoid when implementing isolation protocols, and in here we will focus on
implementing a protocol that enforces three properties:

1. conflict-serializability

2. avoiding cascading rollbacks

3. recoverability

While looking at precedence graphs allow us to compare already existing schedules, it does not give us
instructions to create one. We can do this using locks.

8.2.1 Locks

Let’s introduce locks in the basic sense.

Definition 8.7 (Locks)

The rules for locks are as follows:
1. If a transaction wants to read an object, it must request a shared lock (S mode) on that

object.
2. If a transaction wants to read/modify an object, it must first request an exclusive lock (X

mode) on that object.
3. You can allow one exclusive lock, or multiple shared locks.
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Example 8.6 (Basic Locking)

An implementation of basic locking is shown below.

1 T1: X(A) R(A) W(A) U(A) X(B) R(B) W(B) U(B)
2 T2: X(A) R(A) W(A) U(A) X(B) R(B) W(B) U(B)

However, notice that basic locking does not really enforce conflict-serializability. Naive locks still allow for
this non-serializable schedule to occur. Therefore, we can do two-phase locking.

Definition 8.8 (Two-Phase Locking (2PL))

The basic rule is that for each individual transaction, all lock requests precede all unlock requests.
Therefore, every transaction is divided into a phase of obtaining locks and releasing locks.

Example 8.7 (2PL)

Look at this previous schedule.

1 T1: R(A) W(A) R(B) W(B)
2 T2: R(A) W(A) R(B) W(B)

1. T1 will first requests a X lock on A.
2. Then T2 wants to write to A so it must have the lock. In order to do this T1 must unlock A,

but as soon as it unlocks A, it cannot request for any more locks. What can it do? It has no
choice but to request for a lock on B now, and then unlock A to give to T2.

3. T2 unlocks A, reads/writes it, and then wants to unlock A, but again it must request B before
unlocking A. However, T1 already holds the lock on B and cannot unlock it since it must write
B later.

1 T1: X(A) R(A) W(A) X(B) U(A)
2 T2: X(A) R(A) W(A) ... not allowed

This block really comes from the fact that this schedule is not serializable. Consider a serializable
schedule instead.

1 T1: R(A) W(A) R(B) W(B)
2 T2: R(A) W(A) R(B) W(B)

Then we can construct the 2P locks as such.

1 T1: X(A) R(A) W(A) X(B) U(A) R(B) W(B) U(B)
2 T2: X(A) R(A) W(A) X(B) U(A) R(B) W(B) U(B)

Fundamentally, what we are trying to do by having all locks come first is to push all actions on A
(and their associated locks) as far up as possible so we can finish them first. By pushing them up,
we can isolate R and not have two-way conflicts between T1 and T2.

2PL is great, but we still have to look at the remaining two desired properties. Let’s show why it doesn’t
satisfy them.
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Example 8.8 (Cascading Rollback and Irrecoverability in 2PL)

Consider the following problems with 2PL.
1. Say that T1 is reading A and adds 5 to it to write. Then T2 will read A = 10 and double it for

write. If T1 decides to abort before writing, it should look like T1 had never happened, so T2
should have been reading A = 5. This is problematic, and the only way to deal with this is to
abort T2 as well. If there are other transactions, this is called a cascading rollback.

1 T1: R(A=5) W(A=10) Abort
2 T2: R(A=10) W(A=20) Must abort T2

2. A schedule may not be recoverable sometimes. We can see that T1 aborts, but by the time
it aborts, it’s too late: T2 had already committed changes using uncommitted data from T1,
which must now be undone.

1 T1: R(A=5) W(A=10) Abort
2 T2: R(A=10) W(A=20) Commit

Therefore, we would like to

1. Avoid cascading rollbacks. All transactions should only read data by committed transactions.

2. Recoverable. A transaction commits only after all transactions it had read from commits.

By enforcing even stricter conditions, we can get this as well.

Definition 8.9 (Strict 2PL)

Strict 2PL only releases locks at commit/abort time. A writer will block all other readers until the
writer commits or aborts.

Example 8.9 (2PL vs Strict 2PL)

Consider the following schedule.

1 T1: X(A) W(A) U(A) C
2 T2: X(A) W(A) U(A) C

1. 2PL allows this schedule since for each transaction, all unlocks come after all locks.
2. Strict 2PL does not allow this schedule since it asserts that you must commit before unlocking

(and having other transactions use the lock).
With strict 2PL, you must use this schedule, which requires the commits to be before the transaction.

1 T1: X(A) W(A) C U(A)
2 T2: X(A) W(A) C U(A)

It seems that we are regressing more and more back to the serial schedule, and yes this is true. By enforcing
stricter conditions, we are forced to isolate more and more until it is serial. However, this is used in many
commercial DBMS because reliability is often more important than efficiency.7

7Oracle is a notable exception.
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8.2.2 Snapshots

Oracle uses snapshot isolation. Covered in 516. It uses a private snapshot or a local copy. If there are
no conflicts, it makes global changes and aborts otherwise. It is more efficient than locks, but may lead to
aborts.

8.2.3 Timestamp-Based Concurrency Control

8.2.4 Conflicts and Isolation Levels

We can actually enforce isolation levels in SQL directly. In SQL a transaction is automatically started when
a user executes a SQL statement, and subsequent statements in the same session are executed as part of this
transaction. Statements see changes made by earlier ones in the same transaction and statements in other
concurrently running transactions do not. COMMIT and ROLLBACK commands are self explanatory.

SQL also supports isolation levels, which increases performance by eliminating overhead and allowing higher
levels of concurrency, albeit at the cost of getting inconsistent answers if you don’t know what you’re doing.
We start off with the most restrictive and go down.

1. SERIALIZABLE is the strongest isolation level, with complete isolation.

2. REPEATABLE READ allows repeated reads, and you are safe with updates, but you aren’t safe with new
insertions, which are called phantoms.

Figure 53: You still have a different average due to the insertion of a new element.

3. READ COMMITTED does not allow dirty reads, but non-repeatable reads are allowed (RW conflicts), which
means that reading the same data twice can produce different results and is allowed.

Figure 54: In T2, we first compute an average of say 0.6. Then in T1 we update the popularity and commit. Then
in T2, we take the average again, getting 0.8, and finally commit. T2 ends up reading two different states of the
database.

4. READ UNCOMMITTED allows you to read uncommitted/dirty data (WR conflict).
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Figure 55: In T1, you are setting the popularity to 0.99. In T2, you read this uncommitted data to compute the
average. However, T1 aborts this write, and in T2 you are left with the wrong average.

Here is a summary of the isolation levels.8

Figure 56

8.3 Atomicity and Durability
Note that whenever we read from or write to disk, we are incurring an IO cost and therefore a delay. Since
committing and writing to disk are not the same thing, there are two risks:

1. A system may crash in the middle of transaction T before committing, keeping only partial effects of
T . This violates atomicity, and we should know how to undo T .

2. A system may crash right after a transaction T commits, and not all effects of T were written to disk.
This violates durability, and we should know how to complete T .

Example 8.10 (No Steal and Force)

A naive approach to these two risks are as such.
1. No steal. Writes of a transaction can only be flushed to disk at commit time. With steal, if the

system crashes before T commits but after some writes of T have been flushed to disk, there is
no way to undo these writes.

2. Force. When a transaction commits, all writes of this transaction must be reflected on disk.
Without force, if a system crashes right after T commits, the effects of T will be lost.

8.4 Logging
Just as we enforced isolation and concurrency control with locking, we can kill two birds with one stone here
with logging.

Definition 8.10 (Log)

A log is a sequence of records that records all changes made to the database.a There are 3 types of
logs.

1. Start: When a transaction starts, we log

⟨Ti, start⟩ (82)

8Postgres defaults to read committed.
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2. Write: When transaction T takes element A and changes value 5 to 10, we log

(T,A, 5, 10) (83)

3. Commit, Abort: When a transaction T is committed or aborted, we log

⟨Ti, commit⟩ or ⟨Ti, abort⟩ (84)

Logs are stored in disk (stable storage) and used in recovery. It satisfies write-ahead logging
(WAL), which states that before A is modified in disk, the log record pertaining to A must be
flushed.

At first glance, logging may sound like a bad idea. Since every time we do a transaction, we don’t do 1 IO
but 2, so this may hurt our performance. However, log writing is really sequential since we’re appending to
the end of a log only, so we can use dedicated disks with fast append operations to minimize this performance
impact.

Theorem 8.4 (No Force and Seal of Logging)

Counterintuitively, logging applies no force and steal (as opposed to no steal and force in our naive
approach).

1. Steal. Modified memory blocks can be flushed to disk anytime. This is fine since undo infor-
mation is logged due to WAL.

2. No Force. A transaction can commit even if its modified memory blocks have not been written
to disk. This is fine since redo information is logged due to WAL.

Example 8.11 (Bank Transfer)

Say that we have two elements/tuples A = 800, B = 400 on disk. The schedule is just one transaction
that will look something like this. Let D,L,M refer to our main disk, log disk, and memory.

1. We log that T has started.

1 Disk Memory
2 A=800
3 B=400

1 Log
2 [T, start]
3 .

2. T loads A = 800 from disk to memory.

1 Disk Memory
2 A=800 A=800
3 B=400

1 Log
2 [T, start]
3 .

3. T writes A = 700 in memory and logs the write at the same time. This is fine since WAL forces
logging before flushing to disk, not writes on memory.

1 Disk Memory
2 A=800 A=700
3 B=400

1 Log
2 [T, start]
3 [T, A, 800, 700]

4. We load B = 400 into memory.

1 Disk Memory
2 A=800 A=700
3 B=400 B=400

1 Log
2 [T, start]
3 [T, A, 800, 700]

aThis is stored in a special data structure called aries, developed at IBM.
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5. T writes B = 500 in memory and logs the write.

1 Disk Memory
2 A=800 A=700
3 B=400 B=500
4 .

1 Log
2 [T, start]
3 [T, A, 800, 700]
4 [T, b, 400, 500]

6. We flush the value of A to disk. Note that by steal, we can flush before committing T .

1 Disk Memory
2 A=700 A=700
3 B=400 B=500
4 .

1 Log
2 [T, start]
3 [T, A, 800, 700]
4 [T, b, 400, 500]

7. We commit T , which goes to the log. This marks the end of the transaction.

1 Disk Memory
2 A=700 A=700
3 B=400 B=500
4 .

1 Log
2 [T, start]
3 [T, A, 800, 700]
4 [T, b, 400, 500]
5 [T, commit]

8. We flush the value of B to disk. Note that by no force, we can flush after committing T . Note
that this does not log.

1 Disk Memory
2 A=700 A=700
3 B=500 B=500
4 .

1 Log
2 [T, start]
3 [T, A, 800, 700]
4 [T, b, 400, 500]
5 [T, commit]

With this flexibility to flush anytime, we as the programmers really just care about the correctness about
the schedule and don’t care about the order.

8.4.1 Checkpointing

We’ve seen the advantages of log files, but they can get quite long very fast. If a system crashes and we must
recover our operations, it may not be ideal to start the recovery from the beginning of a schedule. Rather,
we want to use checkpointing. Let’s go through a naive approach.

Definition 8.11 (Naive Checkpointing)

To checkpoint,
1. we stop accepting new transactions
2. finish all active transactions
3. take a database dump

To recover, we can start from the last checkpoint.

We can already see a few problems with this approach, especially the performance impact on not accepting
new transactions. Therefore, we use a more sophisticated approach.

Definition 8.12 (Fuzzy Checkpointing)

To place a fuzzy checkpoint, we do the following.
1. We determine S, the set (ids of) currently active transactions.
2. We log ⟨START CKPT S⟩
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3. We flush all dirty blocks up to the checkpoint to disk (however, actions within the checkpoint
may or may not get flushed within the checkpoint).

4. Transactions normally proceed and new transactions can start during checkpointing.
5. We log ⟨END CKPT START-CKPT_location⟩, where the start checkpoint location allows you to

easily access the location of the start (otherwise we can read the log backwards to find it).
Now once a bad event like a crash happens, there are three recovery steps.

1. Analysis. Go backward from crash point.
2. Repeating History. Forward takes care of REDO for committed transactions.
3. UNDO. Backward takes care of UNDO of uncommitted transactions and removes their effects.

Example 8.12 (Crash After T2)

Consider the logs below. The left log shows the full log, and the right log shows a log up until a
system crash right before committing transaction T3.

1 <START T1>
2 <T1, A, 4, 5>
3 <START T2>
4 <COMMIT T1>
5 <T2, B, 9, 10>
6 <START CKPT(T2)>
7 <T2, C, 14, 15>
8 <START T3>
9 <T3, D, 19, 20>

10 <END CKPT>
11 <COMMIT T2>
12 <COMMIT T3>

1 <START T1>
2 <T1, A, 4, 5>
3 <START T2>
4 <COMMIT T1>
5 <T2, B, 9, 10>
6 <START CKPT(T2)>
7 <T2, C, 14, 15>
8 <START T3>
9 <T3, D, 19, 20>

10 <END CKPT>
11 <COMMIT T2>
12 -- CRASH

In the full log, we see that
1. At the time of checkpoint, T2 is active but T1 is already committed, so the current set of

transactions is just T2.
2. All logs before START CKPT goes to disk.
3. During the checkpoint, T2 writes to C.
4. We can also see that during the checkpoint, a new transaction T3 starts.
5. Then we can commit T2 and T3.

In the log with the crash, we go through the recovery steps.
1. We look at line 11 at the end of the log where T2 commits. We go back until we reach an END

CKPT and use it to go back to START CKPT at line 6. If there is no CKPT, then go back to the
beginning of the log.

2. Now for the redo step.
(a) After analysis, we first construct a set U of uncommitted transaction to be used in the

UNDO step later. Initially, U = S = {T2} since T1 has already committed and writes are
already on disk.

(b) We scan forward from START CKPT(T2) and repeat every action (redo) from here until the
end of the log. If we see a log record of form <T, A, old, new>, we can simply write (A,
new), flush to disk, and ignore the old value, as it may or may not be preserved (depending
on whether we flushed before crash or not).

(c) We see that T3 starts at line 8, so we add T3 to U . If a transaction T committed or
aborted, we remove T from U .

(d) We see after the CKPT that T2 is committed. We remove T2 from U .
3. Finally, we do the undo step since some transactions are still uncommitted. We run backwards

from the end of log, to the earliest <START T> of the uncommitted transactions stored in set U
(which may be before or after the START CKPT).
(a) We have U = {T3}, and so we go backwards an undo all the writes. That is, for each
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log record <T, A, old, new>, where T ∈ U , we can simply write (A, old) and log this
operation.

(b) We do this until we hit the log START T3 at line 8.
(c) We finally log <abort T> when all effects of T have been undone.

Example 8.13 (Crash After T2 and T3)

Say that our crash happens after committing T3.

1 <START T1>
2 <T1, A, 4, 5>
3 <START T2>
4 <COMMIT T1>
5 <T2, B, 9, 10>
6 <START CKPT(T2)>
7 <T2, C, 14, 15>
8 <START T3>
9 <T3, D, 19, 20>

10 <END CKPT>
11 <COMMIT T2>
12 <COMMIT T3>
13 -- CRASH

In this case, U = {T2} after analysis, and after redo, U = {}, and so there is no undo phase.

Example 8.14 (Crash After T3)

Consider when we commit T3 and then it crashes before committing T2.

1 <START T1>
2 <T1, A, 4, 5>
3 <START T2>
4 <COMMIT T1>
5 <T2, B, 9, 10>
6 <START CKPT(T2)>
7 <T2, C, 14, 15>
8 <START T3>
9 <T3, D, 19, 20>

10 <END CKPT>
11 <COMMIT T3>
12 -- CRASH

T1 has committed and writes are already on disk. After analysis, U = S = {T2}. When we do redo
all actions, we again take line 7 and write T2(C=15), then we add T3 to U , then we write T3(D=20).
Then we end checkpoint and commit T3, removing T3 from U . We have U = {T2} after redo, so in
our undo phase, we go backwards.

1. In line 7, we write T2(C=14) (which was already flushed to disk by redo step) and flush to disk.
2. Beyond the checkpoint start, we write T2(B=9) (which was already flushed to disk since it’s

before the start CKPT) and flush to disk.
3. We finally write <abort T2> at the end of the checkpoint

We are done, and the effects of T2 have vanished.
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Example 8.15 (Crash Before T2 and T3)

Now we consider when we have a crash before both commits.

1 <START T1>
2 <T1, A, 4, 5>
3 <START T2>
4 <COMMIT T1>
5 <T2, B, 9, 10>
6 <START CKPT(T2)>
7 <T2, C, 14, 15>
8 <START T3>
9 <T3, D, 19, 20>

10 <END CKPT>
11 -- CRASH

The analysis is the same with U = {T2}. Then we redo and flush changes to disk up until the end
and find U = {T2, T3}. Finally, we have to undo these uncommitted transactions, where we go up
until <START T2>, and rewrite the old values and flush them back the disk.

9 Big Data
As powerful relational models are, the sheer growth of data in modern times requires the use of hundreds
or thousands of database servers working together to modify or query data. This field is known as big data.
Unlike transactions, which deal with multiple queries on one machine, big data deals with one query on
multiple machines.

9.1 Parallel Databases

9.2 Map-Reduce
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