
CS201 Muchang Bahng Spring 2023

Data Structures and Algorithms (w/ Java)

Muchang Bahng

Spring 2023

When a program is build and run, we must worry about two computational overheads:

1. the runtime of the program, which is determined by the efficiency of the algorithm itself

2. the memory overhead of the program, which is determined by the types of data structures used.

When we want to optimize these programs, we therefore want to look at their data structures and algorithms.
Note that Java has the following primitive types: int, long, float, double, boolean, char. Everything
else is a reference type.

0.1 References and Memory Allocation

We can think of our RAM as storing our memory. Whenever we call the new keyword, we allocate new
memory for whatever object we are storing. Say that an int stores 4 bytes each, and we create an array of
ten integers.

int[] numbers = new int[10];

This array would take up 40 bytes of memory, and to access this part of the memory, we create a variable
numbers that really just stores the location of the object in memory. Since variables are just references to
memory locations, we can have multiple variables referencing the same object. Note that we did not use the
new keyword here.

int[] stuff = numbers;

Therefore, both numbers and stuff points to the same array, and whatever we do with one is done to the
other. If we wanted to create two distinct arrays in memory, we can do this:

int[] numbers = new int[10];

int[] stuff = new int[10];

1/ 34

CS201 Muchang Bahng Spring 2023

which would take up 80 bytes of memory. Therefore, we must distinguish the actual object in memory and
the variable that references the object. Say that the variable is myList and the object that it references to is
ArrayList<String> Object. Then, we will denote it shorthand as

myList 7→ ArrayList<String> Object

This is all simple enough, but it gets a bit more confusing when we talk about how functions act. When
we have some function func and input variable, say myList 7→ ArrayList<String> Object, the function
create a copy of the reference in the backend, also named myList (confusingly) and acts on this copy. Note
now that we are working with two references.

Therefore, the function is allowed to modify ArrayList<String> Object through the copied reference vari-
able.

Example 0.1 (Modifying Referred Object). Given the function

public static void removeFront(List<String> words) {

words.remove(0); // this ’words’ is a copy of the reference

}

List<String> words = new LinkedList<>();

words.add("CS");

removeFront(words);

System.out.println(words); // prints [] (empty)

if words references an array of 1 million elements, then removeFront will not copy the entire array and
allocate new memory, but it will just act on the original array.

However, it cannot modify the reference of the original variable, and so you cannot ”lose” a reference inside
a method.

2/ 34

CS201 Muchang Bahng Spring 2023

Example 0.2. Given the function

public static void tryBreakReference(List<String> words) {

words = new LinkedList<>(); // this ’words’ is a copy of the reference

}

List<String> words = new LinkedList<>();

words.add("CS");

tryBreakReference(words);

System.out.println(words); // Still prints ["CS"]

This does not affect the object that the original words is referencing to since the function takes only the
copied reference variable and changes its reference to the new LinkedList.

The default value for an uninitialized (no memory allocated by call to new) object is null. If you try to call
any methods to a null object, you will get a null pointer exception error.

Example 0.3. Let’s go through an exercise. Given the code

public static ListNode foo(ListNode list) {

list = list.next;

list.next = null;

return list;

}

public static void main(String[] args) {

ListNode list = new ListNode(2, new ListNode(0, new ListNode(1)));

ListNode ret = foo(list);

printList(ret); // prints 0

printList(list); // prints 2, 0

}

Let us examine the behavior of it. Note that we allocate memory for list, which we will denote by the
reference listm and when we input it into foo, we get a copy of the reference, denoted listc.

foo takes listc and has it reference the next value, which is 0. Therefore, listm is 2, 0, 1 and listc is 0, 1.

3/ 34

CS201 Muchang Bahng Spring 2023

Now, we set the next value of listc to null, and since this modifies the LinkedList object, we have both
listm is 2, 0 and listc is 0.

0.2 Arrays

Let us take a look at the most basic data structure in Java: the array. They are mutable, homogeneous (can
only store one type), and fixed in size. We can print their outputs by converting them to a string, as such
with the static method:

System.out.println(Arrays.toString(arr));

0.3 Classes and Objects

Just like in other object oriented languages, Java uses classes, and everything must be used in a class. Here,
we have a class with static and dynamic variables, static and dynamic methods, and constructors.

public class Point {

public static String creator = "Muchang"; // static variable

public int x; // dynamic variable

public int y; // dynamic variable

public Point (int x, int y) { // constructor

this.x = x;

this.y = y;

}

public Point (Point p) { // constructor

this.x = p.x;

this.y = p.y;

}

public double distanceFrom(Point other) { // dynamic method

return Math.sqrt((x - other.x)*(x - other.x) + (y - other.y)*(y - other.y));

}

public static void greet() { // static method

System.out.println("I am a point!");

4/ 34

CS201 Muchang Bahng Spring 2023

}

}

0.3.1 Public vs Private Variables and Attributes

Note that every single variable and method had the public keyword, which allows users to read/modify the
variables and run the methods, even outside the class it is defined in. If we switched them to private, then
we could still access them within the code, but we would not be able to read/modify them elsewhere. This
is particularly useful for when we are dealing with sensitive information, and if we do want to grant users
the power to read/modify them, we can use separate public getter and setter methods.

public class Point {

private String name;

public int x;

private int y;

public Point (String name, int x, int y) {

this.name = name;

this.x = x;

this.y = y;

}

public getName() { // getter method

return this.name;

}

public setName(String newName) { // setter method

this.name = newName;

}

private void increment() {

this.x ++;

this.y ++;

}

public static void main(String[] args) {

Point p = new Point(1, 2);

System.out.println(p.x);

System.out.println(p.y); // still accessible since within the class

p.increment(); // still runnable since within the class

System.out.println(p.x);

System.out.println(p.y);

}

}

0.3.2 Inheritance

0.3.3 .equals() method

Generally for objects, we should use the .equals() method. It must be implemented for the given class. If it
is not implemented, then the .equals() just checks memory locations, and so calling p = new Point(0.0, 0.0)

and q = new Point(0.0, 0.0) and comparing them with p.equals(q) would return false. When we also
create an array of a certain object, we must create the actual objects in the array by calling new. For
example, we don’t even create the Point objects in an initialized array.

Point[] pointArray = new Point[5]; // creates the array and allocates memory

5/ 34

CS201 Muchang Bahng Spring 2023

System.out.println(pointArray[0].x) // but didn’t actually create the points, so error

We could also store the same references to the variables.

ArrayList<Point> myPoints = new ArrayList<>();

Point p = new Point(2.0, 2.0);

myPoints.add(p);

p.x = 3.4;

myPoints.add(p);

// This creates the ArrayList of form (p, p), which both reference

// the same Point object, so both of form (3.4, 2.0), (3.4, 2.0).

So, we should call new for every Point object.

ArrayList<Point> myPoints = new ArrayList<>();

for (int i = 0; i < 10; i++) {

myPoints.add(new Point(0.0, 0.0));

}

Point p = new Point(0.0, 0.0);

System.out.println(pointList.contains(p));

The final line can print either true or false:

1. It prints false if there is no .equals() method implemented in the Point class. .contains() uses the
.equals() method on every element of the ArrayList by running a for loop, so it will use the default
implementation of checking references.

2. If .equals() is implemented as before, it will check the values of x and y, so it will print true.

1 Collections Interface

Interfaces in Java specify functionality by specifying what methods exist. At almost the top, we have the
collections interface, which represents ”a group of stuff.” It is divided into 3 main subinterfaces: Lists,
Sets, and Maps (along with many others), which add more functionality. So, an interface represents the
functionality of whatever we will create, while the implementation is the actual concrete class.

1.1 List Interface

We want to define a list that has the following methods given some list lst.

1. Object y = lst.get(0) outputs the 0th element.

2. boolean y = lst.contains(elem) checks if elem

3. lst.add(Object elem) adds the element to the end of the list.

4. lst.remove(Object elem) removes the element.

5. lst.size() returns size of the list.

Definition 1.1 (ArrayList). An ArrayList just implements an array in the backend but with some extra
systematic way to dynamically grow. If we add to an array, we either have space and can do it, or we don’t
and can’t. If we add to an ArrayList, we can

1. simply add to the first open position if there’s space left, O(1)

2. we grow the size of the ArrayList by creating a new larger array, copying everything, and then adding
to the first open position. (linear time O(n)), since we have to add all the elements to the new array.

6/ 34

CS201 Muchang Bahng Spring 2023

Starting with a length 1 array, if we add N elements one at a time and when full, create a new array that is

1. is twice as large (geometric growth: 1, 2, 4, 8, 16, ...). Then, we must copy at sizes 1, 2, 4, 8, ... and
the total values copied looks like

1 + 2 + 4 + . . .+ (N/4) + (N/2) = N − 1

This is what the Java.util.ArrayList implements, and you can see the performance of adding is O(N).

2. has 1 more position (arithmetic growth: 1, 2, 3, ...). Then, we must copy at sizes 1, 2, 3, 4, ... and the
total values copied looks like

1 + 2 + 3 + . . .+ (N − 1) = N(N − 1)/2

If the arithmetic pattern is adding, say 1,000,000 elements, then we are wasteful of memory.

This geometric growth is a good tradeoff between performance and memory usage. It never uses more than
twice the memory of an array in order to store it. Furthermore, the runtime of a geometric growth pattern
is amortized constant time, which means that it is constant when averaged over a long time. This is because
the vast majority of these operations are constant time, with a few add operations which require resizing to
be longer. But these few ones happen less and less frequently that when averaged over a long period, we can
treat it as constant.

One thing to note is that while adding to the end of an ArrayList can be efficient, adding to the front is not
since it must shift the entire Array, even if there is space left.

Theorem 1.1 (ArrayList Runtime Complexity). The following are true for ArrayList lst:

1. Getting and Contains

(a) lst.get(int index) is O(1).

(b) Getting every element is O(n)

(c) lst.contains(Object elem) is O(n)

2. Adding

(a) lst.add(Object elem) is amortized O(1).

(b) lst.add(0, Object elem) is O(n).

(c) lst.add(int index, Object elem) is on average O(n).

3. Removing

(a) lst.remove(0) is O(n)

(b) lst.remove(int index) is O(n)

(c) lst.remove(lst.size() - 1) is O(1)

(d) lst.remove(Object elem)

Proof. Listed.

1. Getting the element at index index requires us to just look at the same index in the underlying array,
which is O(1).

2. We loop through each element of the ArrayList and call .equals(elem) at each step, which results in
O(1).

3. Since the geometric growth of the ArrayList happens exponentially less frequently, it averages out to
be O(1), so amortized.

7/ 34

CS201 Muchang Bahng Spring 2023

4. Adding at a specific index requires O(n) since we create a new ArrayList and copy over all the elements
with the added element.

5. Removing an object requires us to shift the indices of the remaining elements by 1, so this is O(n).

■

Example 1.1 (String). The string type is just an ArrayList of characters. It has the following attributes
and methods. Let x = "I love CS201"

1. int y = x.length() outputs the length and is O(1)

2. char y = x.charAt(0) outputs a character and is O(1)

3. String y = x.substring(0, 4)

4. boolean y = x.equals("I love CS201")

5. String y = x + "!!"

6. String[] y = x.split(" ")

7. String y = String.join(" ", words)

Definition 1.2 (Linked List). A linked list contains a sequence of nodes that each contain an object for its
element and a reference to the next node. More specifically, it can be divided up into 3 parts:

1. The variable which points to the first node. This can be confusing since this variable, which represents
an entire list is just a pointer to the first node.

2. A sequence of nodes containing the element and a reference to the next node.

3. The final node containing the element and a reference to null.

We can implement these functionalities in the ListNode class, which are used to build a linked list of integers.

public class ListNode {

int info; // value i.e. element

ListNode next; // reference to next ListNode

ListNode(int x) {

info = x;

}

ListNode(int x, ListNode node) {

info = x;

next = node;

}

}

The following diagram represents a linked list.

But in reality, the elements are all located random in memory and can only be found by references.

8/ 34

CS201 Muchang Bahng Spring 2023

To print everything in a linked list, we just loop over the nodes as long as the nodes are not null.

public static void printList(ListNode list) {

while (list != null) { // common conditional for traversing

System.out.println(list.info);

list = list.next;

}

}

Theorem 1.2 (Linked List Runtime Complexity). The following are true for a basic LinkedList lst:

1. Getting and contains

(a) lst.get(int index) is O(n) on average (unless you get the first index, which is fast).

(b) Getting every element in the list is O(n2).

(c) lst.contains(Object elem) is O(n)

2. Adding

(a) Start: lst.add(0, Object elem) is O(1)

(b) Middle: lst.add(int index, Object elem) is on average O(n).

(c) End: lst.add(Object elem) is O(n)

3. Removing

(a) Start: lst.remove(0) or lst.remove() is O(1)

(b) Middle: lst.remove(int index) is on average O(n)

(c) End: lst.remove(lst.size() - 1) is O(n)

Proof. Listed.

1. We must traverse from the beginning of the linked list, and so it is O(n). If we just pay attention to
the first (or last, for doubly-linked list) element, then this is just O(1).

2. Getting every element is just looping an O(n) operation n times, so O(n2).

3. You need to iterate through each element and call .equals(elem), so it is O(n).

4. We can simply take the reference

5. Adding

■

9/ 34

CS201 Muchang Bahng Spring 2023

Even though our basic LinkedList solves the problem of adding in the beginning, in order to add in the
middle or end, we must get to that position (which is O(n) time) before we are able to utilize our O(1) add.
This is quite inefficient, especially when we do repeated adding, so we should keep track of certain ”markers”
that indicate where our current node is. Iterators do this naturally, so we would like to implement some
current notion of position.Below we implement a new linked list (of integers).

Definition 1.3 (Iterator). An iterator is a Java interface that has the two methods:

1. .hasnext() checks if there is an element after the current one.

2. .next() prints out the next element.

We want to implement iterators to any collections or whatever custom class if we want to be able to use
enhanced for loops over them.

Definition 1.4 (DIYLinkedList). Note the following:

1. Adding to the end (add) and to the front (addtoFront) are both O(1), since we always have access to
the dynamic attributes first and last.

public class DIYLinkedList implements Iterable<Integer> {

private class ListNode {

int value;

ListNode next;

public ListNode(int value) {

this.value = value;

}

public ListNode(int value, ListNode next) {

this.value = value;

this.next = next;

}

}

private ListNode first;

private ListNode last;

private int size;

public DIYLinkedList() {

size = 0;

}

public int size() {

return size;

}

public int get(int index) {

if (index < 0 || index >= size) {

throw new IndexOutOfBoundsException();

}

current = first;

for (int i = 0; i < index; i++) {

current = current.next;

}

return current.value;

}

public void add(int elem) {

10/ 34

CS201 Muchang Bahng Spring 2023

// add to end

if (last == null) {

last = new ListNode(elem);

first = last;

}

else {

last.next = new ListNode(elem);

last = last.next;

}

size++;

}

public void addToFront(int element) {

// add to front

first = new ListNode(element, first);

size++;

}

private class DIYListIterator implements Iterator<Integer> {

ListNode current = first;

@Override

public boolean hasNext() {

return current != null;

}

@Override

public Integer next() {

int value = current.value;

current = current.next;

return value;

}

}

@Override

public Iterator<Integer> iterator() {

return new DIYListIterator();

}

}

Theorem 1.3 (Appending). Appending two ListNodes (of size n and m) is O(n) time.

public static ListNode append(ListNode listA, ListNode listB) {

ListNode first = listA;

while (listA.next != null) {

listA = listA.next;

}

listA.next = listB;

return first;

}

Theorem 1.4 (Reversing). When we reverse a linked list, we want to work with it one step at a time by
establishing a loop invariant, which is just some condition that we want to be true every iteration. In this
case, our invariant is ”after k iterations, rev points to the reverse of the first k nodes.”

11/ 34

CS201 Muchang Bahng Spring 2023

public ListNode reverse(ListNode front) {

ListNode rev = null;

ListNode list = front;

while (list != null) {

ListNode temp = list.next;

list.next = rev;

rev = list;

list = temp;

}

return rev;

}

Example 1.2. Here are three reversing examples, in increasing difficulty:

1. If front is a ListNode with front.next == null, then reverse(front) will return

reverse(front) 7→ front 7→ null

2. If we have a linked list list 7→ 1 7→ 2 7→ 3 7→ null, then reverse(list.next) will return

reverse(list.next) 7→ 3 7→ 2 7→ null

3. If we have a linked list list 7→ 1 7→ 2 7→ 3 7→ null, then after running reverse(list.next), the
original list variable will be

list 7→ 1 7→ 2 7→ null

This is because after the method call, we have 3 7→ 2 7→ null, but the 1 still points to 2! Therefore,
the original list, which points to 1, will point to 2, which points to null.

1.2 Set Interface

Sets are collections that are unordered and store unique elements. We want to define a set that has the
following methods given some set st.

1. boolean y = st.contains(elem) checks if elem is in set.

2. st.add(Object elem) adds element and returns false if already there.

3. st.remove(Object elem) removes element.

4. st.size() returns size of the list.

We can loop over a set not with a regular for loop, but with an enhanced for loop (since sets implement
iterables but are not ordered by index).

Theorem 1.5. We can also convert between lists and sets by taking an empty ArrayList and using the
.addAll() method.

List<String> myList = new ArrayList<>();

myList.addAll(mySet);

Definition 1.5 (HashSet). The HashSet implementation offers constant time performacne for basic opera-
tions (add, remove, contains, size), under some assumptions. To count unique words in an Array of Strings,
using a HashSet is much much faster than using ArrayLists, since the ArrayList code uses the contains
function, which itself is linear.

12/ 34

CS201 Muchang Bahng Spring 2023

1.3 Map Interface

Maps pair keys with values, like a dictionary. We want to define a map that has the following methods given
some map mp.

1. boolean y = mp.containsKey(k) checks if k is a key in the map.

2. mp.get(Object k) returns the value associated with key k.

3. mp.put(Object k, Object v adds the key value pair k, v.

We can also loop over a map with an enhanced for loop.

Definition 1.6 (Hash Tables). A hash table is an array of key value pairs. But rather than adding to
positions in order from 0, 1, 2, ..., we will calculate the hash of the key, which would return an int that
specifies where we store this key-value pair. So to store, <"ok", 8>, we will calculate hash("ok") == 5 and
store it in the 5th index.

0

1

2 <"hi", 5>

3

4

5 <"ok", 8>

6

7

We can immediately see how this makes search easier, since if we want to find the value associated with
the key ”ok”, then we can calculate the hash of it to find the index and look it up on the array. Java
implements this with the .hashCode() method on the key. More specifically, to get this index, we get the
hash, we calculate Math.abs(key.hashCode()) % list.size() (remember to take the modulus to get the
index between 0 and the list size).

1. To put(key, value), we compute hash(key) and add it in that index. If there is already a key-value
pair there, then update the value.

2. To get(key), we compute hash(key) and retrieve it from the index.

3. To containsKey(key), we compute hash(key) and check if the key exists at the index hash position
of the list.

So running get(key) on a HashMap looks up position hash(key) in the hash table and returns the value
there. Immediately, we see that if hash is not injective (which it isn’t), then we can run into collisions. This
is solved using chaining or bucketing. Bucketing basically takes each index in the array and stores not just
one key-value pair, but a list of key-value pairs. So basically, when we want to search for the value of a
key, we compute the index of it with hash(key), which would return a list of key-value pairs. Java would
iterate through these keys and call the .equals() method to compare them. This can be a problem if you
are dealing with keys that are custom built classes.

1. This means that if the key types are something that you’ve custom built, then you must define the
.equals() methods in them! You must override and implement .equals().

2. We must also custom implement the .hashCode() method.

This is optional, but we can override the toString() method to print something we want. Obviously, if we
create a custom hashCode() method that trivially maps to 0, then we would just have one giant list in the
bucket at index 0, which is no more efficient than a list search. So, we should ideally assume that given N
pairs with M buckets, our hashing function is built so that the probability of two random (unequal keys)
hash to the same bucket is 1/M. Note that this hash function is completely deterministic. We should talk
about runtime/memory tradeoff. Given N pairs and M buckets (with SUHA):

13/ 34

CS201 Muchang Bahng Spring 2023

1. N >> M means too many pairs in too few buckets, so runtime inefficient

2. M >> N means too many buckets for too few pairs, so memory wasteful

3. M slightly larger than N is the sweet spot.

To maintain an ideal ratio, we basically create a new larger table (with geometric resizing) and rehash/copy
everything until we reach it.

2 Algorithms

2.1 Iteration vs Recursion

There are two general paradigms in which we can code algorithms. So far, we have taken the iterative
approach, which works with functions that simply loop over a collection.

Example 2.1 (Iteration). The following is an iterative method to count all the elements in a LinkedList.

public int countIter(ListNode list) {

int total = 0;

while (list != null) {

total++;

list = list.next;

}

return total;

}

A recursive approach of constructing the same function requires us to do two steps:

1. Consider the base case, like in an induction proof.

2. Assuming that the function can be solved for some subset of the input (what Fain refers to as ”the
oracle”), determine what we should do with the result of the recursive call.

An important thing to note is that the method does not call itself. It calls an identical clone, with its own
state, which makes up what we call the call stack. Each local call gets its own call frame, with its own local
variables, etc., and invoking the method does not resume until invoked method returns, a condition we call
eager evaluation.

Example 2.2 (Recursion). The following is a recursive method to count all the elements in a linked list.

public int size(ListNode list) {

if (list == null) return 0;

return 1 + size(list.next);

}

Doing this on, say a linked list lst 7→ 1 7→ 2 7→ 3 7→ null gives us the following diagram:

14/ 34

CS201 Muchang Bahng Spring 2023

Note that we must ensure that every recursive call gets closer to the base case, or this may never end.
Speaking of runtime, let us state a method to compute the runtime complexity of recursive algorithms.

Theorem 2.1 (Runtime Complexity of Recursive Algorithms). To compute the runtime complexity, we
must consider two things:

1. At what rate are we approaching the base case?

2. How long each recursion takes.

Once we know these two, we can simply multiply them.

Example 2.3 (Reverse). We can reverse a LinkedList with the following recursive algorithm.

public static ListNode reverse(ListNode list) {

if (list == null || list.next == null) {

return list;

}

ListNode reversedLast = list.next;

ListNode reversedFirst = reverse(list.next);

reversedLast.next = list;

list.next = null;

return reversedList;

}

Example 2.4. The following algorithm

public static ListNode rec(ListNode list) {

if (list == null || list.next == null) {

return list;

}

ListNode after = rec(list.next);

if (list.info <= after.info) {

list.next = after;

return list;

}

return after;

}

2.2 Sorting

As a start, we can sort only ordered things, so we will be talking about arrays and lists (both ArrayLists
and LinkedLists). The Java.util implementations sort from least to greatest, sorts in place (i.e. mutates
the array rather than creating a new one), and is stable (i.e. does not reorder elements if not needed).

1. Arrays.sort(int[] x) is used to sort arrays and is O(n log n)

2. Collections.sort(List<> x) is used to sort lists and is O(n log n).

By definition, sorting requires some sort of order ≤ defined on a set, and this order can be implemented
through a comparable interface, which has a a.compareTo(b) method, which returns a negative integer for
≤, 0 for =, and a positive integer for ≥.

Example 2.5. Since strings implement this interface, we can compare them lexicographically, which is the
natural order for String objects.

1. "a".compareTo("b") returns −1

2. "b".compareTo("b") returns 0

15/ 34

CS201 Muchang Bahng Spring 2023

3. "b".compareTo("a") returns 1

Example 2.6. We can create a custom class of Blobs and compare them by their names.

public class Blob implements Comparable<Blob> {

String name;

String color;

int size;

@Override

public int compareTo(Blob other) {

return this.name.compareTo(other.name);

}

}

Therefore, after putting them all into an array, we can call the Arrays.sort method to sort them with our
custom compareTo operator.

List<Blob> myBlobs = new ArrayList<>();

myBlobs.add(new Blob("bo", "blue" 4);

myBlobs.add(new Blob("al", "red", 2);

myBlobs.add(new Blob("cj", "green", 1);

myBlobs.add(new Blob("di", "red", 4);

System.out.println(myBlobs);

// [("bo", "blue" 4), ("al", "red", 2), ("cj", "green", 1), ("di", "red", 4)]

Collections.sort(myBlobs);

System.out.println(myBlobs);

// [("al", "red", 2), ("bo", "blue" 4), ("cj", "green", 1), ("di", "red", 4)]

If we want to make multiple custom sorting systems that is not the natural order, we have to define a separate
helper class implementing a comparator interface.

public class Blob implements Comparable<Blob> {

String name;

String color;

int size;

@Override

public int compareTo(Blob other) {

return this.name.compareTo(other.name);

}

public class BlobComparator implements Comparator<Blob> {

@Override

public int compare(Blob a, Blob b) {

int sizeDiff = a.size - b.size;

if (sizeDiff != 0) {

return (-1) * sizeDiff;

}

return a.compareTo(b);

}

}

public static void main(String[] args) {

16/ 34

CS201 Muchang Bahng Spring 2023

\\ assume myBlobs already defined

System.out.println(myBlobs);

// [("bo", "blue" 4), ("al", "red", 2), ("cj", "green", 1), ("di", "red", 4)]

Collections.sort(myBlobs, new BlobComparator()); // custom sorting

System.out.println(myBlobs);

// [("bo", "blue" 4), ("di", "red", 4), ("al", "red", 2), ("cj", "green", 1)]

}

}

In summary, comparables allow you to define an natural ordering, while comparators allow you to define
other custom orderings. Furthermore, when comparing two a and b, comparables are methods on the specific
object a.compareTo(b), while comparators are methods on the Comparator object c.compare(a, b).

Theorem 2.2 (Comparator Shorthands). Here are some comparator shorthands:

1. To create a comparator that compares according to the natural order, we just do

Comparator<String> c = Comparator.naturalOrder();

c.compare("a", "b") \\ -1

c.reversed().compare("a", "b"); \\ 1

2. To create a comparator that compares according to the length, we just do

Comparator<String> c = Comparator.comparing(String::length);

c.compare("this", "is") \\ 1

c.compare("is", "it") \\ 0

3. If we want to compare according to the length and then the natural order, then we just do

Arrays.sort(arr, Comparator.

comparing(String::length).

thenComparing(Comparator.naturalOrder()));

Definition 2.1 (Selection Sort). The selection sort algorithm is an iterative algorithm with the loop
invariant that ”on iteration i, the first i elements are the smallest i elements in sorted order.” On iteration
i, we must find the smallest element from index i onward and swap that with the element at index i.

public static void selectSort(int[] ar) {

for (int i = 0; i < ar.length; i++) {

int minDex = i;

for (int j=i+1; j < ar.length; j++) {

if (ar[j] < ar[minDex]) {

minDex = j;

}

}

int temp = ar[i];

ar[i] = ar[minDex];

ar[minDex] = temp;

}

}

This is O(n2).

17/ 34

CS201 Muchang Bahng Spring 2023

Definition 2.2 (MergeSort Algorithm). An improved version of this algorithm uses a recursive method,
which does the steps

1. Take an array split it into two halves.

2. Sort the first half and then sort the second half.

3. Merge the two halves so that the combined total is sorted.

and has the base case that sorting an array of length 1 is just itself. To do this, we must describe the helper
function merge, which will merge two sorted arrays into a bigger sorted array. We basically want to loop
through each indices of each array and add the smaller element to the new bigger array until we’ve exhausted
all elements in one of the arrays. Then, we just copy the rest of the elements in the other array over.
Furthermore, we can create a wrapper function mergeSort, which helps us initialize the parameters to the
recursive call, allowing for more convenience.

public static void mergeSort(int[] ar) {

mergeHelper(ar, 0, ar.length);

}

public static void merge(int[] ar, int l, int mid, int r) {

int[] sorted = new int[r - l];

int sDex = 0; int lDex = l; int rDex = mid;

while (lDex < mid && rDex < r) {

if (ar[lDex] <= ar[rDex]) {

sorted[sDex] = ar[lDex];

lDex++;

}

else {

sorted[sDex] = ar[rDex];

rDex++;

}

sDex++;

}

if(lDex == mid) {System.arraycopy(ar, rDex, sorted, sDex, r - rDDex); }

else {System.arraycopy(ar, lDex, sorted, sDex, mid - lDex); }

System.arraycopy(sorted, 0, ar, l, r - l);

}

public static void mergeHelper(int[] ar, int l, int r) {

int diff = r - l;

if (diff < 2) {return;} // base case if 0 or 1 elements

int mid = l + diff/2

mergeHelper(ar, l, mid); // recursively sort 1st half

mergeHelper(ar, mid, r); // recursively sort 2nd half

merge(ar, l, mid, r); // merge the 2 sorted parts

}

There will be O(log n) levels of recursion, and for each recursion we will have to run the merge function,
which is linear in the number of elements we are sorting (O(n)), so the total time complexity of this algorithm
is O(n log n). We can also determine the recurrence relation of this algorithm as

T (N) = T (N/2) + T (N/2) +O(N) = O(N logN)

2.3 Searching

Definition 2.3 (Binary Search). Given that we have a sorted list (this is important!), we can search for the
index of an element in O(log n) time. We want the loop invariant ”if the target is in the array/list, it is in

18/ 34

CS201 Muchang Bahng Spring 2023

the range [low, high].” Let us have a list of N elements, and at every step, we either

1. get our desired element and its index, or

2. cut down our search space by half

The code can be a bit more general by implementing a generic type T.

public static <T> int binarySearch(List<T> list, T target, Comparator<T> comp) {

int low = 0;

int high = list.size() - 1;

while (low <= high) {

int mid = (low + high)/2; // rounds down since integer division

T midval = list.get(mid);

int cmp = comp.compare(midval, target);

if (cmp < 0)

low = mid + 1;

else if (cmp > 0)

high = mid - 1;

else

return mid; // target found

}

return -1; // target not found

}

3 Trees

3.1 Stacks, Queues, and Priority Queues

Definition 3.1 (Stacks). A stack is an abstract data structure represented as a Last-In-First-Out (LIFO)
list, which implements the following methods given stack st, which we can initialize with

Stack<String> st = new Stack<>();

for (String s : strs) { st.push(s); }

while (! st.isEmpty()){ System.out.println(st.pop()); }

1. st.add(Object element) adds to the top of the stack, which is O(1)

2. st.pop() removes the element that is at the top of the stack, which is O(1), and returns whatever is
popped out.

Remember that this is just a list and so anything we can do with a stack we can do with a list. What makes
the stack so useful is the way the list is implemented. We can literally imagine the elements of this list as
”stack.” If you want to remove something from the stack, of course you have to remove the top element.

Definition 3.2 (Queue). A queue is an abstract data structure represented as a First-In-First-Out
(FIFO) list, which implements the following methods given queue q, which we can initialize with

Queue<String> q = new LinkedList<>();

for (String s : strs) { q.add(s); }

while (! q.isEmpty()) { System.out.println(q.remove()); }

Note that LinkedList implements the Queue interface.

1. q.add(Object element) adds to the top of the queue, referred to as enqueue.

2. q.remove() removes the first element in the queue, referred to as dequeue.

19/ 34

CS201 Muchang Bahng Spring 2023

This is just like how a queue works. Whatever has been waiting in the queue the longest is the one that is
removed first.

For now, we will abstractly think that a priority queue acts as a sorted list (though it is actually implemented
as a binary heap).

Definition 3.3 (Priority Queues). A priority queue simply adds things according to their priority. Every
time we add an element, it looks at where the element should go to keep the list sorted. If we want to
dequeue, then we just remove the first element of the list.

PriorityQueue<String> pq = new PriorityQueue<>();

pq.add("ac");

pq.add("c");

pq.add("bdf");

while(! pq.isEmpty()) { System.out.println(pq.remove()); }

// ac bdf c

But depending on the comparator what we use, the priority queue sorts it in a different manner.

PriorityQueue<String> pq = new PriorityQueue<>(Comparator.comparing(String::length));

pq.add("ac");

pq.add("c");

pq.add("bdf");

while(! pq.isEmpty()) { System.out.println(pq.remove()); }

// c ac bdf

1. pq.add(Object element) is O(log(N))

2. pq.remove() is O(log(N))

3. pq.peek() returns the minimal element and is O(1)

4. pq.size() returns number of elements and is O(1)

3.2 Binary Trees

Let us compare the HashSet/Map and the TreeSet/Map. The purpose of Hashing is to ”find” and add
elements quickly.

1. This means that add, contains, put, and get are all amortized O(1) (under Simple Uniform Hashing
Assumption). The TreeSet/Map have all operations add, contains, put, get are O(log(N)), which is
slower, but is not amortized.

2. Trees are sorted, while Hashes are not, and so we can get a range of Tree values in sorted order
efficiently, but not for Hashes.

A Node for trees is represented with the following class.

public class TreeNode {

TreeNode left;

TreeNode right;

String info;

TreeNode (String s) {

info = s;

}

TreeNode(String s, TreeNode llink, TreeNode rlink) {

info = s;

20/ 34

CS201 Muchang Bahng Spring 2023

left = llink;

right = rlink;

}

}

A tree looks pictorially like this:

4

2 6

1 3 5 7

9

Some terms:

1. The root of the tree is the top node, which is 4

2. The leaf of the tree are nodes that do not have a left nor right subchild.

3. A path is any path from one node to another node. A simple path is a path that doesn’t cross the
same edge twice

4. The height of a node is the length of the longest downward path to a leaf from that node.

5. The depth of a node is the number of edges from the root to the node.

3.2.1 Algorithms for Binary Tree

Theorem 3.1 (Print All Nodes in A Binary Tree). Here are three ways to recursively traverse a tree. The
difference is in where the nonrecursive part is. Let us have a binary tree from above.

1. This tells us to print everything on the left of the node, then print the node, and then print everything
on the right.

void inOrder(TreeNode t) {

if (t != null) {

inOrder(t.left);

System.out.println(t.info);

inOrder(t.right);

}

}

// 1, 2, 3, 4, 9, 5, 6, 7

2. This tells us to print the node itself first, then print all the ones on the left, and then print all the ones
on the right.

void preOrder(TreeNode t) {

if (t != null) {

System.out.println(t.info);

preOrder(t.left);

preOrder(t.right);

}

}

// 4, 2, 1, 3, 6, 5, 9, 7

21/ 34

CS201 Muchang Bahng Spring 2023

3. This tells us to print all the nodes on the left, then all ones on the right, and then the node itself.

void postOrder(TreeNode t) {

if (t != null) {

postOrder(t.left);

postOrder(t.right);

System.out.println(t.info);

}

}

// 1, 3, 2, 9, 5, 7, 6

Theorem 3.2 (Storing All Nodes in a List). Now if we want to store them all in a list, then this recursive
strategy will not work, since if we create a list inside the function body, then we will have a bunch of lists
floating around in memory. Therefore, we want to initialize a list outside of the entire function, and store
that entire thing within a wrapper function. The inOrder takes in also a reference to a list that it will be
adding to.

public ArrayList<String> visit(TreeNode root) {

ArrayList<String> list = new ArrayList<>();

inOrder(root, list);

return list;

}

private void inOrder(TreeNode root, ArrayList<String> list) {

if (root != null) {

inOrder(root.left, list);

list.add(root.info);

inOrder(root.right, list);

}

}

Definition 3.4 (Finding Height of Node). The height of a node is the longest downward path to a leaf from
that node, so its height would be the maximum of the two heights of its children. A null node would have
height −1, which is our base case.

public int getHeight(TreeNode root) {

if (root == null) { return -1; }

return 1 + Math.max(getHeight(root.left), getHeight(root.right));

}

Definition 3.5 (Finding Depth of Node). The depth is quite hard to find recursively, but if we have a
reference to the parent, then we can write

int depth(TreeNode node) {

if (node == null) {

return -1;

} else {

return 1 + depth(node.parent);

}

}

3.2.2 Binary Search Tree

Definition 3.6 (Binary Search Tree). A binary tree is a binary search tree if for every node, the left
subtree values are all less than the node’s value, and the right subtree values are all greater than the node’s
value. That is, the nodes are in order, and if we called inOrder(root) on the tree, then we would get a
sorted list, which allows for efficient search.

22/ 34

CS201 Muchang Bahng Spring 2023

We could then search recursively with the following:

public boolean contains(TreeNode tree, String target) {

if (tree == null) return false;

int result = target.compareTo(tree.info);

if (result == 0) return true;

if (result < 0) return contains(tree.left, target);

return contains(tree.right, target);

}

or iteratively with

public static boolean contains(TreeNode node, String target) {

while (node != null) {

int comp = node.info.compareTo(target);

if(comp == 0) return true;

else if (comp > 0) node = node.left;

else node = node.right;

}

return false;

}

Adding elements to a binary search tree is also very similar. But note that the order in which we add
elements to the binary search tree will matter, since it can either make the tree balanced or unbalanced.
In a balanced case, contains/add will be O(log(N)), while in an unbalanced case, we will have O(N).

4

2 6

1 3 5 7

Balanced

Order: 4, 2, 6, 1, 3, 5, 7

1

2

3

Unbalanced

Order: 1, 2, 3

Figure 1: Comparison of balanced and unbalanced binary trees

3.3 Greedy Algorithms, Huffman

A greedy algorithm is an approach for solving a problem by selecting the best option available at the
moment. They are useful because they may be optimal, they may not be optimal but work very well in
practice, and they are easier to implement for starting out. It turns out that many large-scale machine
learning models, like neural nets, are optimized using greedy algorithms (e.g. gradient descent).

Example 3.1. In the Knapsack problem, we have $10 and want to buy things at a market that maximizes
our value. Say that we have an $1 apple with value 2, a $1 banana with value 1, and a $10 pizza with value
10. Then, a greedy algorithm will make sure to first buy all things with the highest value-to-cost ratio.

Now, let’s talk about Huffman encoding. We already know about the ASCII encoding that encodes
characters in 7 bits, for a total of 27 possibilities. The extended ASCII uses 8 bits, but all of these things use
something called fixed-length encoding which uses a constant number of bits to encode any character.
To compress something, we want to use variable-length encoding.

23/ 34

CS201 Muchang Bahng Spring 2023

To decode something, the mapping from the characters to the bits must be injective, so we can define an
inverse over its image. It turns out that if we an encoding for 3 characters, say

a 7→ 1, b 7→ 10, c 7→ 11

then decoding 1011 is ambiguous since 1 is a prefix of the encoding for c. Therefore, we do not want one
encoding to be the prefix of another. It turns out that we can avoid this conflict by encoding everything as
a binary tree and setting all encodings as leaf nodes.

This makes sense since an encoding will be a prefix of another if and only if it is a parent of another. Fur-
thermore, a greater depth of a character in the tree corresponds to a longer encoding. So, Huffman encoding
tries to convert shorter characters to longer leaves and less recurrent characters into longer encodings. To
decode a string of bits using a tree, we read the bit at a time to traverse left or right edge. When we reach
a leaf, we decode the character and restart at root.
Now, we describe the greedy algorithm for building an optimal variable length encoding tree.

1. We take the document and compute the frequencies of all characters that we want to encode. We want
to less frequent characters to be lower on the tree, and so we will build the tree up from the leaves.

2. We iteratively choose the lowest weight nodes to connect up to a new node with weight = sum of
children.

We implement this using a priority queue.

Example 3.2. Let us go do an example of where we have the characters and frequencies

a 7→ 30, b 7→ 20, c 7→ 10, d 7→ 15, e 7→ 40

Then, we have the following steps:

1. We write out them as leaf nodes with the values 30, 20, 10, 15, 40. We take the smallest of the frequencies
and sum them up: 10 + 15 = 25.

24/ 34

CS201 Muchang Bahng Spring 2023

2. We have the values 30, 20, 25, 40. We sum the smallest two frequencies: 20 + 25 = 45.

3. We have the values 30, 45, 40. We sum the smallest two frequencies: 30 + 40 = 70.

4. We have the values 70, 45. We sum them up to get the complete tree.

Theorem 3.3. If we have a document of N total characters and M unique characters, the number of nodes
in the Huffman tree, in complexity notation, is

O(M)

Clearly, this has nothing to do with N . Note that we have M leaf nodes, and in each iteration, we connect
2 nodes up to a parent. Therefore, the number of nodes to connect up decreases by 1 per iteration, and
we create a new node per iteration. Since there are M − 1 iterations, we add one node, so there will be
M +M − 1 = O(n) nodes in the binary tree.

25/ 34

CS201 Muchang Bahng Spring 2023

3.4 Binary Heaps

Definition 3.7 (Binary Heap). A binary heap is a binary tree satisfying the following structural invariants:

1. Maintain the heap property that every node is less than or equal to its successors, and

2. The shape property that the tree is complete (full except perhaps last level, in which case it should
be filled from left to right.

We should conceptually think of a binary heap as an underlying binary heap, but it is actually usually
implemented with an array, and we can create a map from the heap to the array with the following indices.

When 1-indexing, for node with index k, the left child is index 2k, the right child is index 2k + 1, and the
parent is index k/2 (where this is integer division).

Implementing peek is easy, since we just return the first index, but it can be quite tricky to maintain this
invariant after an arbitrary sequence of add/remove operations.

1. To add values to a heap, we add to the first open position in the last level of the tree (to maintain the
shape property), and then swap with the parent is the heap property is violated. If we are swapping
with the parent at most log(N) times, then the add property has O(log(N)) complexity.

2. We remove the first (minimal) value, we first replace the root with the last node in the heap, and
while the heap property is violated, we swap with the smaller child. There are two choices, the left
or right child, in which we can swap. But we must always swap with the smaller child, since we
swapped with the bigger child, then this bigger child would be larger than the smaller one, violating
the heap property. Since a complete binary tree always has height O(log(N)), remove also ”traverses”
one root-leaf path, and so its runtime complexity is O(log(N)), too.

3. The decreaseKey operation just takes an arbitrary node and decreases its value to some other integer.
In this case, it wouldn’t violate the shape property, and to restore the heap property, we just put swap
it with its parent if the new value is smaller than its parent, making this operation O(log(N)).

26/ 34

CS201 Muchang Bahng Spring 2023

3.5 Red-Black Trees

Now, we have learned how we can implement a priority queue using a binary heap. This is also possible to
use a binary search tree, since it’s easy to get the minimal element for adding and removing, but there are
three things that make it difficult:

1. all elements must be unique

2. it is not array-based, and so uses more memory and higher constant factors on runtime

3. it is much harder to implement with guarantees that the tree will be balanced. This makes it difficult
since if we want to search through a balanced BST, it is O(log(N)), but if it turns out to be unbalanced,
then it is O(N).

Therefore, while a balanced tree may be efficient on average, in the worst case the linear complexity is not
tolerable. Therefore, we must implement a binary search tree that will do extra work to ensure that they
are approximately balanced.

Definition 3.8 (Red-Black Tree). Red-Black Trees are binary search trees that satisfy the following
properties:

1. Every node is red or black

2. The root is black

3. A red node cannot have red children

4. From a given node, all paths to null descendants must have the same number of black nodes. (Null is
considered to be a black node)

5. remember that it must be a binary search tree!

Note that there are binary search trees that cannot be turned into a red-black tree.

27/ 34

CS201 Muchang Bahng Spring 2023

This is intentional because red-black tree properties guarantee approximate balance. If we can turn a binary
search tree into a red-black tree, then it logically follows that the original BST was approximately balanced.
Note that a red black tree does not make searching asymptotically faster in any way; it just takes care of
the worst-case.
Remember that red black trees are also just binary search trees:

1. contains (search) method is the exact same thing as BST

2. The add method needs to be slightly modified, since after we add, we need to make sure that the
resulting tree is a red-black tree. This is done in three steps:

(a) Run the regular BST add

(b) Color the new node red

(c) Fix the tree to reestablish red-black tree properties. This is extremely complicated with different
cases, but it all essentially uses some sort of recoloring and a (right or left) rotation of the tree.

4 Graphs

Definition 4.1 (Graph). A graph is a data structure for representing connections among items an dconsists
of vertices connected by edges. It consists of a vertex (or node) and an edge. It can be directed or
undirected. A simple graph there is at most one undirected edge between nodes (or 2 directed). Therefore,
given that N is the number of vertices and M the number of edges, we have

M ≤ N2

for a simple graph. A simple path is a sequence of unique vertices where subsequent nodes are connected
by edges, and the path doesn’t repeat itself.

Definition 4.2 (Adjacency List/Matrix). Given a graph, we can completely represent it with a list of
adjacent vertices for each vertex or an adjacency matrix.

C D

BA

An adjacency list would look something like this

A : B,C

B : A,C,D

C : A,B

D : B

28/ 34

CS201 Muchang Bahng Spring 2023

and the adjacency matrix looks like this:

A B C D

A 0 1 1 0

B 1 0 1 1

C 1 1 0 0

D 0 1 0 0

Adjacency matrices can be memory wasteful if the graph is sparse, and for fast lookup of information in
adjacency lists, we can implement a double hashing mechanism (hashMap<Vertex, HashSet<Vertex>>).

4.1 Depth First Search (DFS)

DFS basically traverses

Theorem 4.1 (Recursive DFS). Now, in order to traverse this graph, we basically want to make an algorithm
that starts at a node, prints it value, and then goes to all of its neighbors (which we can access through the
adjacency list) to print them out. Thus, this is by nature recursive. We don’t want the algorithm to loop
around printing nodes infinitely often, so we must create a base case that tells the algorithm to not print out
a node. It makes sense to create a set of visited nodes, which we can add to whenever we reach a new node.
So, if we ever come onto a node that we have visited, we can just tell the function to do nothing.
Now if we want to print out all the nodes of a general graph, we can do the following:

public static void dfs(char start) {

if (!visited.contains(start)) { // if already visited, backtrack

visited.add(start); // else, visit this node

System.out.println(start); // print it out

for (char neighbor : aList.get(start)) {

dfs(neighbor); // and explore its neighbors

}

}

}

Theorem 4.2 (Iterative DFS). Though recursion really makes this simple, we can construct an iterative
approach that uses stacks. Note that in recursion, we are really making a call stack of different functions.
We can be explicit about this by actually implementing a stack, which would store all the nodes that we have
discovered, but not yet explored from)i.e. all the current nodes). At each iteration, we would pick a node
to continue exploring, and since this is a DFS, we would want to implement a LIFO stack so that the last
element we input in is the first thing that we should explore from, i.e. we always explore from the last node
discovered.

public static void dfs(char start) {

Stack<Character> toExplore = new Stack<>();

char current = start;

toExplore.add(current);

visited.add(current);

while (!toExplore.isEmpty()) {

current = toExplore.pop(); // explore from most recently discovered node

for (char neighbor : aList.get(current)) { // look at all neighbors of current node

if (!visited.contains(neighbor)) { // if we haven’t seen them before...

previous.put(neighbor, current); // note how we got here

visited.add(neighbor); // note that we have seen

29/ 34

CS201 Muchang Bahng Spring 2023

toExplore.push(neighbor); // mark to explore later

}

}

}

}

The runtime complexity of this search is O(N + M) because first, the while loop loops at most over the N
nodes. The for loop may loop over M edges, but this is a bit pessemistic in bound. Rather, we can view it
as looping over neighbors of each node at most exactly once, and so it considers every edge twice, meaning
that the for loop will get called 2M times in the entire algorithm. So N + 2M = O(N +M).

Example 4.1 (DFS in a Maze). We can represent a grid graph, like a maze, with a two dimensional array
that stores whether it is connected north, east, south, and west, where boolean of true represents that there
is a wall, and false means there isn’t a wall (so connected).

But remember that in a tree traversal, we recursively searched down and down until we hit a null node, in
which case we backtrack up to look in another branch. For graphs, this is a bit more complicated, since we
could go in loops. Therefore, we want to keep track of all the visited nodes to avoid infinite recursion. We
have three base cases:

1. If we search off the grid, then this is not a valid path

2. If we already explored here, then we don’t want to repeat it

3. If we reached the goal of the maze, then we output the length of the path.

The recursive case would take each node and recurse on its 4 adjacent neighbors, if they are connected. So,
the entire function, which takes in a location (x, y) in the grid and the depth that it took to traverse to this
point, would look like this:

private boolean[][] visited;

private int solveDFS(int x, int y, int depth) {

if (x == 0 || y == 0 || x == mySize + 1 || y == mySize + 1) {

return 0;

}

30/ 34

CS201 Muchang Bahng Spring 2023

if (visited[x][y]) return 0;

visited[x][y] = true;

if (x == mySize/2 && y == mySize/2) {

return depth;

}

if (!north[x][y]) { // if there is no wall above

int d = solveDFS(x, y + 1, depth + 1);

if (d > 0) return d;

}

if (!east[x][y]) {

int d = solveDFS(x + 1, y, depth + 1);

if (d > 0) return d;

}

if (!south[x][y]) {

int d = solveDFS(x, y - 1, depth + 1);

if (d > 0) return d;

}

if (!west[x][y]) {

int d = solveDFS(x - 1, y, depth + 1);

if (d > 0) return d;

}

}

Note that this algorithm recurses on each of the N nodes 4 times (for each direction, and each recursive call
is O(1)), so the complexity is O(N).

4.2 Breadth First Search (BFS)

Note that the main idea of DFS is to always explore a new adjacent vertex if possible, and if not, then
backtrack to the most recent vertex adjacent to an unvisited vertex and continue. On the contrary, the main
idea of BFS is to explore all your neighbors before you visit any of your neighbors’ neighbors. It exhaustively
searches for the closest regions of your search space before you look any further. Unlike DFS, which finds
the some arbitrary path to a node, BFS finds the shortest (perhaps nonunique) path to a node.

Definition 4.3 (Iterative BFS). This can be done simply by using a queue. Note that a queue is an interface,
so we must use the Linked List implementation.

public static void dfs(char start) {

Queue<Character> toExplore = new LinkedList<>();

char current = start;

toExplore.add(current);

visited.add(current);

while (!toExplore.isEmpty()) {

current = toExplore.pop(); // explore from most recently discovered node

for (char neighbor : aList.get(current)) { // look at all neighbors of current node

if (!visited.contains(neighbor)) { // if we haven’t seen them before...

previous.put(neighbor, current); // note how we got here

visited.add(neighbor); // note that we have seen

toExplore.push(neighbor); // mark to explore later

}

}

31/ 34

CS201 Muchang Bahng Spring 2023

}

}

Definition 4.4 (Search Trees). Once we have traversed a graph using BFS or DFS, we can label the directed
path that this traversal algorithm takes into a search tree. If we look at the search trees generated by DFS
and BFS, we can see that the path from A to C is always shorter for BFS than for DFS.

4.3 Shortest Paths and Dijkstra’s Algorithm

Definition 4.5 (Weighted Graph). A weighted graph just has some weights to each of the edges, which
can represent multiple things, like distance, cost, or probabilities.

Remember that BFS gives the shortest paths in unweighted graphs. We can generalize BFS to account for
weighted graphs, called Dijkstra’s algorithm, which doesn’t implement queues, but priority queues.

Theorem 4.3 (Dijkstra’s Algorithm). The algorithm basically starts at a node, and explores first the closest
nodes to the start node, called start. It does this by recording the shortest distance that it took to travel
to this node from the start node. This is implemented in a Map < Character, Integer >, which we will call
dist for example. Furthermore, we want a PriorityQueue called exp that tells us which nodes that we need
to explore next. Let us have a minimal example:

A B

C D

1

1

3 2

1. We start at a node A, which has distance 0 (since the distance from A to A is 0). So, A is current,
and we have

dist exp

A -> 0 A

32/ 34

CS201 Muchang Bahng Spring 2023

2. We explore from A since that is the first in our Priority Queue. We want to look at all neighbors of the
node (B,C) and compute their distances from start by adding the distances from start to current

and current to the neighbor. So, we have

dist exp

A -> 0 B

B -> 1 C

C -> 3

3. We explore from B, since that is first in our Priority Queue. We look at all neighbors of the node
(A,C). The new distance to A is d(A,B) + d(B,A) = 2, so we do not update it. The new distance to
C is d(A,B) + d(B,C) = 2 and is shorter than the current distance of 3, so we update it.

dist exp

A -> 0 C

B -> 1

C -> 2

4. We explore from C, since that is first in our priority queue. We look at all neighbors of the node
(A,B,D). The new distance to A is d(A,C) + d(C,A) = 2 + 3 = 5, so no update. The new distance
to B is d(A,C) + d(C,B) = 2 + 1 = 3, so no update. D has not been explored before, so we we add its
distance of d(A,C) + d(C,D) = 2 + 2 = 4 to the map and priority queue regardless.

dist exp

A -> 0 D

B -> 1

C -> 2

D -> 4

5. We explore from D, since that is first in our priority queue. We look at all neighbors of the node (C).
The new distance to C is d(A,D) + d(D,C) = 4 + 2 = 6, so no update. The priority queue is empty
and we are done, with the shortest path to D being dist.get(D) = 4.

dist exp

A -> 0

B -> 1

C -> 2

D -> 4

The complete code would look like this, where weight correctly returns the weight of an edge.

public int Dijkstra(String start, String end, Map<String, List<String>> neighbors) {

Map<String, Integer> dist = new HashMap<>();

Comparator<String> c = (a, b) -> dist.get(a) - dist.get(b);

PriorityQueue<String> exp = new PriorityQueue<>(c);

dist.put(start, 0);

exp.add(start);

while (!exp.size() > 0) {

String node = exp.remove();

33/ 34

CS201 Muchang Bahng Spring 2023

for (String adj : neighbors.get(node)) {

int newDist = dist.get(node) + weight(node, adj);

if (!dist.containsKey(adj) || newDist < dist.get(adj)) {

dist.put(adj, newDist);

exp.add(adj);

}

}

}

return dist.get(end);

}

34/ 34

	References and Memory Allocation
	Arrays
	Classes and Objects
	Public vs Private Variables and Attributes
	Inheritance
	.equals() method

	Collections Interface
	List Interface
	Set Interface
	Map Interface

	Algorithms
	Iteration vs Recursion
	Sorting
	Searching

	Trees
	Stacks, Queues, and Priority Queues
	Binary Trees
	Algorithms for Binary Tree
	Binary Search Tree

	Greedy Algorithms, Huffman
	Binary Heaps
	Red-Black Trees

	Graphs
	Depth First Search (DFS)
	Breadth First Search (BFS)
	Shortest Paths and Dijkstra's Algorithm

