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Chapter 1

Introduction

This are my notes on computer science. Self studying starting from Jan 1st, 2021. We
will assume sufficient background knowledge in mathematics, especially concerning set
theory and basic facts about functions.

1.1 Prerequisites
Quick Notations

We will introduce some common notations (which may or may not be consistent with
mathematical notations) that are conventional in other texts.

Definition 1.1.1. Given a set A, the set A∗ is defined

A∗ ≡
∞⋃
i=1

(∏
i

A

)
With this, the set of all binary numbers is {0, 1}∗.

Definition 1.1.2. The logarithm without any base will denote logarithm in base 2. That
is,

log n = log2 n

Definition 1.1.3. A decision problem is a problem that can be posed as a yes-no
question on an infinite set of inputs. A method for solving a decision problem, given in
the form of an algorithm, is called a decision procedure for that problem. A decision
problem which can be solved by an algorithm is called decidable.

It is traditional to define the decision problem as the set of possible inputs together with
the set of inputs for which the answer is yes, and the set of inputs (i.e. the domain) can
be numbers, floats, strings, etc.

Example 1. Two examples of division problems are:

1. Deciding whether a given natural number is prime.
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2. Given two numbers x and y, does x evenly divide y? The decision procedure can
be long division.

The Big O notation is a mathematical notation that describes the limiting behavior of a
function when the argument tends towards a particular value of infinity. That is, if the
time it takes for an algorithm to complete a problem with input size n is given by f(n),
then we say that the computational complexity is of the order O(f(n)). More formally,
we can define it as such:

Definition 1.1.4 (Big-O Notation). Let f and g be (nonnegative) real-valued functions
both defined on the positive integers, and let g(x) be strictly positive for all large enough
values of x. One writes

f(x) = O
(
g(x)

)
as x→∞

if the absolute value of f(x) is at most a positive constant multiple of g(x) for all suffi-
ciently large values of x. That is, f(x) = O

(
g(x)

)
if there exist positive integers M and

n0 such that
f(n) ≤Mg(n) for all n ≥ n0

In many contexts, the assumption that we are interested in the growth rate as the variable
x goes to infinity is left unstated, and one write more simply that

f(x) = O
(
g(x)

)
The O notation asymptotical; that is, it refers to very large x. This means that the
contribution of the terms that grow "most quickly" will eventually make the other ones
irrelevant, and so the following simplification rules can be simplified:

1. If f(x) is a sum of several terms, if there is one with largest growth rate, it can be
kept, and all others omitted.

2. If f(x) is a product of several factors, any constants (terms in the product that do
not depend on x) can be omitted.

Example 2. Let there be a program that given input with length x, takes f(x) = 6x4 −
2x3 +5 steps to solve whatever problem needs to be solved. Then, using the simplification
steps above, we have

f(x) = O(x4)

1.2 Computers
A computer has many parts which are worth remembering.

Definition 1.2.1. The 5 main parts of a computer is:

1. The Solid State Drive (SSD) (or an older version is HDD) is where the com-
puter’s long term memory is stored. Most computers usually have 256GB, 512GB,
or 1TB of storage.

2. The Random Access Memory (RAM) is where the computer’s short term mem-
ory is stored, which is usually 4GB, 8GB, 16GB, or 32GB. The RAM determines
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how well your computer can work with multiple things running at the same time
(applications, browser tabs, ...). Accessing this memory is about 20 100 times faster
than accessing the SSD memory.

3. The processor, or Central Processing Unit (CPU), is the circuitry that exe-
cutes instructions that make up a computer program. At the hardware level, a CPU
is an integrated circuit, or a chip. This means that a CPU integrates billions of
circuits into a chip, where each circuit is really just logic gate (AND, OR, NOT,
etc.) made up of a transistor. We can see this in layers:

CPU Chip =⇒ Circuit =⇒ Logic Gate =⇒ Transistor

They’re effectively minute gates that switch on or off, thereby conveying the ones
or zeros that translate into everything you do with the device. One of the most
common advancements of CPU technology is in making those transistors smaller
and smaller, where the rate of improvement is referred to as Moore’s Law.

In simplest terms, the CPU takes instructions from a program/application and
performs a calculation. It first fetches the instruction from RAM, decodes what
the instruction actually is, and then executes the instruction using relevant parts of
the CPU. The CPU performs basic arithmetic, logic, controlling, and input/output
(I/O) operations specified by the instructions in the program.

Originally, CPUs had a single processing core. Today’s modern CPU consists of
multiple cores that allow it to perform multiple instructions at once, effectively
cramming several CPUs on a single chip. Almost all CPUs sold today are at
least dual-core or quad-core. Additionally, a physical CPU core can perform two
lines of execution (threads) at once with a process called multithreading. The clock
speed should also be noted with CPUs: the gigahertz figure quoted on the CPU.
It denotes how many instructions a CPU can handle per second (giga=billions,
mega=millions).

4. The Graphic Processing Unit (GPU) is a specialized electronic circuit designed
to rapidly manipulate and alter memory to accelerate the creation of images intended
for output to a display device.

5. The kernel is a computer program at the core of a computer’s operating system
that has complete control over everything in the system. It facilitates interactions
between hardware and software components. On most systems, the kernel is one
of the first programs loaded on startup. It handles the rest of startup as well as
memory, peripherals, and input/output (I/O) requests from software, translating
them into data-processing instructions for the central processing unit.

CPU,Memory,Devices ⇐⇒ Kernel ⇐⇒ Applications

The critical code of the kernel is usually loaded into a separate area of memory,
which is protected from access by application programs or other, less critical parts
of the operating system. The kernel performs its tasks, such as running processes,
managing hardware devices such as the hard disk, and handling interrupts, in this
protected kernel space. In contrast, application programs like browsers, word
processors, or audio or video players use a separate area of memory, user space.
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All components of a computer communicate through a circuit board called the mother-
board.

Note that all of these parts work in conjunction. For the CPU to function, it still must
feed to specialized hardware the numbers they need to function. It needs to tell the
graphics card to show an explosion or tell the hard drive to transfer a document to the
system’s RAM for quicker access.

Definition 1.2.2. Other parts of the computer include:

1. The heatsink is a passive heat exchanger that transfers heat. It is typically a
metallic part which can be attached to a device releasing energy in the form of heat,
with the aim of dissipating that heat to a surrounding fluid in order to prevent the
device overheating.

Certain microcomputers with all these parts (but not packaged) include the Raspberry
Pi and the Arduino.

Definition 1.2.3. A computer processes bits of information based off of how much elec-
tricity is traveling through a wire. Since there can be varying amounts of electricity
running through a wire, engineers use the transistor as a "switch" that turns on when the
voltage running through the wire is greater than the threshhold voltage.

For example, a transistor with a threshhold voltage of 4.5V will turn on when there is a
current of at least 4.5V running through the wire and off otherwise.

Definition 1.2.4. A daemon is a type of program on Unix-like operating systems that
runs unobtrusively in the background, rather than under direct control of a user, waiting
to be activated.

1.3 The Internet
The Internet is a global network of computing devices communicating with each other
in some way, whether they’re sending emails, downloading files, or sharing websites. The
Internet is an open network, which means that any computing device can join as long
as they follow the protocols (rules that define how each device must communicate with
each other). The internet is powered by many layers of protocols, and to create a global
network of computing devices, we need:

1. Wires & Wireless: Physical connections between devices, plus protocols for con-
verting electromagnetic signals into binary data.

2. IP: A protocol that uniquely identifies devices using IP addresses and provides a
routing strategy to send data to a destination IP address.

3. TCP/UDP: Protocols that can transport packets of data from one device to an-
other and check for errors along the way.

4. TLS: A secure protocol for sending encrypted data so that attackers can’t view
private information.

5. HTTP & DNS: The protocols powering the World Wide Web
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1.3.1 Computer Networks and Types of Networks

Definition 1.3.1. A computer network is a group of computers (i.e. computing de-
vices) that use a set of common communication protocols over digital interconnections for
the purpose of sharing resources located on or provided by the network nodes.

A communication protocol is a system of rules that allow multiple entities of a com-
munications to transmit information via any kind variation of a physical quantity. The
protocol defines the rules, syntax, semantics and synchronization of communication and
possible error recovery methods.

A computer network can be visualized as a connected graph of nodes (which may include
personal computers, servers, networking hardware, or other specialised or general-purpose
hosts). The network topology is the layout, pattern, or organizational hierarchy of the
interconnection of network hosts, in contrast to their physical or geographic location.
Common layouts are:

1. Line Network: All nodes are connected in a line.

A B C D

2. Bus Network: All nodes are connected to a common medium along this medium.

3. Star Network: all nodes are connected to a special central node.

A B

C

D

E

F

G

H

I

4. Ring Network: Each node is connected to its left and right neighbour node, such
that all nodes are connected and that each node can reach each other node by
traversing nodes left- or rightwards.

A B

C

D

E

F

G

H

I

5. Mesh Network: each node is connected to an arbitrary number of neighbours in
such a way that there is at least one traversal from any node to any other.

A B

C

D

E

H

F
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6. Fully Connected Network: each node is connected to every other node in the
network.

A B

C

D

E

F

G

H

I

7. Tree Network: nodes are arranged hierarchically.

A

BC

D EF

Notice how many of these networks have redundancy: having multiple ways to get from
one node to another. That is, when a network path is no longer available, data is still able
to reach its destination through another path. Usually, we would like to avoid a single
point of failure and construct a fault-tolerant system that can experience failure in
its components but still continue operating properly. However, building more connections
may be expensive.

Example 3. The ARTPANET was the precursor to the Internet, the network where Inter-
net technology was first tested out. It was started in 1969 with four computers connected
to each other.

UCLAUCSB

SRI UTAH

For example, even if the path between SRI and UCSB is gone, the connections between
SRI and UCSB is not lost (since IP packets can travel through UCLA’s router).

Because there are multiple paths that a piece of data takes to get from point X to point
Y, routing strategies are implemented in order to determine the most optimal path.

Definition 1.3.2. Networks can be categorized as such:

1. A local area network (LAN) is a computer network that interconnects computers
within a limited area. Ethernet and Wi-Fi are the two most common technologies
in use for local area networks. A wireless local area network (WLAN) use
radio frequencies to transmit and receive data.

2. Ametropolitan area network (MAN) is a computer network that interconnects
users with computer resources in a geographic region of the size of a metropolitan
area.
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3. In contrast, a wide area network (WAN) not only covers a larger geographic
distance, but also generally involves leased telecommunication circuits or data lines
(i.e. a private line between multiple locations provided according to a commer-
cial contract), since no single company owns all the infrastructure across the wide
geographic area. It is often composed of many LANs.

4. Another type of network is the Data Center Network (DCN), a network used
in data centers where data must be exchanged with very little delay.

1.3.2 Communication with Line Coding

Computers can connect through physical (e.g. cables) or wireless connections.

1. The CAT5 cable is a twisted pair (copper) cable that’s designed for use in computer
networks. It consists of four twisted pairs of copper wires. These twisted pair cables
send data through a network by transmitting pulses of electricity that represent
binary data. The information transmission follow the Ethernet standards, which
is why twisted pair cables are commonly known as Ethernet cables. Use for both
LANs and WANs. They can carry up to 1 Gbps across hundreds of feet, but are
susceptible to interference.

2. Fiber-optic cables carry light instead of electricity in a fiber coated with plas-
tic layers. The pulses of light represent binary data and also follow the Ethernet
standards. They are also capable of transmitting much more data per second that
copper cables, and they have the advantage of low transmission loss and immunity
to electrical interference. Often used to connect networks across oceans so that data
can travel quickly around the world. They can carry up to 26 Tbps acorss 50 miles
(but are expensive)

3. A wireless card inside a computer turns binary data into radio waves and transmits
them through the air. However, they do not travel very far ( 100 ft in office buildings
or up to 1000 ft in an open field). The waves are picked up by a wireless access
point which converts them from radio waves back into binary data. These access
points would be connected to the rest of the network using physical wiring. They
can carry up to 1.3 Gbps.

4. Infrared signals and microwaves are sometimes used.

In order for the computers to send data into binary, they must convert this data into binary
and send them as streams of 1s and 0s in a process called line coding. Furthermore,
computers can raise efficiency of each wire by sending changing electric currents through
a single wire. For example, rather than using three wires to encode 101 as

1
0
1

they send it through a single wire with intervals of 1
3
seconds

1 0 1

or even better, at a rate of 1 megabit per second (interval of 0.000001 seconds)
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.000000s .000001s .000002s .000003s

As long as two computers agree on the time period in which the electricity intervals are
being sent, they can communicate much more efficiently. In an electrical connection (such
as Ethernet), the signal would be a voltage or current. In an optical connection (such as
a fiber-optic cable), the signal would be the intensity of light.

Definition 1.3.3. There are many properties about line coding that are relevant:

1. The bit rate describes the data transfer rate of a connection. It measures the
number of bit states that a channel can transmit per unit time. It is measured in
bits per second. We can interpret it as the amount of water flowing through a pipe.

Bit rate is typically seen in terms of the actual data rate. But for most trans-
missions, the data represents part of a more complex protocol, which includes bits
representing source address, destination address, error detection/correction codes,
and other information. This data is called the overhead, while the actual data
transferred is called the payload. At times, the overhead may be substantial (up
to 20% to 50%).

2. The throughput is the number of bit states of usable information, that can be
successfully received over a channel per unit time. Without any channel noise, it is
really just the payload. Note that this is an observed, dynamic parameter with a
fixed and variable loss. It is also known as consumed bandwidth and is measured
in bits per second.

3. The bandwidth describes the maximum data transfer rate of a connection; that
is, the maximum throughput of a communication. It is measured in bits per second.
We can interpret it as how thick the pipe is (i.e. how much water can flow through
it at max). Note that this is different from the bandwidth used in signal processing.

Data often flows over multiple network connections, which means the connection
with the smallest bandwidth (most likely your local connection) acts as a bottleneck.

4. The latency, or ping-rate, measures the round trip time between the sending
of a data message to a computer and the receiving of that message, measured in
milliseconds. We can interpret it as the speed at which the water is flowing through
a pipe. We can check latency by doing

>>> ping www.google.com
64 bytes: icmp_seq=0 ttl=115 time=37.868 ms

which outputs a latency time of 37.868ms (to get to www.google.com and back) for
sending a data packet of 64 bytes. Note that there is an intrinsic limiting factor
to latency: the speed of light, which is approximately 1 foot per nanosecond. In
addition to distance, another limiting factor is the congestion in the network and
the type of connection.

Example 4. Given two computers connected by a wire that is configured to transfer 1000
bits per second, the bit rate would be 1 Kbps. However, if the channel has noise and
demands retransmission of 10 bits out of every 1000 of the original transmission, then the
throughput would be 990 bps.
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Furthermore, the Ethernet frame can have as many as 1542 bytes. Say that there are
1500 bytes of payload and an overhead of 42 bytes. Then, the protocol efficiency would
would be

payload
frame size

=
1500

1542
= 0.9727 = 97.3%

Typically, the actual line rate is stepped up by a factor influenced by the overhead to
achieve an actual target net data rate. In One Gigabit Ethernet, the actual line rate is
1.25 Gbits/s to achieve a net payload throughput of 1 Gbit/s. In a 10-Gbit/s Ethernet
system, gross data rate equals 10.3125 Gbits/s to achieve a true data rate of 10 Gbits/s.
The net data rate also is referred to as the throughput, or payload rate, of effective data
rate.

Some common units of measurement are:

1. Mbps, Gbps, Tbps (Mega, Giga, Terabits per second)

2. MBps, GBps, TBps (Mega, Giga, Terabytes per second)

In conclusion, speed is a combination of bandwidth and latency. Even if a computer is on
a connection with high bandwidth, its speed of sending and receiving messages will still
be limited by the latency of the connection.

1.3.3 Internet Protocol: Addresses and Routing Strategies

The Internet Protocol (IP) is one of the core protocols in the layers of the internet. It
is used in all Internet communication to handle both addressing and routing.

Definition 1.3.4. The protocol describes the use of IP addresses to uniquely identify
Internet-connected devices (for transmission of data). That is, when a computer sends a
message to another computer, it must specify the recipient’s IP address and also include
its own IP address so that the second computer can reply. There are two versions of the
Internet Protocol in use today:

1. IPv4: The first version ever used on the Internet and having the form of 4 octets
split by periods in between.

[0− 255].[0− 255].[0− 255].[0− 255]

Even though it presented in decimal, computers store them in binary

74.125.20.113 ⇐⇒ 01001011.01111101.00010100.01110001

IPv4 addresses can take 232 values, but IPv6 was created for more space.

2. IPv6: The newer standard (introduced in June 2012) is in the form

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF

with hexadecimal digits (total of 3.4× 1039 possible IPv6 values).

Definition 1.3.5. A dynamic IP address is an IP address that can change. For
example, each Internet service provider (ISP) has a range of addresses that they can
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assign, and they might give you a different one of those addresses each time your computer
pops up on the network. Therefore, switching to a different WiFi network will definitely
give you a new IP address.

Computers that act like servers often have static IP addresses. That makes it easier
for computers to quickly send requests to the servers.

Definition 1.3.6 (Hierarchy of IP Addresses). The IP addresses are formatted in an
hierarchical way. The IPv4 address hierarchy is structured as such: The first few numbers
(may or may not be divided by octets) could identify a network administered by an
Internet Service Provider. The last numbers, which can also represent subnetworks
(subnets), identifies a home computer on that network. For example, if we represent the
IP address 141.213.127.13 in binary (of 32 bits)

10001101.11010101.01111111.00001101

the first 16 bits could route to all of UMich, the next two bits could route to a specific
UMich department, and the final 14 bits could route to individual computers.

1000110111010101 01 11111100001101
UMich Network Medicine department Lab computer

This hierarchy gives UMich the ability to differentiate between 22 departments and 214 =
16, 384 computers within each department. In general, the ability to create hierarchical
levels at any point in the IP address allows for greater flexibility in the size of each level
of the hierarchy.

LAN vs WAN IP Addresses

In fact, your computer is not connected to the internet directly. It is actually in a private
network, or a LAN network, which uses a private IP address space (supported by both
IPv4 and v6). Anything on the inside of your private network is not on the Internet; it
is on your LAN, an entirely separate network, with its own address space. Anything on
your LAN must have a unique (within the LAN) IP address to participate properly with
your local network. Therefore, anyone else who has a LAN is also not part of the internet.
Even though none of your devices in your network have a public IP address, the router
itself does have a public address. That is, to the outside world, all devices identify their
internet activity by the one IP address assigned by your ISP.

Definition 1.3.7. The IP addresses that are in the private network’s space are usually
divided up into 3 categories. But as of now, the categories don’t mean anything.

1. Class A private range addresses: 10.0.0.0 - 10.255.255.255 (16,777,216 IPs)

2. Class B private range addresses: 172.16.0.0 – 172.31.255.255 (1,048,576 IPs)

3. Class C private range addresses: 192.168.0.0 – 192.168.255.255 (65,536 IPs)

Since the private IPv4 address space is relatively small, many private IPv4 networks
unavoidably use the same address ranges. This can create a problem when merging
such networks, as some addresses may be duplicated for multiple devices. In this case,
networks or hosts must be renumbered, often a time-consuming task, or a network address
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translator must be placed between the networks to translate or masquerade one of the
address ranges.

Definition 1.3.8 (NAT). In order for LAN devices to connect to the Internet, their
outgoing traffic has the source address changed to match that of the internet/WAN IP
address of the router. The router keeps track of this, and makes sure any response traffic
gets sent to the right internal machine. This is called Network Address Translation
(NAT). There are generally two types of NAT:

1. Basic, one-to-one NAT: The simplest type of NAT provides a one-to-one transla-
tion of IP addresses. In this type of NAT, only the IP addresses, IP header checksum,
and any higher-level checksums that include the IP address are changed. Basic NAT
can be used to interconnect two IP networks that have incompatible addressing.

2. One-to-many NAT: The majority of network address translators map multiple
private hosts to one publicly exposed IP address. In a typical configuration, a local
network uses one of the designated private IP address subnets. A router in that
network has a private address of that address pace. The router it also connected
to the Internet with a public address assigned by the ISP. As traffic passes from
the local network to the Internet, the source address in each packet is translated on
the fly from a private address to the public address. The router tracks basic data
about each active connection (particularly the destination address and port). When
a reply returns to the router, it uses the connection tracking data it stored during
the outbound phase to determine the private address on the internal network to
which to forward the reply.

All IP packets have a source IP address and a destination IP address. Typically packets
passing from the private network to the public network will have their source address
modified, while packets passing from the public network back to the private network will
have their destination address modified. To avoid ambiguity in how replies are translated,
further modifications to the packets are required, such as TCP or UDP.

You can find your WAN IP address simply by googling it, since your computer sends a
message to the Google computers as soon as it loads google.com.

Example 5. In my case, my computer’s LAN IP address is 192.168.0.8, my phone’s LAN
IP address is 192.168.0.20, and the public IP address (of the router) is 211.109.203.135.
Running whois on my computer and phone’s IP addresses reveals nothing much about
the LAN one (since it is private anyways and many people have the same one), while the
public one (about my router) reveals that it is owned by the ISP SK Broadband Co Ltd.
But note that both the LAN and WAN IP addresses can change over time depending on
your ISP (and as you restart your device).

However, if the cell phone has an active data plan and connected to a local LAN at the
same time, it will have a LAN IP address and an IP assigned by the mobile network.
When a browser on the phone fetches a web page, the web server will see the LAN’s
gateway (public) IP address, so essentially the phone deals with three IP’s at that point.
The computer on the other hand will only be assigned a LAN IP address but will also be
requesting web pages via the same public IP address.

Additionally, moving my computer to another network, say Coffeebay, will change its LAN
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IP address. As I am writing this in the cafe, the new IP address is now 192.168.0.168. The
WAN IP address of the Coffeebay network is 125.132.4.126, with the ISP Korea Telecom
(KT) Corp.

The three most popular ISPs in Korea are:

1. KT Corp.

2. LGU

3. SK Broadband

These ISPs are also called broadband providers. The most popular ones in the USA
are:

1. AT&T Internet Services

2. Comcast High Speed Internet (aka Xfinity)

3. Verizon High Speed Internet

4. Charter Communications (including Spectrum formerly Time Warner Cable)

By typing in the correct IP into the browser, going into the administrator interface, and
logging in, you can modify the WiFi settings.

Routing IP Packets

Since there are physical limitations on how large a message can be when routing data
between computers, many networking protocols split each message into multiple small
packets.

Definition 1.3.9. Due to physical limitations on how large a message can be sent, the
Internet Protocol splits messages into IP packets. Each IP packet contains both a header
(20 or 24 bytes long) and data (variable length).

1. The header includes the following:

Version/Length, Service Type, Packet Length 1 byte, 1 byte, 2 bytes
Identification 2 bytes
DF, MF, Fragment Offset 2 bytes
Time to Live, Transport 1 byte, 1 byte
Header Checksum 2 bytes
Source IP Address 4 bytes
Destination IP Address 4 bytes
Options, Padding (optional) 3 bytes, 1 byte
Total 24 bytes

2. The data is the actual content, such as a string of letters or part of a webpage.

These packets hop from router to router towards their destination.

Definition 1.3.10. A router is a type of computing device used in computer networks
that helps move data packets along. The process of a router receiving and sending a
packet is as such:
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1. The packet gets sent to a router, and the router receives it.

2. The router looks at the packet’s IP header, more specifically the destination IP
address. For example, the destination IP address may be 91.198.174.192.

3. The router must now forward the packet, but it may have multiple routers to forward
it to. In order to choose the router that is the "closest" to the IP destination, it
has a forwarding table that helps it pick the next path based on the destination
IP address. The table consists of not IP addresses, but the IP address prefixes. For
example,

IP address prefix path
91.112 # 1
91.198 # 2
192.92 # 3

Since IP addresses are by definition hierarchical, the router only needs to store
the prefixes. Once the router locates the most specific row on the table for the
destination IP address, it sends the packet along that path.

4. This is repeated for the next router.

5. When the final router is reached, it should have in its forwarding table the exact IP
address prefix.

IP address prefix path
91.112 # 1
91.198.174.192 Direct
192.92 #2

This router now sends the message to the destination IP address, which may be a
personal computer or a server.

Definition 1.3.11. The modem, short for modulator demodulator, "modulates" the
signals going between the LAN and Internet.

The main difference between the router and the modem is that:

1. The router crates a network between the computers in your home and routes network
traffic between them (through Ethernet cables or wireless connection). Your home
router has one connection to the Internet and connections to your private local
network.

2. The modem serves as a bridge between your local network and the Internet.

Some ISPs offer a modem and router in a single device, which has advantages and disad-
vantages.

Note that there are problems with these packets:

1. A computer might send multiple messages to a destination, and the destination
needs to identify which packets belong to which message.

2. Packets can arrive out of order. That can happen especially if two packets follow
different paths to the destination.
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3. Packets can be corrupted, which means that for some reason, the received data no
longer matches the originally sent data.

4. Packets can be lost due to problems in the physical layer or in routers’ forwarding
tables.

5. Similarly, packets might be duplicated due to accidental retransmission of the same
packet.

However, there are higher level data transport protocols in the Internet protocol stack
can deal with these problems, such as the Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

1.3.4 UDP and TCP

The User Datagram Protocol (UDP) is a lightweight data transport protocol that
works on top of IP. UDP provides a mechanism to detect corrupt data in packets, but
it does not attempt to solve other problems that arise with packets, such as lost or out
of order packets. That’s why UDP is sometimes known as the Unreliable Data Protocol.
UDP is simple but fast, at least in comparison to other protocols that work over IP. It’s
often used for time-sensitive applications (such as real-time video streaming) where speed
is more important than accuracy.

When sending packets using UDP over IP, the data portion of each IP packet is formatted
as a UDP segment.

IP Packet =⇒ UDP Segment

Each UDP segment contains an 8-byte header and variable length data. The first 4 bytes
of the UDP header store the port numbers (identification numbers) for the source and
destination. The next two bytes store the segment length and the checksum.

Source port # 2 bytes
Destination port # 2 bytes
Segment length # 2 bytes
Checksum # 2 bytes
Total 8 bytes

Definition 1.3.12. A networked device can receive messages on different virtual ports.
The different ports help distinguish different types of network traffic.

For example, the following command shows the ports in use:

>>> sudo lsof -i -n -P | grep UDP
launchd 1 root 30u IPv4 UDP *:137
launchd 1 root 31u IPv4 UDP *:138
mDNSRespo 164 _mdnsresponder 6u IPv4 UDP *:5353
mDNSRespo 164 _mdnsresponder 7u IPv6 UDP *:5353
rapportd 356 mbahng 12u IPv4 UDP *:3722
systemsta 665 root 17u IPv4 UDP *:*
netbiosd 14582 _netbios 3u IPv4 UDP *:137
netbiosd 14582 _netbios 4u IPv4 UDP *:138
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Each row start with the name of the process that’s using the port (one for going in,
another for going out) and ends with the protocol and port number. Since each port
number is 2 bytes, the maximum port number can be 216 = 65, 535.

The segment length stores the length of the the entire UDP segment (including the
header). Since the segment length can be represented in 16 bits, the maximum length of
the UDP segment can be 65,635 bytes.

The checksum is used check for data corruption. It is computed as such. Before sending
off the segment, the sender:

1. Computes the checksum based on the data in the segment (by literally summing up
sections of the the binary representation of the data.

2. It stores the computed checksum in the field.

Upon receiving the segment, the recipient:

1. Computes the checksum based on the received segment.

2. Compares the checksums to each other. If the checksums aren’t equal, it knows that
the data was corrupted.

The Transmission Control Protocol (TCP) is a transport protocol that is used on
top of IP to ensure reliable transmission of packets. TCP includes mechanisms to solve
many of the problems that arise from packet-based messaging, such as lost packets, out
of order packets, duplicate packets, and corrupted packets. Since TCP is the protocol
used most commonly on top of IP, the Internet protocol stack is sometimes referred to as
TCP/IP.

When sending packets using TCP/IP, the data portion of each IP packet is formatted as
a TCP segment.

IP Packet (4 bytes) =⇒ TCP Segment (variable)

The TCP header can contain many more fields than the UDP header and can range in
size from 20 to 60 bytes, depending no the size of the options field. It does contain the
source port number, destination port number, and checksum.

Source port # 2 bytes
Destination port # 2 bytes
Sequence number 4 bytes
Acknowledgement # 4 bytes
Offset and Reserved 10 bits
URG, AFK, PSH, RST, SYN, FIN bits 6 bits
Window Size 2 bytes
Checksum 2 bytes
Urgent pointer 2 bytes
Options/Padding 4 bytes
Total 39 bytes

The process of transmitting a packet with TCP/IP is as such:
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1. Two computers first establish a connection through a three-way handshake. Com-
puter 1 sends a packet with the SYN bit set to 1. Then computer 2 sends back a
packet with the ACK bit set to 1 plus the SYN bit set to 1. The first computer
replies back with ACK=1. (Note that the SYN and ACK bits are part of the TCP
header) The three packets involved in the three-way handshake do not typically
include any data. Once the computers are done with the handshake, they’re ready
to receive packets containing actual data.

2. When a packet of data is sent over TCP, the recipient must always acknowledge
what they received in the following way: Computer 1 sends a packet with data
and a sequence number. Computer 2 acknowledges it by setting the ACK bit and
increasing the acknowledgement number by the length of the received data (note
that both numbers are also part of the TCP header). It is easy to see how these
two numbers help the computers keep track of which data was successfully received,
which data was lost, and which data was accidentally sent twice.

3. To close the connection, computer 1 initiates it by sending a packet with the FIN
bit set to 1. Computer 2 replies with an ACK and another FIN. After one more
ACK from computer 1, the connection is closed.

However, some problems can occur. TCP connections can detect lost packets using a
timeout. After sending off a packet, the sender starts a timer and puts the packet in a
retransmission queue. If the timer runs out and the sender has not yet received an ACK
from the recipient, it sends the packet again. The retransmission may lead to the recipient
receiving duplicate packets, if a packet was not actually lost but just very slow to arrive
or be acknowledged (which happens when the packet takes a slower route through the
Internet). If so, the recipient can simply discard duplicate packets.

TCP connections can also detect out of order packets by using the sequence and acknowl-
edgement numbers. When the recipient sees a higher sequence number than what they
have acknowledged so far, they will know that they are missing at least one packet in
between.

1.3.5 Domain Name System (DNS), Hypertext Transfer Protocol
(HTTP)

Definition 1.3.13. The world wide web, or the web, is a network of webpages,
programs, and files that are accessible via URLs. It is a subsection of the Internet.
A web browser loads a webpage using various protocols:

1. Domain Name System (DNS) protocol for converting domain names into IP
addresses.

2. HyperText Transfer Protocol (HTTP) to request the webpage contents from
that IP address.

3. Transport Layer Security (TLS) protocol to serve the website over a secure,
encrypted connection.

Note that the web browser uses these protocols on top of the Internet protocols. The Web
is just one of the applications built on top of the Internet protocols, but it is by far the
most popular.
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DNS

Definition 1.3.14. Computers are identified by their IP addresses, but to make these ad-
dresses more readable by humans, we identify them through the domain name system.
For example, www.wikipedia.org connects us to the computers powering Wikipedia. Each
domain name is made up of parts:

third-level-domain.second-level-domain.top-level-domain

1. There are a limited set of top level domains (TLDs), and many websites use the
most common TLDs, such as .com, .org, and .edu.

2. The second level domain is unique to the company or organizaiton that registers it,
like wikipedia or facebook.

3. The third level domain, also called a subdomain, is also owned by the same group
of the second level domain. It often just directs you to a subset of the website.

m.wikipedia.org =⇒ mobile-optimized Wikipedia
es.khanacademy.org =⇒ Spanish-language Khan Academy

In reality, these domain names are only for humans, and each domain name maps to an
IP address. But since the computer can’t store the 300 million domain names locally, it
goes through a multi-step process to find out the IP address.

1. Check the local cache. Since people often visit the same website multiple times,
they keep their own local cache of domain name to IP mappings. The cache stays
small and is constantly updated. Each browser can keep their own cache.

2. Ask the ISP (Internet Service Provider) cache. Every ISP provides a domain name
resolving service and keeps its own cache so the cache may contain the websites
accessed by people with the same ISP (such as neighbors).

3. Ask the name servers. There are domain name servers scattered around the globe
that are responsible for keeping track of a subset of the millions of domain names.
There are three types of servers, which are ordered in a hierarchy:

Root name servers→ TLD name servers→ Host name servers

The ISP starts by going to the root name servers and sending a request for the IP
address of, say the name server of the .org domains. The root name server responds
with the IP address of a TLD name server that tracks .org domains.

ISP domain resolver Root Name Servers

.org domains?

199.19.54.1

Then, the ISP asks the TLD name server for, say the wikipedia domains. The TLD
name server responds with the IP address of the host name server that contains the
wikipedia records.
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ISP domain resolver TLD Name Servers

wikipedia domains?

208.80.154.238

Finally, the ISP asks the host name server for the specific domain www.wikipedia.org.
The host name server responds with an exact IP address, and now the computer
can successfully connect with the computer powering that domain.

ISP domain resolver Host Name Servers

www.wikipedia.org?

91.198.174.192

However, lots of information is cached, so it is rare that a DNS lookup has to go
through all the steps.

However, the domain name system is not always secure. For example, if a cyber-criminal
manages to take control of a name server or redirect requests to its own server, then
it can have the server give out false IP addresses that can lead to websites filled with
malware. This act is called DNS spoofing, or DNS cache poisoning. Fortunately,
the recent DNSSEC protocol extends the original DNS protocol and specifies the best
way for DNS resolvers to authenticate the information sent to them, which can prevent
DNS spoofing.

HTTP

Whenever a pageon the web is visited, the computer uses the Hypertext Transfer
Protocol to download that page from another computer somewhere on the Internet.
The steps of this process are as such:

1. We access the web with a browser application. The user either types a Uniform
Resource Locator (URL) in the browser or follows a link from an already opened
page.

2. The domain names of these URLs map to IP addresses, the true location of the
domain’s computers. The browser uses a DNS resolver to map the domain to an IP
address.

3. Browser sends HTTP request. Once the browser identifies the IP address of the
computer hosting the requested URL (i.e. the host computer), it sends anHTTP
request. An example HTTP request can be:

GET /index.html HTTP/1.1
Host: www.example.com

(a) The word GET is the request. There are other verbs for other actions, such as
POST for submitting form data.
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(b) The next part specifies the path (/index.html). The host computer stores the
content of the entire website, so the browser needs to be specific about which
page to load.

(c) The final part of the first line specifies the protocol and the version of the
protocol: HTTP/1.1.

(d) The second line specifies the domain of the requested URL. That’s helpful in
case a host computer stores the content for multiple websites.

4. Once the host computer receives the HTTP request, it sends back a HTTP re-
sponse with both the content and metadata about it.

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Length: 208
<!DOCTYPE html>
<html>

<head>
<title>Example Domain</title>

</head>
<body>

<h1>Example Domain</h1>
<p>This domain is to be used for illustrative examples in

documents.</p>
</body>

</html>

(a) The HTTP/1.1 is the protocol and version. The next number is theHTTP sta-
tus code. In this case, a 200 represents a successful retrieval of the document,
"OK." Another code is the 404 code, which represents "file not found."

(b) The 2nd and 3rd lines are the headers, which provides additional details.
The content-type tells the browser what type of document is being sent back.
text/html represent HTML text files; image/png represent images; video/mpeg
are videos; application/javascript are scripts; and so on. The content length
gives the length of the document in bytes.

(c) The rest of the HTTP response writes our the actual document requested.

5. The browser renders the response, and you see the regular webpage.

Note that HTTP is a protocol that is built on top of the TCP/IP protocols. That is,
each HTTP request/response is inside an IP packet (or more often, in multiple packets).
There are many other protocols built on top of TCP/IP, like protocols for sending email
(SMTP, POP, IMAP) and uploading files (FTP).

Note that the protocols powering the Internet and the Web were designed for scalability.
Any computing device can send data around the Internet if it follows the protocols, and
routing is dynamic, so new routers can join a network at any time and help to move data
packets around the internet.

Definition 1.3.15. A scalable system is one that can continue functioning well even
as it experiences higher usage.
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However, there are limitations to the scalability of the internet. For example,

1. Network connections have limited bandwidth, so huge amounts of data could easily
overwhelm low bandwidth connections, leading to delays or dropped packets.

2. Routers have limited throughput (the amount of data they can forward per second).
A modern consumer router has a throughput around 1 Gbps while much more
expensive enterprise routers can forward up to 10 Gbps.

3. Wireless routers often have a limitation in the number of devices that can be con-
nected to them, typically up to 250 devices. If everyone tried to use a shared WiFi
network at the same time (like in a university or library), they might find themselves
simply unable to join.

Definition 1.3.16. Engineering teams can prepare for spikes in usage by doing load
testing: simulating high amounts of traffic in a short period of time to stress test the
system. Load testing can uncover bottlenecks or hard-coded limits in the system.

1.3.6 The Internet Protocol Suite

There are many protocols that power the Internet. Each protocol operates at a different
layer, building functionality on top of the layer below it. We can visualize it in the
following diagram.

Application Layer HTTP, TLS, DNS
Transport Layer TCP, UDP
Network Layer IP (v4, v6)
Link Layer Ethernet, Wireless LAN

1. At the link layer, 2 computing devices need a physical mechanism to send digital
data to each other. They send electromagnetic signals either over a wired or wireless
connection and interpret the signal as bits. This type of physical connection affects
the bit rate and bandwidth.

A B

2. Once a network is bigger than two computers, we need addressing protocols to
uniquely identify who is sending data and who should receive the data. Every node
on the Internet is identified with an IP address.

A B C

106.241.27.244 133.83.189.60 240.101.163.19

3. The route between any two computers on the Internet isn’t just a straight path
from A to B. The data must pass from router to router until it finally reaches its
destination, a strategy that comes from the Internet routing protocol.
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4. Data needs to be broken up into small packets, which are then reassembled at the
destination. The Transmission Control Protocol (TCP) is used to ensure reliable
transport of those packets, with sequencing, acknowledgement, and retries. A faster
but less reliable transport protocol is the User Datagram Protocol (UDP).

106.241.27.244 133.83.189.60

Sequence #1

OK

The Transport Layer Security (TLS) protocol uses algorithms to encrypt the data (cryp-
tography). Certificate authorities help users trust the encryption.

Example 6. When loading a webpage from a domain your browser has never visited before,
your browser may need to make a DNS request, which is represented by the following stack
of protocols when the request is sent through the internet.

Application Layer DNS
Transport Layer UDP
Network Layer IP
Link Layer Wireless LAN

Then, your browser will make an HTTP request to fetch the webpage. This prototol stack
is used when an HTTP request is sent:

Application Layer HTTP
Transport Layer TCP
Network Layer IP
Link Layer Wireless LAN

If the webpage is served over HTTPS, then the stack includes multiple protocols at the
application layer (both HTTP and TLS):

Application Layer HTTP, TLS
Transport Layer TCP
Network Layer IP
Link Layer Wireless LAN
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In a network, we must also make sure that the computers follow the same protocol, i.e.
there is standardization within the network. Fortunately, the protocols of the Internet are
open (not owned by any particular company and not limited to a particular company’s
products). For every protocol that is both standardized and open, there is a publicly
viewable document describing the protocol, often called the specification. These spec-
ifications are maintained by the Internet Engineering Task Force (IEFT). Some of
them are:

1. the HTTP specification

2. the TCP specification

The languages of the web are also open standards with online specifications. They include
the

1. HTML living standard

2. many specifications for CSS

3. ECMAScript standard for JavaScript.

Checking Network Processes

To check all open network connections (by process) and their usage of network bandwidth,
use the nettop keyword on the command line. This can be used to find out which processes
are taking up all of your local network bandwidth.

>>> nettop
interface state bytes_in bytes_out

systemstats.64 0 B 0 B
udp4 *:*<->*:*

config.66 0 B 0 B
udp4 *:*<->*:*

remoted.71 489 KiB 680 KiB
tcp6 IPv6\%en3.49160<->*.* en3 Listen
tcp6 IPv6\%en3.49160<->IPv6 en3 Established 494 KiB 687 KiB

apsd.97 18 KiB 21 KiB
tcp4 IPv4:52737<->IPv4:5223 en0 Established 18 KiB 21 KiB

timed.99 144 B 144 B

usbmuxd.100 104 KiB 75 KiB
tcp4 IPv4:52695<->IPv4:54848 en0 Established 104 KiB 75 KiB

bluetooth.119 0 B 0 B
udp4 *:*<->*:*

AirPlayXPCHelpe.123 0 B 0 B
udp4 *:*<->*:*
udp4 *:*<->*:*

loginwindow.131 0 B 0 B
udp4 *:*<->*:*
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mDNSResponder.164 6996 KiB 2606 KiB
udp6 *.5353<->*.* lo0 1717 KiB 790 KiB
udp4 *.5353<->*:* en0 5235 KiB 1808 KiB

symptomsd.189 0 B 0 B
udp4 *:*<->*:*

findmydeviced.190 1349 B 3061 B
tcp6 IPv6\%en3.49161<->IPv6.49248 en3 Established 1349 B 3061 B

airportd.198 0 B 0 B
udp4 *:*<->*:*
udp4 *:*<->*:*
udp4 *:*<->*:*
udp6 *:*<->*:*
udp4 *:*<->*:*

corekdld.203 293 B 31 KiB
tcp6 IPv6\%en3.49163<->IPv6.49256 en3 Established 293 B 31 KiB

bosUpdateProxy.204 406 B 2903 B
tcp6 IPv6\%en3.51336<->IPv6.49260 en3 Established 406 B 2903 B

#Only the processes will be shown from now on.

SubmitDiagInfo.205 65 KiB 9210 B
mobileactivatio.206 9238 B 11 KiB
locationd.270 0 B 0 B
biometrickitd.290 509 KiB 95 KiB
accountsd.338 5518 B 1247 B
trustd.342 4363 B 610 B
Simplenote.355 6316 B 6661 B
rapportd.356 10 KiB 4965 B
ControlCenter.359 0 B 0 B
Finer.361 0 B 0 B
identityservice.369 4600 B 2961 B
itunescloudd.374 30 KiB 2533 B
com.apple.geod.392 3512 B 1353 B
WirelessRadioMa.414 0 B 0 B
sharingd.417 0 B 0 B
nsurlsessiond.420 6 KiB 9246 B
CalendarAgent.424 95 KiB 39 KiB
wifivelocityd.426 0 B 0 B
NewsToday2.437 392 KiB 27 KiB
AMPDeviceDiscov.441 2602 B 3725 B
assistantd.453 22 KiB 8764 B
ScreenTimeWidge.463 8029 B 936 B
WeatherWidget.464 7471 B 1168 B
corespeechd.471 7226 B 25 MiB
com.apple.Safar.530 11 KiB 2478 B
AdobeDesktop S.616 0 B 0 B
node.640 0 B 0 B
comapple.WebKi.1274 17 MiB 627 KiB
com.appleSafar.1335 9956 B 2303 B
PowerChime.1353 2853 B 19 KiB
adprivacyd.1388 24 KiB 5253 B
lskdd.1768 1805 B 5851 B
PerfPowerServic.15327 0 B 0 B
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netbiosd.19203 277 KiB 142 KiB
bluetoothaudiod.19268 0 B 0 B
Notify.20116 0 B 0 B

Note that pressing q quits nettop; pressing p renders the traffic numbers as bytes or in
human-readable formats; pressing c collapses the display, showing only the network apps
(no sockets); pressing e expands the display to show sockets.

Under each process (network application) there is a list of sockets, which are endpoints
in a two-way communication between two programs on a network; for example, between
a web server and your web browser. Looking at the columns,

1. The leftmost column contains the list of all the names of the processes and sockets,
followed by a dot and their process ID (PID); so in the form

NetworkApp.PID

For example, locationd.270 would be the process locationd with a PID of 270.

2. A network interface is the point of interconnection between a computer and a pri-
vate/public network. The network interface card connects your computer to a local
data network or the internet. The card translates computer data into compatible
electrical signals it sends through the network.

(a) lo0 is loopback interface. A loopback is the routing of electronic signals,
digital data streams, or flows of items back to their source without intentional
processing or modification. It is primarily a means of testing the transmission
tests.

(b) en0 is Wifi (was ethernet at one point)

(c) fw0 is the FireWire network interface

(d) utun1

(e) stf0 is an IPv6 to IPv4 tunnel interface to support the transition from IPv4
to IPv6 standard.

(f) gif0 is a more generic tunneling interface.

(g) awdl0 is Apple Wireless Direct Link

3. The state refers to the state of the connection between sockets.

(a) The state of a server waiting for a connection on a port is Listen

(b) The state of a connection recently closed is TimeWait

(c) Established means that the connection is active

(d) SynSent occurs when a client initiates the connection to a server by sending
the SYN packet (a part of the 3-way handshake in TCP) and awaits the ACK
packet.

4. The bytes_in and bytes_out shows how much traffic has come in and gone out for
that socket (or for the entire process).
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The format of each socket is

TransportProtocolVersion localhostIPaddress:port<->remoteIPaddress:port

Notice that all of the sockets use the standardized UDP or TCP protocol (with the
corresponding IP address Version: IPv4 or IPv6).

1. udp4, udp6 - the connection is one-way since there are no SYN and ACK bits being
sent to confirm the connection.

2. tcp4, tcp6 - the connection guarantees that both ends are aware of one other, so
datagrams can be sent back and forth until the FIN bit is sent and acknowledged.

A transport protocol (say, tcp) that use IPv4 is in the form

tcp4 192.168.0.88:52737<->17.57.145.138:5223

while one that uses IPv6 is in the form

tcp6 fe80::aede:48ff:fe00:1122%en3.4915<->fe80::aede:48ff:fe33:445%en3.5960

Some sockets may have asterisks rather than actual IP addresses in them.

airportd.198 0 B 0 B
udp4 *:*<->*:*
udp4 *:*<->*:*
udp6 *:*<->*:*

An asterisk means that these sockets are open. The operating system creates these open
sockets as placeholders of sorts, so that it can respond faster to incoming data (since
incoming data will trigger the creation of a socket, which causes delay).

Definition 1.3.17. In addition to the IP address, the port number is the part of
the addressing information used to determine what protocol incoming traffic should be
directed to. That is, port number identifies a specific process to which an Internet or other
network message is to be forwarded when it arrives at a server. They are represented by
16-bit numbers, meaning that port numbers can have values up to 216 = 65, 536. However,

1. 0-1023 are restricted port numbers and are used by well-known protocol services.
Some of them include:

(a) 80 for HTTP

(b) 123 for NTP

(c) 67, 68 for DHCP traffic

(d) 443 for HTTPS (almost all ports in the browser socket will be 443).

(e) 137, 138 for netbios. NetBIOS is a protocol used for File and Print Sharing
under all current versions of Windows.

2. 1024-49,151 are registered port numbers; they can be registered to specific protocols
by software corporations.

3. 49,152-65,536 are used as dynamic/private ports and can be used by anybody.
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The differences between the IP address and port number are:

1. The IP address is used to identify a host in the network, while a port number is
used to identify a process/service on your system.

2. IP address is the address of the layer-3 Internet protocol suite, while the port number
is the address of the layer-4 protocols.

3. IP address is provided by admin of system or network administrator, while the port
number is provided by the kernel of the operating system.

1.3.7 Online Data Security

Definition 1.3.18. Personally identifiable information (PII) refers to data that
can directly or indirectly identify individuals. Some of the most common PIIs are:

1. Name

2. Social Security Number

3. Biometric Data (DNA, fingerprints, etc.)

Another weaker form of PII are linkable PII, which refers to data that can be combined
from separate sources to identify individuals.

It is hard to classify certain data as PII or not since the capabilities and the creative use
of them is changing. An instance of when attackers steal PII from companies is known as
a data breach. You can check whether you are a victim of a data breach with services
like haveibeenpwned.com.

The web is not private by default; websites often use cookies to track user action on their
site and even across other sites (to improve their services).

Definition 1.3.19. An HTTP cookie is a small amount of text that helps a website
track information about a user across multiple pages of the website and personalize the
user’s experience on the website.

If you’ve ever logged into a website, a cookies kept you logged in across multiple pages.
A cookie is set in the following steps:

1. When a user navigates to a website for the first time (in a particular browser), the
browser sends an HTTP request to the server that hosts the website.

GET /index.html HTTP/1.1
Host: www.shoopshop.com

2. The server sends back an HTTP response and includes a Set-cookie header in that
response.

HTTP/1.0 200 OK
Content-type: text/html
Set-Cookie: sessionId=abc123; Expires=Wed , 09 Jun 2021 10:18:14

GMT
...
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The cookie contains a name (sessionId) and a value (abc123), plus an expiration
date for the browser to clear this cookie from its memory. If it wants to set multiple
cookies, it adds more Set-cookie headers to the response.

3. The browser saves the cookie information, storing it on the user’s hard drive. That
way, the data will persist even after restarting the browser or computer, which is
why this type of cookie is called a persistent cookie. There are also session
cookies which have no expiration date and are always deleted when the browser is
shut down.

4. When the user navigates to a different page on the website, the browser sends along
the stored cookies with each HTTP request.

GET /shop.html HTTP/1.1
Cookie: sessionId=abc123

5. When the server receives the HTTP request, it inspects the cookies and sees that
this request is coming from a user with a known sessionId. It can then look up that
session ID in its database and use any information about the session to personalize
the response.

Cookies can have many uses, such as:

1. A search engine can use them to remember how many results a user prefers seeing
per page.

2. A news site can use them to recommend headlines that are similar to the articles
you’ve already read.

3. All sorts of websites can use cookies to track analytics, like how long you spent on
a page and which buttons you clicked.

4. Any website with a log-in uses a cookie to keep you logged in on every page of the
site. When you log out of that site, it clears the cookie and doesn’t set it again until
you login again.

It is clear that you should never share your cookies.

Definition 1.3.20. Each cookie stored by a browser is associated with a domain and
path. When you visit a website and its server sends back an HTTP response with a
cookie, the browser associates that cookie with the domain of the server. That’s called a
first-party cookie.

However, a website can also include resources from other domains, like an image, iframe,
or script. When the browser requests those resources, their servers can also send back
cookies, which will now be associated with their domain. These are called third-party
cookies.

Imagine a user that visits a food blog with a recipe for gluten-free cookies. That blog
includes a Facebook ad with a cookie. The user then visits facebook.com and notices a
sudden uptick in ads about gluten-free products, which resulted from the cookies in the
Facebook ad in the blog. Third-party cookies more often serve the purpose of collecting
information for advertising and infringe more on the privacy of web users.
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Search and Browsing History

Definition 1.3.21. A search engine is a service that builds an index of the World Wide
Web and gives users a way to search that index.

It is important to know that in order to improve their services (like spelling correction)
all search engines collect data on search queries (i.e. what was searched). A search query
itself isn’t private information, but some search engines can log much more than the
query:

Search query Date Time IP address User agent
"jet ski" 03/11/20 11:14 49.121.111.73 Mozilla/5.0 (Windows NT 5.1)
"home depot" 03/11/20 16:00 49.121.111.73 Mozilla/5.0 (Windows NT 5.1)
"cheap pizza" 03/12/20 21:07 49.121.111.73 Mozilla/5.0 (Windows NT 5.1)
"Windsor" 03/13/20 14:32 49.121.111.73 Mozilla/5.0 (Windows NT 5.1)

A combination of these queries over a period of time can definitely be PII, and additionally,
the search history can include a cookie or even a user ID if you were logged into the search
engine website when you issued the query. Third party cookies can allow a website to
track a user’s browsing history across other websites, as long as each site loads the cookie
from the same domain.

Many browsers also provide an incognito browsing mode, which will not store browsing
history at all. Once you close the window, it will also forget any cookies generated in that
session. There are certain search engines, such as DuckDuckGo, that collect only search
queries and do not collect any PII.

Note that since all requests (packets of data) are forward through the router, anyone with
access to the router can monitor the destinations of HTTP requests. An Internet Service
Provider (ISP) administers the first routers that a packet travels through (excluding the
home/office/school) router, so the ISP can see every HTTP request that’s sent through
those routers. Users can use HTTPS-secured websites to hide the contents of their re-
quests, but HTTPS will still reveal the domain names. ISPs can use that information to
find customers that are engaged in illegal activities, such as downloading pirated movies.
Government organization such as the National Security Agency (NSA) have reportedly
installed backdoor surveillance monitoring programs on routers before they were exported
to foreign customers.

VPNs and Tor

Definition 1.3.22. When using a Virtual Private Network (VPN), the computer
sends a packet of encrypted data with a destination of the VPN server to the ISP. The
VPN server decrypts the data, finds out where the user actually wants to send the packet,
and then forwards the packet to that destination.

PC ISP VPN Server
client to VPN client to VPN VPN to server

The VPN server knows the user’s browsing history, but the ISP does not. Plus, other
routers after the VPN will only see that the packet came from the VPN IP address, not
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from the user’s IP address. A VPN subscription is often expensive, however, and the
additional stop along the way can result in a slower browsing experience.

Another option is Tor, an open source program for anonymizing Internet traffic. When
using Tor, the computer sends an encrypted packet through a large number of volunteer
relays. The data is packaged such that each relay only knows where it came from and
where it’s going, and no relay knows both the sender IP address and the destination IP
address.

Tor can provide truly anonymous browsing, but it also severely slows down the browsing
experience, since it has to hop through volunteer relays that can be located anywhere on
the Internet.

Definition 1.3.23. A proxy server is a server application or appliance that acts as an
intermediary for requests from clients seeking resources from servers that provide those
resources. A proxy server thus functions on behalf of the client when requesting service,
potentially masking the true origin of the request to the resource server.

Instead of connecting directly to a server that can fulfill a requested resource, such as a
file or web page, the client directs the request to the proxy server, which evaluates the
request and performs the required network transactions. This serves as a method to sim-
plify or control the complexity of the request, or provide additional benefits such as load
balancing, privacy, or security. Proxies were devised to add structure and encapsulation
to distributed systems. Some types of proxies are:

1. A gateway or a tunneling proxy is a proxy server that passes unmodified requests
and responses.

2. An open proxy is a forwarding proxy server that is accessible by any Internet user.
Hundreds of thousands of open proxies are operated on the internet.

(a) Anonymous proxies reveals its identity as a proxy server, but does not dis-
close the originating IP address of the client.

(b) Transparent proxies also identifies itself as a proxy server, but the originat-
ing IP address can be retrieved. The main benefit of using this type of server
is its ability to cache a website for faster retrieval.

3. A reverse proxy is a proxy server that appears to clients to be an ordinary server.
Reverse proxies forward requests to one or more ordinary servers that handle the
request. The response from the proxy server is returned as if it came directly
from the original server, leaving the client with no knowledge of the original server.
Reverse proxies aer installed in the neighborhood of one or more web servers, and all
traffic coming from the Internet goes through the proxy server. The use of reverse
originates in its counterpart forward proxy since the reverse proxy sits closer to the
web server and serves only a restricted set of websites.

(a) Encryption/SSL acceleration: When secure websites are created, the Secure
Sockets Layer (SSL) encryption is often not done by the web server itself, but
by a reverse proxy that is equipped with SSL acceleration hardware.

(b) Load balancing: the reverse proxy can distribute the load to several web servers,
each web server serving its own application area.

29



(c) Serve/cache static content: A reverse proxy can offload the web servers by
caching static content like pictures and other static graphical content.

(d) Compression: the proxy server can optimize and compress the content to speed
up the load time.

(e) Security: the proxy server is an additional layer of defense and can protect
against some OS and Web Server specific attacks. However, it does not provide
any protection from attacks against the web application or service itself, which
is generally considered the larger threat.

Geolocation

Definition 1.3.24. The geolocation of a device is an approximate latitude and longitude
describing its geographic location.

Definition 1.3.25. The most popular method in which geolocation is determined is
through trilateration, which is a geometric process of of determining absolute or relative
locations of points by measurements of distances, using the geometry of circles, spheres
,or triangles. For example, given three points A,B,C ∈ R2, a unique point with certain
distances from A,B,C can be determined.

A

B

C

Other methods of trilateration exist.

One way to determine geolocations is through the Global Position System (GPS), a
project started by the US government in the 1970s controlled by approximately 30 GPS
satellites orbiting the Earth. GPS receivers are tiny sensors with antennas that receive
radio signals from the GPS satellites orbiting in the sky above. If a sensor can receive
signals from at least 4 satellites, the receiver can calculate its position using trilateraion.
Since they depend on radio signals from satellites, GPS is most accurate in an outdoor
environment with a clear view of the sky.

On the other hand, WiFi positioning is a strategy that works well in dense, urban areas
filled withWiFi networks. First, a device with aWiFi antenna scans for WiFi access points
and measures the signal strength to each network. (Note that signal strength is always
negative, so the number closest to 0 is strongest)

30



BSSID MAC address Signal strength (RSSI)
NETGEAR09 A3:F3:5D:2A:A3:1B -59
NETGEAR09-5G A3:F3:5D:2A:A3:1B -72
Sonic-b346 53:19:DA:E0:57:3A -79
Emdutos E3:84:14:BC:BC:FF -84
Baskind Bunch 52:8D:5E:29:E7:5A -85
Sonic-9472-5G 4C:4C:DB:91:1A:1A -88
xfinitywifi F8:59:F4:FC:C5:F1 -93

Then, the device determines the location of each access point by looking it up in a WiFi
location database or in their own (smaller) cache of locations. It then estimates its own
location based on the found locations and their signal strength using trilateration.

A more accurate technique is fingerprinting, but only possible if a fingerprint map has
been made ahead of time. To make the map, a portable device computes the fingerprint
for many reference points within a particular area. Each fingerprint is the list of nearby
networks and their signal strength, like the table above, plus a pair of geographic coordi-
nates. When a mobile device enters the area and needs to know its location, it can send
its fingerprint to the machine with the radio map, and the machine uses an algorithm to
compute the closest fingerprint and estimate the coordinates accordingly. This is basically
just using WiFi positioning ahead of time.

If a cell phone is unable to use GPS to report its location, it can instead use cell tower
trilateration. Cell towers are what makes cellular networks possible. Each cell tower
includes three sets of directional antenna arrays in a triangular shape, and using tri-
lateration, multiple cell towers can be used to determine the geolocation of a mobile
device.

The least accurate of all methods is IP-based geolocation. IP geolocation databases
contain millions of rows mapping IP addresses to locations. Companies create those
databases based on a variety of sources such as regional IP address registries, user-
submitted locations on websites, data from ISPs, and estimates based on network routes.
They usually get the country and state correct, but often there are deviations in any more
specific location data. Furthermore, if a user is accessinfg the Internet through a VPN,
their true IP will be hidden and the VPN’s IP could be geolocated in an entirely different
continent.

Note that when a user visits a website, their browser sends an HTTP request to the web
server. The HTTP request is wrapped in an IP packet, so it always includes the sender’s
IP address. Therefore, the web server can always use an IP geolocation service to turn
the user’s IP address into an approximate location, which can give better demographics
for the company.

Cyber Attacks

A phishing attack is an attempt to trick a user into divulging their private information.
Some signs of a phishing attack are:

1. suspicious email addresses. However, a legitimate email address is not a guarantee
that an email is 100% safe. Attackers mught have figured out a way to spoof the
legitimate email address or hacked their way into control over the actual email.
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2. Suspicous URL. Attackers may

(a) misspell the original URL (goggle.com)

(b) use similar looking characters from other alphabets (the e and a) in wikipedia.org
are actually different characters in those two domains)

(c) have subdomains that look like the domain name. (paypal.accounts.com vs
accounts.paypal.com)

(d) have a different top level domain (TLD) (paypal.io vs paypal.com). Popular
companies try to buy their domain with the most common TLDs, such as
.net, .com, .org, but there are hundreds of TLDs out there.

(e) Have a hyperlinked text directed to a different URL.

3. Phishing websites sometimes may not use HTTPS. Any website that is asking you
for sensitive information should be using HTTPS to encrypt the data sent over the
Internet.

Definition 1.3.26. An access point acts as a translator between wireless and wired
signals. Access points connect to the Internet via a wired connection but share it wirelessly
with many devices like your computer. Most routers include access points since they are
responsible for transporting packets, not for providing wireless Internet access. Most of
them have an Ethernet cable in the back that connects it to the Internet and antennae
that broadcase and receive wireless signals.

However, another form of cyberattacking is through rogue access points, which an
access point installed on a network without the network owner’s permission. If an attacker
owns the access point, they can intercept the data (PII) flowing through the network.
There are two ways rogue access points can intercept PII:

1. Passive interception. A rogue access point can read your data but cannot manipulate
it. If you connect to a network with a rogue access point and enter your password
on a site over HTTP, the rogue access point can read your password. They also
have access to your Internet footprint.

2. Active interception. In active interception, a rogue access point can also manipulate
your data. They can read the incoming user data, modify the data however they
want, and send the modified user data to the destination endpoint. For example, if
a user visits a banking website and tries to deposit money into an account, a rogue
access point can redirect the deposit to an attacker’s account.

We can also protect ourselves by using VPNs (virtual private networks) or HTTPS. VPNs
and HTTPS both send an encrypted form of our data across the network. Even if rogue
access points intercept it, they won’t be able to unscramble it.

Definition 1.3.27. Malware is malicious software that is unknowningly installed onto
a computer and often tries to steal personal data or make money off the user.

1. A trojan horse is a harmful program that masquerades as a legitimate program.

2. A virus is self-replicating: it contains code that copies itself into other files on the
system. Viruses may hide in the code of a legitimate program.
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3. A worm is also self-replicating, but copies itself into entirely different computers
within the network. It can travel along networked protocols such as email, file
sharing, or instant messaging.

The effects of malware are:

1. Spyware steals data and sends it back to the malware creators. A common form
of spyware are keyloggers, programs that monitor everything a user types including
passwords.

2. Adware pops up advertisements to users.

3. Ransomware holds a computer hostage y encrypting user data or blocking access
to applications, and it demands the user pay a ransom to the anonymous malware
creators.

4. Cryptomining malware utilizes a computer’s resources to mine for cryptocur-
rency. That allows the creators to earn cryptocurrency without needing to spend
money on powering their own computers.

Some protection mechanisms against malware include:

1. A security patch is an update to the code of an application or the entire operating
system, and often fixes a bug that’s been exploited by malware.

2. A firewall is a system that monitors incoming and outgoing network traffic to a
computer or internal network, and determines what traffic to allow. Firewalls can
do automated detection of suspicious traffic and can also be configured manually.

3. Antivirus software protects an individual computer by constantly scanning files and
identifying malware. Once an antivirus program finds a piece of malware, it can
guide the user through deleting or repairing the file to be safe again.

Secure Internet Protocols

We assume that the reader is familiar with basic encryption techniques, including public-
key encryption.

Definition 1.3.28. A symmetric encryption is any technique where the same key is
used to both encrypt and decrypt the data (e.g. the Caesar Cipher, Vigenere Cipher).

The Transport Layer Security (TLS) adds a layer of security on top of the TCP/IP
transport protocols, using both symmetric and public key encryptionfor securely sending
private data. Even though this extra process increases latency in Internet communica-
tions, the security benefits are well worth it. The process is described as such:

1. TCP handshake. The client must first complete the 3-way TCP handshake with the
server.

2. TLS initiation. Then, the client must notify the server that it desires a TLS connec-
tion instead of the standard insecure connection, so it sends a message describing
which TLS protocol version and encryption techniques it’d like to use.

3. Server confirmation of protocol. If the server doesn’t support the client’s requested
technologies, it will abort the connection. That may happen if a modern client
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is trying to communicate with an older server. As long as the server does sup-
port the requested TLS protocol version and other options, it will respond with a
confirmation, plus a digital certificate that contains its public key.

4. Certificate verification. The client can verify (or choose not to) the certificate. The
client now knows the public key of the server, so it can theoretically use public key
encryption to encrypt data that the server can then decrypt with its correspond-
ing private key. For speed, they use a combination of public-key and symmetric
encryption to share data.

5. With this, the client can securely send private data to the server, using symmetric
encryption and the shared key.

Notice that all of this depends on the credibility of the digital certificate which proves
the ownership of an encryption key. A server that wants to communicate securely over
TLS signs up with a certificate authority (CA). The certificate authority verifies
their ownership of the domain, signs the certificate with their own name and public key,
and provides the signed certificate back to the server. This question now boils down to
whether the certificate authority can be trusted, and there are actually intermediate CAs
that verifies other CAs. The CA at the "top" of this chain that verifies is called the root
CA.

With standard HTTP, many people can see what we’re reading on the Internet, which is
why websites are increasingly using HTTPS (Hypertext Transfer Protocol Secure)
to protect the privacy of their uses and prevent tampering. HTTPS is also known as
HTTP over TLS, because it’s implemented by encrypting HTTP requests and responses
with the TLS protocol.

When the browser loads a URL that starts with https, it begins the process of setting up
a secure connection over TLS. Early in that process, the browser must verify the digital
certificate of the domain. If the browser cannot verify the certificate, then the browser
may display a certificate error (e.e. the message "Your connection is not private"). If the
certificate is valid, most browsers will display a lock in the address bar, which indicates a
secured connection over HTTPS.

An HTTPS connection ensures that only the browser and the secured domain see the data
in HTTP requests and responses. Onlookers can still see that a particular IP address is
communicating with another domain/IP and they can see how long that connection lasts.
But those onlookers can’t see the content of the communication, which includes the full
URL path, the webpage HTML, and any text submitted in forms.

1.4 Representation of Data
The inputs of a computational program at its most fundamental level really takes in a
binary string of 0s and 1s. Note that the choice of 0 and 1 is for convenience, but
it must be binary (i.e. Boolean) in some way in order for the model to be physically
implemented by transistors. Once information is in digital form, we can compute over
it and gain insights from data that were not accessible in prior times. In fact, we can
represent an unbounded variety of objects using only two symbols 0 and 1.

Therefore, when we say that a program P takes x as an input, we really mean that P
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takes as input the representation of x as a binary string.

Definition 1.4.1. A representation scheme is a way to map an object x to a unique
binary string E(x) ∈ {0, 1}∗. That is, given a set of objects, E is an injective (not not
necessarily surjective) map

E : X −→ {0, 1}∗

1.4.1 Representation of Numbers

Definition 1.4.2 (Representation of the Naturals). A representation for natural numbers
(note that in this context, 0 ∈ N) is the (non-surjective) regular binary representation
denoted

NtS : N −→ {0, 1}∗ (NtS = "Naturals to Strings")

recursively defined as

NtS(n) =


0 n = 0

1 n = 1

NtS(dn/2e parity(n) n > 1

where given strings x, y ∈ {0, 1}∗, xy denotes the concatenation of x and y, and parity :
N −→ {0, 1}∗ is defined

parity(n) =

{
0 n is even
1 n is odd

Since NtS in injective, its inverse StN : ImNtS ⊂ {0, 1}∗ −→ N is well-defined.

Definition 1.4.3 (Representation of the Integers). To construct a representation scheme
for Z, we can just add one more binary digit to represent the sign of the number. The
binary representation ZtS : Z −→ {0, 1}∗ is defined

ZtS(m) =

{
0NtS(m) m ≥ 0

1NtS(−m) m < 0

where NtS is defined as before. Again this function must be injective but need not be
surjective.

When representing rational numbers, we cannot simply concatenate the numerator and
denominator as such

a/b 7→ ZtS(a)ZtS(b)

since this map is not surjective (and may overlap with other integers).

Definition 1.4.4 (Representation of Rationals). To represent a rational number a/b, we
create a separator symbol | and map the rational number as below in the alphabet {0, 1, |}.

q : a/b 7→ ZtS(a)|ZtS(b)

Then, we use a second map that goes through each digit in z and is defined

p : {0, 1, |} −→ {00, 11, 01} ⊂ {0, 1}2, p(n) =


00 n = 0

11 n = 1

01 n = |
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Therefore, p maps the length n string z ∈ {0, 1}∗ to the length 2n string ω ∈ {0, 1}∗. The
representation scheme for Q is simply

QtS ≡ p ◦ q

Example 7. Given the rational number −5/8,

−5

8
7→ 1101|01000 7→ 11110011010011000000

This same idea of using separators and compositions of injective functions can be used to
represent arbitrary n-tuples of strings (since a finite Cartesian product of countable sets
is also countable).

Theorem 1.4.1 (Representation of Vectors). All vectors over the field Q are representable.

Proof. We can simply create another separator symbol · and have the initial mapping q
map to a string over the alphabet {0, 1, |, ·}, which injectively maps to {00, 01, 10, 11}. �

Corollary 1.4.1.1 (Representation of Matrices and Tensors). Matrices (over Q), which are
a collection of vectors are representable in binary. Furthermore, general tenors over the
field Q are representable in binary.

Proof. Create more separator symbols and map them to a sufficiently large set (which
can be extended arbitrarily). For example, to perhaps {000, 001, ..., 111}. �

Corollary 1.4.1.2 (Representation of Graphs). Directed graphs, which can be represented
with their adjacency matrices, can therefore be represented with binary strings.

Theorem 1.4.2 (Representation of Images). Every finite-resolution image can be repre-
sented as a binary number.

Proof. Since we can interpret each image as a matrix where each element (a pixel) is a
color, and since each color can be represented as a 3-tuple of rational numbers corre-
sponding to the intensities of red, green, and blue (for humans, we can restrict it to three
primary colors), all images can eventually be decomposed into binary strings. �

Theorem 1.4.3 (Representation of Reals). There exists no representation of the reals

NtR : R −→ {0, 1}∗

Proof. By Cantor’s theorem, the reals are uncountable. That is, there does not exist a
surjective function NtR : N −→ R. The implies the nonexistence of an injective inverse;
that is, there does not exist an injective function

RtS : R −→ {0, 1}∗

�
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However, since Q is dense in R, we can approximate every real number x by a rational
number a/b to arbitrary accuracy. There are multiple ways to construct these approxima-
tions (decimal approximation up to kth digit, finite continued fractions, truncated infinite
series, etc.), but computers use the floating-point approximation.

Definition 1.4.5 (Floating-Point Representation). The floating-point representation
scheme of a real number x ∈ R is its approximation as a number of the form

σb · 2e

where σ ∈ {0, 1} determines the sign of the representation of x, e is a (potentially negative)
integer, and b is a rational number between 1 and 2 expressed as a binary fraction

1.b0b1b2...bk = 1 +
b1
2

+
b2
4

+ ...+
bk
2k
, bi ∈ {0, 1}

where the number k is fixed (determined by the desired accuracy; greater k implies more
digits and better accuracy). The σb · 2e closest to x is the floating-point representation,
or approximation, of x. We can think of σ determining the sign, e the order of magnitude
(in base 2) of x, and b the value of the number scaled down to a value in [1, 2), called the
mantissa.

1.4.2 Representation of General Sets

Let there exist some set O consisting of objects. Then, a representation scheme for
representing objects in O consists of an encoding function that maps an object in O to a
string, and a decoding function that decodes a string back to an object in O.

Definition 1.4.6. Let O be any set. A representation scheme for O is a pair of functions
E,D where

E : O −→ {0, 1}∗

is an injective function, and the induced mapping D is restriction of the inverse of E to
the image of E.

D : Im(E) ⊂ {0, 1}∗ −→ O

This means that (D ◦ E)(o) = o for all o ∈ O. E is known as the encoding function and
D is known as the decoding function.

Prefix-free Encoding

Definition 1.4.7 (Prefix). For two strings y, y′, y is a prefix of y′ if y′ "starts" with y.
That is, y is a prefix of y′ if |y| ≤ |y′| and for every i < |y|, y′i = yi.

With this, we can define the concept of prefix free encoding.

Definition 1.4.8. Let O be a nonempty set and E : O −→ {0, 1}∗ be a function. E is
prefix-free if E(o) is nonempty for every o ∈ O and there does not exist a distinct pair
of objects o, o′ ∈ O such that E(o) is a prefix of E(o′).
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Being prefix-free is a nice property that we would like an encoding to have. Informally,
this means that no string x representing an object o is an initial substring of string y
representing a different object o. This means that we can simply represent a list of
objects simply by concatenating the representations of all the list members and still get
a valid, injective representation. We formalize this below.

Theorem 1.4.4. Suppose that E : O −→ {0, 1}∗ is prefix free. Then the following map

E : O∗ −→ {0, 1}∗

over all finite length tuples of elements in O is injective, where for every o0, o1, ..., ok−1 ∈
O∗, we define E to be the simple concatenation of the separate encodings of oi:

E(o0, ..., ok−1) ≡ E(o0)E(o1)...E(ok−1)

Even if the representation E of objects in O is prefix free, this does not imply that our
representation E of lists of such objects will be prefix free as well. In fact, it won’t be,
since for example, given three objects o, o′, o′′, the representation of the list (o, o′) will be
a prefix of the representation of the list (o, o′, o′′).

However, it turns out that in fact we can transform every representation into prefix free
form, and so will be able to use that transformation if needed to represents lists of lists,
lists of lists of lists, and so on.

Some natural representations are prefix free. For example, every fixed output length repre-
sentation (i.e. an injective function E : O −→ {0, 1}n) is automatically prefix-free, since
a string x can only be a prefix of an equal length x′ if x and x′ are identical. Moreover,
the approach that was used for representing rational numbers can be used to show the
following lemma.

Lemma 1.4.5. Let E : O −→ {0, 1}∗ be a one-to-one function. Then there is a one-to-one
prefix-free encoding E such that

|E(o)| ≤ 2|E(o)|+ 2

for every o ∈ O.

Proof. The general idea is the use the map 0 7→ 00, 1 7→ 11 to "double" every bit in the
string x and then mark the end of the string by concatenating to it the pair 01. If we
encode a string x in this way, it ensures that the encoding of x is never a prefix of the
encoding of a distinct string x′. (Note that this is not the only or even the best way to
transform an arbitrary representation into prefix-free form.) �

1.4.3 Representing Letters and Text

We can represent a letter or symbol by a string, and then if this representation is prefix
free, we can represent a sequence of symbols by merely concatenating the representation
of each symbol. Here are a few examples.

38



ASCII

The ASCII (also called US-ASCII) code, which stands for American Standard Code for
Information Interchange is a 7 bit character code where every single bit represents a unique
character. ASCII codes represent text in computers, telecommunications equipment, and
other devices. Most modern character-encoding schemes are based on ASCII, although
they support many additional characters.

The first 32 characters are called the control characters : codes originally intended not to
represent printable information, but rather to control devices (such as printers) that make
use of ASCII, or to provide meta-information about data streams. For example, character
10 (decimal) represents the "line feed" function (which causes a printer to advance its
paper) and character 8 represents "backspace." Except for the control characters that
prescribe elementary line-oriented formatting, ASCII does not define any mechanism for
describing the structure or appearance of text within a document.

Dec Oct Hex Bin Symbol Description
0 000 00 0000000 NULL Null char
1 001 01 0000001 SOH Start of Heading
2 002 02 0000010 STX Start of Text
3 003 03 0000011 ETX End of Text
4 004 04 0000100 EOT End of Transmission
5 005 05 0000101 ENQ Enquiry
6 006 06 0000110 ACK Acknowledgement
7 007 07 0000111 BEL Bell
8 010 08 0001000 BS Back Space
9 011 09 0001001 HT Horizontal Tab
10 012 0A 0001010 LF Line Feed
11 013 0B 0001011 VT Vertical Tab
12 014 0C 0001100 FF Form Feed
13 015 0D 0001101 CR Carriage Return
14 016 0E 0001110 SO Shift Out/X-On
15 017 0F 0001111 SI Shift In/X-Off
16 020 10 0010000 DLE Data Line Escape
17 021 11 0010001 DC1 Device Control 1
18 022 12 0010010 DC2 Device Control 2
19 023 13 0010011 DC3 Device Control 3
20 024 14 0010100 DC4 Device Control 4
21 025 15 0010101 NAK Negative Acknowledgement
22 026 16 0010110 SYN Synchronous Idle
23 027 17 0010111 ETB End of Transmit Block
24 030 18 0011000 CAN Cancel
25 031 19 0011001 EM End of Medium
26 032 1A 0011010 SUB Substitute
27 033 1B 0011011 ESC Escape
28 034 1C 0011100 FS File Separator
29 035 1D 0011101 GS Group Separator
30 036 1E 0011110 RS Record Separator
31 037 1F 0011111 US Unit Separator

The rest of the characters are the ASCII printable characters.
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Dec Oct Hex Bin Sym Description Dec Oct Hex Bin Sym Description
32 040 20 0100000 Space 80 120 50 1010000 P Uppercase P
33 041 21 0100001 ! Exclamation 81 121 51 1010001 Q Uppercase Q
34 042 22 0100010 " Double quotes 82 122 52 1010010 R Uppercase R
35 043 23 0100011 # Number 83 123 53 1010011 S Uppercase S
36 044 24 0100100 $ Dollar 84 124 54 1010100 T Uppercase T
37 045 25 0100101 % Per cent sign 85 125 55 1010101 U Uppercase U
38 046 26 0100110 & Ampersand 86 126 56 1010110 V Uppercase V
39 047 27 0100111 ’ Single quote 87 127 57 1010111 W Uppercase W
40 050 28 0101000 ( Open paren. 88 130 58 1011000 X Uppercase X
41 051 29 0101001 ) Closed paren. 89 131 59 1011001 Y Uppercase Y
42 052 2A 0101010 * Asterisk 90 132 5A 1011010 Z Uppercase Z
43 053 2B 0101011 + Plus 91 133 5B 1011011 [ Opening bracket
44 054 2C 0101100 , Comma 92 134 5C 1011100 \ Backslash
45 055 2D 0101101 - Hyphen 93 135 5D 1011101 ] Closing bracket
46 056 2E 0101110 . Period 94 136 5E 1011110 ^ Caret
47 057 2F 0101111 / Slash 95 137 5F 1011111 _ Underscore
48 060 30 0110000 0 Zero 96 140 60 1100000 ‘ Grave accent
49 061 31 0110001 1 One 97 141 61 1100001 a Lowercase a
50 062 32 0110010 2 Two 98 142 62 1100010 b Lowercase b
51 063 33 0110011 3 Three 99 143 63 1100011 c Lowercase c
52 064 34 0110100 4 Four 100 144 64 1100100 d Lowercase d
53 065 35 0110101 5 Five 101 145 65 1100101 e Lowercase e
54 066 36 0110110 6 Six 102 146 66 1100110 f Lowercase f
55 067 37 0110111 7 Seven 103 147 67 1100111 g Lowercase g
56 070 38 0111000 8 Eight 104 150 68 1101000 h Lowercase h
57 071 39 0111001 9 Nine 105 151 69 1101001 i Lowercase i
58 072 3A 0111010 : Colon 106 152 6A 1101010 j Lowercase j
59 073 3B 0111011 ; Semicolon 107 153 6B 1101011 k Lowercase k
60 074 3C 0111100 < Less than 108 154 6C 1101100 l Lowercase l
61 075 3D 0111101 = Equals 109 155 6D 1101101 m Lowercase m
62 076 3E 0111110 > Greater than 110 156 6E 1101110 n Lowercase n
63 077 3F 0111111 ? Question mark 111 157 6F 1101111 o Lowercase o
64 100 40 1000000 @ At symbol 112 160 70 1110000 p Lowercase p
65 101 41 1000001 A Uppercase A 113 161 71 1110001 q Lowercase q
66 102 42 1000010 B Uppercase B 114 162 72 1110010 r Lowercase r
67 103 43 1000011 C Uppercase C 115 163 73 1110011 s Lowercase s
68 104 44 1000100 D Uppercase D 116 164 74 1110100 t Lowercase t
69 105 45 1000101 E Uppercase E 117 165 75 1110101 u Lowercase u
70 106 46 1000110 F Uppercase F 118 166 76 1110110 v Lowercase v
71 107 47 1000111 G Uppercase G 119 167 77 1110111 w Lowercase w
72 110 48 1001000 H Uppercase H 120 170 78 1111000 x Lowercase x
73 111 49 1001001 I Uppercase I 121 171 79 1111001 y Lowercase y
74 112 4A 1001010 J Uppercase J 122 172 7A 1111010 z Lowercase z
75 113 4B 1001011 J Uppercase K 123 173 7B 1111011 { Opening brace
76 114 4C 1001100 L Uppercase L 124 174 7C 1111100 | Vertical bar
77 115 4D 1001101 M Uppercase M 125 175 7D 1111101 } Closing brace
78 116 4E 1001110 N Uppercase N 126 176 7E 1111110 ∼ Tilde
79 117 4F 1001111 O Uppercase O 127 177 7F 1111111 Delete

Extended ASCII

The Extended ASCII (EASCII or high ASCII) character encodings are 8-bit or larger
encodings that include the standard 7-bit ASCII characters, plus additional characters.
Note that this does not mean that the standard ASCII coding has been updated to in-
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clude more than 128 characters nor does it mean that there is an universal extension to
the original ASCII coding. In fact, there are several (over 100) extended ASCII encod-
ings.

With the creation of the 7-bit ASCII format, increased need for more letters and symbols
(such as characters in other languages or more punctuation/mathematical symbols). With
better computers and software, it became obvious that they could handle text that uses
256-character sets at almost no additional cost in programming or storage. The 8-bit
format would allow ASCII to be used unchanged and provide 128 more characters.

But even 256 characters is still not enough to cover all purposes, all languages, or even
all European languages, so the emergence of many ASCII-derived 8-bit character sets
was inevitable. Translating between these sets (transcoding) is complex, especially if a
character is not in both sets and was often not done, producing mojibake (semi-readable
text resulting from text being decoded using an unintended character encoding. The
result is a systematic replacement of symbols with completely unrelated ones, often from
a different writing system). ASCII can also be used to create graphics, commonly called
ASCII art.

But ASCII isn’t enough. We have lots of languages with lots of characters that computers
should ideally display. Unicode assigns each character a unique number, or code print.
Computers deal with such numbers as bytes: 8-bit computers would treat an 8-bit byte
as the largest numerical unit easily represented on the hardware, 16-bit computers would
expand that to 2 bytes, and so forth. Old character encodings like ASCII are from the
(pre-) 8-bit era, and try to cram the dominant language in computing at the time, i.e.
English, into numbers ranging from 0 to 127 (7 bits). When ASCII got extended by an
8th bit for other non-English languages, the additional 128 numbers/code points made
available by this expansion would be mapped to different characters depending on the
language being displayed. The ISO-8859 standards are the most common forms of this
mapping:

1. ISO-8859-1

2. ISO-8859-15, also called ISO-Latin-1

But that’s not enough when you want to represent characters from more than one lan-
guage, so cramming all available characters into a single byte just won’t work. The
following shows ways to do this (that is compatible with ASCII).

ISO-10646, UCS

We can simply expand the value range by adding more bits. The UCS-2 uses 2 bytes (or
16 bits) and UCS-4 uses 4 bytes (32 bits). However, these codings suffer from inherently
the same problem as ASCII and ISO-8859 standards, as their value range is still limited,
even if the limit is vastly higher. Note that these encode from the ISO-10646, which
defines several character encoding forms for the Universal Coded Character Set.

1. UCS-2 can store 216 = 65, 536 characters.

2. UCS-4 can store 232 = 4, 294, 967, 296 characters.

Notice that UCS encoding has a fixed number of bytes per character, which means that
UCS-2 stores each character in 2 bytes, and UCS-4 stores each character in 4 bytes. This
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is different from UTF-8 encoding.

ISO 10646 and Unicode have an identical repertoire and numbers—the same characters
with the same numbers exist on both standards, although Unicode releases new versions
and adds new characters more often. Unicode has rules and specifications outside the
scope of ISO 10646. ISO 10646 is a simple character map, an extension of previous
standards like ISO 8859. In contrast, Unicode adds rules for collation, normalization of
forms, and the bidirectional algorithm for right-to-left scripts such as Arabic and Hebrew.
For interoperability between platforms, especially if bidirectional scripts are used, it is
not enough to support ISO 10646; Unicode must be implemented.

Unicode, UTF-8

Unicode is the universal character encoding, maintained by Unicode Consortium, and it
covers the characters for all the writing systems of the world, modern and ancient. It also
includes technical symbols, punctuation, and many other characters used in writing text.
As of Unicode Version 13.0, the Unicode standard contains 143,859 characters, stored in
the format U+****, where **** is a number in hexadecimal notation. Notice that these
ones are not fixed in the number of bits; that is,

U+27BD and U+1F886

are perfectly viable representations of characters in Unicode. Even though only 143,859
characters are in use, Unicode currently allows for 1,114,112 (165 + 164) code values, and
assigns codes covering nearly all modern text writing systems, as well as many historical
ones and for many non-linguistic characters such as printer’s dingbats, mathematical
symbols, etc.

Note that Unicode, along with ISO-10646, is a standard that assigns a name and a value
(Character Code or Code-Point) to each character in its repertoire. However, the
Unicode format must be encoded in a binary format for the computer to understand.
When you save a document, the text editor has to explicitly set its encoding to be UTF-8
(or whatever other format) the user wants it to be. Also, when a text editor program
reads a file, it needs to select a text encoding scheme to decode it correctly. Even further,
when you are typing and entering a letter, the text editor needs to know what scheme
you use so that it will save it correctly. Therefore, UTF-8 encoding is a way to represent
these characters digitally in computer memory. The way that UTF-8 encodes characters
is with the following format:

1st Byte 2nd Byte 3rd Byte 4th Byte Number of Free Bits
0xxxxxxx 7
110xxxxx 10xxxxxx (5+6)=11
1110xxxx 10xxxxxx 10xxxxxx (4+6+6)=16
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx (3+6+6+6)=21

From this, we can see that UTF-8 uses a variable number of bytes per character. All UTF
encodings work in roughly the same manner: you choose a unit size, which for UTF-8 is 8
bits, for UTF-16 is 16 bits, and for UTF-32 is 32 bits. The standard then defines a few of
these bits as flags (e.g. the 0, 110, 1110, 11110, ...). If they’re set, then the next unit in
a sequence of units is considered part of the same character. If they’re not set, this unit
represents one character fully. Thus, the most common (English) characters only occupy
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one byte in UTF-8 (two in UTF-16, 4 in UTF-32), but other language characters can
occupy more bytes. We can see that UTF-8 can encode up to (and slightly more than)
221 = 2, 097, 152 characters. UTF-8 is by far the most common encoding for the World
Wide Web, accounting for 96.0% of all web pages, and up to 100% for some languages,
as of 2021.

For example, let’s take a random character, say with the Unicode value to be U+6C49.
Then, we convert this to binary to get

01101100 01001001

But we can’t just store this because this isn’t a prefix-free notation. This is when UTF-8
is needed. Using the chart above, we need to prefix our character with some headers/flags.
The binary Unicode value of the character is 16 bits long, so we can store it in 3 bytes
(in the format of the third row) as it provides enough space. The headers are not bolded,
while the binary values added are.

11100110 10110001 10001001

We can take another example of a character with the Unicode value U+1F886. Converting
to binary gets

0001 1111 1000 1000 0110

There are 20 bits, so we will need to store it in 4 bytes (in the format of fourth row)
as it provides enough space (21). We convert the 20-bit-long binary Unicode value to a
21-bit-long value (so that it is compatible with the 21 free bits) to get

0 0001 1111 1000 1000 0110

Encoding it in UTF-8 in 4 bytes gives

11110000 10011111 10100010 10000110

There is no need to go beyond 4 bytes since every Unicode value will have at most
5 hexadecimal digits (since 165 = 1, 048, 576, which is far more than the number of
characters there are). There is also another, obsolete, encoding used called the UTF-
7.

Both the UCS and UTF standards encode the code points as defined in Unicode. In theory,
those encodings could be used to encode any number (within the range the encoding
supports) - but of course these encodings were made to encode Unicode code points.
Windows handles so-called "Unicode" strings as UTF-16 strings, while most UNIXes
default to UTF-8 these days. Communications protocols such as HTTP tend to work
best with UTF-8, as the unit size in UTF-8 is the same as in ASCII, and most such
protocols were designed in the ASCII era. On the other hand, UTF-16 gives the best
average space/processing performance when representing all living languages.

While UTF-7, 8, 16, and 32 all have the nice property of being able to store any code
point correctly, there are hundreds of encodings that can only store a set amount of
characters. If there’s no equivalent for the Unicode code point you’re trying to represent
in the encoding you’re trying to represent it in, you usually get a little question mark:
? For example, trying to store Russian or Hebrew letters in these encodings results in a
bunch of question marks.
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All Plaintext depends on Encodings

Note that it does not make sense to have a string without knowing what en-
coding it uses. We can’t just assume that every plaintext is in ASCII, since there are
hundreds of extended ASCII encodings. If you have a string, in memory, in a file, or in
an email message, you have to know what encoding it is in or you cannot interpret it or
display it to users correctly.

For example, when you are sending an email, Gmail is the only client that automatically
converts your text to UTF-8, regardless of what you set in the header. The browser also
uses a certain encoding, which can be accessed (and changed) under the "view" tab.

1.4.4 Text Files

The ASCII character set is the most common compatible subset of character sets for
English-language text files, and is generally assumed to be the default file format in many
situations.

In the Mac, checking the character encoding of a text file can be done with the com-
mand

>>> file -I filename.txt
filename.txt: text/plain; charset=us-ascii

ASCII covers American English, but for the British Pound sign, the Euro sign, or char-
acters used outside English, a richer character set must be used. In many systems, this
is chosen based on the default setting on the computer it is read on. Prior to UTF-8,
this was traditionally single-byte encodings (such as ISO-8859-1 through ISO-8859-16) for
European languages and wide character encodings for Asian languages. However, most
computers use UTF-8 as the natural extension. We can check this firsthand by inputting
a non-ASCII character in filename.txt, which would result in

>>> file -I filename.txt
filename.txt: text/plain; charset=utf-8

Because encodings necessarily have only a limited repertoire of characters, often very
small, many are only usable to represent text in a limited subset of human languages.
Unicode is an attempt to create a common standard for representing all known languages,
and most known character sets are subsets of the very large Unicode character set. Al-
though there are multiple character encodings available for Unicode, the most common
is UTF-8, which has the advantage of being backwards-compatible with ASCII; that is,
every ASCII text file is also a UTF-8 text file with identical meaning. UTF-8 also has the
advantage that it is easily auto-detectable. Thus, a common operating mode of UTF-8
capable software, when opening files of unknown encoding, is to try UTF-8 first and fall
back to a locale dependent legacy encoding when it definitely isn’t UTF-8.

Because of their simplicity, text files are commonly used for storage of information. When
data corruption occurs in a text file, it is often easier to recover and continue processing
the remaining contents. A disadvantage of text files is that they usually have a low
entropy, meaning that the information occupies more storage than is strictly necessary. A
simple text file may need no additional metadata (other than knowledge of its character
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set) to assist the reader in interpretation. A text file may contain no data at all, which is
a case of zero-byte file.

Plain Text, Rich Text

Plain text is a loose term for data (e.g. file contents) that represent only characters of
readable material but not its graphical representation nor other objects (floating-point
numbers, images, etc.). It may also include a limited number of "whitespace" characters
that affect simple arrangement of text, such as spaces or line breaks. A plain text file
cannot have bold text, fonts, larger font sizes, or any other special text formatting.

Plain text is different from formatted text or rich text, where style information is
included and structured text, where structral parts of the document such as paragraphs,
sections, and the like are identified.

Most systems associate plain text file with the file .txt. To view a plaintext file, a text
editor must be used.

1.4.5 Binary Files

Another type of data is a binary file, which is a computer file that is not a text file (it
is often used as a term meaning non-text file). Many binary file formats contain parts
that can be interpreted as text; for example, some computer document files containing
formatted text, such as older Microsoft Word document files, contain the text of the
document but also contain formatting information in binary form.

Binary files are usually thought of as being a sequence of bytes, which means the binary
digits (bits) are grouped in eights. Binary files typically contain bytes that are intended to
be interpreted as something other than text characters. Compiled computer programs are
typical examples; indeed, compiled applications are sometimes referred to, particularly by
programmers, as binaries. But binary files can also mean that they contain images, sounds,
compressed versions of other files, etc. – in short, any type of file content whatsoever.

Viewing Binary Files

A hex editor or viewer may be used to view file data as a sequence of hexadecimal (or
decimal, binary or ASCII character) values for corresponding bytes of a binary file.

If a binary file is opened in a text editor, each group of eight bits will typically be
translated as a single character, and the user will see a (probably unintelligible) display
of textual characters. If the file is opened in some other application, that application will
have its own use for each byte: maybe the application will treat each byte as a number
and output a stream of numbers between 0 and 255—or maybe interpret the numbers in
the bytes as colors and display the corresponding picture. Other type of viewers (called
’word extractors’) simply replace the unprintable characters with spaces revealing only the
human-readable text. This type of view is useful for a quick inspection of a binary file in
order to find passwords in games, find hidden text in non-text files and recover corrupted
documents. It can even be used to inspect suspicious files (software) for unwanted effects.
For example, the user would see any URL/email to which the suspected software may
attempt to connect in order to upload unapproved data (to steal). If the file is itself
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treated as an executable and run, then the operating system will attempt to interpret the
file as a series of instructions in its machine language

Standards are very important to binary files. For example, a binary file interpreted by the
ASCII character set will result in text being displayed. A custom application can interpret
the file differently: a byte may be a sound, or a pixel, or even an entire word. Binary
itself is meaningless, until such time as an executed algorithm defines what should be
done with each bit, byte, word or block. Thus, just examining the binary and attempting
to match it against known formats can lead to the wrong conclusion as to what it actually
represents. This fact can be used in steganography, where an algorithm interprets a binary
data file differently to reveal hidden content. Without the algorithm, it is impossible to
tell that hidden content exists.
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Chapter 2

Information Theory

2.1 Entropy
Informally, entropy measures the uncertainty of a random variable.

Definition 2.1.1. Let X be a discrete random variable with alphabet X (set of different
outcomes) and probability mass function

p(x) = P(X = x), x ∈ X

The entropy H(X) of X is

H(X) = −
∑
x∈X

p(x) log p(x)

= E
(

log p(X)
)

= E
(

log
1

p(X)

)
where the log is to the base 2 and entropy is expressed in bits. If the base of the logarithm
is b, we denote the entropy as

Hb(X)

and if the base is e, the entropy is measured in nats. Clearly, H(X) ≥ 0.

Note that entropy is a functional of the distribution of X. It does not depend on the
actual values taken by the random variable X, but only on the probabilities.

Lemma 2.1.1. Hb(X) = (logb a)Ha(X)

Proof. logb p = logb a loga p �

Example 8. Let X be a discrete distribution with

P (X = a) =
1

2
, P (X = b) =

1

4
, P (X = c) =

1

8
, P (X = d) =

1

8

Then
H(X) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

8
log

1

8
=

7

4
bits
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Here is a nice interpretation of entropy. Given a discrete probability distribution X,
suppose that we wish to determine the value of X with the minimum number of binary
operations. For example, an efficient first question would be “Is X = a?” This splits the
probability in half. If the answer to the first question is no, the second question can be “Is
X = b?” The third question can be “Is X = c?” The resulting expected number of binary
questions required is 7/4.

2.1.1 Joint Entropy and Conditional Entropy

Definition 2.1.2. The joint entropy H(X, Y ) of a pair of discrete random variables
(X, Y ) with a joint distribution p(x, y) is defined

H(X, Y ) = −
∑
x∈X

∑
x∈Y

p(x, y) log p(x, y)

= −E
(

log p(X, Y )
)

Definition 2.1.3. If (X, Y ) ∼ p(x, y), the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −E
(

log p(Y |X)
)

The naturalness of the definition of joint entropy and conditional entropy is exhibited
by the fact that the entropy of a pair of random variables is the entropy of one plus the
conditional entropy of the other.

Lemma 2.1.2. Conditioning reduces entropy. That is,

H(X|Y ) ≤ H(X)

with equality if and only if X and Y are independent. Indeed, the "uncertainty" of X
would decrease if we had any knowledge about a (potentially nonindependent) distribution
Y .

Theorem 2.1.3 (Chain Rule for Entropy).

H(X, Y ) = H(X) +H(Y |X)

Proof. By linearity of expectation,

H(X) +H(Y |X) = −E
(

log
1

p(X)

)
− E

(
log p(Y |X)

)
= −E

(
log p(X) + log p(Y |X)

)
= −E

(
log p(X)p(Y |X)

)
= −E

(
log p(X, Y )

)
= H(X, Y )

�
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Corollary 2.1.3.1.
H(X, Y |Z) = H(X|Z) +H(Y |X,Z)

Corollary 2.1.3.2 (Chain Rule for Entropy). Let X1, X2, ..., Xn be drawn according to
p(x1, x2, ..., xn). Then

H(X1, X2, ..., Xn) =
n∑
i=1

H(Xi|Xi−1, ..., X1)

Proof. By repeated application of the theorem. �

Example 9. Let (X, Y ) have the following joint distribution:

1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4

0 0 0

The marginal distribution of X is
(
1
2
, 1
4
, 1
8
, 1
8

)
and the marginal distribution of Y is(

1
4
, 1
4
, 1
4
, 1
4

)
, meaning that

H(X) =
7

4
bits, H(Y ) = 2 bits

Also,

H(X|Y ) =
4∑
i=1

p(Y = i)H(X|Y = i)

=
1

4
H

(
1

2
,
1

4
,
1

8
,
1

8

)
+

1

4
H

(
1

4
,
1

2
,
1

8
,
1

8

)
+

1

4
H

(
1

4
,
1

4
,
1

4
,
1

4

)
+

1

4
H(1, 0, 0, 0)

=
1

4
· 7

4
+

1

4
· 7

4
+

1

4
· 2 +

1

4
· 0 =

11

8
bits

Similarly, H(Y |X) = 13
8
bits and H(X, Y ) = 27

8
bits.

Note that while H(X|Y ) 6= H(Y |X),

H(X)−H(X|Y ) = H(Y )−H(Y |X)

2.1.2 Relative Entropy and Mutual Information

Informally, the relative entropy is a measure of the distance between two distributions.
That is, the relative entropy D(p||q) is a measure of the inefficiency of assuming that
the distribution is q when the true distribution is p. For example, if we knew the true
distribution p of the random variable, we could construct a code with average description
lengthH(p. If, instead, we used the code for a distribution q, we would needH(p)+D(p||q)
bits on the average to describe the random variable.
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Definition 2.1.4 (Kullback-Leibler Divergence). The relative entropy, or Kullback-
Leibler distance, between two probability mass functions p(x) and q(x) is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

= Ep
(

log
p(X)

q(X)

)
In other words, it is the expectation of the logarithmic difference between the probabilities
P and Q, where the expectation is taken using the probabilities P . It is a measure of how
one probability distribution is different from a second, reference probability distribution.
A relative entropy of 0 indicates that p and q are identical. It is useful to interpret this
measure as a "distance" between two distributions, but it is not a formal metric because
it is not symmetric

D(p||q) = Ep
(

log
p(X)

q(X)

)
6= Eq

(
log

q(X)

p(X)

)
= D(q||p)

and does not satisfy the triangle inequality.

Definition 2.1.5. Consider two random variables X and Y with a joint probability mass
function p(x, y) and marginal probability mass functions p(x) and p(y). The mutual
information I(X;Y ) is the relative entropy between the joint distribution and product
distribution p(x)p(y).

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= D
(
p(x, y)||p(x)p(y)

)
= Ep(x,y)

(
log

p(X, Y )

p(X)p(Y )

)

Theorem 2.1.4 (Mutual Information and Entropy). The mutual information I(X;Y ) is
the reduction in the uncertainty of X due to the knowledge of Y .

I(X;Y ) = H(X)−H(X|Y )

It follows that

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

I(X;Y ) = I(Y ;X)

I(X;X) = H(X)

We can visualize it as such:
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H(X|Y ) H(Y |X)

H(X) H(Y )

I(X;Y )

H(X, Y )

Proof. We can write

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)

p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x)−

(
−
∑
x,y

p(x, y) log p(x|y)

)
= H(X)−H(X|Y )

By symmetry, we have
I(X;Y ) = H(Y )−H(Y |X)

Thus, X says as much about Y as Y says about X. Since H(X, Y ) = H(X) + H(Y |X),
we have

I(X;Y ) = H(X) +H(Y )−H(X, Y ) =⇒ I(X;X) = H(X)−H(X|X) = H(X)

That is, the mutual information of a random variable with itself is the entropy of the ran-
dom variable. This is the reason that entropy is sometimes referred to as self-information.

�

Example 10. For the joint distribution in the previous example, the mutual information
is

I(X;Y ) = H(Y )−H(Y |X) = 2− 13

8
=

3

8
bits

Definition 2.1.6. The conditional mutual information of random variables X, Y, Z
is the reduction in the uncertainty of X due to knowledge of Y when Z is given.

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

= Ep(x,y,z)

(
log

p(X, Y |Z)

p(X|Z)p(Y |Z)

)
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Mutual information also satisfies a chain rule.

Theorem 2.1.5 (Chain rule for information).

I(X1, X2, ..., Xn;Y ) =
n∑
i=1

I(Xi;Y |Xi−1, ..., X1)

Proof.

I(X1, ..., Xn;Y ) = H(X1, ..., Xn)−H(X1, ..., Xn|Y )

=
n∑
i=1

H(Xi|Xi−1, ..., X1)−
n∑
i=1

H(Xi|Xi−1, ..., X1;Y )

=
n∑
i=1

I(Xi;Y |X1, X2, ..., Xi−1)

�

We now define a conditional version of relative entropy.

Definition 2.1.7. For joint probability mass functions p(x, y) and q(x, y), the condi-
tional relative entropy D

(
p(y|x)||q(y|x)

)
is the average of the relative entropies be-

tween the conditional probability mass functions p(y|x) and q(y|x) averaged over the
probability mass function p(x). That is,

D
(
p(y|x)||q(y|x)

)
=
∑
x

p(x)
∑
y

p(y|x) log
p(y|x)

q(y|x)

= Ep(x,y)
(

log
p(Y |X)

q(Y |X)

)

2.1.3 Information Content

The information content, self-information, surprisal, or Shannon information,
is a basic quantity derived from the probability of a particular event occurring from a
random variable. It can be thought of as an alternative way of expressing probability,
much like odds or log-odds, but which has particular mathematical advantages in the
setting of information theory. The self-information can be interpreted as quantifying the
level of "surprise" of a particular outcome. The information content can be expressed
in various units of information, of which the most common is the "bit" (sometimes also
called the shannon), as explained below.

The definition of self-information was chosen to meet several axioms:

1. An event with probability 100% is perfectly unsurprising and yields no information.

2. The less probable an event is, the more surprising it is and the more information it
yields.

3. If two independent events are measured separately, the total amount of information
is the sum of the self-informations of the individual events.
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It can be shown that there is a unique function of probability that meets these three
axioms, up to a multiplicative scaling factor. Broadly given an event x with probability
P , the information content is defined as follows:

I(x) ≡ − logb
(
P(x)

)
The base of the log is left unspecified, which corresponds to the scaling factor above.
Formally, given a continuous random variable X with probability density function pX(x),
the self-information of measuring X as outcome x is defined as:

IX(x) ≡ − log
(
pX(x)

)
= log

(
1

pX(x)

)
Properties

For a given probability space, the measurement of rarer events are intuitively more "sur-
prising," and yield more information content, than more common values. Thus, self-
information is a strictly decreasing monotonic function of the probability. While standard
probabilities are represented by real numbers in the interval [0, 1], self-informations are
represented by extended real numbers in the interval [0,∞]. In particular, we have the
following, for any choice of logarithmic base:

1. If a particular event has a 100% probability of occurring, then its self-information is
− log(1) = 0: its occurrence is perfectly non-surprising and yields no information.

2. If a particular event has a 0% probability of occurring, then its self-information is
− log(0) =∞: its occurrence is infinitely surprising.

From this, we can get a few general properties:

1. Intuitively, more information is gained from observing an unexpected event—it is
surprising.

2. This establishes an implicit relationship between the self-information of a random
variable and its variance.

Note also that this definition of information content satisfies additivity. Consider two
independent random variables X, Y with probability mass functions pX(x) and pY (y)
respectively. The joint probability mass function is

pX,Y (x, y) ≡ P(X = x, Y = y) = pX(x) pY (y)

because X and Y are independent. The information content of the outcome (X, Y ) =
(x, y) is

IX,Y (x, y) = − log2

(
pX,Y (x, y)

)
]

= − log2

(
pX(x) pY (y)

)
= − log2

(
pX(x)

)
− log2

(
pY (y)

)
= IX(x) + IY (y)

A fair coin toss, which can be measured by the Bernoulli distribution P(H) = 1
2
, P(T ) = 1

2

has the information contents (in bits, base 2)

IX(H) = − log2

(
P(X = H)

)
= − log2

1

2
= 1IX(T ) = − log2

(
P(X = T )

)
= − log2

1

2
= 1
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A fair six-sided die roll has the discrete uniform distribution. The information content
is

IX(1) = IX(2) = IX(3) = IX(4) = IX(5) = IX(6) = − log2

1

6
≈ 2.585

Two independent, identically distributed dice gives an information content of

IX,Y (x, y) = − log2

1

36
≈ 5.169925

where 1 ≤ x, y ≤ 6. Note that this could have also been calculated by simply adding the
self-information of one die with that of another identical die.

2.1.4 Entropy

The entropy of a random variable is the average level of information, surprise, or un-
certainty inherent in the variable’s possible outcomes. As an example, consider a biased
coin with probability p of landing on heads and probability 1-p of landing on tails. The
maximum surprise is for p = 1/2, when there is no reason to expect one outcome over
another, and in this case a coin flip has an entropy of one bit. The minimum surprise is
when p = 0 or p = 1, when the event is known and the entropy is zero bits. Other values
of p give different entropies between zero and one bits.

Given a discrete random variable X, with possible outcomes x1, x2, ..., xn which occur
with probability P (x1), P (x2), ..., P (xn), the entropy of X is formally defined as:

H(X) ≡ −
n∑
i=1

P(xi) logP(xi)

≡ E
(
IX(X)

)
which is the expected information content of measurement of X. Base 2 gives the unit of
bits, while base e gives the natural units nat, and base 10 gives a unit called dits.

The entropy was originally created by Shannon as part of his theory of communication,
in which a data communication system is composed of three elements: a source of data, a
communication channel, and a receiver. In Shannon’s theory, the "fundamental problem
of communication" – as expressed by Shannon – is for the receiver to be able to identify
what data was generated by the source, based on the signal it receives through the channel.
Shannon considered various ways to encode, compress, and transmit messages from a data
source, and proved in his famous source coding theorem that the entropy represents an
absolute mathematical limit on how well data from the source can be losslessly compressed
onto a perfectly noiseless channel.

The English text, treated as a string of character, has fairly low entropy, i.e. is fairly
predictable. If we do not know exactly what is going to come next, we can be fairly
certain that, for example, ’e’ will be far more common than ’z’, that the combination ’qu’
will be much more common than any other combination with a ’q’ in it, and that the
combination ’th’ will be more common than ’z’, ’q’, or ’qu’. After the first few letters one
can often guess the rest of the word. English text has between 0.6 and 1.3 bits of entropy
per character of the message.
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Shannon’s Source Coding Theorem

If a compression scheme is lossless – one in which you can always recover the entire original
message by decompression – then a compressed message has the same quantity of infor-
mation as the original, but communicated in fewer characters. It has more information
(higher entropy) per character. A compressed message has less redundancy. Shannon’s
source coding theorem states a lossless compression scheme cannot compress messages,
on average, to have more than one bit of information per bit of message, but that any
value less than one bit of information per bit of message can be attained by employing
a suitable coding scheme. The entropy of a message per bit multiplied by the length of
that message is a measure of how much total information the message contains.

This theorem establishes the limits to possible data compression. Informally, it states
that

N i.i.d. random variables each with entropy H(X) can be compressed into more than N
H(X) bits with negligible risk of information loss, as N →∞; but conversely, if they are
compressed into fewer than N H(X) bits, it is virtually certain that information will be

lost.

2.2 Data Compression
Data compression, also called source coding or bit-rate reduction, is the process of
encoding information using fewer bits than the original representation. Data compression
algorithms can be categorzied into two types:

1. Lossless compression reduces bits by identifying and eliminating statistical re-
dundancy. No information is lost in lossless compression.

2. Lossy compression reduces bits by removing unnecessary or less important infor-
mation.

Typically, a device that performs data compression is referred to as an encoder, and one
that performs the reversal of the process (decompression) as a decoder.

A space–time or time–memory trade-off in computer science is a case where an
algorithm or program trades increased space usage with decreased time. Here, space
refers to the data storage consumed in performing a given task (RAM, HDD, etc), and
time refers to the time consumed in performing a given task (computation time or response
time).

A space–time trade-off can be applied to the problem of data storage. If data is stored
uncompressed, it takes more space but access takes less time than if the data were stored
compressed (since compressing the data reduces the amount of space it takes, but it takes
time to run the decompression algorithm). Depending on the particular instance of the
problem, either way is practical. There are also rare instances where it is possible to
directly work (which may also be faster) with compressed data.

Data Compression Ratio

The data compression ratio, also known as the compression power, is a measurement
of the relative reduction in size of data representation produced by a data compression
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algorithm. It is defined as

Compression Ratio =
Uncompressed Size
Compressed Size

For example, a representation that compresses a file’s storage size from 10MB to 2MB
has a compression ratio of 10/2 = 5. We can alternatively talk about the space saving,
which is defined

Space Saving = 1− Compressed Size
Uncompressed Size

So, the previous representation yields a space saving of 0.8, or 80%.

Lossless compression of digitized data such as video, digitized film, and audio preserves
all the information, but it does not generally achieve compression ratio much better than
2:1 because of the intrinsic entropy of the data. Compression algorithms which provide
higher ratios either incur very large overheads or work only for specific data sequences
(e.g. compressing a file with mostly zeros). In contrast, lossy compression (e.g. JPEG
for images, or MP3 and Opus for audio) can achieve much higher compression ratios at
the cost of a decrease in quality, such as Bluetooth audio streaming, as visual or audio
compression artifacts from loss of important information are introduced. In general,
whether a compression ratio is high or not really depends on what kind of data is being
compressed and how it is compressed.

2.2.1 Lossless Compression

Lossless data compression algorithms usually exploit statistical redundancy to represent
data without losing any information, so that the process is reversible. Lossless compression
is possible because most real-world data exhibits statistical redundancy. For example, an
image may have areas of color that do not change over several pixels; instead of coding
"red pixel, red pixel, ..." the data may be encoded as "279 red pixels". This is a basic
example of run-length encoding; there are many schemes to reduce file size by eliminating
redundancy.

A dictionary coder, also known as a substitution coder, is a class of lossless data
compression algorithms which operate by searching for matches between the text to be
compressed and a set of strings contained in a data structure (called the ’dictionary’)
maintained by the encoder. When the encoder finds such a match, it substitutes a refer-
ence to the string’s position in the data structure.

Some dictionary coders use a static dictionary, one whose full set of strings is determined
before coding begins and does not change during the coding process. This approach is
most often used when the message or set of messages to be encoded is fixed and large; for
instance, an application that stores the contents of a book in the limited storage space of
a PDA generally builds a static dictionary from a concordance of the text and then uses
that dictionary to compress the verses.

In a related and more general method, a dictionary is built from redundancy extracted
from a data environment (various input streams) which dictionary is then used statically
to compress a further input stream. For example, a dictionary is built from old English
texts then is used to compress a book. More common are methods where the dictionary
starts in some predetermined state but the contents change during the encoding process,
based on the data that has already been encoded.
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Run-length Encoding (RLE) Compression

RLE is a form of lossless data compression in which runs of data (sequences in which the
same data value occurs in many consecutive data elements) are stored as a single data
value and count, rather than as the original run. This is most useful on data that contains
many such runs.

For example, consider a screen containing plain black text on a solid white background.
There will be many long runs of white pixels in the blank space, and many short runs of
black pixels within the text. A hypothetical scan line, with B representing a black pixel
and W representing white, might read as follows:

WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW

With a RLE data compression algorithm applied to the above hypothetical scan line, it
can be rendered as follows:

12W1B12W3B24W1B14W

which can be interpreted as a sequence of 12 Ws, 1 B, 12 Ws, 3 Bs, and so on. This
run-length code represents the original 67 characters in only 18. While the actual format
used for the storage of images is generally binary rather than ASCII characters like this,
the principle remains the same. Even binary data files can be compressed with this
method.

Lempel-Ziv (LZ) Compression

The LZ77 and LZ78 (also known as the LZ1 and LZ2), respectively, are lossless data
compression algorithms published by Lempel and Ziv in 1977/78. They obsolete them-
selves but form the basis for many modern variations including LZW, LZSS, LZMA,
and others.

LZ77 and 78 are both dictionary coders, but are not static. Rather, the dictionary starts
in some predetermined state but the contents change during the encoding process.

DEFLATE Compression

2.2.2 Huffman Coding

2.2.3 Lossy Compression

Most forms of lossy compression are based on transform coding, such as the discrete
cosine transform (DCT). Another type of compression is the singular value decom-
position (SVD).
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Chapter 3

Finite Computation

3.1 AON-CIRC and Straight Line Programs
Definition 3.1.1. The most common elementary operations for algorithms are logical
operators which can be visualized as a gate in a Boolean circuit:

1. OR: {0, 1}2 −→ {0, 1}, defined

OR(a, b) = a ∨ b =

{
0 a = b = 0

1 else

An OR gate has two incoming wires and one (or more) outgoing wires.

2. AND: {0, 1}2 −→ {0, 1}, defined

AND(a, b) = a ∧ b =

{
1 a = b = 1

0 else

An AND gate has two incoming wires and one (or more) outgoing wires.

3. NOT: {0, 1} −→ {0, 1}, defined

NOT (a) = ¬a =

{
0 a = 1

1 a = 0

A NOT gate has one incoming wire and one (or more) outgoing wires)
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Many functions can be created when composing these extremely simple functions.

Example 11. Consider the function MAJ : {0, 1}3 −→ {0, 1} defined as follows

MAJ(x) =

{
1 x0 + x1 + x2 ≥ 2

0 else

We can interpret this function as the following: MAJ(x) = 1 if and only if there exists
some pair of distinct elements i, j such that both xi and xj are equal to 1. In other words,
it means that MAJ(x) = 1 iff either both x0 = 1 and x1 = 1, or both x1 = 1 and x2 = 1,
or both x0 = 1 and x2 = 1. Since the OR of three conditions c0, c1, c2 can be written as

OR(c0, OR(c1, c2))

we can now translate this function into a formula as follows:

MAJ(x0, x1, x2) = OR
(
AND(x0, x1), OR(AND(x1, x2), AND(x0, x2))

)
=
(
(x0 ∧ x1) ∨ (x1 ∧ x2)

)
∨ (x0 ∧ x2)

Definition 3.1.2. A straight-line program is a program that defines certain functions
F,G,H... and uses these programs to define variables of the form

foo = F(bar,blah)

foo = G(bar,blah)

foo = H(bar)

... = ...

to come to a result. It is called a straight-line program since it contains no loops or
branching (e.g. if/then statements).

The AON-CIRC programming language has the AND/OR/NOT operations defined.
The binary input variables are of the form

x = (X[0], X[1], ..., X[n-1])

and output variables of the form

y = (Y[0], Y[1], ..., Y[m-1])

In every line, the variables on the right-hand side of the assignment operators must either
be input variables or variables that have already been assigned a value. We say that an
AON-CIRC program P computes a function

f : {0, 1}n −→ {0, 1}m

if P (x) = f(x) for every x ∈ {0, 1}n.

Example 12. Let the XOR function be defined

XOR : {0, 1}2 −→ {0, 1}, XOR(a, b) = a+ b (mod 2)

The Boolean circuit for computing XOR : {0, 1}2 −→ {0, 1} is:
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X[0]

X[1]

Y[0]

This can be computed with the straight-line algorithm as such. Given (a, b) as inputs, we
have w1 = AND(a, b), w2 = NOT (w1), and w3 = OR(a, b). Then the algorithm returns
AND(w2, w3). In Python, this can be programmed:

def AND(a, b): return a*b
def OR(a, b): return 1-(1-a)*(1-b)
def NOT(a): return 1-a

def XOR(a, b):
w1 = AND(a, b)
w2 = NOT(w1)
w3 = OR(a,b)
return AND(w2, w3)

print([f"XOR({a},{b})={XOR(a,b)}" for a in [0,1] for b in [0,1]])
# ['XOR(0,0)=0', 'XOR(0,1)=1', 'XOR(1,0)=1', 'XOR(1,1)=0 ']

Note that Boolean circuits are a mathematical model that does not necessarily correspond
to a physical object, but they can be implemented physically. In physical implementation
of circuits, the signal is often implemented by electric potential, or voltage, on a wire,
where for example voltage above a certain level is interpreted as a logical value of 1, and
below a certain level is interpreted as a logical value of 0. Furthermore, the way that
we’ve presented the XOR function through Boolean circuits and straight-line programs
hints at the following:

Theorem 3.1.1 (Equivalence of circuits and straight line programs). Let f : {0, 1}n −→
{0, 1}m and s ≥ m be some number. Then f is computable by a Boolean circuit of s
gates if and only if f is computable by an AON-CIRC program of s lines.

Example 13. Let us define the function ALLEQ : {0, 1}4 −→ {0, 1} to be the function
that on input x ∈ {0, 1}4 outputs 1 if and only if x0 = x1 = x2 = x3. The Boolean circuit
for computing ALLEQ is:
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X[3]

X[2]

X[1]

X[0]
Y[0]

Topological Sortings of Graphs

We now proceed to formally define Boolean circuits. But first, we must cover a few
prerequisite definitions:

Definition 3.1.3 (Directed Graphs). A directed graph G = (V,E) consists of a set
V and a set E ⊆ V × V of ordered pairs of V , which denotes the edge (u, v) or also as
u→ v. If the edge u→ v is present in the graph, then v is called an out-neighbor of u
and u is an in-neighbor of v.

The in-degree of u is the number of in-neighbors it has, and the out-degree of v is the
number of out-neighbors it has. A path in the graph is a tuple (u0, u1, ..., uk) ∈ V k+1 for
some k > 0 such that ui+1 is an out-neighbor of ui for every i ∈ [k]. A simple path is a
path (u0, ..., uk) where all the ui’s are distinct, and a cycle is a path where u0 = uk.

Definition 3.1.4 (Directed Acyclic Graphs). We say that G = (V,E) is a directed
acyclic graph (DAG) if it is a directed graph and there does not exist a list of vertices
u0, u1, ...uk ∈ V such that u0 = uk and for every i ∈ [k], the edge ui → ui+1 is in E.

Every directed acyclic graph can be arranged in layers so that for all directed edges u→ v,
the layer of v is larger than the layer of u. This is expressed more formally in the following
definition.

Definition 3.1.5 (Layering of a DAG). Let G = (V,E) be a directed graph. A layering
of G is a function

f : V −→ N

such that for every edge u→ v, f(u) < f(v).

The next lemma is extremely useful.

Theorem 3.1.2. Let G be directed graph. Then G is acyclic if and only if there exists a
layering f of G. This is result is known as topological sorting.
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Corollary 3.1.2.1. There exists a layering for every directed acyclic graph. That is, every
DAG can be topologically sorted.

Formal Definition of Boolean Circuits

Definition 3.1.6. Let n,m, s be positive integers with s ≥ m. A Boolean circuit with
n inputs, m outputs, and s gates, is a labeled directed acyclic graph (DAG)

G = (V,E)

with s+ n vertices satisfying the following properties:

1. Exactly n of the vertices have no in-neighbors (i.e. inputs). These vertices known
known as inputs and are labeled with the n labels

X[0], X[1], ..., X[n− 1]

Each input has at least one out-neighbor.

2. The other s vertices are known as gates. Each gate is labeled with ∧,∨, or ¬.
Gates labeled with ∧ (AND) or ∨ (OR) have two in-neighbors. Gates labeled with
¬ (NOT) have one in-neighbor. Parallel edges are allowed.

3. Exactly m of the gates are also labeled with the m labels

Y [0], Y [1], ..., Y [m− 1]

in addition to their label ∧/∨/¬. These are known as outputs.

The size of a Boolean circuit is the number of gates it contains.

Having parallel edges means that an AND or OR gate u can have both its in-neighbors
be the same gate v. Since AND(a, a) = OR(a, a) = a for every a ∈ {0, 1}, such parallel
gates don’t help in computing new values in circuits with AND/OR/NOT gates.

We clarify the definition with the previous example of the function ALLEQ.
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X[3]

X[2]

X[1]

X[0]
Y[0]

n Inputs s Gates

m Outputs (Gates)

s ≥ m

Definition 3.1.7. We can also see that a Boolean circuit naturally induces a function
defined in the space {0, 1}n. That is, given Boolean circuit C with n inputs andm outputs,
let the output of C on the input x ∈ {0, 1}n be denoted C(x). Then, if a function

f : {0, 1}n −→ {0, 1}m

satisfies f(x) = C(x) for all x ∈ {0, 1}n, we say that the circuit C computes f .

3.1.1 Physical Implementations of Computing Devices

Note that computation is an abstract notion (a process) that is distinct from its physical
implementations (how the progress is run). While most modern computing devices are
obtained by mapping logical gates to semiconductor-based transistors, throughout history
people have computed using a huge variety of mechanisms, including mechanical systems,
gas and liquid (known as fluidics), biological and chemical processes, and even living
creatures. We will explore some ways that allow us to directly translate Boolean circuits
to the physical world, without going through the entire stack of architecture, operating
systems, and compilers.

Transistors

A transistor can be thought of as an electric circuit with two inputs, known as the source
and the gate and an output, known as the sink. The gate controls whether current flows
from the source to the sink. In a standard transistor, if the gate is “ON” then current
can flow from the source to the sink and if it is “OFF” then it can’t. In a complementary
transistor this is reversed: if the gate is “OFF” then current can flow from the source to
the sink and if it is “ON” then it can’t.

We can use transistors to implement various Boolean functions such as and AND, OR, and
NOT. For each a two-input gate G : {0, 1}2 −→ {0, 1}, such an implementation would
be a system with two input wires x, y and one output wire z, such that if we identify
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high voltage with 1 and low voltage with 0, then the wire z will equal to 1 if and only if
applying G to the values of the wires x and y is 1.

Biological computing Computation can be based on biological or chemical systems.
For example the lac operon produces the enzymes needed to digest lactose only if the
conditions x∧(¬y) hold, where x is "lactose is present" and y is "glucose is present."

Cellular Automata and the Game of Life Cellular automata is a model of a system
composed of a sequence of cells, each of which can have a finite state. At each step, a cell
updates its state based on the states of its neighboring cells and some simple rules. As
we will discuss later in this book, cellular automata such as Conway’s Game of Life can
be used to simulate computation gates .

Neural Networks Another computation device is the brain. Even though the exact
working of the brain is still not fully understood, one common mathematical model for it
is a (very large) neural network.

A neural network can be thought of as a Boolean circuit that instead of AND/OR/NOT
uses some other gates as the basic basis. One particular basis we can use are threshold
gates. For every vector

w = (w0, w1, ..., wk−1)

of integers and integer t (some or all of which could be negative), the threshold function
corresponding to w, t is the function Tw,t : {0, 1}k −→ {0, 1} that maps x ∈ {0, 1}k to
1 if and only if

k−1∑
i=0

wixi ≥ t

that make up the core of human and animal brains. To a first approximation, a neuron
has k inputs and a single output, and the neurons “fires” or “turns on” its output when
those signals pass some threshold.

3.1.2 The NAND Function

Definition 3.1.8. The NAND function is a function mapping {0, 1}2 to {0, 1} defined by

NAND(a, b) =

{
0 a = b = 1

1 else

NAND is really the composition of the NOT and AND functions; that is,

NAND(a, b) = (NOT ◦ AND)(a, b)

Here is an interesting result.

Theorem 3.1.3 (Universality of NAND). We can compute AND, OR, and NOT by com-
posing only the NAND function.
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Proof. We can see that, using double negation,

NOT (a) = NOT (AND(a, a))

= NAND(a, a)

AND(a, b) = NOT (NOT (AND(a, b)))

= NOT (NAND(a, b))

= NAND(NAND(a, b), NAND(a, b))

OR(a, b) = NOT (AND(NOT (a), NOT (b)))

= NOT (AND(NAND(a, a), NAND(b, b)))

= NAND(NAND(a, a), NAND(b, b))

�

Corollary 3.1.3.1. For every Boolean circuit C of s gates, there exists a NAND circuit C ′
of at most 3s gates that computes the same function as C.

Proof. Replace every AND, OR, and NOT gate with their NAND equivalents. �

NAND Circuits

Definition 3.1.9. A NAND Circuit is a circuit in which all the gates are NAND
operations. Despite their simplicity, NAND circuits can be quite powerful.

Example 14. We can create a NAND circuit of the XOR function that maps x0, x1 ∈ {0, 1}
to x0 + x1 (mod 2).

X[0]

X[1]

Y[0]

Definition 3.1.10. Two models are said to be equivalent in power if they can be used to
compute the same set of functions.

Just as we have defined the AON-CIRC program, we can define the notion of computation
by a NAND-CIRC program in the natural way.

Theorem 3.1.4 (Equivalence between models of finite computation). For every sufficiently
large s, n,m and f : {0, 1}n −→ {0, 1}m, the following conditions are all equivalent to one
another:

1. f can be computed by a Boolean circuit (with ∧,∨,¬ gates) of at most O(s) gates.

2. f can be computed by an AON-CIRC straight-line program of at most O(s) lines

3. f can be computed by a NAND circuit of at most O(s) gates.

4. f can be computed by a NAND-CIRC straight-line program of at most O(s) lines.
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By O(s), we mean that the bound is at most c·s, where c is a constant that is independent
of n. For example, if f can be computed by a Boolean circuit of s gates, then it can be
computed by a NAND-CIRC program of at most 3s lines, and if f can be computed by a
NAND circuit of s gates, then it can be computed by an AON-CIRC program of at most
2s lines.

Circuits with other Gate Sets

We can expand beyond the basis functions of AND/OR/NOT or NAND to a general set
of functions

G = {G0, G1, ..., Gk−1}

With this, we can define a notion of circuits that use elements of G as gates and a notion
of a G programming language where every line involves assigning to a variable foo the
result of applying some Gi ∈ G to previously defined or input variables. We state this
formally.

Definition 3.1.11 (General Straight-line programs). Let F = {f0, f1, ..., ft−1} be a finite
collection of Boolean functions such that

fi : {0, 1}k −→ {0, 1}

for some ki ∈ N. A F program is a sequence of lines, each of which assigns to some
variable the result of applying some fi ∈ F to ki other variables. As above, we use X[i]
and Y[j] to denote the input and output variables.

We say that F is a universal set of operations (or a universal gate set) if there
exists a F program to compute the function NAND.

Example 15. Let F = {IF, ZERO,ONE} where

ZERO : {0, 1} −→ {0}, ONE : {0, 1} −→ {1}

are the constant zero and one functions, and

IF : {0, 1}3 −→ {0, 1}, IF (a, b, c) =

{
b a = 1

c else

Then, F is universal since we can use the following formula to compute NAND:

NAND(a, b) = IF
(
a, IF (b, ZERO,ONE), ONE

)
There are some sets F that are more restricted in power. For example, it can be shown
that if we use only AND or OR gates (without NOT), then we do not get an equivalent
model of computation.

3.1.3 Syntactic Sugar

Just as we have built the AND, OR, and NOT gates with the NAND gate, we can
implement more complex features using our basic building blocks, and then use these
new features themselves as building blocks for even more sophisticated features. This
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is known as syntactic sugar, since we are not modifying the underlying programming
model itself, but rather we merely implement new features by syntactically transforming
a program that uses such features into one that doesn’t. It makes the language "sweeter"
for human use: things can be expressed more clearly, more concisely, or in an alternative
style that some may prefer.

In computer programming, we can define and then execute procedures or subroutines,
which are often known as functions.

Example 16. We can use syntactic sugar to compute the majority function MAJ as follows,
by first defining the procedures NOT, AND, and OR.

def NOT(a):
return NAND(a,a)
def AND(a,b):
temp = NAND(a,b) return NOT(temp)
def OR(a,b):
temp1 = NOT(a)

temp2 = NOT(b)
return NAND(temp1 ,temp2)
def MAJ(a,b,c): and1 = AND(a,b)
and2 = AND(a,c) and3 = AND(b,c)
or1 = OR(and1 ,and2) return OR(or1 ,and3)

print(MAJ(0,1,1))
# 1

Note that compared to writing out the full Boolean circuit without any syntactic sugar,
one with sugar will can be much simpler. It’s the difference between having access to only
NAND, or all of NAND, AND, OR, NOT.

Definition 3.1.12. We call these the programming language NAND-CIRC augmented
with the syntax above (for defining procedures) a NAND-CIRC-PROC program. Note
that NAND-CIRC-PROC only allows non-recursive procedures (that is, procedures that
take in its return value as its argument).

Since the procedures are defined using the NAND operator, it is trivial that for every
NAND-CIRC-PROC program P , there exists a "sugar-free" NAND-CIRC program P ′

that computes the same function as P .

Conditional Statements

We can define conditional (if/then) statements using NAND operators. The idea is to
compute the function IF : {0, 1}3 −→ {0, 1} such that IF (a, b, c) equals b if a = 1 and c
if a = 0.

Definition 3.1.13. The IF function can be implemented from NANDs as follows:

def IF(cond , a, b);
notcond = NAND(cond , cond)
temp = NAND(b, notcond)
temp1 = NAND(a, cond)
return NAND(temp , temp1)
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The IF function is also known as a multiplexing function, since cond can be thought of
as a switch that controls whether the output is connected to a or b.

With this, we can replace code of the form

if (condition): assign blah to variable foo

with code of the form

foo = IF(condition , blah , foo)

that assigns to foo its old value when condition equals 0, and assign to foo the value of
blah otherwise.

Definition 3.1.14. Let NAND-CIRC-IF be the programming language NAND-CIRC
augmented with if/then/else statements for allowing code to be conditionally executed
based on whether a variable is equal to 0 or 1.

Theorem 3.1.5. For every NAND-CIRC-IF program P , there exists a standard (i.e. "sugar-
free") NAND- CIRC program P ′ that computes the same function as P .

Addition and Multiplication

We can write the integer addition function as follows:

# Add two n-bit integers
# Use LSB first notation for simplicity
def ADD(A,B):

Result = [0]*(n+1)
Carry = [0]*(n+1)
Carry[0] = zero(A[0])
for i in range(n):

Result[i] = XOR(Carry[i],XOR(A[i],B[i]))
Carry[i+1] = MAJ(Carry[i],A[i],B[i]) Result[n] = Carry[n]

return Result

ADD([1,1,1,0,0],[1,0,0,0,0]);;
# [0, 0, 0, 1, 0, 0]

where zero is the zero function, and MAJ, XOR correspond to the majority and XOR
functions respectively. Note that in here, n is a fixed integer and so for every such n,
ADD is a finite function that takes as input 2n bits and outputs n+ 1 bits. Note that the
for loop isn’t anything fancy at all; it is just shorthand notation of simply repeating the
code n times. By expanding out all the features, for every value of n we can translate
the above program into a standard ("sugar-free") NAND-CIRC program. Note that the
sugar free NAND-CIRC program to adding two-digit binary numbers consists of 43 lines
of code, with a Boolean circuit of 15 layers.

We can in fact prove the following theorem that gives an upper bound on the addition
algorithm.
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Theorem 3.1.6 (Addition using NAND-CIRC programs). For every n ∈ N, let

ADDn : {0, 1}2n −→ {0, 1}n+1

be the function that, given x, x′ ∈ {0, 1}n, computes the representation of the sum of the
numbers that x and x′ represent. Then, for every n there is a NAND-CIRC program to
compute ADDn with at most 9n lines.

Once we have addition, we can use grade-school algorith of multiplication to obtain mul-
tiplication as well.

Theorem 3.1.7 (Muliplication using NAND-CIRC programs). For every n, let

MULTn : {0, 1}2n −→ {0, 1}2n

be the function that, given x, x′ ∈ {0, 1}n, computes the representation of the product of
the numbers that x and x′ represent. Then, there is a constant c such that for every n,
there is a NAND-CIRC program of at most cn2 that computes the function MULTn.

The Karatsuba’s algorithm allows us to actually compute that there is a NAND-CIRC
program of O(nlog2 3) lines to compute MULTn.

The Lookup Function

The LOOKUP function tells us the value of a certain entry.

Definition 3.1.15 (Lookup function). For every k, the lookup function of order k,

LOOKUPk : {0, 1}2k × {0, 1}k ' {0, 1}2k+k −→ {0, 1}

(where ' denotes isomorphism) is defined as follows: For every x ∈ {0, 1}2k and i ∈
{0, 1}k,

LOOKUPk(x, i) = xi

where xi denotes the ith entry of x in binary representation.

Theorem 3.1.8. For every k > 0, there is a NAND-CIRC program that computes the
function LOOKUPk : {0, 1}2k+k −→ {0, 1}. The number of lines in this program is at
most 4 ·2k. This also means that LOOKUPk can be computed by a Boolean circuit (with
AND, OR, and NOT) gates of at most 8 · 2k gates.

Computing Every Function

In fact, we can compute every finite function with a large enough Boolean (or equivalently,
NAND) circuit.

Theorem 3.1.9 (Universality of Finite Functions). There exists some constant c > 0 such
that for every n,m > 0 and function

f : {0, 1}n −→ {0, 1}m

there is a NAND-CIRC program/NAND circuit, with at most c · m2n lines/gates that
computes the function f .
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Since the models of NAND circuits, NAND-CIRC programs, and AON-CIRC programs,
and Boolean circuits are all equivalent to one another, we can restate the theorem as
such.

This may not be so surprising actually. After all, a finite function f : {0, 1}n −→ {0, 1}m
can be represented by simply the list of its outputs for each one of the 2n input values.
So it makes sense that we could write a NAND-CIRC program of similar size to compute
it.

Definition 3.1.16. For every n,m ∈ {1, 2, ..., 2s}, let SIZEn,m(s) denote the set of all
functions f : {0, 1}n −→ {0, 1}m such that f ∈ SIZE(s). We denote SIZEn(s) to be
just SIZEn,1(s). For every integer s ≥ 1, we let

SIZE(s) =
⋃

n,m≤2s

SIZEn,m(s)

be the set of all functions f that can be computed by NAND circuits of at most s gates
(or equivalently, by NAND-CIRC programs of at most s lines).

We can summarize the equivalence of these models below:

AON-Bool Circuit

AON-CIRC Program

NAND-Bool Circuit

NAND-CIRC Program

NAND-CIRC-PROC NAND-CIRC-IF

Syntactic Sugar

3.2 Code as Data, Data as Code
A program is simply a sequence of symbols, each of which can be encoded in binary
using (for example) the ASCII standard. Therefore, we can represent every NAND-CIRC
program (and hence also every Boolean circuit) as a binary string. This means that we
can treat circuits or NAND-CIRC programs both as instructions to carrying computation
and also as data that could potentially be used as inputs to other computations. That is, a
program is a piece of text, and so it can be fed as input to other programs.

3.2.1 Representing Programs as Strings

We can represent programs or circuits as strings in many ways. For example, since
Boolean circuits are labeled directed acyclic graphs, we can use the adjacency matrix
representations. A simpler way is to just interpret the program as a sequence of letters
and symbols. For example, the NAND-CIRC program P :

temp_0 = NAND(X[0],X[1])
temp_1 = NAND(X[0],temp_0)
temp_2 = NAND(X[1],temp_0)
Y[0] = NAND(temp_1 ,temp_2)
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is simply a string of 107 symbols which include lower and upper case letters, digits,
the underscore character, equality signs, punctuation marks, space, and the "new line"
markers, all of which can be encoded in ASCII. Since every symbol can be encoded as a
string of 7 bits using the ASCII encoding, the program P can be encoded as a string of
length 7 · 107 = 749 bits. Therefore, we can prove that every NAND-CIRC program can
be represented as a string in {0, 1}∗.

Furthermore, since the names of the working variables of a NAND-CIRC program do not
affect its functionality, we can always transform a program to have the form of P ′, where all
variables apart from the inputs and outputs, have the form temp0, temp1, ... Moreover, if
the program has s, lines, then we will never need to use an index larger than 3s (since each
line involves at most three variables), and similarly, the indices of the input and output
variables will all be at most 3s. Since a number between 0 and 3s can be expressed using
at most dlog10(3s+ 1)e = O(log s) digits, each line in the program (which has the form
foo = NAND(bar, blah)), can be represented using O(1) + O(log s) = O(log s) symbols,
each of which can be represented by 7 bits. This results in the following theorem

Theorem 3.2.1 (Representing programs as strings). There is a constant c such that for
f ∈ SIZE(s), there exists a program P computing f whose string representation has
length at most cs log s.

3.2.2 Counting Programs

We can actually see that the number of programs of certain length is bounded by the
number of strings that represent them.

Theorem 3.2.2 (Counting programs). For every s ∈ N,

|SIZE(s)| ≤ 2O(s log s)

That is, there are at most 2O(s log s) functions computed by NAND-CIRC programs of at
most s lines. This gives a limitation on NAND-CIRC programs running on at most a
given number of s lines.

Note that a function mapping {0, 1}2 −→ {0, 1} can be identified with a table of its
four values on the inputs 00, 01, 10, 11. A function mapping {0, 1}3 −→ {0, 1} can be
identified with the table of its 8 values on the inputs 000, 001, 010, 011, 100, 101, 110,
111. More generally, every function

F : {0, 1}n −→ {0, 1}

is equal to the number of such tables which is 22n . Note that this is a double exponential
in n, and hence even form small values of n (e.g. n = 10), the number of functions from
{0, 1}n −→ {0, 1} is large.

Theorem 3.2.3 (Counting argument lower bound). The shortest NAND-CIRC program to
compute f : {0, 1}n −→ {0, 1} requires more than δ · 2n/n lines. That is, there exists a
constant δ > 0 such that for every sufficiently large n, there exists f : {0, 1}n −→ {0, 1}
such that f 6∈ SIZE

(
δ2n

n

)
. The constant δ can be proven to be arbitrarily close to 1

2
.
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We already know that every function mapping {0, 1}n to {0, 1} can be computed by an
O(2n/n) line program. The previous theorem shows that some functions do require an
astronomical number of lines to compute. That is, some functions f : {0, 1}n −→ {0, 1}
cannot be computed by a Boolean circuit using fewer than exponential (in n)
number of gates.

3.2.3 Tuples Representation

ASCII is a fine representation of programs, but we can do better. That is, give a NAND-
CIRC program with lines of the form

blah = NAND(baz , boo)

We can encode each line as the triple (blah, baz, boo). Furthermore, we can associate
each variable with a number and encode the line with the 3-tuple (i, j, k). Expanding on
this, we can associate every variable with a number in the set

[t] = {0, 1, 2, ..., t− 1}

where the first n numbers {0, ..., n − 1} correspond to input variable, the last m num-
bers {t−m, ..., t− 1} correspond to the output variables, and the intermediate numbers
{n, ..., t−m− 1} correspond to the remaining variables.

Definition 3.2.1 (List of tuples representation). Let P be a NAND-CIRC program of
n inputs, m outputs, and s lines, and let t be the number of distinct variables used by
P . The list of tuples representation of P is the triple (n,m,L), where L is the list
of triples of the form (i, j, k) for i, j, k ∈ [t]. We assign a number for a variable of P as
follows:

1. For every i ∈ [n], the variable X[i] is assigned to the number i.

2. For every j ∈ [m], the variable Y[j] is assigned to the number t−m+ j.

3. Every other variable is assigned a number in {n, n+ 1, ..., t−m− 1} in the order in
which the variable appears in the program P .

This is usually the default representation for NAND-CIRC programs, so we will call it
"the representation" shorthand. The program could be represented as the list L instead
of the triple (n,m,L).

Example 17. To represent the XOR program of lines

u = NAND(X[0], X[1])
v = NAND(X[0], u)
w = NAND(X[1], u)
Y[0] = NAND(v, w)

we represent it as the tuple

L =
(
(2, 0, 1), (3, 0, 2), (4, 1, 2), (5, 3, 4)

)
Note that the variables X[0], X[1] are given the indices 0, 1, the variable Y[0] is given
the index 5, and the variables u, v, w are given the indices 2, 3, 4.
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So, if P is a program of size s, then the number t of variables is at most 3s. Therefore,
we can encode every variable index in [t] as a string of length l = dlog(3s)e (in binary),
by adding leading zeros as needed. Since this is fixed-length encoding, it is prefix free,
and so we can encode the list L of s triples as simply as the string of length 3ls obtained
by concatenating all of these encodings.

Letting S(s) be the length of the string representing the list L corresponding to a size s
program, we get

S(s) = 3sl = 3s dlog(3s)e

3.2.4 NAND-CIRC Interpreter in NAND-CIRC

Since we can represent programs as strings, we can also think of a program as an input to a
function. In particular, for every natural number s, n,m > 0, we define the function

EV ALs,n,m : {0, 1}S(s)+n −→ {0, 1}m

as such: Given that px is the concatenation of two strings p ∈ {0, 1}S(s) representing a
list of triples L that represents a size-s NAND-CIRC program P , and x ∈ {0, 1}n is a
string,

EV ALs,n,m(px) = P (x)

where P (x) is equal to the evaluation P (x) of the program P on input x. If p is not
the list of tuples representation of a NAND-CIRC program, then EV ALs,n,m = 0m (error
message). Some important properties of EVAL include:

1. EV ALs,n,m is a finite function takin a string of fixed length as input and outputting
a string of fixed length as output.

2. EV ALs,n,m is a single function, such that computing EV ALs,n,m allows us to eval-
uate arbitrary NAND-CIRC programs of a certain lenfth on arbitrary inputs of the
appropriate length.

3. EV ALs,n,m is a function, not a program. That is, EV ALs,n,m is a specification
of what output is associated with what input. The existence of a program that
computes EV ALs,n,m (i.e. an implementation for EV ALs,n,m) is a separate fact,
which needs to be established.

Theorem 3.2.4. For every s, n,m ∈ N with s ≥ m, there is a NAND-CIRC program Us,n,m
that computes the function EV ALs,n,m.

That is, the NAND-CIRC program Us,n,m takes the description of any other NAND-CIRC
program P (of the right length and inputs/outputs) and any input x, and computes the
result of evaluating the program P on the input x. Given the equivalence between NAND-
CIRC programs and Boolean circuits, we can also think of Us,n,m as a circuit that takes as
inputs the description of other circuits and their inputs, and returns their evaluation.

Definition 3.2.2. We call this NAND-CIRC program Us,n,m that computes EV ALs,n,m
a bounded universal program, or a universal circuit. It is "universal" in the sense
that this is a single program that can evaluate arbitrary code, where "bounded" stands
for the fact that Us,n,m only evaluates programs of bounded size.
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This theorem is profound because it proves the existence of a NAND-CIRC program that
takes in another NAND-CIRC program along with its input. But it provides no explicit
bound on the size of this program. The following theorem takes care of that.

Theorem 3.2.5 (Efficient bounded universality of NAND-CIRC programs). For every
s, n,m ∈ N, there is a NAND-CIRC program of at most O(s2 log s) lines that computes
the function

EV ALs,n,m : {0, 1}S+n −→ {0, 1}m

defined above (where S is the number of bits needed to represent programs of s lines).
This allows us to place an upper bound on the size of Us,n,m that is polynomial in its input
length.
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Chapter 4

Uniform Computation

4.1 Infinite Functions, Automata, Regular Expressions
We now extend our definition of computational tasks to consider functions with the un-
bounded domain of {0, 1}∗. Note that an infinite function F does not necessarily take
input strings of infinite length, but rather ones that can be arbitrarily long.

The big takeaway from this chapter is that we can think of an algorithm as a "finite answer
to an infinite number of questions." To express an algorithm, we need to write down a
finite set of instructions that will enable us to compute on arbitrarily long inputs.

4.1.1 Functions with Inputs of Unbounded Length

Example 18. Note that the function XOR : {0, 1}∗ −→ {0, 1} equals 1 iff the number of
1’s in x is odd. At best, we can compute XORn, the restriction of XOR to {0, 1}n with
NAND-CIRC programs.

Example 19. The multiplication function takes the binary representation of a pair of
integers x, y ∈ N and outputs the binary representation of the product x · y.

MULT : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗

Since we can represent a pair of strings as a single string, we will consider functions such
as MULT as

MULT : {0, 1}∗ −→ {0, 1}∗

Example 20 (Palindrome function). Another example of an infinite function is

PALINDROME(x) =

{
1 ∀i ∈ ||x||, xi = x|x|−i

0 else

which outputs 1 if x is a (base-2) palindrome and 0 if not.

Definition 4.1.1. Sometimes, we can obtain a Boolean variant of a non-Boolean function.
This process is called booleanizing.
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Example 21 (Boolean variant of MULT). The following is a boolean variant of MULT

BMULT (x, y, i) =

{
ith bit of x · y i < |x · y|
0 else

Note that if we can compute BMULT , we can compute MULT as well, and vice versa.

4.1.2 Deterministic Finite Automata

Definition 4.1.2. A single-pass constant-memory algorithm is an algorithm that
computes an output from an input via a combination of the following steps:

1. Read a bit from the input.

2. Update the state (working memory).

3. Repeat the first 2 steps to pass over the input.

4. Stop and produce an output.

It is called "single-pass" since it makes a single pass over the input and "constant-memory"
since its working memory is finite. Such an algorithm is also known as a Deterministic
Finite Automaton (DFA), or a finite state machine.

We can think of such an algorithm as a "machine" that can be in one of C states, for some
constant C. The machine starts in some initial state and then reads its input x ∈ {0, 1}∗
one bit at a time. Whenever the machine reads a bit σ ∈ 0, 1, it transitions into a new
state based on σ and its prior state. The output of the machine is based on the final
state. Every single-pass constant-memory algorithm corresponds to such a machine. If
an algorithm uses c bits of memory, then the contents of its memory can be represented
as a string of length c. Therefore such an algorithm can be in one of at most 2c states at
any point in the execution.

We can specify a DFA of C states by a list of 2C rules. Each rule will be of the form “If
the DFA is in state v and the bit read from the input is σ then the new state is v′”. At
the end of the computation, we will also have a rule of the form “If the final state is one
of the following ... then output 1, otherwise output 0”.

For example, the Python program above can be represented by a two-state automaton
for computing XOR of the following form:

1. Initialize in the state 0

2. For every state s ∈ {0, 1} and input bit σ read, if σ = 1, then change to state 1− s,
otherwise stay in state s

3. At the end, output 1 iff s = 1

It can also be represented in the following graph.

100

1

0

1

76



More generally, a C-state DFA can be represented as a labeled graph of C nodes. The
set S of states on which the automaton will output 1 at the end of the computation is
known as the set of accepting states. We formally summarize it below.

Definition 4.1.3. A deterministic finite automaton (DFA) with C states over {0, 1}
is a pair (T,S) with

T : [C]× {0, 1} −→ [C]

and S ⊂ [C]. The finite function T is known as the transition function of the DFA.
The set S is known as the set of accepting states.

Let F : {0, 1}∗ −→ {0, 1} be a Boolean function with the infinite domain {0, 1}∗. We say
that (T,S) computes a function F : {0, 1}∗ −→ {0, 1} if for every n ∈ N and x ∈ {0, 1}n,
if we define s0 = 0 and si+1 = T (si, xi) for every i ∈ [n], then

sn ∈ S ⇐⇒ F (x) = 1

Note that the transition function T is a finite function specifying the table of "rules" for
which the graph evolves. By defining the DFA C with (T,S), we have essentially reduced
a specific type of infinite Boolean function (a single-pass constant-memory algorithm) into
a graph and a finite transition function.

When constructing a deterministic finite automaton, it helps to start by thinking of it as a
single-pass constant-memory algorithm, and then translate this program into a DFA.

Definition 4.1.4. We say that a function F : {0, 1}∗ −→ {0, 1} is DFA computable if
there exists some DFA that computes F .

Theorem 4.1.1. Let DFACOMP be the set of all Boolean functions F : {0, 1}∗ −→ {0, 1}
such that there exists a DFA computing F . Then, DFACOMP is countable.

Lemma 4.1.2. The set of all Boolean functions {f | f : N −→ {0, 1}} are uncountable.

Corollary 4.1.2.1 (Existence of DFA-uncomputable functions). There exists a Boolean
function F : {0, 1}∗ −→ {0, 1} that is not computable by any DFA.

4.1.3 Regular Expressions

Searching for a piece of text is a common task in computing. At its heart, the search
problem is quite simple. We have a collection X = {x0, ..., xk} of strings (e.g. files on a
hard-drive, or student records in a database), and the user wants to find out the subset of
all the x ∈ X that are matched by some pattern. In full generality, we can allow the user
to specify the pattern by specifying a (computable) function F : {0, 1}∗ −→ {0, 1}, where
F (x) = 1 corresponds to the pattern matching x. That is, the user provides a program
P and the system returns all x ∈ X such that P (x) = 1.

However, we don’t want our system to get into an infinite loop just trying to evaluate
the program P . For this reason, typical systems for searching files or databases do not
allow users to specify the patterns using full-fledged programming languages. Rather,
such systems use restricted computational models that on the one hand are rich enough
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to capture many of the queries needed in practice, but on the other hand are restricted
enough so that queries can be evaluated very efficiently on huge files and in particular
cannot result in an infinite loop. One of the most popular such computational models is
regular expressions.

Definition 4.1.5. A regular expression e over an alphabet Σ is a string over Σ ∪
{(, ), |, ∗, ∅, ””} that has one of the following forms:

1. e = σ where σ ∈ Σ

2. e = (e′ | e′′) where e′, e′′ are regular expressions

3. e = (e′)(e′′) where e′, e′′ are regular expressions. The parentheses are often dropped,
so this is written e′ e′′

4. e = (e′)∗ where e′ is a regular expression

Finally, we also allow the following "edge cases": e = ∅ and e = ””. These are the regular
expressions corresponding to accepting no strings and accepting only the empty string,
respectively.

Example 22. The following are regular expressions over the alphabet {0, 1}.(
00(0∗)|11(1∗)

)∗
00∗|11

Every regular expression e corresponds to a function Φe : Σ∗ −→ {0, 1} where Φe(x) = 1
if x matches the regular expression. The definition is tedious.

Definition 4.1.6. Let e be a regular expression over the alphabet Σ. The function
Φe : Σ∗ −→ {0, 1} is defined as follows:

1. If e = σ, then Φe(x) = 1 iff x = σ

2. If e = (e′ | e′′), then Φe(x) = Φe′(x) ∨ Φe′′(x) where ∨ is the OR operator.

3. If e = (e′)(e′′), then Φe(x) = 1 iff there is some x′, x′′ ∈ Σ∗ such that x is the
concatenation of x′ and x′′ and Φe′(x

′) = Φe′′(x′′) = 1

4. If e = (e′)∗ then Φe(x) = 1 iff there is some k ∈ N and some x0, x1, ..., xk−1 ∈ Σ∗

such that x is the concatenation x0, x1, ..., xk−1 and Φe′(xi) = 1 for every i ∈ [k].

5. For the edge cases, Φ∅ is the 0 function, and Φ”” is the function that only outputs
1 on the empty string ””.

It is said that a regular expression e over Σ matches a string x ∈ Σ∗ if Φe(x) = 1.

A Boolean function is called regular if it outputs 1 on precisely the set of strings that are
matched by some regular expression.

Definition 4.1.7. Let Σ be a finite set and F : Σ∗ −→ {0, 1} be a Boolean function. We
say that F is regular if F = Φe for some regular expression e.

Similarly, for every formal language L ⊂ Σ∗, we say that L is regular if and only if there
is a regular expression e such that x ∈ L iff e matches x.
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Definition 4.1.8. The set of functions computable by DFAs is the same as the set of
languages that can be recognized by regular expressions.

4.2 Turing Machines
Similar to how a person does calculations by reading from and writing to a single cell of
a paper at a time, a Turing machine is a hypothetical machine that reads from its "work
tape" a single symbol from a finite alphabet Σ and uses that to update its state, write to
tape, and possibly move to an adjacent cell. To compute a function F using this machine,
we initialize the tape with the input x ∈ {0, 1}∗ and our goal is to ensure that the tape
will contain the value F (x) at the end of the computation. Specifically, a computation
of a Turing machine M with k states and alphabet Σ on input x ∈ {0, 1}∗ is formally
defined as follows.

Definition 4.2.1 (Turing Machine). A (one tape) Turing machine with k states and
alphabet Σ ⊃ {0, 1, ., ∅} is represented by a transition function

δM : [k]× Σ −→ [k]× Σ× {L,R, S,H}

For every x ∈ {0, 1}∗, the output of M on input x, denoted by M(x), is the result of the
following process:

1. We initialize T to be the infinite sequence (also represented by a tape)

., x0, x1, ..., xn−1, ∅, ∅, ...

where n = |x|. That is, T [0] = ., T [i+ 1] = xi for i ∈ [n], and T [i] = ∅ for i > n.)

2. We also initialize i = 0 (the head is at the starting position) and we begin with the
initial state s = 0, s ∈ [k].

3. We then repeat the following process which is defined according to the transition
function:

(a) Let (s′, σ′, D) = δM(s, T [i]).

(b) Set s→ s′, T [i]→ σ′

(c) If D = R, then set i→ i + 1, if D = L, then set i→ max{i− 1, 0}. If D = S,
then we keep i the same.

(d) If D = H, then halt.

Colloquially, at each step, the machine reads the symbol σ ∈ T [i] that is in the ith
location of the tape. Bsaed on this symbol and its state s, the machine decides on

(a) What symbol σ′ to write on the tape

(b) Whether to move Left (i→ i− 1), Right (i→ i+ 1), Stay in place, or Halt the
computation

(c) What is going to be the new state s ∈ [k]

4. If the process above halts, then M ’s output, denoted by M(x) is the string y ∈
{0, 1}∗ obtained by concatenating all the symbols in {0, 1} in positions T [0], ..., T [i]
where i+ 1 is the first location in the tape containing ∅.
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5. If the Turing machine does not halt then we denote M(x) =⊥.

We can visualize a Turing machine as a table and a tape labeled below.

[k] states

tape alphabet Σ

Transition
Function δ

Initial
State

Halting
States

H

H

. . .σx0 xn−1 ∅

σ′

Input

In fact, all modern computing devices are Turing machines at heart. You input a string
of bits, the machine flips a bunch of switches, and outputs another string of bits.

Example 23 (Turning Machine for Palindromes). Let PAL be the function that on input
x ∈ {0, 1}∗, outputs 1 if and only if x is an (even length) palindrome, in the sense that

x = w0...wn−1wn−1wn−2...w0

for some n ∈ N and w ∈ {0, 1}∗. We will now describe a Turing machine that computes
PAL. To specify M , we need to specify

1. M ’s tape alphabet Σ which should contain at least the symbols 0, 1, ., and ∅, and

2. M ’s transition function which determines what actionM takes when it reads a given
symbol while it is in a particular state.

For this specific Turing machine, we will use the alphabet {0, 1, ., ∅,×} and will have
k = 13 states, with the following labels for the numbers.

State Label State Label
0 START 7 ACCEPT

1 RIGHT_0 8 OUTPUT_0

2 RIGHT_1 9 OUTPUT_1

3 LOOK_FOR_0 10 0_AND_BLANK

4 LOOK_FOR_1 11 1_AND_BLANK

5 RETURN 12 BLANK_AND_STOP

6 REJECT

The operation of our Turning machine, in words, is as such:

1. M starts in the state START and goes right, looking for the first symbol that is 0 or
1. If it finds ∅ before it hits such a symbol then it moves to the OUTPUT_1 state.

2. Once M finds such a symbol b ∈ {0, 1}, M deletes b from the tape by writing the
× symbol, it enters either the RIGHT_0 or RIGHT_1 mode according to the value of
b and starts moving rightwards until it hits the first ∅ or × symbol.

3. Once M finds this symbol, it goes into the state LOOK_FOR_0 or LOOK_FOR_1 de-
pending on whether it was in the state RIGHT_0 or RIGHT_1 and makes one left
move.
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4. In the state LOOK_FOR_b, M checks whether the value on the tape is b. If it is, then
M deletes it by changing its value to ×, and moves to the state RETURN. Otherwise,
it changes to the OUTPUT_0 state.

5. The RETURN state means that M goes back to the beginning. Specifically, M moves
leftward until it hits the first symbol that is not 0 or 1, in which case it changes its
state to START.

6. The OUTPUT_b states mean that M will eventually output the value b. In both the
OUTPUT_0 and OUTPUT_1 states, M goes left until it hits .. Once it doe sso, it makes
a right step and changes to the 1_AND_BLANK or 0_AND_BLANK state respectively. In
the latter states, M writes the corresponding value, moves right and changes to the
BLANK_AND_STOP state, in which it writes ∅ to the tape and halts.

The above description can be turned into a table describing for each one of the 13 ·5 = 65
combinations of state and symbol, what the Turing machine will do when it is in that state
and it reads that symbol. This table is the transition function of the Turing machine.

Definition 4.2.2 (Computable Functions). Let F : {0, 1}∗ −→ {0, 1}∗ be a (total) func-
tion and letM be a Turing machine. We say thatM computes F if for every x ∈ {0, 1}∗,
M(x) = F (x). We say that a function F is computable if there exists a Turing machines
M that computes it.

It turns out that being computable in the sense of a Turing machine is equivalent to being
computable in virtually any reasonable model of computation. This statement is known
as the Church-Turing Thesis. Therefore, this definition allows us to precisely define
what it means for a function to be computable by any possible algorithm.

Definition 4.2.3 (The class R). We define R to be the set of all computable functions
F : {0, 1}∗ −→ {0, 1}.

4.2.1 NAND-TM Programs

In addition to having a physical interpretation, Turing machines can also be interpreted
as programs.

1. The tape becomes a list or array that can hold values from the finite set Σ.

2. The head position can be thought of as an integer-valued variable that holds integers
of unbounded size.

3. The state is a local register that can hold one of a fixed number of values in [k].

In general, every Turing machine M is equivalent to a program similar to the follow-
ing:

#Gets an array Tape initialized to [">", x_0 ,..., x_(n-1), " ", " ", ...]
def M(Tape):

state = 0
i = 0 #holds head location
while(True):

#Move head , modify state , write to tape based on current state and
#cell at head below are just examples for how program looks
#for a particular transition function
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if Tape[i]=="0" and state==7: #T_M(7,"0")=(19 ,"1","R")
i += 1
Tape[i]="1"
state = 19

elif Tape[i]==">" and state == 13: #T_M(13 ,">")=(15 ,"0","S")
Tape[i] ="0"
state = 15

elif ...
...

elif Tape[i]==">" and state == 29: #T_M(29 ,">")=(.,.,"H")
break #Halt

If we were using Boolean variables, then we can encode the state variables using dlog ke
bits.

Note that in the code above, two new concepts are introduced:

1. Loops : NAND-CIRC is a straight line programming language. That is, a NAND-
CIRC program of s lines takes exactly s steps of computation and hence in particu-
lar, cannot even touch more than 3s variables. Loops allow us to use a fixed-length
program to encode the instructions for a computation that can take an arbitrary
amount of time.

2. Arrays : A NAND-CIRC program of s lines touches at most 3s variables. While
we can use variables with names such as Foo_17 or Bar[22] in NAND-CIRC, they
are not true arrays, since the number in the identifier is a constant that is not
"hardwired" into the program. NAND-TM contains actual arrays that can have a
length that is not a priori bounded.

The following equation summarizes the concepts:

NAND-TM = NAND-CIRC + loops + arrays

Surprisingly, adding loops and arrays to NAND-CIRC is enough to capture the full power
of all programming languages. Hence, we could replace NAND-TM with any of Python,
C, Javascript, etc.

Concretely, the NAND-TM programming language adds the following features on top of
NAND-CIRC:

1. We add a special integer valued variable i. All other variables in NAND-TM are
Boolean valued (as in NAND-CIRC).

2. Apart from i, NAND-TM has two kinds of varibales: scalars and arrays. Scalar
variables hold one bit (just as in NAND-CIRC). Array variables hold an unbounded
number of bits. At any point in the computation we can access the array variables
at the location indexed by i using Foo[i]. We cannot access the arrays at loctions
other than the one pointed by i.

3. We use the convention that arrays always start with a capital letter, and scalar
variables (which are never indexed with i) start with lowercase letters. Hence, Foo
is an array and foo is a scalar variable.

4. The input and output X and Y are not considered arrays with values of 0s and 1s.
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5. We add a special MODANDJUMP instruction that takes two Boolean variables a, b as
input and does the following:

(a) If a = 1, b = 1, then MODANDJUMP(a, b) increments i by one and jumps to the
first line of the program.

(b) If a = 0, b = 1, then MODANDJUMP(a, b) decrements i by one and jumps to the
first line of the program. If i already equals 0, then it stays at 0.

(c) If a = 1, b = 0, then MODANDJUMP(a, b) jumps to the first line of the program
without modifying i.

(d) If a = b = 0, then MODANDJUMP(a, b) halts execution of the program.

6. The MODANDJUMP instruction always appears in the last line of a NAND-TM program
and nowhere else.

7. Turing machines have the special symbol ∅ to indicate that tape location is "blank"
or "uninitialized." In NAND-TM there is no such symbol, and all variables are
Boolean, containing either 0 or 1. All variables and locations either default to 0 if
they have not been initialized to another value. To keep track of whether a 0 in an
array corresponds to a true 0 or to an uninitialized cell, a programmer can always
add to an array Foo a companion array Foo_nonblank and set Foo_nonblank[i] to
1 whenever the ith location is initialized. In particular, we will use this convention
for the input and output arrays X and Y. Therefore, a NAND-TM program has four
special arrays X, X_nonblank, Y, Y_nonblank.

Therefore, when a NAND-TM program is executed on input x ∈ {0, 1}∗ of length n, the
first n cells of X are initialized to x0, ..., xn−1 and the first n cells of X_noblank are initalized
to 1 (all uninitialized cells default to 0). The output of a NAND-TM program is the string
Y[0], ..., Y[m-1] where m is the smallest integer such that Y_nonblank[m] = 0.

We now formally define a NAND-TM program.

Definition 4.2.4 (NAND-TM Programs). A NAND-TM program consists of a se-
quence of lines of the form foo = NAND(bar, blah) and ending with a line of the form
MODANDJMP(foo, bar), where foo, bar, blah are either scalar variables (sequence of
letters, digits, and underscores) or array variables of the form Foo[i] (starting with
capital letters and indexed by i). The program has the array variables X, X_nonblank,
Y, Y_nonblank and the index variables i built in, and can use additional array and scalar
variables.

If P is a NAND-TM program and x ∈ {0, 1}∗ is an input then an execution of P on x is
the following process:

1. The arrays X and X_nonblank are initialized by X[i] = xi and X_nonblank[i] = 1
for all i ∈ [|x|]. All other variables and cells are initialized to 0. The index variable
i is also initialized to 0.

2. The program is executed line by line. When the last line MODANDJMP(foo, bar) is
executed we do as follows:

(a) If foo, bar = 1, 0, jump to the first line without modifying the value of i.

(b) If foo, bar = 1, 1, incremenet i by one and jump to the first line.
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(c) If foo, bar = 0, 1, then decrement i by one (unless it is already 0) and jump
to the first line.

(d) If foo, bar = 0, 0, halt and output Y[0], ..., Y[m-1] wherem is the smallest
integer such that Y_nonblank[m] = 0.

Here are some components of Turing machines and their analogs in NAND-TM pro-
grams.

1. The state of a Turing machine is equivalent to the scalar-variables such as foo, bar, etc.,
each taking values in {0, 1}.

2. The tape of a Turing machines is equivalent to the arrays, where the component of
each array is either 0 or 1.

3. The head location is equivalent to the index variable

4. Accessing memory : At every step the Turing machine has access to its local state,
but can only access the tape at the position of the current head location. In a
NAND-TM program, it has access to all the scalar variables, but can only access
the arrays at the location i of the index variable.

5. A Turing machine can move the head location by at most one position in each step,
while a NAND-TM program can modify the index i by at most one.

Theorem 4.2.1 (Equivalence of Turing Machines and NAND-TM programs). For every
function F : {0, 1}∗ −→ {0, 1}∗, F is computable by a NAND-TM program P if and only
if there is a Turing machine M that computes F .

Setting Specification Implentation
Finite Computation F : {0, 1}n → {0, 1}m Circuit, Straightline program
Infinite Computation F : {0, 1}∗ → {0, 1}∗ Algorithm, Turing Machine, Program

Finally, we can use syntactic sugar to make NAND-TM programs easier to write. For
starters, we can use all of the syntactic sugar of NAND-CIRC, such as macro definitions
and conditionals (if/then). However, we can go beyond this and achieve:

1. Inner loops such as the while and for operations common to many programming
languages.

2. Multiple index variables (e.g. not just i but also j, k, etc.).

3. Arrays with more than one dimension (e.g., Foo[i][j]).

This means that the set of functions computable by NAND-TM with this feature is the
same as the set of functions computable by standard NAND-TM.

Uniformity of Computation

Definition 4.2.5. The notion of a single algorithm that can compute functions of all
input length is known as uniformity of computation.

Hence we think of Turing machines and NAND-TM as uniform models of computation,
as opposed to Boolean circuits of NAND-CIRC, which are non-uniform models, in which
we have to specify a different program for every input length. This uniformity leads to
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another crucial difference between Turing machines and circuits. Turing machines can
have inputs and outputs that are longer than the description of the machine as a string,
and in particular there exists a Turing machine that can "self replicate" in the sense that
it can print its own code. This is extremely useful.

In summary, the main differences between uniform and non-uniform models are described
as such:

1. Non-uniform computational models: Examples are NAND-CIRC programs
and Boolean circuits. These are models where each individual program/circuit can
compute a finite function

f : {0, 1}n −→ {0, 1}m

We have seen that every finite function can be computed by some program/circuit.
To discuss computation of an infinite function F : {0, 1}∗ −→ {0, 1}∗, we need to
allow a sequence

{
Pn
}
n∈N of programs/circuits (one for every input length), but

this does not capture the notion of a single algorithm to compute the function F .

2. Uniform computational models: Examples are Turing machines and NAND-
TM programs. These are models where a single program/Turing machine can take
inputs of arbitrary length and hence compute an infinite function

F : {0, 1}∗ −→ {0, 1}∗

The number of steps that a program/machine takes on some input is not a priori
bounded in advance and in particular there is a chance that it will enter into an
infinite loop. Unlike the non-uniform case, we have not shown that every infinite
function can be computed by some NAND-TM program/Turing machine.

4.2.2 RAM Machines and NAND-RAM Programs

Note that since Turing machines (and NAND-TM programs) can only access one locations
of arrays/tape at a time, they do not have RAM.

Definition 4.2.6. The computational model that models access to such a memory is the
RAM machine. The memory of a RAM machine is an array of unbounded size where
each cell can store a single word, which can be thought of as a string in {0, 1}ω and also
(equivalently) as a number in [2ω].

For example, many modern computing architectures use 64-bit words, in which every
memory location holds a string in {0, 1}64. The parameter ω is known as the word size.
In addition to the memory array, a RAM machine also contains a constant number of
registers r0, r1, ..., rk−1, each of which can also contain a word.

The oeprations a RAM machine can carry out include:

1. Data movement: Load data from a certain cell in memory into a register or store
the contents of a register into a certain cell of memory. A RAM machine can directly
access any cell of memory without having to move the “head” (as Turing machines
do) to that location. That is, in one step a RAM machine can load into register
ri the contents of the memory cell indexed by register rj, or store into the memory
cell indexed by register rj the contents of register ri.
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2. Computation: RAM machines can carry out computation on registers such as
arithmetic operations, logical operations, and comparisons.

3. Control flow: As in the case of Turing machines, the chose of what instruction to
perform next can depend on the state of the RAM machine, which is captured by
the contents of its register.

Just as the NAND-TM programming language models Turing machines, we can also define
a NAND-RAM programming language that models RAM machines. The NAND-
RAM programming language extends NAND-TM by adding the following features:

1. The variables of NAND-RAM are allowed to be (non-negative) integer valued rather
than only Boolean. That is, a scalar variable foo holds a nonnegative integer in
N and an array variable Bar holds an array of integers. As in the case of RAM
machines, we will not allow integers of unbounded size.

2. We allow indexed access to arrays. If foo is a scalar and Bar is an array, then
Bar[foo] refers to the location of Bar indexed by the value of foo. Note that this
means that we don’t need to have a special index variable i anymore.

3. We will assume that for Boolean operations such as NAND, a zero valued integer is
considered as false, and a nonzero valued integer is considered as true.

4. In addition to NAND, NAND-RAM also includes all the basic arithmetic operations
of addition, subtraction, multiplication, integer division, as well as comparisions
(equal, greater/less than, etc.).

5. NAND-RAM includes conditional statements if/then as a part of the language.

6. NAND-RAM contains looping constructs such as while and do as part of the lan-
guage.

It is easy to see that NAND-RAM programs are clearly more powerful than NAND-TM,
and so if a function F is computable by a NAND-TM program then it can be computed
by a NAND-RAM program. It turns out to be true that if a function is computable by a
NAND-RAM program, then it can also be computed by a NAND-TM program.

Theorem 4.2.2. Turing machines (aka NAND-TM programs) and RAM machines (aka
NAND-RAM programs) are equivalent. That is, for every function

F : {0, 1}∗ −→ {0, 1}∗,

F is computable by a NAND-TM program if and only if F is computable by a NAND-
RAM program. Therefore, all four models are equivalent to one another.

4.3 Turing Completeness and Equivalence
Even though the notion of computing a function using Turing machines is crucial in
theory, it is not a practical way of preforming computation. But in addition to defining
computable functions with Turing machines, there are many equivalent conditions of
computability under a wide variety of computational models. This notion is known as
Turing completeness or Turing equivalence.
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Any of the standard programming languages such as C, Java, Python, Pascal, Fortran,
have very similar operations to NAND-RAM. Indeed, ultimately, they can all be executed
by machines which have a fixed number of registers and a large memory array. Hence, with
the equivalence theorem, we can simulate any program in such a programming language by
a NAND-TM program. In the other direction, it is a fairly easy programming exercise to
write an interpreter for NAND-TM in any of the above programming languages. Hence we
can also simulate NAND-TM programs (and Turing machines) using these programming
languages.

Definition 4.3.1. A computational system is said to be Turing-complete or compu-
tationally universal if it can be be used to simulate any Turing machine or NAND-TM.

Very much related, the property of being equivalent in power to Turing machines/NAND-
TM is called Turing equivalent. That is, two computer P and Q are equivalent if P
can simulate Q and Q can simulate P . All known Turing complete systems are Turing
equivalent.

The equivalence between Turing machines and RAM machines allows us to choose the
most convenient language for the task at hand:

1. When we want to prove a theorem about all programs/algorithms, we can use Turing
machines (or NAND-TM) since they are simpler and easier to analyze.

2. If we want to show that a certain function cannot be computed, then we will use
Turing machines.

3. When we want to show that a function can be computed we can use RAM machines
or NAND-RAM, because they are easier to program in and correspond more closely
to high level programming languages we are used to. In fact, we will often describe
NAND-RAM programs in an informal manner, trusting that the reader can fill in
the details and translate the high level description to the precise program. (This
is just like the way people typically use informal or “pseudocode” descriptions of
algorithms, trusting that their audience will know to translate these descriptions to
code if needed.)

A formal definition of Turing completeness is as follows. This is also referred to as Godel
Numbering, which is a function that assigns to each symbol and well-formed formula of
some formal language a unique natural number, called its Gödel number

Definition 4.3.2 (Turing Completeness and Equivalence). Let F be the set of all partial
functions from {0, 1}∗ to {0, 1}∗. A computational model is a map

M : {0, 1}∗ −→ F

We say that a program P ∈ {0, 1}∗ M-computes a function F ∈ F if

M(P ) = F

A computational modelM is Turing complete if there is a computable map

ENCODEM : {0, 1}∗ −→ {0, 1}∗

such that for every Turing machine N (represented as a string),M(ENCODEM(N)) is
equal to the partial function computed by N .
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A computational model M is Turing equivalent if it is Turing complete and there
exists a computable map DECODEM : {0, 1}∗ −→ {0, 1}∗ such that for every string
P ∈ {0, 1}∗, N = DECODEM(P ) is a string representation of a Turing machine that
computes the functionM(P ).

4.3.1 Cellular Automata

Many physical systems can be described as consisting of a large number of elementary
components that interact with one another. One way to model such systems is using
cellular automata. This is a system that consists of a large (or even infinite) number
of cells. Each cell only has a constant number of possible states. At each time step, a
cell updates to a new state by applying some simple rule to the state of itself and its
neighbors.

Definition 4.3.3. An example of a cellular automaton is Conway’s Game of Life. In
this automata the cells are arranged in an infinite two dimensional grid. Each cell has
only two states:

1. Dead: which we encode as a 0

2. Alive: which we encode as 1

The next state of a cell depends on its previous state and the states of its 8 adjacent
neighbors, which can be modeled with a transition function

r : Σ8 −→ Σ

A dead cell becomes alive only if exactly three of its neighbors are alive. A live cell
continues to live if it has two or three live neighbors.

Even though the number of cells is potentially infinite, we can encode the state using a
finite-length string by only keeping track of the live cells. If we initialize the system in
a configuration with a finite number of live cells, then the number of live cells will stay
finite in all future steps. Note that this is a discrete time Markov chain.

Since the cells in the game of life are arranged in an infinite two-dimensional grid, it is an
example of a two dimensional cellular automaton. We can get even simpler by setting a
one dimensional cellular automaton, where the cells are arranged in an infinite line.

Theorem 4.3.1. Conway’s Game of Life is Turing complete.

One-Dimensional Cellular Automata

Definition 4.3.4. Let Σ = {0, 1, ∅}. A one-dimensional cellular automaton of
alphabet Σ is described by a transition rule

r : Σ3 −→ Σ

A configuration of the automaton r is a function A : Z −→ Σ; that is, A just represents
an infinite sequence of letters in the alphabet Σ. If an automaton with rule r is in
configuration A, then its next configuration A′ = NEXTr(A), is the function A′ such
that

A′(i) = r
(
A(i− 1), A(i), A(i+ 1)

)
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In other words, the next state of the automaton r at point i is obtained by applying the
rule r to the values of A at i and its two neighbors.

It is also said that a configuration of an automaton r is finite if there is only some finite
number of indices i0, ..., ij−1 in Z such that A(ij) 6= ∅.

If the alphabet is only {0, 1}, then there can be a total of 28 = 256 total possible one
dimensional cellular automata. For example, the cellular automaton with the transition
rule

r(L,C,R) ≡ C +R + CR + LCR (mod 2)

can be expressed with the table (called rule 110)

111 110 101 100 011 010 001 000
0 1 1 0 1 1 1 0

However, many of them are trivially equivalent to each other up to a simple transformation
of the underlying geometry, such as with reflections, translations, or rotations. This
reduces the possible unique automata to 88, only one of which is Turing complete.

Theorem 4.3.2. The Rule 110 cellular automaton is Turing complete. That is, any calcu-
lation or computer program can be simulated using this automaton.

Definition 4.3.5 (Configuration of Turing Machines). Let M be a Turing machine with
tape alphabet Σ and state space [k]. A configuration of M is a string

α ∈ Σ
∗
, where Σ = Σ×

(
{·} ∪ [k]

)
that satisfies that there is exactly one coordinate i for which αi = (σ, s) for some σ ∈ Σ
and s ∈ [k]. For all other coordinates j, αj = (σ′, ·) for some σ′ ∈ Σ. A configuration of
α ∈ Σ

∗ of M corresponds to the following staet of its execution:

1. M ’s tape contains αj,0 for all j < |α| and contains ∅ for all positions that are at
least |α|, where we let αj,0 be the value σ such that αj = (σ, t) with σ ∈ Σ and
t ∈ {·} ∪ [k]. In other words, since αj is a pair of an alphebet symbol σ and either
a state in [k] or the symbol ·, αj,0 is the first component σ of this pair.

2. M ’s head is in the unique position i for which αi has the form (σ, s) for s ∈ [k], and
M ’s state is equal to s.

Informally, a configuration can be interpreted simply as a string that encodes a snapshot
of the Turing machine at a given point in the execution. It is also called a core dump.
Such a snapshot must encode the following components:

1. The current head position.

2. The full contents of the large scale memory, that is the tape.

3. The contents of the "local registers," that is the state of the machine.

4.3.2 Lambda Calculus

The Lambda calculus is an abstract mathematical theory of computation, involving λ
functions. It is a Turing complete language. λ calculus allows us to define "anonymous"
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functions. For example, instead of giving a name f to a function and defining it as

f(x) = x2

we can write it anonymously (without naming it at all) as

x 7→ x2, or equivalently, λx.x2

so (λx.x2)(7) = 49, or by dropping the parentheses, (λx.x2)7 = 49. That is, we can
interpret λx.exp(x), where exp is some expression as a way of specifying the anonymous
function x 7→ exp(x). This notation occurs in many programming languages, such as
Python, where the squaring function is written lambda x: x*x.

Furthermore, in λ calculus functions are first-class objects, meaning that we can use func-
tions as arguments to other functions. However, all functions must take one input.

Expressions can be thought of as programs in the language of lambda calculus. Given the
notion of a variable, denoted by x, y, z, ... we recursively define an expression inductively
in terms of abstractions (anonymous functions) and applications as follows:

Definition 4.3.6 (λ expression). Let Λ be the set of λ expressions. Then

1. Identifier: If x is a variable, then x ∈ Λ

2. Abstractions: If x is a variable andM∈ Λ, then (λx.M) ∈ Λ

3. Applications: IfM∈ Λ and N ∈ Λ, thenMN ∈ Λ

4. Grouping: IfM is an expression, then (M) ∈ Λ

Here are two important conventions:

1. Function application is left associative, unless stated otherwise by parentheses:

S1S2S3 ≡
(
(S1S2)S3

)
2. Consecutive abstractions can be uncurried, e.g.

λxyz.M≡ λx.λy.λz.M

3. The body of the abstraction extends to the right as far as possible

λx.MN ≡ λx.(MN )

Applications

The notation for applying a function to a certain input is modeled by juxtaposition. That
is,

f(a) =⇒ f a

where f a means the function f applied on input a. However, since functions themselves
could be inputs and outputs to other functions, we can use a method called currying to
create multivariate functions. In the one below,

f a b , which stands for f(a)(b)

this does not model a multivariate function f that takes two inputs. Rather, f takes one
input a and outputs a function that takes one input b!
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Example 24. The addition function add(a)(b) can be modeled with 2 steps.

1. It takes the first argument a and outputs a function adda that takes another argu-
ment.

add : a 7→ adda

2. adda takes argument b and adds b to the predetermined number a.

adda : b 7→ a+ b

Additionally, the expression

(f a) b , which stands for
(
f(a)
)
(b)

is equivalent to f a b since we have stated that function application is left associative.
However,

f (a b) , which stands for f
(
a(b)

)
is a different expression, since now we are applying a onto b first, getting the output, and
then applying f onto the output.

For example

((λx.(λy.x))2)9 = (λy.2) = 9

Using a method called currying, we can actually create multivariate functions. For
example, the function

λx.(λy.x+ y)

maps x to the function y 7→ x + y, which is equivalent to a function mapping (x, y) 7→
x+ y.

Abstractions

To understand abstractions, observe the four examples below (where =⇒ means mapped
to).

λ a.b a =⇒ b

λ a.b x a =⇒ b(x)

λ a.(b x) a =⇒
(
b(x)

)
(λ a.b) x (a =⇒ b)(x)

In the second example, note that since the body of the abstraction extends to the far
right as possible (i.e. the λ abstraction is greedy), it outputs the entire b x. The extra
parentheses in the third line is not needed because of this convention. However, the
parentheses in the fourth line is nontrivial. It says that λ a.b outputs a function that acts
on x. Finally, we are allowed to nest functions as such:

λ a.λ b.a a =⇒ b =⇒ a

The outermost λ takes in an a and returns a function that takes in a b, which in turn
outputs the a. Note that λ a.λ b.a = λ a.(λ b.a).

91



Beta Reduction

β-reduction refers to the process in simplifying a λ expression.

Example 25. We can β reduce the expression into its simplest form, called the beta
normal form.

((λ a.a) λ b.λ c.b)(x) λ e.f = (λ b.λ c.b)(x) λe.f

= (λ c.x) λ e.f

= x

Combinators

Like transistors and Boolean gates, combinators are the atoms of more complicated func-
tions in lambda calculus. We list five of them. Note that the cardinal can be build from
other combinators.

Smyb Bird λ-Calculus Use
I Idiot λ a.a identity
M Mockingbird λ f.ff self-application
K Kestrel λ ab.a first, const
KI Kite λ ab.b = KI = CK second
C Cardinal λ fab.fba reverse arguments

Free and Bound Variables

In an abstraction like λx.x, the variable x is something that has no original meaning but
is a placeholder (i.e. it only has meaning within the λ function). We say that x is a
variable bound to the λ. On the other hand, in λx.y i.e. a function which always returns
y whatever it takes, y is a free variable since it has an independent meaning by itself.
Because a variable is bound in some sub-expression does not mean it is bound everywhere.
For example, the following is a valid expression (an example of application)

(λx.x)(λy.yx)

Here, the x in the second parenthesis has nothing to do with the one in the first. For-
mally,

Definition 4.3.7. x is free...

1. in the expression x

2. in the expression λy.M if x 6= y and x is free inM

3. inMN if x is free inM or if it is free in N

x bound...

1. in the expression λx.M

2. inMN if x is bound inM or if it is bound in N
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Note that a variable can be both bound and free but they represent different things. An
expression with no free variables is called a closed expression.

In addition, the concept of α equivalence states that any bound variable is a placeholder
and can be replaced with a different variable, provided there are no clashes. A simple
example is

λx.x =α λy.y

However,
λx.(λx.x) =α λy.(λx.x) but not to λy.(λx.y)

Example 26. The following λ expression can be simplified as such:(
λx.(λx.x)

)
y =α λy.y =α λx.x

Booleans as Functions

Note that we can now define Booleans as functions! We can define a function f that
outputs, one element if it is the True function and outputs another element if it is the
False function. This can be done by defining:

T (a, b) = λx.λy.x(a)(b) = a (the Kestrel!)
F (a, b) = λx.λy.y(a)(b) = b (the Kite!)

Similarly, we can define the not function using the Cardinal.

Symb Name λ-Calculus Use
T True λ ab.a = K encoding for True
F False λ ab.b encoding for False

Not λ p.pFT = C negation

It is easy to see C as the negation function since

K(a)(b) = a =⇒ CK(a)(b) = b

KI(a)(b) = b =⇒ CKI(a)(b) = a

With this, we can build more complex logic gates, making the lambda calculus equivalent
in computing power to NAND-CIRC programs. Similarly, we can cleverly implement
recursion and arrays into this language, therefore making the lambda calculus Turing
complete. To implement infinite loops, consider the λ expression

λx.xx λx.xx

If we try to simply this expression by invoking the left hand function on the right one,
then we just get another copy of this expression.

The Turing equivalence of the computing models we have talked about can be visualized
below:
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Turing Machines

RAM Machines

1,2-dim. cellular automata

λ-calculus

NAND-RAM Programs

NAND-TM Programs

General Purpose programs

Syntactic Sugar

4.4 Universality and Uncomputability
It turns out that uniform models such as Turing machines or NAND-TM programs allow
us to obtain a truly universal Turing machine U that can evaluate all other machines,
including machines that are more complex than U itself. Similarly, there is a Universal
NAND-TM program U ′ that can evaluate all NAND-TM programs, including programs
that have more lines than U ′.

The existence of such a universal program/machine underlies the technological advances
made up to now. Rather than producing special purpose calculating devices such as
the abacus, the slide ruler, and machines that compute various trigonometric series, this
universal property allows us to build a machine that, via software, can be extended to do
arbitrary computations, i.e. a general purpose computer.

Theorem 4.4.1 (Universal Turing Machine). There exists a Turing machine U such that
on every string M which represents a Turing machine and x ∈ {0, 1}∗,

U(M,x) = M(x)

That is, if the machine M halts on x and outputs some y ∈ {0, 1}∗, then U(M,x) = y
and if M does not halt on x (i.e. M(x) =⊥), then U(M,x) =⊥.

There is more than one Turing machine U that satisfies the theorem above.

Definition 4.4.1 (String representation of Turing machine). LetM be a Turing machine
with k states and size l alphabet

Σ = {σ0, σ1, ..., σl−1}

(We use the convention σ0 = 0, σ1 = 1, σ2 = ∅, σ3 = .. We represent M as the triple
(k, l, T ), where T is the table of valies for δM :

T =
(
δM(0, σ0), δM(0, σ1), ..., δM(k − 1, σl−1)

)
where each value δM(s, σ) is a triple (s′, σ′, d) with s′ ∈ [k], σ′ ∈ Σ, and d a number in
{0, 1, 2, 3} encoding one of {L,R, S,H}. Thus, such a machine M is encoded by a list of
2+3k ·l natural numbers. The string representation ofM is obtained by concatenating
prefix-free representations of all these integers. If a string α ∈ {0, 1}∗ does not represent
a list of integers in the form above, then we treat it as representing the trivial Turing
machine with one state that immediately halts on every input.
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The big takeways so far are:

1. We can represent every Turing machine as a string.

2. Given the string representation of a Turing machine M and an input x, we can
simulate M ’s execution on the input x. That is, if we want to simulate a new
Turing machine M , we do not need to build a new physical machine, but rather can
representM as a string (i.e. using code) and then inputM to the universal machine
U .

4.4.1 Uncomputable Functions

Even though NAND-CIRC programs can compute every finite function f : {0, 1}n −→
{0, 1}, NAND-TM programs can not compute every function F : {0, 1}∗ −→ {0, 1}. That
is, there exists such a function that is uncomputable!

Definition 4.4.2. Let HALT : {0, 1}∗ −→ {0, 1} be the function such that for every
string M ∈ {0, 1}∗, HALT (M,x) = 1 if Turing machine M halts on the input x and
HALT (M,x) = 0 otherwise.

Theorem 4.4.2. The HALT function is not computable. This leads to many other func-
tions also being uncomputable.

It is surprising that such a simple program is actually uncomputable. That is, there is no
general procedure that would determine for an arbitrary program P whether it halts or
not.

4.4.2 Impossibility of General Software Verification

Definition 4.4.3. Let there be a program P that computes a function. A semantic
property or semantic specification of a program means properties of the function
that the program computes, as opposed to the properties that depend on the particular
syntax/code used by the program.

Example 27. A semantic property of a program P is the property that whenever P is
given an input string with an even number of 1’s, it outputs 0. Another example is the
property that P will always halt whenever the input ends with a 1.

In contrast the property that a C program contains a comment before every function
declaration is not a semantic property, since it depends on the actual source code as
opposed to the input/output relation.

Example 28. Consider the following two C programs:

int First(int n) {
if (n<0) return 0;
return 2*n;

}

int Second(int n) {
int i = 0;
int j = 0
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if (n<0) return 0;
while (j<n) {

i = i + 2;
j= j + 1;

}
return i;

}

First and Second are two distinct C programs, but they compute the same function.
Therefore, a semantic property would either be true for both programs or false for both,
since it depends on the function the programs compute. One example of a semantic
property is: The program P computes a function f mapping integers to integers satisfying
that f(n) ≥ n for every input n.

A property is not semantic if it depends on the source code rather than the input/output
behavior. An example of this would be: The program contains the variable k or the
program uses the while operation.

Definition 4.4.4 (Semantic properties). A pair of Turing machines M and M ′ are func-
tionally equivalent if for every x ∈ {0, 1}∗,M(x) = M ′(x) (including when the function
outputs ⊥).

A function F : {0, 1}∗ −→ {0, 1} is semantic if for every pair of strings M,M ′ that
represent functionally equivalent Turing machines, F (M) = F (M ′). Note that we assume
that every string represents some Turing machine.

We now present a theorem concerning the Halting problem (the problem of determining
whether a Turing machine will halt or not on any arbitrary input). The Halting problem
also turns out to be a linchpin of uncomputability.

Theorem 4.4.3 (Rice’s Theorem). Let F : {0, 1}∗ −→ {0, 1}. If F is semantic and non-
trivial, then it is uncomputable.

Corollary 4.4.3.1. The following function is uncomputable:

COMPUTES − PARITY (P ) =

{
1 P computes the parity function
0 else

Therefore, we can see that the set R of computable Boolean functions is a proper subset
of the set of all functions mapping {0, 1}∗ −→ {0, 1}.

4.4.3 Context Free Grammars

When a person designs a programming language, they need to determine its syntax. That
is, the designer decides which strings correspond to valid programs, and which ones do
not (i.e. which strings contain a syntax error). To ensure that a compiler or interpreter
always halts when checking for syntax errors, language designers typically do not use a
general Turing-complete mechanism to express their syntax. Rather, they use a restricted
computational model, most often being context free grammars.
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Consider the function ARITH : Σ∗ −→ {0, 1} that takes as input a string x over alpha-
bet

Σ = {(, ),+,−,×,÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

and returns 1 if and only if the string x represents a valid arithmetic expression. In-
tuitively, we build expressions by applying an operation such as +,−,×,÷ to smaller
expressions or enclosing them in parentheses. More precisely, we can make the following
definitions:

1. A digit is one of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

2. A number is a sequence of digits (we will drop the condition that the sequence does
not have a leading zero)

3. An operation is one of +,−,×,÷.

4. An expression has either the form

(a) "number"

(b) "sub-expression1 operation sub-expression2

(c) "(sub-expression1)"

where "sub-expression1" and "sub-expression2" are themselves expressions. Note
that this is a recursive function.

A context free grammar (CFG) is a formal way of specifying such conditions, consisting
of a set of ruels that tell us how to generate strings from smaller components.

Definition 4.4.5 (Context Free Grammar). Let Σ be some finite set. A context free
grammar (CFG) over Σ is a triple (V,R, s) such that:

1. V , known as the variables, is a set disjoint from Σ

2. s ∈ V is known as the initial variable

3. R is a set of rules. Each rule is a pair (v, z) with v ∈ V and z ∈ (Σ∪V )∗. We often
write the rule (v, z) as

v =⇒ z

and say that the string z can be derived from the variable v.

Example 29. The example of well-formed arithmetic expressions can be captured formally
by the following context free grammar.

1. The alphabet Σ is {(, ),+,−,×,÷, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

2. The variables are V = {expression, number, digit, operation}

3. The rules are the set R containing the following 19 rules:

(a) 4 Rules: operation =⇒ +, operation =⇒ −, operation =⇒ ×,
operation =⇒ ÷

(b) 10 Rules: digit =⇒ 0, digit =⇒ 1, ..., digit =⇒ 9

(c) Rule: number =⇒ digit
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(d) Rule: number =⇒ digitnumber

(e) Rule: expression =⇒ number

(f) Rule: expression =⇒ expression operation expression

(g) Rule: expression =⇒ (expression)

4. The starting variable is expression.
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Chapter 5

Efficient Algorithms

5.1 Introduction
Up until now, we have been concerned with which functions are computable and which
ones are not. But now we will address the finer question of the time that it takes to
compute functions, as a function of their input length. Time complexity is extremely
important to both the theory and practice of computing.

Note that the running time of an algorithm is not a number. It is a function of the length
of the input. Informally, we describe efficient algorithms as ones that have computational
complexity ofO(nc) for a small constant c. For some problems we know efficient algorithms
and for others the best known algorithms are exponential. It is also interesting that
seemingly minor changes in a problem formulation can make the (known) complexity of
a problem "jump" from polynomial to exponential.

Furthermore, the difference between polynomial vs exponential time is typically insensi-
tive to the choice of the particular computational model: a polynomial-time algorithm
is still polynomial whether you use Turing machines, RAM machines, or parallel clus-
ter, and similarly an exponential-time algorithm will remain exponential in all of these
platforms.

5.1.1 Finding the shortest path in a graph

The shortest path problem is the task of finding, given a graph G = (V,E) and two vertices
s, t ∈ V , the length of the shortest path between s and t (if such a path exists). That
is, we want to find the smallest number k such that there are vertices v0, v1, ..., vk with
v0 = s, vk = t and for every i ∈ {0, ..., k − 1} an edge between vi and vi+1. Formally,
we define MINIPATH : {0, 1}∗ −→ {0, 1}∗ to be the function that on input a triple
(G, s, t) (represented as a string) outputs the number k which the length of the shortest
path in G between s and t or a string representing no path if no such path exists. This
algorithm can also yield the actual path itself as a byproduct.

If each vertex has at least two neighbors, then there can be an exponential number of paths
from s to t, but fortunately we do not have to enumerate them all to find the shortest
path. We can find the shortest path using a breadth first search (BFS), enumerating s’s
neighbors, and then neighbors’ neighbors, etc.. in order. If we maintain the neighbors in
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a list we can perform a BFS in O(n2) time, while using a queue we can do this in O(m)
time. Dijkstra’s algorithm is a well-known generalization of BFS to weighed graphs, where
each edge is given a numerical weight (e.g. the distance between two nodes).

Finding the longest path in a graph

The longest path problem is the task of finding the length of the longest simple (i.e.,
non-intersecting) path between a given pair of vertices s and t in a given graph G. In
particular, finding the longest path is a generalization of the famous Hamiltonian path
problem which asks for a maximally long simple path (i.e., path that visits all n vertices
once) between s and t, as well as the notorious traveling salesman problem (TSP) of
finding (in a weighted graph) a path visiting all vertices of cost at most w. TSP is a
classical optimization problem, with applications ranging from planning and logistics to
DNA sequencing and astronomy.

Surprisingly, while we can find the shortest path in O(m) time, there is no known algo-
rithm for the longest path problem that significantly improves on the trivial “exhaustive
search” or “brute force” algorithm that enumerates all the exponentially many possibilities
for such paths. Specifically, the best known algorithms for the longest path problem take
O(cn) time for some constant c > 1. Currently the best record is c ≈ 1.65.

Finding the minimum cut in a graph

Definition 5.1.1. Given a graph G = (V,E), a cut of G is a subset S ⊂ V such that S
is neither empty not is it all of V . The edges cut by S are those edges where one of their
endpoints is in S and the other is in S = V \ S. We denote this set of edges by E(S, S).
If s, t ∈ V are a pair of vertices, then an s, t cut is a cut such that s ∈ S and t ∈ S.

The minimum s, t cut problem is the task of finding, given s, t, the minimum number k
such that there is an s, t cut cutting k edges. This also yields the set S that achieves
this minimum. Formally, we define MINCUT : {0, 1}∗ −→ {0, 1}∗ to be the function
that on input a string representing a triple (G = (V,E), st) of a graph and two vertices,
outputs the minimum number k such that there exists a set S ⊂ V with s ∈ S, t 6∈ S, and
|E(S, S)| = k.

In the diagram below, an example of a cut is labeled with blue, while the minimum 1, 0
cut is labeled in red.

1

2

3

4

5

6

7

8

9

0
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There are many applications to computing minimum s, t cuts since minimum cuts often
correspond to bottlenecks. The applications in communication or railroad networks is
obvious now. Additionally, in the setting of image segmentation, one can define a graph
whose vertices are pixels and whose edges correspond to neighboring pixels of distinct
colors. If we want to separate the foreground from the background, then we can pick (or
guess0 a foreground pixel s and a background pixel t and ask for a minimum cut between
them.

The naive algorithm for computing MINCUT will check all 2n possible subset of an n-
vertex graph, but we can actually build algorithm that computeMINCUT in polynomial
time.

Min-Cut Max-Flow and Linear Programming

We can obtain a polynomial-time algorithm for computingMINCUT using theMax-Flow
Min-Cut Theorem.

Theorem 5.1.1 (Max-Flow Min-Cut Theorem). In a flow network G (we can just interpret
this as a weighted directed graph), the maximum amount of flow passing from source s ∈ V
to sink t ∈ V is equal to the total weight of the edges in a minimum cut. If the graph
is unweighted (i.e. every edge has unit capacity), then the maximum flow is just equal
to the minimum cut k. The maximum s, t flow is the maximum units of water that
we could transfer from s to t over these pipes. If there is an s, t cut of k edges, then the
maximum flow is at most k.

It is easy to see why this theorem is when we interpret the minimum cut S acting as a
bottleneck that restricts the flow the most. The Max-Flow Min-Cut Theorem reduces
the task of computing a minimum cut of the task of computing a maximum flow. For
this problem, the Ford-Fulkerson Algorithm is direct way to compute such a flow using
incremental improvements. This is a special case of a more more general tool known as
linear programming.

Definition 5.1.2. A flow on a graph G of m edges represents the weight of each edge,
which can be interpreted as the amount of water per time-unit that flows through each
edge. The flow on this graph of m edges can be modeled as a vector x ∈ Rm where for
every edge e, xe corresponds to the amount of water per time-unit that flows on e. We
think of an edge e as an ordered pair (u, v) (can be chosen arbitrarily) and let xe be the
amount of flow that goes from u to v. Since every edge has capacity one, −1 ≤ xe ≤ 1 for
every edge e. Finally, a valid flow has the property that the amount of water leaving the
source s is the same as the amount entering the sink t, and that for every other vertex
v, the amount of water entering and leaving v is the same. Mathematically, we can write
these properties as follows:∑

s

xs +
∑
t

xt = 0∑
e

xe = 0 ∀ v ∈ V \ {s, t}

− 1 ≤ xe ≤ 1 ∀ e ∈ E
We write the source and sinks as summations since there may be multiple sources and
sinks.
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Example 30. An example of such a viable sink is:

1

2

3

4

5

6

0.85

0.5

0.85

0.6

0.25

1.0

0.75

0.35

+1.35

-1.35

Note that the water flowing from the source and into the sink are both 1.35, and at each
node, the water flowing in is equal to the water flowing out. The water flowing through
each pipe is also less than 1.

From this very simple graph, we can see that the minimum 1, 6 cut is k = 2, and therefore
the maximum flow of water from node 1 to node 6 is 2 units of water per given time-
interval. We can even construct this explicit "maximum flow" as such (there are multiple
ways):

1

2

3

4

5

6

1

1

1

0.5

0.5

1

0.5

1

+2.00

-2.00

By generalizing this process, the maximum flow problem can be thought of as the task of
maximizing

∑
s xs over all the vectors x ∈ Rm satisfying the properties above for graphs.

Clearly, the function that maps l : x → xs is linear, and maximizing this linear function
l(x) over the set x ∈ Rm that satisfy certain linear equalities and inequalities is known
as linear programming. There are polynomial-time algorithms for solving linear program-
ming, and hence we can solve the maximum flow (and so, minimum cut) problem in
polynomial time. In fact, there are much better algorithms for maximum flow/minimum-
cut, even for weighted directed graphs, with the record standing at O(min{m10/7,m

√
n})

time.

Definition 5.1.3. Given a graph G = (V,E), the global minimum cut of G is the
minimum over all S ⊂ V with S 6= ∅, V of the number of edges cut by S. Therefore, the
points s, t are not chosen initially, and every graph has a global minimum cut.

Theorem 5.1.2. There is a polynomial-time algorithm to compute the global minimum
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cut of a graph.

Similarly, the maximum cut problem is the task of finding, given an input graph G =
(V,E), the subset S ⊂ V that maximizes the number of edges cut by S. This can also be
defined for the s, t cut, too. But unlike the minimum cut problem which can be solved
using a polynomial time-algorithm, there is no known algorithm solving maximum cut
much faster than the trivial "brute force" algorithm that tries all 2n possibilities for the
set S.

Convexity

There is an underlying reason for the difference between the difficulty of maximizing and
minimizing a function over a domain. If D ⊂ Rm, then a function f : D −→ R is convex
if for every x, y ∈ D and p ∈ [0, 1],

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y)

Theorem 5.1.3. Given a convex set D ⊂ Rm and convex function f : D −→ R, if x is a
local minimum of f , then it is also a global minimum.

Proof. Assume that x is the local minimum and there is a global minimum y 6= x. f(y) <
f(x), so every point z = px+ (1− p)y on the line segment between x and y will satisfy

f(z) ≤ pf(x) + (1− p)f(y) < f(x)

and hence in particular x cannot be a local minimum. �

In general, local minima of functions are much easier to find than global ones (e.g. using
algorithms like gradient descent). Indeed, under certain technical conditions, we can often
efficiently find the minimum of convex functions over a convex domain, and this is the rea-
son why problems such as minimum cut and shortest path are easy to solve. On the other
hand, maximizing a convex function over a convex domain (or equivalently, minimizing
a concave function) can often be a hard computational task. A linear function is both
convex and concave, which is the reason that both the maximization and minimization
problems for linear functions can be done efficiently.

The minimum cut problem is not a priori a convex minimization task, because the set of
potential cuts is discrete and not continuous. However, it turns out that we can embed
it in a continuous and convex set via the (linear) maximum flow problem. The “max flow
min cut” theorem ensures that this embedding is “tight” in the sense that the minimum
“fractional cut” that we obtain through the maximum-flow linear program will be the
same as the true minimum cut. Unfortunately, we don’t know of such a tight embedding
in the setting of the maximum cut problem.

5.1.2 Computational Problems Beyond Graphs

SAT

A propositional formula ϕ involves n variables x1, x2, ..., xn and the logical operators
AND (∧), OR (∨), and NOT (¬, also denoted with a bar).
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Definition 5.1.4. We say that a propositional formula is in conjunctive normal form
(CNF) if it is an AND of ORs or their negations. A term of the form xi or xi is called a
literal.

Furthermore, we say that a formula is a k-CNF if it is an AND of ORs where each OR
involves exactly k literals.

Example 31. This is a CNF formula since it is an AND of ORs of literals.

(x7 ∨ x22 ∨ x15) ∧ (x37 ∨ x22) ∧ (x55 ∨ x7)

Definition 5.1.5. A satisfying assignment for CNF formula ϕ is a string x ∈ {0, 1}∗
such that ϕ evaluates to True if we assign its variables the values of x.

Following this, the satisfiability problem is the task of determining, given a CNF
formula ϕ, whether or not there exists a satisfying assignment for ϕ. More specifically,
the k-SAT problem is the restriction of the satisfiability problem for the case that the
input formula is a k-CNF.

Example 32. The CNF formula

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ x1

is satisfiable by assigning x = (x1, x2, x3) = (FALSE, FALSE, arbitrary), since

(FALSE ∨ FALSE) ∧ (FALSE ∨ FALSE ∨ x3) ∧ FALSE
=(FALSE ∨ TRUE) ∧ (TRUE ∨ FALSE ∨ x3) ∧ TRUE
=TRUE ∧ TRUE ∧ TRUE
=TRUE

However, the CNF formula
x1 ∧ x1

is not satisfiable, since neither x1 = TRUE nor x1 = FALSE will reduce the above
statement to TRUE.

The trivial, brute-force algorithm for 2SAT will enumerate all the 2n assignments x ∈
{0, 1}n but fortunately, we can do much better. Let us assume that there exists a sat-
isfiable solution to this 2-CNF formula. Then, we can think of every constraint li ∨ lj
(where li, lj are literals, corresponding to variables or their negations) as an implication
li =⇒ lj, since if li is false then lj must be true. Therefore, we can make a directed
graph of the 2n literals (x1, ..., xn, x1, ..., xn) with every constraint li ∨ lj corresponding to
the directed edge li → lj. With this, it can be shown that ϕ is unsatisfiable if and only
if there is a variable xi such that there is a directed path from xi to xi and from xi to xi
(since this means that xi =⇒ ... =⇒ xi, reaching a contradiction).

The 3SAT problem is the task of determining satisfiability for 3-CNFs, and we do not
know of a significantly better than brute force algorithm for 3SAT. The best known
algorithms take roughly 1.3n steps.
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Solving Linear and Quadratic Equations

The standard Gaussian elimination algorithm can be used to solve a linear system of n
equations in n variables in polynomial time. In fact, if we are willing to allow some loss
in precision, there are algorithms that can handle linear inequalities, also known as linear
programming. In contrast, if we would like integer solutions, the ask for solving linear
equalities or inequalities is known as integer programming, and the best known algorithms
are exponential time in the worst case.

However, if we would like to solve not just linear but equations involving quadratic terms
of the form

ai,jxjxk

That is, suppose that we are given a set of quadratic polynomials p1, ..., pm and consider
the homoegeneous equations pi(x) = 0. To avoid issues with bit representations, we will
always assume that the equations contain the constraints x2i −xi = 0 (with only solutions
being xi = 0, 1). This means that we can restrict attention to solutions in {0, 1}n. For
this problem, we do not know a much better algorithm for this problem than the one that
enumerates over all the 2n possibilities.

Determinant and Permanent of a Matrix

Using the LUP decomposition algorithm (which is really dependent on polynomial-time
Gaussian elimination), the determinant of an n×n matrix can be computed in polynomial
time of arithmetic operations.

Definition 5.1.6. The permanent of n× n matrix A is defined as

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i)

That is, perm(A) is defined analogously to the determinant except that we drop the sign
of σ.

It turns out that we can find compute a function perm2(A) that computes the permanent
modulo 2 in polynomial time, but as soon as we reach permanent modulo 3 or greater
prime numbers, we do not know of a much better than brute force algorithm to even
compute the permanent modulo 3.

Finding a Zero-Sum Equilibrium

Definition 5.1.7. A zero sum game is a game between two players where the payoff
for one is the same as the penalty for the other. A zero sum game can be specified by a
n×n matrix A, where if player chooses action i and player 2 chooses action j then player
one gets Ai,j and player 2 loses the same amount.

The famous Min Max theorem of linear algebra states that we if allow probabilistic or
mixed strategies (where a player does not choose a single action but rather a distribution
over actions), then it does not matter who plays first and the end result will be the
same. Mathematically, the min max theorem is that if we let δn be the set of probability

105



distributions over [n] (i.e. δn is the set of all nonnegative column vectors in Rn whose
entries sum up to 1), then

max
p∈δn

min
q∈δn

pTAq = min
q∈δn

max
p∈δn

pTAq

This value can be computed efficiently by a linear program.

Finding a Nash Equilibrium

For games that are not zero sum, where the payoff of one player does not necessarily equal
the loss of the other, there is the notion of a Nash equilibrium for such games as well.
However, unlike zero sum games, we do not know of an efficient algorithm for finding a
Nash equilibrium given the description of a general (non zero-sum) game. In particular,
this means that there are games for which natural strategies will take an exponential
number of steps to converge to an equilibrium.

Primality Testing and Integer Factoring

In order to determine whether a number N is prime or not, we can try dividing it by all
the numbers up to

√
N , but this is still quite terrible computationally. But fortunately,

a probabilistic algorithm to determine whether a given number N is prime or composite
in time poly(n) for n = logN .

On the contrary, no such algorithm that could efficiently find the factorization of N is
known.

5.1.3 Current Knowledge

The difference between an exponential and polynomial time algorithms might seem merely
“quantitative” but it is in fact extremely significant. As we’ve already seen, the brute force
exponential time algorithm runs out of steam very very fast, and in practice there might
not be much difference between a problem where the best algorithm is exponential and
a problem that is not solvable at all. Thus the efficient algorithms we mentioned above
are widely used and power many computer science applications. Moreover, a polynomial-
time algorithm often arises out of significant insight to the problem at hand, whether it
is the max-flow min-cut result, the solvability of the determinant, or the group theoretic
structure that enables primality testing. Such insight can be useful regardless of its
computational implications.

At the moment we do not know whether the “hard” problems are truly hard, or whether
it is merely because we haven’t yet found the right algorithms for them. However, we
will now see that there are problems that do inherently require exponential time. We just
don’t know if any of the examples above fall into that category.

5.2 Modeling Running Time
When talking about running time, what we care about is the scaling behavior of the
number of steps as the input size grows (as opposed to a fixed number).
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5.2.1 Formally Defining Running Time

We can informally define what it means for a function F : {0, 1}∗ −→ {0, 1}∗ to be
computable in time T (n) steps, where T is some function mapping the length n of the
input to the number of computation steps allowed.

Definition 5.2.1. Let T : N −→ N be some function. We say that a function F :
{0, 1}∗ −→ {0, 1}∗ is computable in T (n) Turing Machine time (TM-time for
short) if there exists a Turing machine M such that for every sufficiently large n and
every x ∈ {0, 1}n, the machine halts after executing at most T (n) steps and outputs F (x).

We define TIMETM

(
T (n)

)
to be the set of Boolean functions ({0, 1}∗ −→ {0, 1}) that

are computable in T (n) TM time. Note that TIMETM

(
T (n)

)
is a class of functions, not

machines.

With this, we can formally define what is means for function F : {0, 1}∗ −→ {0, 1} to
be computable in time at most T (n) where n is the size of the input. Furthermore,
the property of considering only "sufficiently large" n’s is not very important but it is
convenient since it allows us to avoid dealing explicitly with uninteresting "edge cases."
We have also defined computability with Boolean functions for simplicity, but we can
generalize this further.

Polynomial and Exponential Time

Definition 5.2.2. The two main time complexity classes are defined:

1. Polynomial time: A function F : {0, 1}∗ −→ {0, 1} is computable in polyno-
mial time if it is in the class

P =
⋃

c∈{1,...m}

TIMETM

(
nc
)
, m ∈ N

That is, F ∈ P if there is an algorithm to compute F that runs in time at most
polynomial in the length of the input.

2. Exponential time: A function F : {0, 1}∗ −→ {0, 1} is computable in expo-
nential time if it is in the class

EXP =
⋃

c∈{1,...,m}

TIMETM

(
2n

c)
That is, F ∈ EXP if there is an algorithm to compute F that runs in time at most
exponential in the length of the input.

Summarizing this, we say that F ∈ P if there is a polynomial p : N −→ R and a Turing
machine M such that for every x ∈ {0, 1}∗, when given input x, the Turing machine halts
within at most p(|x|) steps and outputs F (x).

We say that F ∈ EXP if there is a polynomial p : N −→ R and a Turing machine M
such that for every x ∈ {0, 1}∗, when given input x, M halts within at most 2p(|x|) steps
and outputs F (x).

Lemma 5.2.1. Since exponential time is much larger than polynomial time,

P ⊂ EXP
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Time complexity for the previous algorithms are as follows:

P EXP (not known to be P)
Shortest path Longest path
Min cut Max cut
2SAT 3SAT
Linear eqs Quad eqs
Zerosum Nash
Determinant Permanent
Primality Factoring

Many technological developments are centered around these facts. For example, the ex-
ponential time complexity of factoring algorithms is what makes the RSA-encryption so
secure. If a polynomial time algorithm for factoring were to be discovered, RSA-encryption
would be rendered obsolete.

5.2.2 Modeling Running Time Using RAM Machines/NAND-
RAM

Despite the theoretical elegance of Turing machines, RAM machines and NAND-RAM
programs are much more closely related to actual computing architecture. For example,
even a "merge sort" program cannot be implemented on a Turing machines in O(n log n)
time. We can define running time with respect to NAND-RAM programs just as we did
for Turing machines.

Definition 5.2.3. Let T : N −→ N. We say that a function F : {0, 1}∗ −→ {0, 1}∗ is
computable in T(n) RAM time (RAM-time for short) if there exists a NAND-
RAM program P such that for every sufficiently large n and every x ∈ {0, 1}n, when given
input x, the program P halts after executing at most T (n) lines and outputs F (x).

We define TIMERAM

(
T (n)

)
to be the set of Boolean functions ({0, 1}∗ −→ {0, 1}) that

are computable in T (n) RAM time.

We will use TIME
(
T (n)

)
to denote TIMERAM

(
T (M)

)
. However, as long as we only care

about the difference between exponential and polynomial time, the model of running time
we use does not make much difference. The reason is that Turing machines can simulate
NAND-RAM programs with at most a polynomial overhead.

Theorem 5.2.2 (Relating RAM and Turing machines). Let T : N −→ N be a function
such that T (n) ≥ n for every n and the map n 7→ T (n) can be computed by a Turing
machine in time O(T (n)). Then,

TIMETM

(
T (n)

)
⊆ TIMERAM

(
10 · T (n)

)
⊆ TIMETM

(
T (n)4

)
We can visually see this classification as
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TIMETM

(
T (n)

)
TIMERAM

(
T (n)

)
TIMETM

(
T (n)4

)

With this, we could have equally defined P as the class of functions computable by NAND-
RAM programs (instead of Turing machines) that run in polynomial time in the length of
the input. Similarly, with T (n) = 2n

a , we see that the class EXP can also be defined as
the set of functions computable by NAND-RAM programs in time at most 2p(n) where p
is some polynomial. This justifies the choice of P as capturing a technology-independent
notion of tractability. Therefore, all "reasonable" computational models are equivalent if
we only care about the distinction between polynomial and exponential, with reasonable
referring to all scalable computational models that have been implemented except possibly
quantum computers.

When considering general time bounds, we need to make sure to rule out some "excep-
tional" cases such as functions T that don’t give enough time for the algorithm to even
read the input, or functions where the time bound itself is uncomputable. More precisely,
T must be a nice function.

Definition 5.2.4. That is why we say that the function T : N −→ N is a nice time
bound function (nice function for short) if

1. for every n ∈ N T (n) ≥ n (T allows enough time to read the input)

2. for every n′ ≥ n, T (n′) ≥ T (n) (T allows more time on longer inputs)

3. the map F (x) = 1T (|x|) (i.e. mapping a string of length n to a sequence of T (n)
ones) can be computed by a NAND-RAM program in O(T (n)) time

So, the following are examples of polynomially equivalent models:

1. Turing machines

2. NAND-RAM programs/RAM machines

3. All standard programming languages, including C/Python/Javascript...

4. The λ calculus

5. Cellular automata

6. Parallel computers

7. Biological computing devices such as DNA-based computers

The Extended Church Turing Thesis is the statement that this is true for all physically
realizable computing models. In other words, the extended Church Turing thesis says
that for every scalable computing device C (which has a finite description but can be in
principle used to run computation on arbitrarily large inputs), there is some constant
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a such that for every function F : {0, 1}∗ −→ {0, 1} that C can compute on n length
inputs using an S(n) amount of physical resources. This is a strengthening of the plain
Church Turing Thesis, which states that the set of computable functions is the same
for all physically realizable models, but without requiring the overhead in the simulation
between different models to be at most polynomial.

Like the Church-Turing thesis itself, the extended Church-Turing thesis is in the asymp-
totic setting and does not directly yield an experimentally testable prediction. However, it
can be instantiated with more concrete bounds on the overhead, yielding experimentally-
testable predictions such as the Physical Extended Church-Turing Thesis.

5.2.3 Efficient Universal Machine: A NAND-RAM Interpreter in
NAND-RAM

We can now see that the universal Turing machine U , which can compute every Turing
machine M , has a polynomial overhead for simulating a NAND − TM program. That
is, it can simulate T steps of a given NAND − TM (or NAND −RAM) program P on
an input x in O(T 4) steps. But in fact, by directly simulating NAND−RAM programs
we can do better with only a constant multiplicative overhead.

Theorem 5.2.3 (Efficient Universality of NAND-RAM). There exists a NAND-RAM pro-
gram U satisfying the following:

1. U is a universal NAND-RAM program: For every NAND-RAM program P and
input x, U(P, x) = P (x) where by U(P, x) we denote the output of U on a string
encoding the pair (P, x).

2. U is efficient : There are some constants a, b such that for every NAND − RAM
program P , if P halts on input x after most T steps, then U(P, x) halts after at
most C · T steps where C ≤ a|P |b.

This leads to a corollary. Given any Turing machine M , input x, and step budget T , we
can simulate the execution for M for T steps in time that is polynomial in T . Formally,
we define a function TIMEDEV AL that takes the three parameters M,x, and the time
budget, and outputs M(x) if M halts within at most T steps, and outputs 0 otherwise.
That is, let TIMEDEV AL : {0, 1}∗ −→ {0, 1}∗ be the function defined as

TIMEDEV AL(M,x, 1T ) =

{
M(x) M halts within ≤ T steps on x
0 else

Then, TIMEDEV AL ∈ P, i.e. the timed universal Turing machine computes TIMEDEV AL
in polynomial time.

5.2.4 The Time Hierarchy Theorem

Some functions are uncomputable, but are there functions that can be computed, but
only at an exorbitant cost? For example, is there a function that can be computed in
time 2n, but cannot be computed in time 20.9n? It turns out that the answer is yes.
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Theorem 5.2.4 (Time Hierarchy Theorem). For every nice function T : N −→ N, there is
a function F : {0, 1}∗ −→ {0, 1} in

TIME
(
T (n) log n

)
\ TIME

(
T (n)

)
There is nothing special about log n. We could have used any other efficiently computable
function that ends to infinity with n.

5.2.5 Non-Uniform Computation

5.3 Polynomial-Time Reductions
Let us redefine some of the problems into decision problems.

3SAT The 3SAT problem can be phrased as the function 3SAT : {0, 1}∗ −→ {0, 1} that
takes as an input a 3CNF formula ϕ (i.e. a formula of the form C0∧ ...∧Cm−1 where each
Ci of the OR of three iterables) and maps ϕ to 1 if there exists some assignment to the
variables of ϕ that causes it to evaluate to true and to 0 otherwise. For example,

3SAT
(
(x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x0 ∨ x2 ∨ x3)

)
= 1

since the assignment x = 1101 satisfies the input formula.

Quadratic Equations The quadratic equations problem corresponds to the function
QUADEQ : {0, 1}∗ −→ {0, 1} that maps a set of quadratic equations E to 1 if there is
an assignment x that satisfies all equations and to 0 otherwise.

Longest Path The longest path problem correpsonds to the function LONGPATH :
{0, 1}∗ −→ {0, 1}∗ that maps a graph G and a number k to 1 if there is a simple path in
G of length at least k, and maps (G, k) to 0 otherwise.

Maximum Cut The maximum cut problem corresponds to the function MAXCUT :
{0, 1}∗ −→ {0, 1} that maps a graph G and a number k to 1 if there is a cut in G that
cuts at least k edges, and maps (G, k) to 0 otherwise.

All of these problems above are in EXP but it is not known whether or not they are in
P. However, we can reduce these problems to ones that are in P, proving that they are
indeed in P.

5.3.1 Polynomial-Time Reductions

Suppose that that F,G : {0, 1}∗ −→ {0, 1} are two Boolean functions. A polynomial-time
reduction (or reduction) from F to G is a way to sho that F is "no harder" than G in
the sense that a polynomial-time algorithm for G implies a polynomial-time algorithm for
F .

Definition 5.3.1 (Polynomial-time reductions). Let F,G : {0, 1}∗ −→ {0, 1}. We say
that F reduces to G, denoted by F ≤p G, if there is a polynomial-time computable
R : {0, 1}∗ −→ {0, 1}∗ such that for every x ∈ {0, 1}∗,

F (x) = G
(
R(x)

)
We say that F and G have equivalent complexity if F ≤p G and G ≤p F . Clearly, ≤p
is a transitive property.
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5.3.2 Reducing 3SAT to Zero-One and Quadratic Equations

Definition 5.3.2. The Zero-One Linear Equations problem corresponds to the func-
tion

01EQ : {0, 1}∗ −→ {0, 1}
whose input is a collection E of linear equations in variables x0, ..., xn−1, and the output
is 1 iff there is an assignment x ∈ {0, 1}n satisfying the matrix equation

Ax = b, A ∈ Mat(m× n, {0, 1}), b ∈ Nm

For example, if E is a string encoding the set of equations

x0 + x1 + x2 = 2

x0 + x2 = 1

x1 + x2 = 2

then 01EQ(E) = 1 since the assignment x = 011 satisfies all three equations.

Note that if we extended the field to R, then this can be solved using Gaussian elimination
in polynomial time, but there is no known efficiently algorithm to solve 01EQ. This is
stated in the following theorem.

Theorem 5.3.1 (Hardness of 01 Linear Equations).

3SAT ≤p 01EQ

This means that finding an efficient algorithm to solve 01EQ would imply an algorithm
for 3SAT . We can further use this to reduce 3SAT to the quadratic equations problem,
where QUADEQ(p0, ..., pm−1) = 1 if and only if there is a solution x ∈ Rn to the equations
pi(x) = 0 for i = 0, ...,m − 1. For example, the following is a set of quadratic equations
over the variables x0, x1, x2:

x20 − x0 = 0

x21 − x1 = 0

x22 − x2 = 0

1− x0 − x1 + x0x1 = 0

Theorem 5.3.2 (Hardness of Quadratic Equations).

3SAT ≤p QUADEQ

5.3.3 Independent Set and Other Graph Problems

Definition 5.3.3. For a graph G = (V,E), an independent set, also known as a stable
set, is a subset S ⊆ V such that there are no edges with both endpoints in S (in other
words, E(S, S) = ∅). Trivially, every singleton (of one point) is an independent set.

The maximum independent set problem is the task of finding the largest independent
set in the graph. The independent set problem is naturally related to scheduling problem:
if we put an edge between two conflicting tasks, then an independent set corresponds to
a set of tasks that can all be scheduled together without conflicts.
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Theorem 5.3.3 (Hardness of Independent Set).

3SAT ≤p ISET

Definition 5.3.4. A vertex cover in a graph G = (V,E) is a subset S ⊆ V of vertices
that touches all edges of G. For example, the following blue nodes is a vertex cover of the
graph.
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The vertex cover problem is the task to determine, given a graph G and a number k,
whether there exists a vertex cover in the graph with at most k vertices. Formally, this
is the function

V C : {0, 1}∗ −→ {0, 1}
such that for every G = (V,E) and k ∈ N, V C(G, k) = 1 if and only if there exists a
vertex cover S ⊂ V such that |S| ≤ k.

Theorem 5.3.4.
3SAT ≤p V C

Definition 5.3.5. A clique is a subset of vertices of an undirected graph such that every
two distinct vertices in the graph are adjacent, i.e. connected by an edge.

The maximum clique problem corresponds to the function

CLIQUE : {0, 1}∗ −→ {0, 1}
such that for a graph G and a number k, CLIQUE(G, k) = 1 iff there is a subset S of k
vertices such that for every distinct u, v ∈ S, the edge u, v is in G. For example, in the
graph below, the left subset of 4 vertices is indeed a clique, while the right subset of 4 is
not since the edge connecting 6 to 7 is not present.
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Theorem 5.3.5.
CLIQUE ≤p ISET and ISET ≤p CLIQUE

Definition 5.3.6. A dominating set in a graph G = (V,E) is a subset S ⊂ V of vertices
such that for every u ∈ V \ S is a neighbor in G

Anatomy of a Reduction

A reduction from problem F to a problem G is an algorithm that maps an input x for
F to an input R(x) for G. To show that the reduction is correct we need to show the
properties of:

1. efficiency : algorithm R runs in polynomial time

2. completeness : if F (x) = 1, then G(R(x)) = 1

3. soundness : if F (R(x)) = 1, then G(x) = 1

Therefore, proving that problem G is a reduction of problem F is equivalent to showing
the three properties above.

We finally reduce the 3SAT problem to the longest path problem.

Theorem 5.3.6 (Hardness of Longest Path).

3SAT ≤p LONGPATH

That is, an efficient algorithm for the longest path problem would imply a polynomial-time
algorithm for 3SAT. Therefore, we have shown that 3SAT is no harder than Quadratic
Equations, Independent Set, Maximum Cut, and Longest Path.

5.4 NP, NP Completeness, and Cook-Levin Theorem
All of the problems that we have talked about are search problems, where the goal is to
decide, given an instance x, whether there exists a solution y that satisfies some condition
that can verified in polynomial time. For example, in 3SAT, the instance is a formula and
the solution is an assignment to the variable; in Max-Cut the instance is a graph and the
solution is a cut in the graph; and so on and so forth. It turns out that every such search
problem can be reduced to 3SAT.

5.4.1 The Class NP

Intuitively, the class NP corresponds to the class of problems where it is easy to verify
a solution (i.e. verification can be done by a polynomial-time algorithm). For example,
finding a satisfying assignment to a 2SAT or 3SAT formula is such a problem, since if
we are given an assignment to the variables of a 2SAT or 3SAT formula then we can
efficiently verify that it satisfies all constraints.

That is, a Boolean function F is in NP if F has the form that on input string x, F (x) = 1
if and only if there exists a "solution" string w such that the pair (x,w) satisfies some
polynomial-time checkable condition.

114



Definition 5.4.1 (NP - Nondeterministic Polynomial Time). We say that F : {0, 1}∗ −→
{0, 1} is in NP if there exists some integer a > 0 and V : {0, 1}∗ −→ {0, 1} such that
V ∈ P and for every x ∈ {0, 1}n,

F (x) = 1 ⇐⇒ there exists w ∈ {0, 1}na

s.t. V (xw) = 1

That is, for F to be in NP, there needs to exist some polynomial time computable verifi-
cation function V such that if F (x) = 1, then there must exist w (of length polynomial in
|x|) such that V (xw) = 1, and if F (x) = 0 then for every such w, V (xw) = 0. Since the
existence of this string w certifies that F (x) = 1, w is often called the certificate, witness,
or proof that F (x) = 1.

Some problems that are NP are:

1. 3SAT ∈ NP since for every l-variable formula ϕ, 3SAT (ϕ) = 1 if and only there
exists a satisfying assignment x ∈ {0, 1}l such that ϕ(x) = 1, and we can check this
condition in polynomial time.

2. QUADEQ ∈ NP since for every l-variable instance of quadratic equations E,
QUADEQ(E) = 1 if and only if there exists an assignment x ∈ {0, 1}l that satisfies
E. We can check the condition that x satisfies E in polynomial time by enumerating
over all the equations in E, and for each such equation e, plug in the values of x
and verify that e is satisfied.

3. ISET ∈ NP since for every graph G and integer k, ISET (G, k) = 1 if and only if
there exists a set S of k vertices that contains no pair of neighbors in G. We can
check the condition that S is an independent set of size ≥ k in polynomial time by
first checking that |S| ≥ k and then enumerating over all edges {u, v} in G, and for
each such edge verify that either u 6= S or v 6= S.

4. LONGPATH ∈ NP since for every graph G and integer k, LONGPATH(G, k) =
1 if and only if there exists a simple path P in G that is of length at least k. We
can check the condition that P is a simple path of length k in polynomial time by
checking that it has the form (v0, v1, ..., vk) where each vi is a vertex in G, no vi is
repeated, and for every i ∈ [k], the edge {vi, vi+1} is present in the graph.

5. MAXCUT ∈ NP since for every graph G and integer k, MAXCUT (G, k) = 1 if
and only if there exists a cut (S, S) in G that cuts at least k edges. We can check
that condition that (S, S) is a cut of value at least k in polynomial time by checking
that S is a subset of G’s vertices and enumerating over all the edges {u, v} of G,
counting those edges such that u ∈ S and v 6∈ S or vice versa.

Theorem 5.4.1. Verifying is no harder than solving:

P ⊆ NP

Furthermore,
P ⊆ NP ⊆ EXP
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P

NP

EXP

Proof. Suppose that F ∈ P. Define the following function V :

V (x0n) =

{
1 iff n = |x|, F (x) = 1

0 else

Since F ∈ P, we can clearly compute V in polynomial time as well. Let x ∈ {0, 1}n be
some string. If F (x) = 1 then V (x0n) = 1. On the other hand, if F (x) = 0 then for
every w ∈ {0, 1}n, V (xw) = 0. Therefore, setting a = 1 (i.e. w ∈ {0, 1}n1), we see that V
satisfies the NP condition. �

5.4.2 NP Hard and NP Complete Problems

There are countless examples of problems for which we do not know if their best algorithm
is polynomial or exponential, but we can show that they are in NP; that is, we don’t
know if they are easy to solve, but we do know that it is easy to verify a given solution.
There are many other functions that we would like to compute that are easily shown to
be in NP. In fact, it we can solve 3SAT then we can solve all of them!

Theorem 5.4.2 (Cook-Levin Theorem). For every F ∈ NP,

F ≤p 3SAT

This immediately implies that QUADEQ,LONGPATH, and MAXCUT (and really,
every F ∈ NP) all reduce to 3SAT , meaning that all these problems are equivalent! All
of these problems are the "hardest inNP" since an efficient algorithm for any one of them
would imply an efficient algorithm for all the problems in NP.

Definition 5.4.2. Let G : {0, 1}∗ −→ {0, 1}. We say that G is NP hard if for every
F ∈ NP, F ≤p G. We say that G is NP complete if G is NP hard and G ∈ NP.

Therefore, despite their differences, 3SAT, quadratic equations, longest path, independent
set, maximum cut, and thousands of other problems are all NP complete. Again, this
means that if a single NP complete problem has a polynomial-time algorithm, then there
is such a polynomial-time algorithm for every decision problem that corresponds to the
existence of an efficiently verifiable solution (i.e. is NP), which would imply that P =
NP.
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5.4.3 P = NP?

However, a polynomial-time algorithm for even a single one of the NP complete problems
has even been found, proving support that P 6= NP

One of the mysteries of computation is that people have observed a certain empirical “zero-
one law” or “dichotomy” in the computational complexity of natural problems, in the sense
that many natural problems are either in P (often in TIME(O(n)) or TIME(O(n2))),
or they are NP hard. This is related to the fact that for most natural problems, the best
known algorithm is either exponential or polynomial, rather than any strange function in
between.

However, it is believed that there exist problems in NP that are neither in P nor are NP
complete, and in fact a result known as Lander’s Theorem shows that if P 6= NP, then
this is indeed the case. Therefore, we are left with two cases:

1. If P 6= NP, meaning that P is a strict subset of NP and by Lander’s theorem, NP
complete problems do not cover all of NP \P. (left)

2. If P = NP, meaning that P = NP = NP complete. (right)

P NP-Complete
P = NP =
NP-complete

problem that is neither P nor NP complete (by Lander’s Theorem)

5.4.4 NANDSAT, 3NAND Problems

Definition 5.4.3. The function NANDSAT : {0, 1}∗ −→ {0, 1} is defined as follows:

1. The input to NANDSAT is a string Q representing a NAND-CIRC program (or
equivalently, a circuit with NAND gates)

2. The output of NANDSAT on input Q is 1 if and only if there exists a string
w ∈ {0, 1}n (where n is the number of inputs to Q) such that Q(w) = 1.

Definition 5.4.4. The 3NAND problem is defined as follows:

1. The input is a logical formula Ψ on a set of variables z0, ..., zr−1 which is an AND
of constraints of the form zi = NAND(zj, zk).

2. The output is 1 is and only if there is an input z ∈ {0, 1}r that satisfies all of the
constraints.
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Example 33. The following is a 3NAND formula with 5 variables and 3 constraints:

Ψ =
(
z3 = NAND(z0, z2)

)
∧
(
z1 = NAND(z0, z2)

)
∧
(
z4 = NAND(z3, z1)

)
In this case 3NAND(Ψ) = 1, since the assignment z = 01010 satisfies it. Given a 3NAND
formula Ψ of r variables and an assignment z ∈ {0, 1}r, we can check in polynomial time
whether Ψ(z) = 1, and hence 3NAND ∈ NP.

Theorem 5.4.3. NANDSAT and 3NAND is NP complete.
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Chapter 6

Randomized Computation

6.1 Probabilistic Computation
It turns out that randomness can actually be a resource for computation, enabling us
to achieve tasks much more efficiently than previously known. This advantage comes
from the idea that calculating the statistics of a system could be done much faster by
running several randomized simulations rather than explicit calculations, and these types
of randomized algorithms are known as Monte Carlo algorithms.

6.1.1 Finding Approximately Good Maximum Cuts

Recall the maximum cut problem of finding, given a graph G = (V,E), the cut that
maximizes the number of edges. This problem is NP-hard, which means that we do not
know of any efficient algorithm that can solve it, but randomization enables a simple
algorithm that can cut at least half of the edges.

Theorem 6.1.1 (Approximating Max Cut). There is an efficient probabilistic algorithm
that on input an n-vertex m-edge graph G, outputs a cut (S, S) that cuts at least m/2
of the edges of G in expectation.

Proof. We simply choose a random cut : we choose a subset S of vertices by choosing
every vertex v to be a member of S with probability 1/2 independently. More specifically,
upon input of a graph G = (V,E) with vertices (v0, ..., vn−1), we do

1. Pick x uniformly at random in {0, 1}n

2. Let S ⊆ V be the set {vi | xi = 1, i ∈ [n]} that includes all vertices corresponding
to coordinates of x where xi = 1.

3. Output the cut (S, S).

�

We claim that the expected number of edges cut by the algorithm is m/2. Indeed, for
every edge e ∈ E, let Xe be the random variable such that Xe(x) = 1 if the edge is cut
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by x, and let Xe(x) = 0 otherwise. It is not hard to see that the probability of Xe(x) = 1
is 1

2
(when exactly one of the vertices are in S), and hence

E(Xe) = 1/2

Summing this over all edges and by linearity of expectation, we get

E(X) =
∑
e∈E

E(Xe) = m · 1

2
=
m

2

In fact, for every graph G, the algorithm is guaranteed to cut half of the edges of the
input graph in expectation.

Amplifying the success of randomized algorithms

But note that expectation does not imply concentration. Luckily, we can amplify the
probability of success by repeating the process several times and outputting the best cut
we find. We assume that the probability that the algorithm above succeeds in cutting at
least m/2 edges is not too tiny.

Lemma 6.1.2. The probability that a random cut in an m edge graph cuts at least m/2
edges is at least 1

2m
.

Proof. This is quite trivial when looking at specific cases. For example, take the case
when m = 1000 edges. In this case, one can shot that we will cut at least 500 edges with
probability at least 0.001 (and so in particular larger then 1

2m
= 1

2000
). Specifically, if we

assume otherwise, then this means that with probability more than 0.999 the algorithm
cuts 499 or fewer edges. But since we can never cut more than the total of 1000 edges,
given this assumption, the highest value of the expected number of edges cut is if we cut
exactly 499 edges with probability 0.999 and cut 1000 edges with probability 0.001. But
this leads to the expectation being

0.999 · 499 + 0.001 · 1000 < 500

which contradicts the fact that the expectation to be at least 500 in the previous theorem.
Generalizing this to m edges, we find that the expected number of edges cut is

pm+ (1− p)
(m

2
− 1

2

)
≤ pm+

m

2
− 1

2

But since p < 1
2m

=⇒ pm < 0.5, the right hand side is smaller than m/2, contradicting
the fact that the expected number of edges cut is at least m/2. �

Success Amplification

To increase the chances of success, we simply need to repeat our program many times, with
fresh randomness each time, and output the best cut we get in one of these repetitions. It
turns our that if we repeat this experiment 2000m times, then by using the inequality(

1− 1

k

)k
≤ 1

e
≤ 1

2
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we can show that the probability that we will never cut at leastm/2 edges is at most(
1− 1

2m

)2000m
≤ 2−1000

This can be generalized in the following lemma.

Lemma 6.1.3. There is an algorithm that on input graph G = (V,E) and a number k,
runs in polynomial time in |V | and k and outputs a cut (SS) such that

P
(
number of edges cut by (S, S) ≥ |E|

2

)
≥ 1− 2−k

Proof. Just repeat the previous algorithm 200km times and compute the probability of
failure. �

Two-sided Amplification

The analysis above relied on the fact that the maximum has one sided error ; that is,
if we get a cut of size at least m/2 then we know we have succeeded. This is common
for randomized algorithms, but it is not the only case. In particular, consider the task
of computing some Boolean function F : {0, 1}∗ −→ {0, 1}. A randomized algorithm A
for computing F , given input x, might toss coins and succeed in outputting F (x) with
probability, say 0.9. We say that A has two sided errors if there is a positive probability
that A(x) outputs 1 when F (x) = 0 and positive probability that A(x) outputs 0 when
F (x) = 1. So, we cannot simply repeat it k times and output 1 if a single one of those
repetitions resulted in 1, nor can we output 0 if a single one of the repetitions resulted
in 0. But we can output the majority value of these repetitions: the probability that the
fraction of the repetitions where A will output F (x) will be at least, say 0.89, will be
exceptionally close to 1 and in such cases we will output the correct answer.

Theorem 6.1.4. If F : {0, 1}∗ −→ {0, 1} is a function such that there is a polynomial-time
algorithm A satisfying

P
(
A(x) = F (x)

)
≥ 0.51

for every x ∈ {0, 1}∗, then there is a polynomial time algorithm B satisfying

P
(
B(x) = F (x)

)
≥ 1− 2−|x|

for every x ∈ {0, 1}∗.

Solving SAT through Randomization

The 3SAT problem is NP hard, and so it is unlikely that it has a polynomial (or even
subexponential) time algorithm. But this does not mean that we can’t do at least some-
what better than the trivial 2n algorithm for n-variable 3SAT. The best known worst-case
algorithms are randomized and are at their base the following simple algorithm. In this
algorithm, called WalkSAT, the input is an n variable 3CNF formula ϕ, the parameters
are any numbers T, S ∈ N, and the operation is:

1. Repeat the following T steps:
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(a) Choose a random assignment x ∈ {0, 1}n and repeat the following for S steps:

i. If x satisfies ϕ, then output x.

ii. Otherwise, choose a random clause (li ∨ lj ∨ lk) that x does not satisfy,
choose a random literal in li ∨ lj ∨ lk and modify x to satisfy this literal.

2. If all the T · S repetitions above did not result in a satisfying assignment, then
output Unsatisfiable.

Note that we are only going though at most S · T configurations of x ∈ {0, 1}n, and the
running time of this algorithm is S · T · poly(n). The fact that this algorithm is efficient
is taken care of, so now the key question is how small we can make S and T so that the
probability that WalkSAT outputs Unsatisfiable on a satisfiable formula ϕ is small. It
is known that we can do with

ST = Õ
(
(4/3)n

)
= Õ(1.3

n
)

However, we will prove a weaker bound in the following theorem (which is still much
better than the 2n bound).

Theorem 6.1.5 (WalkSAT simple analysis). If we set T = 100
√

3
n
and S = n/2, then the

probability we output Unsatisfiable for a satisfiable ϕ is at most 1
2
.

Bipartite Matching

Definition 6.1.1. A bipartite graph G = (L ∪ R,E) has 2n vertices partitioned into
n-sized sets L and R, where all edges have one endpoint in L and the other in R.
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A matching problem is a type of problem where we match nodes to each other with edges.
One variant of it is called the bipartite perfect matching. The goal is to determine whether
there is a perfect matching, a subsetM ⊆ E of n disjoint edges that connects every vertex
L to a unique vertex in R.

It turns out that by reducing this problem of finding a matching inG to finding a maximum
flow (or equivalently, a minimum s, t cut) in a related graph G′ (below), we can solve it
in polynomial time.
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However, there is a different probabilistic algorithm to do this. Let G’s vertices be labeled
as L = {l0, ..., ln−1} and R = {r0, ..., rn−1}. A matching M corresponds to a permutation
π ∈ Sn where for ever i ∈ [n], we define π(i) to be the unique j such that M contains the
edge {li, rj}. Define an n × n matrix A = A(G) where Ai,j = 1 if and only if {li, rj} is
present and Ai,j = 0 otherwise. The correspondence between matchings and permutations
implies the following claim.

Lemma 6.1.6 (Matching polynomial). Define P = P (G) to be the polynomial mapping
Rn2 to R where

P (x0,0, ..., xn−1,n−1 =
∑
π∈Sn

( n−1∏
i=0

sign(π)Ai,π(i)

) n−1∏
i=0

xi,π(i)

In fact, given the matrix A representing the graph, the polynomial above is the deter-
minant of the matrix A(x), which is obtained by replaying Ai,j with Ai,jxi,j. Then G
has a perfect matching if and only if P is not identically zero (i.e. if there exists some
assignment x = (xi,j)i,j∈[n] ∈ Rn2 such that P (x) 6= 0.

This reduces testing perfect matching to testing whether a given polynomial P (·) is iden-
tically 0 or not. The kernel of most multivariate nonzero polynomials form a strictly
lower dimensional space than the total space, so in order to do this, we just choose a
"random" input x and check if P (x) 6= 0. However, to transform this into an actual
algorithm, we can’t work in the real numbers with our finite computational power. We
use the following.

Theorem 6.1.7 (Schwartz-Zippel Lemma). For every integer q and polynomial P : Rn −→
R with integer coefficients, if P has degree at most d and is not identically zero, then it
has at most dqn−1 roots in the set

[q]n =
{

(x0, ..., xn−1) | xi ∈ {0, 1, ..., q − 1}
}

Therefore, upon an input of a bipartite graph G on 2n vertices {l0, ..., ln−1, r0, ..., rn−1},
the Perfect-Matching algorithm can be divided into these steps:

1. For every i, j ∈ [n], choose xi,j independently at random from [2n] = {0, ..., 2n− 1}.
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2. Compute the determinant of the matrix A(x) whose i, jth entry equals xi,j if the
edge {li, rj} is present and 0 otherwise.

3. Output no perfect matching if determinant is 0, and output perfect matching
otherwise.

6.2 Modeling Randomized Computation
While we have described randomized algorithms in an informal way, we haven’t addressed
two questions:

1. How do we actually efficiently obtain random strings in the physical world?

2. What is the mathematical model for randomized computations, and is it more pow-
erful than deterministic computation?

The first question is important, but we will assume that there are various physical sources
of random or unpredictable data, such as a user’s mouse movements, network latency,
thermal noise, and radioactive decay. For example, many Intel chips come with a random
number generator built in. We will focus on the second question.

6.2.1 Modeling Randomized Computation

Modeling randomized computation is actually quite easy. We can add the operation

foo = RAND()

in addition to things like the NAND operator to any programming language such as
NAND-TM, NAND-RAM, NAND-CIRC, etc., where foo is assigned to a random bit in
{0, 1} independently every time it is called. These are called RNAND-TM, RNAND-
RAM, and RNAND-CIRC, respectively.

Similarly, we can easily define randomized Turing machines as Turing machines in which
the transition function δ gets an extra input (in addition to the current state and symbol
read from the tape) a bit b that in each step is chosen at random in {0, 1}. Of course the
function can ignore this bit (and have the same output regardless of whether b = 0 or b =
1) and hence randomized Turing machines generalize deterministic Turing machines.

We can use the RAND() operation to define the notion of a function being computed by
a randomized T (n) time algorithm for every nice time bound T : N −→ N, but we will
only define the class of functions that are computable by randomized algorithms running
in polynomial time.

Definition 6.2.1 (The class BPP). Let F : {0, 1}∗ −→ {0, 1}. We say that F ∈ BPP
if there exist constants a, b ∈ N and a RNAND-TM program P such that for every
x ∈ {0, 1}∗, on input x, the program P halts within at most a|x|b steps and

P
(
P (x) = F (x)

)
≥ 2

3

where this probabilty is taken over the result of the RAND operations of P . Note that
this probability is taken only over the random choices in the execution of P and not over
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the choice of the input x. That is, BPP is still a worst case complexity class, in the sense
that if F is in BPP then there is a polynomial-time randomized algorithm that computes
F with probability at least 2/3 on every possible (and not just random) input.

We will use the name polynomial time randomized algorithm to denote a computation that
can be modeled by a polynomial-time RNAND-TM program, RNAND-RAM program, or
a randomized Turing machine.

Alternatively, we can think of a randomized algorithm A as a deterministic algorithm
A′ that takes two inputs x and r where the input r is chosen at random from {0, 1}m
for some m ∈ N. The equivalence to the previous definition is shown in the following
theorem:

Definition 6.2.2 (Alternative characterization of BPP). Let F : {0, 1}∗ −→ {0, 1}.
Then F ∈ BPP if and only if there exists a, b ∈ N and G : {0, 1}∗ −→ {0, 1} such that G
is in P and for every x ∈ {0, 1}∗,

P
(
G(xr) = F (x)

)
≥ 2

3

where r is chosen at random from {0, 1}a|x|b . As such, if A is a randomized algorithm that
on inputs of length n makes at most m coin tosses, we will often use the notation A(x; r)
(where x ∈ {0, 1}n and r ∈ {0, 1}m to refer to the result of executing x when the coin
tosses of A correspond to the coordinates of r. This second input r is sometimes called a
random tape.

The relationship betweenBPP andNP is not known, but we do know the following.

Theorem 6.2.1 (Sipser-Gacs Theorem). If P = NP then BPP = P.

Success Amplification of two-sided error algorithms

The number 2/3 may seem arbitrary, but it can be amplified to our liking.

Theorem 6.2.2 (Amplification). Let F : {0, 1}∗ −→ {0, 1} be a Boolean function such
that there is a polynomial p : N −→ N and a polynomial-time randomized algorithm A
satisfying that for every x ∈ {0, 1}n,

P
(
A(x) = F (x)

)
≥ 1

2
+

1

p(n)

Then for every polynomial q : N −→ N, there is a polynomial-time randomized algorithm
B satisfying for every x ∈ {0, 1}n,

P
(
B(x) = F (x)

)
≥ 1− 2−q(n)

BPP and NP Completeness

The theory of NP completeness still applies to probabilistic algorithms.

Theorem 6.2.3. Suppose that F is NP hard and F ∈ BPP. Then

NP ⊆ BPP
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That is, if there was a randomized polynomial time algorithm for any NP complete
problem such as 3SAT, ISET, etc., then there would be such an algorithm for every
problem in NP.

6.2.2 The Power of Randomization

To find out whether randomization can add power to computation (does BPP=P?), we
prove a few statements about the relationship of BPP with other complexity classes.

Theorem 6.2.4 (Simulating randomized algorithms in exponential time).

BPP ⊆ EXP

Proof. We can just enumerate over all the (exponentially many) choices for the random
coins. �

Furthermore,
P ⊆ BPP ⊆ EXP
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Chapter 7

Machine Learning

Stanford’s CS 229 Lectures by Andrew Ng.

7.1 Supervised Learning
We begin by establishing some notation. The input variables are usually denoted with
the letter x (which lies in the input space X and the outputs with y (lying in the output
space Y). For example, say that we have the dataset:

x1 . . . xd y
x
(1)
1 . . . x

(1)
d y(1)

x
(2)
1 . . . x

(2)
d y(2)

. . . . . . . . . . . .

x
(n)
1 . . . x

(n)
d y(n)

Note that:

1. d represents the number of parameters, represented by a subscript.

2. n represents the number of training samples, represented by a superscript.

3. (x(i), y(i)) is called a training example.

To describe the supervised learning problem, our goal is, given a training set, to learn the
hypothesis function h : X −→ Y that is a good predictor for the corresponding value
of y.

7.1.1 Linear Regression

It is safe to assume that in most cases, X = Rn and Y = R (or a subset of it). Our goal
is to find an (affine) linear hypothesis function h of the form

hθ(x) = θ0 + θ1x1 + . . .+ θnxn

We can drop the subscript θ from hθ if there is no risk of confusion to get (assuming
x0 = 1)

h(x) =
d∑
i=0

θixi = θTx
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To determine how well of an approximation h is to the actual values of y, we define the
cost function

J(θ) ≡ 1

2

n∑
i=1

(
hθ(x

(i))− y(i)
)2

Even though J takes in θ values, this is really equivalent to J taking in h since h is
completely determined by θ. Note that J(θ) is a function itself that takes in input values
θi, forms the linear function hθ(x), and computes the sums of all the squares of its residuals
from the n data points. That is,

J : Rd −→ R+
0

is a smooth function (this smoothness criterion is important).

Batch Gradient Descent

We would like to minimize J , that is get it as close to 0 as possible (since J ≥ 0). In the
space Rd of θj’s, we start off at an initial θ and go in the direction opposite of that of the
gradient.

θ = θ − α∇J(θ) ⇐⇒



θ1 = θ1 − α ∂
∂θ1
J(θ)

...
θj = θj − α ∂

∂θj
J(θ)

...
θd = θd − α ∂

∂θd
J(θ)

The α is a scalar constant called the learning rate (i.e. how large each step is going to
be). We can explicitly evaluate ∇J(θ) as

∂

∂θj
=

∂

∂θj

(
1

2

n∑
i=1

(
hθ(x

(i))− y(i)
))

= . . .

=
n∑
i=1

(
hθx

(i) − y
)
x
(i)
j

Therefore, our gradient descent algorithm in vector form is (with python syntax):

while convergence not met:

θ = θ + α

n∑
i=1

(
y(i) − hθ(x(i))

)
x(i)

In coordinate notation, we have

while convergence not met:

for j in 1,...,d:

θj = θj + α

n∑
i=1

(
y(i) − hθ(x(i))

)
x
(i)
j

Note that:
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1. This algorithm repeatedly takes a step in the direction of steepest decrease of J

2. The magnitude of the update is proportional to the error term y(i) − hθ(x(i)).

3. This algorithm can be susceptible to local minima.

4. The algorithm may not converge if α (the "step size") is too high.

Note that each update step in gradient descent requires solving all d coefficients of the
coordinate vectors of ∇J(θ), and within each coordinate calculation, we must iterate
through all n training samples, for a total of n× d calculations. GD by going through all
training samples is known as batch gradient descent.

Stochastic, Incremental Gradient Descent

Rather than updating the vector θ in batches, we can apply stochastic GD that works
incrementally by updating θ with each term in the summation. In vector form,

while convergence not met:

for i in 1,...,n:

θ = θ + α
(
y(i) − hθ(x(i))

)
x(i)

and in coordinate form,

while convergence not met:

for i in 1,...,n:

for j in 1,...d

θj = θj + α
(
y(i) − hθ(x(i))

)
x
(i)
j

Whereas batch GD has to scan through the entire training set before taking a single step
(a costly operation if n is large), stochastic gradient descent updates the parameters
with respect to a single training example and can start making progress right away. Often,
stochastic gradient descent has a much faster convergence rate (if it does converge).

7.1.2 The Normal Equations

Rather than using an iterative method, we can explicitly minimize the cost function. Let
us review a bit of matrix derivatives. Let A = (A)ij be a n×d matrix and f : Rn×d −→ R
be a real function over the space of matrices. Then, the derivative of f with respect to A
is:

∇Af(A) =


∂f
∂A11

. . . ∂f
∂A1d... . . . ...

∂f
∂An1

. . . ∂f
∂And


So, the gradient ∇Af(A) is itself an n× d matrix, with each entry being the derivative in
the direction of the canonical basis vector of Rn×d.

Least Squares Revisited

Let us define the design matrix X to be the n × d matrix that contains the train-
ing examples’ input values in its rows. Additionally, let y be the n-dimensional vector

129



containing all the target values from the training set.

X =


— (x(1))T —
— (x(2))T —

—
... —

— (x(n))T —

 , y =


y(1)

y(2)

...
y(n)


Additionally, if we included the intercept terms x(i)0 = 1, then we would have an n×(d+1)
matrix. Now, finding the linear function h that minimizes J is to solve the least squares
solution to the linear equation

Xθ = y

With a bit of linear algebra, this is equivalent to solving the normal equation for θ:

XTXθ = XTy =⇒ θ = (XTX−1)XTy

7.1.3 Probabilistic Interpretation

In this section we give a set of probabilistic assumptions under which least-squares re-
gression (and the cost function J) is derived as a very natural algorithm. First, assume
that the target variables and the inputs are related via the equation

y(i) = θTx(i) + ε(i)

where ε(i) is an error term that captures either unmodeled effects or random noise. Let
us further assume that the ε(i) are distributed IID according to a Gaussian distribution
with mean 0 and some variance σ2. That is,

ε(i) ∼ N (0, σ2)

and the density p is given by

p
(
ε(i)
)

=
1

σ
√

2π
exp

(
− (ε(i))2

2σ2

)
These are reasonably justifiable assumptions, since colloquially, we are saying that the
effects of the errors should be the same for each training sample. This means that the
distribution of y(i) given x(i) and parameterized by θ is just a simple shift of the distribution
by θTx(i):

y(i) |x(i); θ ∼ N (θTx(i), σ2) =⇒ p
(
y(i) |x(i); θ

)
=

1

σ
√

2π
exp

(
− (y(i) − θTx(i))2

2σ2

)
Since for all i = 1, . . . , n, y(i) = θTx(i)+ε(i) is a Gaussian distribution, we can create a joint
distribution of all the y(i) |x(i); θ to create amultivariate Gaussian distribution:

y = Xθ + ε, ε ∈ Pn

where P is the space of probability distributions. By independence, this multivariate
Gaussian distribution has density that is created by multiplying the individual densities
of each element ε(i), which is viewed as a function of y. However, if we would like to
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view it as a function of θ, then we fix the X, y at the observed values and call this the
likelihood function L(θ):

L(θ) = p(y |X; θ) =
n∏
i=1

p
(
y(i) |x(i); θ

)
=

n∏
i=1

1

σ
√

2π
exp

(
− (y(i) − θTx(i))2

2σ2

)
That is, L takes in a value of θ that represents a certain linear best fit model h, and it
tells us the probability of output y happening given inputs X in the form of a density
value.

Now, given this probabilistic model relating the y(i)s to the x(i)s, the principle of maximum
likelihood says that we should choose θ such that L(θ) is as high as possible so that we
would get the θ value that has the greatest probability of outputting y given data X. But
this is the same as maximizing the log likelihood l(θ):

l(θ) = logL(θ)

= log
n∏
i=1

1

σ
√

2π
exp

(
− (y(i) − θTx(i))2

2σ2

)
=

n∑
i=1

log
1

σ
√

2π
exp

(
− (y(i) − θTx(i))2

2σ2

)
= n log

1

σ
√

2π
− 1

σ2
· 1

2

n∑
i=1

(
y(i) − θTx(i)

)2
Hence, maximizing l(θ) gives the same answer as maximizing

J(θ) =
1

2

n∑
i=1

(
y(i) − θTx(i)

)2
Therefore, under the previous probabilistic assumptions on the data, least-squares regres-
sion corresponds to finding the maximum likelihood estimate of θ. Note that our final
choice of θ does not depend on σ.

7.1.4 Locally Weighted Linear Regression

However, not all data sets may fit with a line. For example, we can fit a quadratic model
of form

y = θ0 + θ1x+ θ2x
2

A higher-dimensional model can be made if our current model is underfitting (in which
the data clearly shows structure not captured by the model). However, overfitting is
not good either.
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Another type of regression algorithm is called the locally weighted linear regression
(LWR) which puts a weight on each feature and then attempts to minimize the cost
function below: ∑

i

(
y(i) − θTx(i)

)2
=⇒

∑
i

w(i)
(
y(i) − θTx(i)

)2
where the w(i)s are non-negative valued weights which determine how "important" a
certain parameter is. A fairly standard choice for the weights is

w(i) = exp

(
− (x(i) − x)T (x(i) − x)

2τ 2

)
or w(i) = exp

(
− (x(i) − x)TΣ−1(x(i) − x)

2τ 2

)
for adjusted values of τ and Σ, where τ is called the bandwidth parameter. Note that
the weights depend on the particular point x at which we’re trying to evaluate x. That
is, we must determine beforehand what x is. Furthermore,

1. If ||x(i) − x|| is small, then w(i) is close to 1, and if ||x(i) − x|| is large, then w(i) is
small. Hence, θ is chosen giving a much higher "weight" to the training example
close to the query point x.

2. τ controls how quickly the weight of a training example falls off with distance of its
x(i) from the query point x.

Parametric vs Nonparametric Algorithms

The unweighted linear regression algorithm is an example of an parametric learning
algorithm because it has a fixed, finite number of parameters θi which are fit to the data.
Once we’ve fit the θs’s and stored them away, we no longer need to keep the training data
around to make future predictions.

In contrast, to make predictions using locally weighted linear regression (a non-parametric
algorithm), we need to keep the entire training set around.

7.2 Classificiation and Logistic Regression
Regression algorithms attempt to predict target variables that are continuous. But if y
can take on only a small number of discrete values, thi sis a classification problem. We
focus on the binary classification problem in which y can only take on two values 0 or 1.
Given x(i), the corresponding y(i) is also called the label for the training example.

7.2.1 Logistic Regression

We could approach the classification problem ignoring the fact that y is discrete-valued
and use our old linear regression algorithm to try to predict y given x. But since hθ(x)
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takes values in {0, 1}, we can adjust our hypothesis h to the logistic equation

hθ(x) = g(θTx) =
1

1 + e−θT x
, where g(z) =

1

1 + e−z

which has the range (0, 1), and g(z) → 1 as z → ∞ and and g(z) → 0 as z → −∞.
Note that given the logistic regression model, we can fit the appropriate θ for it using
the maximum likelihood under a set of assumptions. Assume that we have a nonlinear
equation h : Rn −→ [0, 1] such that:

P(y = 1 | x; θ) = hθ(x)

P(y = 0 | x; θ) = 1− hθ(x)

which can be written more compactly as

p(y | x; θ) =
(
hθ(x)

)y (
1− hθ(x)

)1−y
Assuming that the n training examples were generated independently, we can then write
down the likelihood of the parameters as

L(θ) = p(y | X; θ)

=
n∏
i=1

p(y(i) | x(i); θ)

=
n∏
i=1

(
hθ(x

(i))
)y(i)(

1− hθ(x(i))
)1−y(i)

As before, it is simpler to maximize the log likelihood

l(θ) = logL(θ)

=
n∑
i=1

y(i) log h(x(i)) + (1− y(i)) log(1− hθ(x(i)))

using gradient ascent and its rule

θ = θ +∇θl(θ)

But since g′(z) = g(z) (1− g(z)), we can derive

∂

∂θj
l(θ) =

(
y

1

g(θTx)
− (1− y)

1

1− g(θTx)

)
∂

∂θj
g(θTx)

=

(
y

1

g(θTx)
− (1− y)

1

1− g(θTx)

)
g(θTx)(1− g(θTx))

∂

∂θj
θTx

=
(
y(1− g(θTx)

)
− (1− y)g(θTx)

)
xj

=
(
y − hθ(x)

)
xj

Therefore, the stochastic gradient ascent rule is reduced to (vector and coordinate form)

θ = θ + α
(
y(i) − hθ(x(i)

)
x(i) ⇐⇒ θj = θj + α

(
y(i) − hθ(x(i))

)
x
(i)
j
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7.2.2 The Perceptron Learning Algorithm

We can modify the logistic regression method to "force" it to output values that are
either 0 or 1 exactly. To do so, we can change the definition of g to be the threshold
function

g(z) ≡

{
1 if z ≥ 0

0 if z < 0

If we then let hθ(x) = g(θTx), then h would be a function that outputs 1 whenever the
value θTx reaches a certain threshold. If we use the update rule

θj = θj + α
(
y(i) − hθ(x(i))

)
x
(i)
j

then we have the perceptron learning algorithm.

7.2.3 Newton-Raphson Method

A simple algorithm for finding the zero of a function f : R −→ R is to perform the
following update:

θ = θ − f(θ)

f ′(θ)

If we wanted to maximize some function l, we would just need to find the critical points
of l, which could be done by

θ = θ − l′(θ)

l′′(θ)

Generalizing this to vector-valued functions lθ : Rd −→ R, the multidimensional version
of Newton’s method (called the Newton-Raphson method) is given by

θ = θ −H−1∇θl(θ)

where H is the Hessian matrix of lθ and ∇θl(θ) is vector of partial derivatives of l. New-
ton’s method typically enjoys faster convergence than batch gradient descent> However,
it can be more computationally expensive since it requires finding and inverting the d× d
Hessian, but as long as d is not too large, it is usually much faster overall.

7.3 Generalized Linear Models (GLMs)
A class of distributions is in the exponential family if it can be written in the form

p(y; η) = b(y) exp
(
ηTT (y)− a(η)

)
That is, given a fixed natural parameter η, p(y; η) (y parameter) gives a distribution that
outputs the probability of getting y. A few things to explain here:

1. η is called the natural or canonical parameter

2. T (y) is called the sufficient statistic. In most cases, we will consider T (y) = y.

3. a(η) is the log partition function, where the quantity e−a(η) is a normalization
constant such that the distribution sums/integrates to 1.

A fixed choice of T, a, b defines a family of distributions that is parameterized by η.
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Lemma 7.3.1. The Bernoulli and Gaussian distributions are both in the exponential fam-
ily.

Proof. Assume y|x; θ ∼ Bernoulli(φ). Then,

p(y;φ) = φy(1− φ)1−y

= exp
(
y log φ+ (1− y) log(1− φ)

)
= exp

((
log
( φ

1− φ

))
y + log

(
1− φ

))

Thus, the natural parameter is η = log
(
φ/(1 − φ)

)
, T (y) = y, a(η) = − log(1 − φ) =

log(1 + eη), and b(y) = 1. As for the Gaussian, its full form is actually multivariate if we
treat σ2 as a variable, but treating it as σ = 1, we get

p(y;µ) =
1√
2π

exp

(
− 1

2
(y − µ)2

)
=

1√
2π

exp

(
− 1

2
y2
)
· exp

(
µy − 1

2
µ2

)
Thus, we have η = µ, T (y) = y, a(η) = µ2/2, and b(y) = 1√

2π
exp(−y2/2). �

Some other distributions in the exponential family are:

1. Multinomial

2. Poisson

3. Gamma, Exponential

4. Beta, Dirichlet

7.3.1 Constructing GLMs

When considering a regression or classification problem where we would like to predict
the value of some random variable y as a function of x. To derive a GLM for this problem,
we will make the following assumptions about the conditional distribution of y given x
and about our model:

1. y | x; θ ∼ ExponentialFamily(η). That is, given x and θ, the distribution of y follows
some exponential family distribution with parameter η.

2. Given x, our goal is to predict the expected value of T (y) given x. But since in most
cases, T (y) = y, this means that we would like our hypothesis h to satisfy

h(x) = E
(
y | x

)
3. The natural parameter η and the inputs x are related linearly. We can just simply

think of
η = θTx

This is the least intuitive of our assumptions, so we can think of this as a design
choice.
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Ordinary Least Squares

To show that ordinary least squares is a special case of the GLM family of models, note
that the output y, given input x, has a Gaussian distribution. Let µ = θTx(i) and let

y(i) | x(i); θ ∼ N (µ, σ2)

Since this Gaussian distribution is in the exponential family, it follows that µ = η and we
have

hθ(x) = E(y |x; θ)

= µ

= η

= θTx

To summarize, we first assume the condition that the output y, given an input x, is
randomly distributed Gaussian. This means that for every single vector x, we have a
Gaussian distribution y |x; θ corresponding to that x. We can simply take the expectation
of all of these normal distributions to create a function hθ(x) which takes in x, looks at
the conditional distribution y |x; θ, and outputs its expected value. But the expected
value of a Normal distribution is just its mean µ, so we have

hθ(x) = E(y |x; θ) = µ

These final steps are the least intuitive. We find out that the natural parameter η of this
exponential distribution, is, in this case, the µ parameter. By assumption three we just
let eta = θTx, and we are left with

hθ(x) = θTx

and we have found that the form of the hypothesis function is θTx. Now that we have
have found this form, we can simply use gradient descent to minimize the cost function
and get the best fit.

Logistic Regression

Being interested in binary classification, we let y ∈ {0, 1} and choose the Bernoulli family
of distributions to model the conditional distribution of y given x. In our formulation of
the Bernoulli distribution as an exponential family distribution, we had φ = 1/(1 + e−η).
Furthermore, note that if y |x; θ ∼ Bernoulli(φ), then E(y |x; θ) = φ. So, we get

hθ(x) = E(y |x; θ)

= φ

=
1

1 + e−η

=
1

1 + e−θT x

This gives us hypothesis functions of the form hθ(x) = 1/(1 + e−θ
T x). Therefore, we can

say that once we assume that y conditioned on x is Bernoulli, it arises as a consequence
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of the definition of GLMs and exponential family distributions that the hypothesis is
logistic.

The function g giving the distribution’s mean as a function of the natural parameter

g(η) = E
(
T (y); η

)
is called the canonical response function. It’s inverse, g−1, is called the canonical
link function. Thus, the canonical response fuction for the Gaussian family is the
identity function, and the canonical response function for the Bernoulli is the logistic
function.

Softmax Regression

Consider a classification problem in which the response variable y can take on any one of
k values. That is,

Y = {1, 2, ..., k}

The response variable is still discrete, and we can model it as distributed according to a
multinomial distribution, which can be thought of as the sum of k iid distributions M
where

P(M = i) = φi,
k∑
i=1

φi = 1

We can parameterize the multinomial distribution over k possible outcomes with k − 1
parameters φ1, φ2, ..., φk−1 specifying the probability of each of the outcomes and one final
determined φk (since all φis must sum to 1). Therefore,

φi = p(y = i φ) (i = 1, ..., k − 1), φk = p(y = k;φ) = 1−
k−1∑
i=1

φi

To express the multinomial as an exponential family distribution, we define T (y) ∈ Rk−1

as
T (1) = e1, T (2) = e2, ..., T (k − 1) = ek−1, T (k) = 0

where ei denotes the canonical ith basis vector and 0 is the zero vector. Note that
T (y) 6= y; in fact, it isn’t even a real number, it is a k− 1 dimensional vector. We denote
(T (y))i to denote the ith element of the vector T (y).

We also introduce the indicator function 1{·} which takes on the value of 1 if the
argument is true, and 0 otherwise. That is,

1{True} = 1, 1{False} = 0

For example, 1{2 = 3} = 0, 1{3 = 5− 2} = 1. So, we can write the relationship between
T (y) and y as (

T (y)
)
i

= 1{y = i}

which basically means that the probability that the ith element in the vector (T (y))i is
1 and 0 for every other element in the vector. Furthermore, we have that E

(
(T (y))i

)
=
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P (y = i) = φi since this is Bernoulli. With this, we can derive

p(y;φ) = φ
1{y=1}
1 φ

1{y=2}
2 . . . φ

1{y=k}
k

= φ
1{y=1}
1 φ

1{y=2}
2 . . . φ

1−
∑k−1

i=1 1{y=i}
k

= φ
(T (y))1
1 φ

(T (y))2
2 . . . φ

1−
∑k−1

i=1 (T (y))i
k

= exp
(
(T (y))1 log(φ1) + (T (y))2 log(φ2) + . . .

(
1−

k−1∑
i=1

(T (y))i

)
log(φk)

)
= exp

(
(T (y))1 log(φ1/φk) + . . .+ (T (y))k−1 log(φk−1/φk) + log(φk)

)
= b(y) exp

(
ηTT (y)− a(η)

)
where

η =


log(φ1/φk)

log(φ2/φk)
...

log(φk−1/ logk)

 , a(η) = − log(φk), b(y) = 1

hence making it an exponential distribution. The link function is given by

ηi = log
φi
φk

To invert the link function to derive the response function we have

eη)i =
φi
φk

=⇒ φke
ηi = φi =⇒ φk

k∑
i=1

eηi =
k∑
i=1

φi = 1

=⇒ φk =
1∑k
i=1 e

ηi

=⇒ φi =
eηi∑k
j=1 e

ηj

The function mapping the ηs to the φs is called the softmax function. Using assumption
3 again, our model assumes that the conditional distribution of y given x is given by:

p(y = i |x; θ) = φi

=
eηi∑k
j=1 e

ηj

=
eθ

T
i x∑k

j=1 e
θTj x

This model, which applies to classification problems where y ∈ {1, 2, . . . , k} is called
softmax regression. It is a generalization of logistic regression. Our hypothesis will
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output

hθ(x) = E
(
T (y) |x; θ

)

= E


1{y = 1}

∣∣
1{y = 2}

∣∣
...

∣∣ x; θ

1{y = k − 2}
∣∣

1{y = k − 1}
∣∣



=


φ1

φ2

...
φk−1

 =



exp(θT1 x)∑k
j=1 exp(θ

T
j x)

exp(θT1 x)∑k
j=1 exp(θ

T
j x)

...
exp(θT1 x)∑k
j=1 exp(θ

T
j x)


That is, our hypothesis will output the estimated probability that p(y = i |x; θ) for every
value of i = 1, . . . k. Even though hθ(x) as defined above is only k−1 dimensional, clearly
p(y = k |x; θ) can be obtained as 1−

∑k−1
i=1 φi.

As for parameter fitting, if we would like to learn the parameters θi of this model, we
would write down the log likelihood

l(θ) =
n∑
i=1

log p(y(i) |x(i); θ)

=
n∑
i=1

log
k∏
l=1

(
eθ

T
l x(i)∑k

j=1 e
θTj x

(i)

)1{y(i)=l}

and maximizing l(θ) with respect to θ using a method such as gradient ascent or Newton’s
method.

7.4 Generative Learning Algorithms
We have dealt with learning algorithms that model p(y |x; θ): the conditional distribution
of y given x. For instance, logistic regression modeled p(y |x; θ) as hθ(x) = g(θTx) where
g is the sigmoid function. Here is a different type of learning algorithm.

Consider a classification problem in which we want to learn to distinguish between ele-
phants (y = 1) and dogs (y = 0), based on some features of an animal. Given a training
set, an algorithm like logistic regression or the perceptron algorithm (basically) tries to
find a straight line—that is, a decision boundary—that separates the elephants and dogs.
Then, to classify a new animal as either an elephant or a dog, it checks on which side of
the decision boundary it falls, and makes its prediction accordingly.

Here’s a different approach. First, looking at elephants, we can build a model of what
elephants look like. Then, looking at dogs, we can build a separate model of what dogs
look like. Finally, to classify a new animal, we can match the new animal against the
elephant model, and match it against the dog model, to see whether the new animal looks
more like the elephants or more like the dogs we had seen in the training set.

139



Algorithms that try to learn p(y|x) directly (such as logistic regression), or algorithms
that try to learn mappings directly from the space of inputs X to the labels 0, 1, (such
as the perceptron algorithm) are called discriminative learning algorithms. Here, we’ll
talk about algorithms that instead try to model p(x|y) (and p(y)). These algorithms are
called generative learning algorithms. For instance, if y indicates whether an example is
a dog (0) or an elephant (1), then p(x | y = 0) models the distribution of dogs’ features,
and p(x | y = 1) models the distribution of elephants’ features.

7.4.1 Gaussian Discriminant Analysis Model

For classification problems where the input features x are continuous-valued random vari-
ables, we can use the Gaussian Discriminant Analysis (GDA) model, which models p(x | y)
using a multivariate normal distribution. The model is

y ∼ Bernoulli(φ)

x | y = 0 ∼ N (µ0,Σ)

x | y = 1 ∼ N (µ1,Σ)

Writing out the distributions, this is:

p(y) = φy(1− φ)1−y

p(x | y = 0) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µ0)

TΣ−1(x− µ0)

)
p(x | y = 1) =

1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µ1)

TΣ−1(x− µ1)

)
Note that while there are two different mean vectors µ0 and µ1, this model is usually
applied using only one covariance matrix Σ. The parameters of our model are φ,Σ, µ0, µ1.
The log-likelihood of the data is give by

l(φ, µ0, µ1,Σ) = log
n∏
i=1

p(x(i), y(i);φ, µ0, µ1,Σ)

= log
n∏
i=1

p(x(i) | y(i);µ0, µ1,Σ) p(y(i);φ)

By maximizing l with respect to the parameters, we find the maximum likelihood estimate
of the parameters to be

φ =
1

n

n∑
i=1

1{y(i) = 1}

µ0 =

∑n
i=1 1{y(i) = 0}x(i)∑n
i=1 1{y(i) = 0}

µ1 =

∑n
i=1 1{y(i) = 1}x(i)∑n
i=1 1{y(i) = 1}

Σ =
1

n

n∑
i=1

(x(i) − µy(i))(x(i) − µY (i))T
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Visually, we can imagine the algorithm going through each point that is a dog (the circles)
or an elephant (the crosses) and constructing a 2-dimensional Gaussian by finding the
maximum likelihood estimate of µ0, µ1,Σ, φ. Note that φ is "maximized" by directly
taking the portion of samples of y that have value 1. The end result looks something like
this:

Note that we have constructed a straight line L representing the decision boundary at
which p(y = 1 |x ∈ L) = p(y = 0 |x ∈ L) = 0.5. If a future sample has value on the left
side of L it will be classified as a cross and if on the other side, it will be classified as a
circle.

When comparing GDA to other models such as logistic regression, GDA makes strong
modeling assumptions and is more data efficient (i.e. requires less training data to learn
"well") when the modeling assumptions are at least approximately correct. Logistic re-
gression makes weaker assumptions and is significantly more robust to deviations from
modeling assumptions. Specifically, when the data is non-Gaussian, then in the limit of
large datasets, logistic regressiom will almost always do better than GDA, which is why
it’s used more in practice.

7.4.2 Naive Bayes

Unlike GDA (where the feature vectors x were continuous valued), we work with ones in
which the xj’s are discrete.

Say that we are building a email spam filter using machine learning that classifies emails
to either spam or non-spam by reading the text. Let us represent an email with a vector
whose length is equal to the number of words in the dictionary. This set of words
encoded into this vector is called the vocabulary. We can literally go through the entire
English dictionary and list the words, but in practice it is more common to look through
our training set and encode in our feature vector only the words that occur at least once
there. This saves space and allows us to include words unique to our email. If an email
contains the jth word of the dictionary, we set xj = 1 and other set xj = 0.

Say that our dictionary contains 50000 elements. In order to model p(x | y), then it is
computationally infeasible to explicitly model x ∈ {0, 1}50000 as a multinomial distri-
bution. Therefore, we make a very strong assumption called the Naive Bayes (NB)
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assumption that states that the xi’s are conditionally independent given y.

p(xi | y) = p(xi | y, xj) for all i, j

That is, if you knew that a particular email is spam (y = 1), then knowledge of xi will
have no effect on your beliefs about the value of xj. Note that this is not the same as
saying that xi and xj are independent. We have

p(x | y) = p(x1, . . . , x50000 | y)

= p(x1 | y)p(x2 | y, x1)p(x3 | y, x1, x2) . . . p(x50000 | y, x1, . . . , x49999)
= p(x1 | y)p(x2 | y)p(x3 | y) . . . p(x50000 | y)

=
50000∏
j=1

p(xj | y)

Note that even though the Naive Bayes assumption is extremely strong, the resulting
algorithm works well on many problems. The model for our algorithm is:

y ∼ Bernoulli(φ) =⇒ p(y) = φy(1− φ)1−y

xj | y = 0 ∼ Bernoulli(φj|y=0) =⇒ p(y) = φyj|y=0(1− φj|y=0)
1−y

xj | y = 1 ∼ Bernoulli(φj|y=1) =⇒ p(y) = φyj|y=1(1− φj|y=1)
1−y

Therefore, given the training set {(x(i), y(i)); i = 1, . . . n}, we can write down the joint
likelihood of the data:

L(φy, φj|y=0, φj|y=1) =
n∏
i=1

p
(
x(i), y(i)

)
Maximizing this with respect to φy, φj|y=0, φj|y=1 gives the maximum likelihood esti-
mates:

φj|y=1 =

∑n
i=1 1{x(i)j = 1 ∧ y(i) = 1}∑n

i=1 1{y(i) = 1}

φj|y=0 =

∑n
i=1 1{x(i)j = 1 ∧ y(i) = 0}∑n

i=1 1{y(i) = 0}

φy =

∑n
i=1 1{y(i) = 1}

n

The parameters have a very natural interpretation. For instances, φj|y=1 is just the fraction
of the spam (y = 1) emails in which the word j appears. To make a prediction on a new
example with features x, we then simply calculate

p(y = 1|x) =
p(x | y− = 1)p(y = 1)

p(x)

=

(∏d
j=1 p(xj | y = 1)

)
p(y = 1)(∏d

j=1 p(xj | y = 1)
)
p(y = 1) +

(∏d
j=1 p(xj | y = 0)

)
p(y = 0)

and pick whichever class has the higher posterior probability.

Note that we can extend this beyond binary valued features to those that can take values
in {1, 2, . . . , kj}. For example, we can simply model p(xj | y) as multinomial rather than
as Bernoulli. Additionally, if the original input value is continuous it is common to dis-
cretize it by turning it into a small set of discrete values and applying Naive Bayes.
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Laplace Smoothing

There is a problem with the Naive Bayes algorithm that in some cases outputs 0/0 as a
probability. For example, in our email spam filter, if we encounter a completely new word,
say "neurips" as our 35000th word, our Naive Bayes spam filter would pick maximum
likelihood estimates of the parameters to be

φ35000|y=1 =

∑n
i=1 1{x(i)35000 = 1 ∧ y(i) = 1}∑n

i=1 1{y(i) = 0}
= 1

φ35000|y=0 =

∑n
i=1 1{x(i)35000 = 1 ∧ y(i) = 0}∑n

i=1 1{y(i) = 0}
= 0

That is, because it has never seen neurips before in either spam or non-spam training
examples, it thinks the probability of seeing it in either type of email is zero. Hence, the
posterior probability turns out to be p(y = 1 |x) = 0/0, resulting in a problem.

Stating the problem more broadly, it is statistically a bad idea to esti- mate the probability
of some event to be zero just because you haven’t seen it before in your finite training
set.

Given a multinomial random variable z taking values in {1, 2, . . . , k}, we can parame-
terize our multinomial with φi = p(z = j). Given a set of n independent observations
{z(1), . . . , z(n)}, the maximum likelihood estimates are given by

φj =

∑n
i=1 1{z(i) = j}

n

But with this, some of the φj’s might end up as 0. To avoid this, we can use Laplace
smoothing, which replaces the above estimate with

φj =
1 +

∑n
i=1 1{z(i) = j}
k + n

This "smoothes" the probability such that every value of z has a nonzero probability of
occurring.

By applying Laplace smoothing on our Naive Bayes classifier, we can obtain the following
estimates of the parameters:

φj|y=1 =
1 +

∑n
i=1 1{x(i)j = 1 ∧ y(i) = 1}

2 +
∑n

i=1 1{y(i) = 1}

φj|y=0 =
1 +

∑n
i=1 1{x(i)j = 1 ∧ y(i) = 0}

2 +
∑n

i=1 1{y(i) = 0}

This modification takes care of the 0/0 problems.

Event Models for Text Classification

We will now describe the Multinomial event model. To describe this model, we use a
different notation and set of features for representing emails. We let xj denote the identity
of the jth word in the email, taking values in {1, 2, . . . |V |}, where V is the dictionary.
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An email of d words is not represented by a vector (x1, x2, . . . , xd) (note that d can vary
for different documents).

In the multinomial event model, we assume that the way an email is generated is via a
random process in which spam/non-spam is first determined (according to p(y)) as before.
Then, the sender of the email writes the email by first generating x1 from some multinomial
distribution over words (p(x1 | y)). Next, the second word x2 is chosen independently of
x1 but from the same multinomial distribution, and similarly for x3, x4, and so on, until
all d words of the email have been generated. Thus, the overall probability of a message
is given by

p(y)
d∏
j=1

p(xj | y)

Note that this is the same formula as before, but now xj | y is a mulitnomial, rather than
a Bernoulli distribution. Our model is now

y ∼ Bernoulli(φy) =⇒ p(y) = φy

x|y = 0 ∼ Multinomial(φk|y=0) =⇒ p(xj = k | y = 0) = φk|y=0

x|y = 1 ∼ Multinomial(φk|y=1) =⇒ p(xj = k | y = 1) = φk|y=1

with three parameters. Note that we have assumed that p(xj | y) is the same for all values
of j (i.e. the distribution according to which a word is generated does not depend on its
position j within the email).

If we are given a training set {x(i), y(i); i = 1, . . . n}, where

x(i) =
(
x
(i)
1 , x

(i)
2 , . . . , x

(i)
di

)
(di is the number of words in the ith training example), the likelihood of the data is given
by

L(φy, φk|y=0, φk|y=1) =
n∏
i=1

p(x(i), y(i))

=
n∏
i=1

( di∏
j=1

p
(
x
(i)
j | y;φk|y=0, φk|y=1

))
p(y(i);φy)

Maximizing this yields the maximum likelihood estimates of the parameters:

φk|y=1 =

∑n
i=1

∑di
j=1 1{x(i)j = k ∧ y(i) = 1}∑n
i=1 1{y(i) = 1}di

φk|y=0 =

∑n
i=1

∑di
j=1 1{x(i)j = k ∧ y(i) = 0}∑n
i=1 1{y(i) = 0}di

φy =

∑n
i=1 1{y(i) = 1}

n

If we apply Laplace smoothing, we add 1 to the numerators and |V | to the denominators
to obtain:

φk|y=1 =
1 +

∑n
i=1

∑di
j=1 1{x(i)j = k ∧ y(i) = 1}

|V |+
∑n

i=1 1{y(i) = 1}di

φk|y=0 =
1 +

∑n
i=1

∑di
j=1 1{x(i)j = k ∧ y(i) = 0}

|V |+
∑n

i=1 1{y(i) = 0}di
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While not the best classifying algorithm, the Naive Bayes classifier often works surprisingly
well and is a good first thing to try, given its simplicity and ease of implementation.

7.5 Kernel Methods
We talked about generating a linear function that predicts the training data, but what
happens if the output value y can be more accurately represented as a non-linear function
of inputs x?

If we have a cubic function y = θ3x
3 + θ2x

2 + θ1x + θ0 in x, we can interpret this as
a linear function over the a different set of feature variables {x3, x2, x, 1}. That is, let
φ : R −→ R4 be be defined

φ(x) =


1

x

x2

x3

 ∈ R4

and let θ =
(
θ0 θ1 θ2 θ3

)T
. Then, we can rewrite the cubic function in x as:

θ3x
3 + θ2x

2 + θ1x+ θ0 = θTφ(x)

While the terminology depends on the context and author, we will denote the original
input value (the x) as the input attributes of a problem, and when the original input is
mapped to some new set of quantities φ(x), we will call these new quantities the feature
variables. The map φ is called the feature map.

7.5.1 LMS with Features

We will first derive the (batch) gradient descent algorithm for fitting the model θTφ(x).
Recall that the ordinary least square problem for fitting θTx is

θ = θ + α
n∑
i=1

(
y(i) − θTx(i)

)
x(i)

Let φ : Rd −→ Rp be a feature map that maps attribute x ∈ Rd to the features φ(x) ∈ Rp

(in our previous example, d = 1 and p = 4). Now, our goal is to fit the function θTφ(x),
with θ being a vector in Rp instead of Rd. We replace all occurrences of x(i) in the
algorithm above by φ(x(i)) to get

θ = θ + α

n∑
i=1

(
y(i) − θTφ(x(i))

)
x(i)

Similarly, the stochastic gradient descent update rule is:

θ = θ + α
(
y(i) − θTφ(x(i)

)
φ(x(i)
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7.5.2 LMS with the Kernel Trick

The gradient descent update above becomes computationally expensive when the features
φ(x) is high-dimensional. For example, let x ∈ Rd and φ(x) be the vector that contains
all the monomials of x with degree ≤ 3:

φ(x) =



1

x1
...
x21
x1x2
...
x31
...


The dimension of the features φ(x) is of order O(d3), so given a d-dimensional input
attribute x, we will have to compute and store at least dk values in order to create the
dk-dimensional feature vector containing monomials of x with degree ≤ k. It may seem
that this d3 runtime per update and memory usage are inevitable because the vector θ
itself is of dimension p ≈ dk and we may need to update every entry of θ and store it.
However, the kernel trick allows us to significantly improve the runtime by not needing
to store θ explicitly.

For simplicity, we assume (but need not) the initial value of θ = 0 and run the batch GD
update:

θ = θ + α
n∑
i=1

(
y(i) − θTx(i)

)
x(i)

Note that since θ is a vector, it can be represented as a linear combination of the vectors
φ(x(1)), . . . , φ(x(n)). It is easy to see this since every (y(i) − θTφ(x(i))) is a constant linear
coefficient of φ(x(i) in the update rule. At initialization, θ = 0 =

∑n
i=1 0 · φ(x(i)). Now,

assuming that θ acn be represented as

θ =
n∑
i=1

βiφ(x(i))

for some β1, . . . , βn ∈ R, then we claim that θ is still a linear combination of the
φ(x(i))’s.

θ = θ + α

n∑
i=1

(
y(i) − θTφ(x(i))

)
φ(x(i)

=
n∑
i=1

βiφ(x(i)) + α

n∑
i=1

(
y(i) − θTφ(x(i))

)
φ(x(i)

=
n∑
i=1

(βi + α
(
y(i) − θTφ(x(i))

)
)φ(x(i)

Therefore, we can implicitly represent the p-dimensional vector θ by a set of coefficients
β1, . . . , βn. Towards doing this, we derive the update rule of the coefficients βi’s.

βi = βi + α
(
y(i) − θTφ(x(i))

)
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Since we are updating θ with βi’s, we replace the θ with its old value θ =
∑n

j=1 βjφ(x(j))

βi = βi + α

(
y(i) −

n∑
j=1

βjφ(x(j))Tφ(x(i))

)

We see that φ(x(j))Tφ(x(i)) = 〈φ(x(j)), φ(x(i))〉 where 〈·, ·〉 represents the Euclidean inner
product of the two vectors.

Therefore, we have reduced the batch gradient descent algorithm into an algorithm that
updates the value of β iteratively. We also need to compute the values of 〈φ(x(j)), φ(x(i))〉
for all pairs of i, j (which may take roughly O(p) operations). However, note that

1. We can pre-compute the pairwise inner products 〈φ(x(j), φ(x(i)〉 before the loop
starts.

2. For the feature map φ, computing the inner product can be efficient since:

〈φ(x), φ(z)〉 = 1 +
d∑
i=1

xizi +
∑

i,j∈{1,...,d}

xixjzizj +
∑

i,j,k∈{1,...,d}

xixjxkzizjzk

= 1 +
d∑
i=1

xizi +

( d∑
i=1

xizi

)2

+

( d∑
i=1

xizi

)3

= 1 + 〈x, z〉+ 〈x, z〉2 + 〈x, z〉3

Therefore, to compute 〈φ(x), φ(z)〉 we can first compute 〈x, z〉 with O(d) time and
then take another constant number of operations to compute 1 + 〈x, z〉 + 〈x, z〉2 +
〈x, z〉3.

Now, we define the Kernel corresponding to the feature map φ as a function that maps
X × X −→ R (where X is the input space, in our case X = R4) satisfying

K(x, z) = 〈φ(x), φ(z)〉

Summary of Kernel Algorithm

We first compute all the values K(x(i), x(j)) ≡ 〈φ(x(i)), φ(x(j))〉 for all i, j ∈ {1, . . . , n}.
Let K be the n× n matrix with Kij = K(x(i), x(j)) and set β = 0. We loop through this
update step for all i’s

βi = βi + α

(
y(i) −

n∑
j=1

βjK(x(i), x(j))

)
⇐⇒ β = β + α(y +Kβ)

We can update the representation β of the vector θ efficiently with O(n2) time per update,
a huge improvement. Now, once convergence requirements are met, we can get θTφ(x)
back with the calculations

θTφ(x) =
n∑
i=1

βiφ(x(i))Tφ(x) =
n∑
i=1

βiK(x(i), x)

Therefore, all we really need to know about the feature map φ(x) is encapsulated in the
corresponding kernel function K(·, ·).
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Chapter 8

Quantum Computing
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Chapter 9

HTML, CSS, JavaScript

HTML, which stands for the Hyper Text Markup Language, is the standard markup
language for creating Web pages. It describes the structure of a webpage. The purpose
of a web browser (Chrome, Safari, ...) is to read HTML documents and display them
correctly.

Definition 9.0.1. AN HTML element is defined by a start tag, some content, and an
end tag.

Even though professional IDEs can be used to create and modify webpages, simple text
editors such as TextEdit are also available. You just have to type in the html code into a
document and save it as a .htm or .html file.

9.1 HTML Tags
1. All HTML documents must start with a document type declaration: <!DOCTYPE html>.

The <!DOCTYPE> declaration represents the document type and helps browsers to
display webpages correctly. The <DOCTYPE> declaration for HTML5 (latest version
of HTML) is:

<!DOCTYPE html>

2. The HTML document itself begins with <html> and ends with </html>. The lang
attribute for this tag is used to declare the language (the first two letters) of the
Web page and to assist search engines and browsers. The country code (last two
letters) can also be added to define the country.

<!DOCTYPE html>
<html lang="en"> #or <html lang="en-US">
<body>
...
</body>
</html>

3. The visible part of the HTML document is between <body> and </body>.

Definition 9.1.1. Some common HTML tags are:
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1. HTML headings: <h1> </h1> (the most important heading), <h2> </h2>, <h3> </h3>,
<h4> </h4>, <h5> </h5>, <h6> </h6> (The least important heading).

(a) Each HTML heading has a default size, but you can specify the size for any
heading with the style attribute, using the CSS font-size property:

<h1 style="font -size:60px;">Heading 1</h1>

2. HTML paragraphs:

<p> This is the first sentence in the paragraph.
This is the second sentence in the paragraph. </p>

The style attribute is used to add styles to an element, such as color, font, size,
and more.

\texttt{<p style="color:red;">This is a red paragraph.</p>}

The title attribute defines some extra information about an element. The value of
the title attribute will be displayed as a tooltip when you mouse over the element:

<p title="I'm a tooltip">This is a paragraph.</p>

3. HTML links:

<a href="https ://www.w3schools.com">This is a link</a>

In here, the href attribute specifies the URL of the page the link goes to.

4. HTML images: The source file (src), alternative text (alt), width, and height
are provided as attributes:

<img src="w3schools.jpg" alt="W3Schools.com" width="104"
height="142">

The src attribute specifies the path to the image to be displayed. There are two
ways to specify the URL in the scr attribute:

(a) Absolute URL: Links to an external image that is hosted on another website.
For example,

src="https ://www.w3schools.com/images/img\_girl.jpg"

Note that external images may be under copyright, and you cannot control
external images; it can suddenly be removed or changed.

(b) Relative URL: Links to an image that is hosted within the website. Here, the
URL does not include the domain name. If the URL begins without a slash,
it will be relative to the current page. If the URL begins with a slash, it will
be relative to the domain.

src="img\_girl.jpg" src="/images/img\_girl.jpg"
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It is recommended to use relative URLs.

The width and height attributes specifies the width and height of the image in
pixels. The alt attribute for the <img> tag specifies an alternate text for an image,
if the image for some reason cannot be displayed.

<img src="img\_girl.jpg" alt="Girl with a jacket">

5. HTML breaks: This is the same as if we pressed enter. This actually does not
require an end tag, making it an empty tag.

<p> This is a <br> paragraph with a line break. </p>

Note that these tags are not case-sensitive (e.g. <p> is the same as <P>). It is recommend
to always quote the attribute values.

Viewing HTML Source

In order to view the HTML source code for a webpage, right-click on the HTML page and
select "View/Show Page Source". This will open a window containing the HTML source
code of the page.

In order to inspect an HTML element, right-click on an element (or a blank area) and
choose "Inspect Element" to see what elements it is made up of (shown in both HTML
and CSS). You can also edit the HTML or CSS on the fly in the Elements or Styles panel
that opens.

9.2 HTML Display
Note that with HTML, you cannot change the display by adding extra spaces or extra
lines in your HTML code. The browser will automatically remove any extra spaces and
lines when the page is displayed.

<p>
This paragraph
contains a lot of lines
in the source code ,
but the browser
ignores it.
</p>

<p>
This paragraph
contains a lot of spaces
in the source code ,
but the browser
ignores it.
</p>

Definition 9.2.1 (HTML Horizontal Rules). The <hr> tag defines a thematic break in
an HTML page, and is most often displayed as a horizontal line. It is used to separate
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content in an HTML page.

<h1>This is heading 1</h1>
<p>This is some text.</p>
<hr>
<h2>This is heading 2</h2>
<p>This is some other text.</p>
<hr>

The <hr> tag is an empty tag, which means that it has no end tag.

HTML Preformatted Text

The HTML <pre> element defines preformatted text. The text inside a <pre> element
is displayed in a fixed-width font (usually Courier) and it preserves both spaces and line
breaks:

<pre>
My Bonnie lies over the ocean.

My Bonnie lies over the sea.

My Bonnie lies over the ocean.

Oh, bring back my Bonnie to me.
</pre>

9.3 HTML Styles and Text Formatting
The style attribute is used to add styles to an element, such as color, font, size, and
more. The HTML style attribute has the following syntax:

<tagname style="property:value;">

The property is a CSS property. The value is a CSS value.

1. The CSS background-color property defines the background color for an HTML
element. For example, the following sets the background color for a page to pow-
derblue:

<body style="background -color:powderblue;">

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>

We can set background colors for two different elements:

<body>

<h1 style="background -color:powderblue;">This is a heading</h1>
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<p style="background -color:tomato;">This is a paragraph.</p>

</body>

2. The CSS color property defines the text color for an HTML element:

<h1 style="color:blue;">This is a heading</h1>
<p style="color:red;">This is a paragraph.</p>

3. The CSS font-family property defines the font to be used for an HTML element:

<h1 style="font -family:verdana;">This is a heading</h1>
<p style="font -family:courier;">This is a paragraph.</p>

4. The CSS font-size property defines the text size for an HTML element:

<h1 style="font -size:300\%;">This is a heading</h1>
<p style="font -size:160\%;">This is a paragraph.</p>

5. The CSS text-align property defines the horizontal text alignment for an HTML
element:

<h1 style="text -align:center;">Centered Heading</h1>
<p style="text -align:center;">Centered paragraph.</p>

HTML contains several elements for defining text with a special meaning.

1. HTML <b> and <strong> element.

<b>This text is bold</b>
<strong>This text is important!</strong>

2. HTML <i> and <em> element. A screen reader will pronounce the words in <em>
with emphasis.

<i>This text is italic</i>
<em>This text is emphasized</em>

3. HTML <small> element defines smaller text:

<small>This is some smaller text.</small>

4. HTML <mark> element defines marked or highlighted text:

<p>Do not forget to buy <mark>milk</mark> today.</p>

5. HTML <del> element defines text that has been deleted (browsers usually strike a
line through deleted text):

<p>My favorite color is <del>blue</del> red.</p>
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6. HTML <ins> element defines text that has been inserted into a document (browsers
usually underline inserted text):

<p>My favorite color is <del>blue</del> <ins>red</ins>.</p>

7. HTML <sub> and <sup> elements define subscript and superscript text.

<p>This is <sub>subscripted</sub> text.</p>
<p>This is <sup>superscripted</sup> text.</p>

Definition 9.3.1 (HTML Quotation and Citation Elements). Listed.

1. HTML <blockquote> element defines a section that is quoted from another source.
Browsers indent <blockquote> elements:

<p>Here is a quote from WWF's website:</p>
<blockquote cite="http ://www.worldwildlife.org/who/index.html">
For 50 years , WWF has been protecting the future of nature.
The world's leading conservation organization ,
WWF works in 100 countries and is supported by
1.2 million members in the United States and
close to 5 million globally.
</blockquote>

2. HTML <q> tag defines a short quotation. Browsers insert quotation marks around
quotations.

<p>WWF's goal is to: <q>Build a future where people live in
harmony with nature.</q></p>

3. HTML <abbr> defines an abbreviation or an acronym, which can give useful infor-
mation to browsers, translation systems, and search engines. It is recommended to
use the global title attribute the show the description for the abbreviation/acronym
when you mouse over the element.

<p>The <abbr title="World Health Organization">WHO</abbr> was
founded in 1948.</p>

4. HTML <address> defines the contact information for the author/owner of an article.
It can be an email address, URL, physical address, phone number, social media, etc.
The text in the <address> element usually renders in italic and browsers will always
add a line break before and after the <address> element.

<address>
Written by John Doe.<br>
Visit us at:<br>
Example.com<br>
Box 564 , Disneyland<br>
USA
</address>
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5. HTML <cite> tag defines the title of a creative work (e.g. a book, poem, song,
movie, painting, etc. It is usually rendered in italic.

<p><cite>The Scream</cite> by Edvard Munch. Painted in 1893.</p>

6. HTML <bdo> (bi-directional override) tag is used to override the current text direc-
tion.

<bdo dir="rtl">This text will be written from right to left</bdo>

Definition 9.3.2 (Comments). Comments can be added to the HTML source by using
the following syntax:

<!-- Write your comments here -->
<!-- Do not display this image at the moment
<img border="0" src="pic_trulli.jpg" alt="Trulli">
-->

Note that there is an exclamation point (!) in the start tag, but not in the end tag.

HTML Links

HTML links are hyperlinks that you can click on to jump to another document. When
you move the mouse over a link, the mouse arrow will turn into a little hand.

The HTML <a> tag defines a hyperlink. It has the following syntax:

<a href="url">link text</a>
<a href="https ://www.w3schools.com/">Visit W3Schools.com!</a>

By default, links will appear as follows in all browsers:

1. An unvisited link is underlined and blue.

2. A visited link is underlined and purple.

3. An active link is underlined and red.

Note that links can be styled with CSS to get another look.

Furthermore, by default, the linked page will be displayed in the current browser window.
To change this, you must specify another target for the link. The target attribute can
have one of the following values:

1. _self - Default. Opens the document in the same window/tab as it was clicked.

2. _blank - Opens the document in a new window or tab.

3. _parent - Opens the document in the parent frame.

4. _top - Opens the document in the full body of the window.

For example, we can use target="_blank" to open the linked document in a new browser
window or tab:
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<a href="https ://www.w3schools.com/" target="_blank">Visit W3Schools!</a>

Unlike for absolute URLs, a local link (a link to a page within the same website) is
specified with a relative URL (without the https://www part)

<h2>Absolute URLs</h2>
<p><a href="https ://www.w3.org/">W3C</a></p>
<p><a href="https ://www.google.com/">Google</a></p>

<h2>Relative URLs</h2>
<p><a href="html_images.asp">HTML Images</a></p>
<p><a href="/css/default.asp">CSS Tutorial</a></p>

We can use other HTML elements as links:

1. To use an image as a link, just put the <img> tag inside the <a> tag:

<a href="default.asp">
<img src="smiley.gif" alt="HTML tutorial"

style="width:42px;height:42px;">
</a>

2. Use mailto: inside the href attribute to create a link that opens the user’s email
program.

<a href="mailto:someone@example.com">Send email</a>

3. To use an HTML button as a link, you have to add some JavaScript code. JavaScript
allows you to specify what happens at certain times, such as a click of a button:

<button onclick="document.location='default.asp'">HTML
Tutorial</button>

Creating Bookmarks in HTML

To create a bookmark, you first create the bookmark and then add the link to it. When
the link is clicked, the page will scroll down or up to the location with the bookmark.

1. First, use the id attribute to create a bookmark.

<h2 id="C4">Chapter 4</h2>

2. Then, add a link to the bookmark ("Jump to Chapter 4"), from within the same
page:

<a href="#C4">Jump to Chapter 4</a>

3. You can also add a link to a bookmark on another page:

<a href="html_demo.html#C4">Jump to Chapter 4</a>
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Chapter 10

Python 3

10.1 Regular Expressions
A RegEx, or Regular Expression, is a sequence of characters that forms a search
pattern. RegEx can be used to check if a string contains the specified search pattern. It
uses the re module.

10.2 Web Scraping
The relevant packages that must be imported are bs4, urllib.request.

We first define the URL of the website that we want to scrape. For example, let us take
the wikipedia article on the Eastern Front of WWII.

from bs4 import BeautifulSoup
from urllib.request import Request , urlopen
import urllib.request

#Define the URL we want to scrape
wiki_url = r"https ://en.wikipedia.org/wiki/Eastern_Front_(World_War_II)"

Then, we use the request function in urllib.request (which is a library for opening
URLs) to make a HTTP request to the website. More information can be found in
the HTTP section in this book, but in general once the Python program identifies the
IP address of the host computer hosting the requested URL, it sends the HTTP request
(usually HTTP/1.1). The host computer then sends back an HTTP response with both the
content and metadata about it. We usually set this HTTP response as a variable:

>>> response_object = urllib.request.urlopen(wiki_url)
>>> print(type(response_object))
>>> print(response_object)
<class 'http.client.HTTPResponse '>
<http.client.HTTPResponse object at 0x7fa3382de280>

Definition 10.2.1. The urlopen function has the following paramaters:

157



urllib.request.urlopen(url , data=None , timeout , cafile=None , capath=None ,
cadefault=False , context=None)

1. Open the URL url, which can either be a string or a Request object.

2. data must be an object specifying additional data to be sent to the server, or None
if no such data is needed.

3. The optional timeout parameter specifies a timeout in seconds for blocking opera-
tions like the connection attempt. Default is the global default timeout setting.

4. The optional cafile, capath parameters specify a set of trusted CA certificates
for HTTPS requests.

5. cadefault parameter is ignored.

6. context can be set to None.

With this, HTML request object, we can input it into the BeautifulSoup function of the
bs4 library, which gives us a BeautifulSoup object that represents the document as a
nested data structure (note that this is not a string!).

soup = BeautifulSoup(response_object , "html.parser")
print(type(soup)) #<class 'bs4.BeautifulSoup '>
print(soup)
#This gives us a nice representation of the HTML as a nested data

structure.

One may notice the second argument "html.parser"; we can leave this alone. HTML
parsing is basically taking in HTML code and extracting relevant information like the
title of the page, paragraphs in the page, headings in the page, links, bold text, etc. This
is really what BeautifulSoup does.

To make the returned BeautifulSoup object a bit easier to read, we can use .prettify().

html_doc =
"""<html ><head ><title >The Dormouse 's story </title ></head >
<body >
<p class="title"><b>The Dormouse 's story </b></p>
<p class="story">Once upon a time there were three little sisters; and

their names were
<a href="http :// example.com/elsie" class=" sister" id="link1">Elsie </a>,
<a href="http :// example.com/lacie" class=" sister" id="link2">Lacie </a> and
<a href="http :// example.com/tillie" class=" sister" id="link3">Tillie </a>;
and they lived at the bottom of a well.</p>
<p class="story ">...</p>
"""
soup2 = BeautifulSoup(html_doc , 'html.parser ')
print(soup2.prettify ())
# <html >
# <head >
# <title >
# The Dormouse 's story
# </title >
# </head >
# <body >
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# <p class="title">
# <b>
# The Dormouse 's story
# </b>
# </p>
# <p class="story">
# Once upon a time there were three little sisters; and their names were
# <a class=" sister" href="http :// example.com/elsie" id="link1">
# Elsie
# </a>
# ,
# <a class=" sister" href="http :// example.com/lacie" id="link2">
# Lacie
# </a>
# and
# <a class=" sister" href="http :// example.com/tillie" id="link3">
# Tillie
# </a>
# ; and they lived at the bottom of a well.
# </p>
# <p class="story">
# ...
# </p>
# </body >
# </html >

Definition 10.2.2 (Find method). The find method finds the first instance of a HTML
element with a certain tag.

soup = BeautifulSoup(response_object , "html.parser")
print(soup.find("a"))
#<a id="top"></a>

We can confirm that this is indeed the first element with tag <a> when looking at the
page source in the browser.

1. If we would like it to have an additional attribute of a href (which means that it
has a link attached), then we can just write

link = soup.find("a", href=True)
print(link)
#<a class="mw-jump -link" href ="#mw-head">Jump to navigation </a>
#Note that this is not a string , even though it looks like a

string.
print(type(link)) #What is the type? It is a tag.
#bs4.element.Tag
print(link.name) #What is the name of this tag?
#'a'

2. We can look for other attributes in the <a att1 = ’ ’ att2 = ’ ’ > and use them
to find the elements with tag tag that have these attributes.

link = soup.find("tag", att1=True , att2 = "This")
print(link)
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3. We can also get the dictionary of all the attributes with the .attrs method.

print(link.attrs)
#{'class ': ['mw-jump -link '], 'href ': '#mw-head'}

4. The text attribute returns the text (i.e. the text that is actually shown on the
website) of the element with the tag.

Definition 10.2.3 (Find_all method). The find_allmethod works exactly like the find
method, but it displays a ResultSet object (which acts like a list) with all the elements
having the required tag and meeting certain attribute requirements.

links = soup.find_all('a', href=True)
print(type(links)) #type of this find_all object
print(len(links))
#bs4.element.ResultSet
#3098 #This website contains 3098 links!

1. We can loop through this ResultSet as if it were a list, but we can’t assume that
every element of this set is going to have the same attributes. For example, every
element has a href attribute (since we built the list that way), but not every element
has the title attribute. Therefore, we must use try, except.

for link in links[0:10]:
print(link['href'])
try:

print(link['title '])
except:

continue

2. We can find_all elements that have either one of multiple tags by inputting a list
rather than a string as the argument:

#search for tables and a tags
tables_and_a = soup.find_all(['table ', 'a'])

3. We can add additional arguments to make the attributes more specific:

#table headers with style attribute
table_headers = soup.find_all('th', style='width: 10\%;')
print(table_headers)
#[<th style="width: 10\%;">Date </th >]

#find all the wiki tables
wiki_tables = soup.find_all('table ', class_='wikitable ')

Since class is already a keyword in Python, the attribute is class_.

4. We can find_all with multiple attributes, by inputting a dictionary.

#a list of all tags that have a href and a title , and have the
class value mw-direct.
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a_tags_multi = soup.find_all('a', {'href':True , 'title ':True ,
'class ':"mu=redirect"})

5. We can also define a function to find the items

def list_with_links(tag):
return tag.name == 'li' and len(tag.find_all('a'))>7

#list items with a tags a
list_with_a = soup.find_all(list_with_links)

Family Tree

Definition 10.2.4 (Children and Descendants). Given a HTML code, a child of a tag
is the direct subtag, and the descendants of a tag are all the children and children of
those children, etc.

#define the simple tree
simple_tree =
'''<html ><body ><a><b>text1 </b><c>text2 </c></a></body ></html >'''

#pass the simple tree into our parser to create some simple soup.
simple_soup = BeautifulSoup(simple_tree , 'html.parser ')

#we can always print it in a familiar structure.
print(simple_soup.prettify ())

#<html >
# <body >
# <a>
# <b>
# text1
# </b>
# <c>
# text2
# </c>
# </a>
# </body >
#</html >

If we want just a list of the children we can use the content attribute:

a_content = simple_soup.a.contents #the 'a' stands for the a tag
display(a_content)
[<b>text1</b>, <c>text2</c>] #this is actually not a list!

#an identical way to get the list of children is as such:
print(simple_soup.a.children) #this is a list!

All of the descendants of a tag can be gotten as such:

print(simple_soup.a.descendants)
[<b>text1</b>, text1 , <c>text2</c>, text2]
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Definition 10.2.5 (Parents). We can go backwards to get the parent tag:

#get the parent of the 'a' tag
print(simple_soup.a.parent)
#<body ><a><b>text1 </b><c>text2 </c></a></body >

#get the parent of the parent of the 'a' tag
print(simple_soup.a.parent.parent)
#<html ><body ><a><b>text1 </b><c>text2 </c></a></body ></html >

Now, just like the descendants, we can get all the parents of the ’a’ tag.

for parent in simple_soup.a.parents:
print(parent)

#<body ><a><b>text1 </b><c>text2 </c></a></body >
#<html ><body ><a><b>text1 </b><c>text2 </c></a></body ></html >
#<html ><body ><a><b>text1 </b><c>text2 </c></a></body ></html >

The first line is the body tag, the second is the html tag, and the final line is the entire
document itself. This can also be found with the find_parent method:

print(simple_soup.b.find_parent ()) #find parent of b tag
print(simple_soup.b.find_parents ()) #find all parents of b tag
#<a><b>text1 </b><c>text2 </c></a>
#[<a><b>text1 </b><c>text2 </c></a>,
#<body ><a><b>text1 </b><c>text2 </c></a></body >,
#<html ><body ><a><b>text1 </b><c>text2 </c></a></body ></html >,
#<html ><body ><a><b>text1 </b><c>text2 </c></a></body ></html >]

We’ve learned how to go up or down, but we can do sideways to get a tag’s siblings.

Definition 10.2.6. A tag can have either a sibling after it or before it, denoted by the
next_sibling and previous_sibling method.

#print the element with tag b
print(simple_soup.b)
#<b>text1 </b>

#print the next sibling (what comes after) of b
print(simple_soup.b.next_sibling)
#<c>text2 </c>

#print the previous sibling of b
print(simple_soup.b.previous_sibling)
#None

We can see that b has one sibling after it, which is c, but since it is the first ele-
ment in its generation, there is no previous sibling. This can also be done with the
find_next_sibling method.

simple_soup.b.find_next_sibling () #find the next sibling of b tag
simple_soup.b.find_next_siblings () #find all next siblings of b tag
simple_soup.b.find_previous_sibling () #find the previous sibling of b tag
simple_soup.b.find_previous_siblings () #find all previous siblings of b tag
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Definition 10.2.7 (Order of Parsing using next_element). The order in which a HTML
file was parsed can be determined by the next_element method.

#grab the body
print(simple_soup.body)
#<body ><a><b>text1 </b><c>text2 </c></a></body >

print(simple_soup.body.next_element)
#<a><b>text1 </b><c>text2 </c></a>

However, the order in which it is parsed does not align always with the sibling order.
Therefore, the next_element and previous_element method simply refers to the order
in which the HTML was parsed, nothing more. This can also be found using the find_next
method.

simple_soup.a.find_next () #find the next element of a tag
simple_soup.a.find_all_next () #find all next elements of a tag
simple_soup.a.find_previous () #find the previous element of a tag
simple_soup.a.find_all_previous ()#find all previous elements of a tag

Adding Attributes to Certain Tags

Say that you have parsed a HTML file and you have the, say, first a-tag element. We can
display its href attribute normally as such:

a_tag = table.a
print(a_tag)
#<a href ="# cite_note -37">[37]</a>

print(a_tag['href'])
# '#cite_note -37'

We can also add our own attribute style to this tag as such:

a_tag['style '] = 'my new width '
print(a_tag)
#<a href ="# cite_note -37" style="my new width">[37]</a>

This is extremely useful since it allows us to tag certain elements with an attribute for
easy identification of these elements for later on when we’re analyzing data.

We can also add text/string to the tag.

#here we add a new string to the a tag
a_tag.string = "My New String"
print(a_tag)
#<a href ="# cite_note -37" style="my new width">My New String </a>

Since we can add values, we also have the capability to delete them. The clear method
clear all the string in the tag.

#grab the first a tag
tag = table.a
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print(tag)
#<a href ="# cite_note -37" style="my new width">My New String </a>

tag.clear()
print(tag)
#<a href ="# cite_note -37" style="my new width"></a>

Note that all the changes that you do to the tags are permanent! You must re-request the
HTML and parse through it again to get the original version!

Definition 10.2.8 (Extracting a tag). Given a certain section of HTML code, we can
choose to extract a certain portion of the code that has a specific tag, which basically
removes that portion from the original code. We can take this extracted portion and store
it as a variable.

#grab a table body
print(table.tbody)

#extrac the first table header
th_tag = table.tbody.tr.extract ()

#display the extracted tag
print(th_tag)
#<th style="width: 10\%;">Date </th>

Again, note that every time you extract a portion of the HTML code, you’re permanently
removing it! After extracting enough times, there won’t be any more tags to extract and
you’ll get an error statement (which is a drawback).

Definition 10.2.9. To get the strings that belong to a certain tag, we do the following:

#printing the first string that you find in the table header tag
print(table.th.string)

#get all the strings that belong to a table body
for string in list(table.tbody.strings)[0:10]:

print(string)

We have to convert table.tbody.strings to a list in order to slice it (since we only want
to show the first 10 strings).

However, this will produce a lot of line breaks, so the more popular one to go to is the
stripped_strings method.

for string in list(table.tbody.stripped_strings)[0:10]:
print(string)
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