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1 Complexity
A course on the study of algorithms.

Definition 1.1 (Algorithm)

An algorithm is a procedure for solving a mathematical problem in a finite number of steps. It
should be

1. finite,
2. correct,
3. efficient

An algorithm, with respect to some inputs n, will have a runtime that is some function f . We would like a
formal way to analyze the asymptotic behavior between two functions.

Definition 1.2 (Complexity)

Given two positive functions f, g,
1. f = O(g) if f/g is bounded.a
2. f = Ω(g) if g/f is bounded, i.e. g = O(f).
3. f = Θ(g) if f = O(g) and g = O(f).

There are two notions of complexity here. We can compare f and g with respect to the value N of the
input, or we can compare them with respect to the number of bits n in the input. While we mostly use
the complexity w.r.t. the value, we should be aware for certain (especially low-level operations), the bit
complexity is also important.

Let’s do a quick comparison of various functions. Essentially, if we want to figure out the complexity of two
positive functions f, g,1 we can simply take the limit.

lim
x→+∞

f(x)

g(x)
=


0 =⇒ f = O(g)

0 < x < +∞ =⇒ f = Θ(g)

+∞ =⇒ f = Ω(g)

(1)

Most of the time, we will have to use L’Hopital’s rule to derive these actual limits, but the general trend is

1. log n is small

2. poly(n) grows faster

3. exp(n) grows even faster

4. n! even faster

5. nn even faster

Theorem 1.1 (Properties)

Some basic properties, which shows very similar properties to a vector space.
1. Transitivity.

f = O(g), g = O(h) =⇒ f = O(h) (2)
f = Ω(g), g = Ω(h) =⇒ f = Ω(h) (3)
f = Θ(g), g = Θ(h) =⇒ f = Θ(h) (4)

(5)

aNote that it is more accurate to write f ∈ O(g), since we consider O(g) a class of functions for which the property holds.
1These will be positive since the runtime must be positive.
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2. Linearity.

f = O(h), g = O(h) =⇒ f + g = O(h) (6)
f = Ω(h), g = Ω(h) =⇒ f + g = Ω(h) (7)
f = Θ(h), g = Θ(h) =⇒ f + g = Θ(h) (8)

(9)

Example 1.1 ()

Compare the following functions.
1. f(n) = log10(n), g(n) = log2(n). Since they are different bases, we can write f(n) =

log(n)/ log(10) and g(n) = log(n)/ log(2). They differ by a constant factor, so f = Θ(g).
2. f(n) = (logn)20, g(n) = n. We have

lim
n→∞

(log n)20

n
= lim

n→∞

20 · (log n)19 · 1n
1

= . . . = lim
n→∞

20!

n
= 0 =⇒ f = O(g) (10)

3. f(n) = n100, g(n) = 1.01n. We have

lim
n→∞

n100

1.01n
= lim

n→∞

100n99

1.01n · log(1.01)
= . . . = lim

n→∞

100!

1.01n · (log 1.01)100
= 0 =⇒ f = O(g)

(11)

Let’s do a slightly more nontrivial example.

Example 1.2 ()

Given the following algorithm, what is the runtime?

1 for i in range(1, n+1):
2 j = 1
3 while j <= i:
4 j = 2 * j

Now we can see that for each i, we will double up to log2(i) times. Therefore summing this all over
i is

n∑
i=1

log2(i) = log2(n!) ≤ log2(n
n) = n log2(n) (12)

and so we can see that the runtime is O(n log n). Other ways to do this is to just replace the
summation with an integral.a∫ n

1

log2(x) dx = x log(x)− x
∣∣n
1
= n log(n)− n+ 1 = O(n log n) (13)

2 Brute Force Algorithms

2.1 Basic Arithmetic
In here, we use basic deductions from elementary algebra to give us a starting point at which we analyze
fundamental arithmetic algorithms.

aNeed more justification on why this is the case. Mentioned in lecture.
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Theorem 2.1 (Complexity of Addition)

The complexity of addition of two O(N) values with n bits is
1. O(n) bit complexity.
2. O(logN) complexity.
3. O(1) memory complexity.

By the same logic, the complexity of subtraction is
1. O(n) bit complexity.
2. O(logN) complexity.
3. O(1) memory complexity.

Proof.

To see bit complexity, we are really taking each bit of each number and adding them together, plus a
potential carry operation. Therefore, we are doing a bounded number of computations per bit, which
is O(1), but we must at least read through all of the bits, making this O(max{n,m}).

Theorem 2.2 (Complexity of Multiplication)

The complexity of multiplication of two values N,M with bits n,m is
1. O(n2) bit complexity.a
2. O((log n)2) complexity.
3.

Theorem 2.3 (Complexity of Division)

The complexity of multiplication of two values N,M with bits n,m is
1. O(n2) bit complexity.
2.

Theorem 2.4 (Complexity of Modulus)

The complexity of multiplication of two values N,M with bits n,m is
1. O(n2) bit complexity.
2.

Theorem 2.5 (Complexity of Exponentiation)

The complexity of multiplication of two values N,M with bits n,m is
1. O(n2) bit complexity.
2.

Theorem 2.6 (Complexity of Square Root)

The complexity of multiplication of two values N,M with bits n,m is
1. O(n2) bit complexity.
2.

Definition 2.1 (Factorial)

aIt turns out we can do better, which we will learn later.
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2.2 Lists

Definition 2.2 (Max and Min of List)

Definition 2.3 (Bubble Sort)

Definition 2.4 (Binary Search)

2.3 Stack, Queues, Heaps
A heap is sort of in between a sorted array and an unsorted array.

2.4 Cryptography

Example 2.1 (GCD of Two Numbers)

Take a look at the following algorithm.

1 def gcd(a, b):
2 if a == b:
3 return a
4 elif a > b:
5 return gcd(a - b, b)
6 else:
7 return gcd(a, b - a)
8

9 print(gcd(63, 210))

Definition 2.5 (Primality Testing)

Definition 2.6 (Integer Factorization)

2.5 Matrix Operations

Definition 2.7 (Matrix Multiplication)

Definition 2.8 (Singular Value Decomposition)

Definition 2.9 (QR Decomposition)
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Definition 2.10 (LU Decomposition)

Definition 2.11 (Matrix Inversion)

3 Divide and Conquer

Definition 3.1 (Divide and Conquer Algorithms)

The general idea is two steps:
1. Divide an input into smaller instances of the same problem. The simplest form is merge sort.
2. Conquer/solve these smaller instances, which takes less time.
3. Merge/Combine the smaller solutions into the original, bigger solution.

This is usually recursive, but does not need to be.

It has its applications in the most elementary operations, in sorting and multiplication. To prove correctness,
we use induction by proving the correctness of the base case and then the inductive step to show that there
is an invariant.

3.1 Recursive Algorithms and Recurrence Relation
I assume that the reader is familiar with recursive algorithms. Now to evaluate the runtime of a recursive
algorithm, one must implicitly solve for the runtime of its recursive calls, and we can visualize it.

Figure 1

An important theorem for divide-and-conquer algorithms is
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Theorem 3.1 (Master Theorem)

Given a recurrence relation of form

T (N) = aT (N/b) +O(N c) (14)

then the following holds

a > bc =⇒ T (N) = O(N logb a) (15)
a = bc =⇒ T (N) = O(N c logN) (16)
a < bc =⇒ T (N) = O(N c) (17)

Proof.

To intuit this, see that if a > bc, then there arises a lot of subproblems, so our complexity is greater.
If a < bc, then we have few subproblems and can get a better runtime. If a = bc, we get somewhere
in between. To actually solve this, we can just unravel the recurrence to get the infinite series

T (N) = aT (N/b) +O(N c) (18)

= a2T (N/b2) +N c

(
a

bc
+ 1

)
(19)

= N c

(
1 +

a

bc
+

a2

b2c
+ . . .

)
(20)

So, if a < bc, then even as N → ∞, the sum is finite, so it is of order O(N c). If a = bc, then the
series is just 1+ . . .+1, which scales on the order of O(log2 N). If > 1, then we have to calculate the
last term, which contributes to our runtime and overpowers c.
Therefore, if a is large, our algorithm will have an exponential number of subproblems and will be
bottlenecked by the.

3.2 Merge Sort and Counting Inversions

Algorithm 3.1 (Merge Sort)

Merge sort is the first instance.
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Algorithm 1 Merge Sort
Require: Array nums

function MergeSort(nums)
n = len(nums)
if n < 2 then ▷base case

return nums
end if
mid = n // 2
left_sorted = MergeSort(nums[:mid]) ▷Divide into left half
right_sorted = MergeSort(nums[mid:]) ▷Divide into right half
res = [0] * n
i = j = k = 0
while k < n do ▷Merge the sorted subarrays

if j == len(right_sorted) or left_sorted[i] < right_sorted[j] then
res[k] = left_sorted[i] ▷We should add the next element from left array
i += 1 ▷if it is smaller or if right array is filled already

else
res[k] = right_sorted[j]
j += 1

end if
k += 1

end while
return res

end function

The recurrence relation for the runtime is as follows. Let T (n) represent the worst-case runtime of
MergeSort of size n. Then, we have

T (n) = 2 · T (n/2) +O(n) (21)

Consisting of two recursive calls with input size n/2 and then the merge step which is O(n). But if
we take a look at this, we have

T (n) = 2 · T (n/2) +O(n) (22)

= 2 ·
(
2 · T (n/4) +O(n/2)) +O(n) (23)

= 4 · T (n/4) +O(n) +O(n) (24)

and the number of times O(n) is added up is log n, meaning that this recurrence relation turns into
O(n log n).

Definition 3.2 (Inversions)

Given two lists of ranked items, say

Alice :a > b > c > d > e (25)
Bob :b > d > a > e > c (26)

We want to measure the dissimilarity between two rankings by counting the number of inversions,
which are pairs of items for which open persons orders the opposite of the other (e.g. a, b for above).a
So how many inversions are there? We can do this in Θ(n2) by explicitly looking at all n pairs.
Without loss of generality, we can assume that the first list is sorted simply by bijectively relabeling
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these elements for both lists. Therefore, the set of inversions is defined to be

{(i, j) s.t. i < j and A[i] > A[j]} (27)

Algorithm 3.2 (Counting Inversions)

The idea is very similar. By assuming that the first list is sorted, we can simply count the number of
inversions in a single list A.

1 A = 5 6 1 3 4 8 2 7

1. In the divide step, we count all inversions in Al, Ar, which are the left and right sides of A, and
we sort Al, Ar to add additional structure.

1 1 3 5 6 | 2 4 7 8

2. In the conquer step, we merge them linearly but every time we add an element from Ar into
our result, this reveals that there are k additional inversions added where k is the number of
elements left in Al to add.

Algorithm 2 Counting Inversions
Require: Array nums

function Inversions(nums)
n = len(nums)
if n < 2 then ▷base case

return nums
end if
mid = n // 2
left_sorted, left_invs = Inversions(nums[:mid]) ▷Divide into left half
right_sorted, right_invs = Inversions(nums[mid:]) ▷Divide into right half
res = [0] * n
i = j = k = 0 ▷left, right, and combined index
inv = 0 ▷number of inversions
while k < n do ▷Merge the sorted subarrays

if j == len(right_sorted) or left_sorted[i] < right_sorted[j] then
res[k] = left_sorted[i] ▷We should add the next element from left array
invs += len(left_sorted - i) ▷Increment inversions by # of elems in left array
i += 1 ▷if it is smaller or if right array is filled already

else
res[k] = right_sorted[j]
j += 1

end if
k += 1

end while
return res, inv + left_invs + right_invs

end function

The recursion relation is still

T (n) = 2 · T (n/2) +O(1) +O(n) =⇒ O(n log n) (28)

aAlso known as Kendall-Tau distance in statistics.
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3.3 Selection and Quick Sort
The next problem is a generalization of finding the median of an array, which we present can be done in
O(n) time on average. It turns out that that this idea of choosing a pivot and then dividing and conquering
happens often in general selection and sort algorithms.

Algorithm 3.3 (Select kth Largest Element from Unsorted Array)

Algorithm 3 Find Kth Largest Element

Require: Array of numbers nums, integer k where 1 <= k <= length(nums)

function FindKthLargest(nums, k)
if length(nums) = 1 then ▷Base case: if array has only one element

return nums[0]
end if
pivot ← ⌊length(nums)/2⌋ ▷Select middle element as pivot
left ← [ ] ▷Unsorted array for elements smaller than pivot
right ← [ ] ▷Unsorted array for elements larger than pivot
n_pivots ← 0 ▷Count of elements equal to pivot
for each n in nums do ▷Start filling in the arrays

if n = nums[pivot] then
n_pivots ← n_pivots + 1

else if n ≤ nums[pivot] then
left.append(n)

else
right.append(n)

end if
end for
if length(right) ≤ k - 1 and length(left) ≤ length(nums) - k then

return nums[pivot] ▷Found the kth element which was in the middle in n_pivots
else if length(right) ≥ k then

return FindKthLargest(right, k) ▷Largest is in the array of bigger numbers.
else

return FindKthLargest(left, k - length(right) - n_pivots) ▷Largest is in the array of
smaller numbers.

end if
end function
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Algorithm 3.4 (Quick Sort)

Algorithm 4 Quicksort Algorithm
Require: Array A of comparable elements

function Quicksort(A, low, high)
if low < high then

p ← Partition(A, low, high) ▷Get pivot position
Quicksort(A, low, p - 1) ▷Sort left subarray
Quicksort(A, p + 1, high) ▷Sort right subarray

end if
end function

function Partition(A, low, high)
pivot ← A[high] ▷Choose rightmost element as pivot
i ← low - 1 ▷Index of smaller element
for j ← low to high - 1 do ▷Scan through array

if A[j] ≤ pivot then
i ← i + 1 ▷Increment index of smaller element
swap A[i] and A[j] ▷Swap current element with pivot

end if
end for
swap A[i + 1] and A[high] ▷Put pivot in its correct position return i + 1 ▷Return pivot’s final

position
end function

3.4 Closest Pair of Points
The next problem simply takes a series of points and calculates the closest pair of points. This can be done
trivially in O(N2) by taking all combinations, but with clever divide and conquer, we can reduce this down.
The idea is that we want to divide them into a left and a right side, which we can sort in O(N logN) and
find the median in O(1). This now reduces to computing the closest pair of points in each N/2 half. If
we can find the closest pair in each half, then we must compare it to all pairs of points across the halves,
meaning that we must do (N/2)2 comparisons again, leading to

T (N) = 2T (N/2) +O(N2) (29)

which isn’t any better than O(N2). But imagine that we found that the smallest distance of the left and
right were δ1, δ2, then for each point in the left side, we don’t have to check all N/2 points on the right.

12/ 82



Algorithms Muchang Bahng Spring 2024

Figure 2

We just have to check those with distance at most δ = min{δ1, δ2} from each point. Furthermore, we can
discard all points that are too far away from the boundary. However, all N points could like in the relevant
space, leading to O(N2) computations of distance.

Figure 3

Therefore, we want to incorporate vertical distances and tile our relevant space into square of side length
δ/2.
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Figure 4

We claim that each square has at most 1 point, since if there were two, then their distance would be less
than δ/

√
2, which contradicts the distance between the two points being greater than δ. Therefore given a

point, we only need to check a bounded constant.

Figure 5: The number of points on the other side with distance ≤ δ is at most 10. If we are more careful, we can
reduce the number down to 7.

It turns out that we just need to compute 5N = (N/2)·10 distances at most, and now our question reduces to
how do we find these 5 points? Well we can first sort the points on the left and right by their y-coordinates,
so we can just take a sliding window that encapsulates these points on the right for every on the left. The
pointers of the sliding window should point to a point where the y-coordinate is at most δ away, and this
can be done in constant time. Therefore, our recurrence relation is

T (N) = 2T (N/2) +O(N logN) =⇒ T (N) = O(N log2 N) (30)
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This sorting along the y-coordinates is a bottleneck, but we can just shove this into the recursion step by
telling the left and right to not just return the δ1, δ2, but also the points sorted in the y-coordinate. Then at
the end of the merge, we also merge the lists L,R so that S = L ∪R is sorted on y, which also takes O(N)
and doesn’t add extra runtime on the merge step. This reduces the runtime to O(N logN).

Algorithm 3.5 (Closest Pair of Points)

The next problem simply takes a series of points and calculates the closest pair of points. This can
be done trivially in O(N2) by taking all combinations, but with clever divide and conquer, we can
reduce this down.

Algorithm 5 Closest Pair of Points

Require: N points {(xi, yi)}.

function ClosestPair(P)
Sort points by x-coordinate. ▷Bottleneck of O(N logN)
if len(P) = 2 then

return d(p1, p2), sorted P by y-coord
end if
δ1, L← ClosestPair(PL)
δ2, R← ClosestPair(PR)
δ = min{δ1, δ2}
min ← δ
for l ∈ L s.t. distance to boundary ≤ δ do ▷O(N) iterations

Wl ← δ-window of points in R around l. ▷Can be done in O(1) using sliding window.
for r ∈Wl do ▷This is bounded by O(10)

if d(p, l) < δ then
min ← d(p, l)

end if
end for

end for
merge L and R into sorted S ▷O(N)
return min, S

end function

3.5 Multiplication
3.5.1 Karatsuba Algorithm

3.5.2 Strassen Algorithm

We can solve matrix multiplication of two N ×N matrices in a slightly more clever way than O(N3). Note
that we can take the 2× 2 block form of matrices A,B and multiply them to get C = AB, where

C11 = A11B11 ·A12B21 (31)
C12 = A11B12 ·A12B22 (32)
C21 = A21B11 ·A22B21 (33)
C22 = A21B12 ·A22B22 (34)

This requires us to compute a total of 8 N/2×N/2 multiplications and 4 additions, each of which is O(N2).
Therefore, our recurrence relation is

T (N) = 8T (N/2) +O(N2) (35)
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Using the master theorem, we find that a = 8 > 22 = bc, so our runtime is O(N logb a) = O(N3), which
brings us right back to where we started. The problem with this is that a = 8, which is large. If we could
get a = 7, then this would be an improvement. We want to reduce this number of multiplications, and we
can do this using the Strassen algorithm, which uses the following values.

P1 = (a11 + a22)(b11 + b22)

P2 = (a21 + a22)b11

P3 = a11(b12 − b22)

P4 = a22(b21 − b11

P5 = (a11 + a12)b22

P6 = (a21 − a11)(b11 + b12)

P7 = (a12 − a22)(b21 + b22)

Then, we claim that we the entries of C are

c11 = P1 + P4 − P5 + P7

c12 = P3 + P5

c21 = P2 + P4

c22 = P1 + P3 − P2 + P6

So we have reduced 8, 4 mult/add to 7, 18 mult/add. Addition is cheap and the number of additions is
bounded, so now we have decreased a to 7.2 We can then solve the new recurrence relation

T (N) = 7T (N/2) +O(N2) =⇒ O(N log2 7) ≈ O(N2.81) (36)

3.6 Polynomial Multiplication with Fast Fourier Transform
Given as inputs 2 degree N polynomials,

A(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 (37)

B(x) = b0 + b1x+ b2x
2 + . . .+ bn−1x

n−1 (38)

we want to multiply them to C(x) = A(x)B(x) defined

C(x) = c0 + c1x+ · · ·+ c2n−2x
2n−2 (39)

Clearly, we must multiply every coefficient in A with B, which takes O(N2) time. It is also called the
convolution operation.

Convolution of (a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1)

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

c3 = a0b3 + a1b2 + a2b1 + a3b0

...
c2n−2 = an−1bn−1

We can actually compute this convolution of two vectors in O(N logN) time using the FFT algorithm. Let’s
ease into this idea.

2We can reduce it even further, down to 2.37. Whether O(N2) is possible is an open problem.
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Lemma 3.1 (Evauating a Polynomial at x)

If we are given an x and want to evaluate A(x), we can just incrementally evaluate the terms up each
degree in O(N) time.

Algorithm 6 Evaluate polynomial A(x) at x = p

1: S ← a0
2: R← x
3: for i = 1, 2, . . . , n− 1 do
4: S ← S + ai ·R
5: R← R · x
6: end for

Great, we can make some progress, but what does this have to do with finding the actual polynomial? Recall
that from the fundamental theorem of algebra, a set of n + 1 points will uniquely determine a nth degree
polynomial. This at first glance doesn’t help, since evaluating all n+ 1 points is O(n2), and even if we did,
this doesn’t really tell us how to reconstruct the polynomial in some fast time (e.g. matrix inversion won’t
work). But note that if we have a 1st degree polynomial, then evaluating it at ±1 will retrieve the whole
polynomial back

f(x) = a0 + a1x =⇒

{
f(+1) = a0 + a1

f(−1) = a0 − a1
=⇒

{
a0 = 1

2

(
f(+1) + f(−1)

)
a1 = 1

2

(
f(+1)− f(−1)

) (40)

We can think of this as sort of our base case. For Nth degree polynomials, we can divide it into a even and
odd powers part.

A(x) = a0 + a1x+ a2x
2 + . . . (41)

= (a0 + a2x
2 + a4x

4) + x(a1 + a3x
2 + a5x

4 + . . .) (42)

= Aeven(x
2) + xAodd(x

2) (43)

where each of the splits have degree N/2. Then we want to evaluate the even and odd parts.

Let’s jump ahead and focus on the problem of evaluating A(x) of degree N at the Nth roots of unity.

Example 3.1 ()

For N = 4, we evaluate at ±1,±i.

A(x) = (a0 + a2x
2) + x(a1 + a3x

2) (44)

which gives us

A(+1) = Ae(+1) +Ao(+1) (45)
A(−1) = Ae(+1)−Ao(1) (46)
A(+i) = Ae(−1) + iAo(−1) (47)
A(−i) = Ae(−1)− iAo(−1) (48)

Note that even though we had ±i evaluated on A, they were all squared in each split so evaluating
the 4th of unity, which we denote U(4), has been reduced to finding U(2) for each of the left and
right polynomials.

Therefore, to evaluate A of degree N at U(N), it suffices to evaluate Ae, Ao each at U(N/2), followed by
combing them using addition and multiplication, which turns out to be O(N).
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Figure 6

Algorithm 3.6 (Evaluate Nth Degree Polynomial at Nth Roots of Unity)

Require:

function Func(x)
end function

Therefore, we have divided the problem of evaluating over U(N) to be

T (N) = 2T (N/2) +O(N) =⇒ T (N) = O(N logN) (49)

So we have shown that in general, evaluating N points of a polynomial takes O(N2) time, but if you’re clever
about what points to evaluate, you can get O(N logN).

Now going back to the original problem, we can evaluate A(u), B(u) for u ∈ U(N), and then multiply them
to get C(u). Great. Now to reconstruct the polynomial using the roots of unity, it turns out that there is a
method in O(N logN) time as well.

4 Greedy Algorithms
Greedy algorithms are easy to implement and easy to conceptualize, but they are often not correct. So the
only interest in them is proving if they are correct. We have done greedy algorithms like Dijkstra and finding
MSTs. Every step, greedy algorithms make an irrevocable decision of what to do and cannot undo it. That
is, we cannot backtrack. In fact, some algorithms like Kruskal’s algorithm for MSTs is precisely a greedy
algorithm.

Example 4.1 (Interval Scheduling)

Let there be 1 classroom and n courses, each with a start and end time (si, ei). We want to find the
largest subset of courses that can be scheduled in a day such that they don’t overlap. There are two
things we want to do. How do we code this up? How do we show that a greedy algorithm will give a
correct answer? Two greedy approaches are as follows.

1. Sort them by the start times, and add them as long as they do not overlap with what you have.
This will not work.

2. Sort them by the time interval lengths and keep adding them as long as they do not overlap
with what you have. This will not work either.

It turns out that if we sort based on finish time, this will work. So why is this correct? Assume
that the first k decisions of this greedy algorithm are correct. Then, to find the next interval that
we will include, the optimal algorithm must choose one that does not overlap with what we have.
This is good since we do the same. The second part is that the next added interval must have the
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smallest end time t from all viable left intervals. Assume that it was not and that the optimal next
interval had end time s > t. Then, the next interval must start after s, but this also starts after t, so
we are sacrificing unnecessary extra space. An optimal solution with the endpoint at s can also be
constructed with the same interval ending at t without anything to lose.

Algorithm 7 Find Max Classes to Fit into 1 Room

Require: classes C = {(si, ei)}i of type List[tuple(int, int)]
function Schedule(C)

res← []
sort C by increasing end time
for s, e ∈ C do

if s < res[-1][-1] then ▷If start overlaps with previous end time
continue

end if
add (s, e) to res ▷Otherwise add class to final schedule

end for
return res

end function

To get the run time, the sorting takes O(n log n) time and iterating is O(n), so a total of O(n log n)
time.

Example 4.2 (Classroom Scheduling)

A slightly more practical example is that you have n classes and you want to minimize the number
of classrooms m. For this, you can really use any order. The general idea is

1. Consider intervals in increasing start time si.
2. If it can be scheduled in an existing classroom, then schedule it there.
3. If not, then open a new classroom.

Even then, we can conduct a line search through all the time periods, incrementing the current
number of classes if an incoming time is a start time and decrementing if it is an end time. We report
the max ∆ over all times.
This algorithm is correct since by definition, ∆ is the lower bound for the number of classrooms
needed and the greedy algorithm attains it. The greedy algorithm reports ∆ since if it reported ∆+1
classroom, then at some time t it opened the ∆ + 1th classroom. But this is impossible since this
must mean that there are ∆ + 1 classrooms concurrently in use, contradicting our assumption that
∆ is the optimal solution.
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Algorithm 8 Minimizing Number of Rooms With n Classes (Leetcode 253, Meeting Rooms II)

Require: classes C = {(si, ei)}i of type List[tuple(int, int)]
function MeetingRooms(C)

start← all start times sorted increasing
end← all end times sorted increasing
res← 0 ▷Our max classes count
count← 0 ▷Our curr. classes count
s, e← 0 ▷pointers for start, end
while s < len(start) do ▷Don’t need to check for end since

if start[s] == end[e] then ▷start will always finish faster.
s += 1, e += 1 ▷One started and one ended, so don’t change

else if start[s] > end[e] then
e += 1, count -= 1 ▷One ended, so decrement count

else if start[s] < end[e] then
s += 1, count += 1 ▷One started, so increment count
res = max(res, count) ▷Update res if we got past it

end if
end while
return res

end function

The runtime is O(n log n), which is to sort. However, you don’t even need to sort since you can go
through all intervals in any order and place it in an existing classroom or open a new classroom.

The next one isn’t as trivial, but requires us to devise a custom sorting method by comparing two sequences
with a swap difference.

Example 4.3 (Quiz Problem)

Suppose you have n questions with question i having reward ri, but the probability that you get
it correct is pi. You keep collecting the reward until you get one question wrong, and the game
terminates. What order would you answer the questions in?
Suppose we have q = (10, 5) and r = (0.1, 0.2).

1. If you choose the first and then second, then the expected return is

10 · 0.1 + 5 · 0.1 · 0.2 = 1.1 (50)

2. If you choose the second and then first, then the expected return is

5 · 0.2 + 10 · 0.1 · 0.2 = 1.2 (51)

Clearly, finding all possibilities is too computationally expensive since it increases exponentially w.r.t.
n. Intuitively, if I have a question with a high reward, I want to answer it first, but if I have a low
probability of getting it correctly, then I can’t answer future questions if I get it wrong. So I have to
balance these two forces. So we want to sort the score of each question with some function f(ri, pi),
which is increasing in both ri and pi. It is not ripi, but this is a good start.
Rather, we can take a different approach. Assume that the tuples were sorted in some order, but this
was not the optimal order. Then this indicates that we can swap to adjacent elements and it will get
a better order. This is really like bubble sort, and now we need to find out the conditions on which
it can be improved.

1. If we answer q1 → q2 → q3 . . ., our expected reward is

E[R] = r1p1 + r2p1p2 + r3p1p2p3 (52)
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2. If we swap q2 and q3 and answer q1 → q3 → q2 . . ., then our expected reward is

E[R] = r1p1 + r3p1p3 + r2p1p2p3 (53)

Note that the swap does not affect higher order terms. Doing some algebra, the swap is better
iff

r2p2(1− p3) < r3p3(1− p2) =⇒ r2p2
1− p2

<
r3p3
1− p3

(54)

where the final swap saves computational time since we can compute for a single element rather
than comparing pairwise elements. So, we sort it (in descending order!) according to these
values to maximize this value. Note that the numerator measures your expected reward, while
the denominator measures the probability of you screwing up.

Not all greedy problems admit to scoring functions however. This was just one example.

Example 4.4 (Minimizing Max Lateness)

Suppose there are n jobs that all come in at once at time 0, with job j having length pj and deadline
dj . We want to schedule the order of jobs on one machine that can handle one job at a time, where
you must minimize the maximum lateness, where the lateness of job i is max{fi− di, 0} = [fi− di]

+.
For example, given jobs (p, d) = {(10, 9), (8, 11)}, we can run it in two ways.

1. Running 1 then 2. The first job finishes at 10 and the second at 18. The lateness is 10− 9 = 1
and 18− 11 = 7 respectively, so the maximum lateness is 7.

2. Running 2 then 1. The first job finishes at 8 and the second at 18. The lateness is 0 and
18− 9 = 9, so the maximum lateness is 9.

Therefore, 1 → 2 beats 2 → 1. Clearly, brute forcing this over N ! jobs orderings is unfeasible, but
there is a greedy approach to this. We can

1. schedule jobs in increasing order of deadlines.
2. try to exchange by taking a sequence, swapping it, and computing the score like we did for

previous examples.
Both lead to the same score/principle that we should schedule jobs in increasing order of deadlines.
Let’s prove this by taking jobs i and j, where dj ≤ di. Then, if we schedule i→ j, then we have

li = [t+ pi − di]
+ (55)

lj = [t+ pi + pj − dj ]
+ (56)

with lj being the greatest late time. If we did j → i, then we have

l̂j = [t+ pj − dj ]
+ (57)

l̂i = [t+ pi + pj − di]
+ (58)

with l̂i being the greatest late time. But this is a good sacrifice since we can see that both

lj > l̂j and lj > l̂i (59)

meaning that if we swap, then we will decrease the lateness of j at the smaller cost of increasing that
of i. Therefore, j → i is better. Note that even though the end times of the second job will always
be the same between the two choices, starting with j will give a later deadline time. So this means
that in the optimal solution, we have to place them in this order of deadlines since we can always
improve them by swapping.
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Example 4.5 (Gift Wrapping a Convex Hull)

Given n points in R2, we want to find the subset of points on the boundary of its convex hull. We
can intuit this by taking the bottom most point and imagine “wrapping” a string around the entire
region.a Here’s a basic fact. If we have a point p1 = (x1, y1) and we’re looking at p2 = (x2, y2), and
then p3 = (x3, y3) shows up, then we can look at the cross product

P = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) (60)

and if P > 0, then p3 is counterclockwise from p2. The algorithm is as such.
1. You choose the bottommost point and label it p1.
2. You construct a vector pointing to the right and start turning it counterclockwise until it hits

the first point. This can be done by iterating through all of the n points and computing the
angle.

tan θ =
yi − y1
xi − x1

(61)

and the points with the smallest such tangent value will be the desired point, which will be
Θ(n). We set this point to be p2 and claim that p1, p2 is in the convex hull. This is true since
all point must lie above the line p1p2. Now you do the same thing with p2 starting with a vector
facing to the right and rotating it left until it hits the first peg. Once you get to the topmost
point, you can start the vector from the right and rotate it counterclockwise, but this is an
implementation detail.
If your convex hull has L vertices, then this algorithm will have O(nL), which will be O(n2)
worst case but if we sample uniformly, then we have L ≈ log n and on average it is O(n log n).

A lot of geometric algorithms is output sensitive.

Example 4.6 (Convex Hull with Graham Scan)

In fact, we can take a different approach and get O(n log n) time.
1. You still start with p1 with the minimum y-coordinate and we sort in increasing θi =

arctan yi−y1

xi−x1
.

2. Then it will walk from pi to pi+1 and check at pi+1 if it is on the convex hull or not.
(a) If you turned counterclockwise to go to pi+1 then it’s good and you’re on the convex hull.
(b) If you turned clockwise it is bad, and pi is not on the convex hull, so remove pi. However,

pi−1 could also be clockwise as well, so you must backtrack and keep on removing points
until you find a point pj such that the previous turn is counterclockwise.

Note that this is implemented as a stack.
This can be calculated in O(1) by the previous cross product formula.

Figure 7: Overview of the steps mentioned above.

aThis is called the gift wrapping algorithm.
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Algorithm 9 Finding Convex Hull with Graham Scan

Require: p1, . . . , pn ∈ R2

function Graham(p)
s ← stack()
push p1, p2 onto s
for i = 3, 4, . . . , n do

push pi onto stack
while top 3 on stack are clockwise do

pop second from top point
end while

end for
return s

end function

Note that once we have 3 points, the first three in the stack will always be counterclockwise, so we
will never need to check if there are enough points in the stack. Even in the beginning, the next point
(third) added is guaranteed to be counterclockwise because of ordering. Note that even though we
might do a bunch of pushes and pops, the maximum number of pushes we can do is n and pops is
n, so this is O(n). In fact, the bottleneck is the sorting, which is O(n log n), so the total runtime is
O(n log n).

5 Graphs
A huge portion of problems can be solved by representing as a graph data structure. In here, we will explore
various problems that can be solved through graph algorithms.

5.1 Representations and Properties
All graphs consist of a set of vertices/nodes V and edges E. This tuple is what makes up a graph. We
denote |V | = n, |E| = m.

Definition 5.1 (Undirected Graphs)

An undirected graph G(V,E) is a tuple, where V = {v1, . . . , vn} is the vertex set and E = {{vi, vj}}
is the edge set (note that it is a set of sets!).

1. The degree dv of a vertex v is the number of edges incident to it.
2. A path is a sequence of vertices where adjacent vertices are connected by a path in E. It’s

length is the number of edges in the path.
3. A cycle/circuit is a path that has the same start and end.
4. A graph is connected if for every pair of vertices ei, ej ∈ E, there is a path from ei to ej .
5. A connected component is a maximal subset of connected vertices.

Definition 5.2 (Directed Graph)

A directed graph G(V,E) is a tuple, where V = {v1, . . . , vn} is the vertex set and E = {(vi, vj)} is
the edge set (note that it is a set of tuples, so (i, j) ̸= (j, i)).

1. The in/out degree dv,i, dv,o of a vertex v is the number of edges going in to or out from v.
2. A path is a sequence of vertices where adjacent vertices are connected by a path in E. It’s

length is the number of edges in the path.
3. A cycle/circuit is a path that has the same start and end.
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4. A directed graph is strongly connected if for every pair of vertices ei, ej ∈ E, there is a path
from ei to ej .a

5. A strongly connected component is a maximal subset of connected vertices.

In fact, from these definitions alone, we can solve an ancient puzzle called the Bridges of Konigsberg. Euler,
in trying to solve this problem, had invented graph theory.

Example 5.1 (Bridges of Konigsberg)

Is there a way to walk that crosses each bridge exactly once?

Figure 8: Bridges of Konigsberg

It can be decomposed into this undirected graph.

A

B

C

D

Figure 9: Graph representation.

Euler’s observation is that except for start and end points, a talk leaves any vertex by different edge
that the incoming edge. Therefore, the degree (number of edges incident on it) must have an even
number, so all but 2 vertices must have an even degree. Since every vertex has an odd degree, there
is no way of doing it.

In addition to the adjacency list representation, another way in which we represent a directed graph is
through adjacency matrices.

Definition 5.3 (Adjacency Matrix)

In a finite directed graph (V,E), we can construct a bijection from V to the natural numbers and so
we label each element in V with i ∈ N. Then, we can construct a matrix A such that

Aij =

{
1 if (i, j) ∈ E

0 if (i, j) ̸∈ E
(62)

While the adjacency matrix does have its advantages and has a cleaner form, usually in sparse graphs this
is memory inefficient due to there being an overwhelming number of 0s.

aObviously, a connected undirected graph is also strongly connected.
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Definition 5.4 (Trees)

An undirected graph G(V,E) is a tree if
1. G is connected.
2. G has no cycles.a

Removing the first requirement gives us the definition of a forest, which is a collection of trees.
Conversely, if G(V,E) is connected and |E| = n− 1, then G is a tree.

Theorem 5.1 (Properties of Trees)

If G(V,E) is a tree, then
1. There exists a v ∈ V s.t. dv = 1, called a leaf node.
2. |E| = |V | − 1 = n− 1.

Proof.

The outlines are quite intuitive.
1. There must be some leaf node since if there wasn’t, then we would have a cycle. We can use

proof by contradiction.
2. We can use proof by induction. We start off with one vertex and to construct a tree, we must

add one edge and one vertex at every step, keeping this invariant.

5.2 Exploration
Given two v, s ∈ V either directed or undirected, how can we find the shortest path from v to s? We can do
with either with DFS or BFS.

Definition 5.5 (DFS)

The recursive algorithm is

1 visited = set()
2 def dfs(start):
3 if start not in visited:
4 visited.add(start)
5 # do something
6 neighbors = ...
7 for neighbor in neighbors:
8 dfs(neighbor)

The iterative algorithm uses a stack, which mirrors the function call stack.

1 visited = set()
2

3 def dfs(start):
4 toExplore = []
5 current = start;
6 toExplore.append(current)
7 visited.add(current)
8 while toExplore:
9 current = toExplore.pop()

10 # Do something
11 neighbors = ...

aThis makes sense, since to get back to a previous vertex you must backtrack.
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12 for neighbor in neighbors:
13 if neighbor not in visited:
14 visited.add(neighbor)
15 toExplore.append(neighbor)

Theorem 5.2 (Runtime of DFS)

The runtime of DFS is O(n+m).

Proof.

Definition 5.6 (BFS)

The iterative version is shown.a

1 visited = set()
2 def bfs(start):
3 toExplore = collections.deque()
4 current = start;
5 toExplore.append(current)
6 visited.add(current)
7 while toExplore:
8 current = toExplore.popleft()
9 # Do something

10 neighbors = ...
11 for neighbor in neighbors:
12 if neighbor not in visited:
13 visited.add(neighbor)
14 toExplore.append(neighbor)

Theorem 5.3 (Runtime of BFS)

The runtime of BFS is O(n+m).

Proof.

To get the running time, we know that each vertex is popped only once from the queue, giving us
O(n). For each pop, we are exploring all the neighbors of V .

O

(∑
v∈V

|neighbors of v|+ 1

)
= O

(∑
v∈V

dv + 1

)
(63)

= O(2|E|+ |V |) = O(m+ n) (64)

which is linear in input size!

The more straightforward application is in reachability.

aThe recursive version of BFS is very nontrivial.
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Example 5.2 (Reachability)

Given a directed graph and a node v, find all nodes that are reachable from v.

Exercise 5.1 ()

Prove that in any connected undirected graph G = (V,E) there is a vertex v ∈ V s.t. G remains
connected after removing v.

Proof.

Let u be such a leaf node of T , and let G′ be the subgraph of G resulting by removing u and its incident
edges from G. For sake of contradiction,a suppose G′ has more than one connected component. Let
C be a connected component in G′ that does not contain s, the root of the BFS tree T . Since G was
connected before the removal of u, it must be that every path from s to any vertex v in C includes
u (otherwise there would remain a path from s to v in G′ and s would be in C). Then u is the only
vertex not in S with edges to vertices in S, so all vertices in C must be “visited” during BFS only
after visiting u. Furthermore, the vertices of S must be in the subtree of T rooted at u. But u is a
leaf, which is a contradiction.

Exercise 5.2 ()

Two parts.
1. Give an example of a strongly connected directed graph G = (V,E) s.t. that every v ∈ V ,

removing v from G gives a directed graph that is not strongly connected.
2. In an undirected graph with exactly two connected components, it is always possible to make

the graph connected by adding only one edge. Give an example of a directed graph with two
strongly connected components such that no addition of one edge can make the graph strongly
connected.

Proof.

Listed.
1. A graph whose edges form a cycle, having at least three nodes.
2. Two strongly connected components with no edges between them.

5.3 Directed Acyclic Graphs and Topological Sorting

Definition 5.7 (Directed Acyclic Graph)

A DAG is a directed graph that has no cycles. Note that a DAG must have a node that has no
in-edges.

To determine if a graph is a DAG, then we can brute force it by taking a node s ∈ V , running DFS/BFS,
and if a neighbor is already in visited, return False. Then go through this for all starting nodes s ∈ V . This
again has quadratic runtime. Can we do better? This introduces us to topological sorting.

It may be helpful to take a graph G(V,E) and induce some partial order on the set of nodes V based off of
E. It turns out that we can do this for a specific type of graph.

aWe provide an alternative direct proof as follows: Since G is given to be connected, T contains all vertices of G. Let T ′ be
the BFS tree minus u and its single incident edge connecting it to its parent in T . Since u is a leaf, T ′ remains a connected
tree with all other vertices of G. The edges of T ′ exist in G′, so G′ is connected.
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Definition 5.8 (Topological Sort)

Given a directed acyclic graph (DAG), a linear ordering of vertices such that for every directed edge
u− v, vertex u comes before v in the ordering is called a topological sort. It satisfies the facts:

1. The first vertex must have an in-degree of 0.
2. A topological sort is not unique.

Example 5.3 (Simple Topological Sort)

The graph below

Figure 10

can have the two (not exhaustive) topological sortings.
1. [5, 4, 2, 3, 1, 0]
2. [4, 5, 2, 3, 1, 0]

To determine if a graph is a DAG, note the following theorem.

Theorem 5.4 (Topological Order and DAGs)

G has a topological order if and only if it is a DAG.

Proof.

To prove that a DAG has a topological order, we use induction. Pick a v such that its indegree is 0.
Then, delete v, and therefore G \ v is also a DAG with a topological order since we are only deleting
edges. We keep going.

Therefore, if we can successfully topologically sort, we know it is a DAG. So we can kill two birds with one
stone. Let’s see how this is implemented. We can do it iteratively and recursively (the proof above should
hint that this can be recursive).

Algorithm 5.1 (Iterative Topological Sort, Determine If Graph is DAG)

The general idea is that we first find the node that as 0 in-degree. From here, we can do DFS,
and when we run out of neighbors to explore, then we push this into a queue. This is essentially a
post-order traversal, where at the end are going to be the end nodes with no more neighbors, and the
node we started from will be added last. Then we loop through and do this for all start nodes. We
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first need a slightly modified form of DFS.

Require: Nodes V , adjacency list E
1: visited ← set()
2: res ← stack()
3: is_acyclic ← True
4: function DFS(v ∈ V )
5: if v ̸= visited then
6: add v to visited
7: Nv ← neighbors of v
8: for n ∈ Nv do
9: if n ∈ visited then

10: is_acyclic ← False
11: end if
12: DFS(n)
13: end for
14: push v onto res
15: end if
16: end function
17:
18: function TopologicalSort(V, E)
19: for v ∈ V do
20: DFS(v)
21: end for
22: if ! is_acyclic then
23: return False
24: end if
25: return reversed of res
26: end function

Note that this runtime is O(|V |+ |E|) since we are just running DFS with a constant amount of work
on top of each call.

Algorithm 5.2 (Recursive Topological Sort)

We want to see that while G is nonempty, we want to find the v ∈ V such that it has indegree 0.
Then place v next in order, and then delete v and all edges out of v. The problem is finding which
vertex has indegree 0 (if we brute force it by looking through all remaining nodes and edges, you have
quadratic runtime). To do this fast, the idea is

1. initially scan over all edges to store the indegrees of every node to a list indeg.
2. store all nodes with indegree 0 to a queue.
3. Run through the queue, and during each loop, when we remove a node, we look at all of its

out-nodes s and decrement indeg[s]. If indeg[s] = 0, then add it to the queue.
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Require: Nodes V , Edges E
1: q ← queue()
2: indeg ← list()
3: visited ← 0
4: function Recur(x)
5: initialize the indeg and q
6: while q is nonempty do
7: v ← pop(q)
8: visited += 1
9: for each w ∈ E[v] do

10: indeg[w] -= 1
11: if indeg[w] = 0 then
12: push w into q
13: end if
14: end for
15: end while
16: if visited != |V| then
17: return False
18: end if
19: return True
20: end function

Notice that the inner for loop is O(d(v) + 1), while we run over all n. So really, we are doing
O(n(d(v) + 1)) = O(m + n), where the plus n comes from the constant work we are doing for each
node. Note that if we have a non-DAG, then at some point the queue will be empty but we haven’t
processed all the vertices, at which point we can declare failure.

To end this, we can make a general statement about all directed graphs.

Theorem 5.5 ()

Every directed graph is a DAG of strongly connected components (SCC).

This gives us a way to represent a directed graph with a collection of DAGs.3 An extension of topological
sort is making a BFS tree, which partitions a graph into layers that represent the number of steps required
to go from a source vertex to a node.

Algorithm 5.3 (BFS Tree)

To construct a BFS tree, we just need to slightly modify the original BFS code.

3In fact, this Kosaraju’s algorithm, can be done in linear time, though it is highly nontrivial.
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Require: Nodes V , adjacency list E
1: visited = set()
2: layers = {v : 0 | v ∈ V }
3: function BFS(start)
4: layer ← 0
5: toExplore ← queue()
6: add (start, layer) to toExplore
7: add start to visited
8: while toExplore do
9: curr, layer = pop from toExplore

10: layers[curr] = layer
11: for n ∈ neighbors of curr do
12: if n ̸∈ visited then
13: add n to visited
14: add (n, layer + 1) to visited
15: end if
16: end for
17: end while
18: end function

This is simply BFS with constant extra work so it is O(n+m).

So, a BFS tree is really just another way to topologically sort. Note the following properties.

1. In a directed graph, no nodes can jump from layer i to layers j > i+ 1, since if it could, then it would
be in layer i+ 1. However, nodes can jump from layer j back to any layer i < j, even skipping layers.

2. In a directed graph, going forward is the same as going back, so nodes can jump at most one layer
forwards or backwards.

Exercise 5.3 (DPV 3.16)

Suppose a CS curriculum consists of n courses, all of them mandatory. The prerequisite graph
G = (V,E) has a node for each course, and an edge from course v to course w if and only if v is
a prerequisite for w. Note this is a directed acyclic graph (DAG). In order for a student to take a
course w with prerequisite v, they must take v in an earlier semester. Find an algorithm that works
directly with this graph representation, and computes the minimum number of semesters necessary to
complete the curriculum, under the assumption any number of courses can be taken in one semester.
The running time of your algorithm should be O(n+m), where n and m are the numbers of vertices
and edges in G, respectively.

Proof.

For each vertex, we want to find the longest path leading to it: if there is a path leading to a node,
then all of the courses in the path should be taken sequentially. Perform a topological sort of G’s
nodes and label them 1 through n. Then, we go through the nodes in the resulting topological
order. For each vertex, we assign the minimum number of semesters required to take it: if there
are no prerequisites, we assign 1, and if there are prerequisites, we assign 1 plus the maximum value
assigned to its prerequisite nodes.
Implementation details: If the input is in adjacency list format, then we do not have access to the
incoming edges to a node (its prerequisites). By exploring the entire graph with BFS calls, we can
compute the list of incoming edges to every vertex in O(n+m) time. These details are not required.
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If the input is in adjacency matrix format, for each node it takes O(n) time to find its incoming edges,
so the total running time is O(n2).

Exercise 5.4 (DPV 3.22)

Give an efficient algorithm that takes as input a directed graph G = (V,E), and determines whether
or not there is a vertex s ∈ V from which all other vertices are reachable.

Proof.

We first build the DAG representation of the SCCs of G in O(m + n) time, as described in lecture.
This graph is a DAG where each SCC of G is represented by a single node. We return true if this
DAG has exactly one node with no incoming edges (i.e., exactly one source node), and return false
otherwise.
Correctness. Let u be a vertex in an SCC that is a source node in the DAG representation. If there is
a path in G from a vertex v not in the SCC of u to u, then there must be an edge (corresponding to
an edge in this path) into the SCC of u in the DAG, which contradicts that the node has no incoming
edges. Thus, if there are two source SCCs in the DAG, no vertex of G can reach all vertices; in
particular, no vertex can reach the vertices in both of the source SCCs. Thus we correctly return
false if there are multiple source SCCs.
On the other hand, if there is a single source SCC in the DAG, we claim that every vertex in the
SCC can reach every other vertex in G, in which case our algorithm correctly returns true. Every
other SCC in the DAG is not a source, so it has an incoming edge.a Consider starting at an SCC in
the DAG, picking an incoming edge to the SCC, and then repeating this process from the SCC from
which the edge was leaving. This process stops when we reach an SCC without incoming edges. In
this case there is exactly one source SCC, so this process will arrive at the single source SCC when
starting from any SCC in the DAG. This implies there is a path from the unique source SCC to every
other SCC in the DAG, and thus every vertex of the source SCC can reach all vertices in all SCCs of
G; that is, all vertices of G.

Exercise 5.5 (DPV 3.19)

You are given a binary tree T = (V,E) with designated root node with n = |V | vertices which are
the integers from 1 to n. In addition, there is an array x[1..n] of values where x[u] is the value of
vertex u ∈ V . Define a new array z[1..n] where, for each u ∈ V ,

z[u] = max{x[v] | v is a descendant of u} (65)

That is, z[u] is the maximum x-value of all vertices in the subtree of T rooted at u. Note that, by
definition, any node is a descendant of itself. Describe an O(n)-time algorithm which calculates the
entire z-array.

Proof.

We propose the following recursive algorithm performs a postorder traversal of the tree and populates
the values of the z-array in the process:

1 computeZ(u):
2 maxVal = x[u]
3 if u.left is not null:
4 computeZ(u.left) # compute z for all descendants of u.left

aThe following argument can be made formal with induction.
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5 maxVal = max(z[u.left], maxVal)
6 if u.right is not null:
7 computeZ(u.right) # computes z for all descendants of u.right
8 maxVal = max(z[u.right], maxVal)
9 z[u] = maxVal

We initially call computeZ on the root node of T . The algorithm takes O(1) time per node, which is
O(n) overalla

Exercise 5.6 ()

Your data center needs to run a number of jobs (compute requests) numbered 1, 2, . . . , n. These are
specified in a list of m tuples where (i, k) means that job i must be completed before job k can run. A
given job may have multiple dependencies; for example, you might have constraints (1, 4), (2, 4), (3, 4)
that all of jobs 1, 2, and 3 must be completed before 4 can run.

1. Describe an O(n +m) runtime algorithm that determines whether it is possible to execute all
of the jobs, and if so, determines a valid order in which to execute the jobs one at a time. Hint.
How to relate SCCs to cycles?

2. Suppose you have n identical servers (so that if there were no constraints you could simply
run each job on a separate server). Suppose every job has the same runtime R. Describe an
O(n+m) runtime algorithm to compute the total runtime that will be necessary to run all of
the jobs in a valid order.

Proof.

For this question we define a graph G = (V,E) where there is a vertex for every job 1, . . . , n and an
edge from i to k for every listed dependency (where k depends on i).

1. We note that a sequence of jobs can be executed if and only if there is no circular dependency.
In the language of graphs, this requires that G be free of cycles. To this end, it suffices to
propose an algorithm that runs in O(m+n). We will use Kosaraju’s SCC algorithm. We prove
the following claim:

Any SCC with ⩾ 2 vertices contain a cycle.

To see this, consider any distinct u, v in this SCC. Let pu,v and pv,u be the paths from u to v
and backwards, respectively. Now concatenate the paths and get a walk that starts from u and
ends at u. Note that each vertex appears at most once in pu,v and in pv,u, so in the combined
walk, it appears at most twice. Consider the set of vertices that are revisited in this walk —
clearly, u is one of them and is the latest one to be revisited. There must exist a vertex w that
was the first to be revisited. Then, the section of the walk between the two visits of w form a
cycle by definition: it starts from w, ends at w, and does not repeat any other vertices. This
proves the claim. And to go back to our problem, the following are equivalent:
(a) jobs can be executed
(b) no cycles in G
(c) each SCC obtained from Kosaraju is a singleton

2. We first run the algorithm from part (a) to check if it is possible and to find a valid order of
the jobs if so. Then define an array L of length n. We will compute L[k] as the length of
the longest dependency chain prior to k. Loop over the k jobs in topological order. For each,
compute L[k] = 0 if k has no dependencies, or L[k] = 1+max(i,k) L[i] otherwise. Finally, return
maxk L[k].

aThis algorithm can also be described as a modified version of the so-called depth-first search (DFS) graph traversal algorithm,
which is different from BFS.
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5.4 Bipartite Graphs
Now we shall see a further application of BFS trees.

Definition 5.9 (Bipartite Graph)

A bipartite graph is an undirected graph G(V,L) where we can partition V = L ⊔R such that for
all e = {u, v} ∈ E, we have u ∈ L, v ∈ R.

We would like to devise some method to determine if an arbitrary graph is bipartite.

Theorem 5.6 ()

G is bipartite if and only if all cycles in G are even length.

Proof.

Proving ( =⇒ ) is quite easy since if we suppose G has an odd length cycle, then we start packing
vertices of a cycle into L,R, but by the time we came back to the start, we are forced to pack it into
the wrong partition!
The converse is quite hard to prove, and we’ll take it at face value.

Now in practice, how would we determine if all cycles are even length? This is where BFS shines.

Algorithm 5.4 (Determine Bipartite On All Cycles of Even Length)

The general idea is we first run BFS on the graph starting at s ∈ V , which divides it up into layers
L1, . . . , Ll representing the shortest path from s. Then for each layer Li ⊂ V , we check if there are
connections between two vertices x, y ∈ Li. If there are connections, then this is not bipartite. If
there are none, then this is bipartite since we can then color it.
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Require: Nodes V , adjacency list E
1: visited = set()
2: layers = {v : 0 | v ∈ V }
3: function BFS(start)
4: layer ← 0
5: toExplore ← queue()
6: add (start, layer) to toExplore
7: add start to visited
8: while toExplore do
9: curr, layer = pop from toExplore

10: layers[curr] = layer
11: for n ∈ neighbors of curr do
12: if n ̸∈ visited then
13: add n to visited
14: add (n, layer + 1) to visited
15: end if
16: end for
17: end while
18: end function
19:
20: function Bipartite(V, E)
21: BFS(v) for some v ∈ V
22: for (u, v) ∈ E do
23: if layers[u] == layers[v] then
24: return False
25: end if
26: end for
27: return True
28: end function

Therefore, we run BFS, which is O(n+m), and then to compare the edges, it is O(m).

Bipartiteness is actually a special case of coloring problems. Given a graph with k colors, can I color it
so that every neighbor has a different color than the original node? It may seem like at first glance that
we can do the same method and look at the layers again, but it turns out that 3-coloring is hard. More
specifically it is an NP-complete problem, which colloquially means that there isn’t much of a better way
than a brute-force solution. However, it turns out that according to the 4 color theorem, any map can be
colored with 4 colors.

5.5 Strongly Connected Graphs
Now how do we find out if a directed graph is strongly connected? The straightforward solution would be
to take each vertex v ∈ V , run BFS to find the set of vertices reachable from v, and do this for every vertex.
The total running time is O(n(n+m)), which is quadratic. Note that for an undirected graph this is trivial
since we just run DFS/BFS once.

Theorem 5.7 ()

G is strongly connected if and only if for any v ∈ V ,
1. all of V is reachable from v.
2. v is reachable from any s ∈ V
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Algorithm 5.5 (Determine if Graph is Strongly Connected)

Using the theorem above, we can run BFS/DFS twice: one on the original graph and one on the
reversed graph, consisting of all edges directed in the opposite direction.

Require: Nodes V , Adjacency list E
1: function StronglyConnected(s ∈ V )
2: visited ← set()
3: BFS(s)
4: if visited != V then
5: return False
6: end if
7: visited ← set()
8: reverse all edges in E
9: BFS(s)

10: if visited != V then
11: return False
12: end if
13: return True
14: end function

The running time is just running BFS twice plus the time to reverse the edges, so it is O(n+m).

5.6 Shortest Path
In the shortest path, you are given a weighted (positive integer) directed graph and your goal is to find a
path from s to t with the smallest length. This is where we use Dijkstra’s. What we can do to brute force
is just replace a edge with length k to k edges of length 1, and we run BFS on this. However, this is not
efficient since the weights can be unbounded. This is where we introduce Dijkstra. The following is how it
is introduced in class.

Algorithm 5.6 (General Dijkstra)

We can keep a temporarily list π of the shortest path we have found so far, and a permanent list
dist keeping track of all paths we know are for sure the shortest path.

Require: Graph G(E, V )
1: S ← {s} ▷set of nodes that we know for sure is shortest
2: dist[s] = 0 and the rest very large numbers ▷our final list
3: π[v] = wsv for all v ∈ V ▷initialize list with neighboring nodes from start s
4: function Dijkstra(s)
5: u = argminv/∈Sπ[v] ▷Find node having minimum accum weight so far
6: add u to S ▷This node must be shortest so add to S
7: dist[u] = π[u] ▷Now we can update its shortest path in dist
8: for v ̸∈ S do ▷Look at all neighbors of u and update those not in
9: π[v]← min{π[v], d[u] + wwv} ▷S since those in S are all guaranteed to be shortest

10: end for
11: end function

The problem is line 5 above. We don’t want this linear search time since it makes the whole thing quadratic,
so rather than a list, we can implement a heap, resulting in the code below.
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Algorithm 5.7 (Dijkstra’s Algorithm)

The general idea is to run a graph traversal like BFS but when you reach a new vertex v, you can
store the accumulated time it took to get to v and store for all neighbors the accumulated time it will
take to get to each of those neighbors. If it is less than what we have currently, then we have found
a shorter path and we should update this.

Require: Nodes V , Edges E
1: function Dijkstra(s)
2: dist ← list of size |V | with +∞ ▷Initialize list of big nums representing shortest distances
3: dist[s] ← 0 ▷The starting node has dist 0
4: predecessors ← {v : None | v ∈ V } ▷predecessors of each node for path tracking
5: toExplore ← minheap() ▷A priority queue of (weight, node)
6: add (0, s) to toExplore ▷You want to explore this first
7: while toExplore do
8: (curr_dist, curr_node) ← pop from toExplore ▷pop from toExplore
9: if curr_dist > dist[curr_node] then ▷If this distance is greater than what

10: continue ▷I already have then not worth exploring
11: end if
12: for neighbor, weight ∈ E[curr_node] do ▷Look at each neighbor
13: new_dist ← curr_dist + weight ▷The distance to getting to neighbor from now
14: if new_dist < dist[neighbor] then ▷If this new dist is shorter than what we have
15: dist[neighbor] = new_dist ▷Update best distance
16: predecessors[neighbor] = curr_node ▷Update its predecessor
17: push (new_dist, neighbor) onto toExplore ▷Should prob explore from here
18: end if
19: end for
20: end while
21: return distances, predecessors
22: end function

You essentially push n times and pop m times, and the time per push and pop is log2(n). Therefore,
the total time to push is n log(n) and to pop is m log(n), making the total runtime O(log(n)(n+m)).

The first example gotten in class ignores the distances and just attempts to modify the distances in the heap
itself (through the decrease key operation). This takes 2 log2(n), but if we use a heap with d children, we
can modify the runtime to d logd(n). Therefore, the total runtime with tunable parameter d is

O
(
(m+ nd) logd(n)

)
(66)

which can be minimized if we set d = m/n, so O(m logm/n n), where for dense graphs m/n is large and so
it can behave roughly in linear time Θ(m).

Exercise 5.7 ()

Let G = (V,E) be a weighted strongly connected directed graph with positive edge weights. Let v0 be
a specific vertex. Describe an algorithm that computes the cost of the shortest walk between every
pair of vertices of G, with the restriction that each of these walks must pass through v0 (that is, for
every distinct pair u, v ∈ V , among all walks from u to v that pass through v0, compute the cost of
the shortest walk). Describe the algorithm, analyze its runtime complexity, and briefly explain (not
a formal proof) why it is correct. Try to give an algorithm that runs in O(|E| log(|V |) + |V |2) time.
As usual, you may use any algorithm as described in lecture without restating it or arguing for its
correctness.
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Proof.

The high level idea is to decompose any qualifying u → v walk into the combination of two paths
u→ v0 → v, where we try to minimize the cost of both subpaths. It’s easy to compute the minimum
cost of v0 → v for all v: running Dijkstra once over the graph suffices. The first half, u → v0, is
the nuisance since we need to calculate this quantity for every u ∈ V . Solution? Observe that the
destination node v0 is fixed! We flip the direction, define a “reverse graph” G−1 where each edge
carries its original weight but points in the other direction. Then, any cheapest v0 → u path in G−1

would correspond to the cheapest u→ v0 path in G, with matching total costs.

Exercise 5.8 ()

Let G = (V,E) be a directed, weighted graph with |V | = n and |E| = O(n) (that is, the graph
is sparse). Let s be a vertex in V . How quickly can the cost of the following shortest paths be
computed under the given conditions? Just note the runtime and be prepared to explain. All of these
can be solved using a single call to a shortest-path algorithm if provided the correct input graph (not
necessarily the given one).

1. Compute the shortest path distance from some s to all other vertices in G under the condition
that the weight of every edge is a positive integer ≤ 10.

2. Compute the shortest path distance to a target t from all possible source vertices s in a graph
with positive edge weights.

Proof.

Listed.
1. Since all weights are integer and uniformly bounded, we convert G into an unweighted graph and

apply BFS. Construct unweighted G′ = (V ′, E′) as follows: for each directed edge (u→ v ∈ E,
put a series of dummy nodes between u, v in G′ so that the distance from u to v in G′ is precisely
the integer weight w(u, v) of u → v in E. Now G has at most 10n nodes and 10n edges. So
BFS runs in O(|V ′|+ |E′|) = O(n).

2. Construct the reversed graph G−1 and run Dijkstra(G−1, t). This finishes in O((m+n) log n) =
O(n log n) time since G is sparse.

Exercise 5.9 ()

Let G = (V,E) be an undirected, weighted graph with non-negative edge weights. Let vertices s, t ∈ V
be given. Describe an algorithm that efficiently solves the following questions.

1. Find the shortest/cheapest s− t walk with an even number of edges.
2. Find the shortest/cheapest u− v walk with a number of edges of form 6k + 1, k ∈ N.

Proof.

Listed.
1. The key observation is that as we travel on G, the number of edges we have travelled along

alternates between being odd and even. Furthermore, the very same vertex may correspond to
both even and odd: for example if we walked along u→ v → w → u, then initially we travelled
for 0 edges, but upon return we travelled a total of 3 edges. We need a way to distinguish them.
The solution? Duplicate each vertex into two categories: “odd” and “even.”
We construct a new graph G′ = (V ′, E′) by duplicating every vertex v ∈ V , labeling one of
them as vodd and the other veven. For each edge (u, v) ∈ E, add two edges (uodd, veven) and
(ueven, vodd) to E′, both with the same as (u, v) ∈ E.
Clearly, |V ′| = 2|V | and |E′| = 2|E|. What would edges look like in G′? By construction, the
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two endpoints of an edge in G′ have different subscripts, one with “odd,” the other “even.” This
agrees with our previous observation on the original G that as we walk along the graph, the
distance we have so far travelled alternates between even and odd. It follows that, starting from
seven, a vertex veven ∈ V ′ (resp. vodd) is only reachable via even (resp. odd) number of edges.
On the other hand, also notice that there is a natural correspondence between edges in G′ and
G: (uodd, veven) ∈ E′ corresponds to (u, v) ∈ E. This means a path in G′ naturally corresponds
to a walk in G, e.g.:

ueven → vodd → weven → uodd → teven corresponds to u→ v → w → u→ t.

Combining both observations above, there exists an s − t walk in G with an even number of
edges if and only if there is a path in G′ from seven to teven. The rest is simple: run a pathfinding
algorithm on G′. The weights are non-negative, so we use Dijkstra’s algorithm.
Total runtime? Time to construct G′ involves |V ′| = 2|V | vertices and |E′| = 2|E| edges. This is
dominated by running Dijkstra on G′, which takes O((|V ′|+|E′|) log|V ′|) = O((|V |+|E|) log|V |)
time. Finally, transforming the path in G′ back to a walk in G takes linear time w.r.t. the
path length (one step for each edge), which is bounded by O(|E′|). So overall most work is
dominated by Dijkstra’s algorithm and the overall algorithm runs in O((|V |+ |E|) log|V |).

2. Same idea but make 6 copies of the graph.

Exercise 5.10 ()

Suppose that in addition to having edge costs {le : e ∈ E}, a graph also has vertex costs {cv : v ∈ V }.
Now define the cost of a path to be the sum of its edge lengths, plus the costs of all vertices on the
path. Give an efficient algorithm for finding the minimum cost path from s to t. You may assume
edge costs and vertex costs are all nonnegative.

Proof.

Using the generic approach, we can use costu(v) = cost(u) + w(u, v) + cv to solve this problem.
Alternatively, for each edge (u, v) we can update its weight to w(u, v) + cv and run Dijkstra on this
updated graph, which gives an equivalent mathematical formulation.

5.7 Negative Weighted Graphs
Now let’s extend this problem to find the shortest path in negative weighted graphs. Before we think of a
solution, we must make sure that there is no cycle that has a negative accumulated path. Otherwise, this
problem becomes ill-defined, so we first assume that such a shortest path exists.

At first glance, we may just think of adding min(v), the minimum value to every node so that this now just
becomes a regular positive graph and run BFS on it. However, this does not work since we are not adding
a constant number over all paths (it is proportional to the number of nodes in the path).

Another way we can think of is just run Dijkstra. However, if it is looking at two paths. We can have s
2−→ b

and s
5−→ a

−4−−→ b. Dijkstra will immediately go to b thinking that it is the shortest path, since that’s how
far it see. So we need to look far into the future. Therefore, after an arbitrarily long path length, you could
get a negative length that just kills your accumulator.

We use the Bellman equations, which could be solved using dynamic programming like we’ve seen before.
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Theorem 5.8 (Bellman Equations)

We write the Bellman equations.

d[v] = min
w
{d[w] + lwv} (67)

with d[s] = 0 for the starting vertex. The solution has a unique solution that finds the shortest path
from s to any v ∈ V .

Proof.

Note that d[w] + lwv is the length from some path from s 7→ v that goes through w. The minimum
of it must be the shortest path over all w ∈ V . Suppose the shortest path goes through fixed x. If
there exists a shorter path from s 7→ x, then replace d[x] by this shortest path. Therefore,

d[v] = d[x] + lxv ≤ d[w] + lwv =⇒ d[v] = min
w
{d[w] + lwv} (68)

To prove uniqueness, suppose there are some other solutions π where π[v] ̸= d[v] for some v. But this
cannot be the case by definition since d[v] <= π[v] for all v.

Theorem 5.9 ()

Given the shortest paths, we can lay out this graph like a tree where lab = laa1 + la1a2 + . . .+ lalb.

So how do we actually implement this?

Algorithm 5.8 (Shortest Path in Possibly Negative Weighted Graph)

Require: Nodes V , Edges E
1: function ShortPath(V, E)
2: res ← list(0) of large numbers of size |V |.
3: res[s] = 0
4: predecessors ← {v : None|v ∈ V }
5: while ∃(u, v) s.t. res[v] > res[u] + luv do
6: res[v] ← res[u] + luv
7: predecessor[v] ← u
8: end while
9: end function

This is guaranteed to converge and stop after a finite number of steps since at every iteration, a path
will either

1. get updated from infinity to a path length
2. get reduced from a path length to a shorter path length

And we will have to reach the shortest path length at which point we can’t reduce it further.a
Computing the runtime is a bit tricky, since we can look at the same edge twice since minimum paths
may have been updated in the middle. Therefore this list res may reduce very slowly. For example,
let the length of each edge |le| ≤ L. Then in the worst case, res[s] can be initialized to (n − 1)L
representing the max path across all nodes, and we can decrease by 1 in each step. So over all nodes,
we can decrease so that each res[s] becomes −(n − 1)L, meaning that we are doing on the order of
2n2L iterations. This is too slow, especially for non-distributed settings.
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A better way is to not be so random about how we choose the (u, v) in the while loop. Notice how we can
lay out the shortest paths like a tree, so we can work in layers. The next algorithm implements this.

Algorithm 5.9 (Bellman-Ford Algorithm)

We think of going in rounds indexed by t, and at every round, we are iterating through all the nodes
and updating the shortest path of v using the shortest path of w included in all in-neighbors of v. At
most, we will need to update this at most n times, which will guarantee convergence.

Require: Nodes V , Edges E
1: π ← list(0) of large numbers of size |V |.
2: π[s] = 0
3: function BellmanFord(x)
4: for t = 1, . . . , n− 1 do
5: for v ∈ V do
6: π(t)[v]← minw{π(k−1)[v], π(k−1)[w] + lwv}
7: end for
8: end for
9: end function

The runtime is easier to see.
1. The step in the inner loop looks over the set of nodes of size indeg(v).
2. Looping over all the nodes in the inner for loop means that we are going over all edges, so O(m).
3. The outer for loop goes through n− 1 times, so the total runtime is O(nm).

At first glance, this problem seems like it isn’t too different from Dijkstra, but there is a 50-year conjecture
that this cannot be improved to linear time.

Exercise 5.11 ()

Let G = (V,E) be a directed graph with real-valued edge weights, where each vertex is colored in
either red or green. Find the shortest/cheapest s− t walk such that, not counting s, the walk visits
red vertices for an even number of times and green vertices at least thrice. (Duplicates allowed and
will be counted more than once.)

Proof.

Similar to the last problem in the previous recitation, the key insight lies in constructing a directed
graph G′ = (V ′, E′) that captures some additional structures. Based on the constraints, as we walk
along a path in G, there are two things we need to take care of:

• The number of (not necessarily distinct) red vertices we have walked past, and whether this
number even or odd (this is called the parity of that number), and

• The number of (not necessarily distinct) distinct green vertices we have walked past.
To encode all of the information above, each vertex in G′ will be represented by a “state”, or a tuple
(v, p, g) where

• v ∈ V corresponds to an original vertex in G,
• p ∈ {0, 1} (or “even”, “odd”) represents the parity of the count of red vertices (not necessarily

distinct) visited so far, and
• g ∈ {0, 1, 2, 3+} represents the number of times green vertices (not necessarily distinct) have

been visited.
Now we will need to consider the conditions under which each of the tuple variable updates. For

aThis algorithm is also called policy iteration in reinforcement learning and is analogous to gradient descent.
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example, every time we visit a red vertex, the value p should alternate, and every time we visit a
green vertex, the value g should increase until it becomes 3+. Formally, the state transitions (i.e.
edges in E′) can be formulated as follows. For each edge (u, v) in the original graph G, depending on
the colors of u and v, we add the following edges, all with the same weight as (u, v), to E′:
(v red) For every state (u, p, g) [a total of 8 such thates because p ∈ {0, 1} and g ∈ {0, 1, 2, 3+}], add

an edge to the corresponding state (v, 1 − p, g). In other words, we flip the parity because we
visited one more red vertex, but this does not affect the value of g.

(v green)
• For every state (u, p, g) with g ∈ {0, 1, 2}, add a (directed) edge to (v, p, g+1) because our

green counter increases given v is green. (Define 2 + 1 to be “3+.”)
• For states of form (u, p, 3+), add a (directed) edge to (v, p, 3+) because we still fall under

the “g ⩾ 3” category after visiting an additional green vertex.
All of our observations on the Recitation #2 graph modeling problem still hold: if we have a path in
G′, we can uniquely recover a well-defined walk in G. Initially, we want to start from state (s, 0, 0)
because we start from vertex s ∈ V and, per the problem, the starting point does not contribute to
the red and green count. Our goal is to reach the state (t, 0, 3+), which means (i) we arrive at t, and
along the course we have (ii) visited an even number of red vertices and (iii) green vertices ⩾ 3 times.
This is exactly what we want.
How about the runtime? The construction of G′ involves defining 8|V | vertices since p has 2 possible
values and g has 4, and we need to construct one state for each pair of p and g. Similarly, for each
(u, v), regardless of the color of v, in both cases we add a total of 8 edges. Therefore |E′| = 8|E|.
Since G,G′ are directed graphs with real-valued weights, we need to run Bellman-Ford, which takes
O(|V ||E|). Like shown before, other costs (e.g. the one to recover a walk in G from a path in G′) are
linear and hence dominated by the pathfinding runtime. So the final complexity is O(|V ||E|).

5.8 All Pairs Shortest Paths
Now what if we want to find the minimum distance between all u, v ∈ V ? We can just use |V | Dijkstras
or Bellman-Fords to get the appropriate runtimes of O(EV + V 2 log V ) or O(EV 2), respectively, but for
negative weighted graphs, there is a way to do this in O(V 3).4

5.9 Minimum Spanning Trees

Definition 5.10 (Spanning Tree)

Given an undirected graph G(V,E), a spanning tree is a subgraph T (V,E′ ⊂ E) that is
1. a tree, and
2. spans the graph, i.e. is connected

4Note that if the graph is sparse, then |E| < |V | and just running |V | Bellman Fords may be optimal.
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Figure 11: A spanning tree on a 4× 4 grid graph.

Note that an unconnected graph will never have a spanning tree, but what about a connected graph?

Theorem 5.10 (Spanning Trees of Connected Graphs)

A connected graph will always have at least one spanning tree, not necessarily unique.

Given a connected undirected weighted graph, we may want to find the minimum spanning tree (MST),
i.e. the spanning tree with edges E′ such that the sum of the weights of all e ∈ E′ is minimized.5 How do
we do this? There are two well-known algorithms to solve this. Prim’s and Kruskal’s algorithm.

5.9.1 Prim’s Algorithm with Cuts

Let’s try to apply what we already know: Dijkstra. If we run Dijkstra on the graph starting at s ∈ V , we
can get the shortest path from s to every other node in the graph. This will give us a tree, but it may not
be minimum.

Figure 12: If we run Dijkstra on s, then our output will be a tree of cost 300, even when the actual MST can be of
cost 102 starting from a.

It may seem like this is just a problem of where we start, but even this is not the case.
5An application of this is when we generally want to make sparse graphs. In a datacenter, wires can be expensive, so how I

can minimize the length of wires to buy to construct a spanning subgraph?
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Figure 13: No matter where we start from, we will never output the MST. The MST has cost 12. If we start from b
or d, we will get a tree of cost 13. If we start from a or c, we will get a tree of cost 16.

Definition 5.11 (Cuts)

Given graph G(V,E), a cut is a partitioning of V into (S, V \ S). Furthermore, let Cut(S) be the
number of edges with exactly one endpoint in S and the other in V \ S.

Theorem 5.11 (Cycles and Cuts)

Given cycle C ⊂ E in a graph and a cut S ⊂ V ,

|C ∩ Cut(S)| (69)

is even. We can intuit this by visualizing the cycle as a long piece of looped string and a cut is a
circle. The intersection between this circle and the string must be even since every time the cycle
crosses through the cut, it must return back across the cut to the initial point.

Now time for a bizarre theorem.

Theorem 5.12 (Cut Property of MSTs)

For all cuts S ⊂ V of an undirected graph, the minimum cost edge in Cut(S) belongs to the MST.
Furthermore, the converse is true: if we take all cuts and find all their minimum cost edges, these
edges is precisely the MST! Therefore, an edge e ∈ MST iff e is a min-cost edge for some cut.

Figure 14: In the left cut, the edges are (a, d), (b, c), (a, c). The minimum weight is 5 on the (a, d) edge, so it
must be in the MST. For the right cut, (c, d) must be in the MST.

The final part is that if we have all edge costs different, then we will have a unique MST.

Proof.

We use a greedy approach and prove by contradiction. Suppose that this is not true, i.e. there exists
a cut S with minimum cost edge e, and e ̸∈ MST. Then, there exists some other edge e′ ∈ Cut(S)
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that is in the MST, since the MST is spanning and it must cross over to connect the whole graph.
Well if we just put e in and take e′ out, we will still have a spanning tree since it connects the left
spanning tree to the right spanning tree, and we now have a cheaper tree. So the original cannot be
the MST in the first place.
To prove the converse, consider some edge e in the MST and we must prove that it is the minimum
cost edge in some cut. Note that if we take e out, then it divides the MST into two connected
components, and we can just define the cut as these subsets of nodes. So this is in Cut(S) for some
S ⊂ V . We can also prove that this is minimal since if it wasn’t the minimum cost edge for some cut,
we could have taken it out and inserted a cheaper edge e′ to begin with, getting a cheaper spanning
tree.

We can just brute force this logic into an algorithm by going through all possible cuts and adding the
minimum cost edge to our MST set. It is clear that a cut is defined by a subset of S, so really the number
of cuts a graph can have is 2|S|−1, which is exponential in n. However, the minimum spanning tree isn’t
exponential since it must have n− 1 edges, so there must be many cuts with the same minimum edge.

One way is to start with one vertex a that contains the minimum cost edge (a, b) across all edges. This edge
must be minimal and must be in the MST. Then we can look at the cut S = {a, b} and look at that cut.
We keep doing this, keeping track of the set of edges we need to look at after adding a new node to our cut.
So the number of cuts I consider is equal to the number of edges in the spanning tree.

Algorithm 5.10 (Prim’s Algorithm to Find MST)

It turns out that we can modify Dijkstra to solve it.

Require: Graph G(E, V )
1: function Prim(s)
2: S ← {s} ▷Our initial cut
3: π[v]← list of size |V | of +∞ ▷π[u] is min cost of getting from u into the S
4: π[v] = wsv for all v ∈ V ▷initialize list with neighboring nodes from start s
5: while S ̸= V do
6: u = argminv/∈Sπ[v] ▷Find node having minimum cost to reach from S
7: S ← S ∪ {u} ▷Adding this node to S to expand our cut
8: for u ̸∈ S do ▷Since we expanded S, our min reach distances
9: π[u]← min{π[u], wwu} ▷must be updated. It can only get shorter

10: end for ▷through a path from new u, so compare them
11: end while
12: end function
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Figure 15: Step by step process of the method we mention above.

We are really going through two loops. We add to the cut S n times and for each time we add, we
must compute the argmin, which is also O(n), so our total time complexity of O(n2).

However, this is not efficient, so we can introduce a minheap to get the argmin step faster.

Algorithm 5.11 (Prim’s Algorithm with MinHeap)

Require: Nodes V , Edges E
1: function Prim(V, E)
2: mst ← [] ▷Initialize mst array to return
3: s ← 0 ▷Choose any starting node
4: visited ← set() ▷Our expanding set of cuts.
5: edges ← minheap() ▷The set of low-weight edges that we can explore from
6: add (weight, s, next_node) for edges in E ▷Look for edges from s to expand our cut from.
7: while |visited| < |V| do ▷Until we have visited all cuts,
8: weight, frm, to ← pop from edges ▷Get the cheapest edge to explore
9: if to ̸∈ visited then ▷If this isn’t already in our cut,

10: add to → visited ▷Add it to our cut. From cut
11: add (frm, to, weight) to mst ▷property, this must be added to mst
12: for next_to, next_weight ∈ E[to] do ▷After expanding, add newly discovered
13: if next_to ̸∈ visited then ▷edges for future exploration
14: push (next_weight, to, next_to) to edges
15: end if
16: end for
17: end if
18: end while
19: return mst ▷of form (from, to, weight)
20: end function

You essentially push n times and pop m times, and the time per push and pop is log2(n). Therefore,
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the total time to push is n log(n) and to pop is m log(n), making the total runtime O((n+m)log(n)) =
O(m log n).

This can be sped up even faster if we use Fibonacci heaps or assume extra structure on the graph.

5.9.2 Kruskal’s Algorithm

If we were to try and construct this algorithm from scratch, we may take a greedy approach by incrementally
adding the minimum cost edge from your cut. However, there is one thing to check: have we entered a cycle?
Checking whether the next added node a completes a cycle in S ∪ {a} is nontrivial.

Theorem 5.13 (Cycle Property)

For all cycles C, the max cost edge of C does not belong to MST.

Therefore, you can take S and either add to it using the cut property or delete candidates from it using the
cycle property. What is the best order to do this in? Kruskal’s algorithm answers this question, which takes
a greedy approach.

Algorithm 5.12 (General Kruskal’s Algorithm)

The general idea is that we sort e ∈ E in increasing cost, and for each e ∈ E, we use either the cut
or cycle property to decide whether e goes in or out.

Require: Graph G(V,E)
1: function Kruskal(V, E)
2: sort E in increasing cost
3: T ← {}
4: for e ∈ E do
5: if T ∪ {e} does not have cycle then
6: T ← T ∪ {e} ▷Cut property
7: else ▷Cycle property
8: continue ▷discard e since from sorting, this edge is heaviest in cycle
9: end if

10: end for
11: end function
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Figure 16: Kruskal’s algorithm. In the last step, we see that the next minimum cost edge of 6 and 7 forms a
cycle, so we add the edge of length 9.

The sorting of edges take O(m logm) time, and after sorting, we iterate through all the edges and
apply m find-union algorithm, which each take at most O(log n) time. Therefore, the overall com-
plexity is O(m logm+m log n). However, the value of m can be at most O(n2), so the two logarithms
are essentially the same, arriving at the final runtime of O(m log n).

The way to prove that this is correct is to show that every step you do is correct, known as structural
induction, either because of one of the two properties. Say that so far, we have some edges in V which forms
a partition of V = ⊔iTi of disjoint trees (can be trees, one edge, or just single nodes). We are looking at the
next biggest edge e = (a, b). There are two possibilities.

1. If a, b are both in a single Ti, then this forms a cycle and can be thrown away since this is the max
cost edge in the cycle by the cycle property.

2. If a, b connect Ti and Tj for i ̸= j, then this edge is in Cut(Ti) and is the minimum cost edge since the
rest of the edges in Cut(Ti) come next in the sorted E. Therefore this must be included by the cut
property.
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Figure 17: Each Ti is a component formed by the edges chosen so far. For example, T1 = {1, 2, 3, 4, 5, 6}, . . .. We can
either discard an edge (red) or include an edge (yellow).

The only bottleneck in here is line 5, where we check if e does not complete a cycle in T . It will obviously
not be efficient to do BFS, construct a tree, and see if there is a loop by checking if two points in the same
layer are connected. It may help to decompose this algorithm into two steps: what is being stored and what
is being checked?

Note that from our visual, we are really just keeping a set of these points that each make a subtree and
connecting them together. How do we efficiently search for which cluster a point is a part of and efficiently
merge two clusters? We could use a hashmap but this wouldn’t work. We need something like a doubly
linked list.

Algorithm 5.13 (Kruskal’s Algorithm)

The implementation uses the Union-Find data structure. For clarity, we will not elaborate it but will
show the full pseudocode.
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Require: Nodes V. Edges E = {(u, v, w)} where u, v ∈ V and w > 0 is a weight.

function Kruskal(V, E)
n← |V |
sort E in increasing order of weights. ▷Needed for Kruskal
parent ← [0, . . . , n− 1] ▷Initialize the disjoint cluster each node is in
rank ← list of 0s of size n
function Find(x)

if parent[x] ̸= x then
parent[x] ← Find(parent[x]) ▷Path compression

end if
return parent[x]

end function
function Union(x, y)

px, py = find(x), find(y)
if px = py then

return False
end if
if rank[px] < rank[py] then

parent[px] ← py
else if rank[px] > rank[py] then

parent[py] ← px
else

parent[py] ← px
rank[px] ← rank[px] + 1

end if
return True

end function
mst ← []
for u, v, weight ∈ edges do

if union(u, v) then
add (u, v, weight) to mst

end if
if len(mst) = n - 1 then

break
end if

end for
return mst

end function

To analyze the runtime of this, we define the function.

Definition 5.12 (Ackerman Function)

The Ackerman function is one of the fastest growing functions known. It is practically infinity.

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

(70)

The inverse Ackerman function therefore grows extremely slowly.
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If we optimize the steps in Kruskal’s algorithm, we can get its runtime to

O((m+ n) log∗(n)) (71)

which is practically linear.

5.9.3 Applications

Here is a way to cluster data, a surprising way to apply MSTs. It is the most widely used application,
especially in data science. The problem is that given n data points xi ∈ Rd and an integer k, we want to
partition the points into k groups C = (C1, . . . , Ck) where x = ⊔iCi. You want to distances between the
points within a group to be small and the distances between groups to be large. We can think of finding the
objective which takes every pair of clusters and computes the minimum distance between these clusters, and
we want to maximize this distance over all pairs of clusters.

Algorithm 5.14 (Single Linkage/Hierarchical Clustering)

The general idea is to take this dense graph, find the MST, and cut off the largest edges from this
MST, which will give you k components. This is the answer. Or really, you can use Kruskal’s
algorithm and terminate earlier when T has k sets/components. Note that as we add edges as we
construct our MST, we are merging two clusters into one. So that all you are doing is finding the
next pair of closest points and merging the clusters that they are a part of.

Require: Nodes V = {vi} ⊂ Rn

1: function Cluster(V)
2: Run Kruskal and at each iteration, check if you have K clusters.
3: If so, terminate and return the parent list.
4: end function

Theorem 5.14 ()

The algorithm above minimizes the objective function.

argmax
C

min
p∈Ci,q∈Cj

{d(p, q)} (72)

Proof.

Let C∗ be the MST clustering. We claim that for any other clustering C = {C1, . . . , Ck},

mindist(C) ≤ mindist(C∗) (73)

Assume that this was not the case, so mindist(C) > mindist(C∗) and therefore there exists a p, q ∈
Ci, Cj such that d(p, q) = mindist(C) > mindist(C∗). Since this is a different clustering, p, q must
have been in the same cluster C∗

i . But note that since Kruskal adds edges in increasing length, all
edges within a cluster must have length less edges that go across two clusters.
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So d(p, q) must be the less than the length of all edges within a cluster in C∗. But all within-cluster
edges must be smaller than mindist(C∗), meaning that mindist(C∗) > d(p, q), contradicting the fact
that is is greater, and we are done.

If you define the distance between two clusters to be the distance between the centroids (mean point), then
this is called average linkage (min avg distance). If we define the cluster distance as the maximum distance
between two points, then it is called complete linkage (min max distance). Kruskal’s algorithm only worked
for the single linkage case but may not work for these additional definitions. This is why there is usually a
whole suite of clustering algorithms for a particular problem and we just find out which one fits the data the
best. Furthermore, we have done bottom-up clustering, where we took individual points to make clusters. In
top-down clustering, we take the whole set and cut it up into clusters.

6 Dynamic Programming
Let’s take a look at a motivating example.

Example 6.1 (Computing Fibonacci Numbers)

To compute the Nth Fibonacci number, we can use a recursive method.

Algorithm 10
Require: N

function RecFib(N)
if N = 0 then

return 0
else if N = 1 then

return 1
else

return RecFib(N − 1) + RecFib(N − 2)
end if

end function

This is exponential, in fact O(φN ) where φ is the golden ratio. The reason is that we are repeatedly
computing the same subproblem (e.g. RecFib(N − 2 is computed twice)), leading to inefficiency. It would
be great if we could store these intermediate values rather than recomputing them. This introduces us to
the concept of memoization.
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Definition 6.1 (Memoization)

Memoization refers to storing intermediate values for reuse rather than computing them again (e.g.
in future recursive calls).
Therefore, the term dynamic programming just means to deliberately evaluate and memoize in
the correct order.

Algorithm 6.1 (Redursive Memoized Fibonacci)

This leads us to a memoized version of computing Fibonacci Numbers, which is linear runtime. In fact,
we can have constant space complexity since we don’t need more than the last 2 previous Fibonacci
numbers to compute the next one.

Algorithm 11 Memoized Fibonacci
Require: N

Initialize memo array F [0..N ] with -1
F [0]← 0
F [1]← 1
function MemFib(N)

if N < 0 then
return 0

else if F [N ] ̸= −1 then
return F [N ]

else
F [N ]← MemFib(N − 1) + MemFib(N − 2)
return F [N ]

end if
end function

The runtime is computed, by taking the number of distinct problems (i.e. the number of calls
to MemFib with distinct inputs) multiplied by the time per subproblem (constant since lookup is
constant and adding is constant). Note that this assumes that arbitrary arithmetic operations take
constant time, but this is not true if we look at the bit complexity, which can scale quite fast as these
numbers grow.

Note that this does not really explicitly show the order in which the memoized list is being filled. It is
implicit but hard to see in the recursive calls. Therefore, it may help to write it iteratively.

Algorithm 6.2 (Iterative Memoized Fibonacci)

In here, we can explicitly see that the nth Fibonacci number is explicitly dependent on the n− 2 and
n− 1.

Algorithm 12 Iterative Fibonacci
Require: N

Initialize array F [0..N ]
F [0]← 0
F [1]← 1
for i← 2 to N do

F [i]← F [i− 1] + F [i− 2]
end for
return F [N ]
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6.1 Longest Increasing Subsequence

Definition 6.2 (Longest Increasing Subsequence)

Given a sequence of numbers A = {a1, a2, ..., an}, a longest increasing subsequence is a subse-
quence {ai1 , ai2 , ..., aik} of A such that:

1. 1 ≤ i1 < i2 < ... < ik ≤ n (maintains original order)
2. ai1 < ai2 < ... < aik (strictly increasing)
3. k is maximized (longest such subsequence)

Example 6.2 ()

For the sequence A = {3, 10, 2, 1, 20, 4, 25}:
• {3, 10, 20, 25} is an increasing subsequence of length 4
• {2, 4, 25} is an increasing subsequence of length 3
• {3, 10, 20, 25} is a longest increasing subsequence as no increasing subsequence of length 5 or

greater exists

For the actual problem of calculating the length of the LIS, dynamic programming gives us an efficient
approach. First, let’s do a brute force algorithm.

Algorithm 6.3 (Recursive Brute Force LIS)

At each step, we consider whether to include the current element in our subsequence. We can only
include it if it’s larger than the previous element we chose, maintaining the increasing property. We
explore both possibilities (including and excluding) recursively to find the longest possible subse-
quence.

Algorithm 13 Recursive Brute Force Longest Increasing Subsequence

Require: Array A[1..n]
function LIS(A, i, prev) ▷i is current position, prev is last element we took

if i = n+ 1 then ▷If we’ve processed all elements
return 0 ▷Return 0 as we can’t add more elements

end if
// First choice: skip current element
skip ← LIS(A, i+ 1, prev) ▷Keep same prev, move to next element
// Second choice: try to take current element
take ← 0 ▷Initialize take option to 0 in case we can’t take it
if A[i] > prev then ▷Only if current element maintains increasing sequence

take ← 1+ LIS(A, i+ 1, A[i]) ▷Add 1 for taking current element
end if ▷Recursively find best sequence starting at i+1 with A[i] as previous
// Return best option between taking and skipping
return max(skip, take) ▷Choose the better of our two options

end function
// Initial call with sentinel value to allow taking any first element
return LIS(A, 1,−∞) ▷Start at first element, no previous restrictions

The runtime can be used by the recurrence relation. At every call, we may at most have to compute
2 calls on the subarray not including the current element, and we compute the max of them which
takes O(1), so

T (N) = 2T (N − 1) +O(1) =⇒ T (N) = O(2N ) (74)

which is not good.
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Now let’s move to our DP solution.

Algorithm 6.4 (Dynamic Programming LIS)

The key insight is that LIS[i] (the length of the LIS within the input array ending at i, inclusive)
depends on all previous LIS[j] where j < i and A[j] < A[i]. For each position i, we can extend any
previous increasing subsequence that ends with a smaller value. In other words, we are solving

LIS[i] = 1 + max{LIS[j] | j < i and A[i] > A[j]} (75)

Algorithm 14 Dynamic Programming Longest Increasing Subsequence

Require: Array A[1..n]
function DPLIS(A)

// Initialize LIS array - each single element is an increasing sequence
Initialize array LIS[1..n] with 1 ▷Base case: each element forms LIS of length 1
for i← 2 to n do ▷Consider each element as end of sequence

for j ← 1 to i− 1 do ▷Look at all previous elements
if A[i] > A[j] then ▷Can we extend sequence ending at j?

LIS[i]← max(LIS[i], LIS[j] + 1) ▷Take best possible extension
end if

end for
end for
return LIS[-1] ▷Find the maximum value in LIS array

end function

The runtime is O(n2) since we have two nested loops, and the space complexity is O(n) since we store
one value for each position in the array. Note that we could also have filled this DP array backwards
by considering all arrays that start at A[i].

Example 6.3 (DPLIS for Small Array)

For array A = [3, 1, 4, 1, 5]:
• Initially: LIS = [1, 1, 1, 1, 1]
• After processing i = 2: LIS = [1, 1, 1, 1, 1]
• After i = 3: LIS = [1, 1, 2, 1, 1] (4 can extend sequence from 3)
• After i = 4: LIS = [1, 1, 2, 2, 1]
• After i = 5: LIS = [1, 1, 2, 2, 3] (5 can extend sequence from 4)

Final answer is 3, corresponding to subsequence [3, 4, 5]

6.2 0/1 Knapsack
Another application of DP is in the following problem.

Definition 6.3 (0/1 Knapsack)

Given a knapsack with maximum weight capacity W , along with a set of n items, each with:
• Weight/Cost ci
• Value vi

You want to know the size of the subset of items that maximizes total value while keeping total
weight/Cost ≤W . The constraint is that each item can be picked at most once (hence 0/1).

55/ 82



Algorithms Muchang Bahng Spring 2024

Example 6.4 ()

For n = 3 items and capacity W = 4:
• Item 1: (c1 = 2, v1 = 3)
• Item 2: (c2 = 1, v2 = 2)
• Item 3: (c3 = 3, v3 = 4)

Optimal solution: Take items 1 and 2
• Total weight: 2 + 1 = 3 ≤ 4
• Total value: 3 + 2 = 5 (maximum possible)

The most natural way to approach this would be greedy, but this does not exactly work.

Example 6.5 (Counter-Example for Greedy Knapsack)

Let’s consider a knapsack with capacity W = 10 and:
• Values V = [100, 48, 60, 11]
• Weights C = [10, 6, 4, 1]

Then the value/weight ratios would be

V/C = [10, 8, 15, 11] (76)

and so we would choose to gain 60 for cost 4, then gain 11 for cost of 1. We do not have enough to
buy any more and have a cost of 71, when we could have gotten a cost of 108 by buying 60 and 48
for a total of 10.

Just like as always, we just solve this using recursive brute force and then apply optimization with DP.

Algorithm 6.5 (Recursive Brute Force Knapsack)

The key idea is that for each item, we have two choices: either include it (if we have enough capacity)
or exclude it. We try both possibilities recursively to find the maximum value possible. In here, i
represents the current item we’re considering and r is the remaining weight we can still use.

Algorithm 15 Recursive Knapsack

Require: Values V [1..n], Weights W [1..n], Capacity C
V, W
function Knapsack(i, r)

if i = n+ 1 or r = 0 then ▷Base case
return 0 ▷Either we’ve considered all items or filled the knapsack

end if ▷No more value can be added
skip ← Knapsack(i+ 1, r) ▷1st Op: Skip current item and maintain same r
take ← 0 ▷2nd Op: Try to include curr item
if W [i] ≤ r then ▷Only try taking if item’s weight fits in remaining r

take ← V [i]+ Knapsack(i+ 1, r −W [i]) ▷Add current item’s value + best value from
remaining items

end if ▷Subtract current item’s weight from remaining r
return max(take, skip) ▷Return best possible value between two choices

end function
// Start considering from first item with full r
return Knapsack(1, C)

Now let’s apply memoization.
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Algorithm 6.6 (Dynamic Programming Knapsack)

The key insight is that K[i, r] (best value possible using items up to i exclusive with remaining
capacity r) can be built from K[i− 1, r] and K[i− 1, r −W [i]] using the formula

K[i, r] =

{
K[i− 1, r] if W [i] > r (can’t take item i)
max(K[i− 1, r], V [i] +K[i− 1, r −W [i]]) if W [i] ≤ r (can take item i)

(77)

In here, i represents the items 1..i we’re considering and r represents the remaining capacity.

Algorithm 16 Dynamic Programming Knapsack

Require: Values V [1..n], Weights W [1..n], Capacity C
V, W
function DPKnapsack(C)

Create table K[0..n, 0..C] ▷K[i,r] = max value using items V[:i] with remaining r
Initialize all entries to 0
for i← 1 to n do ▷Consider each item

for r ← 0 to C do ▷Consider each possible remaining capacity
K[i, r]← K[i− 1, r] ▷Default: inherit value from excluding item i
if r ≥W [i] then ▷If current item fits in remaining capacity

take ← V [i] +K[i− 1, r −W [i]] ▷Value of item i + best value with remaining r
K[i, r]← max(K[i, r], take) ▷Take better of including or excluding

end if
end for

end for
return K[n,C] ▷Best value possible using all items

end function

The memory complexity is obviously Θ(nC). The number of subproblems is nC, and the processing
for each step is constant time (possibly addition and max), so O(1). Therefore the total runtime is
O(nC) also. Note that if we compare this in terms of the bit runtime, then this is O(n log2 C), which
is psuedopolynomial since C is described by log2 C bits. However, the n will scale linearly since it is
the size of the array and not the size of each integer in V,W .

Note that if C can be very big, and this can be problematic.

6.3 Line Breaking

Definition 6.4 (Line Breaking)

Line breaking is used whenever you compile a tex document. Given
• a sequence of words w1, w2, ..., wn where wi has length li
• a maximum line length L
• each line must contain whole words in order, separated by spaces

Our goal is to break words into lines to minimize the sum of squares of empty spaces at the end of
each line, i.e. our cost function for a sequence of words W [i : j + 1] is(

L−
j∑

k=i

wk

)2

(78)

If we used the absolute value, there exists a greedy solution.
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Example 6.6 (Line Breaking Example)

Given L = 20 and W = [12, 8, 9] (note that spaces won’t count in length in this problem), we have 3
possible arrangements.

1. Option 1: First two words on first line
• Line 1: [12 + 8 = 20] (0 spaces remain)
• Line 2: [9] (11 spaces remain)
• Total cost = 02 + 112 = 121

2. Option 2: Words one per line
• Line 1: [12] (8 spaces remain)
• Line 2: [8] (12 spaces remain)
• Line 3: [9] (11 spaces remain)
• Total cost = 82 + 122 + 112 = 64 + 144 + 121 = 329

3. Option 3: Word 2 and 3 together
• Line 1: [12] (8 spaces remain)
• Line 2: [8 + 9 = 17] (3 spaces remain)
• Total cost = 82 + 32 = 64 + 9 = 73

Therefore, Option 3 is optimal with cost 73. This also demonstrates that the greedy strategy, which
gives Option 1, will not work.

We start off with recursive brute force. Given any word wi, we can either end the line there wi| or add
another word wiwi+1.

Algorithm 6.7 (Recursive Brute Force Line Breaking)

The key idea is at each position i, we try placing different numbers of words on the current line and
recursively solve for the rest. For each word i, we try all possible ways to break the line starting at
word i. Let MinCost(i) be the minimum cost to arrange words [i..n]. Then:

MinCost(i) =

{
0 if i > n

mini≤j≤n

{
(L−

∑j
k=i W [k])2 +MinCost(j + 1)

}
if else

(79)

where (L−
∑j

k=i W [k])2 is the cost to put the words i...j on a new line and then ending. So whenever
we add the new ith word at the end of the line, we are looking at all words j at which we can break
the line, and taking the minimum cost given this line break. The line break from j + 1 should be
computed as well (this is what we will store in our DP array later).
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Algorithm 17 Recursive Line Breaking

Require: Word lengths W [1..n], Line length L
W
function MinCost(i) ▷Returns min cost for words[i..n]

if i = n+ 1 then ▷Base case: no words left
return 0

end if
min_cost ←∞
lineLen ← 0
for j ← i to n do ▷Try placing words i through j on current line

lineLen ← lineLen +W [j]
if lineLen ≤ L then ▷If these words fit on the line

spaces ← L− lineLen ▷Extra spaces at end of line
cost ← spaces2+ MinCost(j + 1) ▷Cost of this line + rest
min_cost ← min(min_cost, cost)

end if
end for
return min_cost

end function
return MinCost(1) ▷Start with first word

Example 6.7 (Recursive Brute Force Line Breaking)

For example, with L = 20 and W = [12, 8, 9]:
• At i = 1: Try

12 alone (8 spaces) + solve for [8,9]
12,8 together (0 spaces) + solve for [9]

• At i = 2: Try
8 alone (12 spaces) + solve for [9]

8,9 together (3 spaces) + solve for []
• At i = 3: Try

9 alone (11 spaces) + solve for []

Algorithm 6.8 (Dynamic Programming Line Breaking)

The key insight is that DP [i] represents the minimum cost of optimally arranging words [i..n]. For
each word i, we try placing words [i..j] on a line and add the cost of optimally arranging the remaining
words [j + 1..n]. We do the same logic but rather than computing it we just retreive it from the DP
array.

DP [i] =

{
0 if i > n

mini≤j≤n

{
(L−

∑j
k=i W [k])2 +DP [j + 1]

}
if else

(80)
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Algorithm 18 Dynamic Programming Line Breaking

Require: Word lengths W [1..n], Line length L
W
function LineBreak(L)

Create array DP [0..n] ▷DP[i] = min cost for words[i..n]
Initialize all entries to ∞
DP [n+ 1]← 0 ▷Base case: no words left
for i← n downto 1 do ▷Consider each starting word

lineLen ← 0
for j ← i to n do ▷Try placing words i through j on a line

lineLen ← lineLen +W [j]
if lineLen ≤ L then ▷If these words fit on the line

spaces ← L− lineLen ▷Extra spaces at end
cost ← spaces2 +DP [j + 1] ▷Cost of this line + rest
DP [i]← min(DP [i], cost) ▷Update if better

end if
end for

end for
return DP [1] ▷Cost of optimally arranging all words

end function

The memory complexity is clearly O(n). To add each element i, we must iterate over all the possible
j’s, making this O(n2) total iterations. However, computing the cost is also O(n), making the total
runtime O(n3). However, if we also store another DP array sums, which can be computed in linear
time and stores

sums[i] =
n∑

k=i

wk =⇒
j∑

k=i

=

n∑
k=i

wk − a

n∑
k=j+1

wk = sums[i]− sums[j+1] (81)

which can be accessed and computed in O(1) time, bringing us down to O(n2).

Example 6.8 (DP Line Breaking)

For example, with L = 20 and W = [12, 8, 9]:
• DP [4] = 0 (base case)
• DP [3] = 112 = 121 (only option for last word)
• DP [2] = min(122 + 121, 32) = min(265, 9) = 9 (alone or with word 3)
• DP [1] = min(82 + 9, 02 + 121) = min(73, 121) = 73 (alone or with word 2)

6.4 Bellman Ford Revisited
Recall the Bellman equations that we must solve using DP. That is, given some s ∈ V ,

d[v] = min
w
{d[w] + lwv} (82)

with d[s] = 0. Note that the problem was not well defined if there are negative cycles in the graph, since we
can just loop an infinite number of times. However, we can modify the bellman equations to get a better
sense.
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Theorem 6.1 (Modified Bellman Equations)

For paths of length at most i edges, the Bellman equations become:

d(v, i) =

{
0 if v = s

min{d(v, i− 1),min(u,v)∈E{d(u, i− 1) + wuv}} otherwise
(83)

where d(v, i) represents the shortest path from source s to vertex v using at most i edges, and wuv

represents the weight of edge (u, v). Note that the inner minimum takes the minimum over all paths
with the final edge connecting from some other node u to target v, and the outer minimum compares
this minimum path to what we already have to see if it’s an improvement.

This indicates that we should use a 2D DP array to memoize. This allows you to have a more flexible
representation in case there are negative cycles since we are also limiting the number of edges a path could
have.

Algorithm 6.9 (2D DP Bellman-Ford)

The implementation of the modified equations gives us the following algorithm.

Require: Nodes V , Edges E, source s
1: d← 2D array of size |V | × |V | initialized to ∞
2: d[s, 0]← 0 ▷Base case: Can reach source with 0 edges
3: for i = 1, . . . , n− 1 do
4: for v ∈ V do
5: d[v, i]← d[v, i− 1] ▷Keep best path seen so far
6: for (u, v) ∈ E do
7: d[v, i]← min(d[v, i], d[u, i− 1] + luv)
8: end for
9: end for

10: end for

Note that this algorithm still has time complexity O(nm) because the outer loop runs n − 1 times
and for each iteration, we examine each edge once. The space complexity is O(n2), and finally, note
the important properties.

1. Monotonicity : For all vertices v and indices i:

d(v, i) ≤ d(v, i− 1) (84)

This is because any path using ≤ (i− 1) edges is also a valid path using ≤ i edges.
2. Convergence: The algorithm will stabilize after at most n− 1 iterations since:

• Any shortest path without negative cycles can use at most n− 1 edges
• Therefore, d(v, n− 1) = d(v, n) for all v if no negative cycles exist

3. Negative Cycle Detection: A negative cycle exists if and only if:

∃v ∈ V : d(v, n) < d(v, n− 1) (85)

This is because any improvement after n− 1 edges must use a negative cycle.

7 Hashing and Probabilistic Algorithms
One of the most important applications of hashing and probabilistic algorithms is in cryptography. For
example, when you generate a RSA keypair, you must choose two 128-bit prime numbers which serve
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as your private key. State of the art methods simply generate a random 128-bit prime number perform
independent randomized probabilistic tests with error rate ϵ. Given that this is independent, simply running
this tests k times reduces our error exponentially to ϵk, practically guaranteeing primality. In Bitcoin and
Ethereum wallets, hardened child key derivation functions in hierarchical determinstic wallets hash subsets
of the parent key to generate both the child keys and their seeds.6

7.1 Hashing
Assume we want to map keys from some universe U into a smaller set [N ] = {1, . . . , N} of N bins. The
algorithm will have to handle some dataset S ⊂ U of |S| = M keys.7 We want to store S with efficient
performance in

1. Find(x), which returns true if x ∈ S

2. Insert(x)

3. Delete(x)

This is essentially a set. If one is new to hashing, we could try to use a balanced binary search tree or a heap
(implemented as a red-black tree or some other variant), which can do all three operations in O(log(N))
time. If we had access to a randomized function h : U → [N ], with the property that for a fixed x ∈ U ,
h(x) ∼ Multinomial(N), then by linearity of expectation8

P(h(x) = h(y)) = E[1h(x)=h(y)] =
N

N2
=

1

N
(86)

This is great, but this is also random, which means that we are not guaranteed to map to the same bin
across time. If we add time-invariance, this is pretty much a hash function, which is really deterministic,
but we like to call it psuedo-random.

So what if there are collisions? They are inevitable anyways even with a completely random function, but
minimizing them will give us the best runtime performance. There are a two main ways to approach this.

1. At each bin, store the head of a linked list, BST, or another hash table. You would incur an additional
linear, logarithmic, or constant cost of traversing this data structure for each operation.

2. Look for another bin. We can just look at h(x) + 1 or h(h(x)) (or really any deterministic function
f(h(x))) if h(x) is occupied.

This is what we have to work with here, so we would like to modify our assumptions. Therefore, we can
achieve good performance by reducing the collisions and by improving how we deal with collisions. We will
focus on the first part, and we would like for our hash functions to have some nice properties, which we will
define. The most intuitive way is to treat x, y as random variables uniformly sampled from U , and then we
would like P(h(x) = H(y)) ≈ 1/N . However in practice, this is not the case since our subdomain S is already
fixed, yet may be unknown. Therefore given any function h, we can construct an adversarial sequences of
inputs that will all map to the same bin. We must therefore consider a family of hash functions.

Definition 7.1 (Universal Hashing)

A family of hash functions H = {h : U → [N ]} is universal if for any fixed x, y ∈ U ,

Ph

(
h(x) = h(y)

)
≤ 1

N
(87)

where h is drawn uniformly. If the bound is 2/N then it is called near-universal, and what’s
important is the N in the denominator. This polynomial decay in collision probabilities is exactly

6For an implementation of both, look at my blockchain implementation here
7For example, think of all possible strings as U and all 256-bit numbers as N = 2256. S in this case S may be the set of all

addresses on a blockchain. This is SHA256, and to date there is no known hash collisions, though there are a few for SHA1.
8Note that this is not Px,y since x, y are not random variables. They are fixed, and h(x), h(y) are the random variables.
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what we need for constant operation time. That is, given query x, let the random variable X be the
number of operations we must do to find X, which consists of 1 pointer traversal plus some other
amount of traversals (e.g. through a linked list) if collision, say which is Cn. So we have

X = 1 +
∑
y∈S

Qy (88)

where 1 comes from the initial pointer traversal in hashing, and Bernoulli Qy = 1 if h(y) = h(x).a
Then, by linearity of expectation combined with the bound on probability of collision we have

E[X] = 1 +
∑
y∈S

E[Qy] = 1 + |S| · P(h(x) = h(y)) = 1 +
|S|
N

(89)

which is constant.

If H is the set of all functions from U to [N ], then this universal property is trivially satisfied since

Ph

(
h(x) = h(y)

)
=

1

N
(90)

But this is quite a complex function class and h may not be easy to store, i.e. may not be analytic. The
question now becomes whether we can achieve universality with a smaller class. It turns out yes, and the
obvious use is to use cyclic groups.

Lemma 7.1 (Carter-Wegman 71)

Suppose U = {0, 1, . . . ,M − 1}. We choose a prime p ≥Ma and construct the family

H = {ha(x) = (axmodp)modN | a = 0, . . . , p− 1} (91)

We claim this is near-universal.

Proof.

We treat x as the generator of this group, and then axmodp = a′xmodp iff a = a′. Therefore,

Pa(ha(x) = ha(y)) = Pa

(
(ax− ay)modp = Nk

)
(92)

for some k. If a = 0, then everything collides, but if a ̸= 0 and x ̸= y, then ax − ay must have a
difference of exactly a multiply of N , which happens with probability 1/N . Therefore, we have

Pa(ha(x) = ha(y)) = P(a = 0) + P(a ̸= 0) · 1
N

=
1

p
+

p− 1

p
· 1
N

<
2

N
(93)

since p > N .

Therefore, to hash,

1. we choose a prime p ≥ m = |U |.

2. choose a ∈ {0, 1, . . . , p− 1} at random.

3. Use ha(x) = (axmodp)modN to hash everything.9

aThis may not be 1 since we may have to do more than 1 additional traversal, e.g. in linked lists. But we assume the extra
cost is bounded by a constant.

aIt is guaranteed that a prime exists between m and 2m.
9We do not change a every time we hash.
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Example 7.1 ()

Let n be a fixed prime number and

H = {ha,b(x, y) = ax+ bymodn : a, b ∈ [n]} (94)

We claim that this is universal. Let x = (x1, x2) and y = (y1, y2) be arbitrary pairs of integers where
x ̸= y. WLOG, assume x2 ̸= y2. Then

P(ha,b(x) = ha,b(y)) = P(ax1 + bx2 = ay1 + by2) = P
(
a(x1 − y1) = b(y2 − x2)

)
(95)

Suppose that we pick a first and we compute the conditional probability. Then the LHS is a constant,
and for this to hold in a cyclic group, b must equal c(y2 − x2)

−1, which occurs with probability 1/N .
Using LOTP the joint probability is also 1/N .

7.2 Modulo Operations

7.3 Primality Testing

8 Flows and Cuts

8.1 Max-Flow Min-Cut Theorem

Definition 8.1 (Flow Network)

Given a nonnegative weighted directed graph G(V,E), we can define the weights to be the capacity
C : E → R+ of some commodity that can travel through the edge. Say that we have a source node
s ∈ V and a sink/destination node t ∈ V . This is called a flow network.

Definition 8.2 (Flow)

Given a flow network, a flow is a function f : E → R+ satisfying
1. Conservation. What flows in must always flow out. For all v ̸= s, t, we have∑

(u→v)∈E

f(u→ v) =
∑

(v→w)∈E

f(v → w) (96)

2. Feasibility. We cannot exceed the capacity. For all e ∈ E,

0 ≤ f(e) ≤ C(e) (97)

The value of a flow represents the actual/realized amount of the commodity that we can push through
the graph

|f | =
∑

(s→u)∈E

f(s→ u)−
∑

(u→s)∈E

f(u→ s) (98)

where we need to subtract the right expression to avoid loops.
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Figure 18: The red values represent the flow. The blue values represent the capacity. The value of the above flow is
10.

Now let’s revisit cuts.

Definition 8.3 (Cuts)

Given a flow network, a s-t cut is a partition of V = S⊔T s.t. s ∈ S, t ∈ T . The value, or capacity,
of a cut is defined as the capacity of its edges

||S, T || =
∑
uinS

∑
v∈T

C(u→ v) (99)
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Figure 19: This cut has capacity 15. Note that the cut going from right to left is not included since this is a S-T cut.

We now introduce two related problems.

1. Max Flow. How do we find the flow with the maximum value? This is analogous to maximizing the
commodity transport from s to t.

2. Min Cut. How do we find the cut with the minimum capacity? This is analogous to removing the
smallest total edges that will disconnect s to t.
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Theorem 8.1 (Max-Flow Min-Cut Theorem)

For any valid (s, t) flow f on a flow network G = (V,E) and any valid (s, t)-cut S, T , we have

|f | ≤ ||S, T || (100)

It also turns out that equality is achieved, which immediately implies that the max-flow is the min-cut.

Proof.

We can see that in order for a flow to have a value, given some cut the flow value cannot exceed the
capacity through this cut from S to T . Mathematically, we can see that the flow value is invariant
due to conservation, and so

|f | =
∑
s→v

f(s→ v)−
∑
v→s

f(v → s) (101)

=
∑
u∈S

∑
v∈T

f(u→ v)−
∑
v∈T

∑
u∈S

f(v → u) (102)

≤
∑
u∈S

∑
v∈T

c(u→ v) = ||S, T || (103)

The fact that equality is achieved is highly nontrivial, and we will not cover it here.

8.2 Maximum Flows
Now to compute the maximum flow itself, we use a residual graph. For now, we will assume that a flow
network G does not have 2-cycles (cycles of length 2), and if we do find a graph with such a 2-cycle, we
modify it by adding an intermediate node.

u v u v

uv

Figure 20: How we modify our 2-cycle.

Definition 8.4 (Residual Network)

Given a flow network G and a flow f , the residual graph Gf is a new flow network that has edges
u→ v and v → u, where

cf (u→ v) =

{
c(u→ v)− f(u→ v) if u→ v ∈ E

f(u→ v) if v → u ∈ E
(104)

Basically, if there is some flow in an edge, we replace that edge’s capacity by the residual capacity,
giving us our forward edge, and then take this flow and add it to a new opposite pointing edge, called
the backwards edge.
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Figure 21: Residual network.

Theorem 8.2 ()

If we have a flow f , its value |f | can be improved/augmented up to the bottleneck capacity on any
residual path. That is, if we find any s → t path π on Gf , with a positive bottleneck capacity
(minimum capacity over its edges), we can improve the flow.a Given this residual path π, it may
have both forward or backwards edges. To augment the original path on G by value b, we look at
each edge (u→ v) ∈ E and

1. If it corresponds to a forward edge (i.e. if (u → v) is in the residual path π), we add b. This
corresponds to how much more flow you can put into this edge.

2. If it corresponds to a backward edge (i.e. if (v → u) is in the residual path π), we subtract b.
The corresponds to how much flow could you reroute in the backwards direction and have it
reach t through another path.

3. If it is not in π, then we don’t change it.
In summary, the new flow f ′ is defined

f ′(u→ v) =


f(u→ v) + b if (u→ v) ∈ π

f(u→ v)− b if (v → u) ∈ π

f(u→ v) else
(105)

Proof.

We first show that f ′ is a valid flow. For feasibility,
1. Forward. If (u→ v) ∈ π, then

f ′(u→ v) = f(u→ v) + b ≤ f(u→ v) + cf (u→ v) = c(u→ v) (106)

2. Backward. If (v → u) ∈ π, then

f ′(u→ v) = f(u→ v)− b ≥ f(u→ v)− cf (v → u) = 0 (107)

For conservation, there are 4 cases.
1. Forward into node, forward out of node. ∆in = +b,∆out = +b. Therefore the flows cancel out.
2. Forward into node, backward out of node. ∆in = +b− b = 0.
3. Backward into node, forward out of node. ∆out = +b− b = 0.
4. Backward into node, backward out of node. ∆in = −b,∆out = −b.

aFor example, the capacity of the path S,C,A,B, T is 5, since A → B has weight 5.
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At this point, we’re pretty much ready to give our algorithm on max-flow.

Algorithm 8.1 (Ford-Fulkerson)

We’ve reduced this problem to a problem of finding a positive path π in the residual graph, which
we have a lot of algorithms built for. We find such a path and augment the flow until we cannot find
such a path. If we cannot find a path, then we can use BFS to look at all vertices S ⊂ V reachable
from s in Gf , and then let T = V \ S. These two disjoint sets will give the min cut.

Require: Flow network G(V,E), source/sink s, t ∈ V . Capacity c.

function MaxFlow(G)
Start with the trivial flow f , maybe stored as array [0, . . . , 0] of length E.
Construct residual graph Gf for this trivial flow.
while Gf has an augmenting path in Gf do ▷Maybe use BFS to find this.

Pick π as any augmenting path
augment f by bottleneck capacity
update Gf .

end while
return f
Use BFS to find all nodes in Gf reachable from s. Call this S.
Let T = V \ S.
S, T is our min cut, and f is your max flow.

end function

The inner loop is just BFS, which is O(N +M), but how many iterations do we do? Well for integer
capacities, we can bound it by the actual value of the max flow |f∗| since we must improve by at
least +1 every loop.a Unfortunately, O((N + M)|f∗|) is the best we can do in generality, which is
pseudopolynomial.

There are indeed polynomial time algorithms, e.g. Orlin’s algorithm with runtime O(NM), which is guar-
anteed to be polynomial but in practice may be slower.

Example 8.1 (Max Flow and Residual Graph)

Here is the max flow.

aThis is not a trivial result that if all capacities are integers, then there is an integer max-flow, despite the actual flow being
dispersed as fractions across edges.
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Figure 22: The max flow of the above graph.

Here is the residual graph, which shows indeed that this the max flow. The min cut is therefore
S = {s, a, c} and T = {t, b, d}.
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Figure 23: You can see that there are no paths from s to t anymore. The edges a → b and c → d in the
original graph are saturated and so have weight 0 in the residual graph.

Example 8.2 (Edge Disjoint Paths)

Given a directed graph G(V,E) with start and end nodes s, t ∈ V , we want to find the maximum
number of paths from s→ t s.t. they do not share any edge, i.e. are edge-disjoint.

Figure 24: This graph has two edge-disjoint paths: the top and bottom paths.

s t

The idea is to reduce the maximum flow by first assigning capacity 1 to every edge. Then we compute
the maximum flow f∗, and then return |f∗|. It turns out that even if we chose a path π that went
through the center node, the augmentation would push us to redirect the flows to the top and bottom
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outer edges. Since |f∗| ≤ n− 1 < m in this example (since it can be at most the maximum indegree
or outdegree of s, t), we should probably use Ford-Fulkerson rather than Orlin’s algorithm.

This leads to the lemma.

Theorem 8.3 (Edge-Disjoint Paths)

Given directed graph G and its corresponding flow network G′ of capacity 1, the following are true:
1. If there exists k edge-disjoint paths in G, then there exists a flow with value ≥ k in G′.
2. If there exists a flow of value k in G′, then there exists k edge-disjoint paths in G.

Proof.

The first is trivially feasible and conservation is satisfied since for any node u ∈ V \ {s, t}, every path
in P (the collection of k paths) that enters u must exit u, so the total flow in equals the total flow
out =⇒ f is a valid (s, t)-flow. Therefore, we have k paths leaving s, so |f | = k.
For the other direction, let f be the flow with value k, and let P = {}. Let H be the subgraph of G′

of edges with positive flow, and for every loop, we use BFS from s to t to get a path π. We then add
π to P and remove π from H, repeat this k times until we get k paths in P .

The way that we have constructed a collection of paths from a flow function is very useful, and is called flow
decomposition. We can go back and forth between a flow and a collection of paths by doing what we have
just done in the previous proof.

Definition 8.5 (Flow Decomposition)

Given a general flow f on flow network G, we initialize our set of paths P = {} and loop the following:
1. Use BFS from s to t to get a path π.
2. Add π to P and rather than strictly removing the path from H, we need to be mindful of how

much flow is left on it after removing only the bottleneck flow on the path.
This can be done in O(NM) time, which loosely is because we are running BFS O(M) times.

Example 8.3 (Undirected Edge-Disjoint Paths)

What if G is undirected? In this case, we want to construct a flow network and then convert its 2
cycles into a 3 cycles by adding artificial points, taking linear time.

Example 8.4 (Undirected Edge-Disjoint Paths)

Another problem is about vertex-disjoint paths, which is a stronger restriction than edge-disjoint
ones. Each node does not have a concept of a capacity, so the general idea is for each vertex v,
replace it with an “in-out gadget” with an edge of weight 1. The rest of the details follow similarly
from edge-disjoint paths.

v vin vout

Figure 25

70/ 82



Algorithms Muchang Bahng Spring 2024

Example 8.5 (Maximum Bipartite Matching)

Another application is in bipartite matching, which for an undirected bipartite graph G(V,E) with
V = A ⊔ B, is a subset of the edges M ⊂ E s.t. no 2 edges in M share an endpoint. The goal is to
find the maximum bipartite matching, i.e. the matching with the greatest total weight.
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Figure 26: A bipartite matching

The general idea is to take an undirected graph, convert it to a flow network, compute the max flow,
i.e. min cut, and then translate it back into the undirected graph solution.

1. Construct the flow network G′ = (V ′, E′), where V ′ = V ∪ {s, t}, with additional edges going
from s to A and B to t all with weights 1. Replace the middle edges with directed edges towards
the flow with the same weight (though it can be any weight at least 1).
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2. Compute max flow f in G′.
3. Return M = {(u → v) ∈ E | f(u → v) = 1}. This can be done using the flow decomposition

or just by looking at the edges in our flow with value 1 and mapping it to the corresponding
undirected bipartite graph.

To see correctness, we claim that there exists a matching M in G of size k iff there exists a flow f in
G′ with |f | = k, and therefore the max matching corresponds to the max flow. Constructing the flow
network is O(N +M) since N ′ = N + 2 and M ′ = M +N . Computing the max-flow is O(N ′M ′) or
O(M ′|f |) depending on if we use Orlin’s or Ford-Fulkerson, but either one is O(NM). Then mapping
it back to M might take O(M), so the total time is O(NM).

9 Efficiency

9.1 Classification of Decision Problems
We have talked about optimization problems that choose the best solution from a class of solutions. Now
we will talk about decision problems, which seek to prove or disprove the existence of a solution satisfying a
certain property.
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Lemma 9.1 (Conversion between Optimization and Decision Problems)

It turns out we can convert one into the other easily by rephrasing the problem. The following
conversion will be used frequently.

1. Given a problem P , we want to find a solution that minimizes some variable K.
2. Given a problem P and some constant K ′, does there exist a solution that is less than K ′?

Voila.

Now that this is established, we can freely consider the classes P and NP of all decision problems and classify
them. There are equivalent definitions for optimization problems, but it is more popular to pose these classes
as decision problems.

Definition 9.1 (P)

P (Polynomial Time) is the set of all decision problems that can be solved by polynomial-time
algorithms.

Definition 9.2 (NP)

NP (Nondeterministic Polynomial Time) is the set of all decision problems for which if it returns 1
(i.e. a solution exists), this can be verified in polynomial time.a

The other way around NP ⊂ P is an unsolved millenium conjecture. It attempts to answer what the
runtime difference or difficulty is between solving and verifying a problem? The conjecture states that
solving is exponentially harder that verifying.

Theorem 9.1 ()

P ⊂ NP

Proof.

Given a problem π with a proposed solution p, we can run p in polynomial time to verify it.

Colloquially, the set of problems which are at least as hard as NP is called NP-hard, which can be defined for
both optimization and decision problems. These are the absolute hardest problems. The formal definition
of NP-Hard problems is shown below.

Definition 9.3 (NP-Hard)

A (decision or optimization) problem π is NP-hard iff the existence of a polynomial time algorithm
for π implies P = NP .

Definition 9.4 (NP-Complete)

The intersection of NP-hard and NP is NP-complete, which can be thought of as the hardest prob-
lems existing in NP. The worst case runtime complexity of an NP-complete problem is exponential.

aThe fact that a proposed solution can be verified is important! Proving or disproving a proposed solution is much easier
than proving the nonexistence of a solution.
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Figure 27: Diagram of the 4 classes. The complexity rises as we go up.

9.2 Proving NP-Hardness
To show that a problem is in P, all we have to do is find a polynomial time algorithm, which is what we’ve
been doing this entire course. To show whether a problem is NP, we should show that it is verifiable in
polynomial time, which we have also done so far. Proving NP-hardness (which then allows us to prove
NP-completeness) is a bit more tricky. The pattern is always three things.

1. Reduction. Describe a polynomial time algorithm f to transform an arbitrary instance x of a problem
β into a special instance y = f(x) of a problem π.

2. Equivalence. Prove that if arbitrary x is a true instance of π, then y is a true instance of π.

3. Equivalence. Prove that if arbitrary y is a true instance of π, then x is a true instance of π.10

Definition 9.5 (Reduction)

In other words, to prove a problem π is NP-hard, reducea a known NP-hard problem β to π in
polynomial time (not the other way around!). If this reduction is possible, then we claim that π must
be at least as hard as β: β ≤p π.

1. Assume that we can solve π in polytime.
2. Then we can solve β in polytime by first converting any instance of β to π in polytime, and

then polytime solving π.b
3. Therefore, π ∈ P =⇒ β ∈ P .

But since we already know β is NP-hard, this creates a contradiction. Therefore, π ̸∈ P .

The reduction serves to compare the two problems, and the equivalence then serves to compare the set of
solutions to these two problems.

Definition 9.6 (Equivalence of Solutions)

The next step is to show two things:
1. A solution to π implies a solution to β, and
2. A solution to β implies a solution to π.

As a general overview of popular problems and their relation to each other, we’ll mention this now.

10This is the hard part.
aThe fact that we say reduce here is misleading, since we are showing that the reduction is at least as hard as the original.
bIn other words, there exists an injective (but not necessarily surjective) mapping from the set of solutions of π to the set of

solutions of β.
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Theorem 9.2 (Reduction Tree of NP-Hard Problems)

For convenience.
1. 3SAT is NP-hard by Cook-Levin
2. CircuitSAT is NP-hard by reducing from 3SAT
3. Max Independent Set is NP-hard by reducing from 3SAT
4. Min Vertex Cover is NP-hard by reducing from MIS
5. Max Clique is NP-hard by reducing from MIS
6. Hamiltonian Path is NP-hard
7. Hamiltonian Cycle is NP-hard by reducing from MVC, 3SAT, or Hamiltonian Path
8. Graph Coloring is NP-hard by reducing from 3SAT
9. Subset Sum is NP-hard by reducing from MVC

10. Planar CircuitSAT is NP-hard by reducing from CircuitSAT
11. Paritioninga is NP-hard by reducing from Subset Sum.
12. Set Coverb is NP-hard.
13. Longest Path is NP-hard.
14. MaxCutc is NP-hard.

9.3 Logic and Satisfiability

Definition 9.7 (CircuitSAT)

Consider a black box circuit f , with input x ∈ {0, 1}n. We want to answer the question of whether
there exists some x s.t. f(x) = 1, i.e. whether the circuit is satisfiable?

Figure 28: Some random circuit where n = 5.

The obvious way is to brute force is an check all 2n combinations, and this is the only way since
this is black-box. However, even if we knew the circuit itself, the amount of computations that we
need to solve this is conjectured to be still O(2n), though we may be able to cleverly shave off some
calculations here and there.a

aGiven a set S of n integers, are there disjoint subsets A,B s.t. their sums are equal?
bGiven a collection of sets S, find the smallest sub-collection of sets that contains all the elements in ∪S.
cFind the max cut of a graph.
aIt is not proven that there exists no exponential algorithm.
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Definition 9.8 (3SAT)

Given a boolean formula ϕ of N variables where each clause contains exactly 3 literals, determine if
there exists a satisfying assignment to the variables that makes ϕ true. Formally:

ϕ = C1 ∧ C2 ∧ · · · ∧ Cm

Ci = (li1 ∨ li2 ∨ li3)

lij ∈ {xk,¬xk} for some k ∈ {1, . . . , n}

where xk are boolean variables and ¬xk their negations. For example:

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

Like CircuitSAT, this problem is also believed to require O(2n) time, and in fact these problems
are polynomially reducible to each other (CircuitSAT ≤p 3SAT and 3SAT ≤p CircuitSAT). The key
difference is that 3SAT has a very specific structure that makes it easier to analyze and reduce other
problems to, making it a canonical NP-complete problem.a

In fact, there is a polynomial time algorithm to translate between 3SAT and CircuitSAT, so the two are
theoretically equivalent.

Theorem 9.3 (P, NP Classification of SAT)

For CircuitSAT,
CircuitSAT ̸∈ P, CircuitSAT ∈ NP (108)

That is, it cannot be solved in polynomial time, but given a solution circuit and a satisfying assign-
ment, the assignment can be verified in polynomial time. For 3SAT,

3SAT ̸∈ P, 3SAT ∈ NP (109)

That is, it cannot be solved in polynomial time, but given a solution formula and a satisfying assign-
ment, the assignment can be verified in O(N3) time (N3 comes from the size of the expression).

Theorem 9.4 (Cook-Levin)

3SAT is NP-complete.

Proof.

The proof is extremely long, and we use this as the initial point from which we start proving NP-
hardness of other problems using reduction.

For example, to prove that CircuitSAT is NP-hard, we should reduce 3-SAT to CircuitSAT in polynomial
time and then we are done. Reduction is quite complicated, so we omit this for now.

aThe restriction to exactly 3 literals per clause is not arbitrary - 2SAT is solvable in polynomial time, while 3SAT is
NP-complete.
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9.4 Graph Problems
9.4.1 Maximum Independent Set

Definition 9.9 (MIS)

Given an undirected graph G(V,E), an independent set is a subset S ⊆ V such that no two vertices
in S are connected by an edge in E. The maximum independent set problem asks

1. Given G, find an independent set of maximum cardinality.
2. Given G and constant K, does there exist an independent set of size ≥ K?

Theorem 9.5 (Maximum Independent Set (MIS))

MIS is NP-hard.

Proof.

We prove NP-hardness by reducing from 3SAT, which is more structured than CircuitSAT. Given a
3SAT instance ϕ, we construct a graph G such that ϕ is satisfiable if and only if G has an independent
set of size m, where m is the number of clauses in ϕ. The reduction works as follows: For a 3SAT
formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cm where each clause Ci = (li1 ∨ li2 ∨ li3), construct graph G(V,E):

1. For each clause Ci, create a clause gadget: a triangle with vertices labeled li1, li2, and li3
with undirected edges between them.

2. Add consistency edges: for any two literals lij and lkℓ from different triangles, add an edge
if they are complementary (i.e., one is x and the other is ¬x)

This reduction has the following properties:
• Each triangle forces us to choose at most one literal from each clause
• Consistency edges ensure we can’t choose contradictory literals
• Choosing m vertices (one per triangle) corresponds to making each clause true

For equivalence, it turns out that ϕ is satisfiable iff the size of the IS in G is exactly the number of
clauses in ϕ.

• (⇒) If ϕ is satisfiable, choose one true literal from each clause to form an independent set of
size m

• (⇐) If G has an independent set of size m, it must contain exactly one vertex per triangle (by
pigeonhole principle), giving us a valid satisfying assignment

Therefore, now that we have established the reduction, since 3SAT is NP-complete and we have a
polynomial-time reduction to MIS, MIS is NP-hard.

Example 9.1 (3SAT Reduction of MIS)

Consider the 3SAT formula

ϕ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d) (110)

Following our reduction, we construct graph G as follows:
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Figure 29: Reduction graph from 3SAT to MIS.

The graph contains:
1. Four triangles, one for each clause of ϕ
2. Red edges connecting complementary literals (e.g., b with b̄)
3. A maximum independent set highlighted in yellow ({a, d}) of size 4

This independent set corresponds to the satisfying assignment (a, b, c, d) = (1, ∗, 1, 0).
• (a ∨ b ∨ c) is satisfied by a = 1
• (b ∨ ¬c ∨ ¬d) is satisfied by d = 0.
• (¬a ∨ c ∨ d) is satisfied by c = 1.
• (a ∨ ¬b ∨ ¬d) is satisfied by a = 1.

To demonstrate the proof, we assume that this MIS can be solved in polynomial time, so MIS ∈ P .
But since 3SAT ≤p MIS, this means that 3SAT ∈ P , which is a contradiction since 3SAT ∈
NP − hard.

9.4.2 Minimum Vertex Cover

Definition 9.10 (Min Vertex Cover)

Given an undirected graph G(V,E), a vertex cover is a subset S ⊂ V where for all (u, v) ∈ E, either
u ∈ S or v ∈ S (or both). The minimum vertex cover problem asks

1. Given G, find a vertex cover of minimum cardinality.
2. Given G and constant K, does there exist a vertex cover of size ≤ K?

Theorem 9.6 (MVC)

MVC is NP-hard.

Proof.

Reduction from MIS. Recall that an independent set is a subset S ⊂ V s.t. for all (u, v) ∈ E, u ∈ S
or v ∈ S (but not both). By definition, we can see that u ∈ S ⇐⇒ u ̸∈ V \ S, and so IS and VCs
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are related in the following way:

S ⊂ V is a VC ⇐⇒ ∀(u, v) ∈ E, u ∈ S or v ∈ S or both (111)
⇐⇒ ∀(u, v) ∈ E, u ̸∈ S \ V or v ̸∈ S \ V or both (112)
⇐⇒ V \ S is an IS (113)

Therefore, if S has size K, then V \ S will have size N −K. We assume that a polytime algorithm
exists for MVC, so on input G(V,E), we calculate the MVC, call it M , and then we return the
corresponding MIS S = V \M .
Equivalence.

1. (⇒) Assuming we have the solution |S| for MVC, we can return true iff |V | − |S| ≥ K.
2. (⇐) Assuming we have the solution |S| for MIS, we can return true iff |V | − |S| ≤ K.

But this would imply that there exists such a polytime algorithm, implying that P = NP , and
therefore MVC must be NP-hard by definition.

Example 9.2 (Reduction from Independent Set to Vertex Cover)

Just take the complement.

9.4.3 Maximum Clique

Definition 9.11 (Max Clique)

Given an undirected graph G(V,E), a clique is a subset of vertices S ⊂ V s.t. there is an edge
between each pair in S, i.e. a complete subgraph. The maximum clique problem asks

1. Given G, find the clique of maximum cardinality.
2. Given G and constant K, does there exist a vertex cover of size ≥ K?

Theorem 9.7 (MC)

Finding the max clique is NP-hard.

Proof.

Reduction from MIS. Observe that
Let’s define the edge-complement of a graph G as Ḡ = (V, Ē) where Ē is the set of edges not in
G. Then, note that

S ⊂ V is an IS of G ⇐⇒ ∀u, v ∈ S, (u, v) ̸∈ E (114)
⇐⇒ ∀u, v ∈ S, (u, v) ∈ Ē (115)
⇐⇒ S is a clique of Ḡ (116)

Therefore, we can reduce this from MIS by taking input G, getting Ḡ in O(N + M) time, solving
the MIS of Ḡ, and returning the size of the max clique of Ḡ in our assumed polytime algorithm.
Therefore, MC is NP-hard. In fact, we have already proved the equivalence at the same time due to
the iff conditions, but we state it explicitly for completeness.
Equivalence.

1. (⇒) Assuming we have the MIS solution S ⊂ G, then S is the max clique of Ḡ.
2. (⇐) Assuming we have the max clique solution S ⊂ G, then S is the MIS of Ḡ.
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Example 9.3 (Reduction of Independent Set to Clique)

Just take the edge complement.

9.4.4 Hamiltonian Paths

Definition 9.12 (Hamiltonian Path)

A Hamiltonian path in a directed graph G is a path that visits every vertex exactly once.

Theorem 9.8 ()

Finding the existence of a Hamiltonian cycle of a graph G is NP-hard.

Definition 9.13 (Hamiltonian Cycle)

A Hamiltonian cycle in a directed graph G is a cycle that visits every vertex exactly once.

Theorem 9.9 ()

Finding the existence of a Hamiltonian cycle of a graph G is NP-hard.

Proof.

Reduction from VC. Given an undirected graph G(V,E) and integer K, we want to construct a
directed graph H(V ′, E′), such that H has a Hamiltonian cycle iff G has a vertex cover of size K.
We construct H in the following.

1. For each undirected edge (u, v) ∈ E, the directed graph H contains an edge gadget containing
4 vertices

(u, v, in), (u, v, out), (v, u, in), (v, u, out) (117)

and 6 directed edges

(u, v, in)→ (u, v, out) (u, v, in)→ (v, u, in) (v, u, in)→ (u, v, in)

(v, u, in)→ (v, u, out) (u, v, out)→ (v, u, out) (v, u, out)→ (u, v, out)

Figure 30: An edge gadget and its only possible interactions with a Hamiltonian cycle. Any Hamiltonian
cycle in H must pass through an edge gadget in one of 3 ways: straight through on both sides, or with a
detour from one side to the other and back. These options will correspond to both u and v, only u, or only
v belonging in the vertex cover.

2. For each vertex u ∈ V , all the edge gadgets for incident edges (u, v) are connected in H
into a single directed path, called a vertex chain. Specifically, suppose vertex u has d neighbors
v1, . . . , vd. Then H has d−1 additional edges (u, vi, out)→ (u, vi+1, in) for each i = 1, . . . , d−1.
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3. Finally, H also contains k cover vertices x1, . . . , xk. Each cover vertex has a directed edge to
the first vertex in the vertex chain, and a directed edge from the last vertex in each vertex
chain.

Equivalence.
1. Suppose that C = {u1, . . . , uk} is a vertex cover of G of size k. We can construct a Hamiltonian

cycle that encodes C as follows.
2. Suppose that H contains a Hamiltonian cycle C. This cycle must contain an edge from each

cover vertex to the start of some vertex chain.

Example 9.4 (Reduction from Vertex Cover to Directed Hamiltonian Cycle)

We can see that each double arrowed blue segment represents a pair of directed edges, each part of
the gadget.

Figure 31: Reduction of a simple undirected graph to Hamiltonian cycle.

9.4.5 Euler Paths

9.4.6 Longest Path

Theorem 9.10 (Longest Path)

Finding the longest path in a graph is NP-complete.

9.4.7 Graph Coloring

Definition 9.14 (Proper K-coloring)

A proper k-coloring of a graph G(V,E) is a function C : V → {1, . . . k} that assigns one of k colors
to each vertex, so that every edge has two different colors at its endpoints.

Theorem 9.11 ()

Graph coloring is NP-hard.
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Proof.

Reduction from 3SAT.

9.5 Subset Sum

Definition 9.15 (Subset Sum)

Given a multiset (allowing duplicates) X of positive integers and a target value T , we want to find
whether there exists a subset S ⊂ X that sum up to T .

Theorem 9.12 ()

Finding the subset sum is NP-hard.

Proof.

Reduction from MVC. Given an arbitrary graph G and integer K, we need to compute a set X of
positive integers and integer T , such that X has a subset of sum T iff G has a vertex cover of size
K. The general idea is that we label each edge with a number in {0, 1, 2, 3}, where 2 means that the
edge is in the vertex cover.

1. We label each edge of G from e = 0, 1, . . . , E − 1.
2. Construct X = {}:
3. for each e = 0, . . . , E − 1, add be = 4e to X.
4. for each vertex v, add

av = 4E +
∑

e∈∆(v)

4e (118)

to X, where ∆(u) are the incident edges of u. What we have just done is represented each
integer in X as an (E + 1) digit number written in base 4. The Eth digit is 1 if the integer
represents a vertex and 0 otherwise. For each e < E, the eth digit is 1 if the integer represents
edge e or one of its endpoints, and 0 otherwise.

5. We set our target sum to be

T = K · 4E =

E−1∑
e=0

2 · 4e (119)

where the first term covers all vertices and the summation covers all edges.
Equivalence.

1. Suppose G has a vertex cover C of size k. Consider the subset

X ′ = {av | v ∈ C} ∪ {be | edge e has exactly 1 endpoint in C} (120)

The sum of the elements in X ′, written in base 4, has most significant digit k and all other
digits equal to 2. Thus the elements of X ′ sum exactly to T .

2. Suppose that there is a subset X ′ ⊂ X that sums to T . We must have∑
v∈V ′

av +
∑
e∈E′

be = T (121)

for some subset V ′ ⊂ V,E′ ⊂ E. Then each be contributes exactly one digit of 1 (in base
4). Each edge is incident to 2 vertices, so the non-significant digits contribute two digits of 1.
Therefore, if we sum these base-4 numbers, there are no carries in the first non-sigf E digits
since for each e there are only 3 numbers in X whose eth digit is 1. Each edge number be
contribute only one 1 to the eth digit of the sum, but the eth digit of T is 2. Thus, for each
edge in G, at least one of its endpoints must be in V ′. In other words, V ′ is a vertex cover.
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Example 9.5 (Reduction from Vertex Cover to Subset Sum)

Given the 4 vertex graph G with V = {u, v, w, x} and E = {uv, uw, vw, vx, wx}, our set X will
contain the following base-4 integers.

au := 1110004 = 1344 buv := 0100004 = 256

av := 1101104 = 1300 buw := 0010004 = 64

aw := 1011014 = 1105 bvw := 0001004 = 16

ax := 1000114 = 1029 bvx := 0000104 = 4

bwx := 0000014 = 1

We can see that all the a’s have most significant digit 1, meaning that it represents a vertex, and
all the b’s that represent an edge are simply stored with a single 1 and rest 0s. For the a’s, the
non-significant digits represent the incident edges. Vertex u has connections to v, w, so the next 2
bits, representing the 1 bits for edges uv, uw are flipped to 1. If we are looking for a vertex cover of
size K = 2, we have

T = 2222224 = 2730 (122)

Indeed the vertex cover {v, w} corresponds to the subset {av, aw, buv, buw, bvx, bwx}, whose sum is
1300 + 1105 + 256 + 64 + 4 + 1 = 2730.

10 Streaming Algorithms

11 Linear Programming

82/ 82


	Complexity
	Brute Force Algorithms
	Basic Arithmetic
	Lists
	Stack, Queues, Heaps
	Cryptography
	Matrix Operations

	Divide and Conquer
	Recursive Algorithms and Recurrence Relation
	Merge Sort and Counting Inversions
	Selection and Quick Sort
	Closest Pair of Points
	Multiplication
	Karatsuba Algorithm
	Strassen Algorithm

	Polynomial Multiplication with Fast Fourier Transform

	Greedy Algorithms
	Graphs
	Representations and Properties
	Exploration
	Directed Acyclic Graphs and Topological Sorting
	Bipartite Graphs
	Strongly Connected Graphs
	Shortest Path
	Negative Weighted Graphs
	All Pairs Shortest Paths
	Minimum Spanning Trees
	Prim's Algorithm with Cuts
	Kruskal's Algorithm
	Applications


	Dynamic Programming
	Longest Increasing Subsequence
	0/1 Knapsack
	Line Breaking
	Bellman Ford Revisited

	Hashing and Probabilistic Algorithms
	Hashing
	Modulo Operations
	Primality Testing

	Flows and Cuts
	Max-Flow Min-Cut Theorem
	Maximum Flows

	Efficiency
	Classification of Decision Problems
	Proving NP-Hardness
	Logic and Satisfiability
	Graph Problems
	Maximum Independent Set
	Minimum Vertex Cover
	Maximum Clique
	Hamiltonian Paths
	Euler Paths
	Longest Path
	Graph Coloring

	Subset Sum

	Streaming Algorithms
	Linear Programming

