
Trees Muchang Bahng Spring 2025

Trees

Muchang Bahng

Spring 2025

Contents
1 Decision Trees 3

1.1 Classification Trees . 3
1.2 Regression Trees . 6
1.3 Model Space . 8

2 Greedy Optimization 11
2.1 Probabilistic Classification Trees . 11
2.2 ID3 with Information Gain . 11
2.3 CART with Gini Reduction . 14
2.4 c4.5 . 16

3 Regularization 17
3.1 Pruning . 18
3.2 Splitting . 18

4 Improved Optimization 19
4.1 GODST . 19

5 Soft Decision Trees 20
5.1 Soft Splitting . 20
5.2 Neural Decision Trees . 20

References 21

1/ 21

Trees Muchang Bahng Spring 2025

Say that you were looking at a picture and were told to classify it as a bird or a dog. You would probably
look for some features and have the following thought process: if it has wings, then it is a bird, and if not,
then it is a dog.

Now let’s try a slightly harder classification. We have four classes consisting of two species of dogs (golden
retriever, husky) and two species of birds (pigeon, hummingbird). Then you might work something like this.

1. If it has wings, and

(a) it has a long beak, then it is a hummingbird.

(b) it doesn’t have a long beak, then it is a pigeon.

2. If it doesn’t have wings, and

(a) its fur color is yellow, then it is a golden retriever.

(b) its fur color is not yellow, then it is a husky.

Decision trees attempt to model this method of thinking by using a tree structure, and hopefully this example
should convince you that this type of model is worth studying. It is a discriminative model that learns to
classify data by first identifying the relevant feature to look at (e.g. wings, beak length, fur color) and then
deciding how to split it.

Surprisingly, the origin of tree models is not clear, though there have been some papers as early as 1959 that
mentions a decision tree-like structure.1 I personally would have thought it to be older given the simplicity
of the idea.

1See https://stats.stackexchange.com/questions/257537/who-invented-the-decision-tree.

2/ 21

https://stats.stackexchange.com/questions/257537/who-invented-the-decision-tree

Trees Muchang Bahng Spring 2025

1 Decision Trees
In here, we define the decision tree model. It is most natural for classification, but there are variants of it
for regression. To avoid confusion, I will distinguish them by calling them classification trees and regression
trees, and I will use the umbrella term decision tree.

Many discriminative models can be written in a clean formula (e.g. y = wTx + ϵ for linear regression, and
even y =

∏
i(σi ◦ Ai)(x) for MLPs). However, we cannot find such a parameteric form for a tree, which

is why they are nonparametric models. In full generality, all we can say is that they have a general tree
structure, and there are many variants.

1.1 Classification Trees

Definition 1.1 (Classification Trees)

A classification tree is a nonparameteric discriminative model f : X → Y , for finite Y , that uses a
tree representing a set of decisions on an input x to predict a label y.

x1

x2

x3

y = 0

1

y = 1

2

1

y = 0

2

1

y = 1

2

x3

x2

y = 1

1

y = 0

2

1

y = 1

2

3

Figure 1: An example of a decision tree. Note that the same feature need not be split across all depths (e.g.
in depth 1, the leftmost node is split on x2 while the rightmost is split on x3) and the path to a leaf can end
early (e.g. there is a node of depth 1 that is a leaf).

The decision tree tries to take advantage of some nontrivial covariance between X and Y by constructing
nested partitions of the dataset D, and within a partition, it predicts the label that comprises the majority.
Note that this model is extremely flexible in that we can have different properties of these trees. We will
introduce them as we go.

Definition 1.2 (Binary Decision Tree)

A binary decision tree only allows the tree to split into two nodes.

Note that in density estimation or linear regression, we can derive the risk by first deriving the likelihood
of the data, and then taking the negative logarithm of it to get our loss function which allows us to define
our risk. In a decision tree, we have a non-probabilistic discriminative model, so there is no concept of
likelihood. Therefore, we cannot use a pdf to define the loss. Fortunately, we can use the straightforward
misclassification risk.

3/ 21

Trees Muchang Bahng Spring 2025

Theorem 1.1 (Expected and Empirical Risk of Decision Trees)

Given a classification tree f , the misclassification risk over the true data generating distribution
p(x, y), along with its empirical risk over a dataset D = (x(i), y(i))ni=1, is

R(f) = Ex,y [1(y ̸= f(x))] =

∫
1(y ̸= f(x)) dx dy (1)

R̂(f) =
1

n

n∑
i=1

1(y(i) ̸= f(x(i))) (2)

where 1(p) is an indicator function that equals 1 if p is true and 0 if false. Note that R̂(f) is simply
1 minus the accuracy.

Let’s take a look at some examples. The behavior of splitting a node can be different depending on what
the covariate is. Given covariate xi,

1. if xi ∈ {0, 1}, then we can simply split it with left and right children.

2. if xi ∈ {1, . . . ,K}, then we can split it across K children. We can also choose a cutoff value for a
binary split, e.g. go left if xi < t and right if xi ≥ t. Or, we might choose some subset S ⊂ {1, . . . ,K},
where we go left if xi ∈ K and right if xi ̸∈ K.

3. if xi ∈ R, then we must choose a cutoff value t or partition R to split. Usually, a cutoff is chosen in
practice, since finding a partition leads to a much more difficult problem to learn.

Let’s examine this in the following two examples.

Example 1.1 (Categorical Covariates)

Consider the following dataset, where we consider a binary classification system with discrete covari-
ates.

OthOptions Weekend WaitArea Plans Price Precip Restaur Wait Crowded Stay?
x1 Yes No No Yes $$$ No Mateo 0-5 some Yes
x2 Yes No No Yes $ No Juju 16-30 full No
x3 No No Yes No $ No Pizza 0-5 some Yes
x4 Yes Yes No Yes $ No Juju 6-15 full Yes
x5 Yes Yes No No $$$ No Mateo 30+ full No
x6 No No Yes Yes $$ Yes BlueCorn 0-5 some Yes
x7 No No Yes No $ Yes Pizza 0-5 none No
x8 No No No Yes $$ Yes Juju 0-5 some Yes
x9 No Yes Yes No $ Yes Pizza 30+ full No
x10 Yes Yes Yes Yes $$$ No BlueCorn 6-15 full No
x11 No No No No $ No Juju 0-5 none No
x12 Yes Yes Yes Yes $ No Pizza 16-30 full Yes

Table 1: Dataset of whether to go to a restaurant for a date depending on certain factors.

This is a binary classification problem, and we can count that there are 6 positives and 6 negative
labels. Let’s evaluate the accuracy of some example trees.

4/ 21

Trees Muchang Bahng Spring 2025

Weekend

Precip

No

No

Yes

Yes

No

No

Yes

(a) The accuracy of this tree is 7 out of 12.

Wait

Plans

No

No

Yes

Yes

0-15

No

16+

(b) The accuracy of this tree is 9 out of 12.

Figure 2: Even though the trees have the same structure, the features that they split on has high impact on
the accuracy.

Example 1.2 (Continuous Covariates)

Now let’s take a look at a dataset with continuous covariates.

Size Age Bedrooms Distance Crime Income Schools Garage Lot Expensive?
x1 2400 8 3.0 2.1 1.2 85 8.7 2.0 0.31 Yes
x2 1200 45 2.0 8.7 4.8 42 5.2 1.0 0.18 No
x3 3100 12 4.0 1.4 0.9 92 9.1 2.5 0.45 Yes
x4 2800 6 3.5 3.2 2.1 78 8.3 2.0 0.28 Yes
x5 950 62 1.5 12.3 6.7 35 4.1 0.5 0.12 No
x6 2650 15 3.0 2.8 1.7 68 7.9 2.0 0.35 Yes
x7 1450 38 2.5 7.1 5.2 48 6.0 1.0 0.22 No
x8 2200 22 3.0 4.5 2.8 71 7.4 1.5 0.26 Yes
x9 1100 55 2.0 9.8 5.9 39 4.8 1.0 0.15 No
x10 1800 28 2.5 6.2 3.4 55 6.7 1.5 0.20 No
x11 1350 41 2.0 8.9 4.6 44 5.5 1.0 0.19 No
x12 2900 10 4.0 1.8 1.4 88 8.9 2.5 0.42 Yes

Table 2: Dataset for predicting whether a house is expensive ($500K+) based on continuous features. Size
(sq ft), Age (years), Bedrooms (count), Distance (miles to downtown), Crime (incidents per 1000), Income
(neighborhood median in $1000s), Schools (rating 1-10), Garage (spaces), Lot (acres).

Garage

Lot

No

> 0.6

Yes

≤ 0.6

≤ 1.0

Yes

> 1.0

(a) The accuracy of this tree is 7 out of 12.

Size

Income

No

≤ 60

Yes

> 60

≤ 2000

Yes

> 2000

(b) The accuracy of this tree is 12 out of 12.

Figure 3

This is all nice in theory, but how are we supposed to optimize this in practice? First, the misclassification
loss is not differentiable—and even worse—the gradient is 0 almost everywhere! This isn’t as bad as it
seems, since we can introduce a surrogate loss function and optimize that. The big problem is that f is not

5/ 21

Trees Muchang Bahng Spring 2025

parameteric, so we can’t even gradients at all (with respect to what parameter?)! One solution is to try and
create a very specific tree model—making it parameteric—and then using a surrogate loss to learn. In fact
this done in practice, but for now let’s keep things simple and hold off on this problem until later.

1.2 Regression Trees
Regression trees behave similarly to classification trees, but now the outputs are meant to be continuous.
Clearly, a tree having a discrete set of leaf nodes cannot fit a continuum, but we can try to fit it with step
functions.

Definition 1.3 (Regression Tree)

A regression tree is a nonparameteric discriminative model f : X → R, that uses a tree representing
a set of decisions on an input x to predict a value y.

x1

x2

x3

y = 0

1

y = 1

2

1

y = 0

2

1

y = 1

2

x3

x2

y = 1

1

y = 0

2

1

y = 1

2

3

Figure 4: An example of a decision tree. Note that the same feature need not be split across all depths (e.g.
in depth 1, the leftmost node is split on x2 while the rightmost is split on x3) and the path to a leaf can end
early (e.g. there is a node of depth 1 that is a leaf).

Example 1.3 (Regression on Categorical Covariates)

OthOptions Weekend WaitArea Plans Price Precip Restaur Wait Crowded Tip%
x1 Yes No No Yes $$$ No Mateo 0-5 some 22%
x2 Yes No No Yes $ No Juju 16-30 full 12%
x3 No No Yes No $ No Pizza 0-5 some 18%
x4 Yes Yes No Yes $ No Juju 6-15 full 20%
x5 Yes Yes No No $$$ No Mateo 30+ full 8%
x6 No No Yes Yes $$ Yes BlueCorn 0-5 some 25%
x7 No No Yes No $ Yes Pizza 0-5 none 15%
x8 No No No Yes $$ Yes Juju 0-5 some 23%
x9 No Yes Yes No $ Yes Pizza 30+ full 10%
x10 Yes Yes Yes Yes $$$ No BlueCorn 6-15 full 14%
x11 No No No No $ No Juju 0-5 none 16%
x12 Yes Yes Yes Yes $ No Pizza 16-30 full 19%

Table 3: Dataset for predicting tip percentage based on restaurant dining factors.

6/ 21

Trees Muchang Bahng Spring 2025

Weekend

Precip

18%

No

19%

Yes

No

14%

Yes

(a) Bad tree splits on Weekend first, then Precip. Mean
Absolute Error: 4.2%

Wait

Crowded

22%

none/some

17%

full

0-15 min

11%

16+ min

(b) Good tree splits on Wait first, then Crowded. Mean
Absolute Error: 2.1%

Figure 5: Comparison of regression trees for predicting tip percentage. The good tree using Wait time and
Crowded level achieves much better prediction accuracy than the bad tree using Weekend and Precipitation.

Example 1.4 (Regression on Continuous Covariates)

Size Age Bedrooms Distance Crime Income Schools Garage Lot Price
x1 2400 8 3.0 2.1 1.2 85 8.7 2.0 0.31 $645K
x2 1200 45 2.0 8.7 4.8 42 5.2 1.0 0.18 $285K
x3 3100 12 4.0 1.4 0.9 92 9.1 2.5 0.45 $825K
x4 2800 6 3.5 3.2 2.1 78 8.3 2.0 0.28 $710K
x5 950 62 1.5 12.3 6.7 35 4.1 0.5 0.12 $195K
x6 2650 15 3.0 2.8 1.7 68 7.9 2.0 0.35 $580K
x7 1450 38 2.5 7.1 5.2 48 6.0 1.0 0.22 $325K
x8 2200 22 3.0 4.5 2.8 71 7.4 1.5 0.26 $515K
x9 1100 55 2.0 9.8 5.9 39 4.8 1.0 0.15 $240K
x10 1800 28 2.5 6.2 3.4 55 6.7 1.5 0.20 $385K
x11 1350 41 2.0 8.9 4.6 44 5.5 1.0 0.19 $295K
x12 2900 10 4.0 1.8 1.4 88 8.9 2.5 0.42 $780K

Table 4: Dataset for predicting house prices based on continuous features. Size (sq ft), Age (years), Bedrooms
(count), Distance (miles to downtown), Crime (incidents per 1000), Income (neighborhood median in $1000s),
Schools (rating 1-10), Garage (spaces), Lot (acres).

Age

Crime

$520K

≤ 3.0

$310K

> 3.0

≤ 25

$280K

> 25

(a) Bad tree splits on Age first, then Crime. Mean Abso-
lute Error: $145K

Size

Income

$280K

≤ 50

$450K

> 50

≤ 2000

$710K

> 2000

(b) Good tree splits on Size first, then Income. Mean
Absolute Error: $65K

Figure 6: Even though the trees have the same structure, the features they split on have high impact on
prediction accuracy. The good tree uses more predictive features (Size and Income) resulting in much lower
prediction error.

7/ 21

Trees Muchang Bahng Spring 2025

The next question to ask is how we choose the threshold. Essentially, given a set of points p1 < p2 < . . . < pn,
where we want to divide p1, . . . , pk and pk+1 < . . . < pn, which value of t ∈ (pk, pk+1) should we choose?
This depends on the optimization algorithm we are using, but one would be to just choose the midpoint.
Another would be to take a weighted average of the points.

1.3 Model Space
The fact that trees are nonparameteric means that we have extreme flexibility in designing our tree. However,
this comes with the big risk of having too big of a model space to optimize over. This overcomplexity is one
of the big challenges in trees.

For example, suppose that there are d covariates (independent variables, features) x1, . . . , xd all binary
valued. We can design a decision tree that splits on x1, then on x2, then on x1, then on x2, and so on. This
becomes unbounded and our model space a discrete infinite space, which is a bad combination since we don’t
have gradients to optimize over a continuum. We can try and handle this in two ways.

Example 1.5 (Splitting on Same Variable Multiple Times)

Splitting on covariate x1 infinitely many times seems pretty unrealistic, so we should limit it in some
way.

1. Covariate can be split a maximum of once for each path from root to leaf. This is a common
assumption for simple problems but may lead to insufficient complexity. In some cases, we
would like to look at feature xi, then filter it through xj , and then look at xi again.

2. Covariate can be split maximum of k times. This can be a practical assumption, but if k is set
too high, our model space may be too complex.

Example 1.6 (Depth of Tree)

Another similar—but distinct—way of restricting the model space is to limit the depth (defined as
the maximum length of a path from root to any leaf) of the tree.

Now that we have some restrictions, let’s try to analyze the model space.

Lemma 1.1 (Set of All Full Trees of a Certain Depth)

Let x1, . . . , xd be binary categorical variables. Let F be the set of all perfecta binary decision trees
of depth k on a classification problem of C classes. Then,

|F| = d2
k−1

· C2k (3)
aEvery nonleaf node has a two children, and all leaves are on the same depth

Proof.

For depth k, there are a total of 2k leaf nodes and 2k−1 internal nodes. Each of the internal nodes
can split on any of the d covariates, and the 2k leaf nodes can take any of the C classes.

This lemma should scare you in that the model complexity is super-exponential with respect to k. It would
be much higher if we considered non-perfect classification trees and/or non-binary covariates.

Example 1.7 (Max Subnodes per Split)

If we did have a multiclass covariate xi taking values in a set S, creating a general partition is

8/ 21

Trees Muchang Bahng Spring 2025

equivalent to identifying an ordered partition

S =

m⊔
j=1

S′
j , S′

j ̸= ∅ (4)

where if xi ∈ S′
j , then it would get routed to the jth child. If a node must have m children, then

we must consider all m-partitions of S, which is super-exponential. This becomes worse if a node
can have up to m children. This is clearly too complex, so we could think of limiting the number of
children so that m = 2, i.e. we are only allowed to do binary splits. Note that even with this, there
are still 2|S| − 2 ways to split.a

aWe can choose any arbitrary subset R ⊂ S, which gives us the partition R ⊔ Rc = S. R gets routed to the right
node and Rc gets routed to the left. We subtract 2 to make sure that R,RC ̸= ∅.

This is not all. It is well known that different trees are functionally the same.

Example 1.8 (Model Equivalence)

The trees below are functionally equal the function

f(x) =


0 if (A,B) = (0, 0)

1 if (A,B) = (0, 1)

1 if (A,B) = (1, 0)

0 if (A,B) = (1, 1)

(5)

A

B

y = 0

0

y = 1

1

0

B

y = 1

0

y = 0

1

1

(a) Tree splits on A first, then B

B

A

y = 0

0

y = 1

1

0

A

y = 1

0

y = 0

1

1

(b) Tree splits on B first, then A

Figure 7: Two functionally equivalent decision trees that implement the XOR function: y = A⊕B

Therefore, there is repetition in our model space, and our misclassification loss will treat them equally. Even
though they are functionally the same, it doesn’t make them practically equal. In reality, with missing data,
we would like the path to our leaves—the final decisions—to be short as possible. Therefore, we may not
need to use every covariate to reach a decision. If we can avoid the uncertain covariates (e.g. ones with more
missing values or noise), then we can get a more robust decision tree.

9/ 21

Trees Muchang Bahng Spring 2025

Example 1.9 (Robust Decision Tree without Always Querying Covariate A)

We can see that the two decision trees are functionally the same.

f(x) =



0 if (A,B,C) = (0, 0, 0)

0 if (A,B,C) = (0, 0, 1)

1 if (A,B,C) = (0, 1, 0)

1 if (A,B,C) = (0, 1, 1)

0 if (A,B,C) = (1, 0, 0)

1 if (A,B,C) = (1, 0, 1)

0 if (A,B,C) = (1, 1, 0)

1 if (A,B,C) = (1, 1, 1)

(6)

Note that the right tree can do the same as the left tree, but in some cases it does not need to query
A at all. Therefore, in some cases, we can reach a decision even when A is missing.

A

B

y = 0

0

y = 1

1

0

C

y = 0

0

y = 1

1

1

B

C

y = 0

0

A

y = 0

0

y = 1

1

1

0

C

A

y = 1

0

y = 0

1

0

y = 0

1

1

Figure 8: Credits to [MBD+25].

In 2025, McTavish showed an algorithm of finding such trees [MBD+25].

10/ 21

Trees Muchang Bahng Spring 2025

2 Greedy Optimization
We have seen that the model space of decision trees was exponential in the number of covariates and number
of classes, and super-exponential in the depth. By 1976, it was well known that optimizing a decision tree is
NP-complete [HR76]. From an algorithmic point of view, if we have NP-complete problems, the next best
thing to do is to look for an approximate solution. One way is to simply conduct a greedy search, and this
motivated the vast majority of tree algorithms.

2.1 Probabilistic Classification Trees
Say that we do a binary split on some covariate xi. This will partition the dataset D = D1 ⊔ D2. More
generally, let’s establish the following definition.

Definition 2.1 (Partition Associated with Node)

Given a decision tree T for a dataset D and any node t ∈ T , the partition of the dataset associated
with t, denoted D[t], is recursively defined as such.

1. The partition associated with the root node is D, the entire dataset.
2. For non-root node t, let t′ be its parent, which splits on covariate xj and t filtered with value

xi = k. Then, the partition associated with t is

D[t] := {x(i) ∈ D[t′] | x(i)
j = k} (7)

Now if we did not want to split any further, then we would want predict the response for each child node,
which are leaves. In classification, the best we can do to minimize our empirical risk is to predict the class
y1 that occurs the most frequently in D1 and y2 for D2 . In regression, we want to predict the average
y1 = 1

|D1|
∑

(x(i),y(i))∈D1
y(i) and y2 = 1

|D2|
∑

(x(i),y(i))∈D2
y(i).

So far, we have not treated classification trees in the probabilistic sense. In each leaf node l, there is a hard
decision that predicts the value of y, say y = 1. If we have K classes, then we can also think of each leaf
node as a multinomial distribution pl with all of its mass concentrated at 1.

Now that we have a probabilistic model on each leaf l, we can do maximum likelihood estimation of pl on
the partition of the dataset associated with l, i.e. Dl. This partition is really the empirical dataset generated
by the conditional distribution on the true data generating process p(y | xi1 , . . . , xim). Now that we have a
distribution, our goal is to find a suitable surrogate loss function to minimize. We can do this in two ways.

1. Maximize likelihood, which will result in us minimizing entropy, or equivalently, maximizing informa-
tion gain.

2. Minimize Gini impurity, which will result in us maximizing Gini reduction.

The Gini reduction method was in fact developed earlier in CART, but since we are more familiar with MLE,
let’s introduce that first.

2.2 ID3 with Information Gain
The first way is our familiar friend: MLE. The log-likelihood of this partition under the multinomial p is

log(n!)−
K∑

k=1

log(nk!) +

K∑
k=1

nk log(pk) (8)

were n = |Dl|, nk is the number of occurrences of a sample of class k in Dl, and pk = p(y = k | xi1 , . . . , xim).
This with the usual derivations gives our MLE

p∗k =
nk

n
, k = 1, . . . ,K (9)

11/ 21

Trees Muchang Bahng Spring 2025

and therefore the value of our loss is the negative log-likelihood with the constant terms removed.

K∑
k=1

nk log(p
∗
k) (10)

Scaling down by a constant n doesn’t do anything, and we finally get the clean form

K∑
k=1

nk

n
log(p∗k) =

K∑
k=1

p∗k log(p
∗
k) (11)

which is simply the entropy H(p∗)! Recall from information theory that this is equivalent to minimizing the
KL-divergence between our estimated pl and the empirical distribution Dl, which is an unbiased estimator
of p(y | xi1 , . . . , xim).

Therefore, summing over all leaves, the MLE of our tree T for a fixed structure is the mean of the entropies
of each node.

Theorem 2.1 (Entropy Risk of Classification Tree)

Given a classification tree T , our expected risk is the expected entropy

R(T) = Ex

[∑
l

H((p[l])∗) · 1(x ∈ l)

]
=

∫ ∑
l

(
K∑

k=1

(p
[l]
k)∗ log(p

[l]
k)∗

)
· 1(x ∈ l) dx (12)

where 1(x ∈ l) is the indicator variable realizing to 1 if x is generated from the conditional distribution
p[l] of leaf node l and 0 if not. Thus, the empirical risk is

R̂(T) =
1

n

n∑
i=1

∑
l

H((p[l])∗) · 1(x ∈ l) =
1

n

n∑
i=1

∑
l

(
K∑

k=1

(p
[l]
k)∗ log(p

[l]
k)∗

)
· 1(x ∈ l) (13)

Essentially, by fixing the structure of the tree, we can—and have—parameterized the leaf nodes with multi-
nomial distributions, which allowed us to calculate the likelihood and even better, a closed form of our
MLE.

Theorem 2.2 (Entropy Risk is Nondecreasing)

Given two trees T ⊂ T ′, it is always the case that

R(T ′) ≤ R(T), R̂(T ′) ≤ R̂(T), (14)

Proof.

This loss looks quite complicated, but for greedy algorithms the implementation becomes quite simple. At
every step, we are looking for a new split on T to get T ′ ⊃ T , so from the theorem above, we only need to
compute the Gini reduction, i.e. the difference in Gini impurities R(T)−R(T ′). This is only dependent on
the node being split, so all we need to do is, for each leaf node,

1. compute the Gini reduction that splitting on a certain covariate would bring to that node, and then

2. multiply it by the probability that a sample will land on that node

This gives the empirical expected Gini reduction of extending T to T ′.

12/ 21

Trees Muchang Bahng Spring 2025

Algorithm 2.1 (ID3 Algorithm for Optimizing Classification Tree)

TBD. Given a single node, we are simply going to label every point to be whatever the majority class
is in D. Therefore, we start off with the entropy of our trivial tree H(Y). Then, we want to see
which one of the Xd features to split on, and so we can compute the conditional entropy H(Y,Xd)
to get the information gain I(Y ;Xd) = H(Y) − H(Y | Xd) for all d = 1, . . . , D. We want to find
a feature Xd that maximize this information gain, i.e. decreases the entropy as much as possible (a
greedy algorithm), and we find the next best feature (with or without replacement), so that we have
a decreasing sequence.

H(X) ≥ H(X;Y) ≥ H(X;Y, Z) ≥ H(X;Y, Z,W) ≥ . . . ≥ 0 (15)

Example 2.1 (Crowded Restaurants)

Continuing the example above, since there are 6 labels of 0 and 1 each, we can model this Y ∼
Bernoulli(0.5) random variable, with entropy

H(Y) = E[− log2 p(Y)] =
1

2

(
− log2

1

2

)
+

1

2

(
− log2

1

2

)
= 1 (16)

Now what would happen if we had branched according to how crowded it was, Xcrowded. Then, our
decision tree would split into 3 sections:

+ x1, x3, x4, x6, x8, x12

− x2, x5, x7, x9, x10, x11

Crowded?

+ x7, x11

−
+ x1, x3, x6, x8

−
+ x4, x12

− x2, x5, x9, x10

None Some Full

Figure 9: Visual of decision tree splitting according to how crowded it is.

In this case, we can define the multinomial distribution Xcrowded representing the proportion of the
data that is crowded in a specific level. That is, Xcrowded ∼ Multinomial(2

12 ,
4
12 ,

6
12

)
, with

P(Xcrowded = x) =


2/12 if x = none
4/12 if x = some
6/12 if x = full

(17)

Therefore, we can now compute the conditional entropy of this new decision tree conditioned on how
crowded the store is

H(Y | Xcrowded) =
∑
x

P(Xcrowded = x)H(Y | Xcrowded = x) (18)

=
2

12
H(Bern(1)) +

4

12
H(Bern(0)) +

6

12
H(Bern(1/3)) = 0.459 (19)

I(Y ;Xcrowded) = 0.541 (20)

We would do this for all the features and greedily choose the feature that maximizes our information
gain.

13/ 21

Trees Muchang Bahng Spring 2025

Example 2.2 (Ferrari F1 Race)

The Ferrari F1 team hired you as a new analyst! You were given the following table of the past race
history of the team. You were asked to use information gain to build a decision tree to predict race
wins. First, you will need to figure out which feature to split first.

Rain Good Strategy Qualifying Win Race
1 0 0 0
1 0 0 0
1 0 1 0
0 0 1 1
0 0 0 0
0 1 1 1
1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

Let X ∼ Bernoulli(1/2) be the distribution of whether a car wins a race over the data. Then its
entropy is

H(X) = E[− log2 p(x)] =
1

2

(
− log2

1

2

)
+

1

2

(
− log2

1

2

)
= 1 (21)

Let R ∼ Bernoulli(4/10), G ∼ Bernoulli(2/10), Q ∼ Bernoulli(6/10) be the distribution of the features
rain, good strategy, and qualifying over the data, respectively. Then, the conditional entropy of X
conditioned on each of these random variables is

H(X | R) = P(R = 1)H(X | R = 1) + P(R = 0)H(X | R = 0)

=
4

10
· −
(
1 · log2 1 + 0 · log2 0

)
+

6

10
· −
(1
6
· log2

1

6
+

5

6
· log2

5

6

)
≈ 0.390

H(X | G) = P(G = 1)H(X | G = 1) + P(G = 0)H(X | G = 0)

=
2

10
· −
(
1 · log2 1 + 0 · log2 0

)
+

8

10
· −
(3
8
· log2

3

8
+

5

8
log2

5

8

)
≈ 0.763

H(X | Q) = P(Q = 1)H(X | Q = 1) + P(Q = 0)H(X | Q = 0)

=
6

10
· −
(4
6
· log2

4

6
+

2

6
· log2

2

6

)
+

4

10
· −
(1
4
log2

1

4
+

3

4
log2

3

4

)
≈ 0.875

Therefore, the information gain are

I(X;R) = 1− 0.390 = 0.610

I(X;G) = 1− 0.763 = 0.237

I(X;Q) = 1− 0.875 = 0.125

And so I would split on R, the rain, which gives the biggest information gain.

2.3 CART with Gini Reduction
The motivation for the Gini impurity is extremely simple.

Lemma 2.1 (Probability of Lazy Misclassification)

Given a sample x ∼ Multinomial(K), the probability that one lazily (guessing at random) misclassifies
x is

1−
K∑

k=1

p2k (22)

14/ 21

Trees Muchang Bahng Spring 2025

Proof.

Let our guess be y, which is also an independent uniform multinomial distribution. Given that x is in
class k, the probability that one misclassifies x is p(y ̸= k | x = k) = 1− pk. Therefore, marginalizing
over k gives us the total probability of misclassification

p(y ̸= k) =

K∑
k=1

p(y ̸= k | x = k)p(x = k) (23)

=

K∑
k=1

(1− pk)pk (24)

=

K∑
k=1

pk −
K∑

k=1

p2k (25)

= 1−
K∑

k=1

p2k (26)

where I have used the constraint that
∑

k pk = 1.

Therefore, this gives us a measure of how bad our distribution is to the true one, analogous to the negative
log-likelihood. The one major difference is that this is a pure impurity score, and the y’s are not accounted
for here (more on this below). We have the luxury to not account for the y’s because we are by default
predicting the class that occurs the most frequently in a partition.

Definition 2.2 (Gini Impurity)

The Gini impurity of a Multinomial(K) random variable with distribution p is

G = 1−
K∑

k=1

p2k (27)

This impurity is something that we want to minimize, and so we can define the expected Gini impurity of
our tree as the relevant risk.

Theorem 2.3 (Gini Risk of Classification Tree)

Given a classification tree T , the our expected risk is the expected impurity.

R(T) = Ex

[∑
l∈L

G(p[l]) · 1(x ∈ l)

]
=

∫ ∑
l∈L

G(p[l]) · 1(x ∈ l) dx (28)

where 1(x ∈ l) is the indicator variable realizing to 1 if x is generated from the conditional distribution
p[l] of leaf node l and 0 if not. Thus, the empirical risk is

R̂(T) =
1

n

n∑
i=1

∑
l∈L

G(p[l]) · 1(x(i) ∈ D[l]) (29)

Note that this does not integrate over the y!

To parse the risk above, consider the following interpretation of the empirical risk. We first sample x(i) from
the true distribution. Then, it must belong to exactly one of the conditional distributions (partitions) in the
leaf nodes, which is represented by 1(x(i) ∈ l), and so the sum

∑
l∈L G(p[l])1(x(i) ∈ D[l]) really boils down

15/ 21

Trees Muchang Bahng Spring 2025

to one term: the Gini impurity at the node l that x lands on. Then we average these impurities across D.
By marginalizing over the true distribution of x we get the expected risk.

Theorem 2.4 (Gini Risk is Nondecreasing)

Given two trees T ⊂ T ′, it is always the case that

R(T ′) ≤ R(T), R̂(T ′) ≤ R̂(T), (30)

Example 2.3 (Ferrari Example Continued)

We do the same as the Ferrari example above but now with the Gini reduction. Let X ∼
Bernoulli(1/2) be the distribution of whether a car wins a race over the data. Then its Gini in-
dex, which I will label with G, is

G(X) = 2 · 1
2
· 1
2
=

1

2

Let R ∼ Bernoulli(4/10), G ∼ Bernoulli(2/10), Q ∼ Bernoulli(6/10) be the distribution of the features
rain, good strategy, and qualifying over the data, respectively. Then we compute the conditional
expectation

E[G(X | R)] = P(R = 1)G(X | R = 1) + P(R = 0)G(X | R = 0)

=
4

10

[
2 · 4

4
· 0
4

]
+

6

10

[
2 · 1

6
· 5
6

]
≈ 0.167

E[G(X | G)] = P(G = 1)G(X | G = 1) + P(G = 0)G(X | G = 0)

=
2

10

[
2 · 2

2
· 0
2

]
+

8

10

[
2 · 3

8
· 5
8

]
≈ 0.375

E[G(X | Q)] = P(Q = 1)G(X | Q = 1) + P(Q = 0)G(X | Q = 0)

=
6

10

[
2 · 4

6
· 2
6

]
+

4

10

[
2 · 1

4
· 3
4

]
≈ 0.417

Therefore, the Gini reduction, which I’ll denote as IG , is

IG(X;R) = 0.5− 0.167 = 0.333

IG(X;G) = 0.5− 0.375 = 0.125

IG(X;Q) = 0.5− 0.417 = 0.083

Since branching across the feature R, the rain, gives the biggest Gini reduction, we want to split on
the rain feature first.

2.4 c4.5

16/ 21

Trees Muchang Bahng Spring 2025

3 Regularization
Given a dataset with D binary features, let g(H,D) be the number of binary trees with depth at most H
(including root node), with the restriction that the trees may not split on some variable multiple times within
a path to a leaf node. Then, g can be defined recursively.

1. First, if H = 1, then g(H,D) = 1 always since we are just creating the trivial binary tree of one node.

2. If D = 0, then there are no features to split on and therefore we just have the single node g(H,D) = 1.

3. If H > 1 and D > 0, then say that we start with a node. We can either make this a leaf node by not
performing any splitting at all, or split on one of the D variables. Then for each of the 2 nodes created
on the split, we are now working with D − 1 features and a maximum height of H − 1 for each of the
subtrees generated from the 2 nodes.

All this can be expressed as

g(H,D) =

{
1 +D

[
g(H − 1, D − 1)

]2 if H > 1, D > 0

1 if H = 1 or D = 0

which is extremely large (in fact, NP hard). Therefore, some tricks like regularization must be implemented
to limit our search space.

By defining the complexity of our decision tree Ω(h) as the number of nodes within the tree, we can modify
our objective function to

L(h;D) =
1

N

N∑
i=1

1{y(i) ̸=h(x(i))} + λΩ(h)

We can impose this constraint directly on the training algorithm, or we can calculate the regularized loss
after the tree has been constructed, which is a method called tree pruning.

Given a large enough λ, we can in fact greatly reduce our search space by not considering any trees further
than a certain point.

Theorem 3.1 ()

We describe a tree as a set of leaves, where leaf k is a tuple containing the logical preposition satisfied
by the path to leaf k, denoted pk, and the class label predicted by the leaf, denoted ŷk. For a dataset
with d binary features, pk : {0, 1}d → {0, 1} is a function that returns 1 if a sample xi satisfies the
preposition, and 0 otherwise. That is, leaf k is (pk, ŷk), and a tree f with K leaves is described as
a set f = {(p1, ŷ1), . . . , (pK , ŷK)}. Assume that the label predicted by ŷk is always the label for
the majority of samples satisfying pk. Finally, let mk =

∑n
i=1 pk(xi) denote the number of training

samples “captured” by leaf k.
Given a (potentially optimal) tree

f = {(p1, ŷ1), . . . , (pκ, ŷκ), . . . , (pK , ŷK)},

the tree f ′ = {(p1, ŷ1), . . . , (pκ1 , ŷκ1), (pκ2 , ŷκ2), . . . , (pK , ŷK)} produced by splitting leaf (pκ, ŷκ) into
two leaves (pκ1 , ŷκ1) and (pκ2 , ŷκ2) and any tree produced by further splitting (pκ1 , ŷκ1) or (pκ2 , ŷκ2)
cannot be optimal if mκ < 2nλ.

Proof.

Let c be the number of misclassifications in leaf (pκ, ŷκ). Since a leaf classifies according to the
majority of mκ, we must have

c ≤ mκ

2
< nλ

17/ 21

Trees Muchang Bahng Spring 2025

By splitting leaf (pκ, ŷκ) into leaves (pκ1
, ŷκ1

) and (pκ2
, ŷκ2

), assume that we have reduced the number
of misclassifications by b ≤ c. Then, we have

ℓ(f ′,X,y) = ℓ(f,X,y)− b

n

However, we have increased the number of leaves by 1, and so

λs(f ′) = λs(f) + λ

Combining the last two equations, we have obtained

R(f ′,X,y) = R(f,X,y) + λ− b

n

However, we know that

b ≤ c =⇒ b

n
≤ c

n
<

nλ

n
= λ

=⇒ − b

n
> −λ

=⇒ λ− b

n
> λ− λ = 0

and so R(f ′,X,y) > R(f,X,y). This means that f ′ cannot be optimal according to our regularized
objective. We have also proved that further splitting (pκ1

, ŷκ1
) or (pκ2

, ŷκ2
) cannot be optimal since

we can just set f = f ′, and apply the same argument.

3.1 Pruning

3.2 Splitting

18/ 21

Trees Muchang Bahng Spring 2025

4 Improved Optimization

4.1 GODST

19/ 21

Trees Muchang Bahng Spring 2025

5 Soft Decision Trees

5.1 Soft Splitting

5.2 Neural Decision Trees

20/ 21

Trees Muchang Bahng Spring 2025

References
[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is np-complete.

Information Processing Letters, 5(1):15–17, 1976.

[MBD+25] Hayden McTavish, Zachery Boner, Jon Donnelly, Margo Seltzer, and Cynthia Rudin. Leveraging
predictive equivalence in decision trees, 2025.

21/ 21

	Decision Trees
	Classification Trees
	Regression Trees
	Model Space

	Greedy Optimization
	Probabilistic Classification Trees
	ID3 with Information Gain
	CART with Gini Reduction
	c4.5

	Regularization
	Pruning
	Splitting

	Improved Optimization
	GODST

	Soft Decision Trees
	Soft Splitting
	Neural Decision Trees

	References

