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1 Time Series Analysis
If we try sticking to linear algebra, we hope to model time series of the form
X = f(t) +w (1)

so that we can decompose to a deterministic process followed by some white noise. There are several ways to
approach this, including kernel smoothing, moving average smoothing, or cubic spline smoothing. However,
this falls short when you look the residuals. They will follow some pattern that must be removed due to
autocorrelation.

In linear regression, one of the fundamental assumptions was independence of errors. Ideally, we would also
like independence of features, but this is usually not true (in fact, in extreme cases, multicollinearity can
screw us up). The relaxation of these assumptions helps us transition from linear regression to time series
analysis. Let’s go over some basic things with new terms.

Definition 1.1 (Time Series)

A stochastic process

{X1,..., X¢,...} (2)
of random variables indexed by time ¢ is a time series. The stochastic behavior of { X;} is determined
by specifying the PDF/PMF

p(xtl7"'7xtm) (3)

for all finite collections of time indices

{(t1,...,tm),m < oo} (4)

i.e. all finite-dimensional distributions of X;.

Definition 1.2 (White Noise)

White noise w; is a random variable indexed by time ¢ satisfying
2. Varfwy] = o
3. Cov|ws, ws] =0 for s # t. That is, they are uncorrelated but not necessarily independent.
Note that this third condition can be strengthened to independence or uncorrelated Gaussians, which
automatically imply independence.

2

1.1 Properties of Processes

Now let’s define some properties. We will start with the time series analogue of covariance and correlation.
Definition 1.3 (Autocovariance)
The autocovariance between two time steps ¢, s of process {X;} is defined

Kx(s,t) = Cov(Xy, Xs) (5)

Definition 1.4 (Autocorrelation)

The autocorrelation is Kx(s,)
xS,
px(s,t) = (6)
\/KX (87 S) KX (t7 t)
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Definition 1.5 (Cross Covariance)

Given two stochastic processes {X;}, {Y;}, the cross covariance is
ny(t,s) = COV(Xt,YS) (7)

and the cross correlation is
KXY (t7 S)

Pxv(t:8) = T Ky (5.5) ®)

It is used to model the correlations between two related products with a certain time lag perhaps.

Definition 1.6 (Stationarity)

There are two types of stationarity.
1. A weakly stationary or covariance stationary process means that its mean and autoco-
variance are invariant to time shifts. That is, for all r,

E[X:] =E[X¢1,] = p (9
Var[X;] = Var[Xy,] = 0% (10
Kx(t,s)=Kx(t+r,s+7) (11

—_ — — —

2. A strongly stationary process means that any joint distribution function of a finite set of
time steps is invariant to time shifts. That is, for any r > 0 and finite collection of time points
Bl oo 3

F( X, .o, Xt,) = F(Xty4ry s Xtptr) (13)

where F' is the joint pdf and equality means almost everywhere equality.
Clearly, weakly stationary implies strongly stationary, and the difference is that weakly stationary
has invariance in the first two moments while strongly stationary holds for all moments.

Theorem 1.1 ()
It immediately follows that for a stationary process X;, the autocovariance function can be defined
Kx(s,t) = Kx(s—1t,0) = Kx(7) (14)

for some difference between the time points, called the lag. From this, we can see that Var[X;] =
Kx(0), so the autocorrelation can be defined as

px (1) = ) (15)

Stationary time series are very desirable, since if we do parameter estimation, we don’t want to estimate
parameters that are always changing. For example, in stationary processes, we know that the mean never
changes, so we have a bunch of sample points to choose from, and if every wasn’t stationary, then every X,
would have its own mean and we won’t be able to estimate it. Similarly, we also know that for some fixed
7, the autocorrelation does not change, so we can estimate Kx(7) with a bunch of fixed intervals of length
7. Therefore, if we want to test for stationary of a fixed time process, we want to conduct a test where we
want to find whether the autocovariance is relatively invariant. This gives us a bit of intuition.
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Theorem 1.2 ()
Note the following properties.
1. Kx(’r) = Kx(f’r)
2. By Cauchy-Schwartz, Kx(0)? = Var[X,] Var[X;4,] > Cov(X;, Xi4r) = Kx(r)?, so |[Kx(7)| <
Kx(0).

Therefore, we would like to decompose a general time series to a stationary component and a nonstationary
simple component, and do some statistics on the stationary one.

Definition 1.7 (Joint Stationarity)

Two processes Xy, Y;, are said to be jointly stationary if both are individually stationary and also if
the cross covariance function is also stationary. That is, for all r,

ny(t,S)Zny(t+7",S+7’) (16)

Definition 1.8 (Backshift Operator)
The backshift operator B acts on time series by
BXt = thl (17)

It can be iterated to get B*X, = X,_;, and can also be inverted to get a forward shift B—*X, = Xtk
We can just think of this as (not necessarily linear?) operators between the function space of X-
measurable functions.

1.1.1 Estimation

We should now try to estimate some parameters of a weakly stationary process.
Theorem 1.3 (Sampling Distribution of Mean)

We can already estimate the mean. We should get the mean of the mean and the variance of the
mean.
1. The mean is trivial, since by linearity of expectation we can get

=
p=X==> X (18)
t=1

N

2. The variance is a bit more involved since there are covariance terms, so
1 I
Var[X] = Var [ = Y X 19
ar[X] (TZ ] (19)

| LT
= ZZCOV(Xt,XS) (20)

t=1 s=1

LS Kl o
= 760+ 7 3 (1 7)xto) (22)
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In the unrealistic situation where the X;’s are uncorrelated, we have K x (0) = 02 and Kx(z) = 0
for all z > 0, leaving us with o2 /7.

Theorem 1.4 (Sampling Distribution of Autocovariance)

To estimate the autocovariance of a weakly stationary process, we can define the sample autocovari-
ance function to be
x(h) = 7 5 (Xion — X)(X; - X) (23)
t=1
Note that we divide by T rather than T'— h so that this covariance is positive semidefinite. Note that

as h gets bigger, the number of terms in the sum decreases giving less accurate estimation. Similarly,
the sample autocorrelation function is

p(h) = (24)

The sample cross covariance and cross correlation are

_ _ Kxy(h)

T—h
Ry (h) = 3" (Ko~ ) (¥ — ) and gy () = X0 (25)
et Kx(0) Ky (0)

Note that even though we can just plug these formulas and get the sample estimators for any time series,
these don’t mean anything if they are not stationary.

1.1.2 Detecting White Noise

Ultimately, the main goal of time series analysis is to transform the data into a white noise process. We want
to first identify trends and patterns in the process, remove them, and hopefully get white noise. To actually
detect if we have white noise, one way to do this is to look at the estimated autocorrelation function across
h. Note that for white noise, we have a spike at h = 0 to be 1 (since it is just the correlation of a variable
with itself), and then it drops to 0 immediately (since by definition, ws, w; are uncorrelated). We would like
to see this behavior within a certain confidence interval.

1.2 Autoregressive (AR) Processes
The assumptions are:
1. the data must be stationary (though it is not always stationary as it may contain a unit root)

2. the relationship between the variables and their lagged values must be linear (nonlinear gives large
language models like LSTMs)

3. the error term should be white noise

Definition 1.9 (Autoregressive Process)

An AR(p) process encodes causality{?] into the white noise process. It is a stochastic process with
mean 0 and of the form

P
Xp=wi+ Y ¢iXe i (26)
i=1
where p is the hyperparameter of steps to look back, w; is white noise with variance o2, and ¢; are
constants # 0. Using the backshift operator B, we can write the AR(p) process as

d(B)X, = w (27)
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where

®(B) = (1 - é@Bi) (28)

In fact, we have already seen this process many times.
Example 1.1 (AR(p) Processes)

Consider the following.
1. AR(O) is simply a white noise process
Xt = W¢ (29)

2. AR(1) with 6 = 1 gives us the formula
Xy = Xio1 +wy (30)

which is a random walk. It is also a Markov process and a martingale.
3. AR(1) of the form

Xt = a+Xt_1 -+ wy (31)
is a random walk with drift.
4. AR(2) can be of form
Xt = thl - 0.2Xt72 -+ wy (32)
5. AR(3) can be of form
Xe=X4-1—02X;_ 24+ 0.13X;_3 + wy (33)

Occasionally, it may be hard to determine the difference between the difference of AR(p) processes.

Example 1.2 (AR(1) Processes)

Let’s focus on the AR(1) process. Later on in linear processes, we see that the AR(1) process has a
causal representation as a linear process.

o0
X =01 Xy +wy = Z Pl we— (34)
i—0

This is stationary under certain conditions.
1. If ¢ < 1, then the series is stationary.
2. If ¢ =1, this is a random walk which is not stationary.
3. If ¢ > 1, then this process grows exponentially fast.

Now to determine weak stationarity, let’s go back to the equation. Talk about unit root test.

Definition 1.10 (Augmented Dicky-Fuller Test)

The Augmented Dickey-Fuller (ADF) test is a statistical test used to determine whether a time series
is stationary or not. Here’s a step-by-step explanation of how the ADF test is typically implemented:
1. Model Specification. The ADF test is based on an autoregressive model. The general form

is:

AY; =a+ Bt +vYe 1 + 0 AY 1+ -+ 61 AY 1 + & (35)
Where:

%on how a random variable Y is caused by another RV X.
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AY; is the first difference of the series at time ¢

« is the constant term

[t is the time trend term

~ and § are coeflicients

€t is the error term
e p is the lag order

2. Determine the lag order (p):
e This can be done using information criteria like AIC or BIC
e Or by starting with a maximum lag and testing down

3. Estimate the model:

p—1
AXt =+ Bt + ")/Xt_l + Z §1AX[»_Z + & (36)
i=1
Where AX; = X; — X;_1 is the first difference of the series. To apply OLS, we rewrite this in
matrix form:

Y=XB+e¢ (37)

Where:
e Yisan (n—p) x 1 vector of AX; values
e X is an (n — p) x (p + 2) matrix of explanatory variables
Bis a (p+2) x 1 vector of coefficients («, 8,7, 01, ...,0p—1)
e cisan (n —p) x 1 vector of error terms
e 1 is the number of observations
e p is the lag order
The OLS estimator for S is given by:

f=XX)"'XY (38)
This estimator minimizes the sum of squared residuals:

n

> el = -Xp) (Y —XB) (39)

t=p+1

e Use Ordinary Least Squares (OLS) to estimate the coefficients of the model
4. Calculate the test statistic:
e The test statistic is the t-statistic for ~:

t= 10
SE(Y)
Where 4 is the estimated coefficient and SE(¥) is its standard error
5. Determine the critical values:
e These depend on the sample size and the model specification (whether it includes a constant
and/or trend)
e They’re typically obtained from statistical tables or through simulation
6. Compare the test statistic to the critical values:
e If the test statistic is less than (more negative than) the critical value, reject the null
hypothesis
e The null hypothesis is that the series has a unit root (is non-stationary)
7. Interpret the results:
e If we reject the null, we conclude the series is stationary
e If we fail to reject the null, we cannot conclude the series is stationary

(40)
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Once this is settled, our job is now to estimate the parameters. We can use MLE.

1.3 Moving Average (MA) Processes
The key assumptions are:

1. The random shocks are white noise, mutually independent and coming from the same distribution with
mean 0 and constant variance.

Definition 1.11 (Moving Average Process)

The MA(q) process is a smoother type of noise than the white noise process. It is expressed by the
formula

q
X = qujwtfj + wy (41)
j=1

for ¢; € R. Compared to the AR formula, the MA formula averages over the noise terms w;. It
focuses on the ripples of the process; if there is a shock to the process w;_1, then that shock is still
felt at time t by the term ¢1t;_1.

Alternatively, the MA model can be written as an overall average of both the past and future white

noise.
q/2

Xo= Y ¢jwigy (42)

Jj=-q/2

Theorem 1.5 ()

A nice property of MA(q) is that autocovariance vanishes beyond a certain point. More specifically,
it decays linearly and vanishes after ¢ steps behind.

1.4 Linear Processes

Many time series fall under the category of linear processes.
Definition 1.12 (Linear Processes)

A linear process is defined as
—+ 00

Xy =p+ Z 0w (43)

j=—00

which means that every X; is a linear combination of the terms in the white noise process with some
mean u added on. To ensure that this series doesn’t blow up, we add the constraint that

> 6?2 < o0 (44)

However, since we are more interested in causal inference, to use the past to predict the future, we
use the form

(oo}
Xy = n+ Zﬂjwt_j (45)
j=0

In fact, some AR processes are linear processes.
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Example 1.3 (AR(1) as a Linear Process)

Note that AR(1) has a causal representation as a linear process. We can use the formula X; =
0X:_1 + w; and recursively define

(oo}
X = 9(9Xt_2 == wt_1) +wp=...= Z@jwt_j (46)
j=0
Going back to analysis, infinite series are just limits.
N
lim 0wy (47)

N—o0 4
Jj=0

So this sum may not converge. Letting Sn(6) be defined as above, we can compute that

E[Sn(0)] =0 and Var[Sy] = 02> _ 6% = o <1I%;) (48)

J=0

Thus, if |§] < 1, then Var[Sx(6)] — 02/(1 — 6?), and if w; is Gaussian noise, then

Sn(0) S N(0,5%/(1 - 6%)) (49)

If |6] = 1, the series does not converge and is not stationary, and if |#| > 1, then the random talk will
grow exponentially fast.

1.5 ARMA

We can combine both the AR and MA processes to make a more sophisticated model.

Definition 1.13 (ARMA)

The time series X; is an ARMA(p, ¢) process if X; has 0-mean and if we can write it as

p q
Xe=w+ Y ¢iXei+ Y 0w (50)
j=1

i=1

where w; is white noise with variance o2 and ¢, 8 do not have any zero elements. Using the backshift

operator, we can write it as
®(B)X; = O(B)w; (51)

where

®(B) = (1 + Xp: ¢iBi> and O(B) = <1 + queij) (52)
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1.6 ARIMA
1.7 Other

Theorem 1.6 (Wold Representation Theorem)
Any 0-mean covariance stationary time series {X;} can be decomposed into two time series
Xe =V + S (53)

where
1. V; is a linear combination of past variables of V; with constant coefficients.
2. S, =Y .2, ¥im—; is an infinite moving average process of error terms, where
(a) Yo =1, Zio %2 < 0.

(b) {n:} is linearly unpredictable white noise, i.e.

E[n] =0 (54)
E[n;] = o (55)
E[nns] =0 for s # ¢ (56)
and 7, is uncorrelated with {V;}.
E[n:Vs] = 0 for all ¢, s (57)

Example 1.4 (Construction on Dataset)

Say that we have data {X;}]_; that we want to model and we have evidence that it is covariance
stationary. We can do the following.
1. Initialize a parameter p, the number of parameters in the linearly deterministic term of the
Wold decomposition of {X;}.
2. By assumption we would like to estimate the linear projection of X; on (Xy—1, X¢—9,..., X¢—p).
Therefore, let us index the n subseries of length p + 1 by y and we can write the OLS equation

1 % Yy Y—(p—1)
Y1

1 Y1 Yo ()
= 1 Yn—1 Yn—-2 ... Yn—p

and we apply OLS to the problem y = Z3 to give

y=2Z(Z"2)"'Zy (59)
=P(Y:|Yier,- -, Yiy) (60)
— y® (61)

We can compute the projection residuals
eP) — y — y(p) (62)

and apply time series analysis to the sequence €®) = {eﬁp )} to specify a moving average model.
(oo}
e = Z%‘m—i (63)
i=0

yielding {1[1]} and {7;} estimates of parameters and innovations. We then check these estimates and
see if they are consistent with the model assumptions. If not, we can add additional legs or modify p.
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Theoretically, as we increase p, the projection of Y; over the past pth history should approach the true linear

projection Y; over the whole history.
lim p?) =y (64)

p—o0

But if p is too large compared to n, you run out of freedom to estimate your models. You generally want to
have more data than the number of parameters.

Definition 1.14 (Lag Operator)

The lag operator L simply maps
L¥(Xy) = X (65)

Inverses also exist, so L™%(X;) = Xy .

Therefore, the Wold representation for a covariance stationary time series {X;} can be expressed as

Xi =Y timi+V, (66)
=0

= WLl (m) + Vi (67)
=0

= (L) + Vi (68)

where (L) = Y2 ;L.

1.8 Components of time series

1.9 Stationarity and tests for stationarity (including ADF test)
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1.13 Forecasting techniques
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