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A series of notes on high-dimensional posterior sampling, optimization, and numerical integration methods.
These are all used broadly within data science to approximate some distribution/value or simulate some
evolution of a system. I’ve learned about these pretty much all at once, and there are many overlaps in these
methods, so I wrote all of them in one set of notes.
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1 Gradient Descent
Note that gradient computation is generally very expensive and not scalable as n gets high. Given a dataset
D = {di}i of D points, our posterior is of the form p(θ | D) ∝ p(D | θ) p(θ) and so

∇θ log p(θ | D) = ∇θ log p(θ) +∇θ log p(D | θ) = ∇θ log p(θ) +
∑
i

∇θ log p(di | θ) (1)

We can approximate this gradient by taking a minibatch of D. Let us take a minibatch of m samples Mm(D)
without replacement, where m << D. Then, our approximation of the gradient of the log likelihood is

∇θ log p(D | θ) ≈ ∇θ log p(Mm(D) | θ) := D

m

∑
d∈Mm(D)

∇θ log p(d | θ) (2)

and thus our noisy gradient approximation of the gradient of the log posterior is

∇θ log p(θ | D) ≈ ∇θ log p(θ |Mm(D)) := ∇θ log p(θ) +∇θ log p(Mm(D) | θ) (3)

1.1 SGD
The classical gradient ascent algorithm simply optimizes a concave function, or if f is multimodal, finds a
local maxima. When we use the entire D to compute the gradient, we call this a batch gradient descent, and
if the minibatch estimate of the gradient is used, then this is called stochastic gradient descent. Ideally, we
would want to have a variable step size h(t) so that h→ 0 as t→ +∞.

Algorithm 1 Stochastic Gradient Ascent

Require: Initial θ0, Stepsize function h(t), Minibatch size m
for t = 0 to T until convergence, do

ĝ(θt)← ∇θ log p(θt |Mm(D))
θt+1 ← θt + h(t) · ĝ(θt)

end for

SGD with momentum.

We have assumed knowledge of gradient descent in the back propagation step in the previous section, but
let’s revisit this by looking at linear regression. Given our dataset D = {x(n), y(n)}, we are fitting a linear
model of the form

f(x;w, b) = wTx+ b (4)

The squared loss function is

L(w, b) = 1

2

N∑
n=1

(
y − f(x;w, b)

)2
=

1

2

N∑
n=1

(
y − (wTx+ b)

)2 (5)

If we want to minimize this function, we can visualize it as a d-dimensional surface that we have to traverse.
Recall from multivariate calculus that the gradient of an arbitrary function L points in the steepest direction
in which L increases. Therefore, if we can compute the gradient of L and step in the opposite direction, then
we would make the more efficient progress towards minimizing this function (at least locally). The gradient
can be solved using chain rule. Let us solve it with respect to w and b separately first. Beginners might find
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it simpler to compute the gradient element-wise.

∂

∂wj
L(w, b) = ∂

∂wj

(
1

2

N∑
n=1

(
f(x(n);w, b)− y(n)

)2)
(6)

=
1

2

N∑
n=1

∂

∂wj

(
f(x(n);w, b)− y(n)

)2
(7)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
f(x(n);w, b)− y(n)

)
(8)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
wTx(n) + b− y(n)

)
(9)

=

N∑
n=1

(
f(x(n);w, b)− y(n)

)
· x(n)j (for j = 0, 1, . . . , d) (10)

As for getting the derivative w.r.t. b, we can redo the computation and get

∂

∂wj
L(w, b) =

N∑
n=1

(
f(x(n);w, b)− y(n)

)
(11)

and in the vector form, setting θ = (w, b), we can set

∇L(w) = XT (ŷ − y) (12)
∇L(b) = (ŷ − y) · 1 (13)

where ŷn = f(x(n);w, b) are the predictions under our current linear model and X ∈ Rn×d is our design
matrix. This can easily be done on a computer using a package like numpy. Remember that GD is really
just an algorithm that updates θ repeatedly until convergence, but there are a few problems.

1. The algorithm can be susceptible to local minima. A few countermeasures include shuffling the training
set or randomly choosing initial points θ

2. The algorithm may not converge if α (the step size) is too high, since it may overshoot. This can be
solved by reducing the α with each step, using schedulers.

3. The entire training set may be too big, and it may therefore be computationally expensive to update
θ as a whole, especially if d >> 1. This can be solved using stochastic gradient descent.

Rather than updating the vector θ in batches, we can apply stochastic gradient descent that works
incrementally by updating θ with each term in the summation. That is, rather than updating as a batch by
performing the entire matrix computation by multiplying over N dimensions,

∇L(w) = XT︸︷︷︸
D×N

(ŷ − y)︸ ︷︷ ︸
N×1

(14)

we can reduce this load by choosing a smaller subset M⊂ D of M < N elements, which gives

∇LM(w) = XT
M︸︷︷︸

D×M

( ˆyM − y︸ ︷︷ ︸
M

)M×1 (15)

The reason we can do this is because of the following fact.
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Theorem 1.1 (Unbiasedness of SGD)

∇LM(w) is an unbiased estimator of the true gradient. That is, setting M as a random variable of
samples over D, we have

EM[∇LM(w)] = ∇L(w) (16)

Proof.

We use linearity of expectation for all M⊂ D of size M .

Even though these estimators are noisy, we get to do much more iterations and therefore have a faster net
rate of convergence. By using repeated chain rule, or a fancier term is automatic differentiation, as shown
before, SGD can be used to optimize neural networks.

Extending beyond SGD, there are other optimizers we can use. Essentially, we are doing a highly nonconvex
optimization, which doesn’t have a straightforward answer, so the best we can do is play around with some
properties. 0th order approximations are hopeless since the dimensions are too high, and second order
approximations are hopeless either since computing the Hessian is too expensive for one run. Therefore, we
must resort to some first order methods, which utilize the gradient. Some other properties to consider are:

1. Learning rate

2. Momentum

3. Batch Size

1.2 RMSProp

1.3 Adam

1.4 Adagrad

1.5 Nesterov Momentum

1.6 Sparsity-Inducing SGD
We can do SGD with clipping.

1.7 Block Coordinate Descent

1.8 Proximal Gradient Descent
1.8.1 Subdifferentials

Definition 1.1 (Convex Function)

A function f : U ⊂ Rn → R defined on a convex set U is convex if and only if for any x,y ∈ U

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) (17)

Now if f is differentiable, then convexity is equivalent to

f(x) ≥ f(y) +∇f(y)T · (x− y) (18)

for all x, y ∈ U . That is, its local linear approximation always underestimates f .

It is well known that the mean square error of a linear map is convex. However, when we impose the
L1 penalty, the loss function is now not differentiable at 0. Therefore, we must introduce the notion of a
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subgradient.

Definition 1.2 (Subgradient)

The subgradient of a convex function f : U ⊂ Rn → R is any linear map A(x) : Rn → R such that

f(y) ≥ f(x) +A(x)(y − x) (19)

for any y ∈ U . The set of all subgradients at x is called the subdifferential defined

∂f(x) = {A ∈ Rn | A is a subgradient of f at x} (20)

The subgradient also acts as a linear approximation of f , but now at nondifferentiable points of convex
functions, we have a set of linear approximations. It is clear that the subgradient at a differentiable point is
uniquely the gradient (∂f(x) = {∇f(x)), but for places like the absolute value, we can have infinite linear
approximations.

Given the subdifferential, thus the optimality condition for any convex f (differentiable or not) is

f(x∗) = min
x
f(x) ⇐⇒ 0 ∈ ∂f(x∗) (21)

known as the subgradient optimality condition, which clearly implies

f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗) (22)

Example 1.1 ()

The subdifferential of the absolute value function f(x) = |x| at any given x is

∂f(x) =


1 if x > 0

[−1, 1] if x = 0

−1 if x < 0

(23)
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1.8.2 Proximal Operators and Soft Thresholding

Definition 1.3 (Proximal Operator)

Given a lower semicontinuous convex function f mapping from Hilbert space X to [−∞,+∞], its
proximal operator associated with a point u is defined

proxf,τ (u) = argmin
x

(
f(x) +

1

2τ
||x− u||2

)
(24)

where τ > 0 is a parameter that scales the quadratic term. This is basically the point that minimizes
the sum of f(x) and the square of the Euclidean distance between x and u, scaled by 1/2τ .

Now given the loss function L(θ) = Lobj(θ) + Lreg(θ), we want to compute the proximal operator on the
regularization loss and update that with the gradient of the smooth objective loss.

θ(k+1) = proxLreg,τ

[
θ(k) − τ∇Lobj(θ

(k))
]

(25)

Let’s compute the proximal operator of the L1 loss h(θ) = λ||θ||1. We can parameterize this loss by the λ,
so we will use the notation proxλ,τ rather than proxh,τ .

proxλ,τ (u) = argmin
θ

(
λ||θ||1 +

1

2τ
||θ − u||22

)
= argmin

θ

( n∑
i=1

λ|θi|+
1

2τ
(θi − ui)2

)
These are separable functions that can be decoupled and optimized component-wise. So, we really just want
to find

θ∗i = argmin
θi

(
λ|θi|+

1

2τ
(θi − ui)2

)
(26)

The sum of convex functions is convex, and so we should differentiate it and find where the gradient is 0 to
optimize it.

1. When θi > 0, then we minimize λθi + 1
2τ (θi − ui)

2, so taking the gradient and setting to 0 gives

θi = ui − λτ (27)

subject to the constraint that θi > 0, or equivalently, that ui > λτ .

2. When θi < 0, then we minimize −λθi + 1
2τ (θi − ui)

2, so taking the gradient and setting to 0 gives

θi = ui + λτ (28)

subject to the constraint that θi < 0, or equivalently, that ui < −λτ .

3. When θi = 0, then we minimize λ|θi| + 1
2τ (θi − ui)

2, which doesn’t have derivative at θi = 0. So, we
can compute the subdifferential of it to get

0 ∈ ∂
(
λ|θi|+

1

2τ
(θi − ui)2

)
= λ∂(|θi|) +

1

τ
(θi − ui)

Now at θi = 0, the subdifferential can be any value in [−1, 1], and the above reduces to

0 ∈ λ[−1, 1]− 1

τ
ui (29)

this is equivalent to saying that ui/τ is contained in the interval [−λ, λ], meaning that ui ∈ [−λτ, λτ ].
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Ultimately we get that

proxλ,τ (u) =


u− λτ if u > λτ

0 if |u| ≤ λτ
u+ λτ if u < −λτ

(30)

which can be simplified to
proxλ,τ (u) = sign(u)max{|u| − λτ, 0) (31)
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2 Second-Order Optimizers

2.1 Newton’s Method
Newton’s method is an iterative algorithm for finding the roots of a differentiable function F . An immediate
consequence is that given a convex C2 function f , we can apply Newton’s method to its derivative f ′ to get
the critical points of f (minima, maxima, or saddle points), which is relevant in optimizing f . Given a C1

function f : D ⊂ Rn −→ R and a point xk ∈ D, we can compute its linear approximation as

f(xk + h) ≈ f(xk) +Dfxk
h = f(xk) +∇f(xk) · h (32)

where Dfxk
is the total derivative of f at xk and h is a small n-vector. Discretizing this gives us our gradient

descent algorithm as
xk+1 ← xk − α f ′(xk) (33)

This linear function is unbounded, so we must tune the step size α accordingly. If α is too small, then
convergence is slow, and if α is too big, we may overshoot the minimum. Netwon’s method automatically
tunes this α using the curvature information, i.e. the second derivative. If we take a second degree Taylor
approximation

f(xk + h) ≈ f(xk) +Dfxk
h+ hT Hfxk

h (34)

then we are guaranteed that this quadratic approximation of f has a minimum (existence and uniqueness
can be proved), and we can calculate it to find our "approximate" minimum of f . We simply take the total
derivative of this polynomial w.r.t. h and set it equal to the n-dimensional covector 0. This is equivalent to
setting the gradient as 0, so

0 = ∇h

[
f(xk) +Dfxk

h+ hT Hfxk
h
]
(h)

= ∇h[Dfxk
h](h) +∇h[h

T Hfxk
h](h)

= ∇xf(xk) +Hfxk
h

=⇒ h = −[Hfxk
]−1∇xf(xk)

which results in the iterative update

xk+1 ← xk − [Hfxk
]−1∇xf(xk) (35)

Note that we require f to be convex, so that Hf is positive definite. Since f is C2, this implies Hf is also
symmetric, implying invertibility by the spectral theorem. Note that Newton’s method is very expensive,
since we require the computation of the gradient, the Hessian, and the inverse of the Hessian, making the
computational complexity of this algorithm to be O(n3). We can also add a smaller stepsize h to control
stability.

Algorithm 2 Newton’s Method

Require: Initial x0, Stepsize h (optional)
for t = 0 to T until convergence do

g(xt)← ∇f(xt)
H(xt)← Hfxt

H−1(xt)← [H(xt)]
−1

xt+1 ← xt − hH−1(xt) g(xt)
end for

2.2 BFGS
Netwon’s method is extremely effective for finding the minimum of a convex function, but there are two
disadvantages. First, it is sensitive to initial conditions, and second, it is extremely expensive, with a com-
putational complexity of O(n3) from having to invert the Hessian. An alternative family of optimizers, called
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quasi-Newton methods, try to approximate the Hessian (or Jacobian) with Ĥf , reducing the computational
cost without too much loss in convergence rates, and simply use this approximation in the Newton’s update:

xk+1 ← xk − [Ĥfxk
]−1∇xf(xk)

The method of the Hessian approximation varies by algorithm, but the most popular is BFGS.

So how do we approximate the Hessian with only the gradient information? With secants. Starting off with
f : R −→ R, let us assume that we have two points (xk, f(xk)) and (xk+1, f(xk+1)). We can approximate
our derivative (gradient in dimension 1) at xk+1 using finite differences:

f ′(xk+1)(xk+1 − xk) ≈ f(xk+1)− f(xk)

and doing the same for f ′ gives us the second derivative approximation:

f ′′(xk+1)(xk+1 − xk) ≈ f ′(xk+1)− f ′(xk)

which gives us the update:
xk+1 ← xk −

xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk)

This method of approximating Netwon’s method in one dimension by replacing the second derivative with its
finite difference approximation is called the secant method. In multiple dimensions, given two points xk,xk+1

with their respective gradients ∇f(xk),∇f(xk+1), we can approximate the Hessian Ĥfxk+1
≈ D(∇f)xk+1

(which is the total derivative of the gradient) at xk+1 with the equation

Ĥfxk+1
(xk+1 − xk) = ∇xf(xk+1)−∇xf(xk)

This is solving the equation of form Ax = y for some linear map A. Since Ĥfxk+1
is a symmetric n × n

matrix with n(n + 1)/2 components, there are n(n + 1)/2 unknowns with only n equations, making this
an underdetermined system. Quasi-Newton methods have to impose additional constraints, with the BFGS
choosing the one where we want Ĥfxk+1

to be as close as to Ĥfxk
at each update k + 1. Luckily, we can

formalize this notion as minimizing the distance between fxk+1
and Ĥfxk

. Therefore, we wish to find

arg min
Ĥfxk+1

||Ĥfxk+1
− Ĥfxk

||F ,

where || · ||F is the Frobenius matrix norm, subject to the restrictions that Ĥfxk+1
be positive definite and

symmetric and that Ĥfxk+1
(xk+1 − xk) = ∇xf(xk+1) − ∇xf(xk) is satisfied. Since we have to invert it

eventually, we can actually just create an optimization problem that directly computes the inverse. So, we
wish to find

arg min
(Ĥfxk+1

)−1

||(Ĥfxk+1
)−1 − (Ĥfxk

)−1||F

subject to the restrictions that

1. (Ĥfxk+1
)−1 be positive definite and symmetric. It turns out that the positive definiteness restriction

also restricts it to be symmetric.

2. xk+1 − xk = (Ĥfxk+1
)−1[∇xf(xk+1)−∇xf(xk)]

After some complicated mathematical derivation, which we will not go over here, the problem ends up
being equivalent to updating our approximate Hessian at each iteration by adding two symmetric, rank-one
matrices U and V scaled by some constant, which can each be computed as an outer product of vectors with
itself.

Ĥfxk+1
= Ĥfxk

+ aU + bV = Ĥfxk
+ auuT + bvvT

where u and v are linearly independent. This addition of a rank-2 sum of matrices aU + bV , known as a
rank-2 update, guarantees the "closeness" of Ĥfxk+1

to Ĥfxk
at each iteration. With this form, we now
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impose the quasi-Newton condition. Substituting ∆xk = xk+1 − xk and yk = ∇xf(xk+1) − ∇xf(xk), we
have

Ĥfxk+1
∆xk = Ĥfxk+1

∆xk + auuT∆xk + bvvT∆xk = yk

A natural choice of vectors turn out to be u = yk and v = Ĥfxk
∆xk, and substituting this and solving gives

us the optimal values

a =
1

yT
k ∆xk

, b = − 1

∆xT
k Ĥfxk

∆xk

and substituting these values back to the Hessian approximation update gives us the BFGS update:

Ĥfxk+1
= Ĥfxk

+
yky

T
k

yT
k ∆xk

− Ĥfxk
∆xk∆xT

k Ĥfxk

∆xT
k Ĥfxk

∆xk

We still need to invert this, and using the Woodbury formula

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

which tells us how to invert the sum of an intertible matrix A and a rank-k correction, we can derive the
iterative update of the inverse Hessian as

(Ĥfxk+1
)−1 =

(
I − ∆xky

T

yT
k ∆xk

)
(Ĥfxk

)−1

(
I − yk∆xT

k

yT
k ∆xk

)
+

∆xk∆xT
k

yT
k ∆xk

Remember that this is the iterative step that we want to actually compute, rather than the ones computing
the regular Hessian. The whole point of using the Woodbury formula to derive an inverse update step was
to do away with the tedious O(n3) computations of inverting an n × n matrix. This rank-2 update also
preserves positive-definiteness.

Finally, we can choose the initial inverse Hessian approximation (Ĥfxk+1
)−1 to be the identity I or the

true inverse Hessian (Hfxk+1
)−1 (computed just once), which would lead to more efficient convergence. The

pseudocode for BFGS is a bit too long and confusing to include here, but most of the time, we won’t be
implementing BFGS by hand; efficient and established BFGS optimizers are already in numerous packages.
Like most optimizers, BFGS is not guaranteed to converge to the true global minimum.
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3 Constrainted Optimization

3.1 KKT
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4 Random Walk Metropolis

Given that we have computed a scalar multiple of a high dimensional posterior π = f
c defined in Rn for

n >> 1, we would like to either optimize f or sample from f to find its true normalizing factor c. There are
some overlaps in the methods used to achieve these goals. Let us denote our (parameter) state as θ ∈ Rn,
with a discrete time step denoted by t and step size h.

Markov Chain Monte Carlo algorithms are extremely simple and computationally efficient, since they only
require to compute f(θ), without any gradient information. They generate a sequence of correlated samples
which on the long run converge to a sequence of independent samples. The degree of correlation of nearby
samples is called the autocorrelation of the MCMC sampler. We first generate a proposal step according to
some kernel and then decide whether to accept or reject that proposal. Usually, we have a series of "burn-in"
steps that allow the chain to first converge to a local maximum, which we can then throw away. The simplest
version of this is with an isotropic Gaussian kernel.

Algorithm 3 Random Walk Metropolis Hastings w/ Isotropic Gaussian Kernel

Require: Initial θ0, Stepsize h, Burn-in steps B
for t = 0 to T do

ϵt ∼ N (0, I)
Pt+1 ← θt + ϵt
if f(Pt+1) ≥ f(θt) then

θt+1 ← Pt+1

else
δ ∼ Uniform[0, 1]
if δ < f(Pt+1)/f(θt) then

θt+1 ← Pt+1

else
θt+1 ← θt

end if
end if

end for
Delete first B states of θ = [θ0, θ1, . . . , θT ]

Note that the step size is very important here: If h is too small, then this chain would behave like a random
walk. If h it too big, then this chain would mainly stay at one state. Ideally, the acceptance probability
should be between 0.2 and 0.7.

This isotropic MH is not robust, since it would not work well if some parameters of θ are correlated and the
estimated covariance of f at some local maximum is more "diagonal." Therefore, some adaptive mechanism
is needed, which we can implement by estimating the covariance matrix of the proposal kernel using the
empirical covariance of the proposal steps. To reduce memory allocation, we should use a recursive algorithm
to compute the mean and covariance, rather than having to store all the θt’s. To maintain stability, we may
start adapting after a certain number of steps B and compute covariance estimates every U steps.

On top of this even, we can precondition the initial Σ0 to be some other estimate of the posterior and weight
it accordingly so that our proposal covariance is some "balance" of this computed estimate and the empirical
estimate, using a damping parameter α.

Σt = αΣ0 + (1− α)Σemp, 0 ≤ α ≤ 1 (36)

The lower the α, the more the precomputed estimate is "washed away" by the empirical covariance. We
can also treat the α as a variable function α(t) and adapt its value as the chain runs. For example, if we
would like the precomputed covariance to have more weight in the beginning (for stability), but eventually
completely overpowered by the empirical covariance, we can choose it such that α(0) = 1 and α → 0 as
t→ +∞, with the specific behavior customized to the problem.
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Algorithm 4 Adaptive Random Walk Metropolis
Require: Initial θ0, Stepsize h, Burn-in steps B, Adaptation burn-in B, Adaptation frequency U
µemp
0 ← 0

Σ0 ← I
Σemp

0 ← I
for t = 0 to T do

ϵt ∼ N (0,Σt)
Pt+1 ← θt + ϵt
if f(Pt+1) ≥ f(θt) then

θt+1 ← Pt+1

else
δ ∼ Uniform[0, 1]
if δ < f(Pt+1)/f(θt) then

θt+1 ← Pt+1

else
θt+1 ← θt

end if
end if
Σemp

t+1 ← 1
t+1

[
(θt+1 − µt)(θ

t+1 − µt)
T − Σemp

t

]
µemp
t+1 ← µt +

1
t+1 [θt+1 − µt]

if t > B and t is divisible by U then
Σt+1 ← Σemp

t+1

end if
end for
Delete first B states of θ = [θ0, θ1, . . . , θT ]

Algorithm 5 Adaptively Preconditioned Random Walk Metropolis
Require: Initial θ0, Stepsize h, Burn-in steps B, Adaptation burn-in B, Adaptation frequency U , Damping

function α, Precomputed covariance estimate Σpre

µemp
0 ← 0

Σemp
0 ← I

Σ0 ← I
for t = 0 to T do

ϵt ∼ N (0,Σt)
Pt+1 ← θt + ϵt
if f(Pt+1) ≥ f(θt) then

θt+1 ← Pt+1

else
δ ∼ Uniform[0, 1]
if δ < f(Pt+1)/f(θt) then

θt+1 ← Pt+1

else
θt+1 ← θt

end if
end if
Σemp

t+1 ← 1
t+1

[
(θt+1 − µt)(θ

t+1 − µt)
T − Σemp

t

]
µemp
t+1 ← µt +

1
t+1 [θt+1 − µt]

if t > B and t is divisible by U then
Σt+1 ← α(t) · Σpre + (1− α(t)) · Σemp

t+1

end if
end for
Delete first B states of θ = [θ0, θ1, . . . , θT ]
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4.1 Ensemble Methods
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5 Hamiltonian Dynamics Inspired Samplers and Integrators
Let us have a system of N point particles in R3, with the state of each particle fully characterized by its
position and momentum vectors. Let us denote the masses of the particles as mi, which will be commonly
represented as the 3N × 3N matrix

M = diag(m1, . . . ,mN )⊗ I3 =



m1

m1

m1

m2
. . .

mN−1

mN

mN

mN


, (37)

the position vector of all particles as q = (q1, . . . ,qN ) ∈ Ωq ⊂ R3N , and the momentum vector of all particles
as p = (p1, . . . ,pN ) ∈ Ωp ⊂ R3N . The configuration space is therefore Ωq × Ωp = Ω ⊂ R3N × R3N . The
collective kinetic energy of the system is

E(p) =
1

2
pTM−1p (38)

and hence the total energy/Hamiltonian of the particle system is

H(q,p) = U(q) + E(p) (39)

Note that the potential energy depends only on the position vector q, while the kinetic energy depends on
the momentum p. The equations of motion for Hamiltonian flow states that the derivative of the position
is the momentum, and the derivative of the momentum is the force, which is the gradient of the potential.
Therefore, finding the time evolution of a system of particles boils down to solving the coupled equations
below:

q̇ = M−1p

ṗ = F(q) = −∇qU(q)

The gradient of H : Ωq × Ωp −→ R can be represented as

∇H(q,p) =

(
∇qH

∇pH

)
=

(
∂H
∂q

∂H
∂p

)
=



∂H/∂q1
...

∂H/∂q3N
∂H/∂p1

...
∂H/∂p3N


(40)

But since H(q,p) = U(q) + E(p) is separable and since

∇pEkin(p) = ∇p
1

2
pTM−1p

= ∇p
1

2
(m−1

1 p211 +m−1
1 p212 +m−1

1 p213 +m−1
2 p221 + . . .+m−1

N p2N3)

=
(
m−1

1 p11, m
−1
1 p12, m

−1
1 p13, m

−1
2 p21, . . . ,m

−1
N pN3

)T
= M−1p
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we have
∇H(q,p) =

(
∇qU(q)
∇pEkin(p)

)
=

(
∇qU(q)
M−1p

)
(41)

and therefore, the equations of motions can be rewritten as{
q̇ = M−1p

ṗ = −∇qU(q)
=⇒

(
q̇
ṗ

)
=

(
0 I3N
−I3N 0

)(
∇qU(q)
M−1p

)
= J∇H(q,p) (42)

Given an initial point (q(0),p(0)) ∈ Ωq × Ωp, the Hamiltonian flow map satisfies

Φt

(
q(0),p(0)

)
=
(
q(t),p(t)

)
(43)

5.1 Properties of Hamiltonian Flow Maps
Hamiltonian flow maps Φt : Ω −→ Ω have important properties.

1. The collection of flow maps form an algebraic group under the composition operator

Φt ◦ Φs = Φt+s (44)

with the identity element Φ0 = Id (the path map that doesn’t go anywhere), and well-defined inverse

Φ−1
t = Φ−t (45)

2. Symmetry holds in the sense that
S ◦ Φt ◦ S = Φ−t (46)

where the function S : (q,p) 7→ (q,−p) flips the momentum.

3. Total energy is conserved under Φt.

H
(
q(t),p(t)

)
= H

(
q(0),p(0)

)
(47)

4. In the absence of an external force, the total momentum is conserved under Φt.

5.1.1 The Symplectic Property

The final property is less obvious. A fundamental property of solutions of Hamiltonian differential equations
is that the collection (Φt)t∈R of associated flow maps has a symplectic group structure, which means that
the symplectic 2-form is preserved under the action of each group element.

1. A 1-form α defined on R6N is a family of linear mappings such that for every x ∈ R6N , α(x) is a
linear map from R6N to R. That is, given a linear map a : R6N −→ R6N , we may define a one-form
associated to this vector field a 7→ α by

α(x)(ξ) = a(x)T ξ (48)

2. The differential of a function g : R6N −→ R, denoted dg, is a family of linear mappings from vectors
ξ ∈ R6N into the reals defined by

dg(q,p)(ξ) = ∇g(q,p)T ξ (49)

Therefore, we can see that the differential is an example of a 1-form.

3. The wedge product of 1-forms α, β is a 2-form, which can be viewed as a quadratic form, i.e. a scalar-
valued function of two vectors which is linear in each argument. It is written α ∧ β and is defined, for
vectors ξ,η ∈ R6N by

(α ∧ β)(ξ,η) := α(ξ)β(η)− α(η)β(ξ) (50)
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Now, let qi, pj : R6N −→ R be the component functions mapping (q,p) 7→ qi, pj , respectively, where
1 ≤ i, j ≤ 3N . Then, dqi,dpi are examples of differential 1-forms. The wedge product of the coordinate
differentials dqi,dpi can be written

(dqi ∧ dpi)(ξ,η) = ξiηi+3N − ξi+3Nηi = ξTJ(i)η (51)

where J is the matrix which has zeros everywhere except for (J(i))i,3N+i = 1, (J(i))i+3N,i = −1. Summing
these terms results in the symplectic 2-form, denoted ψS :

ψS :=

3N∑
i=1

dqi ∧ dpi(ξ,η) = ξT
( 3N∑

i=1

J(i)

)
η = ξTJη (52)

That is, since Φt : R6N −→ R6N , then its Jacobian ∇Φt is a 6N × 6N matrix, and the condition above
implies that

∇ΦT
t J∇Φt = J for all t ∈ R (53)

Denoting the Jacobian ∇Φt as Φ′
t, we can take the determinant of both sides to find that

det
(
∇ΦT

t J∇Φt

)
= det(J) =⇒ det(∇ΦT

t ) det(J) det(∇Φt) = det(J) (54)

and so detΦ′
t
2
= 1. In the case of a flow map, we know that for t → 0, the flow map Φt would essentially

reduce to the identity map Id, and so

lim
t→0

Φ′
t = 1 =⇒ detΦ′

t = +1 (55)

due to the determinant being a continuous function of t. Therefore a consequence of this is that Φt is volume
preserving.

5.2 Common Symplectic Integrators
We wish to solve for Φt numerically by constructing an approximation with acceptable error.

(q̂n+1, p̂n+1) = Φ̂h(q̂n, p̂n) (56)

with (q̂0, p̂0) =
(
q(0),p(0)

)
. There is the obvious error stemming from the choice of a large h, but what is

more important is that the geometric structure of the manifold
(
q(t),p(t)

)
t>0

corresponding to the trajectory
of the exact solution is replicated by the discrete approximation

(
q̂n, p̂n

)
n∈N. The best way to do this is to

construct such a structure preserving integration scheme by designing the integration map Φ̂h in such a way
that the symplectic 2-form is preserved. That is, construct a symplectic integration scheme Φ̂h such
that

(Φ̂′
h)

TJ Φ̂′
h = J (57)

5.2.1 Euler and Symplectic Euler

The standard Euler integration scheme has many shortfalls, such as error growth and stability issues. Its
algorithmic form reads

qk+1 = qk + hM−1pk

pk+1 = pk − h∇U(qk)

Therefore, modified version of this scheme, called the symplectic Euler integration scheme, is used,
which reads

pk+1 = pk − h∇U(qk)

qk+1 = qk + hM−1pk+1

which has the slight modification that to advance the timestep, we use the first equation to compute pk+1

and then insert this in the second.
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5.2.2 Verlet

One of the most commonly used symplectic numerical integrators is the Stormer-Verlet method, which
in algorithmic form reads

qk+1/2 = qk +
h

2
M−1pk

pk+1 = pk − h∇U(qk+1/2)

qk+1 = qk+1/2 +
h

2
M−1qk+1

We can see that this algorithm updates qk 7→ qk+1/2 with the given pk over half-time step, and then
updates the force field vector with the new position vector −∇U(qk+1/2). This new force is used to update
the momentum pk 7→ pk+1. Finally, the position is updated with the new momentum: qk+1/2 7→ qk+1. A
closely related, alternative form is the Velocity-Verlet method, which updates the momentum first, then
position, and finally momentum.

pk+1/2 = pk −
h

2
∇U(qk)

qk+1 = qk + hM−1pk+1/2

pk+1 = pk+1/2 −
h

2
∇U(qk+1)

The Velocity Verlet method is 2nd order (globally). While the algorithm may not look like a second order,
we can see that with simple substitution, we have a second order evaluation of qk+1 (up to h2 term) followed
by an evaluation of pk+1.

qk+1 = qk + hM−1pk+1/2

= qk + hM−1

(
pk −

h

2
∇U(qk)

)
= qk + hM−1pk −

1

2
h2∇U(qk)

pk+1 = pk+1/2 −
h

2
∇U(qk+1)

=

(
pk −

h

2
∇U(qk)

)
− h

2
∇U(qk+1)

= pk −
h

2

[
∇U(qk) +∇U(qk+1)

]
Setting M = I, F = −∇qU and expanding the qk+1 in the inner term, we get

qk+1 = qk + hpk +
1

2
h2F(qk)

pk+1 = pk +
h

2

[
F(qk) + F

(
qk + hpk +

1

2
h2F(qk)

)]
The first equation is already a polynomial, i.e. it is in the form of a series expansion in powers of h where
the coefficients are functions of the starting point (qk,pk). The second equation may be written as a series
expansion in powers of h as well.

pk+1 = pk +
h

2
F(qk) +

h

2

[
F(qk) + hF′(qk)

(
pk +

h

2
F(qk)

)
+
h2

2
F′′(qk)

(
pk +

h

2
F(qk)

)2
+ . . .

]
which we will neglect terms involving 4th and higher powers of h. Combining terms of like powers of h, we
have

pk+1 = pk + hF(qk) +
h2

2
pkF

′(qk) +
h3

4

[
F′(qk)F(qk) + p2

kF
′′(qk)

]
+O(h4) (58)
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We compare this against the Taylor expansion of the exact solution z(t) :=
(
q(t),p(t)

)
. We evaluate

q(t+ h) = q(t) + hq′(t) +
h2

2
q′′(t) +

h3

6
q′′′(t) +O(h4)

= q(t) + hp(t) +
h2

2
F(q(t)) +

h3

6
F′(q(t))p(t) +O(h4)

where the calculations followed from the fact that q′ = p, which means that q′′ = p′ = F(q), which means
that q′′′ = d

dtF(q) = F′(q)q′ = F′(q)p. Then, we have

p(t+ h) = p(t) + hp′(t) +
h2

2
p′′(t) +

h3

6
p′′′(t) +O(h4)

= p(t) + hF(q(t)) +
h2

2
p(t)F′(q(t)) +

h3

6

[
p(t)2 F′′(q(t)) + F′(q(t))F(q(t))

]
+O(h4)

which follows from the fact that p′′′ = (pF′)′ = p2 F′′ + F′F.
Now, let’s compare them. Let us have initial point zk = z(t) =

(
q(t),p(t)

)
=
(
qk,pk

)
at time t. The actual

flow and the integrator takes in z(t) and zk, respectively, but they are the same initial point, so we will label
them with z = (q,p). We can use the flow map Φh

(
z(t)

)
to evaluate the exact position z(t+ h) after time

h. That is, Φh

(
z(t)

)
:= z

(
h, z(t)

)
= z(t+ h). The Taylor expansion of this flow map is

Φh

(
z(t)

)
= z(t+ h) =

{
q(t+ h) = q+ hp+ h2

2 F+ h3

6 F′ p+O(h4)
p(t+ h) = p+ hF+ h2

2 pF′ + h3

6

[
p2 F′′ + F′ F

]
+O(h4)

(59)

The numerical integrator would calculate something slightly different. That is, given the initial point z(t) =
zk, Φ̂h

(
z(t)

)
= zk+1 is the numerical approximation after time h. The Taylor expansion of this integrator is

Φ̂h

(
z(t)

)
= zk+1 =

{
qk+1 = q+ hp+ h2

2 F

pk+1 = p+ hF+ h2

2 pF′ + h3

4

[
F′F+ p2F′′]+O(h4) (60)

We should get zk+1 ≈ z(t + h), by looking at the differences, we find that these differ in the third (and
higher) order terms.

qk+1 − q(t+ h) = −h
3

6
F′p+O(h4)

pk+1 − p(t+ h) =
h3

12

[
p2F′′ + F′F

]
+O(h4)

We can, in summary, state that the local error is third order

||Φ̂h(z)− Φh(z)|| = κ(z)h3 +O(h4) (61)

where κ(z) := κ(q,p) is a function of the position and momentum. We may then define the maximum local
error as

K̄ := max
t∈[0,τ ]

κ
(
z(t)

)
(62)

and summing this all up leads to the total error being bounded by a constant multiple of h2, achieving
consistency of order 2.

5.2.3 Yoshida 4th-Order

The Yoshida Fourth Order Scheme is overall three iterations of velocity Verlet (making it also a symplectic
integrator), using stepsizes τ0h, τ1h, τ0h, respectively. We write this with subindices α, β to indicate the
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intermediate stages, and abuse our notation to be similar to those in computer science.

pα = p− (τ0 h/2)∇U(q)

qα = q+ (τ0 h)M
−1pα

pα = pα − (τ0 h/2)∇U(qα)

pβ = pα − (τ1 h/2)∇U(qα)

qβ = qα + (τ1 h)M
−1pβ

pβ = pβ − (τ1 h/2)∇U(qβ)

p = pβ − (τ0 h/2)∇U(qβ)

q = qβ + (τ0 h)M
−1p

p = p− (τ0 h/2)∇U(q)

The equations can be written in a simplified form, combining several of the steps. This scheme requires
three new evaluations of the force ∇U per iteration, making it significantly more expensive than the vanilla
second-order Verlet method. However, this method is of 4th order.

5.3 Adjoint Method
For the true flow map Φt : Ω −→ Ω, we know that due to time-reversibility, the inverse map is the same as
the same map with a backward timestep:

Φ−1
t = Φ−t (63)

For a discretized integrator Φ̂, this may not always be the case (even though symplectic forms might be
preserved). Therefore, we can define the adjoint of the numerical scheme to be

(Φ̂h)
† := Φ̂−1

−h (64)

Clearly, the adjoint of the true flow map is the same as the original, i.e. Φt is self-adjoint. Furthermore, the
adjoint of the adjoint of any flow map is the original flow map.

5.3.1 Adjoint of Euler’s Method

Consider Euler’s method Φ̂h in fully general form, with z = (q,p)T . Then, we have

Φ̂h : zk 7→ zk+1 such that zk+1 = zk + h f(zk)

Φ̂−1
h : zk 7→ zk+1 such that zk = zk+1 + h f(zk+1)

Φ̂†
h = Φ̂−1

−h : zk 7→ zk+1 such that zk = zk+1 − h f(zk+1) ⇐⇒ zk+1 = zk + h f(zk+1)

and so and clearly, Φ̂−1
−h defines zk+1 implicitly.

5.3.2 Adjoint of Symplectic Euler’s Method

To construct the adjoint method of the symplectic Euler scheme, we see that that Φ̂−1
h maps (qk,pk) 7→

(qk+1,pk+1) such that

pk = pk+1 − h∇U(qk+1)

qk = qk+1 + hM−1pk

and therefore Φ̂−1
−h maps (qk,pk) 7→ (qk+1,pk+1) such that

qk+1 = qk + hM−1pk

pk+1 = pk − h∇U(qk+1)

We find that the adjoint of the symplectic Euler scheme is explicitly defined.
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5.4 Building Symplectic Integrators: Splitting Methods
Let H(q,p) = H1(q,p) +H2(q,p) have flow map Φt, and let Φ1

t ,Φ
2
t be the flow maps for the systems with

Hamiltonians H1, H2 respectively. We propose that the map

Ψt := Φ1
t ◦ Φ2

t (65)

is an approximation of Φt. Notice that the order of composition can be arbitrary due to commutativity of
addition. For Ψt to be a first order approximation of Φt, we need at least

||Ψt(z)− Φt(z)|| ≤ C(z)t2 (66)

That is, the local error must be 2nd order. Let z0 = (q0,p0) ∈ Ω be some arbitrary initial point, and let us
flow it across time t to the new point Φt(z0). We do a first-order Taylor expansion the flow with respect to
the time t,

Φt(z0) = z0 + t
[
Φt(z0)

]′
+O(t2)

= z0 + tJ∇zH(z0) +O(t2)
= z0 + t(J∇zH1 + J∇zH2)(z0) +O(t2) (3.1)

On the other hand, we have

Φ1
t (z0) = z0 + tJ∇zH1(z0) +O(t2)

Φ2
t (z0) = z0 + tJ∇zH2(z0) +O(t2)

and composing them gives

Φ1
t ◦ Φ2

t = z+ tJ∇H2(z) + tJ∇H1

(
z+ tJ∇H2(z)

)
+O(t2)

= z+ tJ∇H2(z) + tJ∇H1(z) + t2(J∇H1) ◦ (J∇H2)(z)
)︸ ︷︷ ︸

O(t2)

+O(t2)

= z+ t(J∇H2 + J∇H1)(z) +O(t2)
which agrees with the terms of (3.1) up to second order, and therefore the local error is indeed second order.

5.4.1 Symplectic Euler Constructed from Splitting Schemes

Let H1(q,p) = pTM−1p/2 and H2(q,p) = U(q), then the splitting method for H = H1 + H2 can be
obtained by determining the flow maps for each of the two parts. For H1 and H2 we have the differential
equations {

q̇ = M−1p

ṗ = −∇qU(q)
=⇒ H1

{
q̇ = M−1p

ṗ = 0
and H2

{
q̇ = 0

ṗ = −∇qU(q)
(67)

The fact that ṗ = 0 for H1 tells us that the momentum is constant and therefore the trajectory q is linear,
and hence the discrete flow map Φ̂1

h is

Φ̂1
h

(
qk

pk

)
=

(
qk+1

pk+1

)
=

(
qk + hM−1pk

pk

)
(68)

The flow map Φ̂2
h is

Φ̂2
h

(
qk

pk

)
=

(
qk+1

pk+1

)
=

(
qk

pk − h∇U(qk)

)
(69)

The composition of these maps is

Φ̂1
h ◦ Φ̂2

h =

{
qk+1 = qk + hM−1pk+1

pk+1 = pk − h∇U(qk)
(70)

which is precisely the symplectic Euler method. Composing the same two maps in the opposite order gives
the adjoint symplectic Euler method.(

Φ̂1
h ◦ Φ̂2

h

)†
= Φ̂2

h ◦ Φ̂1
h =

{
qk+1 = qk + hM−1pk

pk+1 = pk − h∇U(qk+1)
(71)
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5.4.2 Symplectic Verlet Method from Splitting Schemes

For the symplectic Euler method Φ̂h and its adjoint method Φ̂†
h, consider the composition

Kh := Φ̂†
h/2 ◦ Φ̂h/2 (72)

Computing this, we have Φ̂h/2(qk,pk) = (qk+1/2,pk+1/2), and Φ̂†
h/2(qk+1/2,pk+1/2) = (qk+1,pk+1) defined

Φ̂h/2

(
qk

pk

)
=

{
qk+1/2 = qk + h

2M
−1pk+1/2

pk+1/2 = pk − h
2∇U(qk)

Φ̂†
h/2

(
qk+1/2

pk+1/2

)
=

{
qk+1 = qk+1/2 +

h
2M

−1pk+1/2

pk+1 = pk+1/2 − h
2∇U(qk+1)

This composition simplifies to

Kh := Φ̂†
h/2 ◦ Φ̂h/2 =


pk+1/2 = pk − h

2∇U(qk)

qk+1 = qk + hM−1pk+1/2

pk+1 = qk+1/2 − h
2∇U(qk+1)

(73)

which is precisely the velocity Verlet method in Hamiltonian form. Since we have obtained this method as
the composition of two symplectic maps, and the symplectic maps form a group, we know that this method
will also be symplectic. Similarly, we can construct the adjoint map of Kh by simply taking the composition
in the other direction, which we see to be the same (i.e. Kh is symmetric/self-adjoint).

K†
h :=

(
Φ̂†

h/2 ◦ Φ̂h/2

)†
= Φ̂†

h/2 ◦ Φ̂h/2 = Kh (74)

5.4.3 General Composition Methods

In general, if we have any two symplectic numerical methods, say Φ̂1
h and Φ̂2

h, then the composition

Φ̂h := Φ̂1
h ◦ Φ̂2

h (75)

is another symplectic numerical method. The order of this new method is typically the minimum of the
orders of the two methods involved, but it can be higher, as the example of the Verlet method (constructed
by composing the Euler and its adjoint, both of order 1).

5.5 Modified, Shadow Hamiltonians
We already know that our symplectic discretized schemes successfully conserves the 2-form, but these schemes
do not actually conserve the Hamiltonian. Let us take the 1-dimensional harmonic oscillator with frequency
ω, which has the Hamiltonian H(q, p) = p2/2+ω2q2/2. Let us discretize it with the adjoint symplectic Euler
method (regarding the mass m = 1):

qk+1 = qk + hpk

pk+1 = qk+1 − hω2qk+1

Then, we can do simple algebra to see that H(qk, pk) ̸= H(qk+1, pk+1).

H(qk+1, pk+1) =
1

2
(p− hω2qk+1)

2 +
1

2
ω2(q + hp)2

=
1

2
(p2k − 2pkhω

2qk+1 + h2ω4q2k)
2 +

1

2
ω2(q2k + 2hqkpk + h2p2k)

2

= . . . ̸= H(qk, pk)

24/ 36



Sampling, Optimization, and Intergration Muchang Bahng Spring 2024

However, if we modify the Hamiltonian from H(q, p) = p2/2 + ω2q2/2 to

H̃(q, p) =
1

2

(
p2 + hω2pq + ω2q2

)
(76)

Then it turns out that H̃(qk, pk) = H̃(qk+1, pk+1), and so this new modified Hamiltonian is conserved. This
is significant, since now we have some other invariant property of the numerical method. The phase space
of this 1-dimensional oscillator is simply Ωq × Ωp ⊂ R × R. If we were to visualize the level sets of the
Hamiltonian, then we can imagine the level sets of the modified Hamiltonian to be a "perturbed" version
of the original ones. The fact that there even exists a modified Hamiltonian invariant is another special
property of symplectic integrators. If we used Euler’s method to solve the harmonic oscillator, we would
find that energy grows without bound.

5.5.1 Lie Derivatives and Poisson Brackets

Let us have z ∈ Rm in our phase space. Furthermore, let us assume that at any point ζ ∈ Rm there is a
unique solution z(t, ζ) such that ż(t) = f

(
z(t)

)
, z(0) = ζ is globally defined for all t. This also means that

f : Rm −→ Rm is a vector field defining the phase flow on Rm. On this phase space let us define a scalar
field ϕ : Rm −→ R. Letting ϕ̂ = ϕ ◦ z : R −→ R be the function outputting the value of ϕ across the path ϕ,
we can take its derivative using chain rule

d

dt
ϕ̂

∣∣∣∣
t=0

=


∂ϕ
∂z1

(ζ)

∂ϕ
∂z2

(ζ)

. . .
∂ϕ
∂zm

(ζ)

(dz1dt (0)
dz2
dt (0) . . .

dzm
dt (0)

)

= ∇ϕ(ζ) · ż(0)
= f(ζ) · ∇ϕ(ζ)

That is, the derivative of ϕ̂ at t = 0 is the dot product of the derivative vector at ζ and the gradient of the
scalar potential at ζ. From this, we can define the Lie derivative Lf as

Lfϕ := f · ∇ϕ (77)

This is similar to the directional derivative of ϕ in direction f . Therefore, the equation for the evolution of
ϕ can be written as follows. Note also that the origin of time is irrelevant since we can always just shift the
time frame by a constant, so we can really focus on the point on the path in Rm rather than the associated
time. Therefore, at a certain time t with associated point z(t), this Lie derivative at z(t) in direction f under
scalar field ϕ is

d

dt
ϕ
(
z(t)

)
= (Lfϕ)

(
z(t)

)
(78)

Similarly, the second derivative at z(t) in direction f under ϕ will be denoted

d2

dt2
ϕ
(
z(t)

)
= (L2

fϕ)
(
z(t)

)
(79)

and so on for higher derivatives. The Taylor series expansion of ϕ(z(t)), centered at 0, along a solution of
the differential equation can therefore be written as

ϕ
(
z(t)

)
= ϕ

(
z(0)

)
+ t

(
d

dt
ϕ
(
z(t)

)∣∣∣∣
t=0

)
+
t2

2

(
d2

dt2
ϕ
(
z(t)

)∣∣∣∣
t=0

)
+ . . .

= ϕ
(
z(0)

)
+ t(Lfϕ)

(
z(0)

)
+
t2

2
(L2

fϕ)
(
z(0)

)
+ . . .

=
(
etLfϕ)

(
z(0)

)
In summary, given the initial value problem ż(t) = f

(
z(t)

)
, z(0) = ζ and any scalar field ϕ defined on Rm,

we have ϕ(z(t)) = (etLfϕ)(z(0)). By setting ϕ to simply be the component functions zi of z, this fully defines
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z(t) given z(0) = ζ. We also don’t need to fix the initial point, since the flow map Φt is a collection of all
the flows for every single possible initial point. Concisely, by abuse of notation, the flow map Φt can be
represented by

Φt = exp(tLf ) (80)
More strictly speaking, what is really meant by the equality above is that the individual components satisfy

zi(t, ζ) =
[
Φt(ζ)

]
i
=
(
exp(tLf )zi

)
(ζ) (81)

Ignoring the initial term in the Taylor series allows us write

etLfϕ = ϕ+ tLfϕ+
t2

2
L2
fϕ+ . . . (82)

which may or may not be bounded with respect to functions ϕ. Though significant, we will ignore this
problem for now. We now introduce the Poisson bracket, which is defined for two smooth scalar-valued
functions g1 and g2 of phase variables (q,p) ∈ Rm by

{g1, g2} := ∇gT1 J∇g2 =

m∑
i=1

(
∂g1
∂qi

∂g2
∂pi
− ∂g2
∂qi

∂g1
∂pi

)
(83)

where J is the skew symmetric symplectic structure matrix.

J =

(
0 I
−I 0

)
(84)

As the name suggests, the Poisson bracket has the bracket structure: it is bilinear, skew-symmetric, and
satisfied the Jacobi identity defined

{g1, {g2, g3}}+ {g3, {g1, g2}}+ {g2, {g3, g1}} = 0 (85)

We can in fact write differential equations in terms of Poisson brackets. For example, the simple component
DEQ q̇i = pi (of vector DEQ q̇ = p) can be written in terms of brackets as the first line, with the derivation
shown in the following lines.

q̇i = {qi, H}
= ∇qTi J∇H

=
(
ei 0

)( 0 I
−I 0

)(
∇qH
∇pH

)
= ∇pi

H =
∂

∂pi
H =

∂

∂pi

1

2
||p||2 + U(q) = pi

More generally, if F (q,p) is any smooth, scalar-valued function of the phase variables, we may write

Ḟ =
d

dt
F
(
q(t),p(t)

)
= {F,H} (86)

We can see this because

{F,H} = ∇FTJ∇H

=
(
∇qF ∇pF

)( 0 I
−I 0

)(
∇qH
∇pH

)
= ∇qF · ∇pH −∇qH · ∇pF

= ∇qF · ∇p

(
1

2
||p||2 + U(q)

)
−∇q

(
1

2
||p||2 + U(q)

)
· ∇pF

= ∇qF · p−∇qF · ∇qU(q)

=
∂F

∂q

dq

dt
− ∂F

∂p

dp

dt

=
d

dt
F
(
q(t),p(t)

)
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Therefore, we have the following relation between the Lie derivative and the Poisson bracket.

LJ∇HF = J∇H · ∇F = ∇FTJ∇H = {F,H} (87)

What this says is that given the coupled Hamiltonian equations{
q̇ = M−1p

ṗ = −∇qU(q)
=⇒

(
q̇
ṗ

)
=

(
0 I3N
−I3N 0

)(
∇qU(q)
M−1p

)
= J∇H(q,p) (88)

the Lie derivative LJ∇HF under scalar field F can be represented in terms of the Lie bracket {F,H}, and
therefore exp(tLJ∇H) can be regarded as the Hamiltonian flow of the system. Following the convention, we
will simplify the expression LJ∇H to simply LH . Note that LH takes in a smooth scalar field F and outputs
another scalar field that tells the directional derivative in direction H.

LH : C∞(Rm) −→ C∞(Rm) (89)

5.5.2 Backward Error Analysis for Hamiltonian Splitting Methods

Note that the relation LHϕ = {ϕ,H} is linear in H (due to bilinearity). Let us have a system with
Hamiltonian H = H1 +H2. Then, LH = LH1+H2 = LH1 + LH2 , and thus the flow map of the system is

Φt = et(LH1
+LH2

) (90)

The splitting method based on a composition of flows on H1 and H2 is etLH1 etLH2 . It is well known that
given noncommuting operators A,B, eA+B does not necessarily equal eAeB . Expanding and subtracting
gives us the difference to be (where [A,B] = AB −BA is the commutator):

ehLH1 ehLH2 − ehLH =
h2

2
[LH1 ,LH2 ] +O(h3) (91)

We can see that since LHf = {f,H}, LH1
LH2

f = {{f,H2}, H1} and thus the commutator reduces to

[LH1
,LH2

]f = {{f,H2}, H1} − {{f,H1}, H2}
= {{f,H2}, H1} − {{H1, f}, H2} (skew symmetry)
= −{{H2, H1}, f} (Jacobi identity)
= {f, {H2, H1}} (skew symmetry)
= L{H1,H2}f

This means that it is possible to relate the commutator of Lie derivatives of Hamiltonian fields H1, H2 to the
Lie derivative of the Poisson bracket of the corresponding Hamiltonians. Ignoring the O(h3) term, we can
interpret the error [LH1

,LH2
] = L{H1,H2} as itself being derived from another Hamiltonian. Let us expand

ehLH1 ehLH2 = ehLH̃ using the Baker-Campbell-Hausdorff formula:

ehLH1 ehLH2 = exp

(
h
(
LH1

+LH2

)
+
h2

2
[LH1

,LH1
] +

h3

12

(
[LH1

, [LH1
,LH2

]]− [LH2
, [LH1

,LH2
]]
)
+ . . .

)
(92)

Then, hLH̃ would be the term in the exponent. Dividing by h and substituting LH = LH1
+ LH2

gives

LH̃ = LH +
h

2
[LH1

,LH2
] +

h2

12

(
[LH1

, [LH1
,LH2

]]− [LH2
, [LH1

,LH2
]]
)
+ . . .

= LH +
h

2
L{H1,H2} +

h2

12

(
L{H1,{H1,H2}} − L{H2,{H1,H2}}

)
+ . . .

= L
H+h

2 {H1,H2}+h2

12 ({H1,{H1,H2}}−{H2,{H1,H2}})+...
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which implies that the Hamiltonian H̃ of the splitting approximation deviates from the true Hamiltonian H
through the BCH formula.

H̃ = H +
h

2
{H1, H2}+

h2

12
({H1, {H1, H2}} − {H2, {H1, H2}}) + . . .︸ ︷︷ ︸

error term

(93)

This series H̃ is referred to as the shadow Hamiltonian corresponding to the splitting method. The
numerical method may be viewed as being equivalent to the exact solution of a nearby Hamiltonian system,
rather than the true one. We can visualize the isocontour lines for a double-well model along with its modified
Verlet Hamiltonian below.

Note that we still haven’t addressed the convergence of this series, but we simply assume that the error term
is bounded (which may not always be justified). Furthermore if H1 and H2 commute, i.e. {H1, H2} = 0,
then there is no error in splitting. There are few special splitting cases where this would happen. An
alternative approach to numerically solving the SDE is to find a scheme with Hamiltonian that has its
shadow Hamiltonian to be our target one. That is, we use a perturbed version of the original SDE and
discretize it, which should lead to a higher order scheme.

5.5.3 Symplectic Euler

Recall that splitting our Hamiltonian using

H1 =
1

2
pTM−1p, H2 = U(q) (94)

gives us the symplectic Euler method. The BCH expansion gives us the following perturbed Hamiltonian,
which we can see has a leading error term of power 1, making it a first-order scheme.

H̃h = H +
h

2
{H1, H2}+

h2

12

(
{H1, {H1, H2}} − {H2, {H1, H2}}

)
+ . . .

= H +
H

2
∇HT

1 J∇H2 + . . .

= H +
h

2

[ (
0 pTM−1

)( 0 I
−I 0

)(
∇qU(q)

0

)]
+ . . .

= H − h

2
pTM−1∇U(q) +

h2

12

[
pTM−1U ′′M−1p+∇U(q)TM−1∇U(q)

]
− h3

12
∇U(q)TM−1U ′′(q)M−1p+O(h4)

5.5.4 Velocity Verlet

Given a Hamiltonian symmetrically split into three parts

H(q,p) = H1 +H2 +H3 =
1

2
U(q) +

1

2
T (p) +

1

2
U(q) (95)
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calculating the estimate exp (hLH) ≈ exp(h2LH1) exp(
h
2LH2) exp(

h
2LH3) using the BCH lemma gives the

following. Notice that the symmetricity of the splitting scheme allows us to cancel out the odd powered
terms.

H̃h = T + U +
h2

12

(
{T, {T,U}} − 1

2
{U, {U, T}}

)
+ . . . (96)

The shadow Hamiltonian of the Velocity Verlet scheme applied to a single degree of freedom system of the
form H(q, p) = U(q) + 1

2p
2 then gives

H̃(q, p) = H(q, p) +
h2

24

(
2pU ′′(q)p− (U ′(q))2

)
+ h4

( 1

720
p4U ′′′′(q)− 1

120
p2U ′(q)U ′′′(q)

− 1

240
(U ′(q))2U ′′(q)− 1

60
p2(U ′′(q))2 + U ′(q)U ′′′(q)

)
+O(h6)

Higher order symplectic integrators give higher order error terms (e.g. Yoshida-4, Imada-4).

5.6 Hamiltonian Monte Carlo (HMC)
Hamiltonian Monte Carlo is one type of MCMC Metropolis-Hastings algorithms, with a Hamiltonian dy-
namics evolution simulated using a time-reversible, symplectic integrator (usually Velocity-Verlet). We first
initialize our chain X0 = (q0,p0) and compute the Hamiltonian H(q,p) = U(q) + 1

2p
TM−1p. Given that

we have Xk = (qk,pk) at the end of the kth step, we then repeat the following steps:

1. Fix q but pick pk+1 ∼ N (pk,Σ).

2. We run Velocity Verlet (or some other symplectic scheme) for some fixed number of steps L of stepsize
h, which models Hamiltonian flow to some new position (q′

k,p
′
k). This is our transition proposal. Note

that for every step in Velocity Verlet, we must compute the gradient of the potential. In order to
simulate Hamiltonian flow, this gradient must be exactly computed; our batch approximation will lead
to discretized steps that is not deterministic anymore and do not fulfill our symplectic properties and
energy preservation.

3. We accept this proposal with probability

α = min

(
1,

exp
[
−H(q′

k,p
′
k)
]

exp
[
−H(qk,pk)

])
and assign Xk+1 = (qk+1,pk+1) = (q′

k,p
′
k) upon acceptance and Xk+1 = Xk if not. Note that in this

step, we require the exact evaluations of our Hamiltonian.

Hamiltonian Monte Carlo is very useful if we could efficiently calculate the true log-posterior, but otherwise,
the batch approximation will not model a Hamiltonian flow (and thus will not preserve the symplectic,
time-reversibility, etc. properties), rendering HMC useless.

HMC is able to draw samples in high dimensions with greater efficiency than classical MCMC. Its key
advantage is its ability to draw samples that are large distances apart by evolving them via Hamiltonian
dynamics. The acceptance rate depends on the error accumulated along the sample trajectory (i.e. the error
of the shadow Hamiltonian), and remains large even in high dimensions. However, a large step size (leading
to greater error of shadow Hamiltonian), a large system, or a poorly behaved target density leads to greater
numerical error and thus to lower sample acceptance, which induces heavy autocorrelation, necessitating a
larger sample size and thus higher computational costs.

One approach to ease this burden is to exploit the structure of the numerical integrator error and instead
target the density corresponding to a modified, shadow Hamiltonian. This leads to higher sample acceptance
rate, at the cost of some induced bias. This bias is usually well-quantified, and we can compensate for this
induced bias.

5.7 No U-Turn Sampler (NUTS)
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6 Langevin Dynamics Inspired Samplers and Integrators
In addition to Hamiltonian dynamics, we can model the dynamics of molecular systems with Langevin
dynamics. This model relies on the fact that a real world molecular system is unlikely to be present in a
vacuum (there may be friction, jostling, etc.). There are two types of Langevin dynamics: overdamped and
underdamped. The Gibbs measure mentioned below is an invariant distribution of this random process,
similar to a stationary distribution of a Markov chain. That is, if we ran the model for an infinite amount
of time, the Gibbs measure would be the density representing the probability of finding that particle at a
certain location at any point in time.

1. The overdamped Langevin equation does not rely on the momenta.

q̇ = −∇U(q) +
√

2β−1Ẇ (97)

Its Gibbs measure (invariant distribution) is

π(θ) =
1

Z
exp

(
− βU(q)

)
, where Z =

∫
exp

(
− βU(q)

)
dq (98)

More precisely, given that the path q(t) at time t is distributed according to (parameterized) density
ρt, ρt → 1

Z e
−βU(q) as t→ +∞.

2. The underdamped Langevin equation can be interpreted as a Hamiltonian model, with the additional
−γp+

√
2γβ−1Ẇ term representing the interaction of the Hamiltonian system with an outside envi-

ronment (called a heat bath or thermostat).

q̇ = M−1p

ṗ = −∇U(q)− γp+
√
2γβ−1M1/2Ẇ

The γ is the damping constant and β is the inverse temperature. We can think of the term −γp as
the damping/dissipative term which "drags" the momentum p to 0. The higher the γ, the stronger
this drag. As γ grows, the system spans from the inertial all the way to the diffusive (aka Brownian)
regime. The term

√
2γβ−1Ẇ is the random term, which increases as temperature increases. It has

invariant distribution
π(q,p) =

1

Z
exp

(
− β

[
U(q) +

1

2
|p|2

])
(99)

To understand the relationship between the overdamped and underdamped Langevin equations and the
physical systems that they represent, we can think of the overdamped equation as a limit of the underdamped
one. As we set γ → +∞ (followed by an appropriate time scale), the underdamped Langevin equation would
converge to the overdamped because the friction term would become very large, causing the momenta to
dissipate instantaneously. Another way to describe this limit is to incorporate a mass matrix M into the
underdamped:

q̇ = M−1p

ṗ = −∇U(q)− γM−1p+
√
2γβ−1Ẇ

If we let M → 0, then we can see that the dissipative term −γM−1p will grow very large, which leads to
convergence to the overdamped equation.

The overdamped Langevin equation is usually used to represent Brownian motion, similar to a random walk,
in which there is no memory of the momenta from one time to another. The underdamped Langevin equation
incorporates the momenta p, and so the trajectory would be a lot smoother.

The underdamped equation has a lot nicer properties that allows us to sample efficiently. For example, when
we have a double well potential U(q) with the associated Gibbs measure, sampling from this potential with
an overdamped integrator can cause problems. The overdamped integrator does not remember momentum,
and so when crossing the energy barrier it tends to go over and recross back due to the random term.

30/ 36



Sampling, Optimization, and Intergration Muchang Bahng Spring 2024

For the underdamped, the momentum is remembered and so when we reach over the barrier, the momentum
that accelerates the particle across the well, along with the momentum that accelerates it down the well
as soon as it is across, carries the particle into the other well. The choice of our friction coefficient γ will
determine how often we transition one stable state (well) to the other stable state. Choosing the right γ is
very important when sampling.

1. If γ is too large, we will have very similar dynamics to the overdamped Langevin equation (lots of
randomness and potential recrossings), which is not ideal.

2. If γ is too small, it will be very similar to Hamiltonian dynamics, with a very small dissipative and
random forces. It will end up just crossing back and forth smoothly and deterministically.

To compare Hamiltonian, underdamped, and overdamped dynamics, let us take a look at the phase space of
the double well, with equi-Hamiltonian level sets.

1. A Hamiltonian flow will precisely be along the level sets, since the Hamiltonian is conserved.

2. An underdamped Langevin flow (with γ not too large) will move slowly between level sets. It is
important not to set γ to small since then our flow would transition very slowly between level sets and
not explore our phase space very quickly.

3. An overdamped Langevin flow (or underdamped with large γ) will move very quickly between level
sets, leading to a random walk behavior.

6.1 SGLD
Now if we add Gaussian noise to SGD, then we get Stochastic Gradient Langevin Dynamics (SGLD) sampler,
which is the discretized form of the overdamped Langevin equation

q̇ = −M−1∇qU(q) +
√

2β−1M−1/2Ẇ (100)

where M is the mass matrix, β the inverse temperature, and Ẇ a Weiner process. If the gradient com-
putations are exact, then SGLD reduces to the Langevin Monte Carlo algorithm. This algorithm is also a
reduction of Hamiltonian Monte Carlo, consisting of a single leapfrog step proposal rather than a series of
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steps. Since SGLD can be formulated as a modification of both SGD and MCMC methods, it lies at the
intersection between optimization and sampling algorithms. The method maintains SGD’s ability to quickly
converge to regions of low cost while providing samples to facilitate posterior inference.

If we set the mass matrix to be I, we can update q according to the following discretization.

qt+1 = qt −∇qU(qt) +
√

2β−1 ϵ, ϵ ∼ N (0, I) (101)

Algorithm 6 SGLD

Require: Initial θ0, Stepsize function h(t), Minibatch size m
for t = 0 to T do

ĝ(θt)← ∇θ log p(θt |Mm(D))
ϵt ∼ N (0, I)
θt+1 ← θt + h(t) · ĝ(θt) +

√
2h(t)β−1 ϵt

end for

We can incorporate the mass matrix, which is approximated by the precision of the log posterior (M−1 = Σ),
for adapting (along with preconditioning if needed). This would result in the discretized step:

qt+1 = qt −M−1∇qU(qt) +
√
2β−1M−1 ϵ (102)

Algorithm 7 Adaptive SGLD

Require: Initial θ0, Stepsize function h(t), Minibatch size m, Adaptation burn-in B, Adaptation frequency
U
µemp
0 ← 0

Σ0 ← I
Σemp

0 ← I
for t = 0 to T do

ĝ(θt)← ∇θ log p(θt |Mm(D))
ϵt ∼ N (0,Σt)
θt+1 ← θt + h(t) Σt ĝ(θt) +

√
2h(t)β−1 ϵt

Σemp
t+1 ← 1

t+1

[
(θt+1 − µt)(θ

t+1 − µt)
T − Σemp

t

]
µemp
t+1 ← µt +

1
t+1 [θt+1 − µt]

if t > B and t is divisible by U then
Σt+1 ← Σemp

t+1

end if
end for

6.2 MALA
We can slightly modify SGLD to get the Metropolis Adjusted Langevin Algorithm (MALA) sampler, which
has two differences from SGLD:

1. SGLD uses a minibatch approximation of the gradient (hence the name stochastic), while MALA
always uses the entire dataset.

2. MALA has an additional Metropolis accept/reject step on the proposal state, while SGLD always
"accepts" the new state.

For the sake of conciseness, we will provide the adaptive MALA algorithm.
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Algorithm 8 Adaptive MALA

Require: Initial θ0, Stepsize function h(t), Minibatch size m, Adaptation burn-in B, Adaptation frequency
U
µemp
0 ← 0

Σ0 ← I
Σemp

0 ← I
for t = 0 to T do

ĝ(θt)← ∇θ log p(θt | D)
ϵt ∼ N (0,Σt)
Pt+1 ← θt + h(t) Σt ĝ(θt) +

√
2h(t)β−1 ϵt

if log p(Pt+1 | D) ≥ log p(θt | D) then
θt+1 ← Pt+1

else
δ ∼ Uniform[0, 1]
if δ < log p(Pt+1 | D)/ log p(θt | D) then

θt+1 ← Pt+1

else
θt+1 ← θt

end if
end if
Σemp

t+1 ← 1
t+1

[
(θt+1 − µt)(θ

t+1 − µt)
T − Σemp

t

]
µemp
t+1 ← µt +

1
t+1 [θt+1 − µt]

if t > B and t is divisible by U then
Σt+1 ← Σemp

t+1

end if
end for

6.3 Langevin Numerical Integrators
6.3.1 Euler-Mayurama Method

The Euler-Mayurama integrator models Brownian dynamics/overdamped Langevin dynamics. We update
the position vector q with a single timestep:

qk+1 = qk + hM−1∇U(qk) +
√
2hkBTM

−1/2Rk (103)

where Rk are vectors of standard independent Gaussian N (0, I) variables, resampled at each step. Since kB
is the Boltzmann constant, we can set β = (kBT )

−1 to be the inverse temperature parameter, reducing
the above to

qk+1 = qk + hM−1∇U(qk) +
√
2hβ−1M−1/2Rk (104)

This EM discretized scheme has an invariant measure π̂h that is also an approximation of the true Gibbs
measure π of the original Langevin equation. We subscript it with the step size h since convergence will be
dependent on h.

π̂h(q) = π(q) +O(h) (105)

We can interpret the O(h) term as a term ρ(q)h (where ρ is some density) that vanishes linearly as h→ 0.

6.3.2 Leimkuhler-Matthews Method

The Leimkuhler-Matthews method also finds discretized solutions to Brownian dynamics, with position
update of

qk+1 = qk + hM−1∇U(qk) +
√

2hβ−1M−1/2

(
Rk +Rk−1

2

)
(106)
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6.3.3 BAOAB Method

The BAOAB method is a symplectic integrator that models an undampened Langevin flow, with the following
steps per timestep:

pk+1/2 = pk −
h

2
∇U(qk)

qk+1/2 = qk +
h

2
M−1pk+1/2

p̂k+1/2 = e−hγpk+1/2 +
√
β−1(1− e−2γh)M1/2Rk

qk+1 = qk+1/2 +
h

2
M−1p̂k+1/2

pk+1 = p̂k+1/2 −
h

2
∇U(qk+1)

where Rk are vectors of standard independent Gaussian N (0, I) variables, resampled at each step. Notice
that the O step incorporates the randomness within this integrator. BAOAB is a discretization of an
underdamped Langevin flow, but BAOAB with an extremely large γ would be similar to a discretization
of an overdamped Langevin flow. There are other BAO splitting schemes, such as OBABO, OABAO, and
ABOBA, but BAOAB is the best.

Recall that the true invariant measure of underdamped Langevin equations is π(q,p) = 1
Z exp

(
− U(q) +

1
2 |p|

2
)
. BAOAB is a second-order scheme, meaning that the invariant measure π̂h of this discretized scheme

is a second order approximation of π. With some analysis, we can see that π̂ is of order 2 (in fact, the BAO
methods are all of order 2).

π̂h(q,p) = π(q,p) + Ch2f2(q,p)π(q,p) +O(h4)
= π(q,p) +O(h2)

where f2 is some function such that Ep[f2] = 0. But we are typically interested in just q when looking at
the Gibbs density of a system, so we look at the marginal measure of q: π̂h(q) =

∫
p
π̂h(q,p) dp, leading us

to rewrite the above as
π̂h(q) = π(q) + Ch2f2(q)π(q) +O(h4) (107)

Furthermore, the constant C ∈ O(1/γ), where γ is the friction constant seen in the underdamped Langevin
equation. This means that as γ increases, C decreases, and so for sufficiently big γ, the second term vanishes
and we have an order 4 approximation. Depending on what specific scheme (BAOAB, ABOBA, etc.), the
constant C would be different. Therefore, the BAOAB scheme is of order 2 in underdamped dynamics and
of order 4 in overdamped dynamics.

6.4 Splitting Methods for Langevin Dynamics
Just like how to split Hamiltonians into components to build symplectic integrators, we can split an SDE
(specifically, the undamped Langevin equations) as such(

q̇
ṗ

)
=

(
M−1p

0

)
︸ ︷︷ ︸

A

+

(
0

−∇U(q)

)
︸ ︷︷ ︸

B

+

(
0

−γp+
√
2γβ−1M1/2Ẇ

)
︸ ︷︷ ︸

O

(108)

where each of the three parts A,B,O may be solved exactly with discretizations given as

Φ̂A
h (qk,pk) =

(
qk + hM−1pk,pk

)
Φ̂B

h (qk,pk) =
(
qk,pk − h∇U(qk)

)
Φ̂O

h (qk,pk) =
(
qk, e

−γhpk +
√
β−1(1− e−2γh)M1/2R

)
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and therefore, composing them with each other gives specific schemes. For example, the ABO scheme is

Φ̂
[ABO]
h = Φ̂O

h ◦ Φ̂B
h ◦ Φ̂A

h (109)

We can also symmetrically split these steps down further (must it be symmetric? since we don’t have to
worry about order of shadow Hamiltonian). For example,

Φ̂
[BABO]
h = Φ̂O

h ◦ Φ̂B
h/2 ◦ Φ̂

A
h ◦ Φ̂B

h/2

Φ̂
[BAOAB]
h = Φ̂B

h/2 ◦ Φ̂
A
h/2 ◦ Φ̂

O
h ◦ Φ̂A

h/2 ◦ Φ̂
B
h/2

There are much more Langevin integrators that we can construct from the A, B, O blocks.
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7 Simulated Annealing
Unlike the previous optimizers, simulated annealing is useful in finding global optima in the presence of
multimodal functions within a usually very large discrete space S. Given some function f defined on S, we
would like to find its global maximum. Rather than picking the "best move" using gradient information
(like SGD), we propose a random move. Let us start at a state θk and propose a random Pk+1. We denote
∆f = f(Pk+1)− f(θk).

1. If the selected move improves the solution (i.e. ∆f ≥ 0, then it is always accepted and we set
θk+1 ← Pk+1.

2. Otherwise, when ∆f < 0 it makes the move with the following acceptance probability

p(θk+1 ← Pk+1 | ∆f < 0) = e∆f/T (t)

We can see that if ∆f is very negative (the move is very bad), then this probability of acceptance decreases
as well. Furthermore, T (t) represents some sort of "temperature" that we anneal as a function of time, called
the annealing schedule. T starts off at a high value, increasing the rate at which bad moves are accepted,
which promotes exploration of S and allows the algorithm to travel to suboptimal areas. As T decreases,
the vast majority of steps move uphill, promoting exploitation, which means that once the algorithm is in
the right search space, there is no need to search other sections of the search space.

Algorithm 9 Simulated Annealing

Require: Initial θ0, Transition kernel π(θk+1 | θk), Annealing schedule T (t)
for t = 0 to T until convergence do

Pt+1 ∼ π(· | θt)
if f(Pt+1)− f(θt) ≥ 0 then

θt+1 ← Pt+1

else
δ ∼ Uniform[0, 1]
if δ < exp[(f(Pt+1)− f(θt))/T (t)] then

θt+1 ← Pt+1

else
θt+1 ← θt

end if
end if

end for

This algorithm is very easy to implement and provides optimal solutions to a wide range of problems (e.g.
TSP and nonlinear optimization), but it can take a long time to run if the annealing schedule is very long.
We can stop either if T reaches a certain threshold or if we have determined convergence.
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