
Other Models Muchang Bahng Spring 2025

Other Models

Muchang Bahng

Spring 2025

Contents
1 Topological Data Analysis 3

2 Geodesic Regression 4
2.1 Multiple Geodesic Regression . 8
2.2 Robust Geodesic Regression . 12

3 Frechet Regression 13

References 14

1/ 14

Other Models Muchang Bahng Spring 2025

Just some other models I’ve learned that don’t fit in nicely to any of existing categories yet.

2/ 14

Other Models Muchang Bahng Spring 2025

1 Topological Data Analysis

3/ 14

Other Models Muchang Bahng Spring 2025

2 Geodesic Regression
In regression, note that we are finding a function f : X → Y. In usual linear regression, both X ,Y are
Euclidean space. However, there are cases where it may not be realistic that one or more of them should
be modeled as a vector space. Rather, they may be part of a lower-dimensional manifold. For instance,
if we want to use linear regression to predict the top k principal components of a dataset, they must be
orthogonal, i.e. must be in a Stiefl manifold.

There are way to model this. For instance, we could have a projection operator that maps from Rm → Y.
This has its issues too, for one not being very efficient since perhaps the dimension of Y may be much less
than m. Therefore, it might be better to directly regress onto a manifold. There were many attempts at this,
but the first model to generalize OLS to manifolds was created by Fletcher in 2011 [Fle11] and expanded
shortly in [TF13].

We start with the case where there is one covariate (i.e. X = R) and Y = (M,d) is a smooth Riemannian
manifold with a metric. Recall that for a smooth manifold M , for any p ∈ M and v ∈ TpM , the tangent
space at p, there is a unique geodesic curve γ : [0, 1] → M satisfying γ(0) = p, γ′(0) = v. This geodesic is
guaranteed to exist locally, and with this,we can define the exponential map at p in the direction of v as

expp(v) = exp(p, v) = γ(1) (1)

In other words, the exponential map takes a position and velocity as input and returns the point at time
1 along the geodesic with these initial conditions. With this motivation, we use slightly different notation
than regular linear regression, referring p as the bias and v as the coefficient.

Definition 2.1 (Geodesic Regression)

The geodesic regression model is a probabilistic model that predicts the conditional distribution
of y ∈ (M,d) given x ∈ R as

y = exp(exp(p, vx), ϵ) (2)

where the parameters are θ = {p, v}, and ϵ is a random variable defined over the tangent space at
exp(p, vx).

Note that if we set Y = Rm, then we get the ordinary linear regression model back.

Definition 2.2 (Least Squares Geodesic Regression)

The least squares geodesic regression aims to minimize the MSE loss

L(θ, (x, y)) = L(p, v, x, y) = d(exp(p, vx), y)2 (3)

Lemma 2.1 (Risk)

The risk is
R(f) = Ex,y

[
d(exp(p, vx), y)2

]
(4)

and the empirical risk for a dataset D = {(x(i), y(i))}ni=1 is

R̂(f) =
1

n

n∑
i=1

d(exp(p, vx(i)), y(i))2 (5)

Unfortunately, minimizing this does not yield an analytic solution.

4/ 14

Other Models Muchang Bahng Spring 2025

Example 2.1 (Code Walkthrough)

Let us fit a line onto this. We first define our manifold class with the matrix exponential and logarithm
methods.

1 class S2:
2 @staticmethod
3 def exp(p, v):
4 v_norm = np.linalg.norm(v)
5 if v_norm < 1e-8:
6 return p
7 return np.cos(v_norm) * p + np.sin(v_norm) * v / v_norm
8

9 @staticmethod
10 def log(p, q):
11 cos_dist = np.clip(np.dot(p, q), -1, 1)
12 if np.abs(cos_dist - 1) < 1e-8:
13 return np.zeros_like(p)
14

15 theta = np.arccos(cos_dist)
16 sin_theta = np.sin(theta)
17

18 if sin_theta < 1e-8:
19 return np.zeros_like(p)
20

21 return theta * (q - cos_dist * p) / sin_theta
22

23 @staticmethod
24 def distance(p, q):
25 cos_dist = np.clip(np.dot(p, q), -1, 1)
26 return np.arccos(cos_dist)
27

28 @staticmethod
29 def project_to_tangent(p, v):
30 return v - np.dot(v, p) * p
31

32 @staticmethod
33 def normalize(x):
34 return x / np.linalg.norm(x)

Next, we define our data generation process.

1 def generate_sample_data(n_samples=50, noise_level=0.1):
2 X = np.random.uniform(-2, 2, n_samples)
3

4 p_true = S2.normalize(np.array([1, 0, 0]))
5 v_true = S2.normalize(np.array([0, 1, 0.2]))
6 v_true = S2.project_to_tangent(p_true, v_true) * 0.5
7

8 Y = []
9 for x in X:

10 y_clean = S2.exp(p_true, v_true * x)
11

12 noise = np.random.normal(0, noise_level, 3)
13 noise = S2.project_to_tangent(y_clean, noise)
14 y_noisy = S2.exp(y_clean, noise)
15 y_noisy = S2.normalize(y_noisy)

5/ 14

Other Models Muchang Bahng Spring 2025

16

17 Y.append(y_noisy)
18

19 return X, np.array(Y), p_true, v_true

Finally, we define our regression model and optimize the loss with BFGS (SGD doesn’t work very
well here).

1 class GeodesicRegression:
2 def __init__(self):
3 self.p = None
4 self.v = None
5

6 def _geodesic_point(self, p, v, x):
7 return S2.exp(p, v * x)
8

9 def _objective(self, params, X, Y):
10 p_flat = params[:3]
11 v_flat = params[3:6]
12

13 p_flat = S2.normalize(p_flat)
14 v_flat = S2.project_to_tangent(p_flat, v_flat)
15

16 total_loss = 0.0
17 for i in range(len(X)):
18 pred = self._geodesic_point(p_flat, v_flat, X[i])
19 loss = S2.distance(pred, Y[i])**2
20 total_loss += loss
21

22 return total_loss / len(X)
23

24 def fit(self, X, Y, p_init=None, v_init=None, method=’BFGS’):
25 X = np.array(X)
26 Y = np.array(Y)
27

28 if p_init is None:
29 p_init = S2.normalize(np.array([1, 0, 0]))
30 if v_init is None:
31 v_init = np.array([0, 0.1, 0])
32

33 v_init = S2.project_to_tangent(p_init, v_init)
34

35 initial_params = np.concatenate([p_init, v_init])
36

37 result = minimize(
38 self._objective,
39 initial_params,
40 args=(X, Y),
41 method=method,
42 options={’disp’: False}
43)
44

45 if result.success:
46 self.p = S2.normalize(result.x[:3])
47 self.v = S2.project_to_tangent(self.p, result.x[3:6])
48 return result
49 else:

6/ 14

Other Models Muchang Bahng Spring 2025

50 raise RuntimeError(f"Optimization failed: {result.message}")
51

52 def predict(self, X):
53 X = np.array(X)
54 predictions = []
55

56 for x in X:
57 pred = self._geodesic_point(self.p, self.v, x)
58 predictions.append(pred)
59

60 return np.array(predictions)
61

62 def score(self, X, Y):
63 predictions = self.predict(X)
64 total_loss = 0.0
65

66 for i in range(len(Y)):
67 loss = S2.distance(predictions[i], Y[i])**2
68 total_loss += loss
69

70 return total_loss / len(Y)
71

72 X_train, Y_train, p_true, v_true = generate_sample_data(n_samples=30)
73 model = GeodesicRegression()
74 result = model.fit(X_train, Y_train)

This gives the following, which is a good estimate of the original parameters.

p̂ =

 0.99993911
−0.01038634
−0.00372747

 ≈

1
0
0

 = ptrue, v̂ =

0.00530609
0.48332324
0.07667702

 ≈

 0
0.49029034
0.09805807

 = vtrue (6)

The following figure also visualizes this.

7/ 14

Other Models Muchang Bahng Spring 2025

Figure 1

2.1 Multiple Geodesic Regression
Note that this was a model for a path in some manifold, and naturally we would like to extend this to have
multiple covariates. Kim in 2014 did exactly that, and provided a framework for multivariate general linear
models in [KAC+14].

Definition 2.3 (Multiple Geodesic Regression)

The multiple geodesic regression model is a probabilistic model that predicts the conditional
distribution of y ∈ (M,d) given x ∈ R as

y = exp

(
exp

(
p,

d∑
i=1

xjvj

)
, ϵ

)
= exp

(
exp(p, V x)

)
(7)

where the parameters are θ = {p ∈ Rm, V ∈ Rm×d}, and ϵ is a random variable defined over the
tangent space at exp(p, V x).

Definition 2.4 (Least Squares Geodesic Regression)

The least squares geodesic regression aims to minimize the MSE loss

L(θ, (x, y)) = L(p, v, x, y) = d(exp(p, V x), y)2 (8)

8/ 14

Other Models Muchang Bahng Spring 2025

Example 2.2 (Code Walkthrough)

We demonstrate this by conducting geodesic regression on a dataset of 50 samples (x ∈ R2, y ∈ S2).
We start by generating a 2-dimensional toy dataset according to our model.

1 def generate_sample_data(n_samples=50, n_features=2, noise_level=0.1):
2 X = np.random.uniform(-1, 1, (n_samples, n_features))
3

4 p_true = S2.normalize(np.array([1, 0, 0]))
5 V_true = np.array([[0, 0.3], [0.5, -0.2], [0.2, 0.4]])
6

7 for i in range(n_features):
8 V_true[:, i] = S2.project_to_tangent(p_true, V_true[:, i])
9

10 Y = []
11 for x in X:
12 tangent_vec = V_true @ x
13 y_clean = S2.exp(p_true, tangent_vec)
14

15 noise = np.random.normal(0, noise_level, 3)
16 noise = S2.project_to_tangent(y_clean, noise)
17 y_noisy = S2.exp(y_clean, noise)
18 y_noisy = S2.normalize(y_noisy)
19

20 Y.append(y_noisy)
21

22 return X, np.array(Y), p_true, V_true

1 class MultipleGeodesicRegression:
2 def __init__(self, n_features):
3 self.n_features = n_features
4 self.p = None
5 self.V = None
6

7 def _geodesic_point(self, p, V, x):
8 tangent_vec = V @ x
9 return S2.exp(p, tangent_vec)

10

11 def _objective(self, params, X, Y):
12 p_flat = params[:3]
13 V_flat = params[3:].reshape(3, self.n_features)
14

15 p_flat = S2.normalize(p_flat)
16

17 for i in range(self.n_features):
18 V_flat[:, i] = S2.project_to_tangent(p_flat, V_flat[:, i])
19

20 total_loss = 0.0
21 for i in range(len(X)):
22 pred = self._geodesic_point(p_flat, V_flat, X[i])
23 loss = S2.distance(pred, Y[i])**2
24 total_loss += loss
25

26 return total_loss / len(X)
27

28 def fit(self, X, Y, p_init=None, V_init=None, method=’BFGS’):

9/ 14

Other Models Muchang Bahng Spring 2025

29 X = np.array(X)
30 Y = np.array(Y)
31

32 if p_init is None:
33 p_init = S2.normalize(np.array([1, 0, 0]))
34 if V_init is None:
35 V_init = np.random.normal(0, 0.1, (3, self.n_features))
36

37 for i in range(self.n_features):
38 V_init[:, i] = S2.project_to_tangent(p_init, V_init[:, i])
39

40 initial_params = np.concatenate([p_init, V_init.flatten()])
41

42 result = minimize(
43 self._objective,
44 initial_params,
45 args=(X, Y),
46 method=method,
47 options={’disp’: False}
48)
49

50 if result.success:
51 self.p = S2.normalize(result.x[:3])
52 self.V = result.x[3:].reshape(3, self.n_features)
53

54 for i in range(self.n_features):
55 self.V[:, i] = S2.project_to_tangent(self.p, self.V[:, i])
56

57 return result
58 else:
59 raise RuntimeError(f"Optimization failed: {result.message}")
60

61 def predict(self, X):
62 X = np.array(X)
63 predictions = []
64

65 for x in X:
66 pred = self._geodesic_point(self.p, self.V, x)
67 predictions.append(pred)
68

69 return np.array(predictions)
70

71 def score(self, X, Y):
72 predictions = self.predict(X)
73 total_loss = 0.0
74

75 for i in range(len(Y)):
76 loss = S2.distance(predictions[i], Y[i])**2
77 total_loss += loss
78

79 return total_loss / len(Y)

The results show that it is a good estimate. Both the initial point p̂ and the matrix V̂ are good

10/ 14

Other Models Muchang Bahng Spring 2025

estimators.

p̂ =

0.99984466
0.01430395
0.01029851

 ≈

1
0
0

 = p, V̂ =

−0.00905151 −0.00171887
0.48494844 −0.18346139
0.20521662 0.42169444

 ≈

 0 0
0.5 −0.2
0.2 0.4

 = V

(9)

Figure 2: The estimated values of the first column of V (left) and the second column of V (right) are good
approximations of the true. Note that they point in the direction of the gradients.

Figure 3: Since we are regressing a 2-dimensional space onto a 2-dimensional manifold, the image of f is
trivially S2 except in degenerate cases. However, it is still nice to compare our predicted values ŷ = f(x) to
the true y.

11/ 14

Other Models Muchang Bahng Spring 2025

2.2 Robust Geodesic Regression

12/ 14

Other Models Muchang Bahng Spring 2025

3 Frechet Regression
Frechet regression generalizes regression on manifolds to general metric spaces (with some probability mea-
sure) [PM17]. In linear regression, we try to estimate the conditional distribution g(x) = E[Y | X = x] with
some linear function.

y = βTx = β0 + β1x1 + . . .+ βdxd (10)

Note that this requires

Definition 3.1 (Frechet Mean)

The Frechet mean of a set of points y(1), . . . , y(n) ∈ (M,d) in a metric space is

µ = argmin
m∈M

n∑
i=1

d2(y(i),m) (11)

if a unique value exists.

Now we can define the conditional Frechet mean. Since M is a probability space, we can define the integral
with respect to the conditional distribution P(Y | X = x). The problem is that to compute the integral∫
f(y) dP(Y | x), we need f to be in some vector space—where addition and scalar multiplication are defined.

We can take the Frechet mean to be this function, where the argmin is taken outside the integral.

Definition 3.2 (Conditional Frechet Mean)

The conditional Frechet mean is defined

µ(x) = argmin
m∈M

Ey

[
d2(y,m) | X = x

]
(12)

All that is left to do is try to represent this function µ with some parametric model.

13/ 14

Other Models Muchang Bahng Spring 2025

References
[Fle11] Thomas Fletcher. Geodesic Regression on Riemannian Manifolds. In Pennec, Xavier, Joshi,

Sarang, Nielsen, and Mads, editors, Proceedings of the Third International Workshop on Mathe-
matical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Mod-
elling Biological Shape Variability, pages 75–86, Toronto, Canada, September 2011.

[KAC+14] Hyunwoo J. Kim, Nagesh Adluru, Maxwell D. Collins, Moo K. Chung, Barbara B. Bendin,
Sterling C. Johnson, Richard J. Davidson, and Vikas Singh. Multivariate general linear models
(mglm) on riemannian manifolds with applications to statistical analysis of diffusion weighted
images. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 2705–
2712, 2014.

[PM17] Alexander Petersen and Hans-Georg Müller. Fréchet regression for random objects with euclidean
predictors, 2017.

[TF13] P. Thomas Fletcher. Geodesic regression and the theory of least squares on riemannian manifolds.
Int. J. Comput. Vision, 105(2):171–185, November 2013.

14/ 14

	Topological Data Analysis
	Geodesic Regression
	Multiple Geodesic Regression
	Robust Geodesic Regression

	Frechet Regression
	References

