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A series of notes on high-dimensional posterior sampling, optimization, and numerical integration methods.
These are all used broadly within data science to approximate some distribution/value or simulate some
evolution of a system. I’ve learned about these pretty much all at once, and there are many overlaps in these
methods, so I wrote all of them in one set of notes.
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1 Gradient Descent
Note that gradient computation is generally very expensive and not scalable as n gets high. Given a dataset
D = {di}i of D points, our posterior is of the form p(θ | D) ∝ p(D | θ) p(θ) and so

∇θ log p(θ | D) = ∇θ log p(θ) +∇θ log p(D | θ) = ∇θ log p(θ) +
∑
i

∇θ log p(di | θ) (1)

We can approximate this gradient by taking a minibatch of D. Let us take a minibatch of m samples Mm(D)
without replacement, where m << D. Then, our approximation of the gradient of the log likelihood is

∇θ log p(D | θ) ≈ ∇θ log p(Mm(D) | θ) := D

m

∑
d∈Mm(D)

∇θ log p(d | θ) (2)

and thus our noisy gradient approximation of the gradient of the log posterior is

∇θ log p(θ | D) ≈ ∇θ log p(θ |Mm(D)) := ∇θ log p(θ) +∇θ log p(Mm(D) | θ) (3)

1.1 SGD
The classical gradient ascent algorithm simply optimizes a concave function, or if f is multimodal, finds a
local maxima. When we use the entire D to compute the gradient, we call this a batch gradient descent, and
if the minibatch estimate of the gradient is used, then this is called stochastic gradient descent. Ideally, we
would want to have a variable step size h(t) so that h→ 0 as t→ +∞.

Algorithm 1 Stochastic Gradient Ascent

Require: Initial θ0, Stepsize function h(t), Minibatch size m
for t = 0 to T until convergence, do

ĝ(θt)← ∇θ log p(θt |Mm(D))
θt+1 ← θt + h(t) · ĝ(θt)

end for

SGD with momentum.

We have assumed knowledge of gradient descent in the back propagation step in the previous section, but
let’s revisit this by looking at linear regression. Given our dataset D = {x(n), y(n)}, we are fitting a linear
model of the form

f(x;w, b) = wTx+ b (4)

The squared loss function is

L(w, b) =
1

2

N∑
n=1

(
y − f(x;w, b)

)2
=

1

2

N∑
n=1

(
y − (wTx+ b)

)2 (5)

If we want to minimize this function, we can visualize it as a d-dimensional surface that we have to traverse.
Recall from multivariate calculus that the gradient of an arbitrary function L points in the steepest direction
in which L increases. Therefore, if we can compute the gradient of L and step in the opposite direction, then
we would make the more efficient progress towards minimizing this function (at least locally). The gradient
can be solved using chain rule. Let us solve it with respect to w and b separately first. Beginners might find
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it simpler to compute the gradient element-wise.

∂

∂wj
L(w, b) =

∂

∂wj

(
1

2

N∑
n=1

(
f(x(n);w, b)− y(n)

)2
)

(6)

=
1

2

N∑
n=1

∂

∂wj

(
f(x(n);w, b)− y(n)

)2

(7)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
f(x(n);w, b)− y(n)

)
(8)

=
1

2

N∑
n=1

2
(
f(x(n))− y(n)

)
· ∂

∂wj

(
wTx(n) + b− y(n)

)
(9)

=

N∑
n=1

(
f(x(n);w, b)− y(n)

)
· x(n)

j (for j = 0, 1, . . . , d) (10)

As for getting the derivative w.r.t. b, we can redo the computation and get

∂

∂wj
L(w, b) =

N∑
n=1

(
f(x(n);w, b)− y(n)

)
(11)

and in the vector form, setting θ = (w, b), we can set

∇L(w) = XT (ŷ − y) (12)
∇L(b) = (ŷ − y) · 1 (13)

where ŷn = f(x(n);w, b) are the predictions under our current linear model and X ∈ Rn×d is our design
matrix. This can easily be done on a computer using a package like numpy. Remember that GD is really
just an algorithm that updates θ repeatedly until convergence, but there are a few problems.

1. The algorithm can be susceptible to local minima. A few countermeasures include shuffling the training
set or randomly choosing initial points θ

2. The algorithm may not converge if α (the step size) is too high, since it may overshoot. This can be
solved by reducing the α with each step, using schedulers.

3. The entire training set may be too big, and it may therefore be computationally expensive to update
θ as a whole, especially if d >> 1. This can be solved using stochastic gradient descent.

Rather than updating the vector θ in batches, we can apply stochastic gradient descent that works
incrementally by updating θ with each term in the summation. That is, rather than updating as a batch by
performing the entire matrix computation by multiplying over N dimensions,

∇L(w) = XT︸︷︷︸
D×N

(ŷ − y)︸ ︷︷ ︸
N×1

(14)

we can reduce this load by choosing a smaller subset M⊂ D of M < N elements, which gives

∇LM(w) = XT
M︸︷︷︸

D×M

( ˆyM − y︸ ︷︷ ︸
M

)M×1 (15)

The reason we can do this is because of the following fact.
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Theorem 1.1 (Unbiasedness of SGD)

∇LM(w) is an unbiased estimator of the true gradient. That is, setting M as a random variable of
samples over D, we have

EM[∇LM(w)] = ∇L(w) (16)

Proof.

We use linearity of expectation for all M⊂ D of size M .

Even though these estimators are noisy, we get to do much more iterations and therefore have a faster net
rate of convergence. By using repeated chain rule, or a fancier term is automatic differentiation, as shown
before, SGD can be used to optimize neural networks.

Extending beyond SGD, there are other optimizers we can use. Essentially, we are doing a highly nonconvex
optimization, which doesn’t have a straightforward answer, so the best we can do is play around with some
properties. 0th order approximations are hopeless since the dimensions are too high, and second order
approximations are hopeless either since computing the Hessian is too expensive for one run. Therefore, we
must resort to some first order methods, which utilize the gradient. Some other properties to consider are:

1. Learning rate

2. Momentum

3. Batch Size

1.2 RMSProp

1.3 Adam

1.4 Adagrad

1.5 Nesterov Momentum

1.6 Sparsity-Inducing SGD
We can do SGD with clipping.

1.7 Block Coordinate Descent

1.8 Proximal Gradient Descent
1.8.1 Subdifferentials

Definition 1.1 (Convex Function)

A function f : U ⊂ Rn → R defined on a convex set U is convex if and only if for any x,y ∈ U

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) (17)

Now if f is differentiable, then convexity is equivalent to

f(x) ≥ f(y) +∇f(y)T · (x− y) (18)

for all x, y ∈ U . That is, its local linear approximation always underestimates f .

It is well known that the mean square error of a linear map is convex. However, when we impose the
L1 penalty, the loss function is now not differentiable at 0. Therefore, we must introduce the notion of a
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subgradient.

Definition 1.2 (Subgradient)

The subgradient of a convex function f : U ⊂ Rn → R is any linear map A(x) : Rn → R such that

f(y) ≥ f(x) +A(x)(y − x) (19)

for any y ∈ U . The set of all subgradients at x is called the subdifferential defined

∂f(x) = {A ∈ Rn | A is a subgradient of f at x} (20)

The subgradient also acts as a linear approximation of f , but now at nondifferentiable points of convex
functions, we have a set of linear approximations. It is clear that the subgradient at a differentiable point is
uniquely the gradient (∂f(x) = {∇f(x)), but for places like the absolute value, we can have infinite linear
approximations.

Given the subdifferential, thus the optimality condition for any convex f (differentiable or not) is

f(x∗) = min
x

f(x) ⇐⇒ 0 ∈ ∂f(x∗) (21)

known as the subgradient optimality condition, which clearly implies

f(y) ≥ f(x∗) + 0T (y − x∗) = f(x∗) (22)

Example 1.1 ()

The subdifferential of the absolute value function f(x) = |x| at any given x is

∂f(x) =


1 if x > 0

[−1, 1] if x = 0

−1 if x < 0

(23)
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1.8.2 Proximal Operators and Soft Thresholding

Definition 1.3 (Proximal Operator)

Given a lower semicontinuous convex function f mapping from Hilbert space X to [−∞,+∞], its
proximal operator associated with a point u is defined

proxf,τ (u) = argmin
x

(
f(x) +

1

2τ
||x− u||2

)
(24)

where τ > 0 is a parameter that scales the quadratic term. This is basically the point that minimizes
the sum of f(x) and the square of the Euclidean distance between x and u, scaled by 1/2τ .

Now given the loss function L(θ) = Lobj(θ) + Lreg(θ), we want to compute the proximal operator on the
regularization loss and update that with the gradient of the smooth objective loss.

θ(k+1) = proxLreg,τ

[
θ(k) − τ∇Lobj(θ

(k))
]

(25)

Let’s compute the proximal operator of the L1 loss h(θ) = λ||θ||1. We can parameterize this loss by the λ,
so we will use the notation proxλ,τ rather than proxh,τ .

proxλ,τ (u) = argmin
θ

(
λ||θ||1 +

1

2τ
||θ − u||22

)
= argmin

θ

( n∑
i=1

λ|θi|+
1

2τ
(θi − ui)

2

)
These are separable functions that can be decoupled and optimized component-wise. So, we really just want
to find

θ∗i = argmin
θi

(
λ|θi|+

1

2τ
(θi − ui)

2

)
(26)

The sum of convex functions is convex, and so we should differentiate it and find where the gradient is 0 to
optimize it.

1. When θi > 0, then we minimize λθi +
1
2τ (θi − ui)

2, so taking the gradient and setting to 0 gives

θi = ui − λτ (27)

subject to the constraint that θi > 0, or equivalently, that ui > λτ .

2. When θi < 0, then we minimize −λθi + 1
2τ (θi − ui)

2, so taking the gradient and setting to 0 gives

θi = ui + λτ (28)

subject to the constraint that θi < 0, or equivalently, that ui < −λτ .

3. When θi = 0, then we minimize λ|θi| + 1
2τ (θi − ui)

2, which doesn’t have derivative at θi = 0. So, we
can compute the subdifferential of it to get

0 ∈ ∂

(
λ|θi|+

1

2τ
(θi − ui)

2

)
= λ∂(|θi|) +

1

τ
(θi − ui)

Now at θi = 0, the subdifferential can be any value in [−1, 1], and the above reduces to

0 ∈ λ[−1, 1]− 1

τ
ui (29)

this is equivalent to saying that ui/τ is contained in the interval [−λ, λ], meaning that ui ∈ [−λτ, λτ ].
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Ultimately we get that

proxλ,τ (u) =


u− λτ if u > λτ

0 if |u| ≤ λτ

u+ λτ if u < −λτ
(30)

which can be simplified to
proxλ,τ (u) = sign(u)max{|u| − λτ, 0) (31)
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2 Second-Order Optimizers

2.1 Newton’s Method
Newton’s method is an iterative algorithm for finding the roots of a differentiable function F . An immediate
consequence is that given a convex C2 function f , we can apply Newton’s method to its derivative f ′ to get
the critical points of f (minima, maxima, or saddle points), which is relevant in optimizing f . Given a C1

function f : D ⊂ Rn −→ R and a point xk ∈ D, we can compute its linear approximation as

f(xk + h) ≈ f(xk) +Dfxk
h = f(xk) +∇f(xk) · h (32)

where Dfxk
is the total derivative of f at xk and h is a small n-vector. Discretizing this gives us our gradient

descent algorithm as
xk+1 ← xk − α f ′(xk) (33)

This linear function is unbounded, so we must tune the step size α accordingly. If α is too small, then
convergence is slow, and if α is too big, we may overshoot the minimum. Netwon’s method automatically
tunes this α using the curvature information, i.e. the second derivative. If we take a second degree Taylor
approximation

f(xk + h) ≈ f(xk) +Dfxk
h+ hT Hfxk

h (34)

then we are guaranteed that this quadratic approximation of f has a minimum (existence and uniqueness
can be proved), and we can calculate it to find our "approximate" minimum of f . We simply take the total
derivative of this polynomial w.r.t. h and set it equal to the n-dimensional covector 0. This is equivalent to
setting the gradient as 0, so

0 = ∇h

[
f(xk) +Dfxk

h+ hT Hfxk
h
]
(h)

= ∇h[Dfxk
h](h) +∇h[h

T Hfxk
h](h)

= ∇xf(xk) +Hfxk
h

=⇒ h = −[Hfxk
]−1∇xf(xk)

which results in the iterative update

xk+1 ← xk − [Hfxk
]−1∇xf(xk) (35)

Note that we require f to be convex, so that Hf is positive definite. Since f is C2, this implies Hf is also
symmetric, implying invertibility by the spectral theorem. Note that Newton’s method is very expensive,
since we require the computation of the gradient, the Hessian, and the inverse of the Hessian, making the
computational complexity of this algorithm to be O(n3). We can also add a smaller stepsize h to control
stability.

Algorithm 2 Newton’s Method

Require: Initial x0, Stepsize h (optional)
for t = 0 to T until convergence do

g(xt)← ∇f(xt)
H(xt)← Hfxt

H−1(xt)← [H(xt)]
−1

xt+1 ← xt − hH−1(xt) g(xt)
end for

2.2 BFGS
Netwon’s method is extremely effective for finding the minimum of a convex function, but there are two
disadvantages. First, it is sensitive to initial conditions, and second, it is extremely expensive, with a com-
putational complexity of O(n3) from having to invert the Hessian. An alternative family of optimizers, called

9/ 14



Optimization Muchang Bahng Spring 2024

quasi-Newton methods, try to approximate the Hessian (or Jacobian) with Ĥf , reducing the computational
cost without too much loss in convergence rates, and simply use this approximation in the Newton’s update:

xk+1 ← xk − [Ĥfxk
]−1∇xf(xk)

The method of the Hessian approximation varies by algorithm, but the most popular is BFGS.

So how do we approximate the Hessian with only the gradient information? With secants. Starting off with
f : R −→ R, let us assume that we have two points (xk, f(xk)) and (xk+1, f(xk+1)). We can approximate
our derivative (gradient in dimension 1) at xk+1 using finite differences:

f ′(xk+1)(xk+1 − xk) ≈ f(xk+1)− f(xk)

and doing the same for f ′ gives us the second derivative approximation:

f ′′(xk+1)(xk+1 − xk) ≈ f ′(xk+1)− f ′(xk)

which gives us the update:
xk+1 ← xk −

xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk)

This method of approximating Netwon’s method in one dimension by replacing the second derivative with its
finite difference approximation is called the secant method. In multiple dimensions, given two points xk,xk+1

with their respective gradients ∇f(xk),∇f(xk+1), we can approximate the Hessian Ĥfxk+1
≈ D(∇f)xk+1

(which is the total derivative of the gradient) at xk+1 with the equation

Ĥfxk+1
(xk+1 − xk) = ∇xf(xk+1)−∇xf(xk)

This is solving the equation of form Ax = y for some linear map A. Since Ĥfxk+1
is a symmetric n × n

matrix with n(n + 1)/2 components, there are n(n + 1)/2 unknowns with only n equations, making this
an underdetermined system. Quasi-Newton methods have to impose additional constraints, with the BFGS
choosing the one where we want Ĥfxk+1

to be as close as to Ĥfxk
at each update k + 1. Luckily, we can

formalize this notion as minimizing the distance between fxk+1
and Ĥfxk

. Therefore, we wish to find

arg min
Ĥfxk+1

||Ĥfxk+1
− Ĥfxk

||F ,

where || · ||F is the Frobenius matrix norm, subject to the restrictions that Ĥfxk+1
be positive definite and

symmetric and that Ĥfxk+1
(xk+1 − xk) = ∇xf(xk+1) − ∇xf(xk) is satisfied. Since we have to invert it

eventually, we can actually just create an optimization problem that directly computes the inverse. So, we
wish to find

arg min
(Ĥfxk+1

)−1

||(Ĥfxk+1
)−1 − (Ĥfxk

)−1||F

subject to the restrictions that

1. (Ĥfxk+1
)−1 be positive definite and symmetric. It turns out that the positive definiteness restriction

also restricts it to be symmetric.

2. xk+1 − xk = (Ĥfxk+1
)−1[∇xf(xk+1)−∇xf(xk)]

After some complicated mathematical derivation, which we will not go over here, the problem ends up
being equivalent to updating our approximate Hessian at each iteration by adding two symmetric, rank-one
matrices U and V scaled by some constant, which can each be computed as an outer product of vectors with
itself.

Ĥfxk+1
= Ĥfxk

+ aU + bV = Ĥfxk
+ auuT + bvvT

where u and v are linearly independent. This addition of a rank-2 sum of matrices aU + bV , known as a
rank-2 update, guarantees the "closeness" of Ĥfxk+1

to Ĥfxk
at each iteration. With this form, we now
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impose the quasi-Newton condition. Substituting ∆xk = xk+1 − xk and yk = ∇xf(xk+1) − ∇xf(xk), we
have

Ĥfxk+1
∆xk = Ĥfxk+1

∆xk + auuT∆xk + bvvT∆xk = yk

A natural choice of vectors turn out to be u = yk and v = Ĥfxk
∆xk, and substituting this and solving gives

us the optimal values

a =
1

yT
k ∆xk

, b = − 1

∆xT
k Ĥfxk

∆xk

and substituting these values back to the Hessian approximation update gives us the BFGS update:

Ĥfxk+1
= Ĥfxk

+
yky

T
k

yT
k ∆xk

− Ĥfxk
∆xk∆xT

k Ĥfxk

∆xT
k Ĥfxk

∆xk

We still need to invert this, and using the Woodbury formula

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

which tells us how to invert the sum of an intertible matrix A and a rank-k correction, we can derive the
iterative update of the inverse Hessian as

(Ĥfxk+1
)−1 =

(
I − ∆xky

T

yT
k ∆xk

)
(Ĥfxk

)−1

(
I − yk∆xT

k

yT
k ∆xk

)
+

∆xk∆xT
k

yT
k ∆xk

Remember that this is the iterative step that we want to actually compute, rather than the ones computing
the regular Hessian. The whole point of using the Woodbury formula to derive an inverse update step was
to do away with the tedious O(n3) computations of inverting an n × n matrix. This rank-2 update also
preserves positive-definiteness.

Finally, we can choose the initial inverse Hessian approximation (Ĥfxk+1
)−1 to be the identity I or the

true inverse Hessian (Hfxk+1
)−1 (computed just once), which would lead to more efficient convergence. The

pseudocode for BFGS is a bit too long and confusing to include here, but most of the time, we won’t be
implementing BFGS by hand; efficient and established BFGS optimizers are already in numerous packages.
Like most optimizers, BFGS is not guaranteed to converge to the true global minimum.
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3 Constrainted Optimization

3.1 KKT
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4 Simulated Annealing
Unlike the previous optimizers, simulated annealing is useful in finding global optima in the presence of
multimodal functions within a usually very large discrete space S. Given some function f defined on S, we
would like to find its global maximum. Rather than picking the "best move" using gradient information
(like SGD), we propose a random move. Let us start at a state θk and propose a random Pk+1. We denote
∆f = f(Pk+1)− f(θk).

1. If the selected move improves the solution (i.e. ∆f ≥ 0, then it is always accepted and we set
θk+1 ← Pk+1.

2. Otherwise, when ∆f < 0 it makes the move with the following acceptance probability

p(θk+1 ← Pk+1 | ∆f < 0) = e∆f/T (t)

We can see that if ∆f is very negative (the move is very bad), then this probability of acceptance decreases
as well. Furthermore, T (t) represents some sort of "temperature" that we anneal as a function of time, called
the annealing schedule. T starts off at a high value, increasing the rate at which bad moves are accepted,
which promotes exploration of S and allows the algorithm to travel to suboptimal areas. As T decreases,
the vast majority of steps move uphill, promoting exploitation, which means that once the algorithm is in
the right search space, there is no need to search other sections of the search space.

Algorithm 3 Simulated Annealing

Require: Initial θ0, Transition kernel π(θk+1 | θk), Annealing schedule T (t)
for t = 0 to T until convergence do

Pt+1 ∼ π(· | θt)
if f(Pt+1)− f(θt) ≥ 0 then

θt+1 ← Pt+1

else
δ ∼ Uniform[0, 1]
if δ < exp[(f(Pt+1)− f(θt))/T (t)] then

θt+1 ← Pt+1

else
θt+1 ← θt

end if
end if

end for

This algorithm is very easy to implement and provides optimal solutions to a wide range of problems (e.g.
TSP and nonlinear optimization), but it can take a long time to run if the annealing schedule is very long.
We can stop either if T reaches a certain threshold or if we have determined convergence.
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