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We will use NLTK, PyTorch. Natural language processing refers to the use of machine learning to learn
language tasks. The problems are very broad and wide, including:

1. predictive typing

2. speech recognition

3. handwriting recognition

4. spelling/grammar correction

5. authorship identification

6. machine translation

7. summarization

8. dialogue

9. etc.

Obviously these are not simply just the “ChatGPT"-like tasks that we are familiar with today, but use ideas
from computer vision and other fields to develop better models. At the basis of a lot of these problems is
language modelling, which will be the bulk of these notes.

1 Basics

1.1 Regular Expressions
Regular expressions allow us to find patterns in strings. In Python, the r in front of the string stands for
raw strings, which literally takes in special characters (e.g. escape characters). Below, we search for the
string and.

1 import re
2

3 data = """Natural Language Processing (NLP) is an interdisciplinary field that empowers
4 67 machines to understand, interpret, and generate human language. Its 4 applications
5 span across various domains, including chatbots, language translation, sentiment
6 analysis, and information extraction. We’re going to rock’n’roll in the long-term. """
7

8 pattern = re.compile(r"and")
9 matches = pattern.finditer(data)

10

11 for match in matches:
12 print(match)
13

14 # <re.Match object; span=(100, 103), match=’and’>
15 # <re.Match object; span=(116, 119), match=’and’>
16 # <re.Match object; span=(255, 258), match=’and’>
17

18 print(data[100:103], data[116:119], data[255:258])
19 # and and and

There are special characters that allows us to identify other more specific patterns. We list them below.

1 . - Any Character Except New Line
2 \d - Digit (0-9)
3 \D - Not a Digit (0-9)
4 \w - Word Character (a-z, A-Z, 0-9, _)
5 \W - Not a Word Character
6 \s - Whitespace (space, tab, newline)
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7 \S - Not Whitespace (space, tab, newline)
8

9 \b - Word Boundary
10 \B - Not a Word Boundary
11 ^ - Beginning of a String
12 $ - End of a String
13

14 [] - Matches Characters in brackets
15 [^ ] - Matches Characters NOT in brackets
16 | - Either Or
17 ( ) - Group

1.2 Preprocessing
1.2.1 Tokenization and Stop Words

Tokenization is the process of dividing up a corpus or a complex sentence into words, also known as tokens.
Using a streamlined series of regular expression evaluation, we are able to detect various words to tokenize.
Note the following facts:

1. Uppercase and lowercase versions of the same word (e.g. Language vs language) are two different
tokens.

2. Punctuations and special characters also count as a token (e.g. ., ,, (, )).

3. Hyphenated words and some words with apostrophes are not separated, even though both components
are valid words, since they are meant to be used together (e.g. rock’n’roll or long-term).

4. Some words with apostrophes that are abbreviations are indeed separated (e.g. We’re to We, ’re).

1 from nltk.tokenize import sent\_tokenize, word\_tokenize
2

3 example_string = """Natural Language Processing (NLP) is an interdisciplinary
4 field that empowers machines to understand, interpret, and generate human
5 language. Its applications span across various domains, including chatbots,
6 language translation, sentiment analysis, and information extraction. We’re
7 going to rock’n’roll in the long-term. """
8

9

10 print(sent\_tokenize(example_string))
11 [’Natural Language Processing (NLP) is an interdisciplinary field that empowers
12 machines to understand, interpret, and generate human language.’, ’Its
13 applications span across various domains, including chatbots, language
14 translation, sentiment analysis, and information extraction.’, "We’re going to
15 rock’n’roll in the long-term."]
16

17 print(word_tokenize(example\_string))
18 [’Natural’, ’Language’, ’Processing’, ’(’, ’NLP’, ’)’, ’is’, ’an’,
19 ’interdisciplinary’, ’field’, ’that’, ’empowers’, ’machines’, ’to’,
20 ’understand’, ’,’, ’interpret’, ’,’, ’and’, ’generate’, ’human’, ’language’,
21 ’.’, ’Its’, ’applications’, ’span’, ’across’, ’various’, ’domains’, ’,’,
22 ’including’, ’chatbots’, ’,’, ’language’, ’translation’, ’,’, ’sentiment’,
23 ’analysis’, ’,’, ’and’, ’information’, ’extraction’, ’.’, ’We’, "’re",
24 ’going’, ’to’, "rock’n’roll", ’in’, ’the’, ’long-term’, ’.’]
25 0.004939079284667969 seconds

Sometimes, there are words that are used so often that it is pointless to have them (e.g. the, an, a, etc.). We
don’t want these words to take up space in our database, so we can use NLTK to store a list of words that
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we consider to be stop words. The default library of stop words in multiple languages can be downloaded
with the following command, and we can execute them on the paragraph above. In NLTK 3.8.1, there are
a total of 179 stop words in English, and you can add or remove the words in this file manually.

1 nltk.download("stopwords")
2 from nltk.corpus import stopwords
3

4 print(stopwords.words("english"))
5

6 [’i’, ’me’, ’my’, ’myself’, ’we’, ’our’, ’ours’, ’ourselves’, ’you’, "you’re",
7 "you’ve", "you’ll", "you’d", ’your’, ’yours’, ’yourself’, ’yourselves’, ’he’,
8 ’him’, ’his’, ’himself’, ’she’, "she’s", ’her’, ’hers’, ’herself’, ’it’, "it’s",
9 ...

10 ’haven’, "haven’t", ’isn’, "isn’t", ’ma’, ’mightn’, "mightn’t", ’mustn’,
11 "mustn’t", ’needn’, "needn’t", ’shan’, "shan’t", ’shouldn’, "shouldn’t", ’wasn’,
12 "wasn’t", ’weren’, "weren’t", ’won’, "won’t", ’wouldn’, "wouldn’t"]

To filter the stopwords, we can loop over the words in the token list and remove it if it is a stop word.

1.2.2 Lemmatization and Stemming

Stemming is the process of producing morphological variants of a root word. For example, a stemming
algorithm reduces the words “chocolates", “chocolatey", and “choco" to the root word “chocolate." It helps
to reduce different variants into a unified word for easier retrival of data.

1 from nltk.stem import PorterStemmer
2

3 ps = PorterStemmer()
4 words = ["program", "programs", "programmer", "programming", "programmers"]
5 for w in words:
6 print(w, " : ", ps.stem(w))
7

8 program : program
9 programs : program

10 programmer : program
11 programming : program
12 programmers : program

1.3 Syntactic Structure
1.3.1 Parts of Speech

The parts of speech can be defined with varying degrees of refinement. First, let us get the basics down.
Parts of speech fall into two broad categories: closed class and open class. Closed classes are those with
relatively fixed membership, such as prepositions (new prepositions are rarely coined). However, nouns and
verbs are open class since new nouns and verbs (e.g. iPhone or to fax) are always being created.
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Class Tag Description Example

O
pe

n
C

la
ss

ADJ Adjective: noun modifiers describing properties red, young, awesome
ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
NOUN Words for persons, places, things, etc. algorithm, cat, mango, beauty
VERB Words for actions and processes draw, provide, go
PROPN Proper noun: name of a person, organization, place, etc. Regina, IBM, Colorado
INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello

C
lo

se
d

C
la

ss

ADP Adposition (Preposition/Postposition): marks a noun’s
spatial, temporal, or other relation

in, on, by, under

AUX Auxiliary: helping verb marking tense, aspect, mood,
etc.

can, may, should, are

CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
DET Determiner: marks noun phrase properties a, an, the, this
NUM Numeral one, two, first, second
PART Particle: a function word that must be associated with

another word
’s, not, (infinitive) to

PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others
SCONJ Subordinating Conjunction: joins a main clause with a

subordinate clause such as a sentential complement
that, which

O
th

er PUNCT Punctuation ; , ()
SYM Symbols like $ or emoji $, %
X Other asdf, qwfg

Table 1: Class, Tag, Description, and Example

Now there are two prominent frameworks used in the field of syntax to describe the structure of sentences
in natural languages: Phrase Structure Grammar (PSG) and Dependency Grammar (DG). They
differ in their underlying principles, so we will introduce them separately.

1.3.2 Phrase Structure/Context Free Grammar

We have our starting units as words

1 the cat cuddly by door
2 DET NOUN ADJ PREP NOUN

Now these words can combine into phrases. A noun phrase (NP) refers to a phrase describing a noun; a
verb phrase (VP) refers to a phrase describing a verb, and a prepositional phrase (PP) refers to describing
a noun’s spatial, tempral, or other relation.

1 the cuddly cat by [the door] walking over there
2 NP PP NP VP

From the example above, we can see that these phrases can be nested within each other. For example,

1 the cuddly cat by the door
2 [ NP ] [ NP ]
3 [ PP ]
4 [ NP ]

We can make rules for how NP, PP and VPs are structured. By looking at the cuddly cat, we can make
the following rule

1 NP --> DET ADJ NOUN
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The adjective can be there or not, so in linguistics we have the notation (ADJ)*. Furthermore, if we attach
a prepositional phrase at the end, we can have some structure like

1 NP --> DET (ADJ)* NOUN (PP)

which is a generalization of the first rule. A prepositional phrase such as by the door has the structure

1 PP --> PREP DET NOUN

A verb phrase like talked to the cat has the structure

1 VP --> VERB PREP DET NOUN

These set of rules is called the grammar, and they determine what phrases we are or aren’t allowed to
use. If we have another phrase like the cat walked behind the dog, which is a valid sentence, we need
to account for this validity by adding the extra grammar rules

1 the cat walked behind the dog
2 [ NP ] [ VP ]
3 [ NP ] [ VERB] [ PP ]
4 DET NOUN VERB PREP DET NOUN

But there are a countless variety of sentences out there, and we can’t keep making rules forever.

1.3.3 Dependency Grammar

While phrase structure grammar is a popular paradigm for syntax construction, starting from the early 2000s,
NLP researchers have swung behind dependency grammar. Given a phrase or a sentence, the dependency
structure shows which words depend on (modify, attach to, or are arguments of) which other words.
Humans communicate complex ideas by composing words together into bigger units to convey complex
meanings. Listeners need to work out what modifies what, and similarly, a model needs to understand
sentence structure in order to be able to interpret language correctly.

Let us start off with understanding what it means for a word to be dependent on another. Informally, a
word A is a dependent of word B if B is needed to complete the phrase of A.

The basic idea is given a sentence, we want to take each word and find out its part of speech and what other
words modify it. This creates a dependency tree.

Look in the large crate in the kitchen by the door

The dependency structure answers questions like “which crate?" or “where are you looking?" It may be more
natural for us to have in as a dependency of look, with crate being the dependency of of in, as such

Look in the large crate
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However, in the universal dependency structure, which aims to create these for many human languages,
the design decisions led to the other convention.

Dependency structure is especially important to minimize ambiguity, as in the following phrases:

1. Prepositional Phrase Attachment Ambiguity: The sentence can have two meanings: The police in San
Jose kill a man who has a knife, or the police in San Jose use a knife to kill a man.

San Jose cops kill man with knife

2. Coordination Scope Ambiguity : We don’t know whether Michael Jordan is both an NBA and MLB
player, or if an NBA player is separate.

NBA player and MLB player Michael Jordan appointed to board

3. Verb Phrase Attachment Ambiguity : For example, “mutilated body washes up on Rio beach to be used
for Olympics beach volleyball."

4. Adjective/Adverbial Modifier Ambiguity

1.3.4 Dependency Conditioning Preferences

Now comparing these two paradigms, it may seem that writing a set of grammar rules may be more efficient
than using a collection of dependency trees, called tree banks. After all, having a set of general grammar
rules certainly seems easier than getting people to annotate a bunch of text with their parts of speech and
modifiers. But treebanks are good since we can reuse the labor (many parsers and parts-of-speech taggers
can be built on top of it), it gives broad coverage and not just a few intuitions, and it gives frequencies and
distributional information of these words. Furthermore, there are other more useful sources of information:

1. Bilexial affinities: The dependency is plausible

2. Dependency Distance: Most dependencies are between nearby words.

3. Intervening Material : Dependencies rarely span intervening words or punctuation.

4. Valency of Heads: How many dependents on which side are usual for a head? e.g. given a noun, what
kind of dependents would it have usually? It would normally have a determiner to the left (and almost
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never to the right) and an adjective to the left also. Perhaps a verb to the right.

Furthermore, there are some constraints on these dependencies, such as only one word is a dependent of
ROOT and we don’t want any cycles. This makes dependencies a tree, hence the name. The final issue is
whether arrows can cross (be non-projective) or not. The definition of a projective parse is that there
are no crossing dependency arcs when the arrows are laid out in their linear order, which all arcs above the
words. Usually, we want the arrows to be projective so that we have a nested phrase structure like we saw
in context free grammar, and most syntactic structure is projective, but dependency theory normally does
allow non-projective structures to account for displaced constituents.

Now as for building dependency parsers, there are many ways to do this:

1. Dynamic Programming (Eisner 1996) gives a clever algorithm with complexity O(n3) by producing
parse items with heads at the ends rather than in the middle.

2. Graph Algorithms: You create a minimum spanning tree for a sentence.

3. Constraint Satisfaction: Edges are eliminated that don’t satisfy hard constraints.

4. Transition-Based Parsing or Deterministic Dependency Parsing uses a greedy choice of attachments
guided by good machine learning classifiers.

2 Embeddings
Our goal is to create some embedding method that maps the vocabulary of words into some vector space V.
One could simply one-hot-encode all the words, but this is memory inefficient and the structure of the words
are not captured. That is, we would like some associated metric d that tells us how similar two words are.
At this point, it is not clear that this similarity entails, whether it’d be similar definitions (dog and canine),
similar in groupings (e.g. dog and cat), or similar in context (doctor and scalpel).

There have been many attempts to create this mapping, but the most successful by far has followed the
idea of distributional semantics. This hypothesis states that words that occur in similar contexts tend
to have similar meanings.

2.1 Frequency Semantics
2.1.1 Term-Document Matrix

Let’s start with the simplest distributional model based on the co-occurence matrix, which represents
how often words co-occur.

Definition 2.1 (Term-Document Matrix)

Given D = {D1, . . . , Dm} documents and V = {v1, . . . , vn} total words (tokens) in the document, the
term-document matrix is a n × m matrix where the ijth entry represents the number of times
token vi occurred in document Dj . One can see how this will be a sparse matrix, since there may be
many infrequent words that appear only once in exactly one document.

Example 2.1 ()

Given the following three documents

D1 : I like deep learning.

D2 : I like NLP.

D3 : I enjoy flying.

we can construct a term-document matrix as
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D1 D2 D3

I 1 1 1
like 1 1 0
deep 1 0 0

learning 1 0 0
NLP 0 1 0
enjoy 0 0 1
flying 0 0 1

Table 2: Term-Document Matrix

Now there are two ways that we can analyze this matrix. First, note that the columns M:,i are vectors that
represent the words in document Di. This is known as the bag-of-words model. The rows Mj,: represent
the frequency of a certain word vj in each document. Therefore, we can compare documents by comparing
their corresponding vectors Di, Dj which represent the distribution of its words, and we can compare words
by comparing their corresponding vectors vi, vj , which represent their distribution over the documents.

Upon inspection you can notice that this is exactly feature extraction. Each document in the corpus is a
data point and the count of specific words are the features. We can implement this with scikit learn’s feature
extractor, which gives the word count of a corpus, represented as a list of strings. We first load in our corpus.

1 from sklearn.feature_extraction.text import CountVectorizer
2 import pandas as pd
3

4 corpus = [
5 "I like deep learning.",
6 "I like NLP.",
7 "I enjoy flying."
8 ]
9

10 cvectorizer = CountVectorizer()
11 X = cvectorizer.fit_transform(corpus)
12 terms = cvectorizer.get_feature_names_out()
13

14 # List of all terms in order of document-term matrix columns.
15 print(terms)
16 # [’deep’ ’enjoy’ ’flying’ ’learning’ ’like’ ’nlp’]
17

18 # Document term matrix
19 print(X.toarray())
20 # [[1 0 0 1 1 0]
21 # [0 0 0 0 1 1]
22 # [0 1 1 0 0 0]]
23

24 # Data type of matrix and shape (note this is a sparse matrix type)
25 print(type(X)) # <class ’scipy.sparse._csr.csr_matrix’>
26 print(X.shape) # (3, 6)
27

28 documentTermMatrix = pd.DataFrame(X.toarray(),
29 index=["Doc 1", "Doc 2", "Doc 3", ],
30 columns=terms)
31

32 print(documentTermMatrix.to_string())
33

34 deep enjoy flying learning like nlp
35 Doc 1 1 0 0 1 1 0
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36 Doc 2 0 0 0 0 1 1
37 Doc 3 0 1 1 0 0 0

2.1.2 Term-Term Matrix

Another way to compare words is through a term-term matrix.

Definition 2.2 (Term-Term Matrix)

A term-term matrix, or a co-occurence matrix, is a |V |× |V | matrix that represents the number
of times the row (target, center) word and the column (context) word co-occur in some context in
some training corpus.

1. The context could be the document, in which case the element Mij represents the number of
times the two words vi, vj appear in the same document.

2. It is most common to use smaller contexts, generally a window around the word, e.g. ±4 words,
in which case Mij represents the number of times (in some training corpus) vj appears around
±4 words around vi.

Example 2.2 ()

Given a window length of 1 (most common for window length to be 5 through 10) and a corpus of
three documents:

D1 : I like deep learning.

D2 : I like NLP.

D3 : I enjoy flying.

the co-occurence matrix (note that it should be symmetric). is

I like deep learning NLP enjoy flying
I 0 2 1 0 0 1 0

like 2 0 1 0 1 0 0
deep 1 1 0 1 0 0 0

learning 0 0 1 0 0 0 0
NLP 0 1 0 0 0 0 0
enjoy 1 0 0 0 0 0 1
flying 0 0 0 0 0 1 0

Table 3: Co-occurrence Matrix

This gives us a representation of words as co-occurence vectors, which is similar to the word2vec embed-
ding since they both use windows of a certain size.

2.2 Cosine Similarity
To measure similarity between two words or documents, it may be natural to take some sort of distance in
R|V |. However, due to the size of the documents being nonuniform, we would like to measure how parallel
one vector is to another. Two very similar documents Di, Dj , where one is twice as long as the other, would
be expected to have a proportional document vector satisfying Di ≈ 2Dj . Therefore, the angle between the
two vectors would be best representation of the similarity metric.

cosine(vi, vj) =
vi · vj

||vi|| ||vj ||
= cos θ
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2.3 TF-IDF and PMI
Let us focus on the vectors representing words, where the dimensions are documents. The words v1, v2 are
essentially defined by their frequency in a corpus of documents D1, . . . , Dm. The TF-IDF algorithm focuses
on two main modifications of the frequency representation mentioned above.

1. TF : The raw frequency of the words may be a skewed representation of the token, since the difference
between 0 and 1 occurrence in document Di is not the same as the difference between 1000 and 1001
occurrences in another document. Unimportant stop words like “the" that occur frequently enough
shouldn’t have as much of an effect on the representation of the word. We can filter these stop words
out like before, but depending on context, there may be other words that are a less drastic impact.
The additional impact of another instance of a word should have diminishing returns.

2. IDF : “Special" words that occur in only a few documents should have higher weights, since they are
useful for discriminating those documents from the rest of the collection. Therefore, we would want
this measure to be inversely proportional to the number of documents it is in. We can define

N

dft

where N is the total number of documents and dft is the number of documents that word t is in. Due
to the large number of documents in a corpus, this value is also squashed down by a logarithm.

Given these two ideas, we define the two following forms of measure.

Definition 2.3 (TF)

The term frequency is a measure of the frequency of the word t in the document d, squashed by
the logarithm function (by diminishing returns) and adding 1 so that this weight is 0 when there are
0 occurences.

tft,d = log10
(
count(t, d) + 1

)
Definition 2.4 (IDF)

The inverse document frequency is defined

idft = log10

(
N

dft

)

Definition 2.5 (tf-idf)

The tf-idf weighted value for word t in document d thus combines the two values together.

wt,d := tft,d · idft

You can implement this in sklearn with the Tf-idf vectorizer, which again extracts features from a corpus.
Let us use the same corpus as above. We can compare this matrix to the document-term matrix.

1 from sklearn.feature_extraction.text import TfidfVectorizer
2 import pandas as pd
3

4 corpus = [
5 "I like deep learning.",
6 "I like NLP.",
7 "I enjoy flying."
8 ]
9
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10 vectorizer = TfidfVectorizer()
11 X = vectorizer.fit_transform(corpus)
12

13 tfidfMatrix = pd.DataFrame(X.toarray(),
14 index=["Doc 1", "Doc 2", "Doc 3", ],
15 columns=terms)
16

17 print(tfidfMatrix)
18 deep enjoy flying learning like nlp
19 Doc 1 0.622766 0.000000 0.000000 0.622766 0.473630 0.000000
20 Doc 2 0.000000 0.000000 0.000000 0.000000 0.605349 0.795961
21 Doc 3 0.000000 0.707107 0.707107 0.000000 0.000000 0.000000

An alternative weighting function to tf-idf is the PPMI (positive PMI), which is used for term-term matrices,
when the vector dimensions correspond to words rather than documents. PPMI draws on the intuition that
the best way to weigh the association between two words is to ask how much more the two words co-occur
in our corpus than we would have a priori expected to appear by chance.

Definition 2.6 (PMI)

The pointwise mutual information between a target word w and context word c is defined as

PMI(w, c) = log2
P (w, c)

P (w)P (c)

We can see that the numerator observes the joint distribution of the two words observed together,
while the denominator represents their observation independently. We take the logarithm so that its
range is (−∞,+∞), where a value of greater than 0 indicates that the words co-occur more often
and values less than 0 indicates that words are co-occuring less often than chance. However, negative
PMI values tend to be unreliable since these probabilities can get very small, unless our corpus is
enormous. Therefore, in practicality, we use the positive PMI, which just sets all negative values
to 0.

PPMI(w, c) = max

{
0, log2

P (w, c)

P (w)P (c)

}

Given a term-term matrix, we can organize the PPMIs in a matrix. That is, let fij be the number of times
word wi occurs in context cj .

2.4 Latent Semantic Analysis (LSA)
Clearly, we can see that text data suffers from many problems.

1. the vectors increase in size with vocabulary

2. it is very high dimensional and requires a lot of storage, though it is sparse. Even after preprocessing
methods such as stop word removing, tokenization, and stemming, the document-term or TF-IDF
matrices A are extremely high dimensional.

3. subsequent classification models have sparsity issues, implying that models may be less robust

Our idea is to store the most important information in a fixed, small number of dimensions (ideally between
25 and 1000): a dense vector. A linear dimensionality reduction technique is to use principal component
analysis. We basically take the SVD of the matrix, which reformulates the text data of r linearly uncorrelated
latent (hidden) features through a low-rank approximation.

There are multiple motivations for this:
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1. The original matrix may simply by too large to handle computationally and this approximation is a
necessary evil.

2. The original matrix may be noisy, and anecdotal instances of terms are to be eliminated.

3. The original matrix may be overly sprase relative to the “true" matrix. That is, the original matrix
lists only the words actually in each document, whereas we may be interested in all words related to
each document.

We take the SVD of the matrix,
A = UΣVT

where U and V are unitary, with Σ diagonal. By rearranging the columns of U and V, we can have the
diagonal entries (i.e. singular values) of Σ to go from greatest to least. Since the yellow part in the middle
matrix is 0, the yellow of the right does not matter in the decomposition. Now to perform dimensionality
reduction, we can remove the blue parts.

That is, we

1. Keep the top k right singular vectors V 7→ Vk

2. Keep the top k left singular vectors U 7→ Uk

3. Keep only the top k singular values Σ 7→ Σk

The rank-k approximation is
Ak = UkΣkV

T
k

After this, the documents and the words are combard by cosine similarity. It turns out that the normal
error assumptions for SVD does not align with the structure of the raw counts data, which may be skewed
with extremely frequent words (e.g. “the"). Therefore, we can focus on the TF-IDF matrix, which logs the
frequencies, bounds some counts, or may ignore stop words. These kinds of models were explored a lot in the
90s or the 00s, with creative ideas like ramped windows that weighted closer words more than further ones,
or used Pearson correlations instead of counts. In fact, Rohde’s COALS model showed interesting semantic
properties between words that captured nice patterns between an action and an individual doing the action.
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So by taking the vector differences we can say things like “drive is to driver as swim is to swimmer."

2.5 GenSim Package (Generate Similar)
The Python package gensim is used to implement the word2vec algorithm. The core concepts of the package
are:

1. Document : Some text represented by a string.

2. Corpus: A collection of documents.

3. Vector : A mathematically convenient representation of a document.

4. Model : An algorithm for transforming vectors from one representation to another.

2.6 Word2Vec
Note that the word representations are sparse. There are many computational tricks to work with sparse
vectors, but there tends to be lots of noise and problems with them. Rather, we look at a more powerful
word representation called embeddings, which are short dense vectors ranging in dimension from 50 to
1000. It turns out that dense vectors work better in every NLP task than sparse vectors.

The intuition for word2vec is that instead of counting how often each word w occurs near, say apricot, we’ll
instead train a classifier on a binary prediction task: “Is word w likely to show up near apricot?" We don’t
actually care about this prediction task. Intead, we will take the learned classifier weights as the word
embeddings. Furthermore, we can just use running text as implicitly supervised training data. A context
word c that occurs near apricot acts as a sample of “yes" to the question above.

Imagine a sentence like the following, with target word apricot, with a windows of ±2 context words.

... lemon, a [ tablespoon of apricot jam, a ] pinch ...

Now our goal is to train a classifier where given the pair x = (w, c), our output must be y ∈ {0, 1}, where
0 means not existing and 1 means within. This means that y | x ∼ Bernoulli(µ), where µ is dependent on
(w, c). This probability should be higher the more similar w and c are. We have already established that
the similarity metric can be effectively represented by the dot product, we have

µ = µ(w, c) =
1

1 + exp(−w · c)

and so, the idea of our algorithm is that every time we find a window of context words around a target word,
we should update both w and c s.t. they are more parallel.

2.6.1 Skip Gram with Negative Sampling

Let us formalize this concept a bit. Let us one-hot encode every word in our corpus to the set

V = {v1, . . . ,v|V|}

Now, what we wish to do is to embed all these vectors in some RE , where E is a hyperparameter that we
select and preferably E < |V|. The embeddings wi for every vi = ei can be simply stored as the columns of
a E × |V | matrix.  | . . . |

w1 . . . w|V|
| . . . |

 |
ei
|


Let us denote this matrix θw. Therefore, our model given the one-hot encoded target and context words
w, c is

µθw(w, c) =
1

1 + exp[−(θww) · (θwc)]
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Now it turns out that the computations become easier if we have two embedding matrices, θw for the target
word w and θc for the context word c, so our model really is

µθ(w, c) =
1

1 + exp[−(θww) · (θcc)]

where θ = (θw,θc). We can imagine these two matrices sort of “stacked" on top of each other.

Now given whatever sequence of ±c context words around a target, we will make the simplifying assumption
that these words occur independently, and so the probability that a sequence of words ct−m:t+m occur around
wt with window size m is

µθ(w, ct−m:t+m) =

m∏
j=−m

µθ(w, cj)

Now that we have our probabilistic model, we show how to generate our relevant training data. Consider
the phrase

... lemon, a [ tablespoon of apricot jam, a ] pinch ...

with apricot as our target word. Just from this, we can generate 4 positive samples

x(1), y(1) = (apricot, tablespoon), 1

x(2), y(2) = (apricot, of), 1

x(3), y(3) = (apricot, jam), 1

x(4), y(4) = (apricot, a), 1

where the words above would be in their one-hot encoded form. For training a binary classifier we need
to have negative samples, too. Skip gram with negative sampling in fact uses more negative samples than
positive ones (with the ration between them set by a parameter R). So for every positive sample, we pick a
random noise word from the entire vocabulary, constrained not to be the target word w. While this model
could work with R = 1, it tends to perform better and is more stable if we have higher numbers, such as
R = 10, 15. For example, if R = 2, then we would have 8 negative samples as such:

x(5), y(5) = (apricot, aardvark), 0

x(6), y(6) = (apricot,my), 0

x(7), y(7) = (apricot,where), 0

x(8), y(8) = (apricot, coaxial), 0

x(9), y(9) = (apricot, seven), 0

x(10), y(10) = (apricot, forever), 0

x(11), y(11) = (apricot, dear), 0

x(12), y(12) = (apricot, if), 0
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But these negative samples are not chosen randomly or according to counts. Rather, we sample them
according to their weighted unigram frequency, usually of form

pα(c) =
count(c)α∑
v count(v)

α

and setting α = 3/4 gives the best results in practice, since it gives rare noise words slightly higher probability
so most of the probability measure wouldn’t be dominated by stop words like “the". This is a probabilistic
method, as there may be times when the negative sample actually occurs in the context, but 99.99% of the
time it will be a true negative sample.

To train the model, we should compute the likelihood of the entire training data. Given that we have our
training data of form (x(n), y(n)) = (w(n), c(n), y(n)) for n = 1, . . . , N , our likelihood for the entire dataset is

L(θ) =

N∏
n=1

µθ(w
(n), c(n))y

(n)(
1− µθ(w

(n), c(n))
)1−y(n)

where we can take the negative average log and simplify further, but this is the extent that we will go for
now.

−ℓ(θ) = − 1

N

N∑
n=1

y(n) log
(
µθ(w

(n), c(n))
)
+ (1− y(n)) log

(
1− µθ(w

(n), c(n))
)

Obviously we can use optimization techniques to minimize this w.r.t. θ.

2.6.2 Continuous Bag of Words (CBOW)

To implement doc2vec, we utilize nltk for preprocessing and gensim to implement word2vec.

1 import string, nltk
2 from nltk.corpus import brown
3 from gensim.models import Word2Vec
4

5 nltk.download("brown")
6

7 # Preprocessing data to lowercase all words and remove single punctuation words
8 document = brown.sents()
9

10 data = []
11 for sent in document:
12 new_sent = []
13 for word in sent:
14 new_word = word.lower()
15 if new_word[0] not in string.punctuation:
16 new_sent.append(new_word)
17 if len(new_sent) > 0:
18 data.append(new_sent)

This data would be a list, with each element a list of tokens making up a sentence. For example,

1 # Total number of sentences/documents in corpus = 57158
2 print(len(data))
3

4 # Total number of words in first sentence/document = 22
5 print(len(data[0]))
6

7 # First list of tokens
8 print(data[0])
9 # [’the’, ’fulton’, ’county’, ’grand’, ’jury’, ’said’, ’friday’, ’an’, ’investigation’,
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10 ’of’, "atlanta’s", ’recent’, ’primary’, ’election’, ’produced’, ’no’, ’evidence’, ’that’,
11 ’any’, ’irregularities’, ’took’, ’place’]

Now we create the word2vec model and train it with the initializer containing the following parameters. Note
that this is a stochastic process, and refer to the documentation to learn how we can make this deterministic.

1 model = Word2Vec(
2 sentences = data, # list of list of tokens
3 min_count = 5, # Ignores all words with total frequency lower than this
4 vector_size = 50, # output vector dimensions
5 window = 10, # window of context words
6 epochs = 20, # number of epochs trained over dataset
7 workers = 1, # number of worker threads for multiprocessing
8 sg = 0, # 0 for CBOW, 1 for skip-gram
9 hs = 0, # 1 for hierarchical softmax, 0 for negative sampling

10 negative = 5, # num of negative samples per positive sample in skip-gram
11 alpha = 0.025, # training step
12 min_alpha = 0.0001 # linearly decreases to this training step value
13 )

Now after training, this Word2Vec object model essentially has a dictionary with keys consisting of words in
the corpus and values to be the embedding vectors.

1 print(model.wv["love"])
2

3 [ 1.0745513 -1.8171308 -2.4329011 -0.3691842 -0.95292336 -0.54824775
4 1.1184701 -1.2525641 -0.7875846 -3.7816436 -1.341159 2.6486464
5 -0.30800238 -2.7417247 0.17696398 -2.9048784 1.621813 0.49121374
6 0.4354661 -1.6528435 -2.4828649 0.4085583 -0.7043962 2.8490443
7 -0.98837584 1.6951126 -1.607722 1.3588951 -0.03844598 -0.4779845
8 -3.2942739 1.3696849 0.07875736 1.0799417 -1.6086684 0.6993245
9 1.5824703 1.5176587 1.626068 1.7591808 -1.3893017 -2.4028397

10 -0.36541265 0.71958435 2.0678997 -1.6587187 1.6821662 -3.3152702
11 -1.6718794 -1.6396806 ]

2.6.3 Intrinsic Word Vector Evaluation

The word2vec performs quite well in preserving semantic accuracy (i.e. the meanings of the word). That
is, it is true that the embedding i 7→ wi often satisfies

wqueen = wking − wmale + wfemale

To quantify this analogy of a : b = c :?, we want to find the word that is closest to xb − xa + xc in terms of
cosine similarity. That is, we must find

d = argmax
i

(xb − xa + xc) · xi

||xb − xa + xc||

However, there is the possibility that this information is here, but it just may not be linear. Other very
interesting relations, such as male/female, or even company/CEO, can be found.
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Furthermore, we can capture syntactic accuracy (i.e. the grammar), as shown below using superlatives.

2.7 Doc2Vec
2.7.1 Soft Cosine Measure

2.7.2 Word Mover’s Distance

2.8 Global Vectors (GloVe)
The initial goal of GloVe was to connect the linear algebra based embeddings like LSA and COALS with
the iterative, neural-updating models like skip-gram and CBOW. It seemed like linear algebra methods were
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superior since they have fast training times and have efficient use of statistics, but they were primarily used
to capture word similarity. However, the NN models scales with corpus size, generate improve performance
on other tasks, and can capture complex patterns beyond word similarity, though they have an inefficient
use of statistics.

It is nice to encode the meaning components between words. That is, the concept of vector additions and
subtractions work as an analogy (e.g. male to female, king to queen or verb to agent such as truck to driver).
A new insight is that the ratios of co-occurence probabilities can also encode the meaning components. Say
that you want to capture the meaning component from solid to gas. We can take the co-occurence matrix
of a document and compare the probabilities of certain words x appearing around the context of “ice" and
“steam." This gives us the matrix

We would like to capture the ratios of co-occurence probabilities as linear meaning components in a word
vector space. That is, the key property that we want is that the dot product of wi and wj represent the log
probability of co-occurence.

It turned out that a log-bilinear model fits this well, by setting

wi · wj = logP(i | j)

with vector differences
wx · (wa − wb) = log

P(x | a)
P(x | b)

The GloVe model wanted to unify the co-occurence model and the neural model, and so we wanted the dot
product of two words i and j wi | wj to be similar to the log of the co-occurence logXij (plus some bias),
where X is the matrix. Therefore, the entire loss function would be

J =

V∑
i,j=1

f(Xij)(wi · wj + bi + bj − logXij)
2

where we want our parameters θ = {w1, . . . , wV } to be adjusted so that wi ·wj is as close as possible to the
log of the co-occurence matrix (with a bias term for both words). We also want to bound Xij with f so that
the loss isn’t too dependent on a few very frequent words.

2.8.1 Performance Comparison

Let us compare the semantic and syntactic performance of the embedding algorithms we know so far. As we
can see in the table below, unscaled, raw-count SVD does terribly, but with proper scaling (SVD-S) or with
COALS (SVD-L), we can get decent scores even without a neural network. CBOW and Skip Gram (SG)
performs even better, but GloVe is the best performer, with the ideal embedding dimension being around
300.
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However, the author (and lecturer of the Stanford series I am working on) mentions that this outperformance
may be due to having better data (Wikipedia is better than news text).

2.9 Word Ambiguity
It is often the case that one word may have multiple meanings. For example, the word “gay" may refer
to homosexual or jolly. One simple solution is to train multiple embeddings for each definition of a word.
The idea is that we cluster word windows around the words and retrain with each wod assigned to multiple
different clusters, e.g. bank1,bank2, etc.

This model works and aligns with our traditional sense of how these work, it tends to be imperfect since we’re
trying to refine our sense of a word into k different parts. If we just keep the one-word one-embedding model,
we find that different senses of the word reside in a “linear superposition" (weighted sum) of embeddings of
its sub-meanings. For example,

bank = α1wbank1
+ α2wbank2

+ . . .+ αkwbankk

where αi = fi
f1+...fk

for frequency f . This may look useless at first glance since we just have the average
meaning of these vectors, but because of ideas from sparse coding, you can actually separate out the senses!
This is possible because in high-dimensional vector spaces, things tend to be extremely sparse.

3 Classical Learning Approaches
Some include sentiment analysis, and dependency structure.
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3.1 Logistic Regression

3.2 Latent Dirichlet Allocation (LDA)

4 Sequence Tagging and Dependency Parsing
If we have a good word embedding model parts of speech or named entity recognition would be much easier.
However, we will also regard it as a problem in its own right.

Dependency parsing is a natural language processing (NLP) technique that analyzes the grammatical struc-
ture of a sentence by determining the relationships between words. It aims to identify the syntactic depen-
dencies among words and represent them as a directed graph, known as a dependency tree.

In dependency parsing, each word in a sentence is assigned a grammatical role (such as subject, object,
modifier, etc.) and linked to its corresponding head word, which governs or controls it. The relationships
between words are represented as labeled directed edges, where the head word is the parent node, and the
dependent word is the child node.

For example, consider the sentence: "John eats an apple." In dependency parsing, the word "eats" would be
the head word, and "John" and "apple" would be its dependents. The word "eats" would have a dependency
relation of "subject" with "John" and "object" with "apple." This information can be represented as a
dependency tree, where "eats" is the root, "John" is connected to "eats" with a subject edge, and "apple"
is connected to "eats" with an object edge.

Dependency parsing has various applications in NLP, including syntactic analysis, information extraction,
machine translation, sentiment analysis, and question answering. It helps in understanding the structure of
a sentence, resolving ambiguities, and enabling more sophisticated language processing tasks. Dependency
parsers can be trained using machine learning techniques, such as supervised learning or transition-based
parsing algorithms, using annotated dependency treebanks.

Sentiment classification - Logistic, MLPs, RNNs (element-wise max or mean of all hidden states, Lec 6 34:17)
Sequence Tagging - HMM, CRF, MLPs, RNNs Dependency Parsing - Language Encoder Module - Question
Answering, Machine Translation Text Generation - i.e. RNN-LMs

5 Basic Language Models
Unlike classification problems, language modeling refers to the task of predicting upcoming words from
prior word context. That is, given a string of words w1, . . . , wt−1, we want to provide a conditional probability
distribution of

P(wt | wt−1, . . . , w1)

5.1 N Gram Model
An N-gram model basically models this as a giant Markov chain, which approximates the probability distri-
bution of the next word as dependent on only the last t− 1 words.

P(wt | wt−1, . . . , w1) ≈ P(wt | wt−1, . . . , wt−N+1) =
P(wt, wt−1, . . . , wt−N+1)

P(wt−1, . . . , wt−N+1)

In order to calculate this probability, we literally just count them in some large corpus of text. In order to
construct such as model there are two functions that will be helpful: NLTK’s word_tokenize and ngrams
methods.

1 from nltk.tokenize import word_tokenize
2 from nltk import ngrams
3

4 sentence = "I love data science and machine learning."
5 tokens = word_tokenize(sentence)
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6 # [’I’, ’love’, ’data’, ’science’, ’and’, ’machine’, ’learning’, ’.’]
7

8 grams = list(ngrams(tokens, 3,
9 pad_left=True,

10 pad_right=True,
11 left_pad_symbol=’<s>’,
12 right_pad_symbol=’</s>’
13 )
14 )
15 # [(’<s>’, ’<s>’, ’I’), (’<s>’, ’I’, ’love’), (’I’, ’love’, ’data’), (’love’, ’data’,
16 # ’science’), (’data’, ’science’, ’and’), (’science’, ’and’, ’machine’), (’and’,
17 # ’machine’, ’learning’), (’machine’, ’learning’, ’.’), (’learning’, ’.’, ’</s>’), (’.’,
18 # ’</s>’, ’</s>’)]

Now this works for only one sentence, so if we take in a document with many sentences, we would like to
construct a data structure that maps from the set of N − 1 previous words to the next word. From here we
will create a very crude N-gram model.

1 import random, time
2 from nltk.tokenize import word_tokenize, sent_tokenize
3 from nltk import ngrams
4

5 class NgramModel(object):
6

7 def __init__(self, N:int, path:str):
8

9 now = time.time()
10

11 self.N = N
12 self.context = {}
13

14 with open(path, ’r’) as f:
15 sentences = sent_tokenize(f.read())
16

17 for sentence in sentences:
18 tokens = word_tokenize(sentence)
19

20 grams = ngrams(tokens, N,
21 pad_left=True,
22 pad_right=True,
23 left_pad_symbol=’<s>’,
24 right_pad_symbol=’</s>’
25 )
26

27 for tup in grams:
28 prev_words = tup[:-1]
29 next_word = tup[-1]
30 if prev_words in self.context:
31 self.context[prev_words].append(next_word)
32 else:
33 self.context[prev_words] = [next_word]
34

35 # finally add the (</s>, </s>) -> <s> | (</s>, <s>) -> <s> ...
36 final = ["</s>"] * (self.N - 1)
37 for _ in range(self.N - 1):
38 self.context[tuple(final)] = ["<s>"]
39 final.pop(0)
40 final.append("<s>")
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41

42 print(f"Time Taken to Create Model : {time.time() - now}")

Then we can put in our helper functions for generating text.

1 def next_rand_word(self, prev_words:tuple):
2 return random.choice(self.context[prev_words])
3

4 def generate_text(self, n_words = 50):
5

6 result = []
7 prev = ["<s>"] * (self.N - 1)
8

9 step = 0
10 while step < n_words:
11 next = self.next_rand_word(tuple(prev))
12

13 if next not in ["<s>", "</s>"]:
14 result.append(next)
15 step += 1
16

17 prev.pop(0)
18

19 prev.append(next)
20

21 print(" ".join(result))

Now running it on Mary Shelly’s Frankenstein gives the following:

1 m = NgramModel(5, "/home/mbahng/Desktop/Chatbot/Frankenstein.txt")
2 m.generate\_text(500)
3

4 Time Taken to Create Model : 0.5771486759185791
5 As I sat , a train of reflection occurred to me which led me to consider the effects of
6 what I was now doing . Reserve on such a point would be not only useless , but draw down
7 treble misery on us all. " I trembled violently at his exordium , and my father reposed .
8 My abhorrence of this fiend can not be conceived . As I spoke , rage sparkled in my eyes
9 ; the females were flying and the enraged Felix tearing me from his father , to whose

10 knees I clung , in a transport

However, we end with some problems of this model. Remember that we must compute

P(wt | wt−1, . . . , w1) ≈ P(wt | wt−1, . . . , wt−N+1) =
P(wt, wt−1, . . . , wt−N+1)

P(wt−1, . . . , wt−N+1)
(1)

at every time step.

1. One sparsity problem is that we will compute P(wt, wt−1, . . . , wt−N+1) = 0 since wt never followed after
the phrase wt−N+1, . . . , wt−1, which may be inaccurate if w is indeed used often outside the context.
This can be fixed by smoothing, i.e. adding a small δ to the count for every w ∈ V.

2. If the denominator itself doesn’t occur at all in the text, then its probability will be 0! Therefore, we
can’t calculate the probability for any wt! What we can do is just condition on a shorter phrase with
the following approximate, which is called backoff.

P(wt | wt−N+1, . . . , wt−1︸ ︷︷ ︸
N−1 words

) ≈ P(wt | wt−N+2, . . . , wt−1︸ ︷︷ ︸
N−2 words

) (2)
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3. It may require a lot of memory to store these giant dictionaries containing millions or billions of
elements. This is not scalable.

Note that increasing N makes the sparsity problems worse, and typically we can’t have N bigger than 5.

5.2 Fixed Window Neural Model
Neural language models have many advantages over the n-gram language. Compared to n-gram models,
neural language models can handle much longer histories, can generalize better over contexts of similar
words, and are more accurate at word prediction. On the other hand, neural net language models are much
more complex, are slower and need more energy to train, and are less interpretable than n-gram models, so
for many especially smaller) tasks an n-gram language model is still the right tool.

A neural language model is similar to an n-gram as it takes as input at time t a representation of some
number of previous words (wt−1, wt−2, . . .) and outputs a probability distribution of wt over some possible
set of words. We also estimate based on a constant number of N previous words:

P(wt | w1, . . . , wt−1) ≈ P(wt | wt−N+1, . . . , wt−1)

If you are familiar with neural nets, then with word embeddings, you should have a good idea of how this
can be implemented. Another advantage of using embeddings is that neural nets can generalize better to
unseen data. For example, if we have never seen the word “dog" but have seen “cat," we can use the fact that
the two words have similar embeddings to predict the next words after “dog," whereas in a vanilla n-gram
model we don’t know.

Now given a corpus with total vocabulary V consisting of words vi for i = 1, . . . , |V|, we can one-hot encode
all the vectors vi 7→ xi, which are the standard vectors. We can train a d-dimensional embedding on the
words (e.g. doc2vec) which results in a d× |V| embedding matrix E of form | . . . |

E1 . . . E|V|
| . . . |


where the ith column Ei represents the embedding of vi. This makes it easy to map the one-hot vectors
since Ei = Exi. Now, just like the n-gram model, we must use the previous N words to predict the next
word. Therefore, if we have words vt−N , . . . , vt−1, we can calculate their embeddings and use these vectors
to train our model. The forward pass of the multilayer perceptron is outlined below:

1. Given the N previous words xit−N
, . . . ,xit−1

, take their embedding Exit−N
and vertically stack them

on top of each other to create a Nd-dimensional vector.

e =
[
Exit−N

; . . . ;Exit−1

]
2. We input this through a hidden layer by multiplying it by W[1] (and adding a bias term) and then

through an activation layer σ[1]. This is done L times for a L-layer MLP:

hθ(e) = σ[L] ◦W[L] ◦ σ[L−1] ◦W[L−1] ◦ · · · ◦ σ[1] ◦W[1](e)

3. We multiply by the final linear map U : RN [L] → R|V| and then apply the softmax activation function
to get a vector of probabilities.

ŷ = softmax
(
Uhθ(e) + bU

)
Even though this does eliminate all the sparsity problems of an n-gram model, there are some remaining
problems.

1. First, while we can always increase the window size, it can never be large enough. That is, there may
always be some dependencies that we must watch out for that is beyond the window length of the
neural model.
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2. Furthermore, words in different positions are multiplied by completely different weights in W , and so
there is no symmetry in how the inputs are processed.

Therefore, we need a neural architecture that can process inputs of any length, i.e. a RNN.

5.3 Vanilla RNNs
The recurrent neural network can process any length input, the model size does not increase for longer input
text, and the same weights are applied on every timestep, so there is symmetry in how inputs are processed.
However, the computation can be slow since this is sequential by definition. We can take the corpus, add
the START and END tokens in it, and train the RNN with minibatch SGD by sampling 32 to 64 sentences
from the corpus and computing the gradient of the cross-entropy loss with teacher forcing. Then, we can
simply input in the START token as the first input x1, which will generate the next word that we set as the
second sequential input ŷ1 = x2.

5.3.1 Bidirectional RNNs

For problems in, say sentiment classification, the context of not just the previous words, but also the future
words, may be relevant to determining the sentiment. For example, take the following sentence:

1 The movie was terribly exciting.

The terribly part might be interpreted as a negative sentiment, when it is actually being used as an adjective
to describe exciting. Therefore, we want to use bidirectional or multilayer RNNs to capture the entire
sentence before outputting anything.

Note that birdirectional RNNs are only applicable if you have access to the entire input sequence. You can’t
use them in language modeling since in LM you onl have left context available. If you do have the entire input
sequence, bidirectionality is powerful and you should use it by defaut. For example, BERT (Bidirectional
Encoder Representations from Transformers) is a powerful pretrained contextual representation system built
on bidirectionality.

5.3.2 Perplexity Evaluation

The standard evaluation metric for language models is perplexity, which has a very nice intuitive definition
behind it. Assume that a stream of words x1, . . . ,xT is generated by the model. We can calculate the
probability of this sentence being generated by taking the product of conditional probabilities

T∏
t=1

PLM(xt+1 | xt, . . . ,x1)

This measure would mean that longer sentences would have less probability assigned to them just because
they are shorter, so we must take the geometric mean of this.( T∏

t=1

PLM(xt+1 | xt, . . . ,x1)

)1/T

If this number is high, then this means that the probability of this sentence being generated is also high
and therefore this language model is good. If we consider all the conditional distributions to be very sharply
peaked around one word, then there is not much variability on how the sentence is generated. However,
if all the conditional distributions are generally uniform, then there is a lot of variability in the sentence
generation. In fact, this is closely related to the concept of entropy. In fact, a uniform conditional probability
distribution for all possible cases would correspond to both maximum entropy and minimum probability since
(if V is the size of the vocabulary)( T∏

t=1

PLM(xt+1 | xt, . . . ,x1)

)1/T

=

( T∏
t=1

1

V

)1/T

=
1

V
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Finally, perplexity itself is just defined as the inverse of this probability, so lower perplexity is better.

T∏
t=1

(
1

PLM(xt+1 | xt, . . . ,x1)

)1/T

It can also be seen as equivalent to the cross-entropy loss. Of course, perplexity is a stochastic variable, but
on average, the worst possible perplexity is V itself, which may be very high if the corpus is large. Some
common perplexities are shown below, with later rows representing increasingly complex RNNS.

5.3.3 BLEU

The Bilingual Evaluation Understudy (BLEU) compares the machine-written translation to one or
several human-written translations, and computes a similarity score based on

1. n-gram precision (usually for 1, 2, 3, 4-grams)

2. plus a penalty for too-short system translations.

It is useful but imperfect since there are many valid ways to translate a sentence. Therefore, a good
translation can get a poor BLEU performance because it has low n-gram overlap with the human translation.

5.4 LSTMs
However, the problem of vanishing (and exploding) gradients render the vanilla RNN practically infeasible.
Due to the exponential memory loss of the RNN, these models have a hard time modelling long-term
dependencies between words. For example, take a look at the following sentence, with a blank at the end
where the RNN-LM must fill out.

1 When she tried to print her tickets, she found that the printer was out of toner.
2 She went to the stationery store to buy more toner. It was very overpriced. After
3 installing the toner into the printer, she finally printed her \_\_\_\_\_.

In here, the RNN would have to remember the “tickets" on the 7th word all the way up to the end. Therefore,
we introduce the LSTM model.

6 Encoder-Decoder Machine Translation Models
Let us first focus on the problem of language translation. Machine Translation (MT) is the task of
translating a sentence x from one language (the source language) to a sentence y in another language (the
target language).

1 x: L’homme est ne libre, et partout il est dans les fers
2 y: Man is born free, but everywhere he is in chains
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6.1 Statistical Machine Translation
Machine translation first started in the 1950s when, following the computer’s extreme success in many
problems, the U.S. decided to use them for translating Russian to English. This was a much harder problem to
solve, but in the 1990s to 2010s, this idea was reborn again in the form of statistical machine translation
(SMT). The idea was to learn a probabilistic model from the data. That is, given a French sentence x,
we want to find the best English sentence y, which we can use Bayes rule to break this down into two
components to be learned separately.

argmax
y

P(y | x) = argmax
y

P(x | y)P(y)

1. The left hand distribution P(x | y) models how words and phrases should be translated (fidelity),
which are learned from parallel data (data of paired English/French sentences).

2. The right distribution P(y) models how to write good English (fluency), which is learnt from mono-
lingual data.

This obviously requires a lot of parallel data, which can be found in international conferences and such. To
go into the details, we want to learn the translation model P(x | y) from the parallel corpus by introducing a
latent variable a into the model P(x, a | y), where a is called the alignment. This represents the word-level
correspondence between source sentence x and target sentence y.

Alignment refers to the correspondence between particular sets of words in the translated sentence pair. Note
that it is not as simple as just connecting two individual words, as some words may need to be translated into
a phrase, vice versa, or some phrases/words may have no counterpart at all! Not to mention we also need to
account for words with multiple meanings. From this, it is clear that alignment can be extremely complex.
Essentially, the distributions are learned as a combination of many factors, including the probability of
particular words aligning, and the alignments are also learned (they are not labeled in the data!) using
special learning algorithms like Expectation-Maximization (EM).

During this time period, SMT was a huge field, with extremely complex SOTA systems with hundreds of
details. These systems had many separately-designed subcomponents and required a lot of feature engineering
(designing features to capture particular language phenomena). It also required compiling and maintaining
extra resources, like tables or equivalent phrases, necessitating a lot of human effort.

6.2 Neural Machine Translation
Post-2010, neural machine translation (NMT) models, which performs machine translation with a single
end-to-end neural network, have become SOTA. We can use a sequence-to-sequence (seq2seq) encoder-
decoder model with some pretrained word embeddings to learn the translation. This seq2seq is an example
of a conditional language model, since it is predicting the next word of the target sentence y by conditioning
on the source sentence x. It directly calculates P(y | x) by expanding it as

P(y | x) = P(y1 | x)P(y2 | y1, x) . . .P(yT | y1, . . . , yT−1, x)

6.3 Decoding Schemes
Note that every sequential output of the decoder takes the output of the final layer hidden cell, multiplies it
by some matrix, and finally invokes some activation function on it. Consider a classification problem where
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we have V classes, with a linear map mapping to RV , followed by a softmax activation. It seems most
natural to choose the class that has the maximum probability from the softmax, but this greedy algorithmic
approach may not be ideal since we may be giving up long term benefits for short term ones. What we really
want to do find the sequence y that maximizes

P(y | x) =
T∏

t=1

P(yt | y1, . . . , yt−1, x)

Clearly, computing the joint probability distribution over all sequences is too expensive, so we can do beam
search decoding. The main idea is that on each step of the decoder, we keep track of the k (in practice
around 5 to 10) most probable partial outputs. For example in the case of machine translation, given a beam
size of k = 2, we can keep track of the (log) probabilities of the sequences and only keep track of the top 2.

1. Given the START token, say that the k most probable next words were “he" (−0.7) and “I" (−0.9).

2. Now we look at the two most likely next words for each of “he" and “I" and out of the four possibilities,
we compute the two most likely ones, which is “he hit" (−1.7) and “I was" (−1.6).

3. We keep track of “he hit" and “I was" and find the two most likely next words for each, leading us to
another four possibilities. We compute the two most likely ones, which is “he hit me" (−2.5) and “he
hit a" (−2.8).

4. We keep repeating this.
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One more condition to mention is when to stop generating words. In greedy decoding, we usually decode
until the model produces an END token. In beam search decoding, different hypotheses may produce END
tokens on different timestamps, and so every time we have a complete hypothesis, we can place it aside
and continue exploring other hypotheses via beam search. We can continue beam searching until we reach
some predetermined cutoff timestep T or we have at least n completed hypotheses (where n is also some
predetermined cutoff). We have a slight problem that longer hypotheses will have lower log probabilities, so
we can choose the best output sequence by taking the average log probabilities (which corresponds to the
geometric mean of the probabilities).

score(yt+1, . . . , yT ) =
1

T − t
logPLM (y1, . . . , yt | x) =

1

T − t

T∑
k=t+1

logPLM (yk | yt+1, . . . , yk−1, x)

6.4 Attention
A huge issue with the sequence-to-sequence model is the bottleneck problem. The encoder encodes the
input sentence into a single latent vector at the end, and this one vector needs to capture all information
about the source sentence. Clearly, if this vector is not large enough, we have too little bandwidth to capture
this information, resulting in an information bottleneck.

The idea of attention provides a solution to this bottleneck problem. Basically, we want to establish
connections from the decoder to not just the last hidden state of the encoder, but to all of its nodes. Each
encoder node represents some information about each word, and by taking some weighted sum of these
nodes, we can choose which one to put this attention on. The specific steps are listed:

1. We have encoder hidden states h1, . . . ,hN ∈ Rh.

2. On timestep t, we have the decoder hidden state st ∈ Rh.

3. We get the attention scores et for this step by computing

et =
(
sTt h1, . . . , s

T
t hN

)
∈ RN

4. We take its softmax to get the attention distribution αt for this step (a discrete probability distri-
bution)

α = softmax(et) ∈ RN

5. We use αt to take a weighted sum of the encoder hidden states to get the attention output at

at =

N∑
i=1

αt
ihi ∈ Rh

6. We concatenate the attention output at with the decoder hidden state st and proceed as in the non-
attention seq2seq model.

[at; st] ∈ R2h
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7 Transformer Based Models
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