
Linear Classification Muchang Bahng Spring 2025

Linear Classification

Muchang Bahng

Spring 2025

Contents
1 Perceptron 5

2 Logistic Regression 7
2.1 Maximum Likelihood Estimation . 7
2.2 Significance Tests and Confidence Sets . 9
2.3 Concentration Bounds . 9

3 Softmax Regression 10
3.1 Maximum Likelihood Estimation . 11
3.2 Significance Tests and Confidence Sets . 15
3.3 Concentration Bounds . 15

4 Regularized Softmax Regression 16
4.1 Ridge . 16
4.2 Lasso . 16

5 Gaussian Discriminant Analysis 17
5.1 Comparison to Logistic Regression . 17
5.2 Maximum Likelihood Estimate . 17
5.3 Quadratic Discriminant Analysis . 19
5.4 Multiclass GDA . 20

6 Linear Support Vector Machines 22
6.1 Functional and Geometric Margins . 23
6.2 Analytical Solution . 25
6.3 Significance Tests and Confidence Sets . 26
6.4 Concentration Bounds . 26
6.5 Nonseparable Case . 26

7 Generalized Linear Models 27
7.1 Exponential Family . 29

7.1.1 Canonical Exponential Family . 31
7.2 Cumulant Generating Function . 34
7.3 Link Functions . 35

7.3.1 Canonical Link Functions . 36
7.4 Likelihood Optimization . 37

References 38

1/ 38

Linear Classification Muchang Bahng Spring 2025

Now let’s talk about linear classification. Remember that the MSE was a nice loss to choose due to the Gauss-
Markov theorem, but is there an analogue for classification? Since we are now working in classification, a
natural metric would be to see the proportion of samples we get correct, and this is modeled through the
0-1 loss function.

L(f, x, y) = 1(y = f(x)) (1)

However, this isn’t a smooth function to work with, with 0 gradients almost everywhere and hard to solve
analytically. We can try a couple things.

Alternatively, we can use a surrogate loss function to approximate the 0-1 loss function. The logistic uses
some function, and the SVM uses the smallest convex function to approximate the 0-1 loss function. Here
are some examples:

yf(x)

1[yf(x)≤0]

Indicator Loss
(0-1 Loss)

(a) Indicator/0-1 Loss can’t be easily optimized.

yf(x)

e−yf(x)

(b) Exponential Loss for Adaboost.

yf(x)

log(1 + e−yf(x))

(c) Log Loss for logistic regression.

yf(x)

max(0, 1− yf(x))

(d) Hinge Loss for support vector machines.

Figure 1: Common loss functions used in classification

Intuitively, regression seems like a much harder problem than classification. One predicts over a finite set
of values while the other predicts over a continuum. We can try and solve the problem as if we were going
regression of values between 0 and 1, and then put a cutoff threshold where it classifies 0 if f(x) ≤ 1

2 and 1
if else. This is called the Bayes’ classifier.

Theorem 0.1 (Minimality of Bayes Classifier)

The function f∗ that minimizes the expected risk of the 0-1 loss is

f∗(x) =

{
0 if g(x) ≤ 1

2

1 if g(x) > 1
2

(2)

where g(x) = E[Y | X = x] = P(Y = 1 | X = x) denotes the regression function.

2/ 38

Linear Classification Muchang Bahng Spring 2025

Proof.

It suffices to show that

P(Y ̸= h(X)|X = x)− P(Y ̸= h∗(X)|X = x) ≥ 0 for all x ∈ X . (3)

Now,

P(Y ̸= h(X)|X = x) = 1− P(Y = h(X)|X = x) (4)
= 1− (P(Y = 1, h(X) = 1|X = x) + P(Y = 0, h(X) = 0|X = x)) (5)
= 1− (h(x)P(Y = 1|X = x) + (1− h(x))P(Y = 0|X = x)) (6)
= 1− (h(x)m(x) + (1− h(x))(1−m(x))) . (7)

Hence,

P(Y ̸= h(X)|X = x)− P(Y ̸= h∗(X)|X = x) (8)
= (h∗(x)m(x) + (1− h∗(x))(1−m(x)))− (h(x)m(x) + (1− h(x))(1−m(x))) (9)

= (2m(x)− 1)(h∗(x)− h(x)) = 2

(
m(x)− 1

2

)
(h∗(x)− h(x)) (10)

When m(x) ≥ 1/2 and h∗(x) = 1, (10) is non-negative. When m(x) < 1/2 and h∗(x) = 0, (10) is
again non-negative.

In fact, by fitting a regression function over any data, we can simply compose it with the threshold function
to get a binary classifier. This is called the plug-in classifier.

Definition 0.1 (Plug-In Classifier)

Given an regression estimator ĝ, we can define the corresponding plug-in classifier as

f̂(x) =

{
0 if ĝ(x) ≤ 1

2

1 if ĝ(x) > 1
2

(11)

Due to the optimality of the Bayes’ classifier, the performance of the plug-in classifier is tied to the perfor-
mance of the underlying linear regression model. We can actually formalize this with the following.

Theorem 0.2 (Classification Risk Bounded by Regression Risk)

The risk of the plug-in classifier rule in (14) satisfies

R(ĥ)−R∗ ≤ 2

√∫
(m̂(x)−m∗(x))2dPX(x). (12)

Proof.

In the proof of the previous theorem we showed that

P(Y ̸= ĥ(X)|X = x)− P(Y ̸= h∗(X)|X = x) (13)

= (2m̂(x)− 1)(h∗(x)− ĥ(x)) (14)

= |2m̂(x)− 1|I(h∗(x) ̸= ĥ(x)) (15)

= 2|m̂(x)− 1/2|I(h∗(x) ̸= ĥ(x)). (16)

3/ 38

thm:bayes_optimality

Linear Classification Muchang Bahng Spring 2025

Now, when h∗(x) ̸= ĥ(x), there are two possible cases: (i) ĥ(x) = 1 and h∗(x) = 0; (ii) ĥ(x) = 0 and
h∗(x) = 1. In both cases, we have that |m̂(x)−m∗(x)| ≥ |m̂(x)− 1/2|. Therefore,

P(ĥ(X) ̸= Y)− P(h∗(X) ̸= Y) = 2

∫
|m̂(x)− 1/2|I(h∗(x) ̸= ĥ(x))dPX(x) (17)

≤ 2

∫
|m̂(x)−m∗(x)|I(h∗(x) ̸= ĥ(x))dPX(x) (18)

≤ 2

∫
|m̂(x)−m∗(x)|dPX(x) (15)

≤ 2

√∫
(m̂(x)−m∗(x))2dPX(x). (16)

The last inequality follows from the fact that E|Z| ≤
√
EZ2 for any Z.

4/ 38

Linear Classification Muchang Bahng Spring 2025

1 Perceptron
The perceptron uses a linear regression function as a plugin-classifier, inspired by the artificial modeling of
a human neuron [MP43].

Definition 1.1 (Perceptron)

The perceptron model is a discriminative linear classifier that assigns

fw(x) =

{
1 if wTx+ b ≥ 0

−1 if wTx+ b < 0
(19)

where we have chosen to label class C1 = 1 and C2 = −1.

Note that unlike linear regression (and logistic regression, as we will see later), the perceptron is not a
probabilistic model. It is a discriminant function, which just gives point estimates of the classes, not their
respective probabilities. Like logistic regression, however, it is a linear model, meaning that the decision
boundary it creates is always a linear (affine) hyperplane.

To construct the surrogate loss function, we would want a loss that penalizes not only if there is a misclas-
sification, but how far that misclassified point is from the boundary. Therefore, if y and ŷ = fw(x) have
the same sign, i.e. if yfw(x) > 0, then the penalty should be 0, and if it is < 0, then the penalty should be
proportional to the orthogonal distance of the misclassified point to the boundary, which is represented by
−wTxy (where the negative sign makes this cost term positive).

Definition 1.2 (Surrogate Loss for Perceptron)

Therefore, our cost functions would take all the points and penalize all the terms by 0 if they are
correctly classified and by −wTϕ(n)y(n) if incorrectly classified.

L(y, ŷ) =
∑
n=1

[−wTϕ(n)y(n)]+ where [f(x)]+ :=

{
f(x) if f(x) > 0

0 else
(20)

Note that this is a piecewise linear function and convex.

Code 1.1 (Perceptron in scikit-learn)

Let’s implement this in scikit-learn, using two pipelines with different data standardization techniques
to see the differences in the perceptron boundary.

5/ 38

Linear Classification Muchang Bahng Spring 2025

1 from sklearn.pipeline import Pipeline
2 from sklearn.linear_model import Perceptron
3 from sklearn.preprocessing import QuantileTransformer, StandardScaler
4

5 pipe1 = Pipeline([
6 ("scale", StandardScaler()),
7 ("model", Perceptron())
8])
9

10 pipe2 = Pipeline([
11 ("scale", QuantileTransformer(n_quantiles=100)),
12 ("model", Perceptron())
13])

Figure 2

Figure 3: Perceptron Trained on Different Standardized Data

6/ 38

Linear Classification Muchang Bahng Spring 2025

2 Logistic Regression
We can upgrade from a discriminant function to a discriminative probabilistic model with logistic re-
gression. In linear regression, we assumed that the targets are linearly dependent with the covariates as
y = wTx+b. However, this means that the hypothesis fw is unbounded. Since we have two classes (say with
labels 0 and 1), we must have some sort of link function σ that takes the real numbers and compresses it into
the domain [0, 1]. Technically, we can choose any continuous, monotonically increasing function from R to
(0, 1). However, the following property of the sigmoid function σ(x) := 1

1+ex makes derivation of gradients
very nice.

σ′(x) = σ(x)
(
1− σ(x)

)
(21)

Definition 2.1 (Logistic Regression)

The logistic regression model is probabilistic discriminative classification model

Y | X = x ∼ Bernoulli(f(x)), f(x) = σ(βTx) (22)

where σ is the sigmoid function. It has parameters β.

One important observation to make is that notice that the output of our hypothesis is used as a parameter
to define our residual distribution.

1. In linear regression, the f was used as the mean µ of a Gaussian.

2. In logistic regression, the f is used also as the mean p of a Bernoulli.

The reason we want this sigmoid is so that we make the domains of the means of the residuals match the
range of the outputs of our model. It’s simply a manner of convenience, and in fact we could have really
chose any function that maps R to (0, 1).1

Note that logistic regression has a nonlinear regression function, but a linear decision boundary. That is, by
running this model through the plugin classifier, this becomes a linear classifier.

Theorem 2.1 (Decision Boundary is Linear)

The decision boundary of logistic regression is linear.

Proof.

We can solve
1

1 + eβT x
=

1

2
=⇒ 2 = 1 + eβ

T x =⇒ 1 = eβ
T x =⇒ 0 = βTx (23)

which defines a linear hyperplane orthogonal to vector β.

2.1 Maximum Likelihood Estimation
Our next job is to define a loss to optimize. The pdf of a Bernoulli is not well-defined, but we can smoothly
interpolate between the two points at x = 0 and x = 1 to get a smooth surrogate likelihood.

1Some questions may arise, such as “why isn’t the variance parameter of the Gaussian considered in the linear model?" or
“what about other residual distributions that have multiple parameters?" This is all answered by generalized linear models,
which uses the output of a linear model as a natural parameter of the canonical exponential family of residual distributions.

7/ 38

Linear Classification Muchang Bahng Spring 2025

Lemma 2.1 (Likelihood for Bernoulli)

A surrogate likelihood of a Bernoulli(p) random variable is

P(X = x) = px(1− p)1−x (24)

TBD. Why do we express it in this form? Just for convenience?

Proof.

Just substitute P(X = 1) = p1(1− p)0 = p and P(X = 0) = p0(1− p)1 = 1− p.

Therefore, by taking the negative log-likelihood, we can get our loss function.

Definition 2.2 (Binary Cross Entropy Loss as Surrogate Loss)

The surrogate loss for logistic regression is the binary cross entropy loss, which is defined as

L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ) (25)

Now we can define our risk.

Theorem 2.2 (Risk)

The expected risk of logistic regression on the binary cross entropy loss is

R(f) = Ex,y
[
−y log(σ(βTx))− (1− y) log(1− σ(βTx))

]
(26)

and the empirical risk on a dataset D = {x(i), y(i)}ni=1 is

R̂(f) =
1

n

n∑
i=1

−y(i) log(σ(βTx(i)))− (1− y(i)) log(1− σ(βTx(i))) (27)

Unfortunately, there is no closed form solution for logistic regression like the least squares solution in linear
regression. Therefore, we can only resort to numerically optimizing it.

Theorem 2.3 (Gradients of Empirical Risk)

The gradient of the empirical risk is

∇βR̂(β) =
1

n

n∑
i=1

(
f(x(i))− y(i)

)
x(i) (28)

Proof.

Take the negative sign out for a moment. The gradient for just a single sample (x(i), y(i)) gives

∂ℓ

∂β
=

(
y(i)

σ(βTx(i))
− 1− y(i)

1− σ(βTx(i))

)
∂

∂β
σ(βTx(i)) (29)

=
σ(βTx(i))− y(i)

σ(βTx(i))
(
1− σ(βTx(i))

)σ(βTx(i)) (1− σ(βTx(i)))x(i) (30)

=
(
f(x(i))− y(i)

)
x (31)

8/ 38

Linear Classification Muchang Bahng Spring 2025

and now adding in the negative sign and summing it gives the result.

Example 2.1 (SGD from Scratch)

Let’s implement this for logistic regression.

1 >>> import numpy as np
2 >>> def sigmoid(z):
3 ... return 1 / (1 + np.exp(-z))
4 ...
5 >>>
6 >>> n, d = 200, 5
7 >>> beta_true = np.array([1, 2, 3, 1, -2])
8 >>> X = np.random.randn(n, d)
9 >>> logits = X.dot(beta_true)

10 >>> probs = sigmoid(logits)
11 >>> Y = np.random.binomial(1, probs, n)
12 >>> lr = 0.5
13 >>> beta_hat = np.random.randn(5) * 0.1
14 >>> for _ in range(1000):
15 ... Y_hat = sigmoid(X.dot(beta_hat))
16 ... grad = (1/n) * X.T.dot(Y_hat - Y)
17 ... beta_hat -= lr * grad
18 ...
19 >>>
20 >>> print(beta_hat)
21 [1.18478017 1.92729039 3.20635381 0.65779351 -2.67062206]

It turns out that this does not converge as well as linear regression, with more noisy estimates.
Usually, we need a larger stepsize and more epochs.

2.2 Significance Tests and Confidence Sets

2.3 Concentration Bounds

9/ 38

Linear Classification Muchang Bahng Spring 2025

3 Softmax Regression
We would like to extend this to the multiclass case. In order to do this, we must start with multivariate
linear regression and produce another link function o that maps it to the parameter space of a multinomial
distribution. It should also be a generalization of the sigmoid.

Definition 3.1 (Softmax)

The softmax function is defined

o(x) =
ex

∥ex∥
=

1∑
j e
xj

ex1

...
exD

 (32)

This is in fact a generalization of the sigmoid. That is, given softmax for 2 classes, we have

o

(
x1
x2

)
=

1

ex1 + ex2

(
ex1

ex2

)
(33)

So, the probability of being in class 1 is

ex1

ex1 + ex2
=

1

1 + ex2−x1
(34)

and the logistic sigmoid is just a special case of the softmax function that avoids using redundant parameters.
We actually end up overparameterizing the softmax because the probabilities must add up to one. Another
reason to choose the softmax is that the total derivative turns out to simplify our loss, which also parallels
to the sigmoid.

Lemma 3.1 (Derivative of Softmax)

The derivative of the softmax is

Do(x) = diag(o(x))− o(x)⊗ o(x) (35)

where ⊗ is the outer product. That is, let yi be the output of the softmax. Then, for the 4 × 4
softmax function, we have

Do(x) =


y1(1− y1) −y1y2 −y1y3 −y1y4
−y2y1 y2(1− y2) −y2y3 −y2y4
−y3y1 y3y3 y3(1− y3) −y3y4
−y4y1 −y4y2 −y4y3 y4(1− y4)

 (36)

Proof.

We will provide a way that allows us not to use quotient rule. Given that we are taking the partial
derivative of yi with respect to xj , we can use the log of it to get

∂

∂xj
log(yi) =

1

yi

∂yi
∂xj

=⇒ ∂yi
∂xj

= yi
∂

∂xj
log(yi)

10/ 38

Linear Classification Muchang Bahng Spring 2025

Now the partial of the log term is

log yi = log

(
exi∑
l e
xl

= xi − log

(∑
l

exl

)
(37)

∂

∂xj
log(yi) =

∂xi
∂xj
− ∂

∂xj
log

(∑
l

exl

)
(38)

= 1i=j −
1∑
l e
xl
exj (39)

and plugging this back in gives
∂yi
∂xj

= yi(1i=j − yj) (40)

A way to encode multiple classes is with one-hot encoding.

Definition 3.2 (One-Hot Encoding)

Given K classes {1, . . . ,K}, the one-hot encoding of each class is

k 7→ ek ∈ RK (41)

where ek is the kth basis vector.

We choose such an encoding since ∥ek − ek′∥ is constant for all k ̸= k′. Therefore, all classes are just as
distinct from one another.

Definition 3.3 (Softmax Regression Model)

A softmax regression model of K classes is a probabilistic classification model

Y | X = x ∼ Multinomial(f(x)), f(x) = o(Wx+ b) (42)

where o is the softmax function. It has the parameters θ = {W ∈ Rk×d, b ∈ Rk}.

Again, we have a linear map followed by some link function (the softmax) which allows us to nonlinearly map
our unbounded linear outputs to some domain that can be easily parameterized by a probability distribution.

3.1 Maximum Likelihood Estimation
We do the same steps as that of logistic regression.

Lemma 3.2 (Likelihood for Multinomial)

The surrogate likelihood function for a multinomial is

P(X = j) = P(X = ej) =

K∏
k=1

p
(ej)k
k (43)

where we have one-hot encoded the kth class.

Proof.

All terms in the product will be 1 if k ̸= j, and so the only term remaining will be p1j = pj .

11/ 38

Linear Classification Muchang Bahng Spring 2025

By taking the negative log-likelihood, we can get our loss function.

Definition 3.4 (Multiclass Cross Entropy Loss as Surrogate Loss)

The surrogate loss for softmax regression is the multiclass cross entropy loss, which is defined as

L(θ, x, y) = −
K∑
k=1

yk log
(
f(x)

)
k

(44)

Now we define our risk.

Theorem 3.1 (Risk)

The expected risk of softmax regression on the cross entropy loss is

R(f) = Ex,y

[
−

K∑
k=1

yk log
(
f(x)

)
k

]
(45)

and the empirical risk on a dataset D = {(x(i), y(i))}ni=1 is

R̂(f) = − 1

n

n∑
i=1

K∑
k=1

yk log
(
f(x)

)
k

(46)

Since a closed form solution is not available for logistic regression, it is clearly not available for softmax. Note
that since we are taking the derivative of a vector w.r.t. a matrix, we will have to work with higher-order
tensors. Fortunately, this reduces down to a cute form that we can still compute with matrices.

Theorem 3.2 (Gradient of Softmax Loss)

The gradient of the empirical risk is

∇W R̂(f) =
n∑
i=1

(f(x(i))− y(i))(x(i))T (47)

∇bR̂(f) =
n∑
i=1

(f(x(i))− y(i)) (48)

Proof.

Let’s write the cross entropy loss function

ℓ(θ) = −
N∑
i=1

K∑
k=1

y
(i)
k log

(
hθ(x

(i))
)
k
= −

N∑
i=1

y(i) · log
(
hθ(x

(i)
)

(49)

where · is the dot product. The gradient of this function may seem daunting, but it turns out to be
very cute. Let us take a single sample (x(i), y(i)), drop the index i, and write

z =Wx+ b = z (50)
ŷ = a = o(z) (51)

L = −y · log(a) = −
K∑
k=1

yk log(ak) (52)

12/ 38

Linear Classification Muchang Bahng Spring 2025

We must compute
∂L

∂W
=
∂L

∂a

∂a

∂z

∂z

∂θ
(53)

We can compute ∂L/∂z as such, using our derivations for the softmax derivative above. We compute
element wise.

∂L

∂zj
= −

K∑
k=1

yk
∂

∂zj
log(ak) (54)

= −
K∑
k=1

yk
1

ak

∂ak
∂zj

(55)

= −
K∑
k=1

yk
ak

ak(1{k=j} − aj) (56)

= −
K∑
k=1

yk(1{k=j} − aj) (57)

=

(K∑
k=1

ykaj

)
− yj (58)

= aj

(K∑
k=1

yk

)
− yj (59)

= aj − yj (60)

and combining these gives
∂L

∂z
= (a− y)T (61)

Now, computing ∂z/∂W gives us a 3-tensor, which is not ideal to work with. However, let us just
compute this with respect to the elements again. We have

zk =

D∑
d=1

Wkdxd + bk,
∂zk
∂Wij

=

D∑
d=1

xd
∂

∂Wij
Wkd (62)

where
∂

∂Wij
Wkd =

{
1 if i = k, j = d

0 else
(63)

Therefore, since d is iterating through all elements, the sum will only be nonzero if k = i. That is,
∂zk
∂Wij

= xj if k = i and 0 if else.

∂z

∂Wij
=



0
...
0
xj
0
...
0


← ith element (64)

Now computing

∂L

∂Wij
=
∂L

∂z

∂z

∂Wij
= (a− y) ∂z

∂Wij
=

K∑
k=1

(ak − yk)
∂zk
∂Wij

= (ai − yi)xj (65)

13/ 38

Linear Classification Muchang Bahng Spring 2025

To get ∂L/∂Wij we want a matrix whose entry (i, j) is (ai − yi)xj . This is simply the outer product
as shown below. For the bias term, ∂z/∂b is simply the identity matrix.

∂L

∂W
= (a− y)xT , ∂L

∂b
= a− y (66)

Therefore, summing the gradient over some minibatch M ⊂ [N] gives

∇W ℓM =
∑
i∈M

(hθ(x
(i))− y(i))(x(i))T , ∇bℓM =

∑
i∈M

(hθ(x
(i))− y(i)) (67)

and our stochastic gradient descent algorithm is

θ =

(
W
b

)
=

(
W
b

)
− η

(
∇W ℓM
∇bℓM

)
=

(
W
b

)
− η

(∑
i∈M (hθ(x

(i))− y(i))(x(i))T∑
i∈M (hθ(x

(i))− y(i))

)

Example 3.1 (SGD from Scratch)

1 >>> import numpy as np
2 >>> n, d, K = 500, 5, 3 # n samples, d features, K classes
3 >>> W_true = np.array([[1.0, 2.0, -1.5, 0.5, 3.0],
4 ... [-2.0, 1.0, 2.5, -1.0, 0.5],
5 ... [0.5, -1.5, 1.0, 2.0, -2.5]])
6 >>>
7 >>>
8 >>> b_true = np.array([0.5, -1.0, 1.5])
9 >>> X = np.random.randn(n, d)

10 >>> def softmax(z):
11 ... exp_z = np.exp(z - np.max(z, axis=1, keepdims=True)) # numerical stability
12 ... return exp_z / np.sum(exp_z, axis=1, keepdims=True)
13 ...
14 >>>
15 >>> logits = X @ W_true.T + b_true
16 >>> probs = softmax(logits)
17 >>> Y_labels = np.array([np.random.choice(K, p=prob) for prob in probs])
18 >>> Y = np.zeros((n, K)) # Convert to one-hot encoding
19 >>> Y[np.arange(n), Y_labels] = 1
20 >>> W_hat, b_hat = np.random.randn(K, d) * 0.1, np.random.randn(K) * 0.1
21 >>> lr = 0.05
22 >>> for epoch in range(10000):
23 ... logits = X @ W_hat.T + b_hat
24 ... predictions = softmax(logits)
25 ... error = predictions - Y # shape: (n, K)
26 ... grad_W = error.T @ X / n # shape: (K, d)
27 ... grad_b = np.mean(error, axis=0) # shape: (K,)
28 ... W_hat -= lr * grad_W
29 ... b_hat -= lr * grad_b
30 ...
31 >>> final_predictions = softmax(X @ W_hat.T + b_hat)
32 >>> final_accuracy = np.mean(np.argmax(final_predictions, axis=1)==Y_labels)
33 >>> print(W_hat)
34 [[1.33704007 1.96924581 -2.67632699 -0.09619256 3.33028542]
35 [-2.12103603 0.49754612 2.08725926 -1.6633942 -0.24173753]

14/ 38

Linear Classification Muchang Bahng Spring 2025

36 [0.54933076 -2.50510753 0.39990491 1.88095809 -3.14859809]]
37 >>> print(b_hat)
38 [-0.01252576 -1.10961749 1.37124823]
39 >>> print("Accuracy:", final_accuracy)
40 Accuracy: 0.914

3.2 Significance Tests and Confidence Sets

3.3 Concentration Bounds

15/ 38

Linear Classification Muchang Bahng Spring 2025

4 Regularized Softmax Regression

4.1 Ridge
In the high dimensional case, we would like to impose some regularization again to control variance.

Definition 4.1 (Loss)

The loss function of a ridge logistic regression is

L(β, x, y) = −y log(σ(βTx))− (1− y) log(1− σ(βTx)) (68)
= −y log(ŷ)− (1− y) log(1− ŷ) (69)

The loss for a ridge softmax regression is

L(θ, x, y) = −
K∑
k=1

yk log() (70)

4.2 Lasso

16/ 38

Linear Classification Muchang Bahng Spring 2025

5 Gaussian Discriminant Analysis
Another intuitive way to model binary data is to assume that the distribution of each class is a Gaussian.
This allows us to work with the likelihood, and depending on which likelihood is greater, we can classify it
at such.

Gaussian discriminant analysis in general is not actually a linear model. It turns out that because the two
Gaussians can have different covariance matrices, we end up getting a quadratic boundary. However, if we
restrict the two to have the same covariance matrix, we end up with linear discriminant analysis.

Definition 5.1 (Linear Discriminant Analysis)

The LDA model is a generative binary classification model that assumes the data is generated as

y ∼ Bernoulli(π) (71)
x | y = 0 ∼ N (µ0,Σ) (72)
x | y = 1 ∼ N (µ1,Σ) (73)

where the parameters are θ = {π, µ0, µ1,Σ}. Sometimes, the shared covariance matrix Σ is assumed
to be isotropic. This results in

f(x) =

{
0 if p(x | y = 0) ≥ p(x | y = 1)

1 if else
(74)

Note that since we are creating a model of how the data is—not only distributed—but generated, we can
also generate new data.

Theorem 5.1 (Decision Boundary is Linear)

Proof.

5.1 Comparison to Logistic Regression
Note that we can equivalently view LDA as a plug-in classifier with the Bayes rule. Let our posterior
distribution be

p(y = 1 | x) = p(x | y = 1)π

p(x | y = 0) (1− π) + p(x | y = 1)π
(75)

and we can threshold this to be 1
2 .

5.2 Maximum Likelihood Estimate

Lemma 5.1 (Likelihood)

The likelihood of a sample is

p(y) = πy(1− π)1−y (76)

p(x | y = 0) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µ0)

TΣ−1(x− µ0)

)
(77)

p(x | y = 1) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(x− µ1)

TΣ−1(x− µ1)

)
(78)

17/ 38

Linear Classification Muchang Bahng Spring 2025

Proof.

Theorem 5.2 (MLE)

The maximum likelihood estimate of LDA is

π =
1

N

N∑
n=1

1{y(n) = 1} (79)

µ0 =

∑n
n=1 1{y(n)=0}x

(n)∑N
n=1 1{y(n)=0}

(80)

µ1 =

∑n
n=1 1{y(n)=1}x

(n)∑N
n=1 1{y(n)=1}

(81)

Σ =
1

N

N∑
n=1

(x(n) − µy(n))(x(n) − µY (i))T (82)

Proof.

We optimize π ∈ (0, 1)R, µ0 ∈ Rd, µ1 ∈ Rd,Σ ∈ Mat(d × d,R) ≃ Rd×d so that we get the best-fit
model. Assuming that each sample has been picked independently, this is equal to maximizing

L(π, µ0, µ1,Σ) =

n∏
i=1

P
(
x(i), y(i) ; π, µ0, µ1,Σ

)
(83)

which is really just the probability that we get precisely all these training samples (x(i), y(i)) given
the 4 parameters. This can be done by optimizing its log-likelihood, which is given by

l(π, µ0, µ1,Σ) = log

n∏
i=1

P(x(i), y(i);π, µ0, µ1,Σ) (84)

= log

n∏
i=1

P(x(i) | y(i);µ0, µ1,Σ)P(y(i);π) (85)

=
n∑
i=1

log

(
P(x(i) | y(i);µ0, µ1,Σ)P(y(i);π)

)
(86)

A visual of the algorithm is below, with contours of the two Gaussian distributions, along with the straight
line giving the decision boundary at which P(y = 1 |x) = 0.5.

18/ 38

Linear Classification Muchang Bahng Spring 2025

Figure 4: GDA of Data Generated from 2 Gaussisans centered at (−2.3, 0.4) and (1.4,−0.9) with unit covariance.
The decision boundary is slightly off since MLE approximates the true means.

5.3 Quadratic Discriminant Analysis
Now let’s do the general form.

Definition 5.2 (Gaussian Discriminant Analysis)

The GDA model is a generative binary classification model that assumes the data is generated as

y ∼ Bernoulli(π) (87)
x | y = 0 ∼ N (µ0,Σ0) (88)
x | y = 1 ∼ N (µ1,Σ1) (89)

where the parameters are θ = {π, µ0, µ1,Σ0,Σ1}. This results in

f(x) =

{
0 if p(x | y = 0) ≥ p(x | y = 1)

1 if else
(90)

Theorem 5.3 (Maximum Likelihood Estimate)

We can simplify the computation to the thresholding.

19/ 38

Linear Classification Muchang Bahng Spring 2025

Theorem 5.4 ()

If X | Y = 0 ∼ N(µ0,Σ0) and X | Y = 1 ∼ N(µ1,Σ1), then the Bayes rule is

f∗(x) =

{
1 if r21 < r20 + 2 log

(
π1

1−π1

)
+ log

(
|Σ0|
|Σ1|

)
0 otherwise

(91)

where r2i = (x− µi)TΣ−1
i (x− µi) for i = 1, 2 is the Mahalanobis distance.

Proof.

By definition, the Bayes rule is h∗(x) = I(π1p1(x) > (1− π1)p0(x)). Plug-in the specific forms of p0
and p1 and take the logarithms we get h∗(x) = 1 if and only if

(x− µ1)
TΣ−1

1 (x− µ1)− 2 log π1 + log(|Σ1|) (92)

< (x− µ0)
TΣ−1

0 (x− µ0)− 2 log(1− π1) + log(|Σ0|). (93)

The theorem immediately follows from some simple algebra.

Theorem 5.5 (Decision Boundary is Quadratic)

Proof.

5.4 Multiclass GDA

Theorem 5.6 ()

Let R(f) = P(f(X) ̸= Y) be the classification error of a classification rule f(x). The Bayes rule
f∗(X) minimizing R(f) can be written as

f∗(x) = argmax
k

P(Y = k | X = x) (94)

Proof.

We have

R(f) = 1− P(f(X) = Y) (95)

= 1−
K−1∑
k=0

P(f(X) = k, Y = k) (96)

= 1−
K−1∑
k=0

E [I(f(X) = k)P(Y = k | X)] (97)

It’s clear that f∗(X) = argmaxk P(Y = k | X) achieves the minimized classification error 1 −
E[maxk P(Y = k | X)].

Let πk = P(Y = k). The next theorem extends QDA and LDA to the multiclass setting.

20/ 38

Linear Classification Muchang Bahng Spring 2025

Theorem 5.7 ()

Suppose that Y ∈ {0, . . . ,K − 1} with K ≥ 2. If pk(x) = p(x | Y = k) is Gaussian: X | Y = k ∼
N(µk,Σk), the Bayes rule for the multiclass QDA can be written as

f∗(x) = argmax
k

δk(x) (98)

where
δk(x) = −

1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk) + log πk. (99)

If all Gaussians have an equal variance Σ, then

δk(x) = xTΣ−1µk −
1

2
µTkΣ

−1µk + log πk. (100)

Let nk =
∑
i 1(yi = k) for k = 0, . . . ,K − 1. The estimated sample quantities of πk, µk, Σk, and Σ are:

π̂k =
1

n

n∑
i=1

1(yi = k), µ̂k =
1

nk

∑
i:Yi=k

Xi, (101)

Σ̂k =
1

nk − 1

∑
i:Yi=k

(Xi − µ̂k)(Xi − µ̂k)T , (102)

Σ̂ =

∑K−1
k=0 (nk − 1)Σ̂k

n−K
. (103)

21/ 38

Linear Classification Muchang Bahng Spring 2025

6 Linear Support Vector Machines
Remember that it was the assumption that the conditional distribution Y | X = x being Bernoulli/multi-
nomial, along with the power form of the surrogate likelihood, that led to the likelihood derivation of the
surrogate loss of the logistic and softmax regression. But ultimately, these are just modeling assumptions,
and we may look for other surrogate losses to construct our risk.

If we want to construct such a loss function, we first want it to approximate the 0-1 step function clearly.
The next thing is that we want it to be convex, so we can use convex optimization (sum of convex functions
are convex). Perhaps we can think of the smallest convex function that stays above the binary loss, in some
sense the best approximation. This is precisely the hinge function.

Definition 6.1 (Hinge Loss)

The hinge loss is a convex surrogate loss function for the 0-1 loss function. It is defined as

L(y, ŷ) = max(0, 1− y · ŷ) (104)

Note that we have directly constructed a loss without any reference to the likelihood of the data points. Now
the SVM model is really simple. We just have a linear model g(x) = βTx, and then use it to make a plug-in
classifier through a threshold function with threshold 0.

Definition 6.2 (Binary Support Vector Machine)

The binary SVM is a linear classifier that sets

f(x) = sign(F (x)) = sign(βTx) =

{
1 if βTx ≥ 0

0 else
(105)

With the model and loss set up, we can define our risk.

Theorem 6.1 (Risk)

The expected risk is

R(f) = Ex,y [max{0, 1− yF (x)}] = Ex,y
[
max{0, 1− y(βTx)}

]
(106)

and the empirical risk is

R̂(f) =
1

n

n∑
i=1

max{0, 1− y(βTx)} (107)

Note that if we classified something correctly, then y(βTx) would be positive, leading to the loss term being
cut off to 0.2 So the model will focus only on the points that are wrong or that are most difficult to tell
apart, which are called the support vectors. The other points “far away” from the decision boundary have
little to no effect on the optimal solution, and this is a big difference between SVMs and other classifiers.

Example 6.1 (SVMs vs Other Classifiers on Linearly Separable Dataset)

Assume that our dataset D = {xi, yi} is linearly separable with yi ∈ {−1,+1}. Based on previous
algorithms like the perceptron, it will find some separating hyperplane. However, there’s an infinite
number of separating hyperplanes as shown in Figure 5a. What support vector machines want to do
is to find the best one, with the “best" defined as the hyperplane that maximizes the distance between

2Unless βT x was a very small positive number, but speaking loosely here.

22/ 38

Linear Classification Muchang Bahng Spring 2025

either the closest positive or negative samples, shown in Figure 5b.

(1)
(2)
(3)

(4)

(a) Planes such as (1) and (4) are “too close" to the
positive and negative samples.

(b) SVMs try to find the separating hyperplane with
the best minimum margin.

Figure 5: Motivating problem

We want to formalize the concepts of these margins that we wish to maximize. Furthermore, this problem is
not well defined since we can just set w to be 0 or an arbitrarily high norm vector, which makes this problem
ill-posed. Therefore, we will need some constraints as well.

6.1 Functional and Geometric Margins
To do this, we will define two terms.

Definition 6.3 (Geometric margin)

Given a point x0 and a hyperplane of equation w ·x+ b = 0, the distance from x0 to the hyperplane,
known as the geometric margin, can be computed with the formula

d =
|x0 ·w + b|
||w||

(108)

Therefore, the geometric margin of the ith sample with respect to the hypothesis f is defined

γi =
yi (w · xi + b)

||w||
(109)

We wish to optimize the parameters w, b in order to maximize the minimum of the geometric margins (the
distance between the closest point and the hyperplane).

argmax
w,b

min
i
γi = argmax

w,b

{
1

||w||
min
i

[
yi (w · xi + b)

]}
(110)

Direct solution of this optimization problem would be very complex, and so we convert this into an equivalent
problem that is much easier to solve. Note that the solution to the above term is not unique. If there was a
solution (w∗, b∗), then

yi(w · xi + b)

||w||
=
yi(λw · xi + λb)

||λw||
(111)

That is, the geometric margin is not sensitive to scaling of the parameters of the hyperplane. Therefore, we
can scale the numerator and the denominator by whatever we want and use this freedom to set

23/ 38

Linear Classification Muchang Bahng Spring 2025

yi(w · xi + b) = 1

for the point that is closest to the surface. In that case, all data points will satisfy the constraints

yn(w · xi + b) ≥ 1

In the case of data points for which the equality holds, the constraints are said to be active, whereas for the
remainder they are inactive. Therefore, it will always be the case that mini

[
yi (w · xi + b)

]
= 1, and the

constraint problem reduces to

argmax
w,b

1

||w||
= argmin

w,b

1

2
||w||2 subject to constraints yi(w · xi + b) ≥ 1 (112)

This final step is the most significant step in this derivation and may be hard to wrap around the first time.
So we dedicate the next subsubsection for this.

We could just work straight with this geometric margin, but for now, let’s try to extend what we did with
the perceptron into SVMs. We will find out that extending the concept of functional margins into SVMs
leads to ill-defined problems. In the perceptron, we wanted to construct a function f(x) = w · x + b such
that

yi f(xi) ≥ 0 for all i = 1, 2, . . . , N

Definition 6.4 (Functional Margin)

The value of yi f(xi) gives us our confidence on our classification, and in a way it represents a kind
of distance away from the separating hyperplane (if this value was 0, then we would be 50 50 split on
whether to label it positive or negative). Therefore, we shall define

γ̂i = yif(xi)

as the functional margin of (w, b) with respect to the training sample (xi, yi). Therefore, the
smallest of the function margins can be written

γ̂ = min
i
γi

called the function margin.

Note that the geometric margin and functional margin are related by a constant scaling factor. Given a
sample (xi, yi), we have

GeometricMargin =
yi (w · xi + b)

||w||2
=

FunctionalMargin

||w||2

As we can see, the perceptron works with the functional margin, and since it does not care about how large
the margin is (just whether it’s positive or negative), we are left with an underdetermined system in which
there exists infinite (w, b)’s. Now what we want to do is impose a certain minimum margin γ > 0 and solve
for (w, b) again, and keep increasing this γ until there is some unique solution. We can view this problem in
two ways:

1. Take a specific minimum margin γ and find a (w, b), which may not exist, be unique, or exist infinitely
that satisfies

yif(x) = yi(w · x+ b) ≥ γ for all i = 1, . . . , N

2. Take a specific (w, b) and calculate the maximum γ that satisfies the constraint equations above.

24/ 38

Linear Classification Muchang Bahng Spring 2025

They’re both equivalent problems, but both ill-posed if we look at (2). Since the samples are linearly
separable by assumption, we can say that there exists some ϵ > 0 such that yif(xi) ≥ ϵ for all i. Therefore,
if we just scale (w, b) 7→ (λw, λb) for some large λ, this leads to the solution for γ being unbounded. We can
see in Figure 6 that we can increased confidence at no cost. Looking at (1), we can also see that if (w, b)
does exist, then every other (λw, λb) for λ > 1 satisfies the property.

(a) f(x) = x1 + x2 + 1 (b) f(x) = 2x1 + 2x2 + 2 (c) f(x) = −2x1 + x2 − 3

Figure 6: From (a), you can see that simply multiplying everything by two automatically increases our confidence by
2, meaning that the functional margin can be scaled arbitrarily by scaing (w, b). There are still too many degrees of
freedom in here and so extra constraints must be imposed.

6.2 Analytical Solution
To minimize the equations with the constraint equations, we can use the method of Lagrange multipliers,
which leads to to Lagrangian

L(w, b,α) =
1

2
||w||2 −

∑
i

αi
[
yi(w · xi + b)− 1

]
We can take the gradients with respect to w and b and set them to 0, which gives the two conditions

w =
∑
i

αiyixi

0 =
∑
i

αiyixi

Now let’s substitute our evaluated w back into L, which gives the dual representation of the maximum
margin problem in which we maximize

L =
1

2

(∑
i

αiyixi

)(∑
j

αjyjxj

)
−

∑
i

αiyixi ·
[∑

j

αjyjxj

]
−
∑
i

αiyib+
∑
i

αi

=
∑
i

αi −
1

2

∑
i,j

αiαjyiyj xi · xj

The summation with the b in it is 0 since we can pull the b out and the remaining sum is 0 from before.
Now the optimization only depends on the dot product xi · xj of all pairs of sample vectors, which is very
interesting. We will see more of this when we talk about kernel methods. Now, we need to solve the dual
problem

max
α
L(α)

25/ 38

Linear Classification Muchang Bahng Spring 2025

which can be done using some generic quadratic programming solver or some other method to get the
optimum α∗, which gives us

w∗ =
∑
i

α∗
i yixi

6.3 Significance Tests and Confidence Sets

6.4 Concentration Bounds

6.5 Nonseparable Case

26/ 38

Linear Classification Muchang Bahng Spring 2025

7 Generalized Linear Models
Remember the linear model looked like this, where we use the conventional β notation to represent param-
eters.

Y = XTβ + ϵ, ϵ ∼ N(0, σ2I) (113)

which implies that Y | X ∼ N(XTβ, σ2I). Basically, given x, I assume some distribution of Y , and the
value of x will help me guess what the mean of this distribution is. Note that we in here assume that only
the mean depends on X. I could potentially have something crazy, like

Y | X ∼ N(XTβ, (XT γ)(XXT + I))

where the covariance will depend on X, too, but in this case we only assume that that mean is dependent
on X.

Y | X ∼ N(µ(X), σ2I)

where in the linear model, µ(X) = XTβ. So, there are three assumptions we are making here:

1. Y | X is Gaussian.

2. X only affects the mean of Y | X, written E[Y | X] = µ(X).

3. X affects the mean in a linear way, such that µ(X) = XTβ.

So the two things we are trying to relax are:

1. Random Component: the response variable Y | X is continuous and normally distributed with
mean µ = µ(X) = E[Y | X].

2. Link: I have a link that explains the relationship between the X and the µ, and this relationship is
µ(X) = XTβ.

So when talking about GLMs, we are not changing the fact that we have a linear function X 7→ XTβ. How-
ever, we are going to assume that Y | X now comes from a broader family of exponential distributions.
Second, we are going to assume that there exists some link function g

g(µ(X)) = XTβ

Admittedly, this is not the most intuitive way to think about it, since we would like to have µ(X) = f(XTβ),
but here we just decide to call f = g−1. Therefore, if I want to give you a GLM, I just need to give you two
things: the conditional distribution Y | X, which can be any distribution in the exponential family, and the
link function g.

We really only need this link function due to compatibility reasons. Say that Y | X ∼ Bern(p). Then,
µ(X) = E[Y | X] always lives in [0, 1], but XTβ always lives in R. We want our model to be realistic, and
we can clearly see the problem shown in Figure 7.

27/ 38

Linear Classification Muchang Bahng Spring 2025

Figure 7: Fitting a linear model for Bernoulli random variables will predict a mean that is outside of [0, 1] when
getting new datapoints.

If Y | X is some exponential distribution, then its support is always positive and so µ(X) > 0. But if we
stick to the old form of µ(X) = XTβ, then Im(µ) = R, which is not realistic when we predict negative
values. Let’s take a couple examples:

Example 7.1 (Disease Epidemic)

In the early stages of a disease epidemic, the rate at which new cases occur can often increase
exponentially through time. Clearly, µ(X) = E[Y | X] should be positive and we should have some
sort of exponential trend. Hence, if µ(x) is the expected number of cases on data x, a model of the
form

µ(x) = γ exp(δx) (114)

seems appropriate, where γ and δ are simply scaling factors. Clearly, µ(X) is not of the form f(XTβ).
So what I do is to transform µ in such a way that I can get something that is linear.

log(µ(X)) = log(γ) + δX (115)

which is now linear in X, of form β0 + β1X. This will have some effects, but this is what needs to
be done to have a genearlized linear model. Note that what I did to µ was take the log of it, and
so the link function is g = log, called the log-link. Now that we have chosen the g, we still need
to choose what the conditional distribution Y | X would be. This is determined by speaking with
industry professionals, experience, and convenience. In this case, Y is a count, and since this must
be a discrete distribution. Since it is not bounded above, we think Poisson.

Example 7.2 (Prey Capture Rate)

The rate of capture of preys, Y , by a hunting animal, tends to increase with increasing density of
prey X, but eventually level off when the predator is catching as much as it can cope with. We want
to find a perhaps concave function that levels off, and suitable model might be

µ(X) =
αX

h+X
(116)

where α represents the maximum capture rate, and h represents the prey density at which the capture
rate is half the maximum rate. Again, we must find some transformation g that turns this into a

28/ 38

Linear Classification Muchang Bahng Spring 2025

linear function of X, and what we can do it use the reciprocal-link.

1

µ(X)
=
h+X

αX
=
h

α

1

X
+

1

α
(117)

The standard deviation of capture rate might be approximately proportional to the mean rate, sug-
gesting the use of a Gamma distribution for the response.

Example 7.3 (Kyphosis Data)

The Kyphosis data consist of measurements on 81 children following corrective spinal surgery. The
binary response variable, Kyphosis, indicates the presence or absence of a postoperative deforming.
The three covariates are: age of the child in months, number of the vertebrae involved in the operation,
and the start of the range of the vertebrae involved. The response variable is binary so there is no
choice: Y | X is Bernoulli with expected value µ(X) ∈ (0, 1). We cannot write µ(X) = XTβ because
the right hand side ranges through R, and so we find an invertible function that squishes R to (0, 1),
and so we can choose basically any CDF.

For clarification, when writing a distribution like Bernoulli(p), or Binomial(n, p), Poisson(λ), or N(µ, σ2),
the hyperparameters that we usually work with we will denote as θ, and the space that this θ lives in will
denote Θ. For example, for the Bernoulli, Θ = [0, 1], and for Poisson, Θ = [0,+∞).

Ultimately, a GLM consists of three steps:

1. The observed input X enters the model through a linear function βTX.

2. The conditional mean of response, is represented as a function of the linear combination

E[Y | X] = µ = f(βTX) (118)

3. The observed response is drawn from an exponential family distribution with conditional mean µ.

7.1 Exponential Family
We can write the pdf of a distribution as a function of the input x and the hyperparameters θ, so we can
write Pθ(x) = p(θ, x). For now, let’s think that both x, θ ∈ R. Think of all the functions that depend on
θ and x. There are many of them, but we want θ and x to interact in a certain way. The way that I want
them to interact with each other is that they are multiplied within an exponential term. Now clearly, this is
not a very rich family, so we are just slapping some terms that depend only on θ and only on x.

pθ(x) = exp(θx)h(x)c(θ)

But now if θ ∈ Rk and x ∈ Rq, then we cannot simply take the product nor the inner product, but what
we can do is map both of them into a space that has the same dimensions, so I can take the inner product.
That is, let us map θ 7→ η(θ) ∈ Rk and x 7→ T(x) ∈ Rk, and so our exponential distribution form would be
generalized into something like

pθ(x) = exp
[
η(θ) ·T(x)

]
h(x)c(θ)

We can think of c(θ) as the normalizing term that allows us to integrate the pdf to 1.∫
X
pθ(x) = c(θ)

∫
exp

[
η(θ) ·T(x)

]
h(x) dx

We can just push the c(θ) term into the exponential by letting c(θ) = e− log(c(θ))−1

to get our definition.

29/ 38

Linear Classification Muchang Bahng Spring 2025

Definition 7.1 (Exponential Family)

A k-parameter exponential family is a family of distributions with pdf/pmf of the form

pθ(x) = exp
[
η(θ) ·T(x)−B(θ)

]
h(x)

The h term, as we will see, will not matter in our maximum likelihood estimation, so we keep it
outside the exponential.

1. η is called the canonical parameter. Given a distribution parameterized by the regular
hyperparameters θ, we would like to parameterize it in a different way η under the function
η : Θ→ R

2. T(x) is called the sufficient statistic.
3. h(x) is a nonnegative scalar function.
4. B(θ) is the normalizing factor.

Let’s look at some examples.

Example 7.4 (Gaussian)

If we put the coefficient into the exponential and expand the square term, we get

pθ(x) = exp

(
µ

σ2
· x− 1

2σ2
· x2 − µ2

2σ2
− log(σ

√
2π)

)
where

η(θ) =

(
µ/σ2

−1/2σ2

)
, T (x) =

(
x
x2

)
, B(θ) =

µ2

2σ2
+ log(σ

√
2π), h(x) = 1

This is not a unique representation since we can take the log(
√
2π) out of the exponential, but why

bother to do this when we can just stuff everything into B and keep h simple.

Example 7.5 (Gaussian with Known Variance)

If we have known variance, we can write the Gaussian pdf as

pθ(x) = exp

[
µ

σ
· x
σ
− µ2

2σ2

]
· 1

σ
√
2π
ex

2/2σ2

where

η(θ) =
µ

σ
, T (x) =

x

σ
, B(θ) =

µ2

2σ2
, h(x) =

1

σ
√
2π
ex

2/2σ2

Example 7.6 (Bernoulli)

The pmf of a Bernoulli with θ is

pθ(x) = θx(1− θ)(1−x)

= exp
[
x log(θ) + (1− x) log(1− θ)

]
= exp

(
x log

[θ

1− θ

]
− log

[1

1− θ

])
where

η(θ) = log
[θ

1− θ

]
, T (x) = x, B(θ) = log

[1

1− θ

]
, h(x) = 1

30/ 38

Linear Classification Muchang Bahng Spring 2025

Example 7.7 (Binomial with Known Number of Trials)

We can transform a binomial with known N as

pθ(x) =

(
N

x

)
θx(1− θ)1−x

= exp

[
x ln

(θ

1− θ

)
+ ln(1− θ)

]
·
(
N

x

)
where

η(θ) = ln
(θ

1− θ

)
, T (x) = x, B(θ) = ln(1− θ), h(x) =

(
N

x

)

Example 7.8 (Poisson)

The pmf of Poisson with θ can be expanded

pθ =
θ−x

x!
e−θ

= exp
[
− θ + x log(θ)− log(x!)

]
= exp

[
x log(θ)− θ

] 1

x!

where
η(θ) = log(θ), T (x) = x, B(θ) = θ, h(x) =

1

x!

However, the uniform is not in here. In fact, any distribution that has a support that does not depend on
the parameter is not an exponential distribution.

Let us now focus on one parameter families where θ ∈ Θ ⊂ R, which do not include the Gaussian (with
unknown mean and variance, Gamma, multinomial, etc.), which has a pdf written in the form

pθ(x) = exp
[
η(θ)T (x)−B(θ)

]
h(x)

7.1.1 Canonical Exponential Family

Now a common strategy in statistical analysis is to reparamaterize a probability distribution. Suppose a
family of probability distributions {Pθ} is parameterized by θ ∈ Θ ⊂ R. If we have an invertible function
η : Θ→ T ⊂ R, then we can paramaterize the same family with η rather than θ, with no loss of information.
Typically, it is the case that η is invertible for exponential families, so we can just reparameterize the whole
pdf and write

pη(x) = exp
[
η T (x)− ϕ(η)

]
h(x)

where ϕ = B ◦ η−1.

Definition 7.2 (Canonical One-Parameter Exponential Family)

A family of distributions is said to be in canonical one-parameter exponential family if its
density is of form

pη(x) = exp
[
η T (x)− ϕ(η)

]
h(x)

which is a subfamily of the exponential family. The function ψ is called the cumulant generating
function.

Before we move on, let us just provide a few examples.

31/ 38

Linear Classification Muchang Bahng Spring 2025

Example 7.9 (Poisson)

The Poisson can be represented as

pθ(x) = exp
[
x log θ − θ

] 1

x!

Now let η = log θ =⇒ θ = eη. So, we can reparamaterize the density as

pη(x) = exp
[
xη − eη

] 1

x!

where Pη = Poisson(eη) for η ∈ T = R, compared to Pθ = Poisson(θ) for θ ∈ Θ = R+.

Example 7.10 (Gaussian)

Recall that the Gaussian with known parameter σ2 and unknown θ = µ is in the exponential family,
since we can expand it as

pθ(x) = exp

[
µ

σ2
· x− µ2

2σ2

]
· 1

σ
√
2π
ex

2/2σ2

We can perform the change of parameter η = µ2/2σ2 =⇒ µ = σ2η, and substituting this in will give
the canonical representation

pη(x) = exp
[
ηx− σ2η2

2

]
· 1

σ
√
2π
ex

2/2σ2

where now Pη = N(σ2η, σ2) for η ∈ T = R, compared to Pθ = N(θ, σ2) for θ ∈ Θ = R, which is
basically the same space.

Example 7.11 (Bernoulli)

The Bernoulli has an exponential form of

pθ(x) = exp

[
x log

(θ

1− θ

)
+ log(1− θ)

]
Now setting η = log

(
θ

1−θ
)

=⇒ θ = 1
1+e−η , and so B(θ) = − log(1 − θ) = − log

(
e−η

1+e−η

)
=

log(1 + eη) = ψ(η), and so the canonical paramaterization is

pη(x) = exp
[
xη − log(1 + eη)

]
We present two useful properties of the exponential family.

Theorem 7.1 (Moments)

Let random variable X be in the canonical exponential family Pη

pη(x) = eηT (x)−ψ(η)h(x)

Then, the expectation and variance are encoded in the cumulant generating function in the following
way

E[T (X)] = ψ′(η) Var[T (X)] = ψ′′(η)

32/ 38

Linear Classification Muchang Bahng Spring 2025

Proof.

Example 7.12 ()

We show that this is consistent with the Poisson, normal, and Bernoulli distributions.
1. In the Poisson, ψ(η) = eη, and so ψ′(η) = eη = θ = E[X]. Taking the second derivative gives
ψ′′(η) = eη = θ = Var[X], too.

2. In the Normal with known variance σ2, we have ψ(η) = 1
2σ

2η2. So

E[X] = ψ′(η) = σ2η = µ

Var[X] = ψ′′(η) = σ2

3. In the Bernoulli, we have ψ(η) = log(1 + e−η). Therefore,

E[X] = ψ′(η) =
xη

1 + xη
=

1

1 + e−η
= θ

Var[X] = ψ′′(η) = −
(

1

1 + e−η

)2

e−η · −1 = θ2 · 1− θ
θ

= θ(1− θ)

Theorem 7.2 (Convexity)

Consider a canonical exponential family with density

pη(x) = eηT (x)−ψ(η)h(x)

and natural parameter space T . Then, the set T is convex, and the cumulant generating function ψ
is convex on T .

Proof.

This can be proven using Holder’s inequality. However, from the theorem above, note that
Var[T (X)] = ψ′′(η) must be positive since we are talking about variance. This implies that the
second derivative of ψ is positive, and therefore must be convex.

We will look at a subfamily of the exponential family. Now remember that we introduce the functions η and
T so that we can capture a much broader range of distributions, but if we have one parameter k = 1, then
we can just set η(θ) to be the new parameter θ. The canonical exponential family for k = 1, y ∈ R, is
defined to have the pdf

fθ(y) = exp

(
yθ − b(θ)

ϕ
+ c(y, ϕ)

)
(119)

where
h(y) = exp

(
c(y, ϕ)

)
(120)

If ϕ is known, this is a one-parameter exponential family with θ being the canonical parameter, and if ϕ
is unknown, the h(y) term will not depend on θ, which we may not be able to split up into the exponential
pdf form. In this case ϕ is called the dispersion parameter. For now, we will always assume that ϕ is
known.

We can prove this for all other classes, too. We can think of the c(y, ϕ) as just a term that we stuff every
other term into. What really differentiates the different distributions of the canonical exponential family is
the b(θ). The form of b will determine whether this distribution is a Gaussian, or a Bernoulli, or etc. This b
will capture information about the mean, the variance, the likelihood, about everything.

33/ 38

Linear Classification Muchang Bahng Spring 2025

7.2 Cumulant Generating Function

Definition 7.3 (Score)

The score is the gradient of the log-likelihood function with respect to the parameter vector. That
is, given that L(θ) is the likelihood, then

s(θ) :=
∂ logL(θ;x)

∂θ

which gives a row covector.

Now, remember that the score also depends on the observations x. If we rewrite the likelihood as a probability
density function L(θ;x) = f(x;θ), then we can say that the expected value of the score is equal to 0, since

E[s(θ)] =
∫
X
f(x;θ)

∂

∂θ
logL(θ;x) dx

=

∫
X
f(x;θ)

1

f(x;θ)

∂f(x;θ)

∂θ
dx

=
∂

∂θ

∫
X
f(x;θ) dx

=
∂

∂θ
1 = 0

where we take a leap of faith in switching the derivative and integral in the penultimate line. Furthermore,
we can get the second identity

E
[
∂2ℓ

∂θ2

]
+ E

[
∂ℓ

∂θ

]2
= 0

We can apply these two identities as follows. Since

ℓ(θ) =
Y θ − b(θ)

ϕ
+ c(Y ;ϕ)

therefore
∂ℓ

∂θ
=
Y − b′(θ)

ϕ

which yields

0 = E
[
∂ℓ

∂θ

]
=

E[Y]− b′(θ)
ϕ

=⇒ E[Y] = µ = b′(θ)

On the other hand, we have
∂2ℓ

∂θ2
+

(
∂ℓ

∂θ

)2

= −b
′′(θ)

ϕ
+

(
Y − b′(θ)

ϕ

)2

and from the previous result, we get
Y − b′(θ)

ϕ
=
Y − E[Y]

ϕ

together with the second identity, yields

0 = −b
′′(θ)

ϕ
+

Var(Y)

ϕ2
=⇒ Var(Y) = ϕ ′′(θ)

Since variance is always positive, this implies that b′′ > 0 and therefore b must be convex.

34/ 38

Linear Classification Muchang Bahng Spring 2025

7.3 Link Functions
Now let’s go back to GLMs. In linear models, we said that the conditional expectation of Y given X = x
must be a linear function in x

E[Y | X = x] = µ(x) = xTβ

But if the conditional distribution takes values in some subset of R, such as (0, 1), then it may not make sense
to write this as a linear function, since XTβ has an image spanning R. So what we need is a link function
that relates, i.e. transforms the restricted subset of µ, onto the real line, so that now you can express it of
the form XTβ.

g
(
µ(X)

)
= XTβ

Again, it is a bit more intuitive to talk about g−1, which takes our XTβ and transforms it to the values that
I want, so we will talk about both of them simultaneously. If g is our link function, we want it to satisfy 3
requirements:

1. g is continuously differentiable

2. g is strictly increasing

3. Im(g) = R, i.e. it spans the entire real line

This implies that g−1 exists, which is also continuously differentable and is strictly increasing.

Example 7.13 ()

If I have a conditional distribution...
1. that is Poisson, then we want our µ to be positive, and so we need a link function g : R+ → R.

One choice would be the logarithm

g(µ(X)) = log
(
µ(X)

)
= XTβ

2. that is Bernoulli, then we want our µ to be in (0, 1) and we need a link function g : (0, 1)→ R.
There are 2 natural choices, which may be the logit function

g(µ(X)) = log

(
µ(X)

1− µ(X)

)
= XTβ

or the probit function
g(µ(X)) = Φ−1

(
µ(X)

)
= XTβ

where Φ is the CDF of a standard Gaussian. The two functions can be seen in Figure 8.

Figure 8: Logit and Probit Functions

35/ 38

Linear Classification Muchang Bahng Spring 2025

Now there are many choices of functions we can take. In fact, if µ lives in (0, 1), then we can really just
take our favorite distribution that has a density that is supported everywhere in R and take the inverse cdf
as our link. So far, we have no reason to prefer one function to another, but in the next section, we will see
that there are more natural choices.

7.3.1 Canonical Link Functions

Now let’s summarize what we have. We assume that the conditional distribution Y | X = x follows a
distribution in the exponential family, which we can completely characterize by the cumulant generating
function ψ. For different values of x, the conditional distribution will be paramaterized by different η(x),
and the resulting distribution Pη will have some mean µ(x), which is usually not the natural parameter η.
Now, let’s forget about our knowledge that ψ′(η) = µ, but we know that there is some relationship between
η ↔ µ.

Given an x, I need to use the linear predictor xTβ to predict µ(x), which can be done through the link
function g.

g
(
µ(x)

)
= xTβ

Now what would be a natural way of choosing this g? Note that our natural parameter η for this canonical
family takes value on the entire real line. I must construct a function g that maps µ onto the entire real line,
and so why not make it map to η. Therefore, we have

η(x) = g
(
µ(x)

)
= xTβ

Definition 7.4 (Canonical Link)

The function g that links the mean µ to the canonical parameter θ is called the canonical link.

g(µ) = θ

Now using our knowledge that ψ′(η) = µ, we can see that

g = (ψ′)−1

This is indeed a valid link function.
1. ψ′′ > 0 since it models the variance, and so ψ′ is strictly increasing and so g = (ψ′)−1 is also

strictly increasing.
2. The domain of ψ′ is the real line since it takes in the natural parameter η which exists over R,

so Im(g) = R.

So, given our cumulant generating function ψ and our link function g, both satisfying

ψ′(η) = µ and g(µ) = xTβ

we can combine them to get
(g ◦ ψ′)(η) = g(µ) = xTβ

and so, even though the mean of the response variable is not linear with respect to x, the value of (g ◦ψ′)(η)
is indeed linear. In fact, if we choose the canonical link, then the equation

η = xTβ

means that the natural parameter of our conditional distribution in the exponential family is linear with
respect to x! From this we can find the conditional mean µ(x).

The reason we focus on canonical link functions is because, when the canonical link is used, the components
of the model (the parameters of the linear predictor) have an additive effect on the response variable in the

36/ 38

Linear Classification Muchang Bahng Spring 2025

transformed (linked) scale, which makes the interpretation of the results easier. It’s also worth noting that
while using the canonical link function has some desirable properties, it is not always the best or only choice,
and other link functions may be used if they provide a better fit for the data or make more sense in the
context of the problem at hand.

Let us evaluate some canonical link functions.

Example 7.14 ()

The Bernoulli has the canonical exponential form of

pη(x) = exp
[
xη − log(1 + eη)

]
where η = log

(
θ

1−θ
)
. Since we have prior knowledge that θ = µ (i.e. the expectation of a Bernoulli

is the hyperparameter θ itself), we have a function that maps µ 7→ η.

η = g(µ) = log

(
µ

1− µ

)
which gives us our result. We can also take the inverse of ψ′ = eη

1+eη to get our result

g(µ) = (ψ′)−1(µ) = log

(
µ

1− µ

)

7.4 Likelihood Optimization
Now let us have a bunch of data points {(xn, yn)}Nn=1. By our model assumption, we know that the conditional
distribution Y | X = xn is now of an exponential family with parameter ηn = η(xn) and density

pηn(yn) = exp
[
ynηn − ψ(ηn)

]
h(yn)

Now we want to do likelihood optimization on β (not η or µ), and to do this, we must rewrite the density
function in a way so that it depends on β. Given a link function g, note the following relationship between
β and η:

ηn = η(xn) = (ψ′)−1(µ(xn))

= (ψ′)−1
(
g−1(xTnβ)

)
= h(xTnβ)

where for shorthand notation, we define h := (g ◦ ψ′)−1. Subtituting this into the above likelihood, taking
the product of all N samples, and logarithming the equation gives us the following log likelihood to optimize
over β.

ℓ(β) = log

N∏
n=1

pηn(yn) =

N∑
n=1

ynh(x
T
nβ)− ψ(h(xTnβ))

where we dropped the h(yn) term at the end since it is a constant and does not matter. If g was the canonical
link, then h is the identity, and we should have a linear relationship between η(xn) = xTnβ. This means that
the ηn reduces only to xTnβ, which is much more simple to optimize.

ℓ(β) = log

N∏
n=1

pηn(yn) =

N∑
n=1

ynx
T
nβ − ψ(xTnβ)

Note that the first term is linear w.r.t β, and ψ is convex, so the entire sum must be concave w.r.t. β. With
this, we can bring in some tools of convex optimization to solve.

37/ 38

Linear Classification Muchang Bahng Spring 2025

References
[MP43] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.

The bulletin of mathematical biophysics, 5(4):115–133, 1943.

38/ 38

	Perceptron
	Logistic Regression
	Maximum Likelihood Estimation
	Significance Tests and Confidence Sets
	Concentration Bounds

	Softmax Regression
	Maximum Likelihood Estimation
	Significance Tests and Confidence Sets
	Concentration Bounds

	Regularized Softmax Regression
	Ridge
	Lasso

	Gaussian Discriminant Analysis
	Comparison to Logistic Regression
	Maximum Likelihood Estimate
	Quadratic Discriminant Analysis
	Multiclass GDA

	Linear Support Vector Machines
	Functional and Geometric Margins
	Analytical Solution
	Significance Tests and Confidence Sets
	Concentration Bounds
	Nonseparable Case

	Generalized Linear Models
	Exponential Family
	Canonical Exponential Family

	Cumulant Generating Function
	Link Functions
	Canonical Link Functions

	Likelihood Optimization

	References

