
Machine Learning Muchang Bahng Spring 2024

Latent Variable Models

Muchang Bahng

Spring 2025

Contents
1 Nonlinear Latent Variable Models 2

1.1 Variational Lower Bounds . 2
1.2 EM Algorithm . 8
1.3 Gaussian Mixture Models . 12
1.4 Nonlinear ICA . 15

Bibliography 15

1/ 16

Machine Learning Muchang Bahng Spring 2024

1 Nonlinear Latent Variable Models
Now we will consider ourselves with nonlinear latent variables models, which still defines a simple latent
random variable Z with prior p(z), but now a family of nonlinear functions {fθ(z)} that defines the generative
component fθ(x | z). In factor models, we have taken linear transformations of random variables and
therefore the likelihood had been easy to calculate, differentiate, and therefore optimize.

In the general nonlinear case, we usually deal with fθ not as a transformation of Z to X, but really fθ(z)
becomes the parameters of X | Z = z. This allows to define the implicitly parameterized family of distribu-
tions {pθ}. Given that the true distribution of the data is p∗(x), we would like to find a distribution pθ(x)
that is a good approximation.

p∗(x) ≈ pθ(x) (1)

To calculate the likelihood pθ(x), we must compute the marginal

pθ(x) =

∫
pθ(x, z) dz =

∫
pθ(x | z) p(z) dz (2)

which is known to be computationally intractable due to the integral. At first, it seems like all hope is lost,
but statisticians have a few tricks up their sleeves.

1. The first trick is to notice that by Bayes rule, we can compute the likelihood not as an integral, but as

pθ(x) =
pθ(x | z) p(z)
pθ(z | x)

(3)

So it suffices to find a good approximation of pθ(z | x), which is a probabilistic discriminative model for
the latent variable (i.e. we are trying to compute the distribution of z given x as if we were predicting
it). We can do MCMC since pθ(z | x) ∝ pθ(x | z) p(z), but often this can be slow to fit.

2. The next trick is called the variational lower bound, which is a lower bound on the log likelihood,
and therefore by optimizing it we can hope to optimize the log-likelihood as well. This works well in
practice.

3. The next trick is by optimizing the Fisher score, which is the gradient of the log likelihood with respect
to the covariates (not the parameters!).

1.1 Variational Lower Bounds
We focus on this problem and define a family of distributions {qϕ(z | x)}ϕ and use it to approximate pθ(z | x).
Therefore, searching for a good ϕ and therefore a good qϕ is basically the problem of variational Bayesian
inference. Essentially we are trying to construct an encoder and a decoder.

2/ 16

Machine Learning Muchang Bahng Spring 2024

Figure 1: If qϕ = pθ, then the diagram commutes, i.e. p(z)pθ(x | z) = p(x)pθ(z | x) = pθ(x, z).

As we have stated before (and in pretty much all density estimation problems), our job is to maximize the
log likelihood of the training set: ∑

i

log p(x(i)) (4)

In order to do this for this problem, we need a little fact from information theory.

Theorem 1.1 (Log Likelihood vs Conditional Entropy)

The KL divergence can be decomposed to

KL
(
qϕ(z | x) || pθ(z | x)

)
= Eqϕ(z|x)[log qϕ(z | x)] + log pθ(x)− Eqϕ(z|x)[log pθ(x, z)] (5)

and hence

Proof.

Starting with the definition of KL divergence:

KL(qϕ(z | x) || pθ(z | x)) = Eqϕ(z|x)

[
log

qϕ(z | x)
pθ(z | x)

]
(6)

= Eqϕ(z|x)[log qϕ(z | x)]− Eqϕ(z|x)[log pθ(z | x)] (7)

By Bayes’ rule, we know that

pθ(z | x) =
pθ(x, z)

pθ(x)
(8)

Substituting this into our equation gives

KL(qϕ(z | x) || pθ(z | x)) = Eqϕ(z|x)[log qϕ(z | x)]− Eqϕ(z|x)

[
log

pθ(x, z)

pθ(x)

]
(9)

= Eqϕ(z|x)[log qϕ(z | x)]− Eqϕ(z|x)[log pθ(x, z)] + Eqϕ(z|x)[log pθ(x)] (10)

Since log pθ(x) is constant with respect to z, we can take it out of the expectation.

Eqϕ(z|x)[log qϕ(z | x)]− Eqϕ(z|x)[log pθ(x, z)] + log pθ(x) (11)

3/ 16

Machine Learning Muchang Bahng Spring 2024

Therefore maximizing the log-likelihood is equivalent to minimizing the KL-divergence.

log pθ(x) = KL
(
qϕ(z | x) || pθ(z | x)

)
+ Eqϕ(z|x)[log pθ(x, z)]− Eqϕ(z|x)[log qϕ(z | x)] (12)

But again the KL divergence part is intractable due to pθ(z | x) being intractable. Using the fact that the
KL divergence is always greater than or equal to 0, we can drop the term and set a lower bound on the log
likelihoods. This lower bound is called the variational lower bound.

N∑
i=1

log pθ(x
(i)) ≥

N∑
i=1

Eqϕ(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eqϕ(z|x(i))[log qϕ(z | x(i))] (13)

Definition 1.1 (Variational Lower Bound)

The variational lower bound of the dataset D is defined

ELBO(D, ϕ, θ) =
N∑
i=1

Eqϕ(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eqϕ(z|x(i))[log qϕ(z | x(i))] (14)

which can be decomposed into the sums of the variational lower bounds of the individual data points.

ELBO(D, ϕ, θ) =
∑
i

ELBO(x(i), ϕ, θ) (15)

where
ELBO(x(i), ϕ, θ) = Eqϕ(z|x(i))[log pθ(x

(i), z)]− Eqϕ(z|x(i))[log qϕ(z | x(i))] (16)

Note that we can alternatively define ELBO using Jensen’s inequality.

Definition 1.2 (Evidence Lower Bound)

To lower bound it, we can use Jensen’s inequalitya with the concave function f(x) = log(x) over
domain R+ and the following holds true for all θ and more importantly, for any arbitrary density
function q(z). Therefore, we have

ℓ(θ) = log pθ(x) (17)

= log

∫
pθ(x, z) dz (18)

= log

∫
qϕ(z)

pθ(x, z)

qϕ(z)
dz (19)

≥
∫

qϕ(z | x) log
(
pθ(x, z)

qϕ(z)

)
dz (20)

= ELBO(x, qϕ) (21)

The lower bound is called the evidence lower bound (ELBO), and the ELBO of the whole dataset
is

ELBO(D, ϕ, θ) =
N∑
i=1

ELBO(x(i), ϕ, θ) (22)

aGiven convex function f : R → R, and random variable X, E[f(x)] ≥ f(E[X]).

Note that this lower bound is with respect to any distribution qϕ, and it is because of this flexibility that
we choose qϕ in the first place. Therefore, we can vary ϕ in hopes that the lower bound is maximized, and
optimize with respect to this, hence the name variational. For more interpretability, look at the corollary.

4/ 16

Machine Learning Muchang Bahng Spring 2024

Corollary 1.1 (Decomposition of ELBO)

The following decomposition of ELBO shows that maximizing the ELBO simultaneously attempts
to keep qϕ close to p and concentrate qϕ(z | x) on those z that maximizes ln pθ(x | z). That is, the
approximate posterior qϕ balances between staying close to the prior p(z) and moving towards the
maximum likelihood argmaxz ln pθ(x | z).

ELBO(x(i), ϕ, θ) = Eqϕ(z|x(i))[log pθ(x
(i) | z)]︸ ︷︷ ︸

likelihood term
(reconstruction part)

−KL(qϕ(z | x(i)) || p(z))︸ ︷︷ ︸
closeness of encoding to p(z)

(typically Gaussian)

(23)

Note the first expression is the likelihood term, which measures the reconstruction quality of the
decoder pθ(x

(i) | z) averaged over encodings sampled from qϕ(z | x(i)). The second term is the KL
divergence between the encoder distribution qϕ(z | x(i)) and the prior p(z), which acts as a regularizer
by ensuring the encoded distributions remain close to the chosen prior, typically a standard normal
distribution.

Proof.

Starting with the ELBO for a single data point:

ELBO(x(i), ϕ, θ) = Eqϕ(z|x(i))[log pθ(x
(i), z)]− Eqϕ(z|x(i))[log qϕ(z | x(i))]

Using the chain rule of probability for the joint distribution:

pθ(x
(i), z) = pθ(x

(i) | z)p(z)

Substituting this into our ELBO:

ELBO(x(i), ϕ, θ) = Eqϕ(z|x(i))[log pθ(x
(i) | z) + log p(z)]− Eqϕ(z|x(i))[log qϕ(z | x(i))]

= Eqϕ(z|x(i))[log pθ(x
(i) | z)] + Eqϕ(z|x(i))[log p(z)]− Eqϕ(z|x(i))[log qϕ(z | x(i))]

= Eqϕ(z|x(i))[log pθ(x
(i) | z)]−

(
Eqϕ(z|x(i))[log qϕ(z | x(i))]− Eqϕ(z|x(i))[log p(z)]

)
= Eqϕ(z|x(i))[log pθ(x

(i) | z)]︸ ︷︷ ︸
reconstruction term

−KL(qϕ(z | x(i)) || p(z))︸ ︷︷ ︸
KL divergence term

Therefore, maximizing the ELBO will simultaneously allow us to obtain an accurate generative model pθ(x |
z) ≈ p∗(x | z) and an accurate discriminative model qϕ(z | x) ≈ pθ(z | x). The next step is to actually
maximize the ELBO with respect to both θ and ϕ. To do this we need to compute the derivatives of ELBO
w.r.t. to ϕ and θ.

max
ϕ,θ

ELBO(D, ϕ, θ) (24)

It turns out that this itself is a nonconvex optimization problem, and to make it doable we iterate between
updating ϕ and θ. Remember that the ELBO is really an expectation, i.e. an integral, and to get a good
estimate of its derivative we must try to change it from the derivative of an expectation to the expectation
of a derivative. The gradient with respect to θ is very easy since from measure theory, we are deriving and
integrating over different variables.

Lemma 1.1 (Gradient of ELBO w.r.t. θ)

For θ, its unbiased gradient is

∇θ ELBO(x, θ, ϕ) = Eqϕ(z|x)
[
∇θ log pθ(x | z)

]
(25)

5/ 16

Machine Learning Muchang Bahng Spring 2024

and therefore we can approximate the gradient by sampling L points p(1), . . . , p(L) from p(z) and
computing the gradient of the log (since we know the closed form of the conditional distribution
given z), and finally averaging them.

∇θ ELBO(x, θ, ϕ) ≈ 1

L

L∑
l=1

∇θ log pθ(x | z(l)) (26)

which is guaranteed to converge by the law of large numbers, and furthermore, we can do this for any
batch size L.

Proof.

Note that the KL divergence does not depend on θ and neither does the prior, so they can be removed

∇θ ELBO(x, θ, ϕ) = ∇θ

{
Eqϕ(z|x)[log pθ(x, z)]− Eqϕ(z|x)[log qϕ(z | x)]} (27)

= ∇θ

{
Eqϕ(z|x)[log pθ(x, z)]} (28)

= Eqϕ(z|x)
[
∇θ{log pθ(x, z)

]
(29)

= Eqϕ(z|x)
[
∇θ{log pθ(x | z)− log p(z)}

]
(30)

= Eqϕ(z|x)
[
∇θ log pθ(x | z)

]
(31)

However, taking the gradient w.r.t. ϕ is more complicated since we cannot put the gradient in the expectation,
i.e. swap the derivative and integral (since we are deriving and integrating w.r.t. ϕ). Fortunately, we have a
well-known mathematical identity often used in policy gradient algorithms in reinforcement learning. [Wil92]

Lemma 1.2 (Log-Derivative Trick)

The following identity holds.

∇ϕEqϕ(z)[f(z)] = Eqϕ(z)[f(z)∇ϕ log qϕ(z)] (32)

Proof.

First, let’s write out the left-hand side using the definition of expectation:

∇ϕEqϕ(z)[f(z)] = ∇ϕ

∫
f(z)qϕ(z)dz

Under suitable regularity conditions, we can exchange the gradient and integral operators:

=

∫
f(z)∇ϕqϕ(z)dz

Now, we multiply and divide by qϕ(z) inside the integral:

=

∫
f(z)qϕ(z)

∇ϕqϕ(z)

qϕ(z)
dz

Recognize that ∇ϕ log qϕ(z) =
∇ϕqϕ(z)
qϕ(z)

by the chain rule:

=

∫
f(z)qϕ(z)∇ϕ log qϕ(z)dz

Finally, we can rewrite this back as an expectation:

= Eqϕ(z)[f(z)∇ϕ log qϕ(z)]

6/ 16

Machine Learning Muchang Bahng Spring 2024

Example 1.1 (Gradient of Expection of f(x) = x2 w.r.t. Gaussian)

Assume we have a normal distribution q that is parameterized by ϕ, specifically qϕ(x) = N(ϕ, 1). We
want to solve the below problem

min
ϕ

Eq[x
2] (33)

This is of course a rather silly problem and the optimal ϕ = 0 is obvious. One way to calculate
∇ϕE[x2] is using the log-derivative trick as follows

∇ϕEq[x
2] = ∇ϕ

∫
qϕ(x)x

2dx (34)

=

∫
x2∇ϕqϕ(x)

qϕ(x)

qϕ(x)
dx (35)

=

∫
qϕ(x)∇ϕ log qϕ(x)x

2dx (36)

= Eq[x
2∇ϕ log qϕ(x)] (37)

For our example where qϕ(x) = N(ϕ, 1), this method gives

∇ϕE[x2] = Eq[x
2(x− ϕ)] (38)

Using this on the gradient of ELBO w.r.t. ϕ gives the following form as the expectation of the gradient.

Lemma 1.3 ()

We can use the score function estimator.

∇ϕ ELBO(x, θ, ϕ) = ∇ϕEqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)] (39)

= Eqϕ(z|x)
[
∇ϕ

{
log qϕ(z|x)(log pθ(x, z)− log qϕ(z|x))

}]
(40)

Proof.

However, REINFORCE is known to have high variance, and so we need large batch sizes L for good conver-
gence. Many methods such as [GBB01, PBJ12] were developed to reduce this. Later it was shown in [KW22]
that the reparamaterization trick beat everything else, allowing us to efficiently train neural-net-based non-
linear latent variable models, e.g. the variational autoencoder. We will focus on the reparameterization trick
in my deep learning notes and omit it here. Now that we have approximate closed form solutions for the
gradients, we can optimize the two using coordinate ascent. Note that we have shown this for a single sample
x, and ideally we would do this for a minibatch of samples x(i).

Algorithm 1.1 (Coordinate Ascent Variational Inference)

A common approach to maximize the ELBO is coordinate ascent, where we alternatively optimize
with respect to ϕ and θ:

7/ 16

Machine Learning Muchang Bahng Spring 2024

Algorithm 1 Coordinate Ascent Variational Inference (CAVI) with Reparameterization

Require: Initial parameters θ[0], ϕ[0], batch size B, number of samples L
1: while not converged do
2: // E-step: optimize variational parameters
3: Sample minibatch {x(1), . . . , x(B)} from dataset D
4: Sample noise {ϵ(1), . . . , ϵ(L)} ∼ p(ϵ) for reparameterization
5: Transform noise to latent variables: z(l) = gϕ[t](ϵ(l), x) for l = 1, . . . , L
6: // Approximate gradient using Monte Carlo samples
7: ĝϕ ← 1

BL

∑B
i=1

∑L
l=1[∇ϕ log pθ[t](x(i) | z(l))−∇ϕ log qϕ[t](z(l) | x(i)) +∇ϕ log p(z

(l))]

8: ϕ[t+1] ← ϕ[t] + ηϕĝϕ ▷Update with learning rate ηϕ
9: // M-step: optimize model parameters

10: ĝθ ← 1
BL

∑B
i=1

∑L
l=1∇θ log pθ[t](x(i) | z(l))

11: θ[t+1] ← θ[t] + ηθ ĝθ ▷Update with learning rate ηθ
12: end while

Once we are done, we have our optimized encoder and decoders pθ and qϕ.

1.2 EM Algorithm
Let’s consider a slightly simpler sub-problem where we have covariates x(i) ∼ X coming from distribution
p(x). We can again add latent random variables Z but rather than being fixed, the prior pθ(z) is also
parameterized by θ. Therefore, we would like to find

argmax
θ

pθ(x) = argmax
θ

∫
pθ(x | z) pθ(z) dz (41)

Even though this integral is not tractable, we will assume that pθ(z | x) can be computed for a given
θ. Let’s try to redo our algorithm again with computable posterior assumptions. We have a training set
D = {x(i)}ni=1 ∈ Rd, which we assume are generated by some latent distributions pθ(z) followed by the
generative component pθ(x | z). Then, we bound the likelihood of each sample x(i) by an ELBO that varies
for all distributions q(i) (we write q rather than qϕ since the ϕ will be irrelevant here).

log pθ(x
(i)) ≥ ELBO(x(i), q(i), θ) = Eq(i)(z|x(i))[log pθ(x

(i), z)]− Eq(i)(z|x(i))[log q
(i)(z | x(i))] (42)

Summing this all up gives the ELBO of our dataset, which is a lower bound for all collections of distributions
q(1), . . . , q(n).

N∑
i=1

log pθ(x
(i)) ≥ ELBO(D, q(1), . . . , q(n), θ) (43)

=

N∑
i=1

Eq(i)(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eq(i)(z|x(i))[log q
(i)(z | x(i))] (44)

We maximized the ELBO w.r.t. q and θ by using CAVI, but by invoking our assumption that the posterior
pθ(z | x) can be computed, we can immediately find a maximum.

8/ 16

Machine Learning Muchang Bahng Spring 2024

Theorem 1.2 (Posterior Maximizes ELBO)

When we set q(i)(z | x) = p(z | x(i)), equality is achieved.

N∑
i=1

log pθ(x
(i)) = ELBO(D, q(1), . . . , q(n), θ) (45)

=

N∑
i=1

Eq(i)(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eq(i)(z|x(i))[log q
(i)(z | x(i))] (46)

Proof.

Let’s start by examining the gap between log pθ(x
(i)) and the ELBO. From our previous derivations,

this gap is the KL divergence:

log pθ(x
(i))− ELBO(x(i), q(i), θ) = KL(q(i)(z|x(i))∥pθ(z|x(i))) (47)

= Eq(i) [log q
(i)(z|x(i))− log pθ(z|x(i))] (48)

When we set q(i)(z|x(i)) = pθ(z|x(i)):

KL(pθ(z|x(i))∥pθ(z|x(i))) = Epθ
[log pθ(z|x(i))− log pθ(z|x(i))] (49)

= Epθ
[0] = 0 (50)

Therefore, when summing over all samples:

N∑
i=1

log pθ(x
(i))− ELBO(D, q(1), . . . , q(n), θ) =

N∑
i=1

KL(q(i)(z|x(i))∥pθ(z|x(i))) = 0 (51)

Therefore, our CAVI algorithm has been decomposed into the following.

1. E-step. Maximizing ELBO over the variational parameters qϕ is really just setting all the q(i) to the
posteriors. Note that this is with respect to a fixed θ only.

2. M-step. Maximizing ELBO over the model parameters θ with fixed q is the same by taking the gradient
w.r.t. θ which is easy.

This results in the following algorithm.

Algorithm 1.2 (EM Algorithm)

The EM algorithm is described as such:
1. Initialize θ.
2. E-Step. Since log pθ(x) is bounded below for all q(1), . . . , q(n) as

N∑
i=1

log pθ(x
(i)) ≥

N∑
i=1

ELBO(x(i), q(i), θ) (52)

setting q(i)(z|x(i)) = pθ(z|x(i)) for all i = 1, . . . , N achieves equality. Note that this equality
only holds for the current fixed value of θ.

9/ 16

Machine Learning Muchang Bahng Spring 2024

3. M-Step. We maximize with respect to θ whilst fixing q(i).a

θ = argmax
θ

N∑
i=1

ELBO(x(i), q(i), θ) (53)

= argmax
θ

N∑
i=1

Eq(i)(z|x(i))[log pθ(x
(i), z)]−

N∑
i=1

Eq(i)(z|x(i))[log q
(i)(z|x(i))] (54)

4. Repeat steps 2 and 3 until convergence. Step 2 brings improvements because changing θ creates
a new sum of ELBO functions as a new lower bound.

aFor specific models like GMM as we will see later, this maximization has closed-form solutions, e.g. ϕ = average
of responsibilities µk =: weighted average of points, Σk = weighted covariance. For other distributions, this maximum
must be found analytically or numerically.

The EM algorithm is a specific instance of ELBO optimization! The additional assumption that EM has is
that we can calculate the posterior densities.

Corollary 1.2 (Connection to ELBO)

The EM algorithm can be viewed as coordinate ascent on the ELBO where:
• E-step: Sets q(z) = pθ[t](z|x), maximizing ELBO over q
• M-step: Maximizes ELBO over θ with fixed q

Note that there is a duality between the true parameters θ and the latent variables z. If θ is known, then
the values of z can be found by maximizing the log-likelihood over all possible values of z. Conversely, if we
know the value of the latent variables z, then we can find an estimate of the parameters by grouping the
data points into each value of z and optimizing pθ(x | z), e.g. by averaging the values. This suggests an
iterative algorithm in the case where both θ and z are unknown. We assume that we know θ and optimize
z, then optimize θ, and so on, similar to k-means clustering.

We can formulate the algorithm alternatively yet equivalently.

Algorithm 1.3 (EM Algorithm)

The Expectation-Maximization algorithm optimizes the likelihood above with the following
steps.

1. First initialize θ = θ[0] in some way.a
2. E-Step. Define

Q(θ | θ[t]) = Epθ(z|x)[log pθ(x, z)] =

∫
pθ[t](z | x) log pθ(x, z) dz (55)

as the expected value of the log-likelihood with respect to the current conditional distribution
of z, given x and θ[t].

3. M-Step. Find the parameters that maximize this quantity.

θ[t+1] = argmax
θ

Q(θ | θ[t]] (56)

aNote that within this θ are the parameterizations of the initial multinomial density pZ , which is our initial “guess”
of the distribution of Z.

10/ 16

Machine Learning Muchang Bahng Spring 2024

Theorem 1.3 (EM Monotonicity)

The EM algorithm monotonically increases the observed data log-likelihood:

log pθ[t+1](x] ≥ log pθ[t](x) (57)

Therefore, though there is no guarantee that this will hit the global maximum, it will hit a local
maximum.

Proof.

Let’s consider the difference in log-likelihoods between iterations:

log pθ[t+1](x)− log pθ[t](x) =
[
Q(θ[t+1]|θ[t])−H(θ[t+1]|θ[t])

]
(58)

−
[
Q(θ[t]|θ[t])−H(θ[t]|θ[t])

]
(59)

where H(θ|θ[t]) = Ez|x,θ[t] [log pθ(z|x)]. By the M-step, we know Q(θ[t+1]|θ[t]) ≥ Q(θ[t]|θ[t]). Also, by
Jensen’s inequality:

H(θ[t+1]|θ[t]) ≤ H(θ[t]|θ[t]) (60)

Therefore, the difference is non-negative.

For some intuition, we can visualize l as a function of θ. For the sake of visuals, we will assume that θ ∈ R
and l : R −→ R. On the contrary to what a visual is supposed to do, we want to point out that we cannot
just visualize l as a curve in R×R. This can be misleading since then it implies that the optimal θ value is
easy to find, as shown in the left. Rather, we have no clue what the whole curve of l looks like, but we can
get little snippets (right).

Figure 2

Rather, all we can do is hope to take whatever easier-to-visualize, lower-bound functions and maximize them
as much as we can in hopes of converging onto l. Let us walk through the first two iterations of the EM
algorithm. We first initialize θ to, say θ0. This immediately induces the lower-bound ELBO-sum function∑

i ELBO(x(i); p∗iZ , θ), which takes in multinomial density functions p∗iZ = p1, p2, . . . and outputs different
functions of θ that are valid lower bounds. Two of these possible lower-bound functions are shown (in green)
for when we input some arbitrary density p1, p2. However, there exists a density p

(i)
Z that produces not only

the maximum possible lower-bound (called max ELBO, shown in red) but is equal to l(θ) for that density
input p

(i)
Z . We maximize this function with respect to θ to get θ1 as our next assignment of θ.

11/ 16

Machine Learning Muchang Bahng Spring 2024

Figure 3

The next step is identical. Now that we have a new value of θ = θ1, this induces the lower-bound ELBO-sum
function

∑
i ELBO(x(i); p∗iZ , θ) that also takes in multinomial densities p∗iZ and outputs different functions

of θ that are valid lower-bounds. Two possible lower bounds are shown (in green), but the maximum lower-
bound (in blue) is produced when we input density p

(i)
Z . Since this max ELBO function is equal to θ for this

fixed density input p
(i)
Z , we maximize this function with respect to θ to get θ2 as our next assignment of θ.

Figure 4

1.3 Gaussian Mixture Models
Given a training set x(i)n

i=1 (without the y-labels and so in the unsupervised setting), there are some cases
where it may seem like we can fit multiple Gaussian distributions in the input space X . For example, the
points below seem like they can be fitted well with 3 Gaussians.

12/ 16

Machine Learning Muchang Bahng Spring 2024

X|Z = 1 ∼ N (µ1,Σ1)

X|Z = 2 ∼ N (µ2,Σ2)

X|Z = 3 ∼ N (µ3,Σ3)

Figure 5: Example of data that can be fitted with 3 Gaussians

Therefore, we can construct a best-fit model as a composition of a multinomial distribution (to decide which
one of the Gaussians x should follow) followed by a Gaussian.

Definition 1.3 (Gaussian Mixture Model)

The Gaussian mixture model (GMM) assumes that the covariates x ∼ X ∈ Rd are generated by
the following.a The parameters are θ = {λ, µ1, . . . , µk,Σ1, . . . ,Σk}.b

1. A latent variable z ∼ Multinomial(λ), where λ = (λ1, . . . , λk) with PMF defined

pθ(z) = λz (61)

2. The generative random variable X | Z = z ∼ N (µi,Σi) where µz ∈ Rd,Σz ∈ Rd×d and PDF
defined

pθ(x | z) =
1

(2π)d/2|Σz|1/2
exp

(
−1

2
(x− µz)

⊤Σ−1
z (x− µz)

)
(62)

aTherefore, our model says that each x(i) was generated by randomly choosing z(i) from 1, . . . , k according to some
multinomial, and then the x(i) was drawn from one of the k Gaussians depending on z(i).

bNote that λ really has k − 1 free parameters and Σi’s should be symmetric and positive-definite.

We can write down the log-likelihood of the given data x(i)’s as a function of all the parameters above as

n∑
i=1

log pθ(x
(i)) =

n∑
i=1

log

(k∑
z=1

pθ(x
(i) | z(i)), pθ(z(i))

)
(63)

Example 1.2 (Dual Nature of Latents and Parameters)

Note that since we only know that the final value of the ith sample is x(i) and not anything at
all about which value z(i) the ith sample had, there is an extra unknown in this model. If we did
know the values of the hidden variables z(i) (i.e. if we knew which of the k Gaussians each x(i) was
generated from), then our log likelihood function would be much more simple since now, our givens
will be both x(i) and z(i). Therefore, we don’t have to condition on the z(i) and can directly calculate
the log of the probability of us having sample values (z(1), x(1)), (z(2), x(2)), . . . , (z(n), x(n)).

13/ 16

Machine Learning Muchang Bahng Spring 2024

n∑
i=1

log p(x(i)) =

n∑
i=1

log p(x(i), z(i)) =

n∑
i=1

log p(x(i) | z(i)) p(z(i)) (64)

This model, with known z(i)’s, is basically the GDA model, which is easy to calculate. That is, the
maximum values of ϕ, µ,Σ are

ϕj =
1

n

n∑
i=1

1z(i)=j

µj =

∑n
i=1 1z(i)=jx

(i)∑n
i=1 1z(i)=j

Σj =
1∑n

i=1 1z(i)=j

n∑
i=1

1z(i)

(
x(i) − µj

)
,
(
x(i) − µj

)T
But since we do not know the values of z(i), we first try to “guess” the values of the z(i)’s and then update
the parameters of our model assuming our guesses are correct.

Algorithm 1.4 (EM Algorithm on GMMs)

The EM Algorithm applied to GMMs has the following steps:
1. Randomly initialize θ[0] = {λ, µ1, . . . , µk,Σ1, . . . ,Σk}.a
2. (E Step) Calculate the posterior density p(z | x) by applying Bayes rule to each sample keeping

the parameter θ[t] fixed.

pθ[t](z | x(i)) =
pθ[t](x(i) | z) pθ[t](z)

p(x)
=

pθ[t](x(i) | z) pθ[t](z)∑
z pθ[t](x(i) | z) pθ[t](z)

(65)

We should have n different multinomial distribution parameters, each representing our best
guess of what multinomial density p(z | x(i)) each x(i) had followed in order to be at the given
points. Let’s label the updated parameters of the multinomial distribution of the ith sample to
be λ[t](i) at the tth iteration.

3. (M Step) We update θ as such.

λ[t+1] =
1

n

n∑
i=1

λ[t](i] (66)

µ
[t+1]
j =

∑n
i=1 λ

[t](i]
j x(i)∑n

i=1 λ
[t](i)

(67)

Σ
[t+1]
j =

1∑n
i=1 λ

[t](i]

n∑
i=1

λ
[t](i)
j

(
x(i) − µ

[t+1]
j

](
x(i) − µ

[t+1]
j

]T (68)

4. Repeat steps 2 and 3 until convergence.
aThis might converge faster using K-means initialization.

Let us elaborate further on the intuition of this step. In the normal GDA with given values of z(i), we
have λ = 1

n

∑n
i=1 1{z(i) = j} = 1

n

(
Number of Samples in jth Gaussian

)
, which is a sum of "hard" guesses,

meaning that each x(i) is undoubtedly in cluster j or not, and so to find out our best guess for the true
vector λ, all we have to do is find out the proportion of all examples in each of the k groups and we’re done
(without needing to iterate). However, in our EM model, we do not know the z(i)’s, and so the best we can
do is give the probability λ

(i)
j that x(i) is in cluster j. So for each point x(i), the model has changed from it

14/ 16

Machine Learning Muchang Bahng Spring 2024

being undoubtedly in group z(i) = j to it having a probability of being in λ
(i)
j for j = 1, . . . , k.

λ = 3
6

λ = 2
6

λ = 1
6

(a) Hard label assignments.

λ(1) = (.8, .03, .17)

λ(2) = (.9, .05, .05)

λ(3) = (.7, .1, .2)

λ(4) = (.15, .8, .05)

λ(5) = (.2, .6, .2)

λ(6) = (.1, .05, .85)

(b) Soft probability assignments.

Figure 6: The superscript [t] is omitted for clarity.

When we update the λ in the M-step, we can interpret the vectors λ(i) as tuples where λ
(i)
j describes the

expected "portion" of each sample x(i) to be in group j. So, we are adding up all the "portions" of the
points that are expected to be in cluster j to get λ =

∑n
i=1 λ

(i).

Figure 7

Now, given the jth Gaussian cluster, we would like to compute its mean µj . Since each x(i) has probability
λ
(i)
j of being in cluster j, we can weigh each of the n points by λ

(i)
j (which determines how "relevant" x(i) is

to cluster j) and average these (already weighted) points to get our "best-guess" of the mean µj . Given the
MLE of the means, we can straightforwardly compute the MLE of the covariance matrices.

In summary, this entire algorithm results from modifying the “hard” data of each point x(i) being undoubtedly
in one cluster to a model containing points x(i) that have been "smeared" around different clusters, with a
probability λ(i) being in cluster j.

1.4 Nonlinear ICA

Bibliography
[GBB01] Evan Greensmith, Peter Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient

estimates in reinforcement learning. In T. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems, volume 14. MIT Press, 2001.

[KW22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

15/ 16

Machine Learning Muchang Bahng Spring 2024

[PBJ12] John Paisley, David Blei, and Michael Jordan. Variational bayesian inference with stochastic
search, 2012.

[Wil92] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

16/ 16

	Nonlinear Latent Variable Models
	Variational Lower Bounds
	EM Algorithm
	Gaussian Mixture Models
	Nonlinear ICA

	Bibliography

