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We have extensively studied parameteric supervised models like linear regression, SVMs, and softmax regres-
sion. Now we introduce analogues in the nonparameteric scheme, starting with kernel regression. If all data
was intrinsically linear, then this would be an ideal world where we only need linear regression. However,
this is not the case in reality, and we must resort to more flexible models to fit nonlinear data.

The basic motivation behind kernels is that samples with similar covariates x1, . . . , xd should be similar in
their response y. Therefore, two data points x(1), x(2) near each other should have similar y(1), y(2) and so if
we are given a new sample x(n+1), we should use similar samples to predict the corresponding y(n+1).

Like with a lot of things, we can in fact formalize this by constructing reproducing kernel Hilbert spaces
(RKHS). RKHS regression provides the theoretical foundation that explains why many kernel methods
work. The representer theorem shows that solutions to regularized regression problems in an RKHS can be
expressed as linear combinations of kernel functions evaluated at nearby training points.

One thing to keep in mind for nonparameteric classification is that when you are using plug-in classifiers
(train a regressor and then run it through a threshold function), there may be problems near the boundary.
For example, say that in a one-dimensional case, you would want the regressor to smoothly fit across the
decision boundary. Classification could be difficult if we have bad boundaries, but the good news is that if
the probability that the data lies in the margins is not high, then we can do pretty well in classification.
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(a) Good case.
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(b) Bad case.

Figure 1: We will generally have challenges differentiating points at the boundaries of a plug-in classifier. This may
matter if p(x, y) is concentrated around this jagged region, or it may not if most of the masses are concentrated far
away from the boundary.
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1 Smoothers

1.1 Linear Smoothers
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2 K Nearest Neighbors
KNN was first introduced by Cover in 1967 [CH67].

2.1 Classification
One method to create a nonparameteric classifier is to take a nonparameteric regressor and put it through
a threshold function to get a plug-in classifier. KNN is an example of such a classifier.

Given a bunch of points in a metric space (X , d) that have classification labels, we want to label new
datapoints x̂ based on the labels of other points that already exist in our dataset. One way to look at it is
to look for close points within the dataset and use their labels to predict the new ones.

Definition 2.1 (Closest Neighborhood)

Given a dataset D = {x(i),y(i)} and a point x̂ ∈ (X , d), let the k closest neighborhood of x̂ be
Nk(x̂) ⊂ [N ] defined as the indices i of the k points in D that is closest to x̂ with respect to the
distance metric dX .

Definition 2.2 (K Nearest Neighbors)

The K Nearest Neighbors (KNN) is a discriminative nonparametric supervised learning algorithm
that doesn’t have a training phase. Given a new point x̂, we look at all points in its k closest
neighborhood, and h(x̂) will be equal to whatever the majority class will be in. Let us one-hot
encode the labels y(i) into ei’s, and the number of data point in the ith class can be stored in the
variable

ai =
∑

i∈Nk(x̂)

1{y(i)=ei} (1)

which results in the vector storing the counts of labels in the k closest neighborhood

a = (a1, a2, . . . , aK) =

( ∑
i∈Nk(x̂)

1{y(i)=e1},
∑

i∈Nk(x̂)

1{y(i)=e2}, . . . ,
∑

i∈Nk(x̂)

1{y(i)=eK}

)
(2)

and take the class with the maximum element as our predicted label.

The best choice of K depends on the data:

1. Larger values of K reduces the effect of noise on the classification, but make boundaries between classes
less distinct. The number of misclassified data points (error) increases.

2. Smaller values are more sensitive to noise, but boundaries are more distinct and the number of mis-
classified data points (error) decreases.

Too large of a K value may increase the error too much and lead to less distinction in classification, while
too small of a k value may result in us overclassifying the data. Finally, in binary (two class) classification
problems, it is helpful to choose K to be odd to avoid tied votes.

This is an extremely simple algorithm that may not be robust. For example, consider K ≥ 3, and we are
trying to label a point x̂ that happens to be exactly where one point is on our dataset x(i). Then, we should
do h(x̂) = y(i), but this may not be the case if there are no other points with class y(i) in the k closest
neighborhood of x(i). Therefore, we want to take into account the distance of our new points from the
others.
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Definition 2.3 (Weighted Nearest Neighbor Classifier)

Let us define a monotinically decreasing function ω : R+
0 7→ R+

0 . Given a point i ∈ Nk(x̂), we can
construct the weight of our matching label as inversely proportional to the distance: ωi[d(x̂,x

(i))]
and store them as

a = (a1, a2, . . . , aK) =

( ∑
i∈Nk(x̂)

ωi1{y(i)=e1},
∑

i∈Nk(x̂)

ωi1{y(i)=e2}, . . . ,
∑

i∈Nk(x̂)

ωi1{y(i)=eK}

)
(3)

and again take the class with the maximum element.

One caveat of KNN is in high dimensional spaces, as its performance degrades quite badly due to the curse
of dimensionality.

Example 2.1 (Curse of Dimensionality in KNN)

Consider a dataset of N samples uniformly distributed in a d-dimensional hypercube. Now given
a point x ∈ [0, 1]d, we want to derive the expected radius rk required to encompass its k nearest
neighbors. Let us define this ball to be Brk := {z ∈ Rd | ||z − x||2 ≤ rk}. Since thse N points are
uniformly distributed, the expected number of points contained in Brk(x) is simply the proportion
of the volume that Brk(x) encapsulates in the box, multiplied by N . Therefore, for some fixed x and
r, let us denote Y (x, y) as the random variable representing the number of points contained within
Br(x). By linearity of expectation and summing over the expectation for whether each point will be
in the ball, we have

E[Y (x, r)] = N · µ(Br(x) ∩ [0, 1]d)

µ([0, 1]d)

where µ is the Lebesgue measure of Rd. Let us assume for not that we don’t need to worry about
cases where the ball is not fully contained within the cube, so we can just assume that Y is only
dependent on r: Y (r). Also, since the volume of the hypercube is 1, µ([0, 1]d) = 1 and we get

E[Y (r)] = N · Cd · rd

which we set equal to k and evaluate for r. Cd is a constant such that the volume of the hypersphere
of radius r can be derived as V = Cd · rd. We therefore get

N · Cd · rdk = k =⇒ rk =

(
k

NCd

)1/d

It turns out that Cd decreases exponentially, so the radius rk explodes as d grows. Another way of
looking at this is that in high dimensions, the ℓ2 distance between all the pairwise points are close in
every single dimension, so it becomes harder to distinguish points that are close vs those that are far.

2.2 Concentration Bounds

Theorem 2.1 (Devroye and Györfi 1985)

Suppose that the distribution of X has a density and that k → ∞ and k/n → 0. For every ϵ > 0 the
following is true. For all large n,

P(R(ĥ)−R∗ > ϵ) ≤ e−nϵ2/(72γ2
d) (4)

where ĥn is the k-nearest neighbor classifier estimated on a sample of size n, and where γd depends
on the dimension d of X.
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2.3 Approximate K Nearest Neighbors

2.4 Regression

Question 2.1 (To Do)

Maybe similar like a kernel regression?

When we want to do nonparametric regression, i.e. when dealing with nonlinear functions, we can construct
a function that uses local averaging of its nearby points.

Example 2.2 (Local Averaging)

Say that we want to fit some function through a series of datapoints in simple regression (one covari-
ate). Then, what we can do is take some sliding window and our vale of the function at a point x is
the average of all values in the window [x− δ, x+ δ].

Figure 2: K means smoother

Code 2.1 (MWS of K Nearest Neighbor Regression in scikit-learn)

Local averaging is implemented as the K nearest neighbor regressor in scikit learn. It is slightly
different in the way that it doesn’t use the points within a certain δ away but rather the K nearest
points. Either way, a minimal working example of this is

1 X = [[0], [1], [2], [3]]
2 y = [0, 0, 1, 1]
3 from sklearn.neighbors import KNeighborsRegressor
4 neigh = KNeighborsRegressor(n_neighbors=2)
5 neigh.fit(X, y)
6 print(neigh.predict([[1.5]]))

Note that since f̂ is a combination of step functions, this makes it discontinuous at points.
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3 Kernel Regression
K nearest neighbor regression puts equal weights on both near and far points, as long as they are in the
window. This may not be ideal, so a simple modification is to weigh these points according to their distance
from the middle x. We can do this with a kernel, as the name suggests. Now this is not the same thing as a
Mercer kernel in RKHS, so to distinguish that I will call it a local averaging kernel.

Definition 3.1 (Local Averaging Kernel)

A kernel is any smooth, symmetric, and non-negative function K : R → R.

Example 3.1 (Some Simple Kernels)

Here are some popular kernels.

(a) K(x) = 1√
2π

e−x2/2. (b) K(x) = 1
2
1(|x| ≤ 1). (c) K(x) = 3

4
(1− x2)1(|x| ≤ 1).

Figure 3: The Gaussian, boxcar, and Epanechnikov kernels.

The idea is to simply take the weighted average of the yi’s. f̂(x) =
∑

i yiℓ(x) where
∑

i ℓi(x) = 1. The
reason we’d like to have the weights to sum to 1 is that if we had data that was constant (i.e. all yi’s are
the same), then the fitted function should be constant at that value as well.

Definition 3.2 (Kernel Regression)

Given a dataset D = {(x(i), y(i))}ni=1, a kernel regression modela, or local smoothing regression,
is a model of the form

ŷ = f(x) =

∑
i yiK

(
∥x−xi∥

h

)
∑

i K

(
∥x−xi∥

h

) (5)

where h is the bandwidth and the denominator is made sure so that the coefficients sum to 1. Note
that this function can have kernels defined at all points in X , but it is interesting to examine it at
the training points.

aNot to be confused with RKHS regression, or kernel ridge regression!

Denoting y = (y1, . . . , yn) ∈ Rn and the vector f(x) = (f(x1), . . . , f(xn)), if we can write the kernel function
as ŷ = f̂(x) = Sy, which in matrix form, isŷ1...

ŷn

 =

f̂(x1)
...

f̂(xn)

 =

ℓ1(x1) · · · ℓn(x1)
...

. . .
...

ℓ1(xn) · · · ℓn(xn)


y1...
yn

 (6)

then we say that we have a linear smoother, with stochastic matrix S being our smoothing matrix.
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Furthermore, the theme of linearity is important and will be recurring. The kernel estimator is defined
for all x, but it’s important to see its behavior at the training points xi. The estimator ŷ = f̂(x) is a
linear combination of the yi’s, and the coefficients ℓi(xj) depend on the values of xj . Therefore, we have
ŷ = Sy, which is very similar to the equation ŷ = Hy in linear regression, where H is the hat matrix
that projects y onto the column space of x. Nonparametric regression has the same form, but rather than
being a projection, it is a linear smoothing matrix. Therefore, this theme unifies both linear regression
and nonparametric regression. Linear smoothers, spline smoother, Gaussian processes, are all just different
choices of the smoothing matrix S. However, not all nonparametric estimators are linear smoothers, as we
will see later.

Example 3.2 (Gaussian Kernels in 1 Dimension)

Let’s perform Gaussian kernel regression on a dataset with 1 covariate and 1 response variable. It is
quite robust.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def true_function(x):
5 return 0.1 * x**4 - 0.5 * x**3 - x**2 + 2 * x + 1
6

7 n_samples = 200
8 X = np.random.uniform(-5, 5, n_samples)
9 Y = true_function(X) + np.random.normal(0, 4.0, n_samples)

10

11 def gaussian_kernel(u):
12 return (1 / np.sqrt(2 * np.pi)) * np.exp(-0.5 * u**2)
13

14 def kernel_regression(x, bandwidth):
15 # Handle both scalar and array inputs
16 x = np.atleast_1d(x)
17 predictions = []
18

19 for x_point in x:
20 distances = (x_point - X) / bandwidth
21 weights = gaussian_kernel(distances)
22 prediction = np.sum(weights * Y) / np.sum(weights)
23 predictions.append(prediction)
24

25 return np.array(predictions)
26

27 # Create evaluation points for smooth plotting
28 x_space = np.linspace(-5, 5, 300)
29 y_true = true_function(x_space)
30

31 # Try different bandwidths
32 bandwidths = [0.3, 0.8, 1.5]
33 colors = [’red’, ’green’, ’blue’]
34

35 plt.figure(figsize=(12, 8))
36 plt.scatter(X, Y, alpha=0.6, color=’gray’, s=20, label=’Data points’)
37 plt.plot(x_space, y_true, ’black’, linewidth=2, label=’True function’)
38

39 for bandwidth, color in zip(bandwidths, colors):
40 y_pred = kernel_regression(x_space, bandwidth)
41 plt.plot(x_space, y_pred, color=color, linewidth=2, label=f’Gaussian Kernel

(h={bandwidth})’)
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42

43 plt.legend(fontsize=11)
44 plt.grid(True, alpha=0.3)
45 plt.xlim(-5, 5)
46 plt.tight_layout()
47 plt.show()

This produces the various estimates.

Figure 4: Note that if h is small (red), the line may be more sensitive to noise, leading to overfitting.

Example 3.3 (Gaussian Kernels in 2 Dimensions)

Let’s try to fit this for 2-dimensional covariates, with a much harder function now.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def true_function(x1, x2):
5 return (2 * np.sin(x1) * np.cos(x2) +
6 1.5 * np.exp(-(x1**2 + x2**2)/8) +
7 0.8 * np.sin(2*x1) * np.sin(2*x2) +
8 0.5 * np.cos(x1 + x2) -
9 0.3 * (x1**2 + x2**2)/10)

10

11 n_samples = 300
12 X1 = np.random.uniform(-5, 5, n_samples)
13 X2 = np.random.uniform(-5, 5, n_samples)
14 Y = true_function(X1, X2) + np.random.normal(0, 0.5, n_samples)
15

16 def gaussian_kernel(u):
17 return (1 / np.sqrt(2 * np.pi)) * np.exp(-0.5 * u**2)
18

19 def kernel_regression_2d(x1, x2, bandwidth):
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20 x1 = np.atleast_1d(x1)
21 x2 = np.atleast_1d(x2)
22 predictions = []
23

24 for x1_point, x2_point in zip(x1, x2):
25 distances = np.sqrt((x1_point - X1)**2 + (x2_point - X2)**2) / bandwidth
26 weights = gaussian_kernel(distances)
27 prediction = np.sum(weights * Y) / np.sum(weights)
28 predictions.append(prediction)
29

30 return np.array(predictions)
31

32 # Create evaluation grid
33 x1_space = np.linspace(-5, 5, 40)
34 x2_space = np.linspace(-5, 5, 40)
35 X1_grid, X2_grid = np.meshgrid(x1_space, x2_space)
36 x1_flat = X1_grid.flatten()
37 x2_flat = X2_grid.flatten()
38

39 # True function surface
40 Y_true = true_function(X1_grid, X2_grid)
41

42 # Figure 1: Data and True Function
43 fig1 = plt.figure(figsize=(12, 5))
44

45 ax1 = fig1.add_subplot(121, projection=’3d’)
46 ax1.scatter(X1, X2, Y, alpha=0.6, s=15, c=’gray’)
47 ax1.set_title(’Training Data’)
48 ax1.set_xlabel(’X1’)
49 ax1.set_ylabel(’X2’)
50 ax1.set_zlabel(’Y’)
51

52 ax2 = fig1.add_subplot(122, projection=’3d’)
53 ax2.plot_surface(X1_grid, X2_grid, Y_true, alpha=0.9, cmap=’viridis’)
54 ax2.set_title(’True Function’)
55 ax2.set_xlabel(’X1’)
56 ax2.set_ylabel(’X2’)
57 ax2.set_zlabel(’Y’)
58

59 plt.tight_layout()
60 plt.show()
61

62 # Figure 2: Kernel Regression with Different Bandwidths
63 bandwidths = [0.3, 0.8, 1.5]
64 fig2 = plt.figure(figsize=(15, 5))
65

66 for i, bandwidth in enumerate(bandwidths):
67 y_pred_flat = kernel_regression_2d(x1_flat, x2_flat, bandwidth)
68 Y_pred = y_pred_flat.reshape(X1_grid.shape)
69

70 ax = fig2.add_subplot(1, 3, i+1, projection=’3d’)
71 ax.plot_surface(X1_grid, X2_grid, Y_pred, alpha=0.9, cmap=’plasma’)
72 ax.set_title(f’Kernel Regression (h={bandwidth})’)
73 ax.set_xlabel(’X1’)
74 ax.set_ylabel(’X2’)
75 ax.set_zlabel(’Y’)
76

10/ 22



Kernels and Smoothers Muchang Bahng Spring 2024

77 plt.tight_layout()
78 plt.show()

The dataset and the true function is shown.

Figure 5

Here are the fitted functions for many values.

Figure 6

3.1 Bias Variance Tradeoff
Just like we do with OLS, we want to minimize the MSE loss. It turns out that from a theoretical point of
view, the choice of the kernel doesn’t really matter. What really matters is the bandwidth h since that is
what determines the bias variance tradeoff. To see why, if h = 0, then it will simply interpolate the points
and variance is extremely high, and if h = ∞, then the fitted function will be constant at Ȳ , leading to high
bias. The following theorem formalizes this but for the simpler case of d = 1.
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Theorem 3.1 (Bias Variance Tradeoff of Kernel Regression)

Suppose that d = 1 and that m′′ is bounded. Also suppose that X has a nonzero, differentiable
density p and that the support is unbounded. Then, the risk is

ED
[
(m̂(x)−m(x))2

]
=

h4

4

(∫
x2K(x)

)2 ∫ (
m′′(x) + 2m′(x)

p′(x)

p(x)

)2

dx (7)

+
σ2
∫
K2(x) dx

nhn

∫
dx

p(x)
+ o

(
1

nhn

)
+ o(h4

n) (8)

The first term is the squared bias and the second term is the variance. p represents the density of x.

Proof.

We first denote

f̂(X) =

1
nh

∑n
i=1 K

(
X−Xi

h

)
Yi

1
nh

∑n
i=1 K

(
X−Xi

h

) (9)

where the denominator is the kernel density estimator p̂(X). Therefore, we rewrite

f̂(x)− f(x) =
â(x)

p̂(x)
− f(x) (10)

=

(
â(x)

p̂(x)
− f(x)

)(
p̂(x)

p(x) + 1− p̂(x)
p(x)

)
(11)

=
â(x)− f(x)p̂(x)

p(x)
+

(f̂(x)− f(x))(p(x)− p̂(x))

p(x)
(12)

as n → ∞ both f̂(x) − f(x) and p(x) − p̂(x) going to 0, and since they’re multiplied in the second
term, it will go to 0 very fast. So the dominant term is the first term, and we can write the above as
approximately

f̂(x)− f(x) ≈ â(x)− f(x)p̂(x)

p(x)
(13)

TBD continued. Wasserman lecture 6, 10:00.

From the theorem above, we can see that if the bandwidth is small, then h4 is small and the bias decreases.
However, there is a h term in the denominator of the variance term, which also trades it off. However, there
are two problems.

1. We can furthermore see that the bias is sensitive to p′/p(x). This means that if the density is steep,
then the bias will be high. This is known as design bias, which refers to bias stemming from how the
x’s are distributed.

2. Another problem that is not contained in the theorem is the boundary bias, which states that if you’re
near the boundary of the distribution (near the boundary of its support), then the bias also explodes.
This happens to be very nasty especially in high dimensions where most of the data tends to be near
the boundary.

It turns out that this can be easily fixed with local polynomial regression, which gets rid of this term in the
bias without any cost to variance. This means that this is unnecessary bias.
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4 Local Linear/Polynomial Regression
Now another way to think about the kernel estimator is as such. Suppose that you’re doing linear regression
on a bunch of points and you want to choose a c that minimizes the loss.∑

i

(Yi − c)2 (14)

You would just pick c = Ŷ . But if you are given some sort of locality condition, that the value of c should
depend more on the values closer to it, you’re really now minimizing∑

i

(Yi − c(x))2K

(
Xi − x

h

)
(15)

Minimizing this by setting the derivative equal to 0 and solving gives us the kernel estimator. Therefore
you’re fitting some sort of local constant at a point X. But why fit a local constant, when you can fit a local
line or polynomial? This is the idea behind local polynomial regression.

x

Figure 7: Rather than using a local constant (blue), we can use a local linear estimator (red).

Therefore, we can minimize the modified loss.

Definition 4.1 (Local Polynomial Estimator)

A local linear estimator is a local linear kernel smoother that estimates the function f̂ that
minimizes the following loss.

argmin
β

∑
i

K

(
Xi − x

h

)(
Yi − β0(x)− β1(x)(x−Xi)

)
(16)

So we can fit a line
f(µ) ≈ β̂0(x) + β̂1(x)(µ− x) (17)

and simply remove the intercept term to get the local linear estimator.

f̂(x) = β̂0(x) (18)

Note that this is not the same as taking the constant estimate. We are extracting the fitted intercept term
and so β̂0(x) ̸= c(x).

4.1 Weighted Least Squares Solution
It turns out that this has an analytic solution. Looking the local polynomial loss should tell you that we’re
really doing OLS, but weighting the points differently. This sounds a lot like weighted least squares.
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Theorem 4.1 (Weighted Least Squares)

The solution to the local linear estimator is similar to the weighted least squares solution.

β̂(x) =

(
β̂0(x)

β̂1(x)

)
= (XT

x WxXx)
−1XT

x WxY (19)

where we have put the subscript x to emphasize that the matrices are dependent on x, and

Xx =

1 X1 − x
...

...
1 Xn − x

 Wx =


K
(
X1−x

h

)
0 · · · 0

0 K
(
X2−x

h

)
· · · 0

...
...

. . .
...

0 0 · · · K
(
Xn−x

h

)
 (20)

Remember that at the end, once you compute β̂, take the intercept term and your estimate is actually β̂0.
Note that this of the form (XT

x WxXx)
−1XT

x WxY = LY , and so this is a linear smoother.

Example 4.1 (Code Implementation: Local Linear vs Constant Regression)

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def true_function(x):
5 return 0.3 * x**3 - 0.5 * x**2 + 2 * x + 1 + 2 * np.sin(2 * x)
6

7 # Generate data
8 np.random.seed(42)
9 n_samples = 150

10 X = np.random.uniform(-3, 3, n_samples)
11 Y = true_function(X) + np.random.normal(0, 1.0, n_samples)
12

13 def gaussian_kernel(u):
14 return (1 / np.sqrt(2 * np.pi)) * np.exp(-0.5 * u**2)
15

16 def local_constant_regression(x, bandwidth):
17 distances = (x - X) / bandwidth
18 weights = gaussian_kernel(distances)
19 return np.sum(weights * Y) / np.sum(weights)
20

21 def local_linear_regression(x, bandwidth):
22 distances = (x - X) / bandwidth
23 weights = gaussian_kernel(distances)
24

25 # Set up weighted least squares: minimize sum(w_i * (y_i - beta_0 - beta_1(x_i -
x))^2)

26 W = np.diag(weights)
27 design_matrix = np.column_stack([np.ones(len(X)), X - x])
28

29 # Solve: (X^T W X) beta = X^T W Y
30 XTW = design_matrix.T @ W
31 beta = np.linalg.solve(XTW @ design_matrix, XTW @ Y)
32

33 return beta[0] # Return beta_0 (x)
34

35 # Evaluation points
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36 x_eval = np.linspace(-3, 3, 200)
37 y_true = true_function(x_eval)
38

39 bandwidth = 0.4
40 y_constant = [local_constant_regression(x, bandwidth) for x in x_eval]
41 y_linear = [local_linear_regression(x, bandwidth) for x in x_eval]
42

43 # Plot
44 plt.figure(figsize=(12, 6))
45 plt.scatter(X, Y, alpha=0.6, s=20, color=’gray’, label=’Data’)
46 plt.plot(x_eval, y_true, ’black’, linewidth=2, label=’True function’)
47 plt.plot(x_eval, y_constant, ’blue’, linewidth=2, label=f’Local constant

(h={bandwidth})’)
48 plt.plot(x_eval, y_linear, ’red’, linewidth=2, label=f’Local linear (h={bandwidth})’)
49 plt.xlabel(’x’)
50 plt.ylabel(’y’)
51 plt.legend()
52 plt.grid(True, alpha=0.3)
53 plt.title(’Local Constant vs Local Linear Regression’)
54 plt.tight_layout()
55 plt.show()

Figure 8: You can see that it does much better on the endpoints.

4.2 Bias Variance Decomposition
Computationally, it’s similar to kernel regression and it gets rid of both the boundary and design bias. Let’s
see this mathematically.

Theorem 4.2 (Bias Variance Decomposition)

Under some regularity conditions, the risk of m̂ is

h4

4

∫ (
tr(m′′(x)

∫
K(u)uuT du)

)2

dP (x) +
1

nhd

∫
K2(u)du

∫
σ2(x)dP (x) + o(h4

n + (nhd
n)

−1) (21)
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Proof.

For a proof, see Fan & Gijbels (1996).

For points near the boundary, the bias is Ch2m′′(x) + o(h2) whereas, the bias is Chm′(x) + o(h) for kernel
estimators.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

0

2

4

6

x

y

Figure 9: Diagram of the boundary bias. The green line represents what you would see for a fitted kernel regressor.
At the boundaries (endpoints of the data), you can see that because the kernel is cut off, more and more bias
accumulates. We avoid this in local polynomial regression.

4.3 Local Polynomial Regression
We can extend this and compute local polynomials rather than lines.

Definition 4.2 (Local Polynomial Estimator)

The local polynomial estimator is a local linear kernel smoother that estimates the function f̂
that minimizes the following loss.

argmin
β

∑
i

K

(
Xi − x

h

)(
Yi − (β0(x)− β1(x)(x−Xi) + . . .+ βk(x)(x−Xi)

k)
)

(22)

People do this because there is also bias in the peaks and troughs of the data, and local quadratics can
capture this much better. Beyond quadratics, there’s not much more benefits and we have the accumulating
cost of variance.
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5 Splines
This is not local, but it’s a linear smoother.
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6 RKHS Regression
This is not local, but it’s a linear smoother.

Code 6.1 (MWS of Kernel Ridge Regression in scikit learn)

1 from sklearn.kernel_ridge import KernelRidge
2 import numpy as np
3 n_samples, n_features = 10, 5
4 rng = np.random.RandomState(0)
5 y = rng.randn(n_samples)
6 X = rng.randn(n_samples, n_features)
7 krr = KernelRidge(alpha=1.0)
8 krr.fit(X, y)
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7 Additive Models and Naive Bayes
Additive models and naive bayes are both nonparameteric methods, but they are very similar.

7.1 Additive Models
In the most general case, we want to create nonparametric regression functions of the form

Y = f(x1, . . . , xd) + ϵ (23)

We’ve done this for one dimensional case, but we can extend this to multiple dimensions through additive
models of the form

Y =
∑
j

fj(xj) + ϵ (24)

This gives us very interpretable models where we can clearly see the effect of each covariate on Y . Clearly,
this is not as flexible as the previous model since they can’t capture dependencies, but we can create sub-
dependency functions and replace the form above to something like

Y =
∑
i,j

fi,j(xi, xj) + ϵ (25)

giving us more flexible models.

7.2 Naive Bayes
Say we are doing a binary classification problem. We treat the features as independent (which is very
unrealistic) and model the probability distribution as

p(x | y = 0) =

d∏
j=1

pj(xj | y = 0), p(x | y = 1) =

d∏
j=1

pj(xj | y = 1) (26)

When we take the log, we can see that it is like the additive model. This turns out to be surprisingly
successful.
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8 Nonlinear Smoothers, Trend Filtering
Tough example of the Dobbler function (like topologists sine curve). It’s a pretty good fit but it’s not too
good since it’s using a linear smoother (homogeneous). So we might need to fit it with nonlinear smoothers.
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9 Nonparameteric Support Vector Machines
Rather than inner products and L2 regularization, we can take the kernel and L2 norm in the RKHS.

Recall that in linear SVMs, we have used a plug-in classifier on a linear model F (x) = βTx1 and trained it
using the hinge loss regularized with the L2 norm.

argmin
β∈Rd+1

1

n

n∑
i=1

max{0, 1− y(i)F (x(i))}+ λ∥β∥2 = argmin
β∈Rd+1

1

n

n∑
i=1

max{0, 1− y(i)βTx(i)}+ λ∥β∥2 (27)

Now in the nonparameteric case, all we do is replace F to not be a linear model, but some function in a
RKHS F . Therefore, we are minimizing

argmin
F∈F

1

n

n∑
i=1

max{0, 1− y(i)F (x(i))}+ λ∥β∥2F (28)

where the L2 norm of the vector β becomes the norm of the function. So you are just minimizing the hinge
loss over an arbitrary RKHS.

This numerically corresponds to replacing every inner product of your data ⟨x(i), x(j)⟩ with the Mercer kernel
K(x(i), x(j)).

9.1 Concentration Bounds
The following theorem gives a bit of insight into the bias-variance tradeoff.

Theorem 9.1 (Blanchard, Bosquet, Massert, 2008)

For all F in a RKHS with ∥F∥K ≤ R, the following is true with probability 1− δ.

P (Y ̸= h(X)) ≤

(
1

n

∑
i

max{0, 1− y(i)F (x(i))}

)
+

2R

n

√∑
i

K(x(i), x(i)) +

√
8 log(2/δ)

n
(29)

It’s a little weird that it states that it holds for all F in the RKHS, but since it holds for all functions, it
also holds for the minimizer F̂ as well.

But we also see that there is a tradeoff between bias and variance. If we set R to be large, i.e. we do not
regularize as much, then the second term will get large and we get a worse bound (higher complexity and so
higher variance), but at the same time we may get a better fit in the first term (lower bias).

If we apply this with a Gaussian kernel K(x, y) = exp(−∥x−y∥
2σ2 ), then we see that

P (Y ̸= h(X)) ≤

(
1

n

∑
i

max{0, 1− y(i)F (x(i))}

)
+

R√
πnσ

+

√
8 log(2/δ)

n
(30)

and so we have another parameter σ to tune. We could try to make σ large to make the second term small.
This would certainly decrease the variance, but then the first term (the loss) might increase due to high
bias.2

1This means that f(x) = sign(F (x)).
2Think again that if we had a nearly uniform kernel over the entire space, then we would have a constant function, which

has extremely high bias and low variance.

21/ 22



Kernels and Smoothers Muchang Bahng Spring 2024

Bibliography
[CH67] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information

Theory, 13(1):21–27, 1967.

22/ 22


	Smoothers
	Linear Smoothers

	K Nearest Neighbors
	Classification
	Concentration Bounds
	Approximate K Nearest Neighbors
	Regression

	Kernel Regression
	Bias Variance Tradeoff

	Local Linear/Polynomial Regression
	Weighted Least Squares Solution
	Bias Variance Decomposition
	Local Polynomial Regression

	Splines
	RKHS Regression
	Additive Models and Naive Bayes
	Additive Models
	Naive Bayes

	Nonlinear Smoothers, Trend Filtering
	Nonparameteric Support Vector Machines
	Concentration Bounds

	Bibliography

