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Principal component analysis (PCA) and factor analysis (FA) originated independently by Pearson in 1901
and Spearman in 1904 [Pea01, Spe04]. Pearson gave the first formal treatment of it not to compute principal
components, but to give a new measure of what a “best fit” line means. On the other hand, Spearman—
frustrated by the lack of rigorous analyses on nontrivial in psychology—attempted to model the correlation
between mental aptitude and sensory tasks. Though their discoveries were independent, the similarity of
their models had inevitably caused their developments to coincide.

Note that PCA is similar to linear regression in that it fits some line (or hyperplane) of best fit to some data.
However, linear regression—as a model that tries to use the covariates x to predict the response y—attempts
to minimize the residual (y − ŷ)2. If we were to flip the model and try to predict x with y, then the best
fit line would not be the same. As Pearson puts it, the most probable stature of a man with a given length
of leg l being s, the most probable length of a leg for a man of stature s will not be l [Pea01]. This is further
motivated by the fact that in many data collecting procedures, you do not collect a perfect measurement of
x first and then a noisy measurement of y. Rather, you are usually collecting both x and y together at the
same time, in which they may both be perceptive to error.

(a) PCA minimizes the orthogonal distance to the
subspace.

(b) Linear regression minimizes the residual dis-
tance to the subspace.

Figure 1: Note that this is in fact different from linear regression as it minimizes the expected orthogonal distance to
the subspace, rather than the residual distance to the subspace as in linear regression.
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1 Principal Component Analysis
Say that we have a random vector x = (x1, . . . , xd). These d covariates will naturally be correlated, and we
want to ask whether some more fundamental set of independent variables exist [Hot33] such that we can
express

x = f(v1, . . . , vk) (1)

Naturally, we think of f as a linear function.

We can think of PCA doing two things. First, it is a dimensionality-reduction algorithm where it takes
samples x ∈ Rd and projects them into some smaller subspace L of dimension k. Second, it identifies an
orthonormal basis of L that act as uncorrelated low-dimensional features. Because the projection map is
linear and we are working in a lower-dimensional subspace, these new basis vectors are linear combinations
of the original basis, which may reduce redundancy. Furthermore, by approximately modeling the original
x as a linear combination of these features, we are able to get a more parsimonious representation.

In PCA literature, it is more common to work with row vectors x ∈ R1×d, so linear mappings are realized
through right matrix multiplication xA. Furthermore, we will assume that the data are 0-mean.

1.1 L2 Residual Minimization Approach
To give some motivation, we try to find a best fit line in Rd. A line ℓ can be parameterized by a unit vector v
(note that it can be ±v!), and so given some sample x, its projection onto ℓ is projℓ(x) = ⟨x, v⟩v. Therefore,
the residual is

∥x− ⟨x, v⟩v∥2 = ∥x∥2 − 2⟨x, ⟨x, v⟩v⟩+ ∥⟨x, v⟩v∥2 (2)

= ∥x∥2 − 2⟨x, v⟩2 + ⟨x, v⟩2∥v∥2 (3)

= ∥x∥2 − ⟨x, v⟩2 (4)

since ∥v∥2 = 1 [Sha19]. Now given a 0-mean random variable x (why we only consider 0-mean RVs will be
clear later), our risk is

R(v) = Ex

[
∥x− (x · v)v∥

]
= Ex

[
∥x∥2

]
− Ex

[
⟨x, v⟩2

]
(5)

In practice, we want to minimize our empirical risk. Assume that we have sampled data x(1), . . . , x(n) ∼ x.
Then,

argmin
v∈Rd,∥v∥=1

R̂(v) = argmin
v∈Rd,∥v∥=1

1

n

( n∑
i=1

∥x(i)∥2 −
n∑

i=1

⟨x(i), v⟩2
)

(6)

= argmax
v∈Rd,∥v∥=1

1

n

n∑
i=1

⟨x(i), v⟩2 (7)

We have our loss function! Now what if we wanted to look for best fitting subspaces in general? Let’s first
rigorously define such a space.

Definition 1.1 (Principal Subspace)

Let x be a 0-mean random variable in Rd and let Lk denote all k-dimensional linear subspaces of Rd.
The kth principal subspace is defined as

ℓk = argmin
ℓ∈Lk

Ex̃

[
∥x− projℓ x∥2

]
(8)

This isn’t a big step from what we had before. We just want to construct a subspace ℓ that minimizes the
expected L2 distance between x and ℓ. Now how do we do such a thing? The most natural extension would
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be to identify an orthonormal basis v1, . . . , vk, and since

projℓ x =

k∑
i=1

projvi x (9)

our loss can be simplified to

R(ℓ) = R(v1, . . . , vk) = E
[
∥x− projℓ x∥2

]
(10)

= E
[
∥x∥2 − 2⟨x,

k∑
i=1

projvi x⟩+ ∥
k∑

i=1

projvi x∥
2

]
(11)

= E
[
∥x∥2 − 2

k∑
i=1

⟨x,projvi x⟩+
k∑

i=1

∥ projvi x∥
2

]
(12)

= E
[
∥x∥2 − 2

k∑
i=1

⟨x, vi⟩2 +
k∑

i=1

⟨x, vi⟩2∥vi∥2
]

(13)

= E
[
∥x∥2 −

k∑
i=1

⟨x, vi⟩2
]

(14)

Now if x was not 0-mean, our intuition would tell us that the principal subspace should pass through its
mean, or centroid. In fact [Pea01] showed this for a 1-dimensional subspace.

Lemma 1.1 (Principal Subspace Must Intersect Mean)

Assume that E[x] ̸= 0, and by abuse of notation let us denote ℓ+ p ∈ Rd as the affine subspace ℓ that
goes through p.

1. If p is orthogonal to ℓ, then minimizes the risk is the average projection distance to the subspace.

p = E[x− projℓ(x)] (15)

2. Another viable solution is
p = Ex[x] (16)

That is, p must go through the mean of the data.

x1

x2

p

ℓ+ p

Figure 2: By orthogonal intersection, we mean that for any w ∈ ℓ, ⟨w, p⟩ = 0

Proof.

We actually free p to be any vector, not necessarily orthogonal. The projection distance of x onto
ℓ+ p is the same as the projection distance from x− p onto ℓ. Therefore, vi’s are orthogonal, we can
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derive

R(ℓ, p) = Ex

[
∥x− projℓ+p(x)∥2

]
(17)

= Ex

[
∥(x− p)− projℓ(x− p)∥2

]
(18)

= Ex

[
∥x− p∥2 +

∥∥∥∥ k∑
i=1

projvi(x− p)

∥∥∥∥2 − 2
〈
x− p,

k∑
i=1

projvi(x− p)
〉]

(19)

= Ex

[
∥x− p∥2 −

∑
i

⟨x− p, vi⟩2
]

(20)

To find the minimum, we take the total derivative and set it equal to 0. We are taking the derivative
w.r.t. p of an integral w.r.t. x, so we can push the derivative into the integral and solve.

0 =
∂R(ℓ, p)

∂p
= Ex

[
∂

∂p

{
∥x− p∥2 −

∑
i

⟨x− p, vi⟩2
}]

(21)

= Ex

[
2(p− x) + 2

k∑
i=1

⟨x− p, vi⟩vi

]
(22)

= Ex [2(p− x) + 2 projℓ(x− p)] (23)

This has an infinite number of solutions, but by constraining p to be orthogonal to ℓ, we can get a
unique one. In this case, projℓ(x− p) = projℓ(x) and we have

p = Ex[x− projℓ(x)] (24)

Or, we can simply substitute p = Ex[x] and see that everything cancels out.

Therefore, we can just normalize the data to 0 and simply use 14 without having to account for the affine
translation p. In the empirical case, we can get rid of the fixed x and find

argmax
vi∈Rd

1

n

n∑
j=1

k∑
i=1

⟨x(j), vi⟩2, subject to ∥vi∥2 = 1, ⟨vi, vj⟩ = 0 for i ̸= j (25)

By stacking the vi’s left-to-right in matrix Vk ∈ Rd×k, we can get a cleaner form of the loss function.

1

n

n∑
j=1

k∑
i=1

⟨x(j), vi⟩2 =
1

n

n∑
j=1

k∑
i=1

(x(j))T viv
T
i x

(j) (26)

=
1

n

n∑
j=1

(x(j))TVkV
T
k x(j) (27)

=
1

n
Tr(XVkV

T
k XT ) =

1

n
Tr(V T

k XTXVk) (28)

This leads to an intuitive loss function for PCA.

Theorem 1.1 (Constrained Empirical Risk of kth Principal Subspace)

The empirical risk, or loss function, of PCA is

argmax
V ∈Rd×k,V T

k Vk=Ik

1

n
∥X −XVkV

T
k ∥2 (29)
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Proof.

By the Frobenius norm expansion and since V T
k Vk = Ik, we have

∥X −XVkV
T
k ∥2F = Tr((X −XVkV

T
k )T (X −XVkV

T
k )) (30)

= Tr(XTX −XTXVkV
T
k − VkV

T
k XTX + VkV

T
k XTXVkV

T
k ) (31)

= Tr(XTX)− 2Tr(XTXVkV
T
k ) + Tr(VkV

T
k XTXVkV

T
k ) (32)

= Tr(XTX)− 2Tr(V T
k XTXVk) + Tr(V T

k VkV
T
k XTXVk) (33)

= Tr(XTX)− 2Tr(V T
k XTXVk) + Tr(V T

k XTXVk) (34)

= Tr(XTX)− Tr(V T
k XTXVk) (35)

and since the empirical risk does not depend on X, minimizing the Frobenius norm is equivalent to
maximizing the second trace term, i.e. 28.

Definition 1.2 (Projection Operator)

Note that there are two distinct projection operators, which are realized through right matrix multi-
plication.

1. The linear map Vk : Rd → Rk is a projection operator of the samples x into the component
space.

2. The linear map VkV
T
k : Rd → Rd is called the rank-k projection operator onto the kth

principal subspace.

Therefore, XVk ∈ Rn×k is the projection of the dataset into the component space. If we want to get the
denoised samples in the sample space Rd, we project it back out XVkV

T
k .

1.2 Variance Maximization Approach
But we can turn this into a variance maximization problem. Note that Varx[⟨x, v⟩] = Ex[⟨x, v⟩2]−Ex[⟨x, v⟩]2,
and so we can rewrite our true risk as

argmin
v∈Rd,∥v∥=1

R(v) = argmin
v∈Rd,∥v∥=1

Ex

[
∥x∥2

]
−Varx[⟨x, v⟩]− Ex[⟨x, v⟩]2 (36)

where the last term vanishes since x is 0-mean, and hence by linearity of expectation Ex[⟨x, v⟩] = ⟨E[x], v⟩ =
⟨0, v⟩ = 0. In parallel the empirical risk reduces to simply the sample variance.

argmax
v∈Rd,∥v∥=1

V̂ar[⟨x, v⟩] = argmax
v∈Rd,∥v∥=1

1

n

( n∑
i=1

⟨x(i), v⟩2
)

(37)

Therefore, we can think of the L2 minimization problem as equivalent to a variance maximization approach.

Lemma 1.2 (Variance Maximization Approach)

Minimizing the L2 distance of a random variable x to a line ℓ in Rd is equivalent to maximizing the
scalar variance in the projected space.

argmin
v∈Rd,∥v∥=1

E[∥x− projv(x)∥2] = argmax
v∈Rd,∥v∥=1

Varx[⟨x, v⟩] (38)
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Figure 3: Projecting the dataset onto the blue line seems to retain more variance than projecting onto the red line.

Let’s in fact try to directly maximize the variance. If we vertically stack our n data points into a matrix
X ∈ Rn×d, then the projections of this data onto R is simply Xv ∈ Rn. Again, since this is 0-mean, the
variance is

V̂ar(Xv) =
1

n
(Xv)T (Xv) (39)

=
1

n
vTXTXv (40)

= vT
XTX

n
v (41)

= vT Σ̂v (42)

where Σ̂ is the empirical covariance matrix of X. We want to find

max
v

vT Σ̂v subject to ∥v∥2 = 1 (43)

This is a classic Lagrange multiplier problem. We construct the Lagrangian and compute its partial deriva-
tives to set equal to 0.

L(v, λ) = vT Σ̂v − λ(∥v∥2 − 1) (44)
∂L
∂v

= 2Σ̂v − 2λv = 0 (45)

∂L
∂λ

= vT v − 1 = 0 (46)

which gives us
Σ̂v = λv, vT v = 1 (47)

This tells us that v is a unit eigenvector, and the maximizing vector will be the one corresponding to the
largest eigenvalue. Essentially, we have reduced this to an eigenvalue problem.

Theorem 1.2 (1st Principal Subspace as Eigenvector)

The first principal subspace of data matrix X ∈ Rn×d is spanned by the eigenvector corresponding
to the largest eigenvalue of the sample covariance matrix Σ̂ = 1

nX
TX.

Now for higher dimensional subspaces, we take the same approach. Going through the same derivation gives
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the expected risk in terms of the variance

R(v1, . . . , vk) = E[∥x∥2]−
k∑

i=1

E[⟨x, vi⟩2] (48)

= E[∥x∥2]−
k∑

i=1

Var[⟨x, vi⟩]− E[⟨x, vi⟩]2 (49)

By fixing the x’s and going through the same derivation as 39, we get our equivalent empirical risk.

argmax
vi∈Rd

k∑
i=1

V̂ar[⟨x, vi⟩] = argmax
vi∈Rd

k∑
i=1

vTi Σ̂vi (50)

Theorem 1.3 (Constrained Empirical Risk of kth Principal Subspace)

The empirical risk tells us to find an orthonormal basis that maximizes the sum of the variance of
projections.

argmax
vi∈Rd

k∑
i=1

vTi Σ̂vi subject to ∥vi∥2 = 1, ⟨vi, vj⟩ = 0 for i ̸= j (51)

The variance-maximization loss is very insightful, and we may naively think of just taking the unit eigen-
vectors corresponding to the top k largest eigenvalues. Surprisingly, this greedy approach turns out to be
correct.

Let’s derive this further
k∑

i=1

vTi Σ̂vi =

k∑
i=1

Tr(viv
T
i Σ̂) (52)

= Tr(VkV
T
k Σ̂) (53)

= Tr(Σ̂VkV
T
k ) (54)

which again is equal to 28. By the spectral theorem, we can take the eigendecomposition of self-adjoint
Σ̂ = QΛQT with orthogonal matrix Q. Setting Wk = QTVk, we have

Tr(Σ̂VkV
T
k ) = Tr(QΛQTVkV

T
k ) = Tr(ΛQTVkV

T
k Q) = Tr(ΛWkW

T
k ) =

d∑
i=1

λi(WkW
T
k )ii (55)

where without loss of generality we have λ1 ≥ λ2 ≥ . . . ≥ λd. However, we have two constraints. First,
since WkW

T
k is a projection matrix, the eigenvalues must be between 0 and 1. Second, by the cyclic trace

property, we have Tr(WkW
T
k ) = Tr(Ik) = k.1 So denoting wi = (WkW

T
k )ii, we have the optimal allocation

problem

max

d∑
i=1

λiwi subject to

{
wi ∈ [0, 1] ∀i = 1, . . . , d∑

i wi = k
(56)

Since the eigenvalues are decreasing, it doesn’t take too much to see that the optimal solution is to just
put everything you have into the largest eigenvalues. So we fill the first w1 = . . . = wk = 1 and the rest
wk+1, . . . wd = 0. Therefore, this solution corresponds to Wk = (e1, e2, . . . , ek), and so

Vk = QWk = Qk (57)

which is the truncated matrix Q containing the first k eigenvectors of Σ̂ corresponding to the largest eigen-
values. At this point, it does not suffice to talk about just a principal subspace anymore. We must identify
its orthonormal basis, i.e. the eigenvectors.

1Though it is not the case that WkW
T
k = Ik!
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Definition 1.3 (Principal Axis)

The eigenvectors v1, . . . , vk that span the kth principal subspace are called the top k principal axes,
or principal directions.a

aThe terminology is misused and confusing sometimes. See https://stats.stackexchange.com/questions/88118/what-
exactly-is-called-principal-component-in-pca.

Definition 1.4 (Principal Scores)

Given a sample x ∈ Rd, its top k principal scores are defined in the equivalent ways.
1. It is the components of V T

k x. That is, we take a sample and project it onto the component
space.

x =
∑
i

aiei 7→ V T
k x =

∑
j

bje
′
j (58)

where ei, e
′
j are the basis vectors in Rd,Rk. Then b1, . . . , bk are the principal scores of x.

2. It is the coefficients of x with respect to the basis spanned by the top k eigenvalues.

x = c1v1 + c2v2 + . . .+ ckvk + ck+1vk+1 + . . .+ cdvd (59)

Then c1, . . . , ck are the principal scores.

Proof.

These two are clearly equivalent since

b1e
′
1 + . . .+ bke

′
k = V T

k x = V T
k

(
d∑

i=1

civi

)
=

d∑
i=1

ciV
T
k vi =

k∑
i=1

cie
′
i (60)

which is of the proper form when ci = bi. Since V T
k is a truncated orthogonal matrix, V T

k vi = e′i for
1 ≤ i ≤ k and 0 for all else.

This is similar to taking the first principal component v1 on X, and then by computing the first principal
component on the remaining residuals X − projv1 X, we get the second principal component, which is
guaranteed to be orthogonal. But usually, we end up just computing all eigenvectors at once.

Now how do we know that this sample decomposition is a good approximation to the true decomposition?
It comes from the fact that the sample covariance Σ̂ is a good approximation of the true covariance Σ, which
we will later prove using concentration of measure.

Theorem 1.4 (Risk)

The risk satisfies

R(k) = E[∥x− VkV
T
k x∥2] =

D∑
j=k+1

λj (61)

It is essential that you plot the spectrum in decreasing order. This allows you to analyze how well PCA is
working. People often use the “elbow” technique to determine where to choose K, and we value∑k

j=1 λj∑d
j=1 λj

(62)

accounts for the variance explained, which should be high with K low. If you have to go out to dimension
K = 50 to explain 90% of the variance, then PCA is not working. It may not work because of many reasons,
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such as there being nonlinear structure within the data.

1.3 Decomposition Solvers
So far, the equivalence of the L2 minimization approach and variance maximization approach had been
firmly established by 1933 in [Hot33]. However, the person who formalized the connection in using low-rank
approximations in PCA was Eckart and Young in 1936 [EY36].2

Theorem 1.5 (Eckart-Young Theorem)

The solution to
min

Ak∈Rm×n
∥A−Ak∥F , subject to rank(Ak) ≤ k (63)

is given by the matrix Ak = USV T
k , where A = USV T is the singular value decomposition of A, and

Vk is the truncated matrix formed from the first k columns of V . Note that ∥ · ∥F is the Frobenius
norm.

Proof.

Let A ∈ Rm×n be a real (possibly rectangular) matrix with m ≤ n. Suppose that

A = UΣV T (64)

is the singular value decomposition of A.
We claim that the best rank k approximation to A in the Frobenius norm, denoted by ∥ · ∥F , is given
by

Ak =

k∑
i=1

σiuiv
T
i (65)

where ui and vi denote the ith column of U and V , respectively.
First, note that we have

∥A−Ak∥2F =

∥∥∥∥∥
n∑

i=k+1

σiuiv
T
i

∥∥∥∥∥
2

F

=

n∑
i=k+1

σ2
i (66)

Therefore, we need to show that if Bk = XY T where X and Y have k columns then

∥A−Ak∥2F =
n∑

i=k+1

σ2
i ≤ ∥A−Bk∥2F . (67)

By the triangle inequality with the spectral norm, if A = A′ + A′′ then σ1(A) ≤ σ1(A
′) + σ1(A

′′).
Suppose A′

k and A′′
k respectively denote the rank k approximation to A′ and A′′ by SVD method

described above. Then, for any i, j ≥ 1

σi(A
′) + σj(A

′′) = σ1(A
′ −A′

i−1) + σ1(A
′′ −A′′

j−1) (68)

≥ σ1(A−A′
i−1 −A′′

j−1) (69)

≥ σ1(A−Ai+j−2) (since rank(A′
i−1 +A′′

j−1) ≤ i+ j − 2) (70)

= σi+j−1(A). (71)

Since σk+1(Bk) = 0, when A′ = A−Bk and A′′ = Bk we conclude that for i ≥ 1, j = k + 1

σi(A−Bk) ≥ σk+i(A). (72)

2In fact, a stronger version was proved before, but they rediscovered it.
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Therefore,

∥A−Bk∥2F =

n∑
i=1

σi(A−Bk)
2 ≥

n∑
i=k+1

σi(A)2 = ∥A−Ak∥2F , (73)

as required.

Now this gives the theoretical justificiation to use SVD. Since 1
nX

TX = 1
nV SUTUσV T = 1

nV S2V T , the
columns of V are the principal axes. Recall from linear algebra that Λ = S2.

Algorithm 1.1 (PCA with SVD)

Given a dataset X ∈ Rn×d, let us denote the rows as xi, and say that we are looking for a subspace
of dimension k.

1. Compute the mean

µ =
1

n

n∑
i=1

xi ∈ Rd (74)

2. Standardize the data X̃ = X − µ, i.e. x̃i = xi − µ.
3. Compute the SVD X̃ = USV T .
4. Compute the submatrices Vk ∈ Rk×k and Sk ∈ RD×k.
5. Define the projection operator Pk(x) = µ+

∑k
j=1⟨x− µ, vj⟩ vj , the change of basis operator T ,

and the embedding operator T−1(z) = µ+ VkSkz.
A demonstration is done here.

Example 1.1 (Walkthrough)

Say that we have some dataset of 100 points in R3. The data matrix is shown on the right, but in
reality I just generated a toy dataset.

1 def scatter(n=1000):
2 X_2d = np.random.multivariate_normal(
3 np.zeros(2), np.eye(2), n)
4 A = np.array([[1, 1, 1], [-2, 2, 1]])
5 X_3d = X_2d @ A +

np.random.multivariate_normal(
6 np.zeros(3), np.eye(3), n)
7 return X_3d

1 [[ 8.864e-01 3.975e-01 7.009e-01]
2 [-2.065e+00 3.258e+00 1.874e+00]
3 [ 3.970e-01 -5.400e-01 -3.054e-01]
4 [ 3.239e+00 -1.999e+00 -1.034e+00]
5 ...
6 [-1.295e-01 9.683e-01 2.861e-01]
7 [-7.097e-01 -4.060e-01 -1.058e+00]
8 [ 2.284e+00 -2.505e+00 -1.522e+00]]

We can take the SVD, which will give us

1 In [7]: U, S, Vt = np.linalg.svd(X)
2

3 In [8]: print(U)
4 [[ 4.804e-04 7.852e-02 4.071e-02 ... 5.320e-03 5.034e-02 -9.305e-02]
5 [ 1.420e-01 3.992e-02 -1.229e-02 ... -5.512e-02 4.460e-02 7.192e-02]
6 [-2.456e-02 -3.657e-03 -4.578e-04 ... -1.005e-01 -1.512e-01 -7.300e-02]
7 ...
8 [ 2.909e-02 2.754e-02 -1.075e-01 ... 9.871e-01 -1.325e-02 -3.559e-03]
9 [-8.714e-03 -8.159e-02 -1.436e-01 ... -1.297e-02 9.733e-01 -1.055e-02]

10 [-1.241e-01 2.077e-03 -6.028e-02 ... -3.435e-03 -8.286e-03 9.819e-01]]
11

12 In [9]: print(S)
13 [29.90178039 15.17454164 3.01267412]
14

15 In [10]: print(Vt.T)
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16 [[-0.59855644 0.77282378 -0.21088764]
17 [ 0.70716875 0.38606989 -0.59233639]
18 [ 0.37635428 0.50367991 0.77760144]]

The Vt.T represents V , with its columns being our principal axes, and we wish to plot them along
with our data points. We would like to scale them by their variance captured.

1. Take the singular values (σ1, σ2, σ3) = (29.9, 15.2, 3.0).
2. Square them to get the eigenvalues (λ1, λ2, λ3) = (894, 230, 9).
3. Normalize them to get the percent variance captured. (0.789, 0.203, 0.008), and use this as a

scale for each eigenvector.

Figure 4: We can see that the data approximately lies on a 2-dimensional subspace of R3.

Example 1.2 (Eigenfaces)

In 1991, Turk and Pentland presented an eigenface method of face recognition by taking the low-rank
approximation of a dataset of face images [TP91].

Figure 5: Some eigenfaces from AT&T Labs.

The first k principal components provide not only the best rank k approximation to X, but also the covariance
matrix Σ̂.
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Theorem 1.6 (PCA is an Unbiased Estimator of Sample Variance)

The truncated covariance matrix Σk = VkS
2V T

k is an unbiased estimator of XTX.

Proof.

Indeed, Σ̂ = XTX = V S2V T , and the last equation is the SVD decomposition of Σ̂. So again using
Eckart-Young theorem, the best rank k approximation to Σ̂ is given by Σk = VkS

2V T
k (now truncated

both in rows and columns).

1.4 Iterative Solvers
A disadvantage of decomposition is that the time complexity of SVD on a n×m matrix is O(nmmin{n,m}).
Therefore, we use iterative methods, which is really just applications of numerical linear algebra.

1.4.1 Power Method

The simplest iterative eigenvalue solver was due to von Mises in 1929 [MP29]. Intuitively, given a diagonal-
izable matrix that we want to solve for, we can “normalize” the spectrum by dividing all the eigenvectors by
λ1, the largest eigenvalue. Then by composing these linear maps, all the other eigenvectors should die out
while keeping the largest eigenvector in place.

Theorem 1.7 (Convergence of Power Iteration)

Let A ∈ Rn×n be a diagonalizable matrix and x0 ∈ Rn any random vector. Given the two assumptions:
1. A has a unique greatest eigenvalue λ1.
2. x0 has a nonzero component in the direction of the eigenvalue v1 associated with λ1.

Then, the sequence (xt) by defined recursively as

xt+1 =
Axt

∥Axt∥
(75)

converges to v1.

Proof.

We rewrite the recurrence relation as

xt+1 =
Axt

∥Axt∥
=

At+1x0

∥At+1x0∥
(76)

Since A is diagonalizable, we can write A = V SV −1 where V is the matrix of eigenvectors and S is
the diagonal matrix of eigenvalues. Thus:

xt =
Atx0

∥Atx0∥
=

(V SV −1)tx0

∥(V SV −1)tx0∥
=

V StV −1x0

∥V StV −1x0∥
(77)

Since x0 can be expressed as a linear combination of eigenvectors, we write V −1x0 = c1e1 + c2e2 +
· · ·+ cnen where ei are the standard basis vectors and ci are the coefficients. Therefore:

xt =
V StV −1(c1v1 + c2v2 + · · ·+ cnvn)

∥V StV −1(c1v1 + c2v2 + · · ·+ cnvn)∥
(78)

=
V St(c1e1 + c2e2 + · · ·+ cnen)

∥V St(c1e1 + c2e2 + · · ·+ cnen)∥
(79)
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Factoring out the dominant eigenvalue λ1:

xt =

(
λ1

|λ1|

)t
c1
|c1|

v1 +
1
c1
V
(

1
λ1
S
)t

(c2e2 + · · ·+ cnen)∥∥∥∥v1 + 1
c1
V
(

1
λ1
S
)t

(c2e2 + · · ·+ cnen)

∥∥∥∥ (80)

Since |λi/λ1| < 1 for i > 1, we have
(

λi

λ1

)t
→ 0 as t→∞. Therefore:

1

c1
V

(
1

λ1
S

)t

(c2e2 + · · ·+ cnen)→ 0 as t→∞ (81)

Thus, as t→∞:

xt →
(

λ1

|λ1|

)t
c1
|c1|

v1
∥v1∥

= ±v1 (82)

Since we assumed that c1 ̸= 0, the sequence (xt) converges to ±v1.

Therefore, a direct consequence of this theorem is.

Algorithm 1.2 (Power Iteration to Solve Largest Eigenvector)

Let A ∈ Rn×m. Then

Algorithm 1 Power Iteration Method

1: procedure PowerIteration(A)
Require: A ∈ Rn×n is a matrix, max_iter > 0 is maximum iterations
2: x← random vector of unit norm
3: λ← 0
4: for t← 1 to max_iter do
5: y ← Ax
6: λ← xT y
7: x← y

∥y∥
8: end for
9: return λ, x

10: end procedure

Corollary 1.1 (Rate of Convergence of Power Iteration)

The rate of convergence is
λ2

λ1
(83)

1.4.2 Lanczos Algorithms

The time complexity and the slow convergence of the power iteration led to faster algorithms, with one
notable class being Lanczos algorithms, first developed in 1950 [Lan50].
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Definition 1.5 (Krylov Subspace)

Given linear map A : V → V and vector v ∈ V , the mth Krylov subspace is

Km(A, v) = span{v,Av,A2v, . . . , Am−1v} (84)

Algorithm 1.3 (Lanczos Algorithm)

The basic idea is to construct an orthonormal basis for the Krylov subspace Km(A, v) using a three
term recurrence relation. This process transforms the original matrix A into a tridiagonal matrix T
that can be used to compute the eigenvectors efficiently.

Algorithm 2 Lanczos Algorithm

1: procedure Lanczos(A, m)
Require: Hermitian matrix A of size n× n, number of iterations m (default: m = n)
Ensure: n × m matrix V with orthonormal columns and tridiagonal real symmetric matrix T =

V ∗AV of size m×m
2: Let v1 ∈ Cn be an arbitrary vector with Euclidean norm 1
3: w′

1 ← Av1
4: α1 ← w′

1
∗
v1

5: w1 ← w′
1 − α1v1

6: for j ← 2 to m do
7: βj ← ∥wj−1∥ (Euclidean norm)
8: if βj ̸= 0 then
9: vj ← wj−1/βj

10: else
11: Pick vj as arbitrary vector with Euclidean norm 1 orthogonal to all of v1, . . . , vj−1

12: end if
13: w′

j ← Avj − βjvj−1

14: αj ← w′
j
∗
vj

15: wj ← w′
j − αjvj

16: end for
17: Let V be the matrix with columns v1, . . . , vm and

T =



α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βm−1

βm−1 αm−1 βm

βm αm


(85)

18: return V, T
19: end procedure

For the runtime,
1. Each iteration consists of an O(nm) matrix multiplication with the rest of the operations O(n).
2. If the matrix is sparse, then this is of order O(nk), where k is the average number of nonzero

elements in each row. If k is bounded, then we can compute each iteration in linear time O(n).

Now that we have V, T , what do we do? The following theorem tells us how to compute the original
eigenvectors.
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Theorem 1.8 ()

If λ is an eigenvalue of T and x is its eigenvector (i.e., Tx = λx), then y = V x is a corresponding
eigenvector of A with the same eigenvalue.

Proof.

Let λ be an eigenvalue of T with eigenvector x, so that Tx = λx. We need to show that y = V x is
an eigenvector of A with eigenvalue λ.
Since the Lanczos algorithm produces the relation T = V ∗AV , we have A = V TV ∗. Therefore:

Ay = AV x (86)
= V TV ∗V x (87)
= V TIx (88)
= V Tx (89)
= V (λx) (90)
= λV x (91)
= λy (92)

One note of warning. This algorithm tends to be numerically unstable and sometimes there is a loss of orthog-
onality among the Lanczos vectors due to finite precision arithmetic. We can however just reorthogonalize
them in the end.

1.4.3 LOBPCG

1.4.4 NIPALS

1.4.5 Oja’s Neuron

With neural networks on the rise, Oja developed a simple neuron function that can compute the greatest
eigenvector [Oja82]. Let’s start with an extremely simple model of a neuron.

Definition 1.6 (Neuron)

Consider a linear model of a neuron that returns a sum of its inputs according to weighted presynaptic
weights y(x) = wTx.

Definition 1.7 (Hebb’s Rule)

In neuroscience, Hebb’s rule (aka Hebbian learning) colloquially states that neurons are activated
together have greater strengths, like how muscles grow when you work them more.a

wt+1 − wt = ηy(xt)xt (93)
aNeurons that fire together, wire together.

Since the weights are not constrained at all, we would find that the weights approach infinity if η > 0.
Therefore, Oja resticted the weights so that the p-norm is 1 , 0 ≤ wi ≤ 1, which models a form of competition
for resources between the neurons [Oja82]. Oja’s mathematically formalized this rule in the following.
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Theorem 1.9 (Oja’s Rule)

Hebbian learning of a neuron can be modeled with

wt+1 − wt = ηyt(xt − ytwt) (94)

To parse this, let’s focus on a component element (xt)i. If xt represents the neurons firing and ytwt

represents which neurons’ wiring scaled by how much the overall neuron has fired, we want the ytwt

to move closer to xt. Therefore, we update wt in the direction of this difference, and then scale it by
ηyt.

Proof.

Starting with Hebb’s rule and applying normalization constraints, we havea

wt+1 =
wt + ηytxt

∥wt + ηytxt∥p
(95)

where ∥v∥p =
(∑m

j=1 |vj |p
)1/p

. For a small learning rate |η| ≪ 1, we can expand this equation as a

power series in η. Using the binomial approximation (1 + ϵ)−1/p ≈ 1− ϵ
p for small ϵ, we get:

wt+1 =
wt

∥wt∥p
+ η

(
ytxt

∥wt∥p
− wtw

T
t xtyt

∥wt∥p+1
p

∥wt∥p−1
p

)
+O(η2) (96)

For small η, the higher-order terms O(η2) vanish. We specify a linear neuron where the output is:

yt = xT
t w

(p−1)
t (97)

where w
(p−1)
t denotes the component-wise power [w

(p−1)
t ]j = (wt)

p−1
j . We also specify that our

weights are normalized: ∥wt∥p = 1.
For p = 2, this simplifies to yt = xT

t wt and ∥wt∥2 = 1. Substituting these conditions into our
expansion gives:

wt+1 = wt + ηyt(xt − ytwt) (98)
aOja had p = 2 in his original paper, but in fact, any type of normalization, even linear, will give the same result

without loss of generality.

Finally, we claim that wt asympototically converges to the first principal axes.

Theorem 1.10 (Oja’s Neuron Convergence to First Principal Component)

Consider a single neuron trained by Oja’s rule with weight vector wt and input data {xt} having
correlation matrix R = E[xxT ]. Let q1 be the eigenvector corresponding to the largest eigenvalue λ1

of R. Under the following conditions:
1. The learning rate η(t) satisfies

∑∞
t=1 η(t) =∞ and

∑∞
t=1 η(t)

p <∞ for some p > 1
2. The activation function y(x(t)) is continuously differentiable in both x and w with bounded

derivatives
3. The correlation matrix R has a unique largest eigenvalue λ1

Then the weight vector wt converges to ±q1 as t → ∞, and the variance of the neuron’s output
converges to the principal eigenvalue:

lim
t→∞

σ2(t) = lim
t→∞
⟨y2(t)⟩ = λ1 (99)
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Proof.

TBD: Go over this. We analyze the convergence using Lyapunov function analysis. Consider the
continuous-time version of Oja’s rule:

dw

dt
= η(t)y(t)(x(t)− y(t)w(t)) (100)

where y(t) = w(t)Tx(t).
Taking the expected value and assuming ergodicity of the input process:

dw

dt
= η(t)E[y(x− yw)] = η(t)E[wTx(x−wTxw)] (101)

This simplifies to:
dw

dt
= η(t)(Rw −wTRww) (102)

Since w is normalized (∥w∥ = 1), we have wTRw = wTRw. Let w =
∑n

i=1 ciqi where {qi} are the
orthonormal eigenvectors of R with eigenvalues {λi} ordered as λ1 > λ2 ≥ · · · ≥ λn.
Substituting the eigendecomposition:

dw

dt
= η(t)

 n∑
i=1

ciλiqi −

(
n∑

i=1

c2iλi

)
n∑

j=1

cjqj

 (103)

For the coefficient c1 corresponding to the first principal component:

dc1
dt

= η(t)c1

(
λ1 −

n∑
i=1

c2iλi

)
(104)

Since λ1 is the largest eigenvalue and
∑n

i=1 c
2
i = 1, we have λ1 −

∑n
i=1 c

2
iλi > 0 whenever ci ̸= 0 for

i > 1.
For i > 1:

dci
dt

= η(t)ci

λi −
n∑

j=1

c2jλj

 (105)

Since λi < λ1, the term (λi −
∑n

j=1 c
2
jλj) becomes negative as c1 grows, causing ci → 0 for i > 1.

The conditions on η(t) ensure convergence by the Robbins-Monro theorem: the divergent sum condi-
tion ensures the algorithm can reach any point in the space, while the convergent power sum condition
ensures the noise diminishes sufficiently for convergence.
As t→∞, we have c1 → ±1 and ci → 0 for i > 1, implying wt → ±q1.
The variance of the output is:

σ2(t) = E[y2(t)] = E[(wT
t xt)

2] = wT
t Rwt (106)

As wt → ±q1, we get:
lim
t→∞

σ2(t) = qT
1 Rq1 = λ1 (107)
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Algorithm 1.4 (Oja’s Rule)

Algorithm 3 Oja’s Neuron Algorithm

1: procedure OjaNeuron(x1,x2, . . . ,xT , η)
Require: Input data vectors xt ∈ Rn for t = 1, 2, . . . , T , learning rate η > 0
Ensure: Weight vector w that converges to the first principal component
2: Initialize w0 ∈ Rn randomly with small values
3: for t← 1 to T do
4: yt ← wT

t−1xt ▷Neural output
5: wt ← wt−1 + ηyt(xt − ytwt−1) ▷Oja’s learning rule
6: end for
7: return wT

8: end procedure

1.5 The Importance of Standardizing
Say that a covariate was a person’s height in meters. If we had measured in centimeters, then the values
would a hundred times higher. PCA does not account for this and so in most cases, you should standardize
your data to have component-wise unit variance before.

1.6 Asymptotic Analysis
It turns out that the elements of Σ̂ are close entry-wise to those of Σ. But if this is true, then does it
mean that the eigenvalues of the sample covariance matrix are close to the true eigenvalues of the covariance
matrix? It turns out that the answer is no, and we need a proper metric to satisfy this assumption. The
metric, as we can guess from linear algebra, is the operator norm, and we will show some results from matrix
perturbation theory.

Lemma 1.3 ()

It turns out that
||Σ̂− Σ|| = Op

(
1√
n

)
(108)

where || · || is the operator norm.

Theorem 1.11 (Weyl’s Theorem)

If Σ̂ and Σ are close in the operator norm, then their eigenvalues are close.

||Σ̂− Σ|| = Op

(
1√
n

)
=⇒ |λ̂j − λj | = Op

(
1√
n

)
(109)

This only talks about their eigenvalues, but this does not necessarily imply that the eigenvalues are close.
We need an extra condition.

Theorem 1.12 (David-Kahan Theorem)

If Σ̂ and Σ are close in the operator norm, and if the eigenvectors of Σ are well-conditioned, then the
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eigenvectors of Σ̂ are close to the eigenvectors of Σ. More specifically,

||v̂j − vj || ≤
23/2||Σ̂− Σ||
λj − λj+1

(110)
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2 Factor Analysis
As we have constantly seen, there are specific themes that run between models. In PCA, we have taken
some data x in high-dimension d and reduced it to a lower-dimensional orthogonal representation in Rk.
In other words, for some sample x ∈ R1×d, the projection onto its component space xVk ∈ R1×k is a more
parsimonious representation with respect to some other basis vectors. The v1, . . . , vk are new features that
are linear combinations of the old vectors. Are they interpretable? In some cases yes and in most cases no,
which is why we also call them latent variables that live in a latent space.

Another type of model that encodes covariates in a latent space are factor models, which was developed by
Spearman in 1904 [Spe04]. The general idea was that we have some d-dimensional random vector x, and
we would like to encode it in a k-dimensional random vector f , called the factors. Since we are trying to
compress the data, generally k < d. The first thing that comes to mind is to try and compare how the
variables xi and fj correlate to each other, and this is exactly what Spearman did.

Before we get into factor models, let’s step back and talk more about latent variable models. Colloquially, we
would like to find the distribution of some data, whether it’d be (x, y) supervised tasks or x for unsupervised.
For the unsupervised case, say that we have some covariates x and we want to find its true distribution p∗.
In density estimation so far, what we have done is define a family of distributions {pθ} and optimize the loss
by maximizing the MLE or something else.

min
θ

L(pθ, p
∗) = max

θ

∏
i

pθ(x
(i)) (111)

In order to do this we work with explicitly parameterized distribution families (e.g. Gaussian, Gamma,
multinomial, etc.), but this is too simple to model complex things in real like (e.g. the distribution of faces).

Therefore, we consider implicitly parameterized probability distributions by “adding” a latent distribution z,
creating the joint distribution (x, z). This may look more complicated, but it captures a much richer family
of distributions. For example, we might try modeling x as a function of z, and try to learn some function
x = f(z). If we have an accurate function f , we can do many things.

1. Given an x, we might find the closest point on the image of f , perhaps some manifold, as low-rank
approximation of x. This dimensionality reduction is essentially what PCA does with projections.3

2. If we can sample from z, then we can forward it through f and can sample from x, making this is a
generative model.

Like we do with everything else in math, we take a look at the simplest case when the class of functions are
linear. This is known as linear latent variable modeling.

x = µ+ Λz + ϵ (112)

where the noise ϵ is typically Gaussian and diagonal (but not necessarily the same component-wise variances).

2.1 Probabilistic PCA
We’re talking about probabilistic PCA (PPCA), but why is this under factor analysis? I think that the jump
from PCA to PPCA is greater than from PPCA to factor analysis, so I will introduce it here as a stepping
stone. The main goal of PCA was to do dimensionality reduction by creating a botttleneck in the number
of dimensions k. Our goal was to approximate the original random variable x by first projecting onto a
lower-dimensional space z = V T

k x, and then embedding it through a linear injection.

x ≈ VkV
T
k x = Vkz (113)

What if we don’t restrict the dimensions at all, and just let k = d? Then we have the exact equation.

x = V V Tx = V z (114)
3We will in fact extend PCA to probabilistic PCA soon to make it generative.
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This is trivial since V —as an orthogonal matrix—satisfies V V T = V TV = Id. Essentially, this is just
a rotation of the axes. We have the maximal restriction when k = 1, and as we increase k to d, our
reconstruction loss will decrease. But almost always, if our data does not sit exactly on a subspace, we
cannot get an exact reconstruction of our data with k < d. This is the motivation behind probabilistic PCA
(PPCA), and there are essentially two goals that we want to solve. [TB99]

1. Generative. We would like our model to be generative. In regular PCA, we saw that for some z ∈ Rk

in the latent component space, our reconstructed sample is x̂ = SVkz. Therefore, if we just change z
from a point to a distribution (e.g. Gaussian), we can sample z ∼ N (0, Ik), and then transform it to
get a random variable x = µ+ SVkz, which will give a density.

x ∼ N
(
µ, (VkS)(VkS)

T
)
= N

(
µ, VkSU

TUSV T
)
= N

(
µ,XT

k Xk) (115)

2. Exact Reconstruction. However, Xk ∈ Rn×d with d << n, and so XT
k Xk ∈ Rd×d is not full rank, and

so the distribution is restricted to strictly the k-dimensional subspace Lk ⊂ RD. We want a model
that has the both of best worlds: it has a bottleneck so that k < d, but at the same time it can do
an exact reconstruction of the data. This can be solved by introducing a probabilistic error term ϵ
that accounts for the variability of the data around the principal subspace. So let’s add an isotropic
Gaussian ϵ ∼ N (0, σ2I)4, which gives us

x = SVkz + ϵ =⇒ X ∼ N (µ,XT
k Xk + σ2I) (116)

Note again that we are adding two probabilistic terms, each of which serves a specific purpose. Great, and
finally, let’s clean up some notation and polish it up.

1. First, let’s just call W = SVk ∈ Rd×k, keeping the k implicit, and treat it as the parameter to estimate.

2. Second, let’s remove the assumption that x is 0-mean and add back the mean term µ.

This gives us our model.

Definition 2.1 (Probabilistic PCA)

The probabilistic PCA model is a latent factor model that summarizes the data generating distri-
bution x as

x = µ+Wz + ϵ, z ∼ N(0, Ik), ϵ ∼ N(0, σ2Id) (117)

with parameters θ = {µ,W, σ}. Let’s go over the assumptions.
1. z is an isotropic Gaussian, which mirrors the fact that the principal components must be

orthogonal (uncorrelated RVs). We can normalize it to be unit variance since the scaling can be
done with W . This allows for a better representation where the components are uncorrelated,
and—better yet—we can now sample from z.

2. ϵ is an isotropic Gaussian. This is just to ensure that we capture variability beyond the subspace.
However, the isotropic part doesn’t really seem to be justified... This assumption will be relaxed
in factor models.

3. The z’s are uncorrelated with each other.
4. The ϵ’s are uncorrelated with each other.
5. ϵ and z are independent.

An immediate consequence is that the closed form of the distrbution of x under this model can be solved.
Calculating the pdf of x requires us to marginalize out the z, but since marginals of Gaussians are Gaussians,
this is quite easy.

4Why isotropic? No real reason. In factor models, we generalize this to arbitrary covariance matrices, and so PPCA is a
specific case of factor analysis.
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Lemma 2.1 (Marginal Distribution of PPCA)

We claim that given θ = {µ,W, σ}, we have

x ∼ N (µ,WWT + σ2I) (118)

Proof.

By assuming it is Gaussian, you can just directly compute the expectation and covariance, but I
will do the full density derivation. We start with the conditional and prior distributions from the
probabilistic PCA model:

p(x|z,W ) ∝ exp

(
− (x−WT z)T (x−WT z)

2σ2

)
, (119)

p(z) ∝ exp

(
−zT z

2

)
. (120)

The joint distribution is given by:

p(x, z|W ) = p(x|z,W )p(z) (since z ⊥W ) (121)

∝ exp

(
− (x−WT z)T (x−WT z)

2σ2
− zT z

2

)
. (122)

Expanding the quadratic term (x−WT z)T (x−WT z):

(x−WT z)T (x−WT z) = xTx− xTWT z − zTWx+ zTWWT z (123)

= xTx− 2xTWT z + zTWWT z, (124)

where we used the fact that xTWT z = zTWx (scalar quantities).
Substituting back into the joint distribution:

p(x, z|W ) ∝ exp

(
−xTx− 2xTWT z + zTWWT z

2σ2
− zT z

2

)
(125)

= exp

(
−xTx− 2xTWT z + zTWWT z

2σ2
− zT z

2

)
. (126)

Factoring out − 1
2 and collecting terms:

p(x, z|W ) ∝ exp

(
−1

2

(
xT

(
1

σ2
I

)
x+ 2xT

(
− 1

σ2
WT

)
z + zT

(
1

σ2
WWT + I

)
z

))
. (127)

We can rewrite this in quadratic form. Let v =

[
x
z

]
. Then:

p(x, z|W ) ∝ exp

(
−1

2

[
xT zT

] [ 1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WWT + I

] [
x
z

])
. (128)

This has the form of a multivariate Gaussian distribution:

p(v|W ) ∝ exp

(
−1

2
(v − µ)TΣ−1(v − µ)

)
, (129)

with v =

[
x
z

]
, µ = 0, and precision matrix:

Σ−1 =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WWT + I

]
. (130)
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Remember that if we write a multivariate Gaussian in partitioned form,[
x
z

]
∼ N

([
µx

µz

]
,

[
Σxx Σxz

Σzx Σzz

])
, (131)

then the marginal distribution p(x) (integrating over z) is given by

x ∼ N (µx,Σxx). (132)

For probabilistic PCA we assume µx = 0, but we partitioned Σ−1 instead of Σ. To get Σ we can use
a partitioned matrix inversion formula:

Σ =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WWT + I

]−1

=

[
WTW + σ2I WT

W I

]
, (133)

which gives that the solution to integrating over z is

x|W ∼ N (0,WTW + σ2I). (134)

Theorem 2.1 (Log-Likelihood and Risk of PPCA)

The negative log-likelihood—which will act as our loss—of a single sample is

L(x |W,µ, σ) =
1

2
(x− µ)T (WTW + σ2I)−1(x− µ) (135)

This allows us to define our risk (expected loss) and therefore our empirical risk/loss for a dataset of
n elements {x(i)}ni=1.

R(W,µ, σ) = Ex[L(x |W,µ, σ)] =

∫
L(x |W,µ, σ) p(x) dx (136)

R̂(W,µ, σ) =
1

2

n∑
i=1

(x(i) − µ)T (WTW + σ2I)−1(x(i) − µ) (137)

Proof.

Trivial with previous marginal distribution.

Now that we have the likelihood of our dataset, optimizing this model is actually quite easy and can be
solved analytically.

Corollary 2.1 (MLE of PPCA Model)

Given x(i) ∼ X iid, the MLEs for W,µ, σ are

µ∗ =
1

n

n∑
i=1

x(i) (138)

σ2∗ =
1

d− k

d∑
j=k+1

λj (139)

W ∗ = R(Σ̂− σ2∗Id)
1/2Vk (140)

where λj are the eigenvalues of XTX in decreasing order, Vk is the truncated orthogonal matrix
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consisting of the first k columns of V for SVD X = USV T , and R is any unitary matrix.a

aNote that W ∗ is not unique. Say that W ∗ is an MLE, then, for any unitary R ∈ Rd×d, we have W ∗TW ∗ =
(RW ∗)T (RW ∗).

Proof.

We could also just differentiate the expected risk directly, but for no particular reason I will differen-
tiate the empirical risk.

1. For µ∗, we use the matrix derivative ∂
∂xx

TAx = 2Ax and get

0 =
1

2

n∑
i=1

∂

∂µ

{
(x(i) − µ)T (WTW + σ2I)(x(i) − µ)

}
(141)

=
1

2

n∑
i=1

2(WTW + σ2I)(x(i) − µ) (142)

= (WTW + σ2I)

(
n∑

i=1

x(i) − µ

)
(143)

and since WTW + σ2I is positive definite, its inverse is positive definite and so it can only be
0 when it is mapping the 0 vector. So µ =

∑n
i=1 x

(i).
2. For σ, we first take a look at C = Var[X] = WWT + σ2I. It is the sum of positive semidefinite

matrices that are also symmetric, so by the spectral theorem it is diagonalizable and has full
rank d. But WWT is rank k, so d−k of the eigenvalues of WWT is 0, indicating that the same
d− k smallest eigenvalues of C is σ2. Therefore, we can take the smallest d− k eigenvalues of
our MLE estimator of C and average them to get our MLE for σ.

σ̂2∗ =
1

d− k

d∑
j=k+1

λj (144)

3. TBD: Justify this again. For W , we can set µ∗ first and then compute

V̂ar(µ∗) = Σ̂ =
1

n

n∑
i=1

(x(i) − µ∗)(x(i) − µ∗)T (145)

We can approximate WWT = C−σ2I ≈ Σ̂−σ̂2∗I, and by further taking the eigendecomposition
C = UΣUT =⇒ WWT = U(Σ − σ2I)UT and cutting off the last d − k smallest eigenvalues
and their corresponding eigenvectors, we can get

W ∗ = R(Σ− σ2∗Id)
1/2Vk (146)

where the R just accounts for any unitary matrix.

Example 2.1 (Fitting PPCA on Numpy)

The following PPCA code fits and visualizes the line estimated by PPCA.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 n = 100
5 z = np.random.normal(1, 2, n)
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6 W_true = np.array([[2], [1]])
7 X_clean = z.reshape(-1, 1) @ W_true.T
8 X = X_clean + np.random.normal(0, 0.8, X_clean.shape)
9

10 # MLE of mu: mu_hat = (1/n) sum x^(i)
11 mu_hat = np.mean(X, axis=0)
12 X_centered = X - mu_hat
13

14 # Compute sample covariance Sigma_hat
15 Sigma_hat = X_centered.T @ X_centered / n
16

17 # Eigendecomposition: Sigma_hat = V Lambda V^T
18 eigenvals, V = np.linalg.eigh(Sigma_hat)
19 idx = np.argsort(eigenvals)[::-1]
20 eigenvals, V = eigenvals[idx], V[:, idx]
21

22 # Parameters
23 d, k = X.shape[1], 1
24

25 # MLE of sigma^2: sigma^2_hat = (1/(d-k)) sum_{j=k+1}^d lambda_j
26 sigma2_hat = np.sum(eigenvals[k:]) / (d - k)
27

28 # V_k: first k columns of V
29 V_k = V[:, :k]
30

31 # MLE of W: W_hat = (Sigma_hat - sigma^2_hat*I_d)^(1/2) V_k
32 Lambda_adjusted = np.maximum(eigenvals - sigma2_hat, 0)
33 sqrt_Lambda = np.diag(np.sqrt(Lambda_adjusted))
34 W_hat = V @ sqrt_Lambda @ V.T @ V_k
35

36 # Reconstruction
37 M = W_hat.T @ W_hat + sigma2_hat * np.eye(k)
38 z_recon = X_centered @ W_hat @ np.linalg.inv(M)
39 X_recon = z_recon @ W_hat.T + mu_hat
40

41 # Plotting...
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Figure 6: Our estimated principal subspace is pretty close to the true subspace.

It turns out that the MLE of W for PPCA, denoted W ∗
PPCA = (Σ − σ∗2Id)

1/2Vk has columns in the same
direction but with a smaller length than WPCA = SVk = Σ1/2Vk for standard PCA. For this reason, you
should think of PPCA as “almost” PCA. In fact, let’s demonstrate this with a quick code example.

Example 2.2 (PPCA vs PCA)

We fit PPCA and PCA onto the same dataset.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits.mplot3d import Axes3D
4

5 np.random.seed(42)
6 n = 150
7 z1 = np.random.normal(0, 1, n)
8 z2 = np.random.normal(0, 1, n)
9 z = np.column_stack([z1, z2])

10 W_true = np.array([[1, 0.5], [0.8, 1], [0.3, 0.7]])
11 mu_true = np.array([1, 2, 0.5])
12 X_clean = z @ W_true.T + mu_true
13 X = X_clean + np.random.normal(0, 0.3, X_clean.shape)
14

15 # Shared preprocessing
16 mu = np.mean(X, axis=0)
17 X_centered = X - mu
18 Sigma_hat = X_centered.T @ X_centered / n
19 eigenvals, V = np.linalg.eigh(Sigma_hat)
20 idx = np.argsort(eigenvals)[::-1]
21 eigenvals, V = eigenvals[idx], V[:, idx]
22

23 d, k = 3, 2
24 V_k = V[:, :k]
25

26 # PPCA
27 sigma2_hat = np.sum(eigenvals[k:]) / (d - k)
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28 Lambda_adjusted = np.maximum(eigenvals[:k] - sigma2_hat, 0)
29 W_ppca = V_k @ np.diag(np.sqrt(Lambda_adjusted))
30

31 M = W_ppca.T @ W_ppca + sigma2_hat * np.eye(k)
32 z_recon = X_centered @ W_ppca @ np.linalg.inv(M)
33 X_ppca_recon = z_recon @ W_ppca.T + mu
34

35 # Regular PCA
36 W_pca = V_k @ np.diag(np.sqrt(eigenvals[:k]))
37 U, s, Vt = np.linalg.svd(X_centered, full_matrices=False)
38 X_pca_recon = U[:, :k] @ np.diag(s[:k]) @ Vt[:k, :] + mu
39

40 # Plotting...

We indeed see that they generate different fits.

1 PPCA W matrix:
2 [[-1.03970713 -0.34416644]
3 [-1.26026994 0.14944401]
4 [-0.72131911 0.23497575]]
5 Column norms: [1.78593742 0.44271622]

1 PCA W matrix:
2 [[-1.05394957 -0.41427404]
3 [-1.27753377 0.17988615]
4 [-0.73120011 0.28284092]]
5 Column norms: [1.81040212 0.53289867]

Figure 7: The same dataset fitted with PPCA (left) and PCA (right). You can see that their norms are
different.

Our next result is intuitive. We have introduced the error term ϵ that allows us to extend beyond the
principal subspace. If we let ϵ vanish, the density model defined by PPCA becomes very sharp around these
d dimensions spanned by the columns of W . At 0, we are reduced to regular PCA.

Theorem 2.2 (PPCA as σ → 0)

As σ → 0, the MLE estimates of W is equivalent to that of PCA. That is, when W ∈ Rd×k,

W ∗ = ΣVk (147)

where X = UΣV T , and Vk is the matrix formed by the first k columns of V . That is, the conditional
expected value of z given X becomes an orthogonal projection of X − µ onto the subspace spanned
by the columns of W .
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Proof.

At 0, our MLE of W is simplified and we have

x = W ∗z + µ∗ + ϵ = ΣVkz + µ∗ (148)

which essentially reduces to regular PCA.

Intuitively, we can see that we are estimating the Gaussian, which corresponds to the mean squared distance
from each x(i) to ℓk.

2.2 Linear Factor Models
A linear factor model is pretty much the same thing as PPCA. In fact, I don’t even know why these two
models are distinguished. The only two differences is notation and that linear factor models loosen the
restriction that the covariance matrix of ϵ must be isotopic.

Definition 2.2 (Linear Gaussian Factor Model)

A linear Gaussian factor model is a latent factor model that models the data generating distri-
bution x over Rd as

x = µ+ Λη + ϵ, η ∼ N(0, Ik), ϵ ∼ N(0,Ψ) (149)

for some diagonal matrix Ψ. The parameters are θ = {Λ, µ,Ψ}.a µ = E[x] simply normalizes the
distribution, η ∈ Rk are the factors that act as latent variables. Λ ∈ Rd×k is the loading matrix
that maps the factors to the samples and ϵ is an error term. Let’s go over the assumptions.

1. η is 0-mean (since the translation is captured in µ) and isotropic.b
2. ϵ has mean 0 and has component variables that are uncorrelated, which is reflected in Ψ being

diagonal.
3. η’s are independent of each other.
4. ϵ’s are independent of each other.
5. ϵ’s are uncorrelated with η’s.
aIt is also common notation to use L and f as the loading matrix and factors.
bThis parallels the uncorrelated assumptions of PCA and PPCA.

The biggest glaring change is really just the terminology. Rather than components, we say factors, and rather
than projections, we say loadings. Finally, we say observable component xi loads on factor zj if Λji ̸= 0, i.e.
if zj affects the value of xi. However, factor models just have more degrees of freedom. In practice, they
also perform very similarly, but we will discuss the subtleties soon.

To get more comfortable with the notation, let’s write out the formula given a data matrix. If we were
working with the data matrix X ∈ Rn×d, then we would be using right matrix multiplication, and so our
model will look like

X − µ = ηΛ + ϵ (150)

where η ∈ Rn×k, Λ ∈ Rk×d, ϵ ∈ Rn×d.

Lemma 2.2 (Marginal Distribution of Linear Gaussian Factor Model)

We claim that given θ = {µ,Λ,Ψ}, we have

x ∼ N (µ,ΛΛT +Ψ) (151)
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Proof.

We know that linear transformations and sums of Gaussians are Gaussian. Therefore, it suffices to
compute the mean and variance. For the mean, we have

E[x] = E[µ+ Λη + ϵ] (152)
= µ+ ΛE[η] + E[ϵ] (153)
= µ+ Λ · 0 + 0 (154)
= µ (155)

For the variance, since x− µ = Λη + ϵ,

Var(x) = E[(x− µ)(x− µ)T ] (156)

= E[(Λη + ϵ)(Λη + ϵ)T ] (157)

= E[(Λη + ϵ)(ηTΛT + ϵT )] (158)

= E[ΛηηTΛT + ΛηϵT + ϵηTΛT + ϵϵT ] (159)

Since η and ϵ are uncorrelated, we have

E[ηϵT ] = E[η]E[ϵT ] = 0 (160)

E[ϵηT ] = E[ϵ]E[ηT ] = 0 (161)

Therefore, the cross terms vanish.

Var(x) = E[ΛηηTΛT ] + E[ϵϵT ] (162)

= ΛE[ηηT ]ΛT + E[ϵϵT ] (163)

= ΛIkΛ
T +Ψ (164)

= ΛΛT +Ψ (165)

Note that in factor models, we generally do not need the assumption that ϵ is Gaussian. This is just an
extra choice we make in order to compute the marginal distribution.

Theorem 2.3 (Log-Likelihood and Risk of Linear Gaussian Factor Model)

The negative log-likelihood—which will act as our loss—of a single sample is

L(x | Λ, µ,Ψ) =
1

2
log |ΛΛT +Ψ|+ 1

2
(x− µ)T (ΛΛT +Ψ)−1(x− µ) (166)

This allows us to define our risk (expected loss) and therefore our empirical risk/loss for a dataset of
n elements {x(i)}ni=1.

R(Λ, µ,Ψ) = Ex[L(x | Λ, µ,Ψ)] =

∫
L(x | Λ, µ,Ψ) p(x) dx (167)

R̂(Λ, µ,Ψ) =
1

2n

n∑
i=1

[p
2
log 2π + log |ΛΛT +Ψ|+ (x(i) − µ)T (ΛΛT +Ψ)−1(x(i) − µ)

]
(168)

=
p

2
log 2π +

1

2
log |ΛΛT +Ψ|+ 1

2
Tr
[
(ΛΛT +Ψ)−1Σ̂

]
(169)

where Σ̂ = 1
n

∑n
i=1(x

(i) − µ)(x(i) − µ)T is the sample covariance matrix.a

aNotice that the likelihood—and therefore the loss—only involves the data through the sample covariance matrix
Σ̂. The actual factor scores η are not needed.
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Proof.

From our previous result, we know that the marginal distribution of the observed data is:

x ∼ N (µ,ΛΛT +Ψ) (170)

The likelihood function is the probability density:

p(x|Λ, µ,Ψ) =
1

(2π)p/2|ΛΛT +Ψ|1/2
exp

(
−1

2
(x− µ)T (ΛΛT +Ψ)−1(x− µ)

)
(171)

Taking the negative log-likelihood to define our loss function:

L(x | Λ, µ,Ψ) = − log p(x|Λ, µ,Ψ) (172)

=
p

2
log(2π) +

1

2
log |ΛΛT +Ψ|+ 1

2
(x− µ)T (ΛΛT +Ψ)−1(x− µ) (173)

Dropping the constant term p
2 log(2π) (which doesn’t affect optimization), we get:

L(x | Λ, µ,Ψ) =
1

2
log |ΛΛT +Ψ|+ 1

2
(x− µ)T (ΛΛT +Ψ)−1(x− µ) (174)

The risk is the expected loss over the true data distribution:

R(Λ, µ,Ψ) = Ex[L(x | Λ, µ,Ψ)] =

∫
L(x | Λ, µ,Ψ) p(x) dx (175)

The empirical risk is the average loss over our dataset. For completeness, let’s include back the
constant terms.

R̂(Λ, µ,Ψ) =
1

n

n∑
i=1

L(x(i) | Λ, µ,Ψ) (176)

=
1

n

n∑
i=1

[
p

2
log 2π +

1

2
log |ΛΛT +Ψ|+ 1

2
(x(i) − µ)T (ΛΛT +Ψ)−1(x(i) − µ)

]
(177)

=
p

2
log 2π +

1

2
log |ΛΛT +Ψ|+ 1

2n

n∑
i=1

(x(i) − µ)T (ΛΛT +Ψ)−1(x(i) − µ) (178)

Now we use a neat trick. The sum on the right is just a scalar, so it is equal to its own trace. Then
by using the linearity of trace and the cyclic trace property, we get

Tr

(
n∑

i=1

(x(i) − µ)T (ΛΛT +Ψ)−1(x(i) − µ)

)
= Tr

(
n∑

i=1

(x(i) − µ)T (ΛΛT +Ψ)−1(x(i) − µ)

)
(179)

=

n∑
i=1

Tr
(
(x(i) − µ)T (ΛΛT +Ψ)−1(x(i) − µ)

)
(180)

=

n∑
i=1

Tr
(
(ΛΛT +Ψ)−1(x(i) − µ)(x(i) − µ)T

)
(181)

=

n∑
i=1

Tr
(
(ΛΛT +Ψ)−1Σ̂

)
(182)

=

n∑
i=1

Tr
(
(ΛΛT +Ψ)−1Σ̂

)
(183)

= nTr
(
(ΛΛT +Ψ)−1Σ̂

)
(184)

and substituting this back in gives our desired result.
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Unlike PPCA, this empirical loss is not convex, so it must be optimized with numerical methods. In most
cases, the solutions tend to be similar, and the MLE estimates between PPCA and FA tend to share the
same properties, e.g. the non-uniqueness of W up to rotational factor.

2.3 Numerical Solvers for Linear Factor Models
Since there is not an analytical solution of factor models, much less an analogue of Eckart-Young theorem,
we introduce the development of mainstream numerical techniques.

Algorithm 2.1 (Iterated Principal Factors)

Algorithm 4 Iterated Principal Factors

1: procedure IteratedPrincipalFactors(X ∈ Rn×d, k)
Require: Data matrix X, number of factors k < d
Ensure: Loading matrix Λ ∈ Rd×k, uniquenesses Ψ ∈ Rd×d

2: R← corr(X) ▷Sample correlation matrix
3: h2

i ← 1− 1/Rii for i = 1, . . . , d ▷Initial communalities
4: R∗ ← R with diag(R∗) = h2 ▷Reduced correlation matrix
5: converged← False
6: while not converged do
7: h2

old ← h2

8: V,D ← eigen(R∗) ▷Eigendecomposition
9: Λ← V:,1:k

√
D1:k,1:k ▷First k factors

10: for i← 1 to d do
11: h2

i ←
∑k

j=1 Λ
2
ij ▷Update communalities

12: end for
13: R∗ ← R with diag(R∗) = h2

14: converged← ||h2 − h2
old||2 < ϵ

15: end while
16: for i← 1 to d do
17: Ψii ← 1− h2

i ▷Uniquenesses
18: end for
19: return Λ,Ψ
20: end procedure

Example 2.3 (Code Walkthrough)

In numpy, we can code this up.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.linalg import eigh
4

5 # Generate synthetic data
6 np.random.seed(42)
7 n = 200 # number of samples
8 k = 2 # number of factors
9 d = 3 # number of observed variables

10

11 # True parameters
12 eta = np.random.randn(n, k) # factors (isotropic gaussian)
13 Lambda_true = np.array([[0.8, 0.3],
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14 [0.6, 0.7],
15 [0.9, 0.2]]) # loading matrix (3x2)
16

17 # Generate noise with different std devs
18 noise_std = np.array([0.3, 0.5, 0.2])
19 epsilon = np.random.randn(n, d) * noise_std
20

21 # Generate observed data
22 X = eta @ Lambda_true.T + epsilon
23 X = X - np.mean(X, axis=0) # center data
24

25 # Iterated Principal Factors Algorithm
26 def iterated_principal_factors(X, k, max_iter=1000, tol=1e-6):
27 n, d = X.shape
28

29 # Compute correlation matrix
30 R = np.corrcoef(X.T)
31

32 # Initialize communalities
33 h2 = 1 - 1/np.diag(R)
34

35 for iteration in range(max_iter):
36 h2_old = h2.copy()
37

38 # Create reduced correlation matrix
39 R_star = R.copy()
40 np.fill_diagonal(R_star, h2)
41

42 # Eigendecomposition
43 eigenvals, eigenvecs = eigh(R_star)
44

45 # Sort in descending order
46 idx = np.argsort(eigenvals)[::-1]
47 eigenvals = eigenvals[idx]
48 eigenvecs = eigenvecs[:, idx]
49

50 # Extract first k factors
51 Lambda = eigenvecs[:, :k] @ np.diag(np.sqrt(np.maximum(eigenvals[:k], 0)))
52

53 # Update communalities
54 h2 = np.sum(Lambda**2, axis=1)
55

56 # Check convergence
57 if np.linalg.norm(h2 - h2_old) < tol:
58 break
59

60 # Compute uniquenesses
61 psi = 1 - h2
62

63 return Lambda, psi, iteration + 1
64

65 # Fit the model
66 Lambda_est, psi_est, iterations = iterated_principal_factors(X, k=2)
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It turns out that we get

Λ̂ =

−0.959 0.051
−0.708 −0.167
−0.946 0.073

 ̸≈
0.8 0.3
0.6 0.7
0.9 0.2

 = Λtrue (185)

which is not a good estimate. But remember that factor analysis is invariant to rotations R. Though
it can find the proper subspace spanned by these two columns (latent variables), it cannot actually
converge onto a basis. Therefore, if we carefully choose a rotation matrix R,a we see that this is
indeed a good approximate.0.8 0.3

0.6 0.7
0.9 0.2

 ≈
−0.959 0.051
−0.708 −0.167
−0.946 0.073

[−0.909 −0.418
0.418 −0.909

]
=

0.892 0.354
0.574 0.447
0.890 0.329

 (186)

Figure 8: The subspace spanned by our estimate of the 2-dimensional latent variables (right) does seem like
a good approximate to the true subspace (left).

aThis can be done using SVD.

2.4 PCA vs PPCA vs Factor Models
We have stressed that FA is the same as PPCA, but let’s get serious and talk about the differences. In
a sense, we could have reformulated PCA as a probabilistic model by assuming that the error terms were
normally distributed with variance orthogonal to the principal subspace. This would have given the exact
same expected risk and thus the models would be equivalent. On the other hand, probabilistic PCA assumes
an isotropic Gaussian and factor models assume uncorrelated Gaussian.
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+

(a) Probabilistic interpretation of regular PCA.

+

(b) Regular interpretation of probabilistic PCA.

+

(c) Factor analysis.

Figure 9: The green (left) represents the latent feature, and the orange on the right represents the errors. Figure
credits to ttnphns from here.

It turns out that this simple change of not having constant variance in the Gaussian error term ϵ has some
implications.

Example 2.4 (Scaling Features does not Affect FA)

Remember that in PCA, we must normalize each component of the data to unit variance since PCA
tries to maximize variance of projections. However, FA does not chase large-noise features that are
uncorrelated with other features.

Example 2.5 (FA is Affected by Rotation of Data)

FA is affected by rotation of the data. [Sch18]

Theorem 2.4 (Factor Models Converge to PPCA in High Dimensions)

As d→ +∞, factor models are the same model as PPCA.
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3 Linear Independent Component Analysis
PCA and factor analysis have found an enormous number of applications. In fact, it is one of the go-to
methods for EDA, and exploratory factor analysis (EFA) is often synonymous with PCA.

However, a shortcoming of FA is that we can’t even identify factor directions since the loading matrix
W can be rotated to produce just as good of a model. Therefore, Pierre Comon in 1992 had produced
independent component analysis (ICA). It is essentially a method to separate a multivariate signal into
additive, statistically independent components. It does come with a lot of assumptions, and is a specific
instance of a linear factor model where µ = 0 and ϵ = 0.

Definition 3.1 (Linear ICA)

In linear ICA, we model the true distribution of x as

x = Wz, z ∼ Pz (187)

where x—the mixture vector—and z are random variables of Rd and Rk, and W ∈ Rd×k is a
mixing matrix. The parameters are both W and z, and we need to recover them given x. We have
2 strong assumptions.

1. Each component of z is independent (not just uncorrelated).
2. Independent components of z must not be Gaussian. This is needed for us to be able to “unmix”

the signals.a

aTo see why, just suppose z was Gaussian, and so the vector Rz is also Gaussian for any invertible R. Therefore,
we could find an infinite number of solutions of form x = WR−1Rz and have no way to separate them.

Algorithm 3.1 (Fitting)

Now let’s see how linear ICA actually estimates W and z. Once W is estimated, the latent components
of a given test mixture vector, x∗ is computed by z∗ = W−1x∗. So now all there’s left to do is to
estimate W , which we want to estimate so that W−1x is far from Gaussian. The reason for this is
that given a bunch of independent non-Gaussian hi’s, if we mix them with a matrix that is not ±I
, then by CLT, a linear combination of random variables will tend to be Gaussian, and so for an
arbitrary W we would expect x to be Gaussian. Therefore, what we want to do is guess some matrix
A, and compute

Ax = AWh (188)

and if we get things right, A ≈ W−1, and the result of Ax would look pretty non-Gaussian. If it it
not the case, then AW will still be some mixing matrix, and so Ax would look Gaussian. So now the
question reduces to how do we choose this A? There are multiple ways to measure non-Gaussianity:

1. The absolute or squared kurtosis, which is 0 for Gaussians. This is a differentiable function
w.r.t. W , so we can try maximizing it. This is done for the sample kurtosis, of course.

2. Another measure is by maximizing the neg-entropy.

There are further ambiguities with ICA regarding uniqueness of a best representation. For one, we can only
estimate the latent components up to a scaling factor since we will still get

x = (αW )(
1

α
z) for some α > 0 (189)

We can fix this by forcing E[z2i ] = 1. However, there is still an ambiguity for the sign of hidden components,
but this is insignificant in most applications. Second, we can estimating the components up to permutation.
We have

x = WP−1Pz (190)

for some permutation matrix P .
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Example 3.1 (Blind Source Separation)

The canonical example of ICA is blind source separation.

Figure 10: We can perform this on three mixed signals with additive noise, and ICA does very well, though
again some recovered signals are scaled or permuted weirdly.
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4 Robust PCA
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5 Sparse PCA
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6 Dynamic PCA
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7 Functional PCA
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8 Kernel PCA

Definition 8.1 (Kernel PCA)

Let Ni be the neighborhood around Xi. Then, we want to find a mapping W : Rn → Rk that
minimizes

min
W

n∑
i=1

∣∣∣∣∣∣∣∣Xi −
∑
j∈Ni

WijXj

∣∣∣∣∣∣∣∣2 where
∑
j

Wij = 1 (191)

We can constrain the weights in W so that anything that is not in the neighborhoods are 0.
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9 Group PCA
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10 Slow Feature Analysis
Slow feature analysis also another special case of a linear factor model that uses information from time signals
to learn invariant features. It is motivated by a general principle called the slowness principle. The idea
is that the important characteristics of scenes change very slowly compared to the individual measurements
that make up a description of a scene. For example, in computer vision, individual pixels can change very
rapidly. If a zebra moves from left to right across the image, an individual pixel wil rapidly change from
black to white. By comparison, the feature indicating whether a zebra is in the image will not change at
all, and the feature describing the zebra’s position will change slowly. Therefore, we want to regularize our
model to learn features that change slowly over time.

We can apply the slowness principle to any differentiable model trained with gradient descent. That is, we
can add the following term to the loss function:

λ
∑
i

d
(
f(x(t+1)), f(x(t))

)
(192)

where λ is a hyperparameter determining the strength of the slowness regularization term, t is the time
index, f is the feature extractor to be regularized, and d is the distance between f(x(t)) and f(x(t+1)). A
common choice for d is the mean squared difference.

Essentially, given a set of time-varying input signals x(t), SFA learns a nonlinear function f that transforms
x into slowly-varying output signals y. Obviously, we can’t just take some trivial function like f = 0, so we
have the following constraints

Et[f(x
(t))i] = 0 (193)

Et[f(x
(t))2i ] = 1 (194)

We can restrict the nonlinear f to some subspace of functions, and this becomes a standard optimization
problem where we solve

min
θ

Et

[(
f(x(t+1))i − f(x(t))i

)2] (195)
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11 Sparse Dictionary Learning
Latent variables can help us represent data in lower dimensions, but another advantage is that we can get
sparse representations as well. What we want to do in sparse coding is that for each input x(i), we want
to find a latent representation z(i) such that it is sparse (i.e. has many 0s) and also we can reconstruct
the original input x(i) well. We have basically two things to optimize: the latent representations z and the
decoding mechanism, which we can do with a dictionary matrix D. Note that we are optimizing for both
the latent encodings and the decoding mechanism, and so this isn’t a generative model.

Definition 11.1 (Sparse Dictionary Encoding Model)

The sparse dictionary encoding model is a representation model defined

X = gD(Z) = DZ (196)

where D ∈ Rd×k is a dictionary matrix that decodes the latent Z ∈ Rk to X ∈ Rd. Note that both
the z(i)’s and D are optimized, so we want to perform the joint optimizationa

min
D

1

N

N∑
i=1

min
z(i)

1

2
||x(i) −Dz(i)||22︸ ︷︷ ︸

reconstruction error

+ λ||z(i)||1︸ ︷︷ ︸
sparsity penalty

(197)

aTo break this term down, let’s just assume that we have a fixed dictionary D. Then, we just need to minimize
with respect to each h(t). Now we can add the dictionary parameter back again.

Note that the reconstruction, or decoding, of x = Dz is linear and explicit, but if we want to encode x 7→ z,
we need to substitute the x into the term above and minimize it w.r.t. D and z to solve it. Therefore, this
encoder is an implicit and nonlinear function of x.

Figure 11: We can reconstruct an image of a seven as a linear combination of a set of images. Note that each of the
images of strokes are columns of W and the coefficients make up the sparse vector h.

Let’s think about how we can optimize the objective function w.r.t. h, keeping D constant. We can do
stochastic gradient descent, which gives us the steps

∇h(t)L(x(t)) = DT (Dh(t) − x(t)) + λ sign(h(t)) (198)

but this wouldn’t achieve sparsity since it overshoots the 0 all the time. Therefore, we can clip it, or we can
use proximal gradient descent/ISTA to take a step, and shrink the parameters according to the L1 norm.

h(t) = h(t) − αDT (Dh(t) − x(t)) (199)

h(t) = shrink(h(t), αλ) (200)
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where shrink(a, b) = [. . . , sign(ai) max(|ai| − bi, 0), . . .]. This is guaranteed to converge if 1/α is bigger than
the largest eigenvalue of DTD.
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