
Machine Learning Muchang Bahng Spring 2024

Ensembles

Muchang Bahng

Spring 2025

Contents
1 Ensemble Models 3

2 The Jackknife 4

3 Bootstrapping 5

4 Boosting 6
4.1 Adaptive Boosting (AdaBoost) . 6
4.2 Gradient Boosting . 9
4.3 XGBoost . 11

5 Bagging 12
5.1 Random Forests . 13
5.2 Pasting . 13

Bibliography 14

1/ 14

Machine Learning Muchang Bahng Spring 2024

The bias variance noise decomposition gives us a very nice way of explaining overfittting. That is, the
bias (expectation of the squared difference between the true E[Y | X] and the expected trained hypothesis
function hθ;D) reduces, but the variance in this overfitted model increases. Therefore, if we had a slightly
different dataset D sampled from (X × Y)N , then we might have a very different trained hypothesis since
it’s so sensitive to the data.

A way to treat this is through ensemble learning, where we train multiple models over slightly different
datasets, and then average their predictions to get a better model. What do we mean by a better model?
Well, we know that a too complex model has low bias but large variance, and a too simple model has high
bias but low variance.

1. Bagging refers to taking a complex model and decreasing its variance. Even though each model is
trained over a smaller dataset, resulting it being more noisy, the average of all these slightly more
noisy models will hopefully bring down the variance more than what we have added.1

2. Boosting refers to taking a simple model and decreasing its bias. Each simple model, usually a weak
learner, has relatively small search space, but by taking the aggregate of them, we can hopefully
increase it whilst bounding the variance in some way. Usually, the dataset is reweighted such that the
weak learner in the next iteration will correct the previous weak learner.

1This is why random forests have underlying trees that are somewhat as large as possible.

2/ 14

Machine Learning Muchang Bahng Spring 2024

1 Ensemble Models

3/ 14

Machine Learning Muchang Bahng Spring 2024

2 The Jackknife
The Jackknife is a resampling technique first introduced by Quenouille in 1949 [Que49].

4/ 14

Machine Learning Muchang Bahng Spring 2024

3 Bootstrapping

5/ 14

Machine Learning Muchang Bahng Spring 2024

4 Boosting
Now we delve more into the applied and computational aspects of machine learning. It’s had a lot of
empirical success and is more interesting from a theoretical perspective. It starts off with the weak learning
assumption, which we introduce in the context of classification with the misclassification loss function. It is
actually a specific case of PAC learners.

Definition 4.1 (Probability Approximately Correct Learner)

A PAC learning is an algorithm that learns a function class H with parameter δ > 0 if there exists
an ϵ > 0 and the algorithm can find a f ∈ H with probability at least 1− δ s.t.

R(f) ≤ ϵ (1)

i.e.
P[R(f) ≤ ϵ] ≥ 1− δ (2)

This is quite a strong requirement, since it says that with probability at least 1− δ you must find an model
f that is correct with a probability of 1− ϵ, i.e. ϵ-good.

Definition 4.2 (Weak Learner)

A weak learner is an algorithm that learns a function class H with parameter δ > 0 if there exists
an γ > 0 and the algorithm can find a f ∈ H s.t.

P[R(f) < 1/2− γ] ≥ 1− δ (3)

for some δ > 0, where γ is considered our edge. Another way to write it is that with probability of
at least 1− δ, we can find a function f s.t.

Px,y∼X×Y [f(x) ̸= y] < 1/2− γ (4)

This essentially means that given some γ that measures how good our target predictor is compared to
random guessing, the probability that we can find such a predictor with this edge is 1−δ. Furthermore,
this case must hold true for all distributions P ∼ X × Y.

Therefore, a weak learner just means some algorithm that learns a model that is a bit better than random.
For example, learning decision stumps may be a weak learner. Colloquially, a weak learner can be thought of
as an algorithm that cannot get your training error to 0 and a strong learner can. The question is then, can
we make a strong learner out of a bunch of weak learners? The general idea is that we want to iteratively
find a bunch of weak learners and slowly add them up to get a strong learner.

f =

n∑
i=1

fi (5)

where f is strong, fi weak.

4.1 Adaptive Boosting (AdaBoost)
Let’s start with Adaboost for binary classification.

Definition 4.3 (Adaboost for Binary Classification)

Given data {(xi, yi)} ∈ X × Y, with Y = {−1,+1}, we implement the following greedy algorithm.

6/ 14

Machine Learning Muchang Bahng Spring 2024

1. You first set an n-vector weighting your samples, where the weight of the ith sample is Wt(i).

W1 =
(1
n
, . . . ,

1

n

)
(6)

2. For t = 1, . . . , T , we do the following.
(a) You run your weak learning algorithm, which will return your hypothesis ht with proba-

bility 1 − δ which is slightly better than random. We define its empirical error over the
distribution Wt to be

ϵt = RWt
(ht) = Pxi∼Wt

[ht(xi) ̸= yi] =

n∑
i=1

Wt(i) · 1ht(xi) ̸=yi
(7)

This may be done differently by actually sampling n samples from this distribution and
then computing proportion of misclassifications.

(b) This new weak learner provides some information on the new weighted distribution. We
would like to weight this weak learner ht with some scale αt to determine how important
its vote is in the ensemble. We define this weighting to be

αt =
1

2
ln

(
1− ϵt
ϵt

)
(8)

Note the following important properties. If 0 < ϵt < 0.5, then this does indeed mean that
ht is slightly better than random, so it would have a positive weighting. If ϵt = 0.5, then it
is random so no weighting. Finally, if 0.5 < ϵ < 1.0, then it is an extremely poor classifier
and we are better off looking at the opposite of its prediction, meaning that αt will be
negative. This is also seen with the facts that as ϵt → 0, 1, then αt → +∞,−∞.a

(c) Then we set

Wt+1(i) ∝ Wt(i) exp{−αtyiht(xi)} =

{
e−αt if ht(xi) = yi

e+αt if ht(xi) ̸= yi
(9)

meaning that the new weights go up for incorrect labels and down for correct labels. We
show proportional to since it is not normalized, but we can normalize it with the constant
Zt.

3. Your final strong classifier is then

f(x) = sign

(T∑
t=1

αtht(x)

)
(10)

which indeed is a sequential sum of these classifiers.
aIn practice, ϵ cannot be 0 or 1 due to numerical reasons, so a small constant is added to prevent this from happening.

In this way, by weighting the incorrect labels higher, I am telling successive weak learner to give me a new
weak hypothesis that tells me something new. This makes it so that the actual sequence of learned weak
models are important, since the next ht+1 tries to fix the errors that the ht makes.

Algorithm 4.1 (AdaBoost Algorithm)

The full algorithm for brevity is shown below.

7/ 14

Machine Learning Muchang Bahng Spring 2024

Require: Training data {(xi, yi)}ni=1 where xi ∈ X , yi ∈ {−1,+1}
Require: Number of iterations T
Require: Weak learning algorithm A
1: Initialize weights W1(i) =

1
n for i = 1, . . . , n

2: for t = 1 to T do
3: Train weak learner ht = A({(xi, yi)},Wt)
4: Calculate weighted error:
5: ϵt =

∑n
i=1 Wt(i) · 1ht(xi) ̸=yi

6: if ϵt ≥ 1
2 then

7: break
8: end if
9: Calculate importance weight:

10: αt =
1
2 ln(

1−ϵt
ϵt

)
11: Update sample weights:
12: for i = 1 to n do
13: Wt+1(i) = Wt(i) · exp(−αtyiht(xi))
14: end for
15: Normalize weights:
16: Zt =

∑n
i=1 Wt+1(i)

17: Wt+1(i) =
Wt+1(i)

Zt
for all i

18: end for
19: return Final classifier f(x) = sign

(∑T
t=1 αtht(x)

)
We now actually show that this is a strong learner by showing that the training error goes to 0.

Theorem 4.1 (Exponential Decay of Training Error in AdaBoost)

Support that γ ≤ (1/2)− ϵt for all t. Then our empirical risk decays exponentially with T .

R̂(h) ≤ e−2γ2T (11)

and hence, the training error goes to 0 quickly.

Proof.

Can be shown with the lemma.
Zt = 2

√
ϵt(1− ϵt) (12)

Sure, the training error goes to 0, but what we really care about is the generalization error. It turns out
that we can prove things about this, but omitted for now.

Example 4.1 (AdaBoost with Stumps)

We can define our weak learning algorithm to be a decision stump with only 1 split. Doing adaboost
gives something similar to a random forest (but not quite since its a bagging algorithm) with great
generalization error.

Surprisingly, Adaboost has a tendency not to overfit, i.e. the variance does not explode. There is a lot of
theory that tries to explain why this is the case, such as margin theory.

There are a lot of different ways to analyze AdaBoost. For many years, researchers did not think of it as
having any connection to gradient descent or loss functions, but it actually does. AdaBoost can be viewed

8/ 14

Machine Learning Muchang Bahng Spring 2024

as optimizing the exponential loss
L(x, y) = e−yf(x) (13)

so that the full empirical objective function is

L =
∑
i

exp

(
− 1

2
yi

T∑
t=1

αtft(xi)

)
(14)

which must be optimize w.r.t. the weights αt and the parameters of each weak classifier ft. This stepwise
optimization is greedy and sequential, where we add one weak classifier at a time, choosing its parameters
and αt to be optimal w.r.t. L and then never change it again. It turns out that if we actually do keep
things constant and solve the optimal parameters, it must be the case that αt = ln 1−ϵt

ϵt
, which is why it is

in the algorithm.2 Furthermore, the exponential loss is an upper-bound on the misclassification loss, so if
an exponential loss of 0 is achieved, then all training points are correctly classified.

4.2 Gradient Boosting
Gradient boosting can deal with both regression and classification problems, and so we will present it in full
generality.

Definition 4.4 (Gradient Boosting)

Let us have data {(xi, yi)} ∈ X × Y and a differentiable loss function

L(y, ŷ) =

n∑
i=1

L(yi, ŷi) (15)

with also a constant stepsize η.
1. We first initialize the model with a constant value that minimizes the loss. So we have a single

leaf as in our decision tree ensemble.

F0 = argmin
γ

n∑
i=1

L(yi, γ) (16)

If we’re doing regression with the MSE loss, then γ = ȳ, the average. This is our first predictor,
which predicts F0(x) = γ for all x, and so F0 is really just the constant n-vector (ȳ, . . . , ȳ).
If we’re doing binary classification, we can focus on the logits and initialize γ as the log-odds
log(C+

C−
)

2. For t = 1, . . . , T , we do the following.
(a) We have the predicted values Ft−1(xi) for each sample xi. We compute the negative

gradient of the loss function w.r.t. the predicted value.

rt = −∂L(y, ŷ)

∂ŷ

∣∣∣∣
ŷ=Ft−1(x)

= −
(
∂L(y1, ŷ1)

∂ŷ1

∣∣∣∣
ŷ1=Ft−1(x1)

, . . . ,
∂L(yn, ŷn)

∂yn

∣∣∣∣
ŷn=Ft−1(xn)

)
(17)

Note that the vector above is a n-vector, and when we use the MSE loss, then the gradient
just simplifies to the residual.

(b) We use our weak learning algorithm to train a weak model ft on the residual values rt.
(c) We update

Ft = Ft−1 + η · ft (18)

3. In the end, we have
Ft = F0 + ηf1 + ηf2 + . . .+ ηfT (19)

consisting of a bunch of weak learners to make a strong learner.

2Derivation here

9/ 14

https://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/AdaBoost.pdf

Machine Learning Muchang Bahng Spring 2024

In a way, we can think of this as an optimization problem in Rn (not Rd!). We can think of ŷ representing
the actual function f , and we’re really doing gradient descent on the “function space” Rn by updating Ft.

Algorithm 4.2 (Gradient Boosting)

Here is the full algorithm for brevity.

Require: Training data {(xi, yi)}ni=1 where xi ∈ X , yi ∈ Y
Require: Differentiable loss function L(y, ŷ)
Require: Number of iterations T
Require: Learning rate η
Require: Weak learning algorithm A
1: // Initialize model with optimal constant value
2: F0 = argminγ

∑n
i=1 L(yi, γ)

3: // For regression (MSE): F0 = 1
n

∑n
i=1 yi

4: // For binary classification: F0 = log(C+

C−
)

5: for t = 1 to T do
6: // Compute negative gradient vector
7: for i = 1 to n do
8: rt,i = −∂L(yi,ŷi)

∂ŷi

∣∣
ŷi=Ft−1(xi)

9: end for
10: // Train weak learner on pseudo-residuals
11: ft = A({(xi, rt,i)}ni=1)
12: // Update model with scaled weak learner
13: for i = 1 to n do
14: Ft(xi) = Ft−1(xi) + η · ft(xi)
15: end for
16: end for
17: return Final model FT (x) = F0(x) + η

∑T
t=1 ft(x)

18: // Special cases for common loss functions:
19: // For MSE: rt,i = yi − Ft−1(xi) (actual residual)
20: // For LogLoss: rt,i = yi − σ(Ft−1(xi)) where σ is sigmoid

Example 4.2 (Regression Trees)

If we have regression trees as our weak learners (pratically the max depth is 8 to 32 rather than
stumps) with the L2 loss function.

1. The initial model will just constantly predict the average of the yi’s.
2. The rt are just the pseudoresiduals

rt = −
(
y1 − ft−1(x1), . . . , yn − ft−1(xn)

)
(20)

3. In case where there are multiple samples running to the same leaf node, the predicted values of
the terminal nodes are the average of the y’s of those samples.

Example 4.3 (Gradient Boosting Classification)

If we have classification trees as our weak learners, then
1. The initial model will just constantly predict the log odds log(C+/C−), where C± is the number

of ones and zeros in the whole dataset. For multiclass there is probably a softmax variant of
this.

10/ 14

Machine Learning Muchang Bahng Spring 2024

2. In case where there are multiple samples running to the same leaf node, the predicted values of
the terminal nodes are decided by majority.

The general ideas are pretty much the same between AdaBoost and gradient boost. We iteratively build a
strong learner from weak learners. A few differences, however,

1. AdaBoost dynamically weighs the importance of each weak model, while gradient boost weak learners
are equally weighted by η.

2. AdaBoost actively focuses on the samples where the previous weak learner got wrong, but gradient
boost reduces the whole loss in general.

3. Gradient boost usually uses trees larger than stumps.

4.3 XGBoost
The final mainstream boosting algorithm is XGBoost. In regression, XGBoost fits to the residuals just like
gradient boosting, but it uses unique regression trees. It is designed for large, complex datasets.

Definition 4.5 (XGBoost for Regression)

Let us have the same data {(xi, yi)} ∈ X × Y and the MSE loss

L(y, ŷ) =
1

2

n∑
i=1

(yi − ŷi)
2 (21)

with a constant stepsize ε (by default 3).
1. We first initialize the model with a constant value that minimizes the loss, which is just the

average. So we have a single leaf as in our decision tree ensemble.

F0 = ȳ (22)

2. For t = 1, . . . , T , we do the following.
(a) We have the predicted values Ft−1(xi) for each sample. We first compute the residuals,

denoted r0. To build our next tree, we start off with a single node “containing” this set of
residuals representing each data point.

(b) We want to grow the decision tree, and we do this by splitting on the maximum gain in
similarity score, defined for a collection of residuals r to be

s(r) =

∑
ri

dim(r) + λ
(23)

This score determines how well the set is clustered, and we would like well clustered
residuals to be close together.λ is a regularization parameter used to decrease the score’s
sensitivity when splitting. Therefore, we first compute the score for the root node, and let
us define the score of a tree as the sum of the scores of all its leaves. We want to split
greedily on this metric. We can keep on splitting until it reaches a certain number of levels
(6), and then we can prune it based on whether the increase in score surpasses a threshold,
called the gain. Note that as λ increases, it is easier to prune the tree.

(c) With our trained tree ft, we add it to our cluster to iteratively build our final predictor.

Ft = Ft−1 + ε · ft (24)

11/ 14

Machine Learning Muchang Bahng Spring 2024

5 Bagging
Let’s start off with the simpler of the two.

Definition 5.1 (Bootstrap Aggregating)

Given a dataset D of N samples and a model M, bagging is an ensemble method done with two
steps:

1. Bootstrap. Sample Ñ data points with replacement from D to get a dataset D1, and do this M
times to get

D1,D2, . . . ,DM ⊂ D

2. Aggregate. For each sub dataset Dm, train our model to get the optimal hypothesis h∗
Dm

. We
should have M different hypothesis functions, each trained on each sub dataset.

h∗
D1

, h∗
D2

, . . . , h∗
DM

To predict the output on a new value x, we can evaluate all the h∗
Dm

(x) and average/vote them.

Since the whole point of this algorithm is to reduce variance, bagging does not really overfit. Here is a nice
example providing intuition on why this works.

Example 5.1 (Theory of Bagging on Toy Dataset)

To get some intuition about why bagging is useful, consider this example from Buhlmann and Yu
(2002). Suppose that we have a 1-dimensional dataset X1, . . . , Xn ∈ R that we are trying to split.
Consider the simple decision rule.

θ̂(x) = 1(X̄n ≤ x) (25)
Now its clear that if we have a different dataset, then we will get a different function, and so given
an x, let’s try to investigate the behavior of θ̂(x). Let µ = E[Xi] and for simplicity assume that
Var(Xi) = 1. If x is really positivce or really negative (just away from µ), then it is clear that θ̂(x) is
almost always 0 or 1, so that’s not really interesting. We want to see the variability around µ, where
θ̂(x) could be 0 or 1.

1. So suppose that x is close to µ relative to the sample size. To make this a bit more precise,
we can consider a sequence defined (xn = µ + c√

n
). We can use the CLT to approximate

X̄ ≈ N(µ, σ2

n), i.e. Ȳ = µ+ σ√
n
Z for Z ∼ N(0, 1). Substituting this into our definition of θ̂, we

get

θ̂(xn) = 1(Ȳ < xn) (26)

= 1

(
µ+

σ√
n
Z < µ+

cσ√
n

)
(27)

= 1(Z ≤ c) (28)

This is a random variable that can be 0 or 1, and we can compute the mean and variance of
this.

E[θ̂] = Φ(c), Var[θ̂] = Φ(c)(1− Φ(c) (29)
2. Now, let’s look at the bagged version, which we call

θ̂∗(x) = 1(Ȳ ∗ ≤ xn), Ȳ ∗ =
1

n

∑
Y ∗
i (30)

where each Y ∗
i ∼ Pn is sampled from the empirical distribution function that puts mass 1/n on

each data point. So conditioned on the original data, we can still use the CLT.

Ȳ ∗ ∼ N(Ȳ ,
s2

n
) (31)

12/ 14

Machine Learning Muchang Bahng Spring 2024

Since s2 converges in probability to σ2, we can write

Ȳ ∗ ≈ Ȳ +
σ√
n
Z (32)

So substituting this again, we get

θ̂(x) = 1

(
Ȳ +

σ√
n
Z ≤ xn

)
= 1

(
Z ≤

√
n(xn − Ȳ)

σ

)
(33)

But this is just a Bernoulli random variable with probability equal to the CDF of the normal
distribution, so by taking the randomness over the bootstrap samples, we have the random
variable in Z

E[θ̂(x)] = Φ

(√
n(xn − Ȳ)

σ

)
= Φ(c− Z) (34)

In other words, we bootstrap and take this indicator function, then bootstrap and take another
indicator, and keep doing this. Then I take an average of these indicator functions. This average
of a bunch of step functions ends up looking like a normal CDF. Since Z is a standard normal,
Φ(Z) ∼ Uniform(0, 1). Computing the mean and variance over the randomness of the original
data is

E[Φ(−Z)] = E[Φ(Z)] =
1

2
, Var[Φ(Z)] =

1

12
(35)

To summarize, the unbagged version satisfies θ̂n ≈ 1(Z ≤ c) while the bagged version has θ̂∗ ≈
Φ(c+Z) which is a smoothed version of 1(Z ≤ c). In other words, bagging is a smoothing operator.
If we take c = 0, then θ̂ converges to a Bernoulli with mean 1/2 and variance 1/4. The bagged
estimator converges to a uniform with mean 1/2 and variance 1/12, which is a reduction in variance.

5.1 Random Forests
In random forests, you are doing baggging with decision trees but with a twist.

Definition 5.2 (Random Forests)

A random forest is an ensemble of trees, where each tree Ti is trained as such:
1. Take a bootstrap sample Di to train the tree.
2. Every time you split, choose the splitting variable from a random subset of the d covariates to

split on.a
3. Then average the predictions.
aA heuristic is to take about

√
d features.

In a sense, this works better because the extra subsampling of the features make each tree less correlated.
It’s similar to dropout in deep learning.

5.2 Pasting

Definition 5.3 (Pasting)

If random subsets (without replacement) are sampled from the original dataset D, then this method
is known as pasting.

13/ 14

Machine Learning Muchang Bahng Spring 2024

Bibliography
[Que49] M. H. Quenouille. Approximate tests of correlation in time-series. Journal of the Royal Statistical

Society. Series B (Methodological), 11(1):68–84, 1949.

14/ 14

	Ensemble Models
	The Jackknife
	Bootstrapping
	Boosting
	Adaptive Boosting (AdaBoost)
	Gradient Boosting
	XGBoost

	Bagging
	Random Forests
	Pasting

	Bibliography

