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An informal statement of concentration of measure is the following: If X1, . . . , Xn are independent random
variables, then the random variable f(X1, . . . , Xn) is "close" to its mean E[f(X1, . . . , Xn)] provided that
the function f(x1, . . . , xn) is not too "sensitive" to any of the coordinates xi. Intuitively, say that we have
a bunch of independent random variables Xi and sample from them, to get some values xi. Calculating
f(x1, . . . , xn), we have sampled from f(X1, . . . , Xn). Since f depends smoothly w.r.t. its arguments, to
drastically change f , we must drastically change all the arguments. This is not likely, since all the Xi’s are
independent.

Most of our intuition about probability in low-dimensional spaces breaks down in high-dimensional ones (on
the order of perhaps 10 or 20). We start off with two geometric examples in high-dimensional space.

Example 0.1 (Uniform Measure on Sphere)

Let µn be the uniform probability distribution on the n-sphere Sn ⊂ Rn+1. That is, let us consider
any measurable set A ⊂ Sn such that µn(A) ≥ 1/2. Then, if we let d(x,A) be the geodesic distance
between x ∈ Sn and A , we define the expanded set

At = {x ∈ Sn | d(x,A) < t}

and it turns out that
µn(At) ≥ 1− e−(n−1)t2/2

which states that given any length t > 0, no matter how small, At almost covers the whole space.
Then, for large enough n, µn is highly concentrated around the equator.

Note that the bounds decay exponentially (or of greater order).

Example 0.2 (Uniform Measure on Cube)

Example 0.3 (High Dimensional Gaussian)

Given iid X1, . . . , Xn ∼ N (0, σ2), then let X be the random n-vector of these random variables.
Then, the random variable

||X|| =
√
X2

1 + . . . , X2
n

has a distribution that is very concentrated around the expectation

E[||X||] =
√
n

3

Naturally, this concentration phenomenon extends to random variables.

Example 0.4 ()

Let us have iid random variables Xi with P(Xi = 1) = 1/2 and P(Xi = −1) = 1/2. Then, let’s define
Sn =

∑n
i=1Xi. The strong law of large numbers tell us that

Sn
n

a.s.−−→ 0

while the central limit theorem tells us that
Sn√
n

d−→ N (0, 1)

since E[Xi] = 0 and Var[Xi] = 1. The CLT result shows us that the fluctuations (variance) of Sn of
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are order n. However, note that |Sn| can take values as large as n, so the maximum value of Sn/n is
of order 1. If we measure Sn using this scale, then Sn

n is essentially 0. The actual bound looks like

P
(
|Sn|
n

≥ r

)
≤ 2e−nr

2/2

Lemma 0.1 (Markov’s Inequality)

Given any random variable X, we have

P(X ≥ α) ≤ E[X]

α

Lemma 0.2 (Chebyshev’s Inequality)

Given X with finite variance and expectation, we have

P(|X − E[X]| ≥ α) ≤ Var[X]

α2

An inequality that we will use often in proofs is Jensen’s inequality.

Lemma 0.3 (Jensen’s Inequality)

Given a convex function g : R → R and random variable X, we have

g(E[X]) ≤ E[g(X)]

Proof.

We will assume that f is differentiable for simplicity and let E[X] = µ. Define the linear function
centered at µ to be l(x) := f(µ) + f ′(µ)(x− µ). Then, we know that f(x) ≥ l(x) for all x, so

E[f(X)] ≥ E[l(X)]

= E[f(µ) + f ′(µ) (X − µ)]

= E[f(µ)] + f ′(µ)(E[X]− µ)

= E[f(µ)]
= f(E[X])

Definition 0.1 (Lipschitz Continuity)

A function f : (X, dX) −→ (Y, dY ) is Lipschitz continuous, with Lipschitz constant A, if it satisfies

dY
(
f(x), f(y)

)
≤ AdX(x,y)

for all x,y ∈ X.
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1 Talagrand’s Gaussian Inequality

Lemma 1.1 (Gaussian Integration by Parts Formula)

For Gaussian random variables x, x1, . . . , xn and a function F of moderate growth at infinity, we have

E
[
xF (x1, . . . , xn)

]
=

n∑
i=1

E[xxi] E
[
∂F

∂xi
(x1, . . . , xn)

]

Theorem 1.1 (Talagrand’s Gaussian Inequality)

Consider a Lipschitz function F : RN −→ R (with Lipschitz constant A). Let x1, . . . , xN ∼ N (0, 1)
be iid, and let x = (x1, . . . , xN ). Then, for each t > 0, we have

P
(
|F (x)− EF (x)| ≥ t

)
≤ 2 exp

(
− t2

4A2

)

Proof.

For this proof, we assume that F is not only Lipschitz, but C2. This is the case in most applications
of this theorem, and if it is not the case, then we can regularize F by convolving with a smooth
function to solve the problem. We begin with a parameter s and consider the function G : R2N −→ R
defined

G(z1, . . . , z2N ) = exp
(
s
[
F (z1, . . . , zN )− F (zN+1, . . . , z2N )

])
For clarity, we will denote variables of F with xi and variables of G with zi. Let u1, . . . , u2N ∼ N (0, 1)
be iid, and let v1, . . . , vn ∼ N (0, 1) be iid, with vN+1, . . . , v2N copies of the first N . For shorthand,
we can denote the collection as u and v. Then, we have

E[uiuj ]− E[vivj ] = 0

except when j = i+M or i = j +M , in which case we have

E[uiuj ]− E[vivj ] = 0− 1 = −1

since vivj = X2, where X ∼ N (0, 1) = χ2
1, a Chi-Squared distribution with 1 degree of freedom. We

consider the transformed random variable

f(t) :=
√
tu+

√
1− tv ∼ N (0, 1) for all t

that is essentially some smooth path from f(0) = u and f(1) = v. Note that given some t ∈ [0, 1],
f(t) is some random vector, G(f(t)) is some random variable, and E[G(f(t))] is some number. We
can define the function ϕ : [0, 1] −→ R as

ϕ(t) = E[G(f(t))] =
∫
R
x pG(f(t))(x) dx

=

∫
R2N

G(y) pf(t)(y) dy

where pX is the PDF of the distribution X. Take the derivative with respect to t to get the first line,
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and we can simplify using Gaussian integration by parts

ϕ′(t)E
[ 2N∑
i=1

d

dt
fi(t)

∂G

∂zi

(
f(t)

)]

=

2N∑
i=1

E
[
d

dt
fi(t)

∂G

∂zi

(
f(t)

)]

=

2N∑
i=1

2N∑
j=1

E
[( ∂
∂t
fi(t)

)
fi(t)

]
E
[
∂2G

∂zi∂zj
f(t)

]
But we can simplify

E
[( ∂
∂t
fi(t)

)
fi(t)

]
= E

[( 1

2
√
t
ui −

1

2
√
1− t

vi

)(√
tuj −

√
1− t vj

)]
=

1

2

(
E[uiuj ]− E[vivj ]

)
=

{
−1 if j = i+M, i = j +M

0 else

So, we can simplify the above to

ϕ′(t) = −E
[ N∑
i=1

∂2G

∂zi ∂zi+M

(
f(t)

)]
and computing the second derivative using the chain rule gives

∂G

∂zi
(z) =

∂G

∂F

∂F

∂xi
(z1, . . . , zN )

= s G(z)
∂F

∂xi
(z1, . . . , zN )

∂2G

∂zi∂zi+N
(z) = −s2G(z) ∂F

∂xi
(z1, . . . , zN )

∂F

∂xi
(zN+1, . . . , z2N )

for all z. So we have for all t ∈ [0, 1],

ϕ′(t) = s2 E
[ N∑
i=1

G(f(t))
∂F

∂xi

(
f1(t), . . . , fN (t)

) ∂F
∂xi

(
fN+1(t), . . . , f2N (t)

)]

≤ s2E
[
G(f(t))

N∑
i=1

∂F

∂xi

(
f1(t), . . . , fN (t)

) ∂F
∂xi

(
fN+1(t), . . . , f2N (t)

)]
≤ s2E

[
G(f(t)

)
A2

]
≤ s2A2E[G(f(t))] = s2A2ϕ(t)

Solving the inequality for ϕ gives

ϕ′(t)/ϕ(t) ≤ s2A2 =⇒
∫
ϕ′(t)/ϕ(t) dt ≤

∫
s2A2 dt

=⇒ log ϕ(t) ≤ s2A2t+ C

=⇒ ϕ(t) ≤ es
2A2t ≤ es

2A2

Recalling that f(1) = u, we have

E[exp{s(F (u1, . . . , uN )− F (uN+1, . . . , u2N ))}] ≤ es
2A2
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and by independence of the ui’s, the LHS equals E[esF (u1,...,uN )]E[e−sF (uN+1,...,u2N )] and by Jensen’s
inequality, we have E[e−sF (uN+1,...,u2N )] ≥ e−sE[F (uN+1,...,u2N )]. We can derive as follows:

es
2A2

≥ E[esF (u1,...,uN )]E[e−sF (uN+1,...,u2N )]

≥ E[esF (u1,...,uN )] e−sE[F (uN+1,...,u2N )]

= E[esF (u1,...,uN )]E[e−sE[F (uN+1,...,u2N )]]

= E[esF (u1,...,uN )−sE[F (uN+1,...,u2N )]]

= E[exp
(
sF (u1, . . . , uN )− sE[F (uN+1, . . . , u2N )]

)
]

and by Markov’s inequality, we get for a random vector of standard Gaussian random variables x

P
(
F (x)− E[F (x)] ≥ t) = P

(
es(F (x)−E[F (x)] ≥ est

)
≤ E[es(F (x)−E[F (x)]]

est

≤ es
2A2−st

= e−t
2/4A2

when s = t/2A2
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2 Variance Bounds and Poincare Inequalities
Let us first describe this concentration phenomenon by investigating bounds on the variance

Var[f(x1, . . . , xn)] := E
[(
f(x1, . . . , xn)− E[f(x1, . . . , xn)]

)2]
We can first bound

Var[f(X1, . . . , Xn)] = E
[(
f(X1, . . . , Xn)

)2]− E
[
f(X1, . . . , Xn)

]2 ≤ E
[(
f(X1, . . . , Xn)

)2]
and since adding a constant term to f doesn’t affect the variance, we can utilize this to get our first variance
bound.

Lemma 2.1 ()

Let X be a random variable or vector. Then,

Var[f(X)] ≤ E
[(
f(X)− inf f

)2] and Var[f(X)] ≤ E
[(

sup f − f(X)
)2]

and
Var[f(X)] ≤ 1

4
(sup f − inf f)2

Proof.

Since Var[X] = E[X2]− E[X]2 from above, we have

Var[f(X)] = Var[f(X)− a] = E[(f(X)− a)2]− E[f(X)− a]2 ≤ E[(f(X)− a)2]

By letting a = inf f , we get the first inequality. By letting a = (sup f + inf f)/2 be the "middle" of
f , we have |f(X)− a| ≤ (sup f − inf f)/2 =⇒ [f(X)− a]2 ≤ (sup f − inf f)2/4, and so

Var[f(X)] ≤ E[(f(X)− a)2] ≤ 1

4
(sup f − inf f)2

which gives our third inequality. We can also see that

Var[f(X)] = Var[−f(X)] = Var[b− f(X)] ≤ E[(b− f(X))2]

to get our second.

This allows us to bound the random vector f(X) if f itself is bounded, no matter what X is. But this
generally turns out to be a very conservative bound, which is unsurprising since we assume so little about X.
For example, if we let X1, . . . , Xn be iid random variables taking values in [−1, 1], and let f(x1, . . . , xn) =
1
n

∑n
i=1 xi. Then, f takes values in [−1, 1], and by the previous lemma, we have

Var[f(X1, . . . , Xn)] ≤
1

4
(1− (−1))2 = 1

which looks good, until we see that we can derive a better bound from direct computation (which becomes
much better as n increases).

Var[f(X1, . . . , Xn)] =
1

n2

n∑
i=1

Var[Xi] =
1

n

However, this computation assumes independence of Xi’s, which the previous lemma doesn’t. This is the
reason we’re able to get a better bound, since if we took n copies of the same X, we would have

Var[f(X1, . . . , Xn)] = Var[nX/n] = Var[X] = 1
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Therefore, we will capitalize on the independence of these random variables in high dimensions to obtain
better bounds. Now in the next result, we shall show that the variance of a high dimensional f(X1, . . . , Xn)
can be bounded by the variances of each random variable. Those quantities, like the variance, that behave
well in high dimensions is said to tensorize.

Consider independent random variables X1, . . . , Xn and a function f : Rn −→ R. If we fix values x1, . . . , xn,
then we can define for all k = 1, . . . , n the function gk(x1, . . . , xk−1, xk+1, . . . , xn) : R → R as

gk(x1, . . . , xk−1, xk+1, . . . , xn)(z) = f(x1, . . . , xk−1, z, xk+1, . . . , xn)

where
(gk(x1, . . . , xk−1, xk+1, . . . , xn))

′(z) =
∂

∂xk
f(x1, . . . , xk−1, z, xk+1, . . . , xn)

and gk(x1, . . . , xk−1, xk+1, . . . , xn)(Xk) is a random variable of Xk. Then, we can define

Vark f(x1, . . . , xn) = VarXk
[f(x1, . . . , xk−1, Xk, xk+1 . . . , xn)]

= EXk

[(
f(x1, . . . , xk−1, Xk, xk+1, . . . , xn)− EXk

[f(x1, . . . , xk−1, Xk, xk+1, . . . , xn)]
)2]

= Var[gk(x1, . . . , xk−1, xk+1, . . . , xn)(Xk)]

= VarXk
[g(x1, . . . , xk−1, xk+1, . . . , xn)]

which takes the variance of f with respect to Xk, keeping all other variables fixed. However, this value will
change for different x1, . . . , xn’s, and so we can loosen the restriction that they are fixed. We can take

gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(z) = f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)

where gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(Xk) is a random variable of X1, . . . , Xn. Now if we calculate its
partial variance, we get

Vark f(X1, . . . , Xn) = VarXk
[f(X1, . . . , Xk, . . . , Xn)]

= Var[gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(Xk)]

= VarXk
[gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)]

which is now a random variable of all Xi’s, i ̸= k, that outputs the variance of f with respect to Xk. But
is it true that

EXk
[f(X1, . . . , Xn)] = E[f(X1, . . . , Xn) | X1, . . . , Xk−1, Xk+1, . . . , Xn]?

Now, we can show a very useful property of variance: that the variance of some arbitrary function can be
bounded by the expected sum of the partial variances.

Theorem 2.1 (Tensorization of Variance)

That is, Vari f(x) is the variance of f(X1, . . . , Xn) w.r.t. the variable Xi only, the remaining variables
kept fixed. Then, we have

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

Vari f(X1, . . . , Xn)

]

Proof.

We try to mimic the fact that the variance of the sum of independent random variables is the sum of
the variances. At first sight, the general function f(x1, . . . , xn) need not look anything like a sum, but
we can expand it as a telescoping sum of random variables. We will prove this using the martingale
method, which constructs this random variable f(X1, . . . , Xn) as a sum of finer and finer increments
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starting from the "coarse" constant function E[f(X1, . . . , Xn)]. We define the random variable

∆k := E[f(X1, . . . , Xn) | X1, . . . Xk]− E[f(X1, . . . , Xn) | X1, . . . , Xk−1]

Then, we can express

f(X1, . . . , Xn)−E[f(X1, . . . , Xn)] =

n∑
k=1

∆k

Note that E[∆k | X1, . . . , Xk−1] = 0 (i.e. ∆k’s are martingale increments). In particular, even though
the ∆k’s are not independent, if we have l < k, then

E[∆k∆l] = E[E[∆k∆l | X1, . . . , Xk−1]]

= E[E[∆k | X1, . . . Xk−1]E[∆l | X1, . . . Xk−1]]

= E[E[∆k | X1, . . . Xk−1] ∆l]

= E[0 ·∆l] = 0

and so, the variance can be expanded into terms that vanish.

Var[f(X1, . . . , Xn)] = E
[(
f(X1, . . . , Xn)−E[f(X1, . . . , Xn)]

)2]
= E

[( n∑
k=1

∆k

)2]
=

n∑
k=1

E[∆2
k]

Now it remains to show that E[∆2
k] ≤ E[Vark f(X1, . . . , Xn)] for every k. Let us define

∆̃k = f(X1, . . . , Xn)− E[f(X1, . . . , Xn) | X1, . . . , Xk−1, Xk+1, . . . , Xn]

to be the approximation of f(X1, . . . , Xn) "one step" before the final increment. Then, we have

∆k = E[∆̃k | X1, . . . , Xk]

and as Xk and X1, . . . , Xk−1, Xk+1, . . . , Xn are independent, we have

Vark f(X1, . . . , Xn) = E[∆̃2
k | X1, . . . , Xk−1, Xk+1, . . . , Xn]

and therefore using Jensen’s inequality we can prove

E[∆2
k] = E[E[∆̃k | X1, . . . , Xk]

2] ≤ E[∆̃2
k] = E[Vark f(X1, . . . , Xn)]

What we want to eventually do is prove an inequality of the form where for any function h : R → R and
some X ∼ µ,

Varµ[h] = Var[h(X)] ≤ ||L(h)||2L2(µ)

where L is an operator on h. This will allow us to bound

Var[gk(x1, . . . , xk−1, xk+1, . . . , xn)(Xk)] ≤ ||L(gk(x1, . . . , xk−1, xk+1, . . . , xn))||2

for all x1, . . . , xn, simply by taking h = g(x1, . . . , xk−1, xk+1, . . . , xn). Since this works for all x1, . . . , xn, we
can claim that this inequality holds for all X1(ω), . . . , Xn(ω) for all ω ∈ Ω. That is, we can loosen the fixed
values into random variables.

Vark f(X1, . . . , Xn) = Var[gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(Xk)]

≤ ||L(gk(X1, . . . , Xk−1, Xk+1, . . . , Xn))||2L2(µ)

Note that all terms are random variables of X1, . . . , Xn, and so the same inequality holds for their expecta-
tions over the entire joint measure.

E[Vark f(X1, . . . , Xn)] ≤ E
[
||L(gk(X1, . . . , Xk−1, Xk+1, . . . , Xn))||2L2(µ)

]
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and so by tensorization (i.e. summing them up), we get

Var[f(X1, . . . , Xn)] ≤
n∑
i=1

E
[
Vari f(X1, . . . , Xn)

]
≤

n∑
i=1

E
[
||L(gk(X1, . . . , Xk−1, Xk+1, . . . , Xn))||2L2(µ)

]
Furthermore, this bound is sharp when f is linear. Let us demonstrate this by letting f(x1, . . . , xn) =
a1x1 + . . .+ anxn. On the left hand side, we have

Var[f(X1, . . . , Xn)] = Var

[ n∑
i=1

aiXi

]
=

n∑
i=1

a2i Var[Xi]

and on the right hand side, each component divides up to

Vari f(x1, . . . , xn) = Var[f(x1, . . . , Xi, . . . , xn)]

= Var[a1x1 + . . .+ aiXi + . . . anxn]

= Var[aiXi]

= a2i Var[Xi]

Then? Note that since f is linear, the values of all xj , j ̸= i have no effect on the variance of Xi, and so
Vari f(X1, . . . , Xn), which is originally a random variable of X1, . . . , Xi−1, Xi+1, . . . , Xn, is really just the
constant (random variable) a2i Var[Xi]. This is because no matter what values X1, . . . , Xi−1, Xi+1, . . . , Xn

are realized, these values will only contribute to a translation of the random variable f(X1, . . . , Xn), and
hence will not affect the variance w.r.t. Xi. So, the right hand side also becomes

E
[ n∑
i=1

Vari f(X1, . . . , Xn)

]
= E

[ n∑
i=1

a2i Var[Xi]

]
=

n∑
i=1

a2i Var[Xi]

which is the same as the LHS.

We can view the tensorization of the variance in itself as an expression of the concentration phenomenon.
Vari f(x) quantifies the sensitivity of the function f(x) of the coordinate xi in a distribution-dependent
manner. If this sensitivity w.r.t. each coordinate (E[Vari f(X1, . . . , Xn)]) is small, then f(X1, . . . , Xn) is
close to its mean. However, it might not be so straightforward to compute Vari f , since it depends on both
the function f and on the distribution of Xi. So, we can try combining this with a suitable bound on the
component-wise variance.

Let us define the quantities:

Dif(x) := sup
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)− inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

and
D−
i f(x) := f(x1, . . . , xn)− inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

which quantifies the sensitivity of the function f to the coordinate xi in a distribution-independent manner.
Now we can introduce the following bounds.

Corollary 2.1 ()

We have

Var[f(X1, . . . , Xn)] ≤
1

4
E
[ n∑
i=1

(
Dif(X1, . . . , Xn)

)2]
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Proof.

We start off with

Vari f(X1, . . . , Xn) = Var[f(X1, . . . , Xi, . . . , Xn)]

≤ 1

4

(
Dif(X1, . . . , Xn)

)2
Since these a random variables follow this inequality (for all ω ∈ Ω), we can attach an expectation
on them to get

E[Vari f(X1, . . . , Xn)] ≤ E
[
1

4

(
Dif(X1, . . . , Xn)

)2]
and substituting in the previous theorem gives

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

Vari f(X1, . . . , Xn)

]

=

n∑
i=1

E
[
Vari f(X1, . . . , Xn)

]
≤

n∑
i=1

E
[
1

4

(
Dif(X1, . . . , Xn)

)2]

=
1

4
E
[ n∑
i=1

(
Dif(X1, . . . , Xn)

)2]

Example 2.1 (Random Matrices)

Exercise 2.1 (Banach-Valued Sums)

Let X1, X2, . . . , XN be independent random variables with values in a Banach space (B, || · ||B).
Suppose these random variables are bounded in the sense that ||Xi||B ≤ C a.s. for every i. Show
that

Var

(∣∣∣∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣∣∣∣
B

)
≤ C2

n

This is a simple vector-valued variant of the elementary fact that the variance of 1
n

∑n
k=1Xk for

real-valued random variables Xk is of order 1
n .

Solution 2.1

We can tensorize the variance to get

Vark

∣∣∣∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣∣∣∣
B

= Var

∣∣∣∣∣∣∣∣ 1nXk

∣∣∣∣∣∣∣∣
B

=
1

n2
Var ||Xk||B

≤ 1

n2

(
1

4
(C − (−C))2

)
=
C2

n2
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and so letting f(X1, . . . , Xn) =
∣∣∣∣ 1
n

∑n
k=1Xk

∣∣∣∣
B

, we get

Var[f(X1, . . . Xn)] ≤
n∑
k=1

E[Vark f(X1, . . . , Xn)]

≤
n∑
k=1

C2

n2
=
C2

n

Exercise 2.2 (Rademacher Processes)

Let ϵ1, . . . , ϵn be independent symmetric Bernoulli random variables P(ϵi = ±1) = 1
2 (also called

Rademacher variables), let T ⊂ Rn. The following identity is completely trivial:

sup
t∈T

Var

[ n∑
k=1

ϵktk

]
= sup

t∈T

n∑
k=1

t2k

Prove the following nontrivial fact:

Var

[
sup
t∈T

n∑
k=1

ϵktk

]
≤ 4 sup

t∈T

n∑
k=1

t2k

Solution 2.2

Let us consider a fixed ϵ = (ϵ1, . . . , ϵn) and index i ∈ [n]. Then, consider the random variable formed
by taking the value f(ϵ1, . . . , ϵn) and loosening ϵi to be an random variable. That is,

P
[
f(ϵ1, . . . , ϵn) = sup

t∈T
{ϵ1t1 + . . .+ 1ti + . . .+ ϵntn}

]
=

1

2

P
[
f(ϵ1, . . . , ϵn) = sup

t∈T
{ϵ1t1 + . . .− 1ti + . . .+ ϵntn}

]
=

1

2

Then, we compute

D−
i f(ϵ1, . . . , ϵn) = inf

ϵi∈{−1,1}
sup
t∈T

n∑
k=1

ϵktk

and we can estimate

D−
i f(ϵ) = f(ϵ1, . . . , ϵn)−Dif(ϵ1, . . . , ϵn)

= sup
t∈T

n∑
k=1

ϵktk − inf
ϵi∈{−1,1}

sup
t∈T

n∑
k=1

ϵktk

≤ sup
t∈T

2|ti|

We can finally bound

Var[f(ϵ1, . . . , ϵn)] ≤ E
[ n∑
i=1

(
D−
i f(ϵ)

)2]

≤ 4E
[ n∑
i=1

sup
t∈T

t2i

]

= 4 sup
t∈T

n∑
i=1

t2i

12/ 36



Concentration of Measure Muchang Bahng Spring 2025

Exercise 2.3 (Bin Packing)

This is a classical application of bounded difference inequalities. Let X1, . . . , Xn i.i.d. random
variables with values in [0, 1]. Each Xi represents the size of a package to be shipped. The shipping
containers are bins of size 1 (so each bin can hold a set packages whose sizes sum to at most 1).
Let Bn = f(X1, . . . , Xn) be the minimal number of bins needed to store the packages. Note that
computing Bn is a hard combinatorial optimization problem, but we can bound its mean and variance
by easy arguments.

1. Show that Var[Bn] ≤ n/4
2. Show that E[Bn] ≥ nE[X1]

Thus the fluctuations ∼
√
n of Bn are much smaller than its magnitude ∼ n.

Solution 2.3

Listed.
1. Given fixed sizes X1, . . . , Xn and some i ∈ [n], we can see that a property of f is that

f(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) + 1 = f(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)

since for an extra package with size 1, you would for sure need one more bin. So the maximum
difference of f based on the xi value is the constant random variable

Dif(X1, . . . , Xn) = sup
z∈[0,1]

f(X1, . . . , z, . . . ,Xn)− inf
z∈[0,1]

f(X1, . . . , z, . . . ,Xn)

= f(X1, . . . , 1, . . . , Xn)− f(X1, . . . , 0, . . . , Xn) = 1

and so by the bounded difference inequalities,

Var[Bn] = Var[f(X1, . . . , Xn)] ≤
1

4
E
[ n∑
i=1

(
Dif(X1, . . . , Xn)

)2]

=
1

4

n∑
i=1

E
[(
Dif(X1, . . . , Xn)

)2]
≤ n

4

2. Given the sizes X1, . . . , Xn, Bn must satisfy

Bn = f(X1, . . . , Xn) ≥ X1 + . . .+Xn

since the total volume of bins Bn must exceed the total volume X1 + . . .+Xn of packages. So,

E[Bn] ≥ E
[ n∑
k=1

Xk

]
= nE[X1]

Exercise 2.4 (Order Statistics and Spacings)

Let X1, . . . , Xn be independent random variables, and denote by X(1) ≥ . . . ≥ X(n) their decreasing
rearrangement (X(1) = maxiXi, X(n) = miniXi, etc.). Show that

Var[X(k)] ≤ kE[(X(k) −X(k+1))
2] for 1 ≤ k ≤ n/2

and that
Var[X(k)] ≤ (n− k + 1)E[(X(k−1) −X(k))

2] for n/2 < k ≤ n
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Exercise 2.5 (Convex Poincare Inequality)

Let X1, . . . , Xn be independent random variables taking values in [a, b]. The bounded difference
inequalities estimate the variance Var[f(X1, . . . , Xn)] in terms of discrete derivatives Dif or D−

i f of
the function f . The goal of this problem is to show that if the function f is convex, then one can
obtain a similar bound in terms of the ordinary notion of derivative ∇if(x) = ∂f(x)/∂xi in Rn.

1. Show that if g : R −→ R is convex, then

g(y)− g(x) ≥ g′(x) (y − x) for all x, y ∈ R

2. Show using part (a) and the bounded difference inequalities that if f : Rn → R is convex, then

Var[f(X1, . . . , Xn)] ≥ (b− a)2E[||∇f(X1, . . . , Xn)||2]

3. Conclude that if f is convex and L-Lipschitz, i.e. |f(x)− f(y)| ≤ L||x− y|| for all x, y ∈ [a, b]n,
then Var[f(X1, . . . , Xn)] ≥ L2(b− a)2.

Solution 2.4

Listed.
1. Assuming g is differentiable, let us choose any x, y ∈ R and define some z = λx + (1 − λ)y in

between. Then, pictorially, we would like to formally show that

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x

and take the limit as z → x to get f ′(x) on the LHS. By definition, we have

f(z) = f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

Subtracting f(x) and then dividing by 1− λ > 0 on both sides gives

f(z)− f(x)

1− λ
≤ f(y)− f(x)

Note that z − x = λx+ (1− λy)− x = (1− λ)(y − x). So, dividing by y − x > 0 on both sides
gives

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x

and taking the limit on the LHS gives

f ′(x) = lim
z→x

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x

Since y − x > 0, we can multiply both on the same side to get

f(y)− f(x) ≥ f ′(x) (y − x)

If y < x, then the proof is the same, and the inequality sign ends up getting switched around
twice, leading to the same conclusion.

2. Note that from the above result, we can multiply both sides by −1 to get that g(x) − g(y) ≤
g′(x)(x− y) for all x, y ∈ R, and then swap the two variables to get g(y)− g(x) ≤ g′(y)(y− x).
Let us consider fixed x1, . . . , xn and some i ∈ [n]. Given f : Rn → R, we define fi(x) : R → R
by unfixing the ith variable. Then, given some α, β ∈ [a, b],

fi(x)(β)− fi(x)(α) ≤ g′(β)(β − α)
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or equivalently,

f(x1, . . . , β, . . . , xn)− f(x1, . . . , α, . . . , xn) ≤
∂f

∂xi
(x1, . . . , β, . . . , xn) (β − α)

Now let z∗ ∈ [a, b] be the value s.t.

z∗ = arg min
z∈[a,b]

f(x1, . . . , z, . . . , xn)

Then,

D−
i f(x) = f(x1, . . . , xi, . . . xn)− f(x1, . . . , z

∗, . . . , xn) ≤
∂f

∂xi
(x1, . . . , xi, . . . , xn) (xi − z∗)

and so (
D−
i f(X)

)2 ≤ ∇if(x)
2 (xi − z∗)2 ≤ ∇if(x)

2 (b− a)2

which gives from the bounded difference inequality

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

(
D−
i f(X1, . . . , Xn)

)2]

≤ E
[ n∑
i=1

∇if(x)
2 (b− a)2

]
= (b− a)2E

[∣∣∣∣∇f(X)
∣∣∣∣2]

3. If f is L-lipschitz, then ||∇f(X)|| ≤ L, and so

Var[f(X1, . . . , Xn)] ≤ (b− a)2L2

2.1 Markov Semigroups

Definition 2.1 (Markov Process)

Let (Ω,F ,P) be a probability space and (S,S) be a measurable space. A homogeneous Markov process
{Xt}t≥0 is a stochastic process that satisfies the Markov property: for every bounded measurable
function f and s, t ≥ 0, there exists a bounded measurable function Psf satisfying

E[f(Xt+s) | {Xr}r≤t] = (Psf)(Xt) = E[f(Xt+s) | Xt]

Definition 2.2 (Stationary Measure)

A probability measure µ is called stationary or invariant if

Eµ[f ] = Eµ[Ptf ] i.e.
∫
S

f dµ =

∫
S

Ptfdµ

for all t ≥ 0 and bounded measurable f . By abusing notation, this is conventionally written

µ(f) = µ(Ptf)

To interpret this notion, suppose that X0 ∼ µ. Then,

E[f(Xt)] = E[E[f(Xt) | X0]] = E[Ptf(X0)] = Eµ[Ptf ]
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and if µ is stationary, then we have E[f(Xt)] = Eµ[f ]. If f = 1A for some measurable A ⊂ S, then
E[1A(Xt)] = P(Xt ∈ A), and

P(Xt ∈ A) = Eµ[1A] =
∫
S

1A dµ =

∫
A

dµ = µ(A) = P(X0 ∈ A)

which means that the probability that for all A ∈ S and all t ≥ 0, the probability of Xt realizing in A is
equivalent to the initial probability of X0 realizing in A. This means that the process remains distributed
according to the stationary measure Xt ∼ µ for every time t. In summary, stationary measures describe the
equilibrium or steady-state behavior of the Markov process.

From now, given the state space (S,S) we can put a measure µ on it to get a measure space (S,S, µ). The
Banach space of all µ-measurable functions f : (S,S, µ) → (R,R) (i.e. for every Borel B ∈ R, f−1(B) ∈ S)
will be denoted Lp(µ), equipped with the norm

||f ||Lp(µ) := Eµ[fp]1/p =
(∫

S

|f |p dµ
)1/p

If p = 2, then we can define the inner product

⟨f, g⟩µ := Eµ[fg] =
∫
S

fg dµ

Lemma 2.2 ()

Let µ be a stationary measure. Then, the following hold for all p ≥ 1, t, s ≥ 1, α, β ∈ R, and bounded
measurable functions f, g.

1. Contraction:
||Ptf ||Lp(µ) ≤ ||f ||Lp(µ) = Eµ[fp]1/p

2. Linearity:
Pt(αf + βg) = αPtf + βPtg

3. Semigroup Property:
Pt+sf = PtPsf

4. Conservativeness:
Pt1 = 1

Lemma 2.3 ()

Let µ be a stationary measure. Then, t 7→ Varµ[Ptf ] is a decreasing function of time for every function
f ∈ L2(µ).

Proof.

Note that

Varµ[Ptf ] = ||Ptf − µf ||2L2(µ) = ||Pt(f − µf)||2L2(µ) = ||Pt−sPs(f − µf)||2L2(µ)

≤ ||Ps(f − µf)||2L2(µ) = ||Psf − µf ||2L2(µ) = Varµ(Psf)

We now define the analogous operator to the transition rate matrix in discrete time chains with a finite state
space.
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Definition 2.3 (Generator)

The generator L is defined as

L f := lim
t↓0

Ptf − f

t

for every f ∈ L2(µ) for which the above limit exists in L2(µ). The set of f for which L f is defined is
called the domain Dom(L ) of the generator, and L defines a linear operator from Dom(L ) ⊂ L2(µ)
to L2(µ).

We have defined the generator L from the Markov semigroup {Pt}t≥0. Now, let’s try to define the semigroup
in terms of the generator L . Given that we have some map L ), can we define some semigroup {Pt} satisfying
the definition? To do this, we must solve the differential equation:

d

dt
Pt = lim

δ↓0

Pt+δ − Pt
δ

= lim
δ↓0

PtPδ − Pt
δ

= Pt lim
δ↓0

Pδ − I

δ
= PtL

For function Pt to satisfy this differential equation, we have the solution

Pt = etL

which also implies that L and Pt must commute.

Definition 2.4 (Reversibility)

The Markov semigroup {Pt}t≥0 with stationary measure µ is called reversible if

⟨f, Ptg⟩µ = ⟨Ptf, g⟩µ

for every f, g ∈ L2(µ). Equivalently, we can say that Pt is self-adjoint on L2(µ), or since Pt = etL ,
we have L is self-adjoint.

Definition 2.5 (Ergodicity)

The Markov semigroup {Pt}t≥0 with stationary measure µ if called ergodic if

Ptf → µf

in L2(µ) as t→ +∞ for every f ∈ L2(µ). Note that µf = µ(f) is the constant function in L2(µ).

Exercise 2.6 (Elementary Identities)

Let Pt be a Markov semigroup with generator L and stationary measure µ. Prove the following
elementary facts.

1. Show that µ(L f) = 0 for every f ∈ L2(µ)
2. If ϕ : R → R is convex, then Ptϕ(f) ≥ ϕ(Ptf) when f, ϕ(f) ∈ L2(µ)
3. If ϕ : R → R is convex, then L ϕ(f) ≥ ϕ′(f)L f when f, ϕ(f) ∈ L2(µ)
4. Let f ∈ L2(µ). Show that the following process is a martingale.

Mf
t := f(Xt)−

∫ t

0

L f(Xs) ds
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Solution 2.5

Listed.
1. This is simply a property of the generator. Not worrying about interchanging limits and inte-

grals, we have

µ(L f) = Eµ[L f ] =

∫
S

lim
t↓0

Ptf − P0f

t
dµ

= lim
t↓0

∫
S

Ptf − P0f

t
dµ

= lim
t↓0

1

t

(
Eµ[Ptf ]− Eµ[f ]

)
= lim

t↓0

1

t
· 0 = 0

2. By Jensen’s inequality,

Psϕ(f) = E[ϕ(f)(Xt+s) | Xt]

≥ ϕ

(
E[f(Xt+s | Xt]

)
= ϕ(Psf)

2.2 Poincare Inequalities
Recall that a Poincare inequality for µ is, informally, of the form

variance(f) ≤ Eµ[||gradient(f)||2]

At first sight, such an inequality has nothing to do with Markov processes. However, the validity of a Poincare
inequality for µ turns out to be related to the rate of convergence of an ergodic Markov process for which
µ is the stationary distribution. That is, a measure µ satisfies a Poincare inequality for a certain notion of
gradient if and only if an ergodic Markov semigroup associated to this gradient converges exponentially fast
to µ.

Definition 2.6 (Dirichlet Form)

Given a Markov process with generator L and stationary measure µ, the corresponding Dirichlet
form is defined as

E(f, g) := −⟨f,L g⟩µ

Theorem 2.2 (Poincare Inequality)

Let Pt be a reversible ergodic Markov semigroup with stationary measure µ. The following are
equivalent given c ≥ 0.

1. Varµ(f) ≤ cE(f, f) for all f (Poincare Inequality)
2. ||Ptf − µf ||L2(µ) ≤ e−t/c||f − µf ||L2(µ)

3. E(Ptf, Ptf) ≤ e−2t/cE(f, f) for all f, t
4. For every f there exists κ(f) s.t. ||Ptf − µf ||L2(µ) ≤ κ(f)e−t/c

5. For every f there exists κ(f) s.t. E(Ptf, Ptf) ≤ κ(f)e−2t/c

We should view properties 2 through 5 as different notions of exponential convergence of the Markov semi-
group Pt to the stationary measure µ. Properties 2 and 4 directly measure the rate of convergence of Ptf to
µf in L2(µ), while properties 3 and 5 measure the rate of convergence of the "gradient" (now depicted as
E) of Ptf to 0.
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2.2.1 The Gaussian Poincare Inequality

Definition 2.7 (Ornstein-Uhlenbeck Process)

Given standard Brownian motion (Wt)t≥0, the Ornstein-Uhlenbeck process is defined as

Xt = e−tX0 + e−tWe2t−1

Lemma 2.4 (Gaussian Integration by Parts)

If ξ ∼ N (0, 1), then
E[ξf(ξ)] = E[f ′(ξ)]

Proof.

Assuming that f is smooth with compact support, we have by integration by parts

E[f ′(ξ)] =
∫ ∞

−∞
f ′(x)

e−x
2/2

√
2π

dx

=
e−x

2/2

√
2π

f(x)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
f(x)

d

dx

(
e−x

2/2

√
2π

)
dx

= −
∫ ∞

−∞
−xf(x)e

−x2/2

√
2π

dx

=

∫ ∞

−∞

(
xf(x)

)e−x2/2

√
2π

dx = E[ξf(ξ)]

Theorem 2.3 ()

The Ornstein-Uhlenbeck Process (Xt)t≥0

1. is a Markov process with semigroup

Ptf(x) = E
[
f(e−tx+

√
1− e−2tξ)

]
with ξ ∼ N (0, 1)

2. admits µ = N (0, 1) as its stationary measure
3. is ergodic
4. has generator and Dirichlet form given by

L f(x) = −xf ′(x) + f ′′(x), E(f, g) = ⟨f ′, g′⟩µ

5. is reversible

Proof.

Let s ≥ t.
1. By definition of Xt, we have Xt = e−tX0 + e−tWe2t−1 and

Xs = e−sX0 + e−sWe2s−1 =⇒ X0 = (Xs − e−sWe2s−1)e
s

Substituting in the equation for Xs gives

Xt = e−(t−s)Xs + e−t(We2t−1 −We2s−1)

= e−(t−s)Xs +
√
1− e−2(t−s)ξ
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where ξ = (We2t−1 −We2s−1)/
√
e2t − e2s ∼ N(0, 1) is independent of {Xr}r≤s. Therefore, we

can write

E[f(Xt) | {Xr}r≤s] = Pt−sf(Xs) = E
[
f
(
e−(t−s)Xs +

√
1− e−2(t−s)ξ

)]
which proves the Markov property and gives the semigroup.

2. We can clearly see that if Xt ∼ N(0, 1), then Xt+s = e−sXt+
√
1− e−2sξ is a sum of Gaussians,

one with variance e−2s and the other with variance 1− e−2s, and so their sum has variance 1.
3. We will take for granted that this is ergodic.
4. To compute the generator, we use the chain rule (and not worry about whether we take the

derivative within the expectation integral) and then use Gaussian integration by parts to get

d

dt
Ptf(x) = E

[
f ′(e−tx+

√
1− e−2tξ)

(
e−2t

√
1− e−2t

ξ − e−tx

)]
= E

[
e−txf ′(e−tx+

√
1− e−2tξ) + e−2tf ′′(e−tx+

√
1− e−2tξ)

]
and therefore have

d

dt
Ptf(x) =

(
− x

d

dx
+

d2

dx2

)
Ptf(x)

The Dirichlet form can be simplified using the Gaussian integration by parts as

E(f, g) = −⟨f,L g⟩µ
= E[f(ξ)

(
xg′(ξ)− g′′(ξ)

)
]

= E[ξf(ξ)g′(ξ)]− E[f(ξ)g′′(ξ)]
= E[f ′(ξ)g′(ξ) + f(ξ)g′′(ξ)]− E[f(ξ)g′′(ξ)]
= E[f ′(ξ)g′(ξ)]

5. Since E(f, g) = E[f ′(ξ)g′(ξ)], it is symmetric and so L is self-adjoint.

From the previous theorem part 4, we can see that

E(f, f) = ⟨f ′, f ′⟩µ = ||f ′||2L2(µ) = Eµ[f ′2]

which means that the Dirichlet form of an Ornstein-Uhlenbeck process is precisely the expected square
gradient of function f ! Therefore, with the Poincare inequality, we can bound the variance of f with the
Dirichlet form, which is the expected square gradient of f .

Theorem 2.4 ()

Let µ = N (0, 1). Then,
Varµ[f ] ≤ ||f ′||2L2(µ)
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Proof.

We have from the properties of the Ornstein-Uhlenbeck process that

d

dx
Ptf(x) =

d

dx
E[f(e−tx+

√
1− e−2tξ)]

= E
[
d

dx
f(e−tx+

√
1− e−2tξ)]

= E[f ′(e−tx+
√
1− e−2tξ) e−t]

= e−tE[f ′(e−tx+
√
1− e−2tξ)]

= e−tPtf
′(x)

Thus
E(Ptf, Ptf) = ||(Ptf)′||2L2(µ) = e−2t||Ptf ′||2L2(µ) ≤ e−2t||f ′||2L2(µ) = e−2tE(f, f)

where the inequality follows from contraction.

By tensorization, we can prove the following.

Corollary 2.2 (Gaussian Poincare Inequality)

Let X1, . . . , Xn ∼ N(0, 1) be iid. Then,

Var[f(X1, . . . , Xn)] ≤ E[||∇f(X1, . . . , Xn)||2]

Proof.

Computation.

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

Varif(X1, . . . , Xn)

]

≤ E
[ n∑
i=1

∣∣∣∣∣∣∣∣ ddxi f(X1, . . . , Xn)

∣∣∣∣∣∣∣∣2]
= E[||∇f(X1, . . . , Xn)||2]

So what have we done so far? If we have some distribution µ and want to prove an inequality that bounds
Varµ[f ], then we should choose some (reversible ergodic) Markov process that has a stationary distribution
µ. We can identify its semigroup, generator, and ultimately its Dirichlet form E(f, g), which will allow us to
invoke the Poincare inequality to bound

Varµ[f ] ≤ cE(f, f)

and since µ = N(0, 1), we have shown above using both the properties of the generator of the Ornstein-
Uhlenbeck process and Gaussian integration by parts that this Dirichlet form is precisely the norm of f ′.
This is clear since the Dirichlet form ⟨f,L g⟩µ only depends on L and µ. However, the Dirichlet form does
not have to be this form.

1. If µ is some other distribution, we would not be able to reduce E(f, f) to the norm of its derivative,
and so it make take on a different form.

2. If we choose a different Markov process, even with the same stationary measure µ = N(0, 1), the
generator may be different and so will the Dirichlet form.
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Exercise 2.7 (Carre du Champ)

We have interpreted the Dirichlet form E(f, f) as a general notion of “expected square gradient” that
arises in the study of Poincare inequalities. There is an analogous quantity Γ(f, f) that plays the
role of “square gradient” in this setting (without the expectation). In good probabilistic tradition, it
is universally known by its French name carre du champ (literally, “square of the field”). The carre
du champ is defined as

Γ(f, g) :=
1

2

[
L (fg)− fL g − gL f

]
in terms of the generator L of a Markov process with stationary measure µ.

1. Show that E(f, f) =
∫
Γ(f, f) dµ and that E(f, g) =

∫
Γ(f, g) dµ if the Markov process is in

addition reversible.
2. Show that Γ(f, f) ≥ 0 so it can indeed by interpreted as a square.
3. Prove the Cauchy-Schwartz inequality Γ(f, g)2 ≤ Γ(f, f) Γ(g, g)
4. Compute the carre du champ of the Ornstein-Uhlenbeck process and confirm that it should

indeed be interpreted as the appropriate notion of "square gradient."

Solution 2.6

Listed.
1. By stationarity, we have

µ(L f) =

∫
S

L f dµ = 0 (1)

for all f ∈ L2(µ), which reduces the first term below to 0. So, we can reduce the carre du
champ to ∫

S

Γ(f, f) dµ =
1

2

(∫
S

L (f2) dµ− 2

∫
S

fL f dµ

)
(2)

= −
∫
S

fL f dµ = −⟨f,L f⟩µ = E(f, f) (3)

Furthermore, assuming that Pt is reversible, we have

E(f, g) = −⟨f,L g⟩µ = −⟨L f, g⟩µ = −⟨g,L f⟩µ = E(g, f) (4)

and so ∫
Γ(f, g) dµ =

1

2

(∫
L (fg) dµ−

∫
fL g dµ−

∫
gL f dµ

)
(5)

=
1

2

(
− ⟨f,L g⟩µ − ⟨g,L f⟩µ

)
(6)

= −⟨f,L g⟩µ = E(f, g) (7)

2. Since Γ(f, f) = 1
2

(
L (f2)− 2fL f

)
, the problem now reduces to proving that L (f2) ≥ 2fL f .

By Jensen’s inequality, we have Pt(f2) ≥ (Ptf)
2, and so

L (f2) = lim
t↓0

Pt(f
2)− f2

t
≥ lim

t↓0

(Ptf)
2 − f2

t
(8)

=
d

dt
(Ptf)

2

∣∣∣∣
t=0

=

(
2(Ptf) ·

d

dt
(Ptf)

)∣∣∣∣
t=0

= 2fL f (9)

3. We know that Γ(f + tg, f + tg) ≥ 0 from above, and so if we expand out, we get

Γ(f + tg, f + tg) =
1

2

[
L

(
(f + tg)2

)
− 2(f + tg)L (f + tg)

]
(10)

= Γ(g, g)t2 + 2Γ(f, g)t+ Γ(f, f) ≥ 0 (11)
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for all t. Since this quadratic is nonnegative, its discriminant must be ≤ 0, and so

∆ =
(
2Γ(f, g)

)2 − 2Γ(g, g)Γ(f, f) ≤ 0 =⇒ Γ(f, g)2 ≤ Γ(f, f)Γ(g, g) (12)

4. The generator of the Ornstein-Uhlenbeck process is L f(x) = −xf ′(x) + f ′′(x). Therefore,

Γ(f, g)(x) =
1

2

[
L (fg)(x)− f(x)L g(x)− g(x)L f(x)

]
(13)

=
1

2

[(
− x(fg)′(x) + (fg)′′(x)

)
− f(x)

(
− xg′(x) + g′′(x)

)
− g(x)

(
− xf ′(x) + f ′′(x)

)]
(14)

which simplifies down to f ′(x)g′(x), and so Γ(f, f) = [f ′(x)]2 can be interpreted as the square
gradient of f .

2.3 Variance Identities and Exponential Ergodicity
Now, let us develop some intuition on the connection between Markov semigroups, Varµ[f ] and the Dirichlet
form E(f, f).

Lemma 2.5 ()

The following identity holds.
d

dt
Varµ[Ptf ] = −2E(Ptf, Ptf)

Proof.

By stationarity, µ(Ptf) = µ(f), and so

d

dt
Varµ[Ptf ] =

d

dt

{
µ((Ptf)

2)− µ(Ptf)
2
}

=
d

dt

{
µ((Ptf)

2)− µ(f)2
}
=

d

dt
µ((Ptf)

2)

=
d

dt

∫
S

(Ptf)
2 dµ =

∫
S

d

dt
(Ptf)

2 dµ = 2

∫
S

(Ptf)
d

dt
Ptf dµ

= 2Eµ[Ptf,L (Ptf)] = 2⟨Ptf,LPtf⟩µ = −2E(Ptf, Ptf)

Theorem 2.5 ()

E(f, f) ≥ 0 for every f .

Proof.

We know that t 7→ Varµ[Ptf ] is a decreasing function of t (by contraction of Pt), so

d

dt
Varµ[Ptf ] = −2E(Ptf, Ptf) ≤ 0
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Theorem 2.6 ()

Suppose that the Markov semigroup is ergodic. Then, we have for every f

Varµ[f ] = 2

∫ ∞

0

E(Ptf, Ptf) dt

24/ 36



Concentration of Measure Muchang Bahng Spring 2025

3 Subgaussian Concentration and log-Sobolev Inequalities

3.1 Subgaussian Variables and Chernoff Bounds
We should first consider how one might go about proving that a random variable satisfies a Gaussian tail
bound. Most tail bounds in probability theory are proved using some form of Markov’s inequality.

Lemma 3.1 (Markov’s Inequality)

Given a nonnegative random variable X, we have

P(X > α) ≤ E[X]

α

which means that the probability that X > α goes down at least as fast as 1/α.

Markov’s inequality is very conservative but very general, too. If we make further assumptions about
the random variable X, we can often make stronger bounds. Chebyshev’s inequality assumes a (possibly
negative) random variable with finite variance and states that the probability will go down as 1/x2.

Theorem 3.1 (Chebyshev Inequality)

Given (possibly negative) random variable X, if E[X] = µ < +∞ and Var(X) = σ2 < +∞, then for
all α > 0,

P
(
|X − µ| > kσ

)
≤ 1

k2
⇐⇒ P(|X − µ| > α) ≤ Var[X]

α2

That is, the probability that X takes a value further than k standard deviations away from µ goes
down by 1/k2. Therefore, if σ is small, then this bound will be small since there is more concentration
in the mean.

Proof.

We apply Markov’s inequality to the non-negative random variable |X − µ|.

P(|X − µ| > α) = P(|X − µ|2 > α2) ≤ E(|X − µ|2)
α2

=
Var[X]

α2

since the numerator on the RHS is the definition of variance.

Using higher powers, we can obtain better and better bounds, but not exponential ones. To obtain these
Gaussian tail bounds, we must use more sophisticated methods.

Lemma 3.2 (Chernoff Bound)

Define the log-moment generating function ψ of a random variable X and its Legendre dual ψ∗ as

ψX(λ) := logE[eλ(X−E[X])] = E[eλX ]− λE[X] ψ∗
X(t) = sup

λ≥0
{λt− ψX(λ)}

Then, the following is known as the Chernoff bound.

P[X − E[X] ≥ t] ≤ e−ψ
∗
X(t)

for all t ≥ 0. We can lower bound it too with

P[X − E[X] ≤ −t] ≤ e−ψ
∗
X(t)

and union bounding them gives

P(|X − E[X]| ≥ t] ≤ 2e−ψ
∗
X(t)
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Proof.

We take some λ ≥ 0 and given that the map x 7→ eλx is nondecreasing, we can exponentiate and then
use Markov’s inequality:

P[X − E[X] ≥ t] = P[eλ(X−E[X]) ≥ eλt] ≤ e−λtE[eλ(X−E[X])] = e−(λt−ψX(λ)) ≤ e−ψ
∗
X(t)

as the left hand does not depend on the choice of λ, we have the additional flexibility of tuning λ to
get potentially better bounds. We can also use Chernoff bound on the random variable −X to bound

P(X − E[X] ≤ −t) = P(−X − E[−X] ≥ t)

= P(eλ(−X+E[X]) ≥ eλt]

≤ e−λtE[eλ(−X+E[X])]

= e−(λt−ψ−X(λ)) ≤ e−ψ
∗
−X(t)

There seems to be a minor problem in the fact that −ψ∗
X and −ψ∗

−X are different, and so provide
different bounds for the upper and lower tail. But note that ψX(λ) = ψ−X(−λ), and so their
maximum will coincide and ψ∗

X(t) = ψ∗
−X(t), allowing us to get the union bound.

P(|X − E[X]| ≥ t] ≤ 2e−ψ
∗(t)

To observe how the Chernoff bound can give rise to Gaussian tail bounds, let us first consider the case of an
actual Gaussian random variable.

Example 3.1 ()

Let X ∼ N(µ, σ2). Then, E[eλ(X−E[X])] = eλ
2σ2/2, so

ψ(λ) =
λ2σ2

2
, ψ∗(t) = sup

λ≥0

{
λt− λ2σ2

2

}
=

t2

2σ2

and by the Chernoff bound, we have P(X − E[X] ≥ t] ≤ e−t
2/2σ2

.

Note that in order to get the tail bound, the fact that X is Gaussian was not actually important. It would
suffice to assume that the log-MGF is bouded from above by a Gaussian.

Definition 3.1 (Subgaussian Random Variables)

A random variable is called σ2-subgaussian if its log-MGF satisfies

ψ(λ) ≤ λ2σ2

2

for all λ ∈ R. The constant σ2 is called the variance proxy.

Remember that if ψ(λ) is the log-MGF of a random variable X, then ψ(−λ) is the log-MGF of the random
variable −X. For a σ2-subgaussian random variable X, we can therefore apply the Chernoff bound to both
the upper and lower tails and union bound to obtain

P(|X − E[X]| ≥ t) ≤ 2e−t/2σ
2

We have only worked with Gaussians, which are trivially subgaussian. A nontrivial results is that every
bounded random variable is subgaussian.
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Lemma 3.3 (Hoeffding’s Lemma)

Let a ≤ X ≤ b a.s. for some a, b ∈ R. Then,

E[eλ(X−E[X])] ≤ exp

(
λ2(b− a)2

8

)
That is, X is (b− a)2/4-subgaussian.

Proof.

We assume without loss of generality that E[X] = 0. Then, we have ψ(λ) = logE[eλX ], and we can
compute

ψ′(λ) =
E[XeλX ]

E[eλX ]
, ψ′′(λ) =

E[X2eλX ]

E[eλX ]
−

(
E[XeλX ]

E[eλX ]

)2

and thus

ψ′′(λ) =

∫
Ω

X2 eλX

E[eλX ]
dP−

(∫
Ω

X
eλX

E[eλX ]
dP

)2

can be interpreted as the variance of the random variable X under the twisted probability measure
dQ = eλX

E[eλX ]
dP. But a ≤ X ≤ b, so we can bound the variance by its infimum and suprememum

ψ′′(λ) = VarQ[X] ≤ (b− a)2/4, and the fundamental theorem of calculus yields

ψ(λ) =

∫ λ

0

∫ µ

0

ψ′′(ρ) dρ dµ ≤ λ2(b− a)2

8

using ψ(0) = 0 and ψ′(0).

Exercise 3.1 (Subgaussian Variables)

There are several different notions of random variables with a Gaussian tail that are all essentialy
equivalent up to constants. The aim of this problem is to obtain some insight into these notions.

1. Show that if X is σ2-subgaussian, then Var[X] ≤ σ2.
2. Show that for any increasing and differentiable function Φ,

E[Φ(|X|)] = Φ(0) +

∫ ∞

0

Φ′(t)P(|X| ≥ t) dt

In the following, we will assume for simplicity that E[X] = 0. We now prove that the following three
properties are equivalent for suitable constants σ, b, c: (1) X is σ2-subgaussian; (2) P(|X| ≥ t) ≤
2e−bt

2

; and (3) E[ecX2

] ≤ 2.
3. Show that if X is σ2-subgaussian , then P(|X| ≥ t) ≤ 2e−t

2/2σ2

4. Show that if P(|X| ≥ t) ≤ 2e−t
2/2σ2

, then E[eX2/6σ2

] ≤ 2.
5. Show that if E[eX2/6σ2

] ≤ 2, then X is 18σ2-subgaussian.
In addition, the subgaussian property of X is equivalent to the fact that the moments of X scale as
is the case for the Gaussian distribution.

6. Show that if X is σ2-subgaussian, then E[X2q] ≤ (4σ2)qq! for all q ∈ N.
7. Show that if E[X2q] ≤ (4σ2)qq! for all q ∈ N, then E[eX2/8σ2

] ≤ 2.
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Solution 3.1

Listed.
1. We can expand out

E[eλ(X−EX ] = E
[
1 + λ(X − EX) +

λ2

2
(X − EX)2 + . . .

]
= 1 +

λ2

2
Var[X] + o(λ2)

≤ eλ
2σ2/2 = 1 +

λ2σ2

2
+ o(λ2)

which is true for all λ. Setting λ = 0, we get Var[X] ≤ σ2.
2. Unfinished.
3. Since X is σ2 subgaussian, its log-MGF satisfies ψ(λ) = logE[eλX ] ≤ λ2σ2

2 =⇒ −ψ(λ) ≥
−λ2σ2

2 . Then, its Legendre dual is

ψ∗(t) = sup
λ≥0

{λt− ψ(λ)} ≥ sup
λ≥0

{λt− λ2σ2

2
} =

t2

2σ2

where we optimize the quadratic w.r.t. λ. Therefore, −ψ∗(t) ≤ − t2

2σ2 =⇒ P(X ≥ t) ≤
e−ψ

∗(t) ≤ e−t
2/2σ2

.
4. By using the identity above with Φ(t) = et

2/6σ2

, we have

E[eX
2/6σ2

] = E[e|X|2/6σ2

]

= e0
2/6σ2

+

∫ ∞

0

et
2/6σ2 t

3σ2
P(|X| ≥ t) dt

≤ 1 +
1

3t2

∫ ∞

0

tet
2/6σ2

2e−t
2/2σ2

dt

= 1 +
2

3σ2

∫ ∞

0

te−
1
3

t2

σ2 dt

= 1− 1

σ2

∫ ∞

0

(
− 2

3σ
t
)
e−

t2

3σ2 dt

= 1− e−
t2

3σ2

∣∣∣∣∞
0

= 1− (0− 1) = 2

5. Unfinished.
6. We know X2q = |X|2q for all q ∈ N. By setting Φ(t) = t2q from the identity above, we can get

E[|X|2q] = 02q +

∫ ∞

0

(2q)t2q−1P(|X| ≥ t) dt
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and from (3), we get the first line, where we can just keep doing integration by parts:

E[|X|2q] ≤
∫ ∞

0

(2q)t2q−1e−t
2/2σ2

dt

= 2(4qσ2)

∫ ∞

0

(2q − 2)t2q−3e−t
2/2σ2

dt

= 2(4qσ2)(4(q − 1)σ2)

∫ ∞

0

(2q − 4)t2q−5e−t
2/2σ2

dt

= . . .

= 2(4qσ2) . . . (4 · 2σ2)

∫ ∞

0

2te−t
2/2σ2

dt

=

q∏
k=1

(4kσ2) = (4σ2)qq!

7. We can expand and from the inequality above, we get

E[eX
2/8σ2

] = E
[
1 +

X2

8σ2
+

1

2

(
X2

8σ2

)2

+ . . .

]
= 1 +

∞∑
q=1

1

(8σ2)qq!
E[X2q]

≤ 1 +

∞∑
q=1

1

(8σ2)qq!
(4σ2)qq!

= 1 +

∞∑
q=1

1

2q
= 2

Exercise 3.2 (Tightness of Hoeffding’s Lemma)

Show that the bound on Hoeffding’s lemma is the best possible by consider P(X = a) = P(X = b) = 1
2 .

Solution 3.2

From computing the expectation

E[eλ(X−EX)] = eλ(a−
a+b
2 )P(X = a) + eλ(b−

a+b
2 )P(X = b) =

1

2
eλ

a−b
2 +

1

2
eλ

b−a
2

we know that this is always less than λ2(b− a)2/8 for all λ. But setting λ = 0 satisfies equality.

3.2 The Martingale Method
In this section, we will use the martingale method to derive useful results. Recall that in order to derive
some property (like tensorization of variance) of f(X1, . . . , Xn) − E[f(X1, . . . , Xn)], we can expand it as a
telescoping sum of martingale differences

f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] =

n∑
k=1

∆k

where
∆k = E[f(X1, . . . , Xn) | X1, . . . , Xk]− E[f(X1, . . . , Xn) | X1, . . . , Xk−1]
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and then deriving bounds on each difference. Note that these are martingale differences because given the
filtration F = {Fk = σ(X1, . . . , Xk)}, the stochastic process

Yk =

k∑
i=1

∆i = E[f(X1, . . . , Xn) | X1, . . . , Xk]− E[f(X1, . . . , Xn)]

is a martingale.

Lemma 3.4 (Azuma)

Let F = {Fk}k≤n be any filtration, and ∆1, . . . ,∆n be random variables that satisfy the following
properties for k = 1, . . . , n.

1. Martingale Difference Property: ∆k is Fk-measurable and E[∆k | Fk−1] = 0

2. Conditional Subgaussian Property: E[eλ∆k | Fk−1] ≤ eλ
2σ2

k/2 a.s.
Then, the sum

∑n
k=1 ∆k is subgaussian with variance proxy

∑n
k=1 σ

2
k.

Proof.

For any 1 ≤ k ≤ n, we can compute

E[eλ
∑k

i=1 ∆i ] = E[eλ
∑k−1

i=1 ∆iE[eλ∆k | Fk−1]] ≤ eλ
2σ2

k/2 E[eλ
∑k−1

i=1 ∆i ]

and by induction, this proof is finished. Note that E[eλ∆k | Fk−1] ≤ eλ
2σ2

k/2 can only hold if
E[∆k | Fk−1] = 0.

What this lemma basically says is that if we decompose a random variable into martingale differences, and
each martingale difference is conditionally subgaussian, then their sum is also subgaussian. Now, if we just
assume that each of these martingale differences are bounded, then we can use Hoeffding’s lemma on each of
them to make them subgaussian, and then use Azuma’s lemma to show that their sum is subgaussian. This
is exactly what we do here.

Theorem 3.2 (Azuma-Hoeffding Inequality)

Let F = {Fk}k≤n be any filtration, and let ∆k, Ak, Bk satisfy the following properties for k = 1, . . . , n.
1. Martingale Difference Property: ∆k is Fk-measurable and E[∆k | Fk−1] = 0
2. Predictable bounds: Ak, Bk are Fk−1-measurable and Ak ≤ ∆k ≤ Bk a.s.

Then,
∑n
k=1 ∆k is subgaussian with variance proxy 1

4

∑n
k=1 ||Bk − Ak||2∞. In particular, we obtain

for every t ≥ 0 the tail bound

P
( n∑
k=1

∆k ≥ t

)
≤ exp

(
− 2t2∑n

k=1 ||Bk −Ak||2∞

)

The Azuma-Hoeffding’s inequality is often applied in the following setting. Let X1, . . . , Xn be independent
random variables s.t. a ≤ Xi ≤ b for all i (we can interpret a and b as simply constant random variables).
Then, let ∆k = (Xk − E[Xk])/n be martingale differences, which we can show that ∆k is clearly Fk-
measurable and that by independence of Xi’s, E[∆k | Fk−1] = E[∆k] = 0. Therefore, we can show that its
sum satisfies

P
(
1

n

n∑
k=1

{Xk − E[Xk]} ≥ t

)
≤ e−2nt2/(b−a)2

which is consistent with the central limit theorem.

Now we can return to the case of functions f(X1, . . . , Xn) of independent random variables. Recall that the
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discrete derivative is defined

Dkf(x) = sup
z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)− inf

z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)

Theorem 3.3 (McDiarmid)

For X1, . . . , Xn independent, f(X1, . . . , Xn) is subgaussian with variance proxy 1
4

∑n
k=1 ||Dkf ||2.

That is,

P
[
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t

]
≤ exp

(
− 2t2∑n

k=1 ||Dkf ||2∞

)

Proof.

We use the martingale method again to write

f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] =

n∑
k=1

∆k

where
∆k = E[f(X1, . . . , Xn) | X1, . . . , Xk]− E[f(X1, . . . , Xn) | X1, . . . , Xk−1]

What we want to do is set some upper and lower bound on E[f(X1, . . . , Xn) | X1, . . . , Xk], which will
set bounds on ∆k. We can do this by bounding f by the infimum and supremum w.r.t. each element,
getting

E[inf
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) | X1, . . . , Xk]

≤ E[f(X1, . . . , Xn) | X1, . . . , Xk]

≤ E[sup
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) | X1, . . . , Xk]

but by independence of Xk’s, we have

E[inf
z
f(X1, . . . , z, . . . ,Xn) | X1, . . . , Xk] = E[inf

z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) | X1, . . . , Xk−1]

So, setting

Ak = E[inf
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)− f(X1, . . . , Xn) | X1, . . . , Xk−1]

Bk = E[sup
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)− f(X1, . . . , Xn) | X1, . . . , Xk−1]

we have Ak ≤ ∆k ≤ Bk for all k, and by Azuma-Hoeffding’s inequality along with the fact that
||Bk −Ak|| ≤ ||Dkf ||∞, we get

P[f(X1, . . . , Xn)−E[f(X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

k=1 ||Bk −Ak||2∞

)
≤ exp

(
− 2t2∑n

k=1 ||Dkf ||2∞

)

We should treat McDiarmid’s inequality as a subgaussian form of the bounded difference inequality

Var[f(X1, . . . , Xn)] ≤
1

4
E
[ n∑
k=1

(
Dkf(X1, . . . , Xn)

)2]
The bounded difference inequality says that the variance is controlled by the expectation of the square
gradient of the function f . In contrast, McDiarmid’s inequality asserts the stronger subgaussian inequality,
but under the stronger condition that the variance proxy is controlled by a uniform upper bound on the
square gradient rather than its expectation. This will be a recurring theme:
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1. the expectation of the square gradient controls the variance

2. a uniform bound on the square gradient controls the subgaussian property

Note that McDiarmid’s theorem is not satisfactory. The appropriate notion of a square gradient in both
inequalities is the random variable

∑n
k=1 |Dkf |2. To control the variance, we want to take its expectation

E[
∑n
k=1 |Dkf |2], and to control the upper bound of the square gradient, we simply want to take its supremum

||
∑n
k=1 |Dkf |2||∞. However, McDiarmid’s inequality only yields control in terms of the larger quantity∑n

k=1 ||Dkf ||2∞ (by triangle inequality), which gets worse in higher dimensions. Rather than taking the
supremum of square gradient, we just take the supremum of each (squared) component and add them up,
which may be much greater than the actual upper bound. Therefore, the martingale method is far too crude
to capture this idea, and we will need new techniques for more refined bounds.

Exercise 3.3 (Bin Packing)

For the Bin packing problem previoulsly, show that the variance bound Var[Bn] ≤ n/4 can be
strengthened to a Gaussian tail bound

P(|Bn − EBn| ≥ t) ≤ 2e−2t2/n

Solution 3.3

We can see that

Dkf(X1, . . . , Xn) = f(X1, . . . , Xk−1, 1, Xk+1, . . . , Xn)− f(X1, . . . , Xk−1, 1, Xk+1, . . . , Xn) = 1

and by McDiarmid’s inequality, we are done.

Exercise 3.4 (Rademacher Processes)

Exercise 3.5 (Sums in Hilbert Space)

Let X1, . . . , Xn be independent random variables with zero mean that map to a Hilbert space, and
suppose that ||Xk|| ≤ C a.s. for every k.

1. Show that for all t ≥ 0,

P
[∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≥ E
∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣+ t

]
≤ e−nt

2/2C2

2. Show that

E
∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≤ Cn−1/2

3. Conclude that for all t ≥ Cn−1/2,

P
[∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≥ t

]
≤ e−nt

2/8C2

4. Finally, argue that for all t ≥ 0,

P
[∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≥ t

]
≤ e−nt

2/8C2
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3.3 The Entropy Method
In order to develop more sophisticated concentration inequalities, let us introduce another term that is used
to measure the deviation of a random variable.

Definition 3.2 (Entropy)

The entropy of a nonnegative random variable Z is defined

Ent[Z] := E[Z logZ]− E[Z] logE[Z]

Lemma 3.5 (Herbst)

Suppose that random variable X satisfies

Ent[eλX ] ≤ λ2σ2

2
E[eλX ] for all λ ≥ 0

Then, X is σ2-subgaussian. That is,

ψ(λ) := logE[eλ(X−E[X])] ≤ λ2σ2

2
for all λ ≥ 0

Proof.

As ψ(λ) = logE[eλX ]− λE[X], we have

d

dλ

ψ(λ)

λ
=

1

λ

E[XeλX ]

E[eλX ]
− 1

λ2
logE[eλX ] =

1

λ2
Ent[eλX ]

E[eλX ]
≤ σ2

2

where the last inequality yields from the assumption. By the fundamental theorem of calculus, we
have

ψ(λ)

λ
= lim

λ↓0

ψ(λ)

λ
+

∫ λ

0

1

t2
Ent[etX ]

E[etX ]
dt ≤ λσ2

2
=⇒ ψ(λ) ≤ λ2σ2

2

Exercise 3.6 ()

It turns out that the converse is true up to a constant: If X is σ2

4 -subgaussian, then

Ent[eλX ] ≤ λ2σ2

2
E[eλX ]

Solution 3.4

We know that by Jensen’s inequality and concavity of the logarithm,

logE[eλ(X−EX)] ≥ E[λ(X − EX)] = 0 =⇒ E[eλ(X−EX)] ≥ 1
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Furthermore, note that given Z = eλX/E[eλX ], we have

E[Z logZ] = E
[
eλX

E[eλX ]
log

(
eλX

E[eλX ]

)]
=

1

E[eλX ]
E
[
eλX

(
log eλX − logE[eλX ]

)]
=

1

E[eλX ]
E
[
eλXλX − eλX logE[eλX ]

]
=

1

E[eλX ]

(
E[eλXλX]− E[eλX ] logE[eλX ]

)
=

Ent[eλX ]

E[e[λX]

Since this theorem assumes a bound on Ent[eλX ] rather than Ent[X], we will mainly be working with the
entropy of exponentials of a random variable.

It turns out that entropy behaves very similarly to variance and extends nicely into the subgaussian setting.
Just like variance, we define the partial entropy of function f(x1, . . . , xn) as

Entk f(x1, . . . , xn) := Ent[f(x1, . . . , xk−1, Xk, xk+1, . . . , xn)]

That is, Ent[f(X1, . . . , Xn)] is the entropy of f(X1, . . . , Xn) with respect to the variable Xk only, the
remaining variables kept fixed.

Theorem 3.4 (Tensorization of Entropy)

Given that X1, . . . , Xn are independent,

Ent[f(X1, . . . , Xn)] ≤ E
[ n∑
k=1

Entk f(X1, . . . , Xn)

]

Recall that the basic method for deriving Poincare inequalities is that we have some bound on the variance
of a single random variable

Varµ[g] ≤ E[|∇g|2]

and by tensorization, we can take the multivariate function f and derive

Varµ[f ] ≤ E[||∇g||2]

In here, we derive modified log-Sobolev inequalities by bounding the entropy of the form

Entµ[e
g] ≤ E[|∇g|2 eg]

and then using tensorization to bound

Entµ[e
λf ] ≤ E[||∇(λf)||2 eλf ]

Lemma 3.6 (Discrete Modified log-Sobolev)

Let D−f := f − inf f . Then,

Ent[ef ] ≤ Cov[f, ef ] ≤ E[|D−f |2ef ]
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Proof.

Note that logE[ef ] ≥ E[f ] by Jensen’s inequality. Therefore,

Ent[ef ] = E[fef ]− E[ef ] logE[ef ] ≤ E[fef ]− E[f ]E[ef ] = Cov[f, ef ]

To prove the second part, we have

Cov[f, ef ] = E[(f − E[f ]))(ef − E[ef ])] ≤ E[(f − inf f)(ef − einf f )]

and since ex is convex, the first-order condition gives

einf f ≥ ef + ef (inf f − f) =⇒ ef − einf f ≤ ef (f − inf f)

and substituting above gives the result.

Now, by defining the one-sided differences

D−
k f(x) = f(x1, . . . , xn)− inf

z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)

D+
k f(x) = sup

z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)− f(x1, . . . , xn)

we can use the discrete modified log-Sobolev inequality on each of them and then tensorize to get the
following.

Theorem 3.5 (Bounded Difference Inequality)

For all t ≥ 0,

P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn) ≥ t] ≤ exp

(
− t2

4||
∑n
k=1 |D

−
k f |2||∞

)
P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn) ≤ −t] ≤ exp

(
− t2

4||
∑n
k=1 |D

+
k f |2||∞

)
whenever X1, . . . , Xn are independent. In particular, f(X1, . . . , Xn) is subgaussian with variance
proxy 2||

∑n
k=1 |Dkf |2||∞, where Dkf = supz f − infz f .

3.4 Modified log-Sobolev Inequalities

Theorem 3.6 (Modified log-Sobolov Inequality)

Let Pt be a Markov semigroup with stationary measure µ. The following are equivalent:
1. Entµ[f ] ≤ cE(log f, f) for all f (modified log-Sobolev inequality).
2. Entµ[Ptf ] ≤ e−t/c Entµ[f ] for all f, t (entropic exponential ergodicity).

Moreover, if Entµ[Ptf ] → 0 as t→ +∞, then

E(logPtf, Ptf) ≤ e−t/cE(log f, f) for all f, t

implies 1 and 2 above.
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4 Lipschitz Concentration and Transportation Inequalities

4.1 Concentration in Metric Spaces
Recall what a Lipschitz function is.

Definition 4.1 (Lipschitz Function)

Let (X, d) be a matrix space. A function f : X → R is called L-Lipschitz if |f(x)− f(y)| ≤ Ld(x, y)
for all x, y ∈ X. The family of all 1-Lipschitz functions is denoted Lip(X).

Remember that given iid X1, . . . , Xn ∼ N(0, 1), Gaussian concentration states that the random variable is
||||∇f ||2||∞-subgaussian. But we can write it in an equivalent way in terms of a Lipschitz property.

Lemma 4.1 ()

Let f : Rn → R be a C1 function. Then, ||||∇f ||2||∞ ≤ L2 if and only if f is L-lipschitz.

Therefore, if given random vector X ∼ N(0, I), then f(X) is 1-subgaussian for every f ∈ Lip(Rn, || · ||).
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