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Clustering and dimensionality reduction is used for many purposes, such as preprocessing data, visualizing
it, or encoding it in a sparser, more efficient way. Sometimes they are used synonymously because in the
backened, many dimensionality reduction algorithms use some form of clustering, so I also group them
together.

In the clustering problem, we are given a training set of unlabeled data

D= {xM x® . xM} (1)

and want to group the data into a few cohesive clusters.
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1 K Means Clustering

We will start off with conceptually the simplest form of clustering, although not the earliest developed.
K-means was published at 1967 in [Mac67], but has been discovered in the 1950s. The general idea is that
given an integer K, we want to find K centroids that provide a good approximation of where the clusters
are in the data. We can quantify what a good approximation is by taking the distance from a sample to its
closest cluster centroid.

Definition 1.1 (K Means Clustering)

A K-means clustering model is an parameteric unsupervised model with parameters {p1, ..., ux}
representing clusters that each sample belongs to. The cluster that sample x belongs to is

cluster(z) = argmin d(x, px) (2)

Mk

Usually, we let d be the L? metric in Euclidean space.

Theorem 1.1 (Risk)

The expected risk of K-means is

R(pa, .. o) = Eq Lrg[ig] IIx—ukIIZ] Z/krg[ijlg} & — pe||® dz (3)

and our empirical risk for a dataset D = {z(}2_| is therefore

. .2 ;
R(pa, ..., k) = n kfg[l% ||fU() —MkHZ (4)
i=1

1.1 NP-Hardness

So we have reduced this model into an optimization problem of the appropriate risk. Let’s try and analyze
how hard this is.

Theorem 1.2 ()

For a fixed dimension d and number of clusters K, we can minimize the empirical risk in O(nd*+1).

Theorem 1.3 ()

For any fixed d (even d = 2), minimizing the empirical risk over all K is NP-hard.
Therefore, we must rely on approximate algorithms.

1.2 Lloyd’s Algorithm

Great, we have an almost-everywhere differentiable function, which can be solved with gradient methods like
SGD or coordinate descent. The problem is that this is not necessarily convex.

Theorem 1.4 (Convergence of Coordinate Descent)
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Now that convergence is guaranteed, constructing the algorithm is straightforward. In fact, it is precisely
coordinate descent!

Algorithm 1.1 (Lloyd’s Algorithm)

The algorithm intuitively initializes the centroids randomly, and then moves them to the center of
each cluster through the two stage process:

1. Assigning each training sample z(*) to the closest cluster centroid .

2. Move each training cluster centroid p to the mean of the points assigned to it.

Algorithm 1 K-Means Clustering
1: procedure KMEANS(X, K)

Require: Dataset X = {m(l), z@ . ,m(”)} where z( € R% number of clusters K
Ensure: Cluster centroids j1, fo, . . ., ux and cluster assignments ¢V, ¢ . (™)
2. Initialize cluster centroids ji, o, ..., ux € R% randomly
3: repeat
4: for i < 1 ton do
5: c® « argmin; ||z — p;||?
6: end for
T for j < 1 to K do :
n 1{cWD=k}zC
& w4 S o
9: end for
10: until convergence
11: return ,ul,,ug,...,,uK7c(1)7c(2)7...,c(”)

12: end procedure

Example 1.1 (K-Means Walkthrough)

Let us walk through how the centroids evolve visually on a toy dataset.

4/



Clustering Muchang Bahng Spring 2025

X e . .
1 A ) . °
° 9 o 0.
o' : o‘.
. ° * ’
* oo, ><
o.".:' . H2

(a) We initialize the centroids p1, p2 randomly.

(c) We update the centroids and classify again.

(d) We have convergence.

Figure 1: A walkthrough for K-means clustering for K = 2 in R

1.3 Concentration Bounds

We can bound the supremum of the expected and exmpirical risk either through the VC dimension or

directly with the Rademacher complexity. They both give different bounds, which have advantages and
disadvantages.

Theorem 1.5 ()

Let us work over a compact domain. Given that C* is the true risk minimizer and C is our empirical
risk minimizer, R A
C* = argmin R(C), C' = argmin R(C) (5)

K1y MK K15 MK
we have
K(d+1)logn
fd (6)

IA

E [|R(c*) - R(é)]
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Proof.

This is proved using VC dimension.

Let’s parse this. So the more clusters you’re trying to find—the bigger the K—the worse the bound is. More
disturbing is the dimension d. If d is big, then this is not a very good bound.

Theorem 1.6 (2008 Gao, Deroit?, Lugacy?)

Let us work over a compact domain. Given that C* is the true risk minimizer and C' is our empirical
risk minimizer,

C* = argmin R(C), C = argmin R(C) (7)
M1 s WK M1 s WK
we have P
E[|R(C) - RO)| < = ®)
Proof.

This is proved directly using Rademacher complexity.

The advantage of this is that this bound is dimensionless. This is even true in infinite dimensional Hilbert
spaces, which is useful when clustering functions.

Now just because the risks are close it does not mean that the clusters are close. You can have two sets of
clusters {yr}, {#1}.} that have similar risk but they can be far apart from each other. To control this we need
extra assumptions.

1.4 Choosing Number of Clusters K

Note that the performance of K means really depends on a good choice of K. Think about what would have
happened if we set K = 5 in the walkthrough above. Let’s study the impact of changing K a bit more.

Theorem 1.7 (Expected Risk Decreases as K Increases)

If K < K', then
R(/’(‘h"')/J'K)SR(Mla'-'7MK’) (9)

Proof.

6/ [14]



Clustering Muchang Bahng Spring 2025

2 K Means +-+

Regular K means doesn’t have good convergence.
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3 Multi-Dimensional Scaling
Again, we want to reduce our dimension, but the goal is slightly different from PCA.

Definition 3.1 (Multi-Dimensional Scaling)

Given our data X € R?%, we want to construct a linear map 7 : R? — R* such that it preserves the
pairwise differences between the data points. That is, we want to minimize the following loss function

mTiHZ (dgw (T(2:), T(x5)) — dga (s, 25)) (10)
i

where dy is a distance metric in the space V.

Note that we can easily modify this formulation to preserve other structures, such as dot products, weights
between distances, or different types of metrics in each space. It turns out that when the distance metric is
the Euclidean L2 distance, then the solution to this linear map turns out to be PCA. This may be a more
intuitive way to think about PCA, since we're trying to preserve the pairwise distances between the data
points.

Theorem 3.1 (Equivalence of Classical MDS and PCA)

If the distance metric is the Euclidean L2 distance, then the solution to the MDS problem is equivalent
to PCA. That is,

Tic = argmin 3 (|17 (z:) — T(ay)|” = |l — 1) (11)
i#]

Generally, if you don’t use classical MDS, then you will get a different answer than PCA and there doesn’t
exist a closed form solution, so you’ll have to minimize this numerically.

Example 3.1 (Non Classical MDS)

The loss )
> (1T (@:) = T )| — s — 251 (12)
i#]

does not give the same solution as PCA.
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4 Isomap

Isomap is a bit different in the way that it tries to capture more of the global structure of the data, which
brings advantages and disadvantages. It is simply a modification of MDS but with geodesic distances.

You start off with the point cloud, but with every point, z;, you find the local neighborhood N; and you
make a weighted graph over the whole dataset in the high dimensional space. Then, the distance between
any two arbitrary points is the shortest weighted sum of the path between them, calculated by Dijkstra’s

algorithm. Intuitively, this is an approximation of the geodesic distance, denoted dg, between these two
points on a manifold.
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Figure 2: The classical example is the spiral manifold. The data lies in this manifold, and the geodesic distance helps
us gain an accurate distance metric within this data.

Definition 4.1 (Isomap)

Then, we simply do Isomap by minimizing

mjinz (dgr (T(2:), T (x;)) — de (@i, x;5)) (13)

i#]

The problem with this is that it is very sensitive to noise. For example, if we had a few points lying between

the spirals, then the geodesic distance between the two spirals would be very small, and so the MDS would
try to bring them closer together.
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Figure 3: With extra noisy points (red), the geodesic distance can get corrupted.

To fix this, we use diffusion maps, which looks at all possible paths between two points and looks at some
average of them, which increases robustness.
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5 Local Linear Embedding

PCA and MDS are linear embedding methods. Let’s move onto nonlinear ones. The first nonlinear models
that we work with again use the idea of locality (remember kernel regression). You have data that is globally
nonlinear, but if you look at a point and its local neighborhood around it, then it is approximately linear
since we assume that it lives in some smooth manifold.

Figure 4: Local linear embedding assumes that the data is locally linear.

The concept of neighborhood can be defined in two ways. You can either just fix an € and take the e-ball
around each point x;. Or you can fix a k and take the k nearest neighbors of each point. The general idea of
using kernel PCA is to take a local neighborhood of the data and construct some linear approximation of it.
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6 t-SNE
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7 UMAP

[MHM20].
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