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1 Probability Densities

1.1 Notation: Probability Densities & Sampling
A d-dimensional random variable X is any stochastic d-vector that can be “generated” or “realized” from an
outcome space Ω. That is, the random variable X would randomly pick an element in Ω. The uncertainty
of these possible values generated by the random variables is specified by some distribution Dist with some
parameter θ.

X ∼ Dist(θ) (1)

In this case, Dist is called a d-dimensional distribution. The probability density function of the random
variable X can be written in many forms and may define different things, depending on context. Generally,
if we do not include the parameter θ in the density expression, then we assume that it is fixed.

1. Dist(x | θ) or Dist(x; θ) tells us the probability of the random variable (following distribution Dist)
will generate value x, given some fixed θ. Note that this notation allows us to write densities without
having to explicitly name a random variable.

2. If we have defined the distribution of the random variable X, we generally treat pX(x) = pX(x; θ) =
Dist(x | θ).

3. Sometimes, we replace the p with an f , and call fX(x) = f(x; θ) = Dist(x | θ).

From a distribution X, we can take n samples, which we will denote

x = {x(i)}ni=1 = {x(1), x(2), . . . , x(n)} (2)

with each x(i) ∈ Ω. This set is often called an observation, or data. Note that the space Ω can be discrete
or continuous, and the density expression accounts for cases.

1. If Ω is discrete, then we can assume that X generates discrete x(i) ∈ Ω ⊂ Nd. In the discrete case, the
sum of all probabilities equals 1. ∑

x∈Ω

x pX(x) = 1 (3)

2. If Ω is continuous, then we assume that X generates real-valued x(i) ∈ Ω ⊂ Rd. In the continuous
case, the integral of all probabilities equals 1.∫

x∈Ω

x pX(x) = 1 (4)

1.2 Bayes’ Rule
We have seen that Bayesian statistics depends on having some initial belief about an event. Upon some
observation, we can gain some sort of information about the event, allowing us to modify our prior distribution
to a new one, called the posterior distribution. This simple property is the reason why Bayesian statistics is
so useful for machine learning. The way we do this is through Bayes’ Rule, which states

p(H |D) =
p(D |H) p(H)

p(D)
(5)

Note that:

1. H is the hypothesis whose probability may be affected by data D, also called evidence.

2. p(H) is the prior distribution, our initial hypothesis of what the distribution would have been.

3. p(H |D) is the posterior distribution, which was determined upon observing the event B.
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4. p(D |H) is the likelihood. If you were to assume that A is true, then the likelihood tells you the
probability of getting result B.

5. p(D) is the marginal likelihood, which is calculated by conditioning on A

p(D) =
∑
H

p(D |H) p(H) or p(D)

∫
H

p(D |H) p(H) dH (6)

When computing our prior, the outcomes H are the hypotheses. We can assume that hypotheses are
mutually exclusive and exhaustive (if one of these is true, it can’t be some undefined third option). These
assumptions are reasonable since it is almost always possible to redefine an arbitrary set of hypotheses into
a set of hypotheses that are mutually exclusive and exhaustive.

There are multiple ways to write Bayes rule. When attempting to calculate the posterior, we can see that
p(D) is really just a normalization constant and therefore does not affect the type of distribution the posterior
is. So, we can in effect write the above as

p(H |D) ∝ p(D |H) p(H) (7)

or
Posterior ∝ Prior × Likelihood (8)

where the ∝ symbol means “proportional to.” We use this notation more often when calculating posteriors
since the normalizing constant isn’t as important as finding the shape of the posterior density.

2 Inference: Parameter Estimation
Descriptive statistics is a summary statistic that quantitatively describes or summarizes features from a
collection of samples {x(i)}. It is extremely useful, but quite boring. However, inferential statistics is a
different story. Given a set of samples {x(i)}ni=1, we may have to try to predict/infer either which distribution
X these samples came from, or if we know the distribution, what its parameters θ are. This is called an
inference problem, and we approach it by constructing and refining a statistical model that we assume
the data has been generated from. Assuming that we know what distribution (but not the parameter θ) the
x(i)’s come from, we can do 2 things:

• Frequentist inference tells us to find the likelihood function

L(θ) = p(x | θ) (9)

which is a function of θ. The function L tells us that given that we know θ, what the probability of
sampling x is. Clearly the value of θ that maximizes L represents the best statistical model.

• Bayesian inference tells us to find the desired posterior distribution p(θ |x) by assuming a reasonable
prior, determining the likelihood, and multiplying them together using Bayes rule.

p(θ |x) ∝ p(θ) p(x | θ) = f(θ) (10)

Finding the maximum of this function f(θ) that is proportional to p(θ |x) with respect to θ is the best
statistical model. But unlike the frequentist approach, we have an entire distribution to work with. It
tells us that given this data x, what is the probability that the parameter value of the statistical model
is θ, for all θ.

Throughout this section, we will show how parameter estimation problems are approached, often comparing
both the frequentist and Bayesian approach.
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2.1 Computing Posteriors with Beta Prior and Binomial Likelihood
The motivation behind the Beta distribution is that it satisfies conjugacy with a binomial likelihood. That
is, assume that we have some data x of N observations containing m successes and N − m failures (note
that this observation x was in a way "reduced" to the information of only the number of successes m). We
assume that there is some true success rate θ (between 0 and 1, of course) coming from these samples, and
our job is to try and guess the true rate to the best of our abilities.

Before we even observe the data x, our initial guess of θ might be modeled by the prior distribution θ ∼
Beta(a, b). Furthermore, the likelihood is clearly a binomial (since it represents the probability of getting m
successes out of N samples with fixed rate of success θ), so m | θ ∼ Binomial(N, θ). With these conditions,
we claim that the posterior is also a beta, since

p(θ |m) ∝ pθ(θ) p(m | θ)
∝ θa−1(1− θ)b−1 · θm(1− θ)N−m

= θa+m−1(1− θ)b+N−m−1

2.2 Bayesian Inference for Gaussian
The maximum likelihood framework gave point estimates for the parameters µ and Σ. Now we develop a
Bayesian treatment by introducing prior distributions over these parameters. Given a set of N D-dimensional
observations X = {x1, . . . , xn}, the likelihood function is given by (the unnormalized function of µ):

p(X |µ,Σ) =
N∏

n=1

p(xn |µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp

N∑
n=1

(
− 1

2
(xn − µ)TΣ−1(xn − µ)

)
(11)

The likelihood function takes the form of the exponential of a quadratic form in µ. Thus, if we choose a
prior p(µ) given by a Gaussian, it will be a conjugate distribution for this likelihood function. Taking our
prior distribution to be

p(µ,Σ) = N (µ,Σ |µ0,Σ0) (12)

The similarity of the symbols µ,Σ with µ0,Σ0 may be slightly confusing. We can think as such: µ,Σ are
random variables that determine the parameters of some Gaussian distribution. But the values µ,Σ are
uncertain, and their possible values with probabilities take the form of another distribution N (µ0,Σ0). The
posterior distribution is given by the familiar formula

p(µ,Σ |X) ∝ p(X |µ,Σ) p(µ,Σ) (13)

which is another Gaussian p(µ |X) = N (µ,Σ |µN ,ΣN ). Let us place a few conditions for simplification.
Since every Gaussian density can be represented as a product of independent univariate Gaussians, we can
work with univariate Gaussians. Furthermore, let us assume that the true value of σ is known, so all we
have to do is find the posterior distribution of µ using the prior density N (µ |µ0, σ

2
0). We have our prior and

likelihood to be the following. Note that while the likelihood distribution is pretty much given, we have the
flexibility to choose what our prior distribution is. We have only set the prior as a Gaussian simply because
it is a conjugate form and therefore will greatly simplify calculations.

p(µ) = N (µ |µ0, σ
2
0) =

1√
2πσ2

exp

(
− 1

2σ2
(µ− µ0)

2)

)
p(X |µ) =

N∏
n=1

p(xn |µ) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N∑
n=1

(xn − µ)2
)
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which gives a posterior p(µ |X) = N (µ |µN , σ2
N ) where

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML

1

σ2
N

=
1

σ2
0

+
N

σ2

and µML is the maximum likelihood solution for µ given by the sample mean µML = 1
N

∑N
n=1 xn. These

values make sense. We can see that the mean of the posterior distribution µN is a compromise between the
prior mean µ0 and maximum likelihood solution µML. If the number of observed data points N = 0, then it
is simply the prior mean, but for N → ∞, the posterior mean is given by the maximum likelihood solution
since the data “overpowers” the prior mean assumption.

Now, suppose that the mean of the Gaussian over the data is known and we wish to infer the variance. For
convenience, let us work with the precision λ = 1

σ2 over the variance. The likelihood function for λ is

p(X |λ) =
N∏

n=1

N (xn |µ, λ−1) ∝ λN/2 exp

(
− λ

2

N∑
n=1

(xn − µ)2
)

(14)

Note that since this is a function of λ, it behaves differently than the likelihood function of µ, even though
they are of the same form. Since the likelihood function is proportional to the product of a power of λ
and the exponential of a linear function of λ, we must find a prior distribution p(λ) with precisely these
proportional properties identical to that of the likelihood. Fortunately, the Gamma distribution satisfies
them, defined by

p(λ | a0, b0) = Gamma(λ | a0, b0) =
1

Γ(a0)
ba0
0 λa0−1 exp(−b0λ) (15)

Using Bayes rule and multiplying gives the posterior density

p(λ |X) ∝ λa0−1λN/2 exp

(
− b0λ− λ

2

N∑
n=1

(xn − µ)2
)

(16)

which is indeed the density of a Gamma(λ | aN , bN ) distribution, where

aN = a0 +
N

2

bN = b0 +
1

2

N∑
n=1

(xn − µ)2 = b0 +
N

2
σ2
ML

where σ2
ML is the maximum likelihood estimator of the variance. Now, suppose that both the mean and

precision are unknown. To find a conjugate prior, we consider the dependence of the likelihood function on
µ and λ.

p(X |µ, λ) =
N∏

n=1

(
λ

2π

)1/2

exp

(
− λ

2
(xn − µ)2

)

∝
(
λ1/2 exp

(
− λµ2

2

))N

exp

(
λµ

N∑
n=1

xn − λ

2

N∑
n=1

x2
n

)
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We now wish to identify a prior distribution p(µ, λ) that has the same functional dependence on µ and λ as
the likelihood function and that should therefore take the form

p(µ, λ) ∝
(
λ1/2 exp

(
− λµ2

2

))β

exp
(
cλµ− dλ

)
= exp

(
− βλ

2

(
µ− c

β

)2)
λβ/2 exp

(
−
(
d− c2

2β

)
λ

)

where c, d, β are constants. Since we can always write p(µ, λ) = p(µ |λ)p(λ), we can find p(µ |λ) and p(λ)
by inspection. We have just shown that p(µ |λ) is a Gaussian whose precision is a linear function of λ and
that p(λ) is a gamma distribution, so the normalized prior takes the form

p(µ, λ) = N (µ |µ0, (βλ)
−1) Gamma(λ | a, b) (17)

which is called the Gaussian-Gamma distribution. Note that this is not simply the product of an
independent Gaussian prior over µ and a gamma prior over λ, because the precision of µ is a linear function
of λ. The extension of this to multivariate random variables is straightforward.

2.3 Inference over Periodic Distributions
Although Gaussian distributions are of great significance, there are situations in which they are inappropriate
as density models for continuous variables (e.g. wind direction or quantities periodic over 24 hours). Such
quantities are conveniently represented using an angular (polar) coordinate 0 ≤ θ < 2π. Let us consider the
problem of evaluating the mean of a set of observations θ = {θ1, θ2, . . . , θN} of a periodic variable measured
in radians. The simple average (θ1 + . . . + θN )/N is strongly coordinate dependent. To find an invariant
measure of the mean, we can see that the observations can be viewed as points on the unit circle and can
therefore be described instead by two-dimensional unit vectors x1, . . . , xN , where xn = (cos θn, sin θn). We
can average these vectors and compute its angle to find this average angle.

x =
1

N

N∑
n=1

xn =
( 1

N

N∑
n=1

cos θn,
1

N

N∑
n=1

sin θn

)
=⇒ θ = tan−1

(∑N
n=1 sin θn∑N
n=1 cos θn

)
(18)

In general, any distribution p(θ) that have period 2π must be defined such that it is nonnegative, integrate
to 1, and be periodic.

p(θ) ≥ 0∫ 2π

0

p(θ) dθ = 1

p(θ + 2π) = p(θ)

We can obtain a Gaussian-like distribution that satisfies these three properties. Consider a 2-dimensional
Gaussian over variables x1, x2 having mean µ = (µ1, µ2) and a covariance matrix Σ = σ2I. This gives us

p(x1, x2) =
1

2πσ2
exp

(
− (x1 − µ1)

2 + (x2 − µ2)
2

2σ2

)
(19)

Now, suppose that we consider the value of this distribution along a circle of fixed radius. Then, this distri-
bution will be periodic, although it will not be normalized. We can determine the form of this distribution
by transforming from Cartesian coordinates to polar coordinates (r, θ) (so that x1 = r cos θ, x2 = r sin θ) and
keeping r constant.
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Figure 1: Circular normal change of basis

This transformation from R2 −→ [0, 2π) defined

(x1, x2) 7→ tan−1 y

x
(20)

simply takes the "circular" cross section of the Gaussian and maps those values.

Figure 2: Circular cross section visualization

The value of r is not important so we assume r = 1. With some algebra and trig identities, we have the
circular normal, or von Mises distribution, of form

p(θ | θ0,m) =
1

2πI0(m)
exp

(
m cos(θ − θ0)

)
(21)

where the parameter θ0 corresponds to the mean of the distribution while m is analogous to the precision
for the Gaussian. The normalization coefficient I0(m) is the zeroth-order Bessel function of the first kind,
defined by

I0(m) =
1

2π

∫ 2π

0

exp
(
m cos θ

)
dθ (22)

For large m, the distribution becomes approximately Gaussian. Considering the maximum likelihood esti-
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mators for the parameters θ0 and m for the circular normal, the log likelihood function is given by

ln p(θ | θ0,m) = −N ln(2π)−N ln
(
I0(m)

)
+m

N∑
n=1

cos(θn − θ0) (23)

The maximum estimator for the mean is

θML
0 = tan−1

(∑
n sin θn∑
n cos θn

)
(24)

while that of m can be evaluated numerically.

2.4 Exponential Family of Distributions
The probability distributions so far are contained within the exponential family of distributions, which
have important properties in common. The exponential family of distributions over x ∈ Ω ⊂ RD, given
parameters η, is defined to be the set of distributions of the form

p(x | η) = h(x)g(η) exp
(
ηTu(x)

)
(25)

where x may be a scalar or vector, discrete or continuous. Here, η are called the natural parameters of
the distribution, and u(x) is some function of x. The function g(η) can be interpreted as the normalizing
coefficient and therefore satisfies

g(η)

∫
x∈Ω

h(x) exp
(
ηTu(x)

)
dx = 1 (26)

with the integration replaced by a summation if x is discrete.

Now, consider a set of iid data denoted by X = {x1, . . . , xn}, for which the likelihood function is given by

p(X | η) =
( N∏

n=1

h(xn)

)
g(η)N exp

(
ηT

N∑
n=1

u(xn)

)
(27)

Setting the gradient of ln p(X | η) with respect to η to 0, we can the following condition to be satisfied by
the maximum likelihood estimator ηML:

−∇ ln g(ηML) =
1

N

N∑
n=1

u(xn) (28)

which can in principle be solved to obtain ηML. The solution for the maximum likelihood estimator depends
on the data only through

∑
n u(xn), which is therefore called the sufficient statistic of this distribution.

Therefore, we do not need to store the entire data set itself but its sufficient statistic.

In general, for a given probability distribution p(X | η), we can seek a prior that is conjugate to the likelihood
function, so that the posterior distribution has the same functional form as the prior. Given that the
likelihood function is in the exponential family, there exists a conjugate prior that can be written in the form

p(η) = p(η |χ, ν) = f(χ, ν)g(η)ν exp
(
νηTχ

)
(29)

where f(χ, ν) is a normalization coefficient, and g(η) is the same function as the one appearing in the
exponential family form of likelihood function. Indeed, multiplying this conjugate with the exponential
family likelihood gives

p(η |X, χ, ν) ∝ g(η)ν+N exp

(
ηT
( N∑

n=1

u(xn) + νχ

))
(30)
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3 Linear Regression

3.1 Bayesian Regression: Modeling with Hierarchical Priors
Given a training data set D = (X,Y) comprised of N pairs of observations with corresponding target
variables {(xi, yi)}Ni=1 (xi ∈ RD, yi ∈ R), the goal is to predict the value of y for a new value of x. We first
construct a statistical model (more explained in next next subsection) by assuming that there exists some
function f(x) of some form such that the yi’s have been generated by inputting the xi’s into f , followed by
a random residual term. We assume that the data D has been sampled independently, but this may not
always be a justifiable assumption in practice. Under this model, which we denote Mi, we further assume
that f can be parameterized by a vector θ, so therefore, we assume that

y = f(x, θ) + ϵ, ϵ ∼ Residual(β) (31)

where β is some collection of parameters that determine the error function.

• The frequentist perspective reduces this problem to finding the value of θ that maximizes the likelihood.
That is, we must find

θ∗ = arg max
θ

p(D | θ) = arg max
θ

N∏
i=1

p(yi |xi, θ) (32)

and claiming that y = f(x, θ∗) is the function of best fit. This is a quite straightforward (hopefully
convex) optimization problem, which can be done in many ways (e.g. batch/sequential gradient descent,
solving normal equations, etc.).

• The Bayesian approach attempts to construct a distribution of the values of θ. Clearly, this vector
θ would be an element in some multidimensional Euclidean space, and we want to define a posterior
density p(θ | D) across this space that tells us the probability of θ. Using Bayes rule,

p(θ | D) ∝ p(D | θ) p(θ) (33)

we see that we must define some prior distribution p(θ) on θ. We can assume that this prior is defined
with some distribution

θ ∼ Distθ(γ) (34)

where γ is a collection of parameters on θ. Knowing this prior of θ will allow us to get the posterior of
θ | D. The not-so-complete Bayesian treatment would treat this γ as a known constant. But note that
there is still uncertainty of whether θ comes from Distθ(γ) for one value of γ, compared to another
value of γ. This uncertainty requires us to treat γ as now a hyperparameter, that is a parameter for
the distribution of a parameter, and this distribution of γ, which we can denote

γ ∼ Distγ(ξ) (35)

is called a hyperprior. We can construct higher and higher level hyperpriors on top of this as much as
we want, which will lead to more flexibility in our model (but more computationally expensive). This
is known as hierarchical priors. Generally, we will only go up to the level of one hyperparameter.

3.2 Computing the Posterior Parameter Distribution by Initially Marginalizing
over Hyperparameters

Let us summarize how we would conduct the Bayesian method step by step. We first have to determine how
many levels of hierarchical priors we are accounting for. Say that we will treat ξ as a constant, and consider
the parameter θ along with its hyperparameter γ. Our goal is to compute the posterior p(θ | D).

1. Since there is uncertainty over the value of θ depending on γ, we can marginalize over γ to get

p(θ | D) =

∫
p(θ | D, γ) p(γ | D) dγ (36)
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If the situation calls for it, we could also compute the posterior by doing Bayes rule first to get
p(θ | D) ∝ p(D | θ) p(θ), but then we would have to calculate both p(D | θ) and p(θ) by marginalizing
each over γ, which would lead to complications.

2. To calculate p(θ | D, γ), note that the formula for the posterior density of θ given D is p(θ | D) ∝
p(D | θ)p(θ), where p(θ) is a density function of θ and parameter γ, which means that p(θ | D) would
be a density function of θ and parameter γ. But since γ is fixed, the posterior

p(θ | D, γ) ∝ p(D | θ, γ)p(θ | γ) (37)

is a density function of θ with fixed constant γ. This can be easily calculated because the prior p(θ | γ)
is of distribution Distθ(γ) and the likelihood p(D | θ, γ) is the product of densities of y given fixed θ.

3. To calculate p(γ | D), we first use Bayes rule to get

p(γ | D) ∝ p(D | γ) p(γ) (38)

This can be easily calculated because the prior p(γ) is of distribution Distγ(ξ) of given ξ. The likelihood
can be marginalized over θ to get

p(D | γ) =
∫

p(D | θ, γ) p(θ | γ) dθ (39)

where p(θ | γ) is a function of θ with given parameter γ, and p(D | θ) is the product of the individual
likelihoods.

But remember that this was all assumed under model Mi, so the posterior density p(θi | D) of the θi

parameterizing our best-fit function is really

p(θi | D,Mi) (40)

where we index the parameter of model Mi to be θi, with a superscript (since we may mistake subscript
indices to be the components of θ).

3.3 Computing Posterior Distribution by Initially Applying Bayes Rule
There is another way we can approach to calculating the posterior p(θ | D).

1. We directly apply Bayes rule to get

p(θ | D) =
p(D | θ) p(θ)

p(D)
=

p(D | θ) p(θ)∫
p(D | θ) p(θ) dθ

(41)

Since we are working under a specific model Mi, it would be more accurate to say

p(θi | D,Mi) =
p(D | θi,Mi) p(θ

i |Mi)

p(D |Mi)
=

p(D | θi,Mi) p(θ
i |Mi)∫

p(D | θi,Mi) p(θi |Mi) dθi
(42)

2. Since D = {(xi, yi)}Ni=1 consists of N independent observations, we can calculate

p(D | θi,Mi) =

N∏
j=1

p(yj |xj , θ
i,Mi) (43)

since the form of the likelihood is determined by our model Mi that says y = f(x, θi) + ϵ.

3. To calculate p(θi |Mi), we would have to condition over the hyperparameter γ, which gives

p(θi |Mi) =

∫
p(θi | γ,Mi) p(γ |Mi) dγ (44)

where p(θi | γ,Mi) is the density of Distθi(γ) where γ is constant, and p(γ |Mi) is the prior distribution
Distγ(ξ) with fixed ξ.
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Multiplying the two would get the proportional term, and integrating them over θi would get the marginal-
ization constant

p(D |Mi) =

∫
p(D | θi,Mi) p(θ

i |Mi) dθ
i (45)

entirely defining the posterior. Upon closer inspection, these two methods of deriving the posterior parameter
are not that different. One just uses Bayes rule first and then marginalizes, while the other marginalizes and
then uses Bayes rule.

3.4 Constructing a Predictive Function from Parameter Density
We can then construct a predictive distribution that calculates the probability of y given x. That is,
given a new input x, the probability of getting a value y, given our dataset D, is

p(y |x,D,Mi) =

∫
p(y | θi, x,D,Mi) p(θ

i |x,D,Mi) dθ
i

=

∫
p(y | θi, x,Mi) p(θ

i | D,Mi) dθ
i

but p(θi | D,Mi) is completely defined by what we just calculated, and p(y | θi, x,D,Mi) is defined by the
random variable generated by

y ∼ f(x, θi) + ϵ (46)

3.5 Basis Functions
For linear regression, we usually denote the parameters θ of function f(x, θ) as w, so we can treat them as
equivalent. The simplest linear model for regression is one that involves a linear combination of the input
variables

f(x, θ) = f(x,w) = w0 + w1x1 + . . .+ wDxD (47)

where x = (x1, . . . , xD)T . The key property of this model is that it is a linear function of the parameters
w0, . . . , wD. But the fact that it linear with respect to the input variables xi imposes significant limitations.
Therefore, we can extend the class of models by considering combinations of fixed nonlinear functions of the
input variables of the form

f(x,w) = w0 +

M−1∑
j=1

wjϕj(x) (48)

where each basis function ϕj : RD −→ R. By denoting the maximum value of the index j by M − 1, the
total number of parameters in this model will be M . Note that the above form can be written in the form

f(x,w) =

M−1∑
j=0

wjϕj(x) = wTϕ(x) (49)

by introducing a "dummy" basis function ϕ0(x) = 1. The reason this is still called a linear model is because
the function is linear in w.

We can choose many different types of basis functions. The following examples are for 1-dimensional x.

1. The polynomial basis functions form powers of x such that

ϕj(x) = xj (50)

One limitation of polynomial basis function is that they are global functions on the input variable, so
that changes in one region of input space affect all other regions. This can be resolved by dividing
up the input space up into regions and fit a different polynomial in each region, leading to spline
functions.
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2. The Gaussian basis functions (which can be, but not necessarily must be interpreted in the proba-
bilistic way), have the form

ϕj(x) = exp

(
− (x− µj)

2

2s2

)
(51)

where the µj govern the locations of the basis functions in input space, and the parameter s governs
their spatial scale.

3. The sigmoidal basis functions are of form

ϕj(x) = σ

(
x− µj

s

)
, where σ(a) =

1

1 + e−a
(52)

Rather than using the sigmoid function σ, we could also use the hyperbolic tangent tanh(a) = 2σ(a)−1.

4. The Fourier basis functions leads to an expansion in sinusoidal functions, which has specific fre-
quency and infinite spatial extent. By contrast, basis functions that are localized to finite regions of
input space necessarily comprise a spectrum of different spatial frequencies. In many signal processing
applications, it is of interest to consider basis functions that are localized in both space and frequency,
leading to a class of functions known as wavelets.

Figure 3: Different types of basis functions

3.6 Bayesian Model Selection
Note that up until now, we have assumed that we knew the statistical model describing the process of how
the data D was generated. The definition of a model is often used loosely without explicit definition, but we
can define it as such: A model completely defines the form of the function f that we assume is generating
y for values of x. This does not mean that the model corresponds to a parameter value of w. It defines the
entire form of f for

y = f(x, θ) + ϵ (53)

The model then defines the form of p(yi |xi, θ) according to the above, which then defines the form of the
likelihood function

p(D | θ) =
N∏
i=1

p(yi |xi, θ) (54)

Here are some examples of different models for different problems. Note that for every model Mi, the set of
parameters θi is different, since the basis functions do not need to necessarily be the same for these models.

1. For linear regression, we assume that the distribution is of form

y = wTϕ(x) + ϵ (55)

and thus our models have different forms which are completely dependent on the basis functions ϕj(x)
we choose. Assuming that we have scalar inputs x ∈ R, we may choose
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• a purely linear model of x, which we will call M1 with θ1 = (w0, w1).

y =
(
w0 w1

)(ϕ0(x)
ϕ1(x)

)
+ ϵ =

(
w0 w1

)(1
x

)
+ ϵ (56)

Therefore the form is f(x,w) = w0 + w1x.

• a quadratic model of x, which we will call M2 with θ2 = (w0, w1, w2).

y =
(
w0 w1 w2

)ϕ0(x)
ϕ1(x)
ϕ2(x)

+ ϵ =
(
w0 w1 w2

) 1
x
x2

+ ϵ (57)

Therefore the form is f(x,w) = w0 + w1x+ w2x
2.

• a cubic model of x called M3 with form f(x, θ) = w0 + w1x+ w2x
2 + w3x

3, and so on...

2. More examples to be updated.

A fully Bayesian approach would condition over all possible models when predicting y given x. Suppose
that we have a finite set of Bayesian models {Mi} (each with their own parameters θi) that we could use to
explain the observed data D. Then, as shown above, for each ith model, we would calculate the posterior
density of the parameter p(θi | D,Mi) and then construct a predictive distribution

p(y |x,D,Mi) (58)

for each model in {Mi}. Then we calculate the posterior probabilities of the models p(Mi | D), and condi-
tioning over all possible models, we get the ultimate predictive distribution over all models

p(y |x,D) =
∑
i

p(y |x,D,Mi) p(Mi | D) (59)

This is called a mixture model or Bayesian model averaging, but in practice this is not used due to
computational overhead. A more common practice is simply to calculate all the p(Mi | D), pick the Mi

that has the highest posterior probability, and build out predictive distribution assuming Mi. This is called
model selection, since we are throwing away all other models that are deemed to overfit or underfit and
selecting the best one.

Now, the problem of model selection (and averaging) reduces to just finding the posterior model probabilities
p(Mi | D), since we know how to do everything else. We can work out the posterior probability over the
models via Bayes rule

p(Mi | D) ∝ p(D |Mi) p(Mi) (60)

p(Mi) is the prior distribution over models that we have selected, which is conventionally set to the uniform:
p(Mi) ∝ 1. Therefore, calculating the posterior probability of the models reduces to calculating p(D |Mi)
which is called the model evidence. By marginalizing over the parameter θi, we have

p(D |Mi) =

∫
p(D | θi,Mi) p(θ

i |Mi) dθ
i (61)

To calculate this, we evaluate each component of the integral:

• Remember that D = {(xi, yi)}Ni=1 is composed of independent data. So

p(D | θi,Mi) =

N∏
i=1

p(yi |xi, θ
i,Mi) (62)

which is well-defined since we can simply use our model y = f(x, θi) + ϵ.
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• Furthermore, we see that p(θi |Mi) should be conditioned over its hyperparameter γ, so

p(θi |Mi) =

∫
p(θi | γ,Mi) p(γ |Mi) dγ (63)

where θi | γ ∼ Distθ(γ) for constant γ and γ ∼ Distγ(ξ) for constant ξ.

Note that if we had calculated the posterior densities of the parameters p(θi | D,Mi) by applying Bayes rule
first, we would have calculated the posterior as

p(θi | D,Mi) =
p(D | θi,Mi) p(θ

i |Mi)

p(D |Mi)
=

p(D | θi,Mi) p(θ
i |Mi)∫

p(D | θi,Mi) p(θi |Mi) dθi
(64)

Note that the marginalization term that we’ve already calculated is the model evidence! So this shortcut
may save us a lot of computation.

3.7 Intuition Behind Model Evidence
Let us take a closer look at the model evidence term and try to develop an intuition for it.

p(Y |Mi) =

∫
p(Y |w,Mi)p(w |Mi) dw (65)

Note that the evidence tells us the probability of getting Y from a given model Mi, and we want this to be
as large as possible. It does this by conditioning over all possible values of w for that given model. Consider
first the case of a model having a single parameter w. Let us make two assumptions:

• The posterior distribution p(Y |w,Mi) is sharply peaked around the most probable value wMAP , with
width ∆wposterior.

• The prior distribution p(w |,Mi) is flat with width ∆wprior, so that p(w) = 1/∆wprior.

Figure 4: Approximation of posterior and prior distributions

Then, we can approximate

p(Y |Mi) =

∫
p(Y |w,Mi)p(w |Mi) dw ≈ p(Y |wMAP )

∆wposterior

∆wprior
(66)

Note two things:

• The term p(Y |wMAP ) gives the fit to the data given the most probable parameter values wMAP . If
this fit is better (i.e. this term becomes larger), then the evidence also increases.
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• However, the ratio ∆wposterior/∆wprior should be less than 1, meaning that the more "squished" the
posterior distribution is, the smaller this fraction becomes, decreasing the evidence.

For a model having a set of M parameters, we can make a similar approximation. Assuming that all
parameters have the same ratio ∆wposterior/∆wprior, we get

p(Y |Mi) = p(Y |wMAP ,Mi)

(
∆wposterior

∆wprior

)M

(67)

Therefore, we can see that the size of the complexity penalty increases with the number M of adaptive
parameters in the model. Therefore, given two models Mi and Mj with the latter having more parameters
(e.g. higher degree polynomial model), the model evidence p(Y |Mj) will decrease at a faster rate as the
posterior gets more fine-tuned to the data.

3.8 Frequentist Linear Regression Using Maximum Likelihood: Gaussian Error
w/ OLS & Laplacian Error w/ LAV

Now, given dataset D = (X,Y), we fix a model M and assume that f(x,w) = wTϕ(x) for a given collection
(determined by M) and the noise is Gaussian ϵ ∼ N (0, β−1). Therefore,

y = wTϕ(x) + ϵ =
(
w1 . . . wD

)ϕ0(x)
...

ϕD(x)

+ ϵ =⇒ p(y |x,w, β) = N
(
y |wTϕ(x), β−1

)
(68)

Then, the likelihood function is

p(D |w, β) =
N∏

n=1

p(yi |xi, w, β) =

N∏
n=1

N
(
yn |wTϕ(xn), β

−1
)

(69)

Taking the logarithm of it and a bit of algebra gives

ln p(D |w, β) = N

2
lnβ − N

2
ln 2π − βED(w)

=
N

2
lnβ − N

2
ln 2π − β · 1

2

N∑
n=1

(
yn − wTϕ(xn)

)2
which we can see is very dependent on the sum-of-squares error term ED(w). This is the motivation
behind the least squares function as the cost function for modeling functions with Gaussian errors. Moving
on, maximizing this likelihood gives us

wML = (ΦTΦ)−1ΦTY

βML =

(
1

N

N∑
n=1

(
yn − wT

MLϕ(xn)
)2)−1

where Y is the N -vector of target values yi in the data D and Φ is the N × M matrix of basis functions
evaluated for each xn.

Φ =


ϕ1(x1) ϕ2(x1) . . . ϕM−1(x1) ϕM (x1)
ϕ1(x2) ϕ2(x2) . . . ϕM−1(x2) ϕM (x2)

...
...

. . .
...

...
ϕ1(xN−1) ϕ2(xN−1) . . . ϕM−1(xN−1) ϕM (xN−1)
ϕ1(xN ) ϕ2(xN ) . . . ϕM−1(xN ) ϕM (xN )

 (70)
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Note that even if there were a hyperparameter of θ, the frequentist approach would not care about this
because all it looks at is the likelihood of D given θ. Note that if we assumed that the residual noise
distribution was ϵ ∼ Laplace(0, β), the likelihood function would turn out to be

p(D |w, β) =
N∏

n=1

Laplace(yn |wTϕ(xn), β) =

N∏
n=1

1

2β
exp

(
− |yn − wTϕ(xn)|

b

)
(71)

and taking the logarithm of it gives

ln p(D |w, β) = −N ln (2β)− 2

β
ED(w)

= −N ln (2β)− 1

β

N∑
n=1

∣∣yn − wTϕ(xn)
∣∣

which is now dependent on the sum-of-residuals error term ED(w).

3.9 Regularization: Gaussian Parameter Prior w/ L2 Regularizers & Laplacian
Parameter Prior w/ L1 Regularizers

In some cases of solving the least squares problem, it may be case that our model with optimized parameters
w, β may be either:

• too fine-tuned to the data, i.e. may overfit. This happens when the number of basis functions exceeds
the number of observations, which makes the least squares problem ill-posed and is therefore impossible
to fit because the associated optimization problem has infinitely many solutions. RLS allows the
introduction of further constraints that uniquely determine the solution.

• suffering from poor generalization.

Therefore, we can add a regularization term EW (w) to our residual-squared error function ED(w).

ED(w) + λEW (w) (72)

The idea is that as the model becomes more complex and as w’s values increase, the EW (w) term will also
increase, nullifying the minimization of ED(w). Two common regularization terms are:

• The L1 regularization term is

EW (w) =
1

2

M−1∑
j=0

|wj | (73)

which leads us to find

arg min
w

{
1

2

N∑
n=1

(
yn − wTϕ(xn)

)2
+

λ

2

M−1∑
j=0

|wj |
}

if ϵ is Gaussian

arg min
w

{
1

2β

N∑
n=1

∣∣yn − wTϕ(xn)
∣∣+ λ

2

M−1∑
j=0

|wj |
}

if ϵ is Laplacian

• The L2 regularization term

EW (w) =
1

2

M−1∑
j=0

w2
j =

1

2
||w||2 =

1

2
wTw (74)

16/ 31



Bayesian Statistics Muchang Bahng Spring 2025

which leads us to find

arg min
w

{
1

2

N∑
n=1

(
yn − wTϕ(xn)

)2
+

λ

2

M−1∑
j=0

w2
j

}
if ϵ is Gaussian

arg min
w

{
1

2β

N∑
n=1

∣∣yn − wTϕ(xn)
∣∣+ λ

2

M−1∑
j=0

w2
j

}
if ϵ is Laplacian

But how do we know which regularization term EW (w) to use?

• Remember that our assumption of the form of the error distribution ϵ led to least error term. A
Gaussian ϵ led to a OLS cost function, and a Laplace ϵ led to a LAV cost function.

• Similarly, our assumption of the form of the prior density p(w) will naturally lead to the form of the
regularization term. A Gaussian prior p(w) leads to the L2 regularizer, and a Laplace p(w) leads to
the L1 regularizer.

We must step out of the frequentist setting and let Bayesian statistics take over. Unlike simply getting the
point estimate from the maximum likelihood, i.e. calculating arg maxw p(D |w), we must calculate

arg max
w

p(w | D) = arg max
w

p(D |w) p(w)

= arg max
w

log
(
p(D |w) p(w))

= arg max
w

(
log p(D |w) + log p(w)

)
Note that the frequentist calculations is the Bayesian approach with the prior p(w) set to uniform. Previously,
we have assumed that p(w) = N (w | 0, α−1I). We can simplify this assumption by further assuming that it
is a product of univariate distributions for each of its parameters wi, which can be done with a change of
basis. So, we will write

p(w) =

M−1∏
j=0

p(wj) =

{∏M−1
j=0 N (wj | 0, α−1) if assuming Gaussian∏M−1
j=0 Laplace(wj | 0, α−1) if assuming Laplace

(75)

Remember that ϵ ∼ N (0, β−1), and the priors N (0, α−1) and Laplace(0, b) have fixed and known parameters
α and b.

• If we assume that each p(wj) is Gaussian, we have

arg max
w

p(w | D) = arg max
w

(
log p(D |w) + log p(w)

)
= arg max

w

(
log

N∏
n=1

N
(
yn |wTϕ(xn), β

−1
)
+ log

M−1∏
j=0

N (wj | 0, α−1)

)

= arg max
w

(
log

N∏
n=1

1

β−1
√
2π

e
− (yn−wT ϕ(xn))2

2(β−1)2 + log

M−1∏
j=0

1

α−1
√
2π

e
−

w2
j

2(α−1)2

)

= arg min
w

1

2(β−1)2

( N∑
n=1

(
yn − wTϕ(xn)

)2
+

(β−1)2

(α−1)2

M−1∑
j=0

w2
j

)

= arg min
w

( N∑
n=1

(
yn − wTϕ(xn)

)2
+ λ

M−1∑
j=0

w2
j

)

So, we can see that having a Gaussian prior of the parameter naturally leads to us minimizing the
L2-regularized cost function. Furthermore, we have the optimal value λ = (β−1)2/(α−1)2.
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• If we assume that each p(wj) is Laplace, we have [Similar derivation for Laplace case...]

Figure 5: Error function contours in R2

To develop an intuition for this, let us visualize what this regularization term does. Setting w ∈ R2 for visual
purposes, we can visualize the (unregularized) error function ED(w) as being defined over R2 with contours,
where darker lines represent lower values. Clearly, the minimum value of w lies at the dot w∗.

Figure 6: Comparison of L1 and L2 regularization effects

[Continuing with the rest of the visualizations and explanations...]

In summary:

• The Laplace prior promotes sparsity, i.e. zeroes out some of the coefficients due to its greater peak
around 0.

• The Gaussian prior is more diffused around 0, allowing non-zero values to have greater probability
mass.

Other possibilities for robust priors are Cauchy or t-distributions.

3.10 Bayesian Linear Regression with Gaussian Priors
To perform linear regression in the Bayesian setting, let us start off with a collection of potential models
{Mi}Li=1 and dataset D. For each model Mi with

y = wTϕ(x) + ϵ, ϵ ∼ N (0, β−1) (76)

We will state our unknowns:

• The value of β that determines the variance of the error ϵ will have a fixed prior distribution p(β) (with
no hyperparameter).
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• The parameter w has a (not fixed) prior distribution p(w) = N (w | 0, α−1I) with hyperparameter α.

• The value of α that determines the covariance matrix of the prior of w will have a fixed prior distribution
p(α), with no further hyperparameters.

Now, our final goal is to construct the predictive function p(y |x,D). But since the predictive function
is completely determinant on the values of w, β (since y = wTϕ(x) + ϵ ∼ N

(
wTϕ(x), β−1

)
, we simply

marginalize over the two parameters to simplify it into

p(y |x,D) =

∫∫
p(y |x,w, β,D) p(w, β | D) dw dβ

=

∫∫
N
(
y |wTϕ(x), β−1

)
p(w, β | D) dw dβ

Therefore, we now need to calculate the joint posterior distribution of w, β given D. To marginalize this over
the proper parameters, we need more insight.

• Let us first calculate p(w | D) to see what parameters the posterior density is dependent on.

p(w | D) ∝ p(D |w) p(w)

=

(∫
p(D |w, β) p(β) dβ

)
·

(∫
p(w |α) p(α) dα

)

=

∫ ( N∏
n=1

p(yi |xi, w, β)

)
p(β) dβ ·

(∫
N (w | 0, α−1I) p(α) dα

)

=

∫ ( N∏
n=1

N
(
y |wTϕ(x), β−1

))
p(β) dβ ·

(∫
N (w | 0, α−1I) p(α) dα

)

Note that in this case, we marginalized over all β and α, so p(w | D) is parameterized by both α and
β. If we kept them fixed, we would have

p(w |α, β,D) ∝ p(D |w,α, β) p(w |α, β)
= p(D |w, β) p(w |α)

=

( N∏
n=1

N
(
y |wTϕ(x), β−1

))
· N (w | 0, α−1I)

= N
(
w |mN = βSNΦTY, SN = (αI + βΦTΦ)−1

)
which itself is a multivariate Gaussian.

Knowing this, we know we should marginalize p(w, β | D) so that the term p(w |α, β,D) exists. We can do
this by

p(w, β | D) =

∫
p(w, β |α,D) p(α | D) dα

=

∫
p(w |β, α,D) p(β |α,D) p(α | D) dα

=

∫
p(w |β, α,D) p(α, β | D) dα

where in the second row we simply used the conditional probability rule p(a, b | c) = p(a | b, c) p(b | c). Finally,
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substituting this into the double integral above gives

p(y |x,D) =

∫∫
p(y |x,w, β,D)

(∫
p(w |β, α,D) p(α, β | D) dα

)
dw dβ

=

∫∫∫
p(y |x,w, β,D) p(w |β, α,D) p(α, β | D) dα dw dβ

=

∫∫∫
N
(
y |wTϕ(x), β−1

)( N∏
n=1

N
(
y |wTϕ(x), β−1

))
· N (w | 0, α−1I) p(α, β | D) dα dw dβ

Our Gaussian assumption on the priors will greatly simplify this term when written in vector notation. Now,
the only thing to do is figure out what p(α, β | D) is. We will use Bayes rule and assume that the prior p(α, β)
is relatively flat.

p(α, β | D) ∝ p(D |α, β) p(α, β)
∝ p(D |α, β)

where p(D |α, β) is another evidence function (like the model evidence), which we will call the hyperparameter
evidence. We can simply condition over w to get the following. Hopefully, the realizations of the probabilities
into the densities function make sense to the reader.

p(α, β | D) ∝ p(D |α, β)

=

∫
p(D |w, β) p(w |α) dw

=

∫ ( N∏
n=1

N
(
yn |wTϕ(xn), β

−1
))

· N (w | 0, α−1I) dw

If we know that p(α, β | D) is sharply peaked, then we can try maximizing the evidence function with respect
to α, β using maximum likelihood, and simply fixing them in further calculations.

By substituting in the densities, the evidence function reduces to

p(D |α, β) =
(

β

2π

)N/2

αM/2 exp
(
− E(mN )

)
|A|−1/2 (77)

where

Φ = (Φ)nj = ϕj(xn)

S−1
N = αI + βΦTΦ

mN = βSNΦTY

E(mN ) =
β

2
||Y − ΦmN ||2 + α

2
mT

NmN

Taking the log gives us

log p(D |α, β) = M

2
logα+

N

2
log β − E(mN )− 1

2
log |S−1

N | − N

2
log 2π (78)

This evidence can also be used as the model evidence. Remember that given data D, a (linear) model Mi

determines the collection of basis function, i.e. determines Φ. Let us denote the Φ determined by model Mi

as ΦMi
. Therefore, we can treat p(D |α, β) as a function of Φ and write

p(D |α, β,Φ) (79)
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To determine which model from {Mi}Li=1 to choose, we first fix ΦMi and maximize p(D |α, β,ΦMi) with
respect to α, β, for i = 1, . . . , L.

Assume model M1 =⇒ Find max
α,β

p(D |α, β,ΦM1)

Assume model M2 =⇒ Find max
α,β

p(D |α, β,ΦM2
)

. . . =⇒ . . .

Assume model ML =⇒ Find max
α,β

p(D |α, β,ΦML
)

Then, find
arg max

Mi

{max
α,β

p(D |α, β,ΦMi
)} (80)

For each model Mi, we have optimized α, β to maximize the evidence function p(D |α, β,ΦMi
). The model

with the highest max evidence should be the best model, and by Occam’s razor, we should choose simpler
models if their predictive powers are equal. Again, we restate the big takeaway: The Φ represents the model,
and therefore maximizing the evidence function p(D |α, β,ΦMi) with respect to the Φ will tell us what the
correct model is. That is,

1. p(D |α, β,ΦMi
) interpreted as a function of α, β is the hyperparameter evidence.

2. p(D |α, β,ΦMi
) interpreted as a function of ΦMi

(or more accurately, of Mi) is the model evidence.

3.11 Equivalent Kernel
The posterior mean solution mN = βSNΦTY is a point-estimate prediction of what w is. We can substitute
it into the linear equation f(x,w) = wTϕ(x) to get

f(x,mN ) = mT
Nϕ(x) = βϕ(x)TSNΦTY =

N∑
n=1

βϕ(x)TSNϕ(xn)yn (81)

which is a linear combination of the training set target variables yn, written as

f(x,mN ) =

N∑
n=1

k(x, xn)yn, k(x, xn) ≡ βϕ(x)TSNϕ(xn) (82)

That is, the mean of the predictive distribution at a point x is given by a linear combination of the yn’s.
The function k(x, xn) is known as the smoother matrix, or equivalent kernel.

4 Bias Variance Decomposition
Determination of the predictive distribution p(y |x) given data D is the goal of statistical inference, as we
have seen. That is, posterior p(y |x,D) tells us the distribution of y if we have a new data point x. But
after this inference step, we must look now at the decision step: we must determine a function h(x) that
deterministically predicts a value y, without predictions. That is, we must have some algorithm to make a
decision.

Let us zoom out for a better overview. Let D be our training data of N points. We can assume that each
point (xi, yi) ∈ D was generated independently by a joint distribution p(x, y). If we were to get another data
point, we would just generate one from the density p(x, y). Usually, we have fixed input data x and knew
that the output y given x would be p(y |x). But if we loosen our constraint on x, we would get

p(x, y) = p(y |x)p(x) (83)
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which states that each data point in D is gotten by generating a value of x with probability p(x), and then
generating a y given this x. Let us also denote A as our machine learning algorithm, which we can interpret
as a function that takes in data D and outputs the hypothesis function hD.

A(D) = hD (84)

Then, given that the next new data point (x, y) is generated, we can set our test error, or loss/cost
function, of hD to be

L
(
hD, (x, y)

)
=
[
hD(x)− y

]2 (85)

This loss function basically calculates the inaccuracy of whatever hypothesis function hD we have on the
data (x, y), which in this case is the square of the residual. There can be other types of loss functions, but
we will consider the squares loss function for now. Given hD, we can also calculate the expected test error
by conditioning over all x, y drawn from P .

Expected Test Error given hD =⇒ Ex,y,∼P

[
(hD(x)− y)2

]
=

∫
x

∫
y

(hD(x)− y)2 p(x, y) dy dx (86)

However, note that we can treat the N data points D also as a random variable coming from the joint
distribution of N P ’s. Therefore, we can take each possible dataset D, calculate hD = A(D) with our
algorithm, and average them out to get the expected hypothesis function h. We can interpret h as the "ideal
regressor" that we are trying to build, but with limited data D, we can only build hD that deviates from h.

h = ED∼PN

[
A(D)

]
=

∫
D
hDP (D) dD (87)

So, we can compute the expected error of the entire algorithm A by marginalizing over all x, y given hD and
marginalizing over all D. Remember that D ∼ PN is our training data of N points, and (x, y) ∼ P is our
(n+ 1)th data point. Therefore, the expected test error of our algorithm for the (n+ 1)th data point is

E(x,y)∼P,D∼PN

(
[hD(x)− y]2

)
=

∫
D

∫
x

∫
y

[hD(x)− y]2 p(x, y) p(D) dy dx dD (88)

The integral above looks quite intimidating, so let us decompose it. We just have do use a trick where we
subtract and add the same term h(x).

E(x,y),D
(
[hD(x)− y]2

)
= E(x,y),D

(
[(hD(x)− h(x)) + (h(x)− y)]2

)
= E(x,y),D

(
[hD(x)− h(x)]2

)
+ E(x,y),D

(
[h(x)− y]2

)
+ 2E(x,y),D

(
[hD(x)− h(x)] [h(x)− y]

)
But I claim that the last term vanishes. It is easy to see why because

E(x,y),D
[(
hD(x)− h̄(x)

) (
h̄(x)− y

)]
= E(x,y)

[
ED

[
hD(x)− h̄(x)

] (
h̄(x)− y

)]
= E(x,y)

[(
ED [hD(x)]− h̄(x)

) (
h̄(x)− y

)]
= E(x,y)

[(
h̄(x)− h̄(x)

) (
h̄(x)− y

)]
= E(x,y) [0]

= 0

Therefore, we can see that the expected value of the error of an algorithm consists of two terms: the variance
and the second term.

E(x,y),D
(
[hD(x)− y]2

)
= E(x,y),D

(
[hD(x)− h(x)]2

)
+ E(x,y),D

(
[h(x)− y]2

)
(89)
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The second term is the expected value of the average prediction minus the y-value of the new point. Now,
we do the same trick: Let the expected value of y given x be y(x) = Ey | x(y) =

∫
y p(y |x) dx. This function

y(x) is the ideal regressor predicting y from x. Then, we have

Ex,y

[(
h̄(x)− y

)2]
= Ex,y

[(
h̄(x)− ȳ(x)) + (ȳ(x)− y

)2]
= Ex,y

[
(ȳ(x)− y)

2
]

︸ ︷︷ ︸
Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

+2 Ex,y

[(
h̄(x)− ȳ(x)

)
(ȳ(x)− y)

]

where the third term vanishes since

Ex,y

[(
h̄(x)− ȳ(x)

)
(ȳ(x)− y)

]
= Ex

[
Ey|x [ȳ(x)− y]

(
h̄(x)− ȳ(x)

)]
= Ex

[(
ȳ(x)− Ey|x [y]

) (
h̄(x)− ȳ(x)

)]
= Ex

[
(ȳ(x)− ȳ(x))

(
h̄(x)− ȳ(x)

)]
= Ex [0]

= 0

Therefore, the expected test error is precisely the sum of three things.

Ex,y,D

[
(hD(x)− y)

2
]

︸ ︷︷ ︸
Expected Test Error

= Ex,D

[(
hD(x)− h̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)

2
]

︸ ︷︷ ︸
Noise

+Ex

[(
h̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

To understand this term a bit deeper, recall the following: The function y(x), which outputs the expected
value of y given x, is the best possible regressor we can have. There are many different algorithms that
we can choose to approximate y(x), so let us choose one learning algorithm A. We just feed an arbitrary
dataset D to A, which outputs a hypothesis function hD. But this hypothesis function hD is really just an
approximation of the ideal hypothesis function h, which is the expectation of all hypotheses hD (i.e. the
hypothesis that A should generate when we feed it an infinite amount of data). So, by feeding D to A, it
generates a hypothesis function hD(x), which approximates h(x), which hopefully is a good estimate of y(x).

1. The difference between a generated hypothesis function hD(x) and the ideal hypothesis that it is trying
to estimate according to learning algorithm A is represented by the variance. The variance term tells
us how far each generated hypothesis hD deviates from the ideal h.

2. The difference between the ideal hypothesis h(x) (according to algorithm A) and the ideal regressor
in general y(x) is captured in the bias term. The bias term tells us how far our algorithm’s ideal
hypothesis deviates from the expectation of the conditional p(y |x).

3. The noise term represents the difference between the true value of y and the best possible regressor
y(x). But since the best we can do is find the expectation of the conditional p(y |x), the deviation of the
true values y from the mean y is simply the noise. For example, if we have p(y |x) = N

(
y |wTϕ(x), ϵ

)
,

then the noise would simply be ϵ. If the variance of ϵ is large, the noise would be large. Therefore, the
same ideal regressor function y(x) would perform worse with a higher noise.

If we are comparing this to the throwing-darts analogy, we can imagine the ideal function y(x) to be the
bull’s eye that we must hit. The different algorithms A represent different players throwing the darts. When
one algorithm (player) is chosen, their vision can be skewed (perhaps their glasses is off), leading them to
think that the target h(x) is somewhere else. If their target is far away from the bull’s eye (i.e. [h(x)−y(x)]2

is high), then their bias is high. Their skills in darts may just be bad, so even if their vision is good and they
have a good sense of where to hit (low bias), for each time they throw the dart (i.e. each time the regressor
function hD is generated from data), it may be very off from their ideal target h(x).

Therefore, if you are a data scientist and you find that your regression function is not accurate enough, it is
your job to find out whether your bias is too high, your variance is too high, or whether there is too much
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noise, and fix the proper component. Generally, we would try to minimize this cost function, visualized
below.

Figure 7: Visualization of the bias-variance tradeoff showing how model complexity affects error components

5 Markov Chain Monte Carlo (MCMC)
Monte carlo algorithms is a general term for computational techniques that use random numbers, which
can be used both in classical and Bayesian statistics. This is extremely important when working with
distributions that are cannot be simply stated using elementary densities (Gaussian, Beta, etc.). The entire
goal of Bayesian inference is to maintain a full posterior probability distribution over a set of random
variables. However, maintaining and using this distribution requires computing integrals which, for most
non-trivial models, is intractable.

The basic idea of MCMC is that we want to construct a Markov chain which will travel between different
possible states (e.g. the hypotheses/parameter values in a Bayesian analysis), where the amount of time
spent in any particular state is proportional to the posterior probability of the state. That is, the stationary
distribution of the chain is the posterior distribution. As a result, the computer explores the set of possible
parameter values, spending a lot of time in the regions with high posterior probability, and only rarely
visiting regions of low posterior probability.

5.1 Metropolis-Hastings: General Algorithm
Say that with initial distribution p(θ), we have calculated the posterior as

p(θ |x) ∝ p(θ) p(x | θ) (90)

It is often the case that the set of possible values of θ is very large, so it is computationally inefficient to
compute the normalizing factor

p(x) =
∑
θ

p(θ) p(x | θ) (91)

Therefore, we only have this function f(θ) = p(θ) p(x | θ) that is directly proportional to p(θ |x). That is,
we don’t know the normalizing constant c such that

p(θ |x) = f(θ)

c
(92)

Using this information, we wish to construct and run an algorithm that converges onto the true posterior
distribution p(θ |x) at a sufficiently fast rate.
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We begin by constructing a discrete-time irreducible Markov chain with state space S = {1, 2, . . . , N}
representing the set of possible parameter values (the labels for the elements of S does not matter, since we
can construct whatever bijection we want from the actual states to a subset of N). Like a normal Markov
chain, we will choose the next state to go to at each step, but now, we will then choose to accept this proposal
to go to that step with an additional probability. That is, we will construct two matrices:

• An |S| × |S| proposal transition matrix Qprop, with

p(propose i 7→ j) = (Qprop)ij = qprop(i, j) (93)

being the probability of getting a proposal to transition from state i to state j. This matrix is con-
structed by the user and is completely well-defined and known; this choice may also affect the conver-
gence rate. Note that with this formulation, the rows will sum up to 1 and QT is a stochastic matrix.
We can also construct Qprop to be symmetric, that is qprop(i, j) = qprop(j, i), for easier calculations.

• An |S| × |S| acceptance probability matrix A, with

(accept proposal i 7→ j |propose i 7→ j) = (A)ij = α(i, j)

= min

(
1,

p(θ = j |x) qprop(j, i)
p(θ = i |x) qprop(i, j)

)
= min

(
1,

f(θ = j) qprop(j, i)

f(θ = i) qprop(i, j)

)
= min

(
1,

f(θ = j)

f(θ = i)

)
(if Qprop symmetric)

Then, we element-wise multiply the two matrices, except the diagonals, to get the true transition matrix
Q defined

(Q)ij = q(i, j) =

qprop(i, j) · α(i, j) = qprop(i, j) ·min

(
1, f(θ=j) q(j,i)

f(θ=i) q(i,j)

)
if i ̸= j

1−
∑

j ̸=i q(i, j) if i = j
(94)

where q(i, j) represents the true transition probability of going from state i to state j. Note that we have
element-wise multiplied every non-diagonal element, and we have defined (Q)ii such that the sum of each
row is 1 (so that this becomes a viable transition matrix). Note also that this element-wise multiplication
makes sense because

p(θk+1 = j | θk = i) = p(accept proposal i 7→ j, propose i 7→ j)

= p(accept proposal i 7→ j | propose i 7→ j) p(propose i 7→ j)

= α(i, j) · qprop(i, j)

This is the Markov chain we wish to get, where "one" step is really a two-step process of proposing and
accepting/rejecting. We wish to get the steady state distribution π(θ) of this chain, which can be found in
two well-known ways:

• Calculate the left-eigenvector of Q with eigenvalue 1.

• Randomly initialize θ0 and run the chain for a sufficiently long time to record where it lands at each
step

θ0 = i0, θ1 = i1, θ2 = i2, θ3 = i3, . . . , θn = in (95)

which can be used to approximate π(θ) by defining

π(θ = i) =
proportion of states in state i in the n-step process

n
(96)

Finally, we claim that this steady state distribution π(θ) is precisely the posterior we are looking for: p(θ |x).
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5.2 Detailed Balance: Justification of the Metropolis Algorithm
But why does π(θ) = p(θ |x)? Given a Markov chain θ0 with transition matrix Q, the chain is said to satisfy
detailed balance with respect to a distribution π(θ) if

π(θ = i)q(i, j) = π(θ = j)q(j, i) (97)

for all i, j ∈ S. In fact, we claim that θi does satisfy detailed balance with respect to p(θ |x). That is, it
satisfies

p(θ = i |x)q(i, j) = p(θ = j |x)q(j, i) (98)

This case is trivial for when i = j, so assume i ̸= j. A transition from i to a different j can only be achieved
with an accepted proposed step, which happens with probability

q(i, j) = qprop(i, j) · α(i, j)

= qprop(i, j) ·min

(
1,

p(θ = j |x) qprop(j, i)
p(θ = i |x) qprop(i, j)

)
=

qprop(i, j)

p(θ = i |x)
min

(
p(θ = i |x), p(θ = j |x) qprop(j, i)

qprop(i, j)

)
=

1

p(θ = i |x)
min

(
p(θ = i |x) qprop(i, j), p(θ = j |x) qprop(j, i)

)
Applying the same method from transitioning from j to i gives the same equation, but with the i and j’s
switched.

q(j, i) =
1

p(θ = j |x)
min

(
p(θ = j |x) qprop(j, i), p(θ = i |x) qprop(i, j)

)
(99)

But switching the i and j leaves the terms inside the minimum invariant. Therefore, we can see that

p(θ = i |x) q(i, j) = min
(
p(θ = j |x) qprop(j, i), p(θ = i |x) qprop(i, j)

)
= p(θ = j |x) q(j, i) (100)

proving detailed balance. Now, we can sum the left hand side of the detailed balance equation over i to get∑
i

p(θ = i |x)q(i, j) =
∑
i

p(θ = j |x)q(j, i) = p(θ = j |x)
∑
i

q(j, i) = p(θ = j |x) (101)

which in matrix form, says
p(θ |x)Q = p(θ |x) (102)

where p(θ |x) =
(
p(θ = 1 |x) . . . p(θ = N |x)

)
and Qij = q(i, j). This implies that p(θ |x) is a stationary

distribution, and therefore, computing the stationary distribution is equivalent to computing p(θ |x).

The intuition behind detailed balance is quite easy to understand, too. Suppose we start a chain in the
stationary distribution, so that the respective probabilities θ0 ∼ π(θ) of starting at position are "smeared"
across all states i. Then, the quantity π(θ = i)q(i, j) represents the "amount" of probability that flows
down edge i → j in one time step. If detailed balance holds, then the amount of probability flowing from
i → j equals the amount that flows from j → i (which is π(θ = j)q(j, i)). Therefore, there is no net flux of
probability along the edge i ↔ j during one time step (remember this holds only for when the chain is in
the stationary distribution).
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Figure 8: Visualization of detailed balance in Markov chain

5.3 Metropolis-Hastings: Example
Suppose we want a Markov chain of state space S = {1, 2} with the steady state distribution

π =
(
3
4

1
4

)
⇐⇒ π(θ = 1) =

3

4
, π(θ = 2) =

1

4
(103)

To implement the Metropolis-Hastings algorithm, we calculate the proposal matrix and acceptance matrix

Qprop =

(
1
2

1
2

1
2

1
2

)
and A =

(
1 1

3
1 1

)
(104)

which is calculated since α(1, 2) = min
(
1, 1/4

3/4

)
= 1/3 and α(2, 1) = min

(
1, 3/4

1/4

)
= 1. We multiply the

nondiagonal entries together and fill in the diagonals to get(
1
2 · 1

3
1
2 · 1

)
=⇒ Q =

(
5
6

1
6

1
2

1
2

)
(105)

Which can be visualized as an object jumping between two nodes with the following transitions.

Figure 9: Two-state Markov chain with transition probabilities

5.4 Gibbs Sampling: General Algorithm
Gibbs Sampling is a special case of the Metropolis-Hastings in which the newly proposed state is accepted
with probability one. With observed data x, say that we have calculated the D-dimensional posterior

p(θ |x) ∝ f(θ) = p(θ) p(x | θ) (106)

where the parameter θ = (θ1, . . . , θD) is an element of the D-dimensional state space S = {1, . . . , n}D
(actually, each θi does not need to be derived from the same {1, . . . , n} and we can generalize this algorithm
to account for this). Remember that:
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• It is hard to calculate p(θ |x) = p(θ1, . . . , θD |x) because calculating the constant c that normalizes
f(θ) is hard (since D may be large). This makes it difficult to sample from the posterior.

• It is easy to calculate f(θ) = f(θ1, . . . , θD). We just don’t know how to scale the individual values
appropriately and so this function is useless in of itself, even though it is directly proportional to
p(θ |x).

Figure 10: Comparison of unknown posterior vs known proportional function

With the D-dimensional state space S, we construct the true transition matrix. Say that the ith state of
the chain is located at node θi with given coordinates

θi = (θ1i , θ
2
i , . . . , θ

D
i ) (107)

The step to transition from this given θi to the next θi+1 consists of two parts:

1. Pick a component index j = d ∈ {1, 2, . . . , D} uniformly at random. Many algorithms also pick d = 1
for the first step, d = 2 for the second, and so on.

p(Index d chosen) =
1

D
(108)
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Figure 11: Choosing a component index in Gibbs sampling

2. With this well-defined d, we would like to update the Markov chain from state θi to θi+1 by updating
only the dth component of θi, and keeping every component fixed. When θdi is updated, the new θdi+1

must take some value of k∗ ∈ {1, . . . , n}. As expected, it chooses which value k∗ to update to according
to the marginal distribution of p(θ |x) given θ1i , . . . , θ

d−1
i , θd+1

i , . . . , θDi .

p(θdi 7→ θdi+1 = k∗ | Index d chosen) = p(θdi+1 = k∗ | θ1i , . . . , θd−1
i , θd+1

i , . . . , θDi , x)

=
p(θ1i , . . . , θ

d−1
i , k∗, θd+1

i , . . . , θDi |x)∑n
k=1 p(θ

1
i , . . . , θ

d−1
i , k, θd+1

i , . . . , θDi |x)

=
f(θ1i , . . . , θ

d−1
i , k∗, θd+1

i , . . . , θDi )∑n
k=1 f(θ

1
i , . . . , θ

d−1
i , k, θd+1

i , . . . , θDi )

where the last step is justified by the proportionality of f and p. It turns out that the probability of
where θdi+1 will land on does not actually depend on where θdi is currently.

Figure 12: Example for D = 2, n = 5 showing possible states (within red line) that θi+1 can transition to

Do not be daunted by the notation. Just remember that p(θdi+1 = k∗ | θ1i , . . . , θ
d−1
i , θd+1

i , . . . , θDi , x) is just
the conditional probability of p(θ |x) given that every θji , j ̸= d are constant. This is easily visualized by
taking the 1-dimensional cross section of the density p(θ |x) defined on S.
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Figure 13: Cross-sectional view of density in Gibbs sampling

Therefore, we can construct a Markov chain with the following transition probabilities. Given two states
θr, θs ∈ S, if θs differs in θr in at most one component, call it the dth component (i.e. θjr = θjs for all j ̸= d),
then the probability of transition from θr to θs is

p(θr, θs) = p(θdr 7→ θds | Index d chosen) p(Index d chosen)

=
f(θ1r , . . . , θ

d−1
r , θds , θ

d+1
r , . . . , θDr )∑n

k=1 f(θ
1
r , . . . , θ

d−1
r , k, θd+1

r , . . . , θDr )
· 1

D

Therefore, given that the chain is in state θi = (3, 2) in state space S = {1, 2, 3, 4, 5}2, it may be able to get
to the point in red or blue, depending on which index d was chosen. But it is impossible to go to any of the
yellow states, so the transition probabilities are all 0.
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Figure 14: Possible transitions from state (3, 2) in Gibbs sampling

With this, we can calculate the stationary distribution by either:

• Calculating the left-eigenvector of the transition matrix defined p(θr, θs) with eigenvalue 1.

• Randomly initialize θ0 = (θ10, . . . , θ
D
0 ) and run the chain for sufficiently long time to find out the

proportion of steps in which a Markov chain lands on each θ ∈ S.

Now, it is easy to see why Gibbs sampling is a special case of Metropolis-Hastings. The Gibbs transition
algorithm that we just mentioned is clearly a Markov chain, and within the context of Metropolis, we can
interpret it as the proposal transition matrix with acceptance probability 1. By the same justification for
Metropolis, we can prove that the stationary distribution of Gibbs sampling is p(θ |x).
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