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In frequentist inference, we would treat some true parameter 6 as fized, albeit unknown. We would do density
estimation by maximizing the likelihood over some data D with respect so some parameters 6.

0 = argmax p(D | 0) (1)
0

This maximum likelihood estimation, along with the method of moments, were two paradigms of estimation
that we have seen. As long as we can solve this, we could get a point estimate, and there are a lot of ways
to solve this. By assuming independence, we can decompose the probability term into a product of the
likelihoods of each sample, which we can hopefully solve analytically or with numerical optimizers. We can
even create confidence sets that give us some information about the uncertainty in our estimates. However,
there is an Achilles heel of Frequentist inference, as depicted in the following example.

Example 0.1 (Conflicting Results in Significance Tests)

Let 6 be the probability of a particular coin landing on heads, and suppose we want to test the
hypotheses

H0:9:1/2, H1:9>1/2 (2)

at a significance level of o = 0.05. Now suppose we observe the following sequence of flips:
heads, heads, heads, heads, heads, tails (5 heads, 1 tails)
To perform a frequentist hypothesis test, we must define a random variable to describe the data.
The proper way to do this depends on exactly which of the following two ways the experiment was
performed:
e Suppose that the experiment was “Flip six times and record the results.” In this case, the
random variable X counts the number of heads, and X ~ Binomial(6,6). The observed data
was x = 5, and the p-value of our hypothesis test is

p-value = Pp_y/2(X > 5) (3)
= Pp—1/2(X =5) + Pp=1/2(X = 6) (4)
6 1 7
—_ _— = —— = .1 . 3
o1+ o7 = 57 = 0109375 > 0.05 (5)

So we fail to reject Hy at o = 0.05.

e Suppose instead that the experiment was “Flip until we get tails.” In this case, the random
variable X counts the number of the flip on which the first tails occurs, and X ~ Geometric(1l —
). The observed data was z = 6, and the p-value of our hypothesis test is

p-value = Pp_y/5(X > 6) (6)
=1— Pp=y/2(X <6) (7)

5
=1—ZP0:1/2(X:93) (8)

1 1 1 1 1 1

=1 <2+4+8+16+32>320.03125<0.()5. (9)
So we reject Hy at a = 0.05.

The conclusions differ, which seems absurd. Moreover the p-values aren’t even close—one is 3.5 times

as large as the other. Essentially, the result of our hypothesis test depends on whether we would have

stopped flipping if we had gotten a tails sooner. In other words, the frequentist approach requires us

to specify what we would have done had the data been something that we already know it wasn’t.

Note that despite the different results, the likelihood for the actual value of x that was observed is the same
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for both experiments (up to a constant):

p(z]0) o 0°(1 — 6). (10)

A Bayesian approach would take the data into account only through this likelihood and would therefore be
guaranteed to provide the same answers regardless of which experiment was being performed. Therefore,
Bayesian modeling on the other hand treats the true 8 as intrinsically random. Therefore, we can “solve”
for € by completely characterizing its distribution given the data D. This is a much harder problem than
finding a point estimate, but we can relate this to the often computable likelihood using Bayes rule.

p(D | 6) p(0)

p(01 D)= "= (11)

Note that if we take the maximum of this, it is equivalent to finding

0= arggnaxp(D 1 0) p(6) (12)

which is called a mazimum a-posteriori (MAP) estimate and is similar to MLE, but with an extra term
p(0). This term, called the prior distribution, does not depend on the data and is usually thought of as an
initial guess for 6 before we see any data. Upon observing the data, our prior gets updated to the posterior
distribution p(6 | D) < p(D | 8)p(h). Since the posterior must integrate to 1, we have the normalizing
constant p(D), known as our marginal likelihood.

The general framework is very simple but there are two big questions.

1. How do we know which prior to put? In the beginning, we will work with some friendly priors—called
conjugate priors—that have nice analytic posteriors. In practice, this is an art.

2. How can we compute the normalizing constant p(D)? For very simple distributions, we can analytically
solve it, but in most cases, computing it is impossible. Therefore, we are only given some scaled version
of the posterior density. Fortunately, there are a range of Markov Chain Monte Carlo (MCMC)
samplers that remarkably only require these values to sample from the distributions. Therefore, we
use the following notation more often when calculating posteriors since the normalizing constant isn’t
as important as finding the shape of the posterior density.

Posterior oc Prior x Likelihood (13)

The MCMC techniques are covered in my sampling notes.

Once we have a distribution of ¢, we can do prediction or density estimation by naively using only the
posterior defined by our MAP estimate p(x | D) = p(x | 6). But for a full Bayesian treatment, we should
condition over the 6.

Definition 0.1 (Posterior Predictive Distribution)

The posterior predictive distribution is defined
p(w|D)= [ o] 6,D)p(60 | D)t (14

A lot of this is based off of [Hof09].
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1 Single Parameter Families

1.1 Conjugate Priors

As we always do, let’s start off with the simplest problems that we can solve analytically.
Example 1.1 (Uniform Prior, Binomial Likelihood, Beta Posterior)

The motivation behind the Beta distribution is that it satisfies conjugacy with a binomial likelihood.
That is, assume that we have some data x of N observations containing m successes and N —m
failures (note that this observation x was in a way "reduced" to the information of only the number
of successes m). We assume that there is some true success rate 6 (between 0 and 1, of course) coming
from these samples, and our job is to try and guess the true rate to the best of our abilities.

Before we even observe the data x, our initial guess of § might be modeled by the prior distribution
6 ~ Beta(a,b). Furthermore, the likelihood is clearly a binomial (since it represents the probability of
getting m successes out of N samples with fixed rate of success 6), so m |6 ~ Binomial(N, #). With
these conditions, we claim that the posterior is also a beta, since

p(6|m) o< p(6) p(m | 0)
x 0(171(1 o g)bfl . Gm(l o G)me
— 0a+m71(1 . 0)b+N7m71

Theorem 1.1 ()
We know

Eo[0] = Eo[Eo[0 | 2]] (15)
Varg[0] = E,[Varg[0 | z]] + Var,[Eg[0 | z]] (16)

The maximum likelihood framework gave point estimates for the parameters u and Y. Now we develop a
Bayesian treatment by introducing prior distributions over these parameters. Given a set of N D-dimensional
observations X = {x1,...,2,}, the likelihood function is given by (the unnormalized function of u):

X|,U,7 Hp l'n|,u‘7 - ( :)I-D/Q |Z‘1/2 pz < M)Tzil(xn - ,LL)) (17)

The likelihood function takes the form of the exponential of a quadratic form in . Thus, if we choose a
prior p(u) given by a Gaussian, it will be a conjugate distribution for this likelihood function. Taking our
prior distribution to be

P X) = N (1, 2 | po, Xo) (18)

The similarity of the symbols u, > with pg, X9 may be slightly confusing. We can think as such: u,X are
random variables that determine the parameters of some Gaussian distribution. But the values u, > are
uncertain, and their possible values with probabilities take the form of another distribution N (19, 30). The
posterior distribution is given by the familiar formula

P, 3| X) o p(X |, X) p(p, X) (19)

which is another Gaussian p(p|X) = N(p, X | pn,Xn). Let us place a few conditions for simplification.
Since every Gaussian density can be represented as a product of independent univariate Gaussians, we can
work with univariate Gaussians. Furthermore, let us assume that the true value of ¢ is known, so all we
have to do is find the posterior distribution of y using the prior density N (i | po, o2). We have our prior and
likelihood to be the following. Note that while the likelihood distribution is pretty much given, we have the
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flexibility to choose what our prior distribution is. We have only set the prior as a Gaussian simply because
it is a conjugate form and therefore will greatly simplify calculations.

1 1
p(,LL) = N(iu’ | IU(),O'S) = Wexp ( - 252 (:u‘ - ,L"O)z))
<1 = [T pten ) = 2)N/ﬁ)(Zz(m)

which gives a posterior p(u|X) = N (i | pn, 0%;) where

B o2 n NO'(%
oy = No2 —&—UQMO NU%—FUQMML
1 N
P B

OonN o) g

and pprr is the maximum likelihood solution for p given by the sample mean ppp = % 2521 Zp. These
values make sense. We can see that the mean of the posterior distribution py is a compromise between the
prior mean gy and maximum likelihood solution gipsr. If the number of observed data points NV = 0, then it
is simply the prior mean, but for N — oo, the posterior mean is given by the maximum likelihood solution
since the data “overpowers” the prior mean assumption.

Now, suppose that the mean of the Gaussian over the data is known and we wish to infer the variance. For
convenience, let us work with the precision A = 0—12 over the variance. The likelihood function for A is

N
p(X|X) = Hanm, oA 2exp (= 5 3 (e - ) (20)

n=1

Note that since this is a function of A, it behaves differently than the likelihood function of y, even though
they are of the same form. Since the likelihood function is proportional to the product of a power of A
and the exponential of a linear function of A, we must find a prior distribution p(\) with precisely these
proportional properties identical to that of the likelihood. Fortunately, the Gamma distribution satisfies
them, defined by

1
p(A|ag,bp) = Gamma(A | ag, by) = mbgo)\ao—l exp(—bpA) (21)
Using Bayes rule and multiplying gives the posterior density
P
p(A ] X) oc A% IAN/2 exp ( — boA — B Z(xn - ,u)2> (22)
n=1

which is indeed the density of a Gamma(\ |an, by) distribution, where

N
CLN:CL()-FE
N
1 N
bNZbo+§nz::1(xn—M) = by + QU]V[L

where 0%, is the maximum likelihood estimator of the variance. Now, suppose that both the mean and
precision are unknown. To find a conjugate prior, we consider the dependence of the likelihood function on
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wand .

ptnn =TT () on (-~ 2 w?)
9 \N

o<<)\1/2exp<—)\g>) exp (Auan—i n)

n=1
We now wish to identify a prior distribution p(u, A) that has the same functional dependence on p and A as

the likelihood function and that should therefore take the form

2.\ B
pp, \) x ()\1/2 exp ( — Ag)) exp (c)\u — d>\)
2

:exp(_ - ;)2) wzexp( (a- %)A)

where ¢,d, 5 are constants. Since we can always write p(u, A) = p(p| A)p(A), we can find p(p| ) and p(N)
by inspection. We have just shown that p(u| ) is a Gaussian whose precision is a linear function of A and
that p(\) is a gamma distribution, so the normalized prior takes the form

p(ps A) = N (| po, (BX) ™) Gamma() | a, b) (23)

which is called the Gaussian-Gamma distribution. Note that this is not simply the product of an
independent Gaussian prior over u and a gamma prior over \, because the precision of y is a linear function
of A. The extension of this to multivariate random variables is straightforward.

1.2 Exponential Family of Distributions

The probability distributions so far are contained within the exponential family of distributions, which
have important properties in common. The exponential family of distributions over € © C RP, given
parameters 7, is defined to be the set of distributions of the form

p(x|n) = h(z)g(n) exp (n"u(z)) (24)

where x may be a scalar or vector, discrete or continuous. Here, 1 are called the natural parameters of
the distribution, and u(z) is some function of z. The function g(n) can be interpreted as the normalizing
coefficient and therefore satisfies

g9(n) . h(z) exp (" u(z)) dz = 1 (25)

with the integration replaced by a summation if z is discrete.

Now, consider a set of iid data denoted by X = {z1,...,z,}, for which the likelihood function is given by

(X |n) ( H h(z,) ) N exp (nT EN: u(xn)> (26)

n=1

Setting the gradient of Inp(X |7) with respect to i to 0, we can the following condition to be satisfied by
the maximum likelihood estimator 7y/r:

—Vingnmr) u(xy,) (27)

Mz

n:l
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which can in principle be solved to obtain 75;7,. The solution for the maximum likelihood estimator depends
on the data only through ) w(x,), which is therefore called the sufficient statistic of this distribution.
Therefore, we do not need to store the entire data set itself but its sufficient statistic.

In general, for a given probability distribution p(X |7n), we can seek a prior that is conjugate to the likelihood
function, so that the posterior distribution has the same functional form as the prior. Given that the
likelihood function is in the exponential family, there exists a conjugate prior that can be written in the form

p(n) =p(n|x.v) = f(x,v)g(n)" exp (vn" x) (28)

where f(x,v) is a normalization coefficient, and g(n) is the same function as the one appearing in the
exponential family form of likelihood function. Indeed, multiplying this conjugate with the exponential
family likelihood gives

N
p(n|X, x;v) oc g(n)"* exp <77T < > () + VX)) (29)

7/



Bayesian Inference Muchang Bahng Spring 2025

2 Bias Variance Decomposition

Determination of the predictive distribution p(y|z) given data D is the goal of statistical inference, as we
have seen. That is, posterior p(y|x,D) tells us the distribution of y if we have a new data point x. But
after this inference step, we must look now at the decision step: we must determine a function h(z) that
deterministically predicts a value y, without predictions. That is, we must have some algorithm to make a
decision.

Let us zoom out for a better overview. Let D be our training data of N points. We can assume that each
point (x;,y;) € D was generated independently by a joint distribution p(z,y). If we were to get another data
point, we would just generate one from the density p(z,y). Usually, we have fixed input data x and knew
that the output y given « would be p(y |z). But if we loosen our constraint on x, we would get

p(z,y) = ply | x)p(x) (30)

which states that each data point in D is gotten by generating a value of x with probability p(z), and then
generating a y given this z. Let us also denote A as our machine learning algorithm, which we can interpret
as a function that takes in data D and outputs the hypothesis function hp.

A(D) = hp (31)

Then, given that the next new data point (z,y) is generated, we can set our test error, or loss/cost
function, of hp to be

L(hp, (z,9)) = [hp(z) —y]? (32)

This loss function basically calculates the inaccuracy of whatever hypothesis function hp we have on the
data (z,y), which in this case is the square of the residual. There can be other types of loss functions, but
we will consider the squares loss function for now. Given hp, we can also calculate the expected test error
by conditioning over all z,y drawn from P.

Expected Test Error given hp = E, , ~p[(hp(z) — y)*] = //(hp(l’) —y)?p(x,y) dydx (33)
xT

Y

However, note that we can treat the N data points D also as a random variable coming from the joint
distribution of N P’s. Therefore, we can take each possible dataset D, calculate hp = A(D) with our
algorithm, and average them out to get the expected hypothesis function h. We can interpret h as the "ideal
regressor" that we are trying to build, but with limited data D, we can only build hp that deviates from h.

h=Ep.p~[A(D)] = /D hpP(D) dD (34)

So, we can compute the expected error of the entire algorithm A by marginalizing over all x,y given hp and

marginalizing over all D. Remember that D ~ P¥ is our training data of N points, and (z,y) ~ P is our
(n + 1)th data point. Therefore, the expected test error of our algorithm for the (n + 1)th data point is

E.yymrmp (hp(@) — o) = /D / / hp(@) — 41 ple,y) p(D) dy dar dD (35)

The integral above looks quite intimidating, so let us decompose it. We just have do use a trick where we
subtract and add the same term h(z).

NE
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But I claim that the last term vanishes. It is easy to see why because

E@y),p [(ho(x) — h(z)) (h(z) —y)] = E(a: 0 [Ep [hD(Z) - 71(55)] (h(z) —y)]
(

Therefore, we can see that the expected value of the error of an algorithm consists of two terms: the variance
and the second term.

Eay),0 (hp(2) = y1*) = Equ )0 ([hp(2) = 1(2)]?) + Ea 0 ([h(2) - y]*) (36)

The second term is the expected value of the average prediction minus the y -value of the new point. Now,
we do the same trick: Let the expected value of y given x be 7j(z) = Ey | »( = [yp(y|x) dz. This function
7(x) is the ideal regressor predicting y from z. Then, we have

Evy [(h(@) =)*] = Bayy [((@) = 5(@) + (5(2) — 1)’
=E.y [(5(2) = 9)°] +Ea [ (h(2) = 5(2))°] 42 Bay [(h(2) - 5(2)) (5(2) — v)]

Noise Bias2

where the third term vanishes since

Eoy [(R(z) — 5(2)) (4(z) — y)] = Ex [Eyp [5(2) — 9] (R(z) — §(2))
=E, [(5(2) — Eypz [¥]) (h(z) — 5(2))]
=E, [(§(z) — §(z)) (h(z) — §())]
=E, [0]
=0

Therefore, the expected test error is precisely the sum of three things.

Evy |(ho(@) = 9)*| = Eup [ (hp(@) = h(@))?] + Evyy [(5(2) — 9)°] +E. | (A(2) — 5(@)) ]

Expected Test Error Variance Noise Bias?

To understand this term a bit deeper, recall the following: The function F(z), which outputs the expected
value of y given x, is the best possible regressor we can have. There are many different algorithms that
we can choose to approximate g(x), so let us choose one learning algorithm A. We just feed an arbitrary
dataset D to A, which outputs a hypothesis function hp. But this hypothesis function hp is really just an
approximation of the ideal hypothesis function h, which is the expectation of all hypotheses hp (i.e. the
hypothesis that A should generate when we feed it an infinite amount of data). So, by feeding D to A, it
generates a hypothesis function hp(x), which approximates h(z), which hopefully is a good estimate of 7j(x).

1. The difference between a generated hypothesis function hp(z) and the ideal hypothesis that it is trying
to estimate according to learning algorithm A is represented by the variance. The variance term tells
us how far each generated hypothesis hp deviates from the ideal h.

2. The difference between the ideal hypothesis h(x) (according to algorithm A) and the ideal regressor
in general y(x) is captured in the bias term. The bias term tells us how far our algorithm’s ideal
hypothesis deviates from the expectation of the conditional p(y|x).
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3. The noise term represents the difference between the true value of y and the best possible regressor
7(x). But since the best we can do is find the expectation of the conditional p(y | ), the deviation of the
true values y from the mean 7 is simply the noise. For example, if we have p(y|x) = J\/(y |wl ¢(z), e),
then the noise would simply be €. If the variance of € is large, the noise would be large. Therefore, the
same ideal regressor function g(z) would perform worse with a higher noise.

If we are comparing this to the throwing-darts analogy, we can imagine the ideal function 7(z) to be the
bull’s eye that we must hit. The different algorithms A represent different players throwing the darts. When
one algorithm (player) is chosen, their vision can be skewed (perhaps their glasses is off), leading them to
think that the target h(x) is somewhere else. If their target is far away from the bull’s eye (i.e. [h(z)—7(z)]?
is high), then their bias is high. Their skills in darts may just be bad, so even if their vision is good and they
have a good sense of where to hit (low bias), for each time they throw the dart (i.e. each time the regressor
function hp is generated from data), it may be very off from their ideal target h(x).

Therefore, if you are a data scientist and you find that your regression function is not accurate enough, it is
your job to find out whether your bias is too high, your variance is too high, or whether there is too much
noise, and fix the proper component. Generally, we would try to minimize this cost function, visualized
below.

Total Error

Variance

Optimum Model Complexity

Error

&

Model Complexity

Figure 1: Visualization of the bias-variance tradeoff showing how model complexity affects error components

10/ [13



Bayesian Inference Muchang Bahng Spring 2025

3 Hierarchical Modeling

Given a training data set D = (X,Y) comprised of N pairs of observations with corresponding target
variables {(z;,v:)}Y, (z; € RP y; € R), the goal is to predict the value of y for a new value of z. We first
construct a statistical model (more explained in next next subsection) by assuming that there exists some
function f(x) of some form such that the y;’s have been generated by inputting the z;’s into f, followed by
a random residual term. We assume that the data D has been sampled independently, but this may not
always be a justifiable assumption in practice. Under this model, which we denote M;, we further assume
that f can be parameterized by a vector 6, so therefore, we assume that

y=f(z,0) +¢, e~ Residual(B) (37)

where [ is some collection of parameters that determine the error function.

e The frequentist perspective reduces this problem to finding the value of  that maximizes the likelihood.

That is, we must find
N

0" = arg maxp(D|0) = arg max [ [ p(y: | :.0) (38)
i=1
and claiming that y = f(x,0*) is the function of best fit. This is a quite straightforward (hopefully
convex) optimization problem, which can be done in many ways (e.g. batch/sequential gradient descent,
solving normal equations, etc.).

e The Bayesian approach attempts to construct a distribution of the values of 6. Clearly, this vector
6 would be an element in some multidimensional Euclidean space, and we want to define a posterior
density p(0| D) across this space that tells us the probability of §. Using Bayes rule,

p(0|D) o< p(D]6) p(0) (39)

we see that we must define some prior distribution p(6) on . We can assume that this prior is defined
with some distribution
6 ~ Distg(y) (40)

where 7 is a collection of parameters on . Knowing this prior of 6 will allow us to get the posterior of
0| D. The not-so-complete Bayesian treatment would treat this v as a known constant. But note that
there is still uncertainty of whether 6 comes from Disty(y) for one value of «, compared to another
value of 7. This uncertainty requires us to treat v as now a hyperparameter, that is a parameter for
the distribution of a parameter, and this distribution of ~, which we can denote

7 ~ Dist, (&) (41)

is called a hyperprior. We can construct higher and higher level hyperpriors on top of this as much as
we want, which will lead to more flexibility in our model (but more computationally expensive). This
is known as hierarchical priors. Generally, we will only go up to the level of one hyperparameter.

Let us summarize how we would conduct the Bayesian method step by step. We first have to determine how
many levels of hierarchical priors we are accounting for. Say that we will treat £ as a constant, and consider
the parameter 6 along with its hyperparameter 7. Our goal is to compute the posterior p(6 | D).

1. Since there is uncertainty over the value of 6 depending on 7, we can marginalize over y to get

p(6]D) = / p(01D.7) plv | D) dy (42)

If the situation calls for it, we could also compute the posterior by doing Bayes rule first to get
p(0| D) < p(D|6) p(), but then we would have to calculate both p(D|8) and p(f) by marginalizing
each over 7, which would lead to complications.

11/ [13



Bayesian Inference Muchang Bahng Spring 2025

2. To calculate p(f|D,~), note that the formula for the posterior density of 8 given D is p(6|D)
p(D | 6)p(0), where p(f) is a density function of # and parameter vy, which means that p(8 | D) would
be a density function of # and parameter v. But since -y is fixed, the posterior

p(0|D,~) < p(D|0,7)p(0]7) (43)

is a density function of 6 with fixed constant . This can be easily calculated because the prior p(6|~)
is of distribution Disty(y) and the likelihood p(D|6,~) is the product of densities of y given fixed 6.

3. To calculate p(y| D), we first use Bayes rule to get

p(v|D) < p(D]7)p(y) (44)

This can be easily calculated because the prior p() is of distribution Dist., (§) of given £. The likelihood
can be marginalized over 6 to get

p(D ) = / p(D[6.7)p(8|) db (45)

where p(#|~) is a function of § with given parameter «y, and p(D | 6) is the product of the individual
likelihoods.

But remember that this was all assumed under model M;, so the posterior density p(6%|D) of the 6°
parameterizing our best-fit function is really

where we index the parameter of model M; to be #¢, with a superscript (since we may mistake subscript
indices to be the components of 6).
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