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1 Systems

Imagine a particle of mass m constrained to move along the x-axis, subject to some applied force F (x, t)
(time-dependent). In classical mechanics, we want to determine the position of the particle at any given
time t by finding the function x(t). How do we do this? We simply apply Newton’s second law.

F = ma (1)

and solve the ordinary differential equation (with some initial conditions), either analytically or numerically.
Once we have x(t), we can find other metrics of interest, such as the velocity v(t), kinetic energy T = 1

2mv
2,

or others. For conservative systems (the only kind we’ll consider, and fortunately the only kind that exists
at the microscopic level), the force can be expressed as the gradient of a potential energy function U(x).

1.1 Schrödingers Equation

Quantum mechanics approaches the same problem differently. Rather than looking for position function x(t),
we are looking for a wave function Ψ(x, t) of the particle, which we can get by solving the Schrödinger
equation.

Definition 1.1 (Schrödinger Equation)

The Schrödinger equation is defined

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ (2)

where ℏ is the reduced Planck’s constant, defined

ℏ =
h

2π
= 1.054573× 10−34Js (3)

Therefore, given suitable initial conditions Ψ(x, 0), the Schrödinger equation determines Ψ(x, t) for all
future time. Now let’s talk about this wave function and its physical interpretation, starting with Born’s
statistical interpretation. This says that the wavefunction Ψ(x, t) determines the probability of finding
th particle at point x at time t. That is, the probability density function of the particle’s position at time t
is given by

fX,t(x, t) = |Ψ(x, t)|2 (4)

Unfortunately, Schrödinger’s equation is a linear system, so the set of solutions to this equation forms a
vector space. So if Ψ is a solution, then cΨ is also a solution for all c ∈ C. This is a problem since it must
be normalized. This is why we have an extra condition that∫

|Ψ(x, t)|2 dx = 1 (5)

which means that the probability of finding a particle somewhere in the space X at a certain point t must
integrate to 1. This gives us a normalization condition, and any functions that have an integral of infinity
is not within our search space. Therefore, we’re really just trying to find a function in the L2 space of
integrable functions.

Definition 1.2 (Superposition)

Now the solutions of Schrodinger’s equation, as a linear PDE, forms a vector space,and so given two
solutions ψ1, ψ2, any linear combination of them (after normalization), known as a superposition, is
also a solution.

There’s two things that the reader may realize: First, it seems that multiple wavefunctions Ψ may
induce the same probability measure. It turns out that within this set of normalized wavefunctions, there
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is an equivalence class denoted by Ψ ∼ eiθΨ for all θ ∈ R, which means that |eiθΨ|2 = (eiθΨ)∗(eiθΨ) =
Ψ∗e−iθeiθΨ = |Ψ|2. This is a consequence of the fact that the probability of finding a particle at a certain
point is not affected by the phase of the wavefunction.

Definition 1.3 (Global Phase Factor)

Two wavefunctions are said to differ by a global phase factor iff they differ by a normalized complex
scalar eiθ.

For now, we can think of two wavefunctions that differ by a global phase factor as being the same. The
important distinction is the relative phase factor, which is the difference between two wavefunctions at a
certain point.

Definition 1.4 (Relative Phase)

Two wavefunctions are said to differ by a relative phase if they differ by a normalized complex
scalar eiθ(x) that is dependent on the position x.

Second, this normalization restriction may not be preserved in Shrodinger’s equation. Fortunately for
us, Schrödinger’s equation keeps this normalization condition as time passes. Let’s prove this.

Theorem 1.1 ()

Given a solution Ψ that has been normalized, the function will stay normalized as time passes.

Proof.

Let us take the time-derivative of the total probability and show that is is 0. We show that

d

dt

∫
|Ψ(x, t)|2 dx =

∫
∂

∂t
|Ψ(x, t)|2 dx (6)

and by the product rule we have

∂

∂t
|Ψ|2 =

∂

∂t
(Ψ∗Ψ) = Ψ∗ ∂Ψ

∂t
+
∂Ψ∗

∂t
Ψ (7)

We can take the complex conjugate of the Schrödinger equation to get

∂Ψ

∂t
=

iℏ
2m

∂2Ψ

∂x2
− i

ℏ
VΨ (8)

∂Ψ∗

∂t
= − iℏ

2m

∂2Ψ∗

∂x2
+
i

ℏ
VΨ∗ (9)

and substituting both equations into the product rule gives

∂

∂t
|Ψ|2 =

iℏ
2m

(
Ψ∗ ∂

2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ

)
=

∂

∂x

[
iℏ
2m

(
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)]
(10)

and now we can evaluate the integral to be

d

dt

∫
|Ψ(x, t)|2 dx =

iℏ
2m

(
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)∣∣∣∣+∞

−∞
(11)

which evaluates to 0 since Ψ must go to 0 as it is a probability density.

Now that we have settled on what a wavefunction is, we can now introduce the braket notation.
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1.2 Ket Notation

We can talk about another paradigm of representing the states of a system: as a ket. We can equivalently
say that the state of a system is represented by a normalized vector |ψ⟩ in the Hilbert space L2. Now it
seems that both ψ and |ψ⟩ both live in L2, so what is the difference between them? This is something that
is not constructed very rigorously in introductory quantum mechanics courses, so let’s try to settle this by
constructing |ψ⟩ from ψ.

Note that we have two spaces here: the function space L2 and the state space X. In 1939, Dirac wanted
to unify these 2 spaces in order to more easily work with them. He does this by first constructing some
Hilbert space H and identifying two mappings x ∈ X 7→ |x⟩ ∈ H and ψ ∈ L2 7→ |ψ⟩ ∈ H. The goal was to
be able to evaluate ψ(x) with an inner product ⟨x|ψ⟩ in H. Let’s talk about each construction separately:

1. To do this, note that ψ can be reduced to an uncountable sum of δ-functions.

ψ(x) =

∫
x∈X

ψ(x′)δx′(x) dx′ (12)

This is analogous to an uncountable sum of basis vector functions δx′ and their coefficients ψ(x′). Each
δx′ can be though of as an uncountably long vector

|δx′⟩ = (. . . , 0, . . . , 0, 1, 0, . . . , 0, . . .) (13)

where the 1 is in the x′ index, and each function is a vector

|ψ⟩ = (. . . ψ(0) . . . ψ(π) . . .) =

∫
x∈X

ψ(x) |δx⟩ dx (14)

Therefore, we have defined the mapping ψ 7→ |ψ⟩.

2. To define x 7→ |x⟩, we can also analogously say that each x ∈ X can also be represented as

|x⟩ = (. . . , 0, . . . , 0, 1, 0, . . . , 0, . . .) = |δx⟩ (15)

like an uncountable version of one-hot encoding (each real number gets mapped to its own dimension).
So,

|ψ⟩ =
∫
x∈X

ψ(x) |x⟩ dx (16)

Therefore, we can represent

⟨x|ψ⟩ = ⟨δx|ψ⟩ =
∫
x′∈X

ψ(x′) δx′(x) dx′ = ψ(x) (17)

We can verify that this is bilinear since

(ψ + ϕ)(x) = ⟨δx|ψ + ϕ⟩ = ⟨δx|ψ⟩+ ⟨δx|ϕ⟩ = ψ(x) + ψ(x) (18)

and
⟨δx + δy|ψ⟩ = ⟨δx|ψ⟩+ ⟨δy|ψ⟩ = ψ(x) + ψ(y) (19)

Note that in here δx + δy ̸= δx+y since we are not talking addition in the reals. Rather,

(δx + δy)(q) =

{
1 if x = q or y = q

0 if else
(20)
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1.3 Evolution

1.4 Composite Systems

2 Measurements

When we have a (classical or quantum mechanical) system, there is a configuration space M that describes
the complete state of the system. In classical mechanics, this is usually the space M = X × P where X is
the position and P is the momentum. In quantum mechanics, M = L2(X ) is the space of wavefunctions
defined over X .

Definition 2.1 (Observable in Classical Mechanics)

In classical mechanics, an observable is a function Q : M → R of some dynamical quantity that you
want to measure from the system.

Example 2.1 ()

Some examples are

1. The position of the vector is simply the x value of the tuple.

2. The kinetic energy is K(x, p, t) = 1
2mp

2.

3. The potential energy is U(x, p, t) = U(x), which is dependent only on x for conservative systems.

4. The Hamiltonian is defined as the total (kinetic plus potential) energy, defined H(x, p, t) =
1

2mp
2 + V (x).

In quantum mechanics, an observable is similar as in you want to define the specific type of quantity you
want to measure, but now this is probabilistic: we now have a random variable Q. Broadly speaking, if we
measure this observable, then it will cause Q to realize into some real number q.

Definition 2.2 (Observable in Quantum Mechanics)

However, there is a slight catch: X must be some. A quantum mechanical observable Q is a
real valued random variable, and its associated Hamiltonian (often called the observable) is a
Hermitian operator Q̂ : L2(X ) → L2(X ).

Two things to note: First, the output of the operator doesn’t necessarily have to be a wavefunction
(doesn’t need to be normalized, look at the position operator), but it should be normalizable.

Second, the Hermitian operator Ĥ is relevant since it turns out that its set of eigenvalues E = {E} of Q̂
determines the support of Q, and the set of eigenvectors {ψE} will determine the probability distribution of
Q, which will be elaborated soon. Note that the Hermitian constraint happens because the outcomes must
be real, since they are physical measurements that must be compared. Another technicality is that not all
Hermitian operators are proper observables in the infinite dimensional case, but this is a technicality and
can be ignored for now.

Example 2.2 ()

Some examples of quantum mechanical observables can be obtained by the canonical substitution

p→ ℏ
i

∂

∂x
(21)

from the classical observables.
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1. Position: Q̂ : ψ → xψ

2. Momentum: Q̂ : ψ → ∂
∂xψ

3. Kinetic energy: Q̂ : ψ → 1
2m

ℏ2

−1
∂2

∂x2ψ

4. Hamiltonian, or total energy, denoted with a special character Ĥ : ψ 7→ ℏ2

2m
∂2

∂x2 + V .

Now an observable simply describes the type of quantity that you want to measure. A measurement,
on the other hand, is an action on the system, as if we would measure with a ruler or an instrument, and
therefore is different from an observable. Once you do a measurement, the random variable Q realizes onto
a certain number q ∈ R, and the state ψ of the system is affected by a collapse of the wavefunction ψ into
the Delta function centered at q. Therefore, there are two evolutionary processes: the unitary evolution of
ψ according to Shrodinger’s equation and measurement operators.

Definition 2.3 (Measurement)

A measurement of a system in state ψ, with respect to observable Q, is defined by two things.

1. First, a measurement will cause a realization of Q into a certain real quantity E ∈ E . The
probability distribution of Q is determined by taking the state ψ, expanding it into a linear
combination of the eigenvectors

ψ =

∫
E∈E

αEψE dE (22)

and finally taking |αE |2 to be the probability (PMF for countable E and PDF for uncountable).

2. While q is realized, the wavefunction ψ will collapse into δq.

Now let’s put these things all together in one formal process.

1. You have a system in a state Ψ and want to measure it in some way. But measuring something does
not make sense without knowing what quantity you want to measure, so you choose an observable Q̂,
a Hermitian operator that corresponds to the value that you want to measure.

2. As soon as you choose this operator, by the spectral theorem it has some set of eigenvalues E ⊂ R and
corresponding orthonormal eigenfunctions {ψE}E∈E , which may be finite, countable, or uncountable.
It turns out that the measurement outcome must be one of these eigenvalues, and it is random, so
you’re essentially drawing from this set an E with some random variable Q. This makes E a probability
space with some measure µ.

3. To determine the actual probabilities of landing on each eigenvalue, you must first take the state Ψ
and expand it out into the eigenbasis.

Ψ =
∑
E∈E

αEψE or Ψ =

∫
E∈E

αEψE dE (23)

and the amplitude squared of the coefficients gives you the respective probabilities.

4. Once you measure and get result E at time t, the wavefunction ψ(t) collapses onto the delta at E
(similar to a realization of a random variable) and immediately begins to “smear” out again. If you
measure really soon after, you can still sample ψ(t+ δt) with approximately probability 1 at the point
you just measured, since the state is so concentrated there and therefore has a very high coefficient
corresponding to ψE when you expand it out.
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Example 2.3 (Measurement of the Position Observable)

We have said that given a wavefunction Ψ(t), the probability distribution of the particle’s position is
determined by the PDF at time t is pt(x) = |Ψ(x, t)|2. This is consistent with what we have described
here if we talk about the position observable. Say that I have a wavefunction Ψ. I want to measure
position with the observable Q̂ : ψ 7→ xψ. We first have to find the eigendecomposition of Q̂. It turns
out that the set of eigenfunctions is the set of all Dirac delta functions indexed by R.

δk(x) =

{
1 x = k

0 x ̸= k
(24)

and we can see that every k is an eignvalue with eigenfunction δk since

(Q̂δk)(x) = (kδk)(x) =

{
k x = k

0 x ̸= k
= kδk (25)

So the eigendecomposition is

Q̂ =
∑
x∈X

kδk ⊗ δ∗k or Q̂ =

∫
k∈R

kδk ⊗ δ∗k dx (26)

and so ψ can be decomposed as the uncountable linear combination of the eigenfunctions

ψ =
∑
x

αxδx =⇒ P(Q = x) = |αx|2 = |ψ(x)|2

ψ =

∫
x∈R

αxδx dx =⇒ pQ(x) = |αx|2 = |ψ(x)|2

Example 2.4 (Measurement of the Momentum Observable)

Say that I have a wavefunction ψ. I want to measure momentum with the observable Q and
corresponding operator Q̂ : ψ → ℏ

i
∂
∂xψ. We can verify that the spectrum consists of the eigen-

value/eigenfunction pair {
p, ψp(x) =

1√
2πℏ

eipx/ℏ
}

p∈R
(27)

and so

Q̂ =

∫
p∈R

pψp ⊗ ψ∗
p dp (28)

and so we can decompose

ψ =

∫
x∈R

αxψx dx =⇒ pQ(x) = |⟨ψx|ψ⟩|2 (29)

Some properties of the these measurements are as follows.

Exercise 2.1 ()

Compute the commutator of the position and momentum observables (we will need this for the
uncertainty principle). What does the result mean?
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2.1 Eigenvalues are just Symbols

Note that the probability measure of the measurement outcome is not dependent on the actual value of the
eigenvalues themselves. We can think of them as some sort of symbol that we use to index the eigenfunctions.
This is because the probability measure is determined by the coefficients of the expansion of the wavefunction
into the eigenbasis, and not the eigenvalues themselves. Sometimes, there are natural quantities where it
may be easy to assign the eigenvalues. The position operator in Rn gives a natural way since it has a natural
ordering, but the following example does not.

Example 2.5 (Position Measurement of Qubit)

Given a qubit in state |ψ⟩ = α |0⟩+ β |1⟩, let us measure it with two observables.

1. The observable
Q̂ = 1 · |0⟩ ⟨0|+ 0 · |1⟩ ⟨1| (30)

gives P(Q = 1) = |α|2 and P(Q = 0) = |β|2.

2. The observable
Q̂ = 1 · |0⟩ ⟨0|+ (−1) · |1⟩ ⟨1| (31)

gives P(Q = 1) = |α|2 and P(Q = −1) = |β|2.

Either way, these eigenvalues are just symbols that we use to index the eigenfunctions, and it does
not matter whether we use 0 or −1 to represent the collapse to the |1⟩ state. The state of the system
after measurement is also not affected, since it’s only dependent on the eigenvector, not the value.

Another observable is the spin, which was first found by the Stern-Gerlach experiment.

2.2 Basis Orthogonality

Now let’s talk a little about practical methodology. It turns out that in practice, preparing states of a
quantum system is quite hard, and in other cases we may not even know what the state can be. This can be
formulated in the language of density operators, but for now, let’s talk about the problem of distinguishing
quantum states. We start off with an exercise.

Exercise 2.2 (Neilson 2.58)

If the state vector |ψ⟩ is an eigenvector of the observable operator Q̂ with eigenvalue, say E, then
what can we say about the measurement outcome? Furthermore, what is the average observed value
of M , and the standard deviation?

Solution 2.1

The measurement outcome will always be E with probability 1.

Say that we are given some state that is one of {|ψ⟩i}ni=1 and we must construct some way to find which

state it comes from. We would like to find some measurement operator Q̂, measure the system, and deduce
which state it came from based on what value Q realized on. Can we do this perfectly? It turns out that we
can under certain conditions.

Theorem 2.1 (Distinguishing Quantum States)

Given a set of states {|ψ⟩i}ni=1, there exists a measurement operator that can distinguish them per-
fectly if and only if they are orthogonal. If they are not orthogonal, then there exists not measurement
operator.
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Proof.

Assume that the states are orthogonal. Then, we can construct the measurement operator

Q̂ =

n∑
i=1

λi |ψi⟩ ⟨ψi| (32)

and so if Q realizes onto λi, then we know that the state was |ψi⟩ with probability 1.

If they are not orthogonal, then we can’t construct an orthonormal basis and cannot construct a measure-
ment operator. Generally, if we have two non-orthogonal states |ψ⟩ and |ϕ⟩, say that we want to construct
Q̂ with just two eigenvectors |u⟩ , |v⟩ (the rest are irrelevant).

1. If none of its eigenvectors contain either |ψ⟩ or |ϕ⟩. Then

P(|u⟩ after | |ψ⟩ before) = |⟨u|ψ⟩|2 > 0 (33)

P(|v⟩ after | |ψ⟩ before) = |⟨v|ψ⟩|2 > 0 (34)

P(|u⟩ after | |ϕ⟩ before) = |⟨u|ϕ⟩|2 > 0 (35)

P(|v⟩ after | |ϕ⟩ before) = |⟨v|ϕ⟩|2 > 0 (36)

and so no matter whatever eigenvector that the system realizes onto, there is a nonzero probability of
it coming from either. So from using Bayes rule, we can’t deduce anything.

2. Therefore, we must choose the eigenvectors to be the states themselves. Since they are not orthogonal,
we can do it for one state, and let the eigenvectors be |ψ⟩ ,

∣∣ψ⊥〉.
P(|ψ⟩ after | |ψ⟩ before) = 1 (37)

P(
∣∣ψ⊥〉 after | |ψ⟩ before) = 0 (38)

P(|ψ⟩ after | |ϕ⟩ before) = |⟨ψ|ϕ⟩|2 (39)

P(
∣∣ψ⊥〉 after | |ϕ⟩ before) = 1− |⟨ψ|ϕ⟩|2 (40)

This is slightly better than before, since now when the system realizes onto
∣∣ψ⊥〉, we can actually

deduce where it came from. Using Bayes rule,

P(|ϕ⟩ bef |
∣∣ψ⊥〉 aft) =

P(
∣∣ψ⊥〉 aft | |ϕ⟩ bef)P(|ϕ⟩ bef)

P(|ψ⊥⟩ aft)
(41)

=
P(
∣∣ψ⊥〉 aft | |ϕ⟩ bef)P(|ϕ⟩ bef)

P(|ψ⊥⟩ aft | |ϕ⟩ bef)P(|ϕ⟩ bef) + P(|ψ⊥⟩ aft | |ψ⟩ bef)P(|ψ⟩ bef)
(42)

=
(1− |⟨ψ|ϕ⟩|2)P(|ϕ⟩ bef)

(1− |⟨ψ|ϕ⟩|2)P(|ϕ⟩ bef) + 0 · P(|ψ⟩ bef)
= 1 (43)

but the problem comes from when the state is initialized at |ϕ⟩. Then, we have

P(|ψ⟩ before | |ψ⟩ after) =
P(|ψ⟩ before, |ψ⟩ after)

P(|ψ⟩ after)
(44)

=
P(|ψ⟩ aft | |ψ⟩ bef)P(|ψ⟩ bef)

P(|ψ⟩ aft | |ψ⟩ bef)P(|ψ⟩ bef) + P(|ψ⟩ aft | |ϕ⟩ bef)P(|ϕ⟩ bef)
(45)

=
P(|ψ⟩ bef)

P(ψ bef) + |⟨ψ|ϕ⟩|2P(ϕ bef)
(46)

which is neither 0 nor 1, given that our prior distributions are non-degenerate.

Therefore, there is no perfect way to distinguish non-orthogonal states.
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2.3 Expectation and Variance of Observables

Sometimes, we are interested in specific statistical properties of these distributions of observables. In this
case, we can define the expectation and variance of the operators.

Definition 2.4 (Expectation of Operator)

The expectation value of the operator (as a function of time) is

⟨Q⟩(t) :=
∫

Ψ(x, t)∗(Q̂Ψ)(x, t) dx = ⟨Ψ|Q̂Ψ⟩(t) (47)

Since physical observables must be real (to see why, look here), it must be the case that

⟨Ψ|Q̂Ψ⟩ = ⟨Ψ|Q̂Ψ⟩∗ = ⟨Q̂Ψ|Ψ⟩ (48)

for all vectors |Ψ⟩, so it must follow that Q̂ must be a Hermitian operator.

Example 2.6 (Expectatation of Position Observable)

The expected position of the particle can be written

⟨x⟩ :=
∫

Ψ(x, t)∗(Q̂Ψ)(x, t) dx =

∫
Ψ(x, t)∗(xΨ)(x, t) dx =

∫
xΨ(x, t)∗Ψ(x, t) dx =

∫
x|Ψ(x, t)|2 dx

(49)
which is consistent with the original definition of expectation in probability.

Theorem 2.2 ()

The velocity of the expected value can be evaluated to:

d

dt
⟨x⟩ = − iℏ

m

∫
Ψ∗ ∂Ψ

∂x
dx (50)

Proof.

We can see that using integration by parts in the penultimate step,

d⟨x⟩
dt

=

∫
x
∂

∂t
|Ψ|2 dx (51)

=
iℏ
2m

∫
x
∂

∂x

(
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
(52)

= − iℏ
2m

∫ (
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx (53)

= − iℏ
m

∫
Ψ∗ ∂Ψ

∂x
dx (54)

Note that this does not mean that if we take a single particle and measure it multiple times, we will get
the expected value, since it will first evolve and second we will get the exact same measurement. Rather, if
we take an ensemble of particles all in the same state Ψ and measure them all at once, then the histogram
of measurements can be used as an unbiased estimator of ⟨x⟩. Therefore, we can define momentum as the
following.
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Definition 2.5 (Momentum)

The momentum is defined as

⟨p⟩ := m
d⟨x⟩
dt

= −iℏ
∫ (

Ψ∗ ∂Ψ

∂x

)
dx (55)

Example 2.7 (Expectation of Total Energy)

The expectation value of the total energy is

⟨H⟩ =
∫
ψ∗Ĥψ dx = E

∫
|ψ|2 dx = E (56)

Theorem 2.3 ()

Observable quantities, Q(x, p, t), are represented by Hermitian operators Q̂(x, ℏi
∂
∂x , t). The expecta-

tion value of Q in the state Ψ at time t is ⟨Ψ|Q̂Ψ⟩(t).

Definition 2.6 (Variance)

The variance of the observable Q is defined as

σ2
Q := ⟨Ψ|Q̂2Ψ⟩ − ⟨Ψ|Q̂Ψ⟩2 (57)

and the standard deviation is

σQ = ∆(Q) :=
√
σ2
Q (58)

2.4 Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle is often very misunderstood. It’s blown up in the popular literature
as some mysterious force of quantum mechanics, but under the things we have constructed, it is simply an
inequality no more sophisiticated than the Cauchy-Schwarz inequality. It is also not the same thing as the
observer effect.

Theorem 2.4 (Heisenberg Uncertainty Principle)

Suppose that Â and B̂ are Hermitian operators corresponding to observables A and B. Then, the
following inequality holds.

σAσB ≥ |⟨Ψ | [Â, B̂] | Ψ⟩|
2

(59)

Proof.

Given Â, B̂, by linearity we can write

|⟨Ψ | [Â, B̂] | Ψ⟩|2 + |⟨Ψ | {Â, B̂} | Ψ⟩|2 = 4|⟨Ψ | ÂB̂ | Ψ⟩|2 (60)

By Cauchy-Schwarz,
|⟨Ψ | {Â, B̂} | Ψ⟩|2 ≤ ⟨Ψ | Â2 | Ψ⟩⟨Ψ | B̂2 | Ψ⟩ (61)

and substituting this to the first equation gives us

|⟨Ψ | [Â, B̂] | Ψ⟩|2 ≤ 4⟨Ψ | Â2 | Ψ⟩⟨Ψ | B̂2 | Ψ⟩ (62)
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and substituting A = A− ⟨A⟩ and B = B − ⟨B⟩ gives us the desired result.

3 Time Independent Schrödinger Equation

Let’s revisit Shrodinger’s equation again.

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ (63)

If we pay attention to the right hand side, the operator acting on Ψ is really the Hamiltonian, and the left
hand side is also another linear operator, say A. Then, the equation reduces to a linear equation

Aψ = Ĥψ (64)

which we solve for ψ.
Let’s talk about solving the Schrödinger function itself by looking at the simple case when the Schrödinger

equation is time independent and we can thus solve it by the method of separation of variables. That is, we
look for solutions of the form

Ψ(x, t) = ψ(x)f(t) (65)

We have
∂Ψ

∂t
= ψ

df

∂t
,

∂2

∂x2
=
d2ψ

∂x2
=
d2ψ

dx2
f (66)

and the Schrödinger equation becomes

iℏψ
df

dt
= − ℏ2

2m

d2ψ

dx2
f + V ψf (67)

and dividing by f on both sides gives us

iℏ
1

f

df

dt
= − ℏ2

2m

1

ψ

d2ψ

dx2
+ V (68)

The LHS as a function of t alone and RHS as a function of x alone. This is only possible if both sides are
constant (since we can simply change t or x to get different values). Now setting the LHS as the constant
E, we can rewrite the partial differential equation as a system of two ODEs.

df

dt
= − iE

ℏ
f (69)

− ℏ2

2m

d2ψ

dx2
+ V ψ = Eψ (70)

The first equation is easy to solve since we can just integrate, which gives f(t) = e−iEt/ℏ. The second
equation is simply the Hamiltonian observable Ĥ acting on ψ, and so it reduces to an eigenvalue equation.

Ĥψ = Eψ (71)

Therefore, once we solve by getting the eigenfunction ψE corresponding to this eigenvalue E, the final solution
of the time-independent Shrodinger equation is of form

Ψ(x, t) = ψ(x)e−iEt/ℏ (72)
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Definition 3.1 (Stationary State)

A wavefunctionΨ(x, t) is a stationary state if its corresponding probability density does not depend
on t. That is,

|Ψ(x, t)|2 = |Ψ(x, t′)|2 for all t, t′ ∈ R (73)

This means that the expected position is always constant since the probability density function never
changes with time.

It turns out that solutions to separable equations all stationary states since we have

|Ψ(x, t)|2 = Ψ∗Ψ = ψ∗e+iEt/ℏψe−iEt/ℏ = |ψ(x)|2 (74)

4 Other

Definition 4.1 (Pauli Matrices)

The Pauli matrices are defined

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

Lemma 4.1 (Decomposition of Pauli Matrices)

The Pauli matrices are self-adjoint (Hermitian) and unitary.

1. They have the outer product decomposition of:

X = |1⟩ ⟨0|+ |0⟩ ⟨1| , Y = i |1⟩ ⟨0| − i |0⟩ ⟨1| , Z = |0⟩ ⟨0| − |1⟩ ⟨1|

2. They have an eigendecomposition of:

X = |+⟩ ⟨+| − |−⟩ ⟨−| , Y = i |+⟩ ⟨+| − i |−⟩ ⟨−| , Z = |0⟩ ⟨0| − |1⟩ ⟨1| (75)

Theorem 4.1 ()

These three matrices are very important because it turns out that

1

2
iX,

1

2
iY,

1

2
iZ

forms the basis for the Lie algebra u(2), which exponentiates to the unitary group U(2). Therefore,
by exponentiating each Pauli matrix, we have

e−iβX/2 = cos
β

2
I − i sin

β

2
X =

(
cos β

2 −i sin β
2

−i sin β
2 cos β

2

)
,

e−iγY/2 = cos
γ

2
I − i sin

γ

2
Y =

(
cos γ

2 − sin γ
2

sin γ
2 cos γ

2

)
,

e−iδZ/2 = cos
δ

2
I − i sin

δ

2
Z =

(
e−iδ/2 0

0 eiδ/2

)
.

and so every rotation matrix U ∈ U(2), which represents single qubit operations, can be decomposed
as the following products for real values of β, γ, δ:
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U =

(
cos β

2 −i sin β
2

−i sin β
2 cos β

2

)(
cos γ

2 − sin γ
2

sin γ
2 cos γ

2

)(
e−iδ/2 0

0 eiδ/2

)
.

Theorem 4.2 (Commutation and Anti-Commutation)

The Pauli matrices satisfy the following properties.

1. Commutation properties:

[X,Y ] = 2iZ, (76)

[Y,Z] = 2iX, (77)

[Z,X] = 2iY. (78)

2. Anticommutation properties:

{X,Y } = 0, (79)

{Y,Z} = 0, (80)

{Z,X} = 0. (81)
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