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1 Introduction
Ordinary differential equations model deterministic systems that can be solved exactly through integration.
For example, consider the population model determined by a linear DEQ

dN

dt
= α(t)N(t)

where N is the population size and α is a growth rate. Then, we can solve with analysis by integrating the
following with a change of basis

∫
1

N(t)

dN

dt
dt =

∫
α(t) dt ⇐⇒

∫
1

N
dN =

∫
α(t) dt

⇐⇒ N(t) = C exp

(∫
α(t) dt

)

This classical exponential growth model is not only continuous, but smooth, and it is this smoothness that
allows us to do calculus on it. But more realistic models will have noise, which can be modeled by a random
variable. Let α = r+ η, where r is the deterministic term and η is the random term. Then, integrating gives
us

dN

dt
=

(
r(t) + η(t)

)
N(t) ⇐⇒

∫
1

N

dN

dt
dt =

∫
r(t) dt+

∫
η(t) dt

The first integral can be evaluated, but classical calculus does not allow us to integrate the random part.
This is where stochastic calculus is needed. Now recall from probability that a random variable over a
probability space (Ω,F ,P) is simply a F-measurable function X. As some warm up exercises, let us prove
a few examples.

Example 1.1 (Class 1)

Example 1.2 (Class 2)

Definition 1.1 (Stochastic Process)

A stochastic process is a collection of random variables indexed by time {Xt}t∈T with their re-
spective measures ρt.

1. If T is countable (usually integers), then it is called a discrete-time stochastic process.
2. If T is continuous, then it is called a continuous-time stochastic process.

It is also good to think of it as a probability distribution over a space of paths.

We first start off with Markov processes. We can divide them into four kinds, depending on whether we are
using discrete or continuous time, and whether we are using discrete or continuous state space. Since process
over continuous state space is a natural generalization of those in a discrete one, we only distinguish between
the times. When talking about continuous time, there are additional operators we must introduce, such as
generators. Before we go any further, I would like to mention that these set of notes will write down the
transition matrices of Markov chains as left-stochastic matrices, as they are usually written in convention.
Therefore, a transition matrix would look like
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P =

P (1, 1) . . . P (d, 1)
...

. . .
...

P (1, d) . . . P (d, d)


where P (i, j) represents the probability of transition from state i to state j. Therefore, the rows must sum to
1. I use this notation because it is consistent with when we are working with Markov processes over general
measurable state spaces. Note that we will denote in math font general objects and operators (Xt, ρt, Ps, π)
and their realization as vectors and matrices in bold font (ρt,Ps,π).

1.1 Transitioning from Discrete to Continuous State Space
Let us remind ourselves of the definitions involving Markov chains over a discrete state space. Let Xt

be the state at time t. The discrete distribution of Xt can be represented as a column vector ρt, where
ρt(i) = P(Xt = i), and we can calculate the distribution of Xt+s as

ρTt+s = ρTt Ps

where Ps is a stochastic matrix. Note that representing a discrete measure on discrete S = {1, . . . , d} with
a vector really just a notational convenience for computations. We must properly distinguish the three:

1. the actual state Xt

2. the probability distribution ρt, which is a measure

3. the PMF vector ρt, which is just a convenient representation of ρt in the way that

ρt(i) = ρt({i}) = P(Xt = i)

That is, the ith element is just the measure on the singleton set {i} ∈ S = 2S .

The PMF vector ρt is really just a way to describe Xt and its distribution, which is redundant. Furthermore,
when we try to describe states Xt in general measure spaces (S,S), we cannot think of it as a vector anymore.
This is not a problem in even countable spaces since we can just assign ρt(i) = P(Xt = i) in a finite space,
but for uncountably infinite spaces we cannot do this. Therefore, we must have some measurable function
f : S → R that extracts this kind information from Xt. Therefore, we must really work with the following:

1. the actual state Xt : (Ω,F ,P) −→ (S,S)

2. the probability distribution ρt of the state Xt

3. a collection of S-measurable functions f : S −→ R that describes the state

At this point, we are not sure what f is since it seems quite arbitrary. But if we fix some A ∈ S and take
f = 1A, then 1A(Xt) encodes the information of whether Xt is in A or not. This is quite nice, since now we
can think of the PMF vector ρt as having components defined by the functions

ρt(i) = 1{i}(Xt) = P(Xt = i)

The following theorem formalizes this concept.

Theorem 1.1 ()

Two random variables X,Y : (Ω,F ,P) → (S,S) have the same distribution if

E[f(X)] = E[f(Y )]

for all F-measurable f : S → R, which can be seen by setting f = 1A for any A ∈ F .
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E[1A(X)] = E[1A(Y )] =⇒ P(X ∈ A) = P(Y ∈ A)

=⇒ PX(A) = PY (A)

and so the measure that X and Y pushes forward to (S,S) is precisely the same. This does not mean
that they are the same random variable.

Let’s talk more about f in the discrete case setting. We know that the discrete distributions are represented
by a column vector. It is true that every measurable function can be written as a linear combination of
simple (indicator) functions, and so in a discrete space S = {1, . . . , d}, we can write every f as

f =
∑
i∈S

fi1{i}

which outputs fi if its input is i. We can interpret it as a column vector f = (f1, . . . , fd)
T . We can see that

ρTt f =
(
ρt(1) . . . ρt(d)

)f1...
fd

 = E[f(Xt)]

and if f is any standard unit vector, say (1, 0, 0) with d = 3, then

ρTt f =
(
ρt(1) ρt(2) ρt(3)

)1
0
0

 = E[1{1}(Xt)] = P(Xt = 1)

Therefore, every time we compute E[f(Xt)], we can think of it in the discrete case as dotting ρt with a
function vector f to extract whatever we want from the vector Xt. And as we will find out later, the
linearity of the stochastic matrix Ps is analogous to the linearity of the Markov semigroup Ps.

Therefore, our Markov process is really just some stochastic process {Xt}t≥0 over some measurable space
(S,S) with the property that

P(Xt+s ∈ A | {Xr ∈ Br}r≤t) = P(Xt+s ∈ A | Xt ∈ Bt)

where A ∈ S, and this captures the discrete case by setting A = {j} ∈ 2S which gives

P(Xt+s = j | {Xr = ir}r≤t) = P(Xt+s = j | Xt = it)

This basically says that the probability that Xt+s lying in A is only dependent on its present state Xt ∈ Bt,
not the history {Xr ∈ Br}r≤t. In fact, by using the identity E[1A] = P(A) and setting f = 1A, we can
capture this effect for all measurable f : (S,S) → (R,R). Thus, the Markov property now looks like

E[f(Xt+s) | {Xr ∈ Br}r≤t] = E[f(Xt+s) | Xt ∈ Bt]

We don’t need to fix the Xr’s into sets Br’s and so we can write

E[f(Xt+s) | {Xr}r≤t] = E[f(Xt+s) | Xt]
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Now let’s talk about this Markov property. It is true that σ-algebra σ({Xr}r≤t) is bigger than σ(Xt); the
Markov property does not imply that they are the same size. Rather, we should interpret this as the extra
information introduced by the bigger σ({Xr}r≤) is irrelevant. This is analogous to trying to approximate
a function with a pointlessly large σ-algebra. For example, given a piecewise function X defined on the
unit interval Ω = [0, 1], let G be the σ-algebra generated by [0, 0.5), [0.5, 1] and H be that generated by
[0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1].

Then, we can see that

E[X | G] = E[X | H]

That is, the two random variables are exactly equal, even though H has more information than G. Note that
this is not the law of iterated expectations. This rule does not say that E[E[X | G]] = E[E[X | H]]; this law
is true regardless. Rather, this property is a special property of the function X, and therefore the Markov
property is a special property of the stochastic process {Xt}t≥0.

2 Discrete-Time Markov Processes

Definition 2.1 (DTMP)

Let (Ω,F ,P) be a probability space and (S,S) a measurable space. Then, a homogeneous discrete-
time Markov process is a stochastic process {Xn}n∈N which takes values in S (i.e. Xn : Ω → S)
satisfying the Markov property: for every bounded measurable f and n ≥ 1,

E[f(Xn+m) | {Xr}nr=0] = E[f(Xn+m) | Xn] = (Pmf)(Xn)

Since this is true for all n, this process is time-homogeneous. Note that both sides are random
variables, and it says that the best estimate of f(Xn+m) as a function of {Xr}nr=0 can be simply
expressed as as a function of the current Xn. Notice also that we have given a specific label Pmf to
the conditional expectation on the right hand side.

Since every Xn has distribution ρn, we can describe the entire distribution of Xn by "extracting" our desired
information f with

E[f(Xn)] =

∫
S

f ρn

Now, if we wanted to extract information f from Xn+m, we may not know its distribution ρn+m, but the
Markov property allows us to condition Xn (which we know the distribution of) by integrating over the
measure ρn, which we do know:
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E[f(Xn+m] = E[E[f(Xn+m) | Xn]] = E[(Pmf)(Xn)] =

∫
S

Pmf ρn

So, Pm is an operator that allows us to compute anything about the distribution of Xn+m from the measure
of Xn. That is, ρn+m(f) = ρn(Pmf).

E[f(Xn+m)] =

∫
S

f ρn+m =

∫
S

Pmf ρn = E[(Pmf)(Xn)]

for all measurable f . Let us now show how P1 = P realizes as a matrix in the discrete state space case.

Example 2.1 (Transition Operator as a Matrix in Discrete Space)

Given S = {1, . . . , d}, let us construct a column vector ρn representing the distribution of Xn. Then,

ρn+1(j) = P(Xn+1 = j)

= E[1{j}(Xn+1)]

= E[E[1{j}(Xn+1) | Xn]] = E[(P1{j})(Xn)]

=

∫
S

E[1{j}(Xn+1) | Xn] dρn =

∫
S

P1{j}(Xn) dρn

=
∑
i∈S

P[Xn+1 = j | Xn = i]P(Xn = i) =
∑
i∈S

P1{j}(i)P(Xn = i)

which can be summarized as

ρn+1(j) =

d∑
i=1

P1{j}(i)ρn(i) =

d∑
i=1

P(Xn+1 = j | Xn = i)ρn(i)

We can compactly organize the probabilities of these internode travel inside a d× d right stochastic
transition matrix

Pt =

P1{1}(1) . . . P1{1}(d)
...

. . .
...

P1{d}(1) . . . P1{d}(d)

 =

P(Xn+1 = 1 | Xn = 1) . . . P(Xn+1 = d | Xn = 1)
...

. . .
...

P(Xn+1 = 1 | Xn = d) . . . P(Xn+1 = d | Xn = d)


and compactly write the above equation as

ρTn+1 = ρTnPt

It immediately follows from computation that Pm is realized as Pm, the mth power of matrix P,
which can also be shown by the Chapman-Kolmogorov equation below.

Therefore, this linear operator Pm can be seen as analogous to the probability transition matrix Pm of a
Markov chain. We know that since they are matrices, from first glance we would guess that Pm is linear.
This is indeed trivial by linearity of conditional expectation.

Lemma 2.1 ()

Pm is a linear operator. That is, for α, β ∈ R, and bounded measurable functions f, g,

Pm(αf + βg) = αPmf + βPmg
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Proof.

By linearity of conditional expectation,

(Pm(αf + βg))(Xn) = E[(αf + βg)(Xn+m) | Xn]

= E[(αf)(Xn+m) | Xn] + E[(βg)(Xn+m) | Xn]

= α(Pf)(Xn) + β(Pg)(Xn)

We can now interpret linearity and the Markov property in the discrete space.

Example 2.2 (Markov Property in Discrete Space)

If we wanted to extract information from Xn with function f (i.e. compute E[f(Xn)]), we can
calculate

E[f(Xn)] = ρTnf =
(
ρn(1) . . . ρn(d)

)f1...
fd


Now, say that m units of time later, we want to extract information f from Xn+m by computing

E[f(Xn+m)] = ρTn+mf =
(
ρn+m(1) . . . ρn+m(d)

)f1...
fd


The problem is that we don’t know what the distribution of Xn+m is (i.e. don’t know ρn+m(i)), so
we get its expectation by conditioning it on Xn, which realizes as taking the expectation of a different
function Pmf with respect to ρn.

E[f(Xn+m)] = E[E[f(Xn+m) | Xn]] = E[(Pmf)(Xn)] =
(
ρn(1) . . . ρn(d)

)(Pmf)1
...

(Pmf)d


It turns out that this transformation f 7→ Pmf (from row vector to row vector) is linear, and so we
can interpret Pm as f that has been left-multiplied by some transformation matrix Pm.

(
ρn(1) . . . ρn(d)

)(Pmf)1
...

(Pmf)d

 =
(
ρn(1) . . . ρn(d)

) Pm


f1...
fd


︸ ︷︷ ︸

Pmf

It turns out that this Pm acts linearly on f through left multiplication, but we can also right-multiply
ρn by Pm to get the new distribution of Xn+m!

(
ρn(1) . . . ρn(d)

)(Pmf)1
...

(Pmf)d

 =
(
ρn(1) . . . ρn(d)

) Pm


︸ ︷︷ ︸

ρT
nPm=ρT

n+m

f1...
fd



Therefore, it turns out that the linearity of Pm on f implies linearity of it on the vector ρn.

Now focusing on f = 1A, we can define the following.
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Definition 2.2 (Transition Probability)

Let us have Markov process (Xn) with operator Pm. The function pm : S × S → R defined

pm(x,A) := Pm1A(x) = E[1A(Xn+m) | Xn = x] = P(Xn+m ∈ A | Xn = x)

is the transition probability, or transition kernel, of this chain. Note that
1. For each x ∈ S, A 7→ pm(x,A) is a probability measure on (S,S). This means that if we are in

some place x at time n, then the probability that we will land in some subset A ∈ S of S at
time n+m is pm(x,A).

2. For each A ∈ S, Pm1A = pm(·, A) is a measurable function.

p(x,A) =

∫
A

p(x, y) dy

Note that by the law of total probability, we must have

∫
S

dp(x) = 1 and
∫
S

dp(m)(x) = 1

Given that we have an initial distribution X0 ∼ µ0, we can see that the distribution X1 ∼ µ1 is defined as

P(X1 ∈ A1) =

∫
A0

P(X1 ∈ A1 | X0 = x)P(X0 = x) dx

=

∫
A0

p(x0, A1)µ0(dx0)

Note that in the matrix realization of the example above, it looks like Pm acts on the distribution ρn to get
a new distribution ρn+m, but this is not strictly the case since Pm is an operator on f . However, for the
sake of intuitiveness, we can interpret Pm in two ways:

1. It operates on the measure ρn by pushing it forward in time to get ρn+m. This operator is defined as

ρn 7→ ρn+m(·) = pm(Xn, ·)

which corresponds to the matrix multiplication ρTn 7→ ρTn+m = ρTnPm

2. It operates on the function f (at Xn+m) by pulling it back to Pmf that operates on Xn. This operation
f 7→ Pmf corresponds to the matrix multiplication f 7→ Pmf .

Either way, we can think of the order of operations as either (ρTnPm)f or ρTn(Pmf).

Just like stochastic transition matrices, we can also deduce a semigroup property of the collection (Pm)m∈N.

Lemma 2.2 (Chapman-Kolmogorov Equation)

Given the operator P , we have

Pm+k = PmPk

which indicates

pm+k(x,A) =

∫
S

pk(x, y) pm(y,A) dy
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Proof.

We can compute

Pm+kf(Xn) = E[f(Xn+m+k) | Xn]

= E[E[f(Xn+m+k) | Xn+m, Xn] | Xn]

= E[E[f(Xn+m+k) | Xn+m] | Xn]

= E[Pfk(Xn+m) | Xn]

= PmPkf(Xn)

Example 2.3 (Chapman-Kolmogorov in Discrete Space)

By conditioning on intermediate nodes, we can compute that

Pm+k(i, j) =
∑
s∈S

Pm(i, s)Pk(s, j) =⇒ Pm+k = PmPk

which can be seen by setting x = i and A = {j} ∈ 2S in the transition probability above.

Pm+k(i, j) = pm+k(i, {j}) =
∫
S

pm(i, {s}) pk(s, {j}) ds =
∑
s∈S

pm(i, {s}) pk(s, {j}) =
d∑
s=1

Pm(i, s)Pk(s, j)

and summing this for each entry gives Pm+k = PmPk. By setting k = 1, an immediate consequence
of this is that the m step transition probability P(Xn+m = j | Xn = i) is simply Pm(i, j), the kth
power of the transition matrix P.

We give one more property.

Lemma 2.3 (Conservativeness)

{Pm} satisfies

Pm1 = 1

for all m ≥ 0, where 1 = 1S is the constant function of 1.

Proof.

This is trivial since it is just the law of total probability. That is, 1S(Xn) = 1, and

(Pm1S)(Xn) = E[1S(Xn+m) | Xn]

and note that σ(Xn) is a finer σ-algebra than that generated by 1S(Xn+m), meaning that the right
hand side is equal to 1S(Xn+m) itself, which equals 1.

In discrete spaces, this property realizes into the fact that the transition matrix is stochastic, since the
constantly 1 function f =

∑
i∈S 1{i} realizes into the (1, . . . , 1) vector, and

 Pm


1

...
1

 =

1
...
1


if and only if Pm is stochastic. But this is quite redundant for discrete spaces since the fact that Pm acts
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on the indicator functions as Ps1{j}(i) = P(Xt+s = j | Xt = i) already implies that it should be stochastic
(by law of total probability).

We provide with a variety of examples.

Example 2.4 (Random Walks)

A random walk on the integers S = Z where a point has equal probability of moving right or left can
be modeled with the probability transition matrix.

P(i, j) = P(Xn+1 = j |Xn = i) =


1
2 j = i+ 1
1
2 j = i− 1

0 otherwise

This can be generalized to multiple dimensional random walks on graphs with probability function

P(i, j) =
1

deg(i)

where deg(i) is the number of adjacent nodes to node i. In this way, the point hops randomly from
node to node, and if the graph is connected, then the walker can visit any vertex in the graph.

Example 2.5 (Discrete Moran Model)

Consider a population of size N . Each individual is one of two types (say, red or blue). At each time
step, the system evolves in the following way: First, one of the individuals is chosen uniformly at
random to be eliminated from the population; and another individual is chosen uniformly at random
to produce one offspring identical to itself. These two choices are made independently. So, if a red
individual is chosen to reproduce, and a blue one is chosen for elimination, then the total number of
red particles increases by one and the number of blue particles decreases by one. If a red is chosen
for reproduction and a red is chosen for elimination, then there is no net change in the number of
reds and blues. Let Xn be the number of red individuals at time n. The transition matrix for this
chain is

P(j, i) =



i
N

(
N−i
N

)
j = i− 1, i ̸= 0(

N−i
N

)
i
N j = i+ 1, i ̸= N

1− 2

(
N−i
N

)
i
N j = i

0 otherwise

Note that the states Xn = 0 and Xn = N are absorbing states, which represents a phenomenon called
fixation.

2.1 Classification of States
2.1.1 Stopping Time and Strong Markov Property

Definition 2.3 (Stopping Time)

Given a stochastic process {Xn}, a nonnegative integer random variable T is called a stopping time
if for all integers k ≥ 0, T ≤ k depends only on X0, . . . , Xk.
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Example 2.6 (Coin Toss)

Let {Xn} be a stochastic process with Xn −Xn−1 be iid standard Gaussians, with X0 = 0. Then,
1. Let T = min{n ≥ 1 | Xn > 10} be the first time that we surpass 10. This is a stopping time

since

P(T = k) = P(X0 ≤ 10, X1 ≤ 10, . . . , Xk−1 ≤ 10, Xk > 10)

2. Let T = min{n ≥ 1 | Xn+1−Xn < 0} be the time of the first peak. This is not a stopping time
because you can’t determine whether we have peaked at time k by looking at the Xn’s up to k.
You need information on Xn+1.

3. Let T = min{n ≥ 1 | Xn −Xn−1 < 0} be the first time we have gone down from a peak. This
is a stopping time since

P(T = k) = P(X0 < X1 < X2 < . . . < Xk−1 > Xk)

Definition 2.4 (Time of Return)

Given a stochastic process, let the stopping time

TA := min{n ≥ 1 | Xn ∈ A}

be the random variable defined as the time of first return to A (being there at time t = 0 doesn’t
count). Let Let T 1

A = TA and for k ≥ 2,

T kA := min{n > T k−1
A | Xn ∈ A}

be the stopping time of the kth return to A.

Since stopping at time k depends only on the values X0, . . . , Xk, and in a Markov chain the distribution
of the future only depends on the past through the current state, it should not be hard to believe that the
Markov property holds at stopping times.

Theorem 2.1 (Strong Markov Property)

Suppose T is a stopping time. Then, for natural k ≥ 1,

P(XT+k = j | XT = i, . . . ,X0 = i) = P(Xk = j | X0 = i)

2.1.2 Irreducibility

Definition 2.5 (Closed Set, Absorbing State)

A set A ⊂ S is closed if it is impossible to get out.

P(Xn+1 ∈ A | Xn ∈ A) = 1

If A = {i} is a singleton set in some discrete state space, then i is said to be an absorbing state.

P(Xn+1 ̸= i | Xn = i) = 0
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Definition 2.6 (Recurrence, Transience)

A state x ∈ S is called recurrent if

ρxx = P(Tx <∞ | X0 ∈ A) = 1

i.e. if the chain returns to x infinitely many times. x is said to be transient if ρxx < 1, and so
eventually the Markov chain does not find its way back to x ever again.

Definition 2.7 (Communication)

We say that x ∈ S communicates with y ∈ S, denoted x→ y, if

ρxy := P(Ty <∞ | X0 = y) > 0

That is, there is a positive probability that we will jump from x to y in a finite amount of steps. We
can also see this as there existing an m > 0 such that P(Xm = y | X0 = x)pm(x, y) > 0.

Lemma 2.4 ()

The following hold.
1. If x→ y and y → z, then x→ z.
2. If ρxy > 0 but ρyx = 0, then x is transient.
3. If x is recurrent and ρxy > 0, then ρyx = 1.

Definition 2.8 (Irreducible Set)

A set B ⊂ S is called irreducible if for all i, j ∈ B, i communicates with j.

Theorem 2.2 ()

If C is a finite closed and irreducible set, then all states in C are recurrent.

Theorem 2.3 (Decomposition)

If the state space S is finite, then S can be written as a disjoint union

T ∪R1 ∪ . . . ∪Rk
where T is a set of transient states and Ri are closed irreducible sets of recurrent states.

Lemma 2.5 ()

If x is recurrent and x→ y, then y is recurrent.

Lemma 2.6 ()

In a finite closed set there has to be at least one recurrent state.
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2.1.3 Periodicity

Definition 2.9 (Period)

For any state x ∈ S, the period of x is defined to be

d(x) ≡ gcd{n ≥ 1 | P (n)(x, x) > 0}

Lemma 2.7 ()

If p(x, x) > 0 (not ρxx > 0!), then x has period 1.

Theorem 2.4 ()

If two states x and y communicate, then they must have the same period

d(x) = d(y)

It naturally follows that if B ⊂ S is irreducible, then all states must have the same period.

Definition 2.10 ()

If an irreducible chain has period 1, the chain is said to be aperiodic. Otherwise, the chain is periodic
with period d > 1.

2.2 Stationary Measures
Recall that a discrete time Markov process (Xn)n∈N evolves, and this evolution can be described by the
sequence of measures (ρn)n≥0 for each Xn. If we would like to measure Xn+m with function f , we can
calculate E[f(Xn+m)] = Eρn+m

[f ], but we don’t know ρn+m. Fortunately, we can "pull back" the f to
compute the equivalent

Eρn+m
[f ] = E[f(Xn+m)] = E[E[f(Xn+m) | Xn]] = E[Pmf(Xn)] = Eρn [Pmf ]

which essentially measuresXn+m with f by measuringXn with Pmf . Now, we want to construct a stationary
measure µ that captures the fact that if a certain state Xn ∼ ρn = µ, then the measure of future Xn+m ∼
ρn+m = µ also. If µ is stationary, then both ρn+m = ρn = µ, and this is equivalent to

Eµ[f ] = Eµ[Pmf ]

for all measurable f and m ≥ 0. This will be the definition that we will work with. To help with the
interpretation, we can restrict the case to f = 1A to get P(Xn ∈ A) = P(Xn+m ∈ A) for all A ∈ S, which
means that the probability of Xn+m realizing in A is equal to the probability of Xn realizing in A. In
summary, stationary measures describe the equilibrium or steady-state behavior of the Markov process.

Definition 2.11 (Stationary Measure)

A probability measure µ is called stationary or invariant if

Eµ[f ] = Eµ[Pmf ], conventionally written as µ(f) = µ(Pmf)

for all m ≥ 0 and bounded measurable f . This is a property of the measure.
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To give a pictorial interpretation, imagine an initial distribution X0 ∼ ρ0 as some amount of sand placed on
the state space S (either as a continuous mass or mounds on discrete nodes). After one step, the distribution
will evolve to X1 ∼ ρ1, where a different mound of sand will form on S. If ρ0 = µ, then the flow of sand
between the nodes will balance each other out, and we still have the same amount of sand ρ1 = µ after each
step. The discrete case is simpler, since we can just imagine there being π(i) of sand at node i, and P(i, j)
of its proportion of sand flowing from node i to j at each step. Therefore, all the sand flowing out of i, which
is

∑d
j=1 P (i, j)π(i) = 1, balances out with the flow of sand into i, which is

∑d
j=1 P (j, i)π(j).

1 =

d∑
i=1

P (i, j)π(i) =

d∑
j=1

P (j, i)π(j)

and doing this for all i realizes into the matrix equation π = πP.

Example 2.7 (Stationary Distribution in Discrete Space)

Given discrete state space S = {1, . . . , d}, our stationary measure µ can be represented by the all
familiar vector

π =
(
π(1) . . . π(d)

)
=

(
µ({1}) . . . µ({d})

)
Given the PMF vectors ρn = π and ρn+m = π and some measurable function f = (f1, . . . , fd)

T , the
stationary distribution property says that

E[f(Xn+s)] = E[(Pmf)(Xn)] ⇐⇒ πf = πPmf

which means that Pmf will act on π the same way that f does (though Pmf ̸= f). We can also
interpret π as the eigenvector of P with eigenvalue 1, so that it is invariant.

Example 2.8 (Two Node System)

Let us have a two node system with nodes labeled L and R. That is, S = {L,R}. Consider a chain
on this state space with transition probability matrix.

P =

(
1− a a
b 1− b

)
which can be visualized in the following diagram below.

RL1-a

a

1-b

b

Then, the stationary distribution is

π =
( b

a+ b
,

a

a+ b

)
Notice that if a = b = 0, then this definition is ill-defined, and any probability distribution is invariant
since P = I2, the identity matrix.

This is also stationary since with certain conditions, the limiting behavior of the chain converges to π, but
we will prove that later.
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Definition 2.12 (Doubly Stochastic Chains)

A transition matrix P is said to be doubly stochastic if its columns also sum to 1.

Theorem 2.5 ()

Given a Markov chain with state space S = {1, . . . , d}, its transition probability matrix P is doubly
stochastic if and only if its stationary distribution is the uniform distribution

π =

(
1

d
,
1

d
, . . . ,

1

d

)

Proof.

We prove the only if part. Let π(i) = 1/N for all i = 1, . . . , N . Then, for j = 1, . . . , N ,

(πP)(i) =

N∑
j=1

π(j)P(j, i) =
1

N

N∑
j=1

P(j, i) =
1

N
= π(i)

The if part is very similar.

2.2.1 Uniqueness

TBD TBD

2.2.2 Reversed Markov Process

From now, given the state space (S,S) we can put a measure µ on it to get a measure space (S,S, µ). The
Banach space of all µ-measurable functions f : (S,S, µ) → (R,R) (i.e. for every Borel B ∈ R, f−1(B) ∈ S)
will be denoted Lp(µ), equipped with the norm

||f ||Lp(µ) := Eµ[fp]1/p =
(∫

S

|f |p dµ
)1/p

If p = 2, then we can define the inner product

⟨f, g⟩µ := Eµ[fg] =
∫
S

fg dµ

Lemma 2.8 (Contraction of Stationary Measure)

Let µ be a stationary measure. Then,

||Ptf ||Lp(µ) ≥ ||f ||Lp(µ) = Eµ[fp]1/p

Now, we can construct reversed Markov processes.

Definition 2.13 (Reversed Markov Process)

Let {Xn}Nn=0 be a discrete time Markov process with transition operator P = P1 (and semigroup
(Pm = Pm)) and stationary distribution µ. Then, fix N and let Yn = XN−n. Then, Yn is a discrete
time Markov process with the dual transition operator P ∗, the adjoint of P satisfying

⟨f, Pg⟩µ = ⟨P ∗f, g⟩µ
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for all bounded measurable f, g ∈ L2(µ).

Though we have given the reversed Markov process as a definition above, we can prove that this satisfies the
Markov property.

Proof.

We can see how this definition realizes in a discrete space.

Example 2.9 ()

Given S = {1, . . . , d} and function vectors f ,g,

⟨f, g⟩µ =

∫
S

fgdµ =

d∑
i=1

figiπ(i)

and by definition of the adjoint, we must have

⟨f, Pg⟩µ =

d∑
i=1

fi(Pg)iπ(i) =

d∑
i=1

fi

( d∑
j=1

P(i, j)gj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

P∗(i, j)fj

)
π(i) =

d∑
i=1

(P∗f)i gi π(i) = ⟨P ∗f, g⟩µ

A bit of computation will show us that

P∗(i, j) =
P(j, i)π(j)

π(i)

and we can indeed check that

⟨P ∗f, g⟩µ =

d∑
i=1

gi

( d∑
j=1

P∗(i, j)fj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

fj
P(j, i)π(j)

π(i)

)
π(i)

=

d∑
j=1

d∑
i=1

gi fjP(j, i)π(j)

=

d∑
j=1

fj

( d∑
i=1

giP(j, i)

)
π(j)

=

d∑
j=1

fj(Pg)jπ(j) = ⟨f, Pg⟩µ

Note that P∗ also satisfies P∗(i, j) ≥ 0 and by definition of the stationary distribution π,

d∑
j=1

P∗(i, j) =

d∑
j=1

P(j, i)π(j)

π(i)
=

1

π(i)

d∑
j=1

P(j, i)π(j) =
π(i)

π(i)
= 1
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Note that the transition probability is computed using Bayes rule

P∗(i, j) = P(Ym+1 = j | Ym = i)

=
P(Ym = i | Ym+1 = j)P(Ym+1 = j)

P(Ym = i)

=
P(Xn−m = i | Xn−m−1 = j)P(Xn−m−1 = j)

P(Xn−m = i)

=
P(j, i)π(j)

π(i)

and {Ym} also satisfies the Markov property.

P(Ym+1 = j | Ym = i, Ym−1 = im−1, . . . , Y0 = i0)

=
P(Y0 = i0, . . . , Ym−1 = im−1, Ym = i, Ym+1 = j)

P(Y0 = i0, . . . , Ym−1 = im−1, Ym = i)

=
P(Xn = i0, . . . , Xm−n+1 = im−1, Xn−m = i,Xn−m−1 = j)

P(Xn = i0, . . . , Xm−n+1 = im−1, Xn−m = i)

=
P(Xn = i0, ., Xm−n+1 = im−1 | Xn−m = i,Xn−m−1 = j)P(Xn−m = i | Xn−m−1 = j)P(Xn−m−1 = j)

P(Xn = i0, . . . , Xm−n+1 = im−1 | Xn−m = i)P(Xn−m = i)

=
P(Xn = i0, . . . , Xm−n+1 = im−1 | Xn−m = i)p(j, i)π(j)

P(Xn = i0, . . . , Xm−n+1 = im−1 | Xn−m = i)p(i)

=
p(j, i)π(j)

p(i)

Thus, {Ym} is a Markov chain with the indicated transition probability.

2.3 Reversibility (Detailed Balance)
Note that reversibility of a Markov process and a reversed Markov process are two entirely different things.
There is always a reveresed Markov process, but the fact that it is reversible is a much stronger condition.

Definition 2.14 (Reversibility)

The Markov semigroup {Pm} with stationary measure µ is called reversible (or in the physics
literature, is said to satisfy detailed balance) if Pm is self-adjoint for every f, g,∈ L2(µ). That is,

⟨f, Pmg⟩µ = ⟨Pmf, g⟩µ
By the properties of the adjoint and the Chapman-Kolmogorov equation, we only need to check if P
is adjoint.

Note that if the Markov property is reversible, then assuming X0 ∼ µ, then

⟨Pmf, g⟩µ = ⟨f, Pmg⟩µ = E[f(Xn)E[g(Xn+m) | Xn]]

= E[f(Xn) g(Xn+m)] = E[E[f(Xn) | Xn+m)] g(Xn+m]

for every f, g ∈ L2(µ). So that in particular,

Pmf(x) = E[f(Xn+m | Xn = x] = E[f(Xn) | Xn+m = x]
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Example 2.10 (Detailed Balance in Finite State Space)

We know that if P is self adjoint, then its transition probability matrix will satisfy

P(i, j) =
P(j, i)π(j)

π(i)
=⇒ P(j, i)π(j) = P(i, j)π(i)

which is the familiar detailed balance condition that we are used to. To see that this is a stronger
condition than Pπ = π, we sum over j on each side to get∑

j

P(i, j)π(i) = π(i)
∑
j

P(i, j) = π(j)

Remember that we could interpret π(i) as the amount of water at x, and we send P(j, i)π(i) water
from node i to j in one step. The detailed balance condition tells us that the amount of sand going
from i to j in one step is exactly balanced by the amount going back from j to i. In contrast, the
condition πP = π says that after all the transfers are made, the amount of water that ends up at
each node is the same as the amount there.

Many chains do not have stationary distributions that satisfy the detailed balance condition.

Example 2.11 ()

Consider the chain with

P =

.5 .5 0
.3 .1 .6
.2 .4 .4


There is no stationary distribution with detailed balance since π(1)π(1, 3) = 0 but P(1, 3) > 0 so we
must have π(3) = 0. But this would imply that π(3)P(3, i) = π(i)P(i, 3) for all i so we conclude all
π(i) = 0, which doesn’t make sense. In fact, the stationary distribution is (1/3, 1/3, 1/3) since P is
doubly stochastic.

2.3.1 Metropolis-Hastings Algorithm

A huge application of Markov chains are in monte carlo algorithms, specifically the Metropolis-Hastings.
We begin with a Markov chain with transition probability q(x, y) that is the proposed jump distribution. A
move is accepted with probability

r(x, y) = min

{
π(y)q(y, x)

π(x)q(x, y)
, 1

}
so the transition probability becomes

p(x, y) = q(x, y)r(x, y)

Why do we do this? Multiplying by r guarantees that π now satisfies detailed balance under p. Without
loss of generality, we can assume π(y)q(y, x) > π(x)q(x, y), and so we have

π(x)p(x, y) = π(x)q(x, y) 1

π(y)p(y, x) = π(y)q(y, x)
π(x)q(x, y)

π(y)q(y, x)
= π(x)q(x, y)

which satisfies detailed balance.
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2.3.2 Kolmogorov Cycle Condition

Let us take a motivating example.

Example 2.12 ()

Consider the chain with transition probability

p =

1− (a+ d) a d
e 1− (b+ e) b
c f 1− (c+ f)


and suppose that all entries are positive. To satisfy detailed balance, we must have π(x)p(x, y) =
π(y)p(y, x) for all x, y. So we must have

eπ(2) = aπ(1) fπ(3) = bπ(2) dπ(1) = cπ(3)

Multiplying the three equations gives abc = def , or in other words,

p(1, 2) p(2, 3) p(3, 1)

p(2, 1) p(3, 2) p(1, 3)
=
abc

def
= 1

Definition 2.15 (Kolmogorov Cycle Condition)

Given a finite irreducible Markov chain with state space S. We say that the cycle condition is
satisfied if given a cycle of states x0, x1, . . . , xn = x0 with p(xi−1, xi) > 0 for 1 ≤ i ≤ n, we have

n∏
i=1

p(xi−1, xi) =

n∏
i=1

p(xi, xi−1)

Theorem 2.6 ()

Given a Markov chain S with transition probability p, there exists a stationary distribution π that
satisfies detailed balance if and only if the cycle condition holds.

2.4 Ergodicity
Now, we want to talk about "well-behaved" Markov processes that have a limiting distribution that is the
stationary measure, i.e. the process will eventually end up in its steady state ρn → µ as n→ +∞ even if it
is not started there. That is, given some fixed initial condition X0 = x, is it true that

E[f(Xn) | X0 = x] → Eµ[f ] as n→ ∞

Definition 2.16 (Ergodicity)

The Markov semigroup (Pn) is called ergodic if

Pnf → µ(f) = Eµ[f ]

as n → +∞ for every f ∈ L2(µ) (i.e. converges to the constant function µf = µ(f)). That is, if
we would like to measure Xn ∼ ρn with f , then far enough in time this measurement converges to
measuring X ∼ µ with f . Since this applies to all f (think f = 1A), we can determine that ρn → µ
as n→ +∞.
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The following theorem determines whether a chain is ergodic, but note that we don’t know anything about
the rate of convergence to the stationary measure.

Theorem 2.7 ()

If Markov process {Xn} with stationary measure µ and semigroup (Pn) is irreducible, then (Pn) is
ergodic.

Theorem 2.8 ()

Suppose |S| <∞. If the chain is irreducible and all states positive recurrnent, then there always exists
a unique stationary distribution π. If the chain is also aperiodic, then for any initial distribution ν,

lim
k→∞

νP k = π

Hence

lim
k→∞

P (k)(x, y) = π(y)

for all x, y ∈ S. Furthermore, for any measurable function f : S −→ R, the limit

lim
N→∞

1

N

N∑
n=1

f(Xn) =
∑
x∈S

f(x)π(x) = E
(
f(x)

)
holds with probability 1. In particular, the limit does not depend on the initial distribution.

Proof.

The Frobenius Extension to Perron’s theorem (Linear Algebra, Theorem 7.31) combined with its
applications to stochastic matrices (Linear Algebra, Theorem 7.30) proves this statement.

The next result describes the limiting fraction of time we spend in each state.

Theorem 2.9 (Asymptotic Frequency)

Suppose we have a finite Markov chain with p irreducible and all states recurrent. Then, let

Nn(y) =

n∑
i=1

1Xi=y

be the number of visits to y up to time n. Then,

Nn(y)

n
→ 1

Ey[Ty]
If the chain is aperiodic, then we also have

π(y) =
1

Ey[Ty]

Theorem 2.10 ()

Suppose that a chain is irreducible and there exists stationary distribution π. Then,
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1

n

n∑
m=1

pm(x, y) → π(y)

Thus while the sequence pm(x, y) will not converge in the periodic case, the average of the first n
values will.

3 Poisson Processes

3.1 Exponential Distribution
Let us do some review. The exponential distirbution of rate λ is a random variable T ∼ Exponential(λ)
with CDF

FT (t) = P(T ≤ t) = 1− e−λt

and the PDF

fT (t) =

{
λe−λt t ≥ 0

0 t < 0

We have

E[T ] =
1

λ
, Var(T ) =

1

λ2

Lemma 3.1 (Memoryless Property)

The Exp(λ) distribution has the property that for all t, s ≥ 0,

P(W > t+ s |W > t) = P(W > s)

which is called the memoryless property. We can interpret this in the following way. Let W be
the time you have to wait for the first arrival. Given that you already waited t units of time, the
probability that you have the wait s additional units of time is just the probability that you wait at
least s from the beginning. That is, knowing that t units of time have elapsed does not affect the
distribution of the remaining waiting time.

Theorem 3.1 ()

Let W be a continuously distributed random variable. Then W ∼ Exp(λ) for some λ > 0 if and only
if W satisfies the memoryless property.

Theorem 3.2 ()

Let Ti ∼ Exponential(λi) for i = 1, . . . n. Then,

min{T1, . . . , Tn} ∼ Exponential(λ1 + . . .+ λn)

and the random variable I which takes the index of min{T1, . . . , Tn} has the PMF

P(I = i) =
λi

λ1 + . . .+ λn
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3.2 Defining the Poisson Process
We first describe a limiting behavior of binomial random variables.

Theorem 3.3 (Poisson Limit Theorem)

Let Xn ∼ Bernoulli(n, pn), where {pn}n∈N is a sequence of reals in [0, 1] such that

lim
n→∞

npn = λ

Letting Y ∼ Poisson(λ)

Xn
D−→ Y

That is, the CDFs, and since this is a discrete distribution, the PMFs, converge.

Proof.

We will show that limn→∞ P(Xn = k) = P(Y = k), which shows that the CDFs converge and therefore
convergence in distribution.

lim
n→∞

P(Xn = k) = lim
n→∞

(
n

k

)
pkn(1− pn)

k

= lim
n→∞

n(n− 1) . . . (n− k + 1)

k!

(
λ

n

)k(
1− λ

n

)n−k
= lim
n→∞

nk +O(nk−1)

k!

λk

nk

(
1− λ

n

)n−k
= lim
n→∞

λk

k!

(
1− λ

n

)n−k
=
λk

k!
lim
n→∞

(
1− λ

n

)n
lim
n→∞

(
1− λ

n

)−k

=
λk

k!
eλ 1 =

λkeλ

k!

Note that this is different from CLT because in CLT, we just assume that the pn’s are constant and take the
limiting behavior of Xn ∼ Bernoulli(n, p) as n→ ∞.

This result justifies the following model. A Poisson Arrival Process with rate λ > 0 on the interval [0,∞) is
a model for the occurrence of some events which may have at any time. We can interpret the process as a
collection of random points in [0,∞) which are the times at which the arrivals occur. Suppose that we would
like to model the arrival of events that happen completely at random at a rate λ per unit time. At time
t = 0, we have no arrivals yet, so N(0) = 0. Let us fix some T , and now divide [0, T ) into n tiny subintervals
of length δ.

Assume that in each time slot, we assign a Xk ∼ Bernoulli(λδ) random variable that determines whether
there was an arrival within the interval ((k− 1)δ, kδ]. So with probability λδ, there will be an arrival within
it, and as the time interval gets smaller, this probability also gets smaller too. Since every n subinterval is
Bernoulli(λδ), the number of arrivals in the interval [0, T ), defined as the random variable Nn(T ), is

Nn(T ) ∼ Binomial(n, λδ) = Binomial
(
n,
λT

n

)
As we increase the n (equivalently, decrease δ), we divide [0, T ) into smaller and smaller subintervals, resulting
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in finer and finer Nn(T ) Binomial distributions. Since npn = nλTn = λT is finite, we can invoke the Poisson
limit theorem and say

Nn(T )
D−→ Poisson(λT )

Note that the starting point 0 does not matter, and this works for any interval of length T . Therefore, we
can model the arrival times on any interval of length T as a Poisson(λT ) random variable.

Definition 3.1 (Poisson Process)

Let λ > 0 be fixed, representing the rate of arrival in some unit time. The stochastic counting process
{N(t)}t≥0, where N(t) represents the number of arrivals by time t, is called a Poisson process with
rate λ if

1. N(0) = 0
2. The number of arrivals in any interval of length s > 0 is N(t+ s)−N(t) ∼ Poisson(λs)
3. N(Tt) has independent increments, i.e. if t0 < t1 < . . . , < tn, then

N(t1)−N(t0), . . . , N(tn)−N(tn−1)

are independent.

3.3 Constructing the Poisson Process
Now we have modeled this process using random variables N(t) that counts the number of arrivals up to
time t. Now, we can interpret it using random variables that represent the time in which they arrive.

Definition 3.2 ()

Set T0 = 0. The arrival times are random variables 0 < T1 < T2 < T3 < . . . such that the inter-arrival
waiting times

τk = Tk − Tk−1, k ≥ 0

have the property that {Wk}∞k=1 are independent Exp(λ) random variables. Define

N(s) := max{k | Tk ≤ s}

Now we prove that this process is equivalent to the Poisson process defined before.

Theorem 3.4 (Equivalent Interpretations)

Let {Tn} be defined as above and N(s) := max{k | Tk ≤ s}. Then,
1. N(0) = 0
2. N(s) ∼ Poisson(λs)
3. N(t+ s)−N(t) ∼ Poisson(λs) independent of N(r) for 0 ≤ r ≤ s.
4. N(t) has independent incremements.

N(s) := max{k | Tk ≤ s} is a Poisson distribution with mean λs.

4 Continuous-Time Markov Processes
As the name suggests, in a continuous time Markov process Xt, the time parameter is continuous (t ≥ 0).
As before, the system jumps randomly between states in S, but now the jumps may occur at any time and
they occur randomly. This implies that there are two sources of randomness:
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1. where the system jumps, which is determined by the transition probabilities, and

2. when the system jumps, which is called the holding time

Definition 4.1 (CTMP)

Let (Ω,F ,P) be a probability space and (S,S) a measurable space. Then, a homogeneous
continuous-time Markov chain is a stochastic process {Xt}t≥0 taking values in S (i.e. Xt : Ω → S)
satisfying the Markov property: for every bounded measurable f and and t, s ≥ 0,

E[f(Xt+s) | {Xr}r≤t] = E[f(Xt+s) | Xt] = (Psf)(Xt)

This again says that the probability of Xt+s does not depend on the history {Xr = ir}r≤t, but on
the current value of Xt.

Just like the discrete-time case, to describe random variable Xt+s with function f , we can pull back the
function to compute

E[f(Xt+s)] = E[E[f(Xt+s) | Xt]] = E[(Psf)(Xt)] =

∫
S

Psf dρt

which integrates a new function Psf over the measure ρt.

Example 4.1 (Transition Operator as a Matrix in Discrete Space)

Let us have a discrete space S = {1, . . . , d} with indicators 1{i} for i = 1, . . . , d. Let xt represent the
column vector of the PMF of Xt. From the same work as shown for discrete time Markov processes,
we can let f = 1{j} and compute the probability of Xt+s landing in each point j ∈ S, since that is
what we’re interested in for discrete probability distributions.

ρt+s(j) = P(Xt+s = j)

= E[1{j}(Xt+s)]

= E[E[1{j}(Xt+s) | Xt]] = E[Ps1{j}(Xt)]

=

∫
S

E[1{j}(Xt+s) | Xt]dρt =

∫
S

Ps1{j}(Xt) dρt

=
∑
i∈S

P[Xt+s = j | Xt = i]P(Xt = i) =
∑
i∈S

Ps1{j}(i)P(Xt = i)

which can be summarized as

ρt+s(j) =

d∑
i=1

Ps1{j}(i)ρt(i) =

d∑
i=1

P(Xt+s = j | Xt = i)ρt(i)

We can compactly organize the probabilities of these internode travel inside a d× d right stochastic
transition matrix

Ps =

Ps1{1}(1) . . . Ps1{1}(d)
...

. . .
...

Ps1{d}(1) . . . Ps1{d}(d)

 =

P(Xt+s = 1 | Xt = 1) . . . P(Xt+s = d | Xt = 1)
...

. . .
...

P(Xt+s = 1 | Xt = d) . . . P(Xt+s = d | Xt = d)


and compactly write the above equation as

ρTt+s = ρTt Ps
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Lemma 4.1 ()

Pt is linear. That is, for t, s ≥ 1, α, β ∈ R, and bounded measurable functions f, g,

Pt(αf + βg) = αPtf + βPtg

Proof.

By linearity of conditional expectation,

(Ps(αf + βg))(Xt) = E[(αf + βg)(Xt+s) | Xt]

= E[(αf)(Xt+s) | Xt] + E[(βg)(Xt+s) | Xt]

= α(Psf)(Xt) + β(Psg)(Xt)

We can now interpret linearity and the Markov property in the discrete space.

Example 4.2 (Markov Property in Discrete Space)

If we wanted to extract information from Xt with function f (i.e. compute E[f(Xt)]), we can calculate

E[f(Xt)] = ρTt f =
(
ρt(1) . . . ρt(d)

)f1...
fd


Now, say that s units of time later, we want to extract information f from Xt+s by computing

E[f(Xt+s)] = ρTt+sf =
(
ρt+s(1) . . . ρt+s(d)

)f1...
fd


The problem is that we don’t know what the distribution of Xt+s is (i.e. don’t know ρt+s(i)), so we
get its expectation by conditioning it on Xt, which realizes as taking the expectation of a different
function Psf with respect to ρt.

E[f(Xt+s)] = E[E[f(Xt+s) | Xt]] = E[(Psf)(Xt)] =
(
ρt(1) . . . ρt(d)

)(Psf)1
...

(Psf)d


It turns out that this transformation f 7→ Psf (from row vector to row vector) is linear, and so we
can interpret Ps as f that has been left-multiplied by some transformation matrix Ps.

(
ρt(1) . . . ρt(d)

)(Psf)1
...

(Psf)d

 =
(
ρt(1) . . . ρt(d)

) Ps


f1...
fd


︸ ︷︷ ︸

Psf

It turns out that this Ps acts linearly on f through left multiplication, but we can also right-multiply
ρt by Ps to get the new distribution of Xt+s!

(
ρt(1) . . . ρt(d)

)(Psf)1
...

(Psf)d

 =
(
ρt(1) . . . ρt(d)

) Ps


︸ ︷︷ ︸

ρT
t Ps=ρT

t+s

f1...
fd


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Therefore, it turns out that the linearity of Ps on f implies linearity of it on the vector ρt.

Now focusing on f = 1A, we can define the following.

Definition 4.2 (Transition Probability)

Let us have Markov process (Xt) with operator Ps. The function ps : S × S → R defined

ps(x,A) := Ps1A(x) = E[1A(Xt+s) | Xt = x] = P(Xt+s ∈ A | Xt = x)

is the transition probability, or transition kernel, of this chain. Note that
1. For each x ∈ S, A 7→ ps(x,A) is a probability measure on (S,S). This means that if we are in

some place x at time t, then the probability that we will land in some subset A ∈ S of S at
time t+ s is ps(x,A).

2. For each A ∈ S, Ps1A = ps(·, A) is a measurable function.
The transition kernel density is simply the pdf of the measure ps(x, ·).

ps(x,A) =

∫
A

ps(x, y) dy

Note that in the matrix realization of the example above, it looks like Ps acts on the distribution ρt to get
a new distribution ρt+s, but this is not strictly the case since Ps is an operator on f . However, for the sake
of intuitiveness, we can interpret Ps in two ways:

1. It operates on the measure ρt by pushing it forward in time to get ρt+s. This operator is defined as

ρt 7→ ρt+s(·) = ps(Xt, ·)

which corresponds to the matrix multiplication ρTt 7→ ρTt+s = ρTt Ps

2. It operates on the function f (at Xt+s) by pulling it back to Psf that operates on Xt. This operation
f 7→ Psf corresponds to the matrix multiplication f 7→ Psf .

Either way, we can think of the order of operations as either (ρTt Ps)f or ρTt (Psf).

Just like stochastic transition matrices, we can also deduce a semigroup property of the collection (Ps)s≥0.

Lemma 4.2 (Chapman-Kolmogorov)

{Pt} satisfies
Pt+sf = PtPsf

for all t, s,≥ 1, with P0 = I, the identity.

Proof.

We can easily see that (P0f)(Xt) = E[f(Xt) | Xt] = f(Xt), and

(Pt+sf)(Xn) = E[f(Xn+t+s) | Xn]

= E[E[f(Xn+t+s | Xn+t)] | Xn]

= E[(Psf)(Xn+t) | Xn]

= (Pt(Psf))(Xn)

= (PtPsf)(Xn)

We give one final condition.
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Lemma 4.3 (Conservativeness)

{Pt} satisfies
Pt1 = 1

for all t ≥ 0, where 1 = 1S is the constant function of 1.

Proof.

This is trivial since it is just the law of total probability. That is, 1S(Xt) = 1, and

(Ps1S)(Xt) = E[1S(Xt+s) | Xt]

and note that σ(Xt) is a finer σ-algebra than that generated by 1S(Xt+s), meaning that the right
hand side is equal to 1S(Xt+s) itself, which equals 1.

Example 4.3 ()

Given the transition matrix

Ps =

Ps1{1}(1) . . . Ps1{1}(d)
...

. . .
...

Ps1{d}(1) . . . Ps1{d}(d)


note that by linearity of Ps and the fact that {j} forms a partition of S, we have a∑

j∈S
(Ps1{j})(i) =

[
Ps

(∑
j∈S

1{j}

)](
i
)
= (Ps1S)(i) = 1S(i) = 1

which means that the columns must sum to 1.

Example 4.4 (Markov Chain with Continuous Jumps)

Let N(t), t ≥ 0 be a Poisson process with rate λ and let Yn be a discrete time Markov chain with
transition probability u(i, j). Then, Xt = YN(t) is a continuous time Markov chain that takes one
jump according to u(i, j) at each arrival time N(t).

4.1 Generator
In the discrete time case, we had Pt = (p1)

t for t ∈ N, and from the Chapman-Kolmogorov equation, knowing
p1 allows us to compute pt for all t ∈ N. Likewise, if we know the transition probability for some t < t0
for any t0 > 0, we know it for all t. This observation suggests that the transition probabilities pt can be
determined from their derivatives at 0.

We now define the analogous operator to the transition rate matrix in continuous-time chains with a finite
state space. This is a natural extension, since we are just taking the right-derivative of Pt at t = 0.

Definition 4.3 (Generator)

The generator L is defined as

L f := lim
t↓0

Ptf − f

t

for every f ∈ L2(µ) for which the above limit exists in L2(µ). Intuitively, L f represents the instan-
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taneous rate of change of the measurement f . The set of f for which L f is defined is called the
domain Dom(L ) of the generator, and L defines a linear operator from Dom(L ) ⊂ L2(µ) to L2(µ).

We have defined the generator L from the Markov semigroup {Pt}t≥0. Now, let’s try to define the semigroup
in terms of the generator L . Given that we have some map L ), can we define some semigroup {Pt} satisfying
the definition? We know that by the semigroup property, we can split Pt+h into PtPh and PhPt, from which
we get the Kolmogorov backward equation and the forward equation, respectively.

d

dt
Pt = lim

h↓0

Pt+h − Pt
h

= lim
h↓0

Pt(Ph − I)

h
= Pt

(
lim
h↓0

Ph − I

h

)
= PtL

d

dt
Pt = lim

h↓0

Pt+h − Pt
h

= lim
h↓0

(Ph − I)Pt
h

=

(
lim
h↓0

Ph − I

h

)
Pt = LPt

From which we see that the generator L is commutes with the semigroup

LPt = PtL

and solving this differential equation gives
Pt = etL

Let’s observe how this generator acts on the indicator functions f = 1A. Note that Ps1A(i) = P(Xt+s ∈ A |
Xt = i).

(L 1A)(i) =

(
lim
h↓0

Ph1A − 1A
h

)
(i) = lim

h↓0

Ph1A(i)− 1A(i)

h

and so (L 1A)(i) represents the infinitesimal rate of change of the probability that Xt will be in A given that
it is at 1.

Now, how does the generator realize into the finite state space?

Example 4.5 (Transition Rate Matrix)

We know that the semigroup operator Pt is equivalent to the transition matrix

Pt =

Pt(1, 1) . . . Pt(1, d)
...

. . .
...

Pt(d, 1) . . . Pt(d, d)


Let’s say that we have the function f =

∑
i∈S ci1{i}, which realizes as the function vector f , and we

have generator L . We know that Ptf realizes as the matrix multiplication Ptf , and so we can define
the transition rate matrix Q satisfying the equation

Qf = lim
h→0

Phf − f

h
=⇒ Q = lim

h→0

Ph − I

h

This derivatives has entries

Q(i, j) =
d

dt

∣∣∣∣
t=0

Pt(i, j) = lim
h→0

Ph(i, j)−P0(i, j)

h
=


lim
h→0

Ph(i, j)

h
if i ̸= j

lim
h→0

Ph(i, i)− 1

h
if i = j

representing the flow of probability from i 7→ j. Note that by the law of total probability,∑
j

Pt(i, j) = 1 =⇒ d

dt

∣∣∣∣
t=0

∑
j

Pt(i, j) =
∑
j

d

dt

∣∣∣∣
t=0

Pt(i, j) =
∑
j

Q(i, j) = 0
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So the diagonal entries is simply Q(i, i) = −
∑
j ̸=iQ(i, j). This realization Q is consistent with

the way L operates. Given f =
∑
i fi1{i}, and not worrying about whether we evaluate a limit of

functions or the limit of evaluations, we can get

(L f)(i) =

[
L

( d∑
j=1

fj1{j}

)]
(i) =

( d∑
j=1

fjL 1{j}

)
(i) =

d∑
j=1

fj(L 1{j})(i)

=

d∑
j=1

fj

(
lim
h↓0

Ph1{j}(i)− 1{j}(i)

h

)
=

d∑
j=1

fj

(
lim
h↓0

Ph(i, j)−P0(i, j)

h

)

=

d∑
j=1

Q(i, j)fj = (Qf)i

and therefore, setting f = 1{j}, we get

L 1{j}(i) = Q(j, i)

Example 4.6 ()

Given a two-state Markov chain, {0, 1}, with some λ ≥ 0. Then, we can model our transition
probability matrix as

Ps =

(
1
2 + 1

2e
−2λt 1

2 − 1
2e

−2λt

1
2 − 1

2e
−2λt 1

2 + 1
2e

−2λt

)
Its generator matrix is

Q =

(
−λ λ
λ −λ

)

4.2 Classification of States
4.2.1 Holding Times and Jumping Times

Now, we would like to find how long a chain stays at a state x ∈ S.

Definition 4.4 (Holding Time)

Let {Xt}t≥0 be a continuous time Markov chain, and define Tx to be the holding time at x.

Xt = x, Tx = inf{s ≥ t,Xs ̸= x}

We can characterize the distribution of Tx, but first we define the following.

Definition 4.5 (Memoryless Property)

A random variable X has the memoryless property if it satisfies for all t, s ≥ 0

P(X > s+ t | X > t) = P(X > s)

which is just abuse of notation for the following: We know that (t,∞), (s,∞), and (s + t,∞) are
all in R and so they are events. So it really translates to the probability of an outcome landing in
(s+ t,∞) given that it lands in (t,∞) is equal the probability of it landing in (s,∞).
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PX
(
(s+ t,∞) | (t,∞)

)
=

PX
(
(s+ t,∞) ∩ (t,∞)

)
PX

(
(t,∞)

) =
PX

(
(s+ t,∞)

)
PX

(
(t,∞)

) = PX
(
(s,∞)

)
The exponential random variable is memoryless because the LHS just reduces to

PX
(
(s+ t,∞)

)
PX

(
(t,∞)

) =
1− FX(s+ t)

1− FX(t)
=
e−λ(s+t)

e−λt
= e−λs = 1− FX(s) = PX

(
(s,∞)

)
Theorem 4.1 ()

The only continuous random variable having the memoryless property is the exponential random
variable.

Theorem 4.2 ()

Tx has the memoryless property.

Proof.

We can show that

P(Tx > t+ s | Tx > t) = P(Xu = x, u ∈ [t, t+ s] | Xu = x, u ∈ [0, t])

= P(Xu = x, u ∈ [t, t+ s] | Xt = x)

= P(Tx > s)

Therefore, we know that Tx must have the exponential distribution, and for each x, we have Tx ∼ Exp(λx).

4.2.2 Irreducibility

Definition 4.6 (Irreducibility)

The Markov chain Xt is irreducible if for any two states i, j ∈ S, it is possible to get from i to j in
a finite number of steps. To be precise, there is a sequence of states k0 = i, k1, . . . , kn = j s.t.

Q(km−1, km) > 0

Lemma 4.4 ()

If Xt is irreducible and t > 0, then Pt(i, j) > 0 for all i, j ∈ S.

4.3 Stationary Measures
Recall that the Markov process (Xt)t≥0 evolves, and this evolution can be described by the sequence of
measures (ρt)t≥0 for eachXt. If we would like to measureXt+s with function f , we can calculate E[f(Xt+s)] =
Eρt+s

[f ], but we don’t know ρt+s. Fortunately, we can "pull back" the f to compute the equivalent

Eρt+s
[f ] = E[f(Xt+s)] = E[E[f(Xt+s) | Xt]] = E[Psf(Xt)] = Eρt [Psf ]
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which essentially measures Xt+s with f by measuring Xt with Psf . Now, we want to construct a stationary
measure that captures the fact that if a certain state Xt ∼ ρt = µ follows a stationary measure, then the
measure of future Xt+s ∼ ρt+s = µ also. If µ is stationary, then both ρt+s = ρt = µ, and this is equivalent
to

Eµ[f ] = Eµ[Psf ]

for all measure f and s ≥ 0. This will be the definition that we will work with. To help with the interpretation,
we can restrict the case to f = 1A to get P(Xt ∈ A) = P(Xt+s ∈ A) for all A ∈ S, which means that the
probability of Xt+s realizing in A is equal to the probability of Xt realizing in A. In summary, stationary
measures describe the equilibrium or steady-state behavior of the Markov process.

Definition 4.7 (Stationary Measure)

A probability measure µ is called stationary or invariant if

Eµ[f ] = Eµ[Ptf ], conventionally written as µ(f) = µ(Ptf)

for all t ≥ 0 and bounded measurable f . This is a property of the measure. We can describe the way
it operates on the measure as if ρt = µ, then

ρt+s(·) = ps(Xt, ·) = ρt

To give a pictorial interpretation, imagine an initial distribution X0 ∼ ρ0 as some amount of sand placed on
the state space S (either as a continuous mass or mounds on discrete nodes). As time flows continuously, the
distribution will evolve to Xt ∼ ρt, where a different mound of sand will form on S. If ρ0 = µ, then the flow
of sand between the nodes will balance each other out, and we still have the same amount of sand ρt = µ
after each step. The discrete case is simpler, since we can just imagine there being π(i) of sand at node i,
and Pt(i, j) of its proportion of sand flowing from node i to j after time t. Therefore, all the sand flowing
out of i, which is

∑d
j=1 Pt(i, j)π(i) = 1, balances out with the flow of sand into i, which is

∑d
j=1 P (j, i)π(j).

1 =

d∑
i=1

P (i, j)π(i) =

d∑
j=1

P (j, i)π(j)

and doing this for all i realizes into the matrix equation π = πPt.

Example 4.7 (Stationary Distribution in Discrete Space)

Given discrete state space S = {1, . . . , d}, our stationary measure µ can be represented by the all
familiar row vector

π =
(
π(1) . . . π(d)

)
=

(
µ({1}) . . . µ({d})

)
Given the PMF vectors ρt = π and ρt+s = π and some measurable function f = (f1, . . . , fd), the
stationary distribution property says that

E[f(Xn+m)] = E[(Pmsf)(Xn)] ⇐⇒ πf = πPmf

which means that Psf will act on π the same way that f does (though Psf ̸= f). We can also interpret
π as the eigenvector of Ps with eigenvalue 1 since ρt+s(·) = ps(Xt, ·) = ρt(·).
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Theorem 4.3 ()

If µ is a stationary measure of a continuous-time Markov process with generator L , then

µ(L f) = 0

for every f ∈ L2(µ).

Proof.

Not worrying about interchanging limits and integrals, we have

µ(L f) = Eµ[L f ] =

∫
S

lim
t↓0

Ptf − P0f

t
dµ

= lim
t↓0

∫
S

Ptf − P0f

t
dµ

= lim
t↓0

1

t

(
Eµ[Ptf ]− Eµ[f ]

)
= lim

t↓0

1

t
· 0 = 0

For a finite state space, this theorem reduces to the following.

Corollary 4.1 ()

π is a stationary distribution of a continuous time Markov chain if and only if

πQ = 0

Proof.

To prove the if, we have

πQ = 0 =⇒ πPt = πetQ = π

(
I + tQ+

t2Q2

2!
+ . . .

)
= π + 0 + . . . = π

To prove the only if, we have

πPt = π =⇒ 0 =
d

dt
πPt = π

d

dt
Pt = πQPt =⇒ πQ = 0

Theorem 4.4 ()

If a continuous-time Markov chain Xt is irreducible and has a stationary distribution π, then

lim
t→∞

Pt(i, j) = π(j)

4.3.1 Uniqueness

TBD TBD

4.3.2 Reversed Markov Process

From now, given the state space (S,S) we can put a measure µ on it to get a measure space (S,S, µ). The
Banach space of all µ-measurable functions f : (S,S, µ) → (R,R) (i.e. for every Borel B ∈ R, f−1(B) ∈ S)
will be denoted Lp(µ), equipped with the norm
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||f ||Lp(µ) := Eµ[fp]1/p =
(∫

S

|f |p dµ
)1/p

If p = 2, then we can define the inner product

⟨f, g⟩µ := Eµ[fg] =
∫
S

fg dµ

Lemma 4.5 (Contraction of Stationary Measure)

Let µ be a stationary measure. Then,

||Ptf ||Lp(µ) ≥ ||f ||Lp(µ) = Eµ[fp]1/p

Now, we can construct reversed Markov processes.

Definition 4.8 (Reversed Markov Process)

Let {Xt}0≤t≤T be a continuous time Markov process with semigroup (Pt)t≥0 and stationary distri-
bution µ. Then, fix T and let Yt = XT−t. Then, Yt is a discrete time Markov process with the dual
transition operator P ∗

t , the adjoint of Pt satisfying

⟨f, Ptg⟩µ = ⟨P ∗
t f, g⟩µ

for all bounded measurable f, g ∈ L2(µ).

Though we have given the reversed Markov process as a definition above, we can prove that this satisfies the
Markov property.

Proof.

We can see how this definition realizes in a discrete space.

Example 4.8 ()

Given S = {1, . . . , d} and function vectors f ,g,

⟨f, g⟩µ =

∫
S

fgdµ =

d∑
i=1

figiπ(i)

and by definition of the adjoint, we must have

⟨f, Ptg⟩µ =

d∑
i=1

fi(Ptg)iπ(i) =

d∑
i=1

fi

( d∑
j=1

Pt(i, j)gj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

P∗
t(i, j)fj

)
π(i) =

d∑
i=1

(P∗
t f)i gi π(i) = ⟨P ∗

t f, g⟩µ

A bit of computation will show us that

P∗
t(i, j) =

Pt(j, i)π(j)

π(i)
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and we can indeed check that

⟨P ∗
t f, g⟩µ =

d∑
i=1

gi

( d∑
j=1

P∗
t(i, j)fj

)
π(i)

=

d∑
i=1

gi

( d∑
j=1

fj
Pt(j, i)π(j)

π(i)

)
π(i)

=

d∑
j=1

d∑
i=1

gi fjPt(j, i)π(j)

=

d∑
j=1

fj

( d∑
i=1

giPt(j, i)

)
π(j)

=

d∑
j=1

fj(Ptg)jπ(j) = ⟨f, Ptg⟩µ

Note that P∗
t also satisfies P∗

t(i, j) ≥ 0 and by definition of the stationary distribution π,

d∑
j=1

P∗
t(i, j) =

d∑
j=1

Pt(j, i)π(j)

π(i)
=

1

π(i)

d∑
j=1

Pt(j, i)π(j) =
π(i)

π(i)
= 1

Note that the transition probability is computed using Bayes rule

P∗
s(i, j) = P(Yt+s = j | Yt = i)

=
P(Yt = i | Yt+s = j)P(Yt+s = j)

P(Yt = i)

=
P(XT−t = i | XT−t−s = j)P(XT−t−s = j)

P(XT−t = i)

=
Ps(j, i)π(j)

π(i)

4.4 Reversibility (Detailed Balance)
Note that reversibility of a Markov process and a reversed Markov process are two entirely different things.
There is always a reveresed Markov process, but the fact that it is reversible is a much stronger condition.

Definition 4.9 (Reversibility)

The Markov semigroup {Ps} with stationary measure µ is called reversible (or in the physics liter-
ature, said to satify detailed balance) if Ps is self-adjoint for every f, g,∈ L2(µ). That is,

⟨f, Psg⟩µ = ⟨Psf, g⟩µ
Since Ps = esL , this condition is equivalent to L being self-adjoint.

Note that if the Markov property is reversible, then assuming X0 ∼ µ, then
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⟨Psf, g⟩µ = ⟨f, Psg⟩µ = E[f(Xt)E[g(Xt+s) | Xt]]

= E[f(Xt) g(Xt+s)] = E[E[f(Xt) | Xt+s)] g(Xt+s]

for every f, g ∈ L2(µ). So that in particular,

Psf(x) = E[f(Xt+s | Xt = x] = E[f(Xt) | Xt+s = x]

which means that the reversed process follows the same law as the forwrad process.

Example 4.9 (Detailed Balance in Finite State Space)

We know that if Ps is self adjoint, then its transition probability matrix will satisfy

Ps(i, j) =
Ps(j, i)π(j)

π(i)
=⇒ Ps(j, i)π(j) = Ps(i, j)π(i)

which is the familiar detailed balance condition that we are used to. To see that this is a stronger
condition than πPt = π, we sum over j on each side to get∑

j

Ps(i, j)π(i) = π(i)
∑
j

Ps(i, j) = π(j)

Remember that we could interpret π(i) as the amount of water at x, and we send Ps(j, i)π(i) water
from node i to j in one step. The detailed balance condition tells us that the amount of sand going
from i to j in one step is exactly balanced by the amount going back from j to i. In contrast, the
condition πPs = π says that after all the transfers are made, the amount of water that ends up at
each node is the same as the amount there.

4.5 Ergodicity
Now, given a Markov semigroup Pt with generator L and stationary measure µ, we know that X0 ∼ µ
implies Xt ∼ µ for all times t. It is natural to ask whether the Markov process will eventually end up in its
steady state even if it is not started there, but rather at some fixed initial condition. That is, given X0 = x,
is it true that

E[f(Xt) | X0 = x] → µf = Eµ[f ] as t→ ∞

If this is the case, the Markov process is said to be ergodic.

Definition 4.10 (Ergodicity)

The Markov semigroup (Pt) is called ergodic if

Ptf → µf = Eµ[f ]

as t → +∞ for every f ∈ L2(µ) (i.e. converges to the constant function µf = µ(f)). That is, if
we would like to measure Xt ∼ ρt with f , then far enough in time this measurement converges to
measuring X ∼ µ with f . Since this applies to all f (think f = 1A), we can determine that ρt → µ
as t→ +∞.

The following theorem determines whether a chain is ergodic, but note that we don’t know anything about
the rate of convergence to the stationary measure.
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Theorem 4.5 ()

If Markov process {Xt} with stationary measure µ and semigroup (Pt) is irreducible, then (Pt) is
ergodic.

5 Martingales
Let us first start with the discrete-time martingale for simplicity. In introductory courses, a martingale
might be defined as a stochastic process satisfying

Xn = E[Xn+1 | X0, . . . , Xn]

for all n, which models a "fair game." They also may construct the random variables {Xn} first and then
define the filtration as the sequence of σ-algebras σ(X1, . . . , Xn). In here, we will construct the filtration
{Fn} first and then define the random variables to be adapted to the filtration if Xn is Fn-measurable for
each n ∈ N.

Definition 5.1 (Discrete-Time Martingale)

Given a probability space (Ω,F ,P), let F = {Fn}n∈N be a filtration (an increasing sequence of σ-
algebras). A sequence {Xn} is said to be adapted to {Fn} if Xn is Fn-measurable for all n. If the
stochastic process {Xn}n∈N is a sequence with

1. E[Xn] <∞ for all n,
2. Xn is adapted to Fn,
3. E[Xn+1 | X1, . . . , Xn] = E[Xn+1 | Fn] = Xn for all n,

then {Xn} is a martingale. If E[Xn+1 | Fn] ≤ Xn or E[Xn+1 | Fn] ≥ Xn, the {Xn} is said to be a
supermartingale or submartingale, respectively.

A martingale just represents a sequence of random variables that get finer and finer as the σ-algebra increases.
While they do get finer and finer, they do not change the "average" of the function. For example, consider
the filtration generated by finer subsets of the unit interval Ω = (0, 1]. We have

1. F0 = {∅,Ω}

2. F1 = σ((0, 0.5], (0.5, 1])

3. F2 = σ((0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1])

Then, we would have

A supermartingale (and submartingale) just means that as we make the function finer and finer, its mean
goes down (or up).
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Martingales are used to model lots of random walk events. In the following three examples, let ξ1, ξ2, . . .
be iid, and let Sn = S0 + ξ1 + . . . + ξn., where S0 is a constant. Let Fn = σ(ξ1, . . . , ξn) for n ≥ 1 and let
F0 = {∅,Ω}.

Example 5.1 (Linear Martingale)

Let µ = E[ξi] = 0. Then, {Sn} is a martingale with respect to Fn. We show the three requirements:
1. E[Sn] = E[S0] + E[ξ1] + . . .+ E[ξn] = S0 <∞.
2. By definition, we know that ξi is σ(ξ)-measurable for all i ∈ [n], so ξi is Fn = σ(ξ1, . . . , ξn)-

measurable. Since the set of Fn-measurable functions has a vector space structure, Sn is also
Fn-measurable.

3. We can simply solve

E[Sn+1 | Fn] = E[Sn | Fn] + E[ξn+1 | Fn] = Xn + E[ξn+1] = Xn

where the first equality follows from linearity. For the second equality, note that Sn is Fn-
measurable from above, and so the best Fn-measurable approximation of X is X itself (i.e.
we have complete information). We know that ξn+1 is independent of the ξi’s, and so by
definition their σ-algebras are independent. This implies that σ(ξn+1) and Fn = σ(ξ1, . . . , ξn)
are independent, and so due to irrelevant information, E[ξn+1 | Fn] = E[ξn+1].

If µ ≤ 0 or µ ≥ 0, then the computation above shows that E[Sn+1 | Fn] ≤ 0 or E[Sn+1 | Fn] ≥ 0,
making it a supermartingale or submartingale, respectively.

Given a supermartingale or submartingale, we can change it to be a martingale.

Example 5.2 ()

Given that µ = E[ξi] ̸= 0, then {Sn−nµ}is a martingale with respect to Fn. We can see this because

E[Sn+1 − (n+ 1)µ | Fn] = E[Sn − nµ | Fn] + E[ξn+1 − µ | Fn]
= Sn − nµ+ E[ξn+1]− µ

= Sn − n

Example 5.3 (Quadratic Martingale)

Say µ = E[ξi] = 0 and σ2 = Var(ξi) <∞. Then, {S2
n − nσ2} is a martingale.

E[S2
n+1 − (n+ 1)σ2 | Fn] = E[(Sn + ξn+1)

2 − (n1)σ
2 | Fn]

= E[S2 − nσ2 | Fn] + E[2Snξn+1 + ξ2n+1 − σ2 | Fn]
= E[S2 − nσ2 | Fn] + 2E[Snξn+1 | Fn] + E[ξ2n+1]− σ2

= E[S2 − nσ2 | Fn]

where we have used the fact that due to independence of ξn+1 with Fn, we have E[Snξn+1 | Fn] =
E[SnE[ξn+1 | Fn]] = E[Sn · 0] = 0.

This following result shows that martingales with bounded increments either converge or oscillate between
+∞ and −∞.
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Theorem 5.1 ()

Let {Xn}n∈N be a martingale with |Xn+1 −Xn| ≤M <∞. Let

C = { lim
n→∞

Xn exists and is finite}

D = { lim
n→∞

supXn = +∞ and lim
n→∞

infXn = −∞}

Then P(C ∪D) = 1.

6 Concentration Inequalities
An informal statement of concentration of measure is the following: If X1, . . . , Xn are independent random
variables, then the random variable f(X1, . . . , Xn) is "close" to its mean E[f(X1, . . . , Xn)] provided that
the function f(x1, . . . , xn) is not too "sensitive" to any of the coordinates xi. Intuitively, say that we have
a bunch of independent random variables Xi and sample from them, to get some values xi. Calculating
f(x1, . . . , xn), we have sampled from f(X1, . . . , Xn). Since f depends smoothly w.r.t. its arguments, to
drastically change f , we must drastically change all the arguments. This is not likely, since all the Xi’s are
independent.

Most of our intuition about probability in low-dimensional spaces breaks down in high-dimensional ones (on
the order of perhaps 10 or 20). We start off with two geometric examples in high-dimensional space.

Example 6.1 (Uniform Measure on Sphere)

Let µn be the uniform probability distribution on the n-sphere Sn ⊂ Rn+1. That is, let us consider
any measurable set A ⊂ Sn such that µn(A) ≥ 1/2. Then, if we let d(x,A) be the geodesic distance
between x ∈ Sn and A , we define the expanded set

At = {x ∈ Sn | d(x,A) < t}

and it turns out that
µn(At) ≥ 1− e−(n−1)t2/2

which states that given any length t > 0, no matter how small, At almost covers the whole space.
Then, for large enough n, µn is highly concentrated around the equator.

Note that the bounds decay exponentially (or of greater order).

Example 6.2 (Uniform Measure on Cube)

Example 6.3 (High Dimensional Gaussian)

Given iid X1, . . . , Xn ∼ N (0, σ2), then let X be the random n-vector of these random variables.
Then, the random variable

||X|| =
√
X2

1 + . . . , X2
n

has a distribution that is very concentrated around the expectation

E[||X||] =
√
n

3
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Naturally, this concentration phenomenon extends to random variables.

Example 6.4 ()

Let us have iid random variables Xi with P(Xi = 1) = 1/2 and P(Xi = −1) = 1/2. Then, let’s define
Sn =

∑n
i=1Xi. The strong law of large numbers tell us that

Sn
n

a.s.−−→ 0

while the central limit theorem tells us that

Sn√
n

d−→ N (0, 1)

since E[Xi] = 0 and Var[Xi] = 1. The CLT result shows us that the fluctuations (variance) of Sn of
are order n. However, note that |Sn| can take values as large as n, so the maximum value of Sn/n is
of order 1. If we measure Sn using this scale, then Sn

n is essentially 0. The actual bound looks like

P
(
|Sn|
n

≥ r

)
≤ 2e−nr

2/2

Lemma 6.1 (Markov’s Inequality)

Given any random variable X, we have

P(X ≥ α) ≤ E[X]

α

Lemma 6.2 (Chebyshev’s Inequality)

Given X with finite variance and expectation, we have

P(|X − E[X]| ≥ α) ≤ Var[X]

α2

An inequality that we will use often in proofs is Jensen’s inequality.

Lemma 6.3 (Jensen’s Inequality)

Given a convex function g : R → R and random variable X, we have

g(E[X]) ≤ E[g(X)]

Proof.

We will assume that f is differentiable for simplicity and let E[X] = µ. Define the linear function
centered at µ to be l(x) := f(µ) + f ′(µ)(x− µ). Then, we know that f(x) ≥ l(x) for all x, so

E[f(X)] ≥ E[l(X)]

= E[f(µ) + f ′(µ) (X − µ)]

= E[f(µ)] + f ′(µ)(E[X]− µ)

= E[f(µ)]
= f(E[X])
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Definition 6.1 (Lipschitz Continuity)

A function f : (X, dX) −→ (Y, dY ) is Lipschitz continuous, with Lipschitz constant A, if it satisfies

dY
(
f(x), f(y)

)
≤ AdX(x,y)

for all x,y ∈ X.

6.1 Talagrand’s Gaussian Inequality

Lemma 6.4 (Gaussian Integration by Parts Formula)

For Gaussian random variables x, x1, . . . , xn and a function F of moderate growth at infinity, we have

E
[
xF (x1, . . . , xn)

]
=

n∑
i=1

E[xxi] E
[
∂F

∂xi
(x1, . . . , xn)

]

Theorem 6.1 (Talagrand’s Gaussian Inequality)

Consider a Lipschitz function F : RN −→ R (with Lipschitz constant A). Let x1, . . . , xN ∼ N (0, 1)
be iid, and let x = (x1, . . . , xN ). Then, for each t > 0, we have

P
(
|F (x)− EF (x)| ≥ t

)
≤ 2 exp

(
− t2

4A2

)

Proof.

For this proof, we assume that F is not only Lipschitz, but C2. This is the case in most applications
of this theorem, and if it is not the case, then we can regularize F by convolving with a smooth
function to solve the problem. We begin with a parameter s and consider the function G : R2N −→ R
defined

G(z1, . . . , z2N ) = exp
(
s
[
F (z1, . . . , zN )− F (zN+1, . . . , z2N )

])
For clarity, we will denote variables of F with xi and variables of G with zi. Let u1, . . . , u2N ∼ N (0, 1)
be iid, and let v1, . . . , vn ∼ N (0, 1) be iid, with vN+1, . . . , v2N copies of the first N . For shorthand,
we can denote the collection as u and v. Then, we have

E[uiuj ]− E[vivj ] = 0

except when j = i+M or i = j +M , in which case we have

E[uiuj ]− E[vivj ] = 0− 1 = −1

since vivj = X2, where X ∼ N (0, 1) = χ2
1, a Chi-Squared distribution with 1 degree of freedom. We

consider the transformed random variable

f(t) :=
√
tu+

√
1− tv ∼ N (0, 1) for all t

that is essentially some smooth path from f(0) = u and f(1) = v. Note that given some t ∈ [0, 1],
f(t) is some random vector, G(f(t)) is some random variable, and E[G(f(t))] is some number. We
can define the function ϕ : [0, 1] −→ R as

ϕ(t) = E[G(f(t))] =
∫
R
x pG(f(t))(x) dx

=

∫
R2N

G(y) pf(t)(y) dy
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where pX is the PDF of the distribution X. Take the derivative with respect to t to get the first line,
and we can simplify using Gaussian integration by parts

ϕ′(t)E
[ 2N∑
i=1

d

dt
fi(t)

∂G

∂zi

(
f(t)

)]

=

2N∑
i=1

E
[
d

dt
fi(t)

∂G

∂zi

(
f(t)

)]

=

2N∑
i=1

2N∑
j=1

E
[( ∂
∂t
fi(t)

)
fi(t)

]
E
[
∂2G

∂zi∂zj
f(t)

]
But we can simplify

E
[( ∂
∂t
fi(t)

)
fi(t)

]
= E

[( 1

2
√
t
ui −

1

2
√
1− t

vi

)(√
tuj −

√
1− t vj

)]
=

1

2

(
E[uiuj ]− E[vivj ]

)
=

{
−1 if j = i+M, i = j +M

0 else

So, we can simplify the above to

ϕ′(t) = −E
[ N∑
i=1

∂2G

∂zi ∂zi+M

(
f(t)

)]
and computing the second derivative using the chain rule gives

∂G

∂zi
(z) =

∂G

∂F

∂F

∂xi
(z1, . . . , zN )

= s G(z)
∂F

∂xi
(z1, . . . , zN )

∂2G

∂zi∂zi+N
(z) = −s2G(z) ∂F

∂xi
(z1, . . . , zN )

∂F

∂xi
(zN+1, . . . , z2N )

for all z. So we have for all t ∈ [0, 1],

ϕ′(t) = s2 E
[ N∑
i=1

G(f(t))
∂F

∂xi

(
f1(t), . . . , fN (t)

) ∂F
∂xi

(
fN+1(t), . . . , f2N (t)

)]

≤ s2E
[
G(f(t))

N∑
i=1

∂F

∂xi

(
f1(t), . . . , fN (t)

) ∂F
∂xi

(
fN+1(t), . . . , f2N (t)

)]
≤ s2E

[
G(f(t)

)
A2

]
≤ s2A2E[G(f(t))] = s2A2ϕ(t)

Solving the inequality for ϕ gives

ϕ′(t)/ϕ(t) ≤ s2A2 =⇒
∫
ϕ′(t)/ϕ(t) dt ≤

∫
s2A2 dt

=⇒ log ϕ(t) ≤ s2A2t+ C

=⇒ ϕ(t) ≤ es
2A2t ≤ es

2A2

Recalling that f(1) = u, we have

E[exp{s(F (u1, . . . , uN )− F (uN+1, . . . , u2N ))}] ≤ es
2A2

42/ 71



Stochastic Processes Muchang Bahng Spring 2023

and by independence of the ui’s, the LHS equals E[esF (u1,...,uN )]E[e−sF (uN+1,...,u2N )] and by Jensen’s
inequality, we have E[e−sF (uN+1,...,u2N )] ≥ e−sE[F (uN+1,...,u2N )]. We can derive as follows:

es
2A2

≥ E[esF (u1,...,uN )]E[e−sF (uN+1,...,u2N )]

≥ E[esF (u1,...,uN )] e−sE[F (uN+1,...,u2N )]

= E[esF (u1,...,uN )]E[e−sE[F (uN+1,...,u2N )]]

= E[esF (u1,...,uN )−sE[F (uN+1,...,u2N )]]

= E[exp
(
sF (u1, . . . , uN )− sE[F (uN+1, . . . , u2N )]

)
]

and by Markov’s inequality, we get for a random vector of standard Gaussian random variables x

P
(
F (x)− E[F (x)] ≥ t) = P

(
es(F (x)−E[F (x)] ≥ est

)
≤ E[es(F (x)−E[F (x)]]

est

≤ es
2A2−st

= e−t
2/4A2

when s = t/2A2

7 Variance Bounds and Poincare Inequalities
Let us first describe this concentration phenomenon by investigating bounds on the variance

Var[f(x1, . . . , xn)] := E
[(
f(x1, . . . , xn)− E[f(x1, . . . , xn)]

)2]
We can first bound

Var[f(X1, . . . , Xn)] = E
[(
f(X1, . . . , Xn)

)2]− E
[
f(X1, . . . , Xn)

]2 ≤ E
[(
f(X1, . . . , Xn)

)2]
and since adding a constant term to f doesn’t affect the variance, we can utilize this to get our first variance
bound.

Lemma 7.1 ()

Let X be a random variable or vector. Then,

Var[f(X)] ≤ E
[(
f(X)− inf f

)2] and Var[f(X)] ≤ E
[(

sup f − f(X)
)2]

and
Var[f(X)] ≤ 1

4
(sup f − inf f)2

Proof.

Since Var[X] = E[X2]− E[X]2 from above, we have

Var[f(X)] = Var[f(X)− a] = E[(f(X)− a)2]− E[f(X)− a]2 ≤ E[(f(X)− a)2]

By letting a = inf f , we get the first inequality. By letting a = (sup f + inf f)/2 be the "middle" of
f , we have |f(X)− a| ≤ (sup f − inf f)/2 =⇒ [f(X)− a]2 ≤ (sup f − inf f)2/4, and so

Var[f(X)] ≤ E[(f(X)− a)2] ≤ 1

4
(sup f − inf f)2
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which gives our third inequality. We can also see that

Var[f(X)] = Var[−f(X)] = Var[b− f(X)] ≤ E[(b− f(X))2]

to get our second.

This allows us to bound the random vector f(X) if f itself is bounded, no matter what X is. But this
generally turns out to be a very conservative bound, which is unsurprising since we assume so little about X.
For example, if we let X1, . . . , Xn be iid random variables taking values in [−1, 1], and let f(x1, . . . , xn) =
1
n

∑n
i=1 xi. Then, f takes values in [−1, 1], and by the previous lemma, we have

Var[f(X1, . . . , Xn)] ≤
1

4
(1− (−1))2 = 1

which looks good, until we see that we can derive a better bound from direct computation (which becomes
much better as n increases).

Var[f(X1, . . . , Xn)] =
1

n2

n∑
i=1

Var[Xi] =
1

n

However, this computation assumes independence of Xi’s, which the previous lemma doesn’t. This is the
reason we’re able to get a better bound, since if we took n copies of the same X, we would have

Var[f(X1, . . . , Xn)] = Var[nX/n] = Var[X] = 1

Therefore, we will capitalize on the independence of these random variables in high dimensions to obtain
better bounds. Now in the next result, we shall show that the variance of a high dimensional f(X1, . . . , Xn)
can be bounded by the variances of each random variable. Those quantities, like the variance, that behave
well in high dimensions is said to tensorize.

Consider independent random variables X1, . . . , Xn and a function f : Rn −→ R. If we fix values x1, . . . , xn,
then we can define for all k = 1, . . . , n the function gk(x1, . . . , xk−1, xk+1, . . . , xn) : R → R as

gk(x1, . . . , xk−1, xk+1, . . . , xn)(z) = f(x1, . . . , xk−1, z, xk+1, . . . , xn)

where
(gk(x1, . . . , xk−1, xk+1, . . . , xn))

′(z) =
∂

∂xk
f(x1, . . . , xk−1, z, xk+1, . . . , xn)

and gk(x1, . . . , xk−1, xk+1, . . . , xn)(Xk) is a random variable of Xk. Then, we can define

Vark f(x1, . . . , xn) = VarXk
[f(x1, . . . , xk−1, Xk, xk+1 . . . , xn)]

= EXk

[(
f(x1, . . . , xk−1, Xk, xk+1, . . . , xn)− EXk

[f(x1, . . . , xk−1, Xk, xk+1, . . . , xn)]
)2]

= Var[gk(x1, . . . , xk−1, xk+1, . . . , xn)(Xk)]

= VarXk
[g(x1, . . . , xk−1, xk+1, . . . , xn)]

which takes the variance of f with respect to Xk, keeping all other variables fixed. However, this value will
change for different x1, . . . , xn’s, and so we can loosen the restriction that they are fixed. We can take

gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(z) = f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)

where gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(Xk) is a random variable of X1, . . . , Xn. Now if we calculate its
partial variance, we get

Vark f(X1, . . . , Xn) = VarXk
[f(X1, . . . , Xk, . . . , Xn)]

= Var[gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(Xk)]

= VarXk
[gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)]
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which is now a random variable of all Xi’s, i ̸= k, that outputs the variance of f with respect to Xk. But
is it true that

EXk
[f(X1, . . . , Xn)] = E[f(X1, . . . , Xn) | X1, . . . , Xk−1, Xk+1, . . . , Xn]?

Now, we can show a very useful property of variance: that the variance of some arbitrary function can be
bounded by the expected sum of the partial variances.

Theorem 7.1 (Tensorization of Variance)

That is, Vari f(x) is the variance of f(X1, . . . , Xn) w.r.t. the variable Xi only, the remaining variables
kept fixed. Then, we have

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

Vari f(X1, . . . , Xn)

]

Proof.

We try to mimic the fact that the variance of the sum of independent random variables is the sum of
the variances. At first sight, the general function f(x1, . . . , xn) need not look anything like a sum, but
we can expand it as a telescoping sum of random variables. We will prove this using the martingale
method, which constructs this random variable f(X1, . . . , Xn) as a sum of finer and finer increments
starting from the "coarse" constant function E[f(X1, . . . , Xn)]. We define the random variable

∆k := E[f(X1, . . . , Xn) | X1, . . . Xk]− E[f(X1, . . . , Xn) | X1, . . . , Xk−1]

Then, we can express

f(X1, . . . , Xn)−E[f(X1, . . . , Xn)] =

n∑
k=1

∆k

Note that E[∆k | X1, . . . , Xk−1] = 0 (i.e. ∆k’s are martingale increments). In particular, even though
the ∆k’s are not independent, if we have l < k, then

E[∆k∆l] = E[E[∆k∆l | X1, . . . , Xk−1]]

= E[E[∆k | X1, . . . Xk−1]E[∆l | X1, . . . Xk−1]]

= E[E[∆k | X1, . . . Xk−1] ∆l]

= E[0 ·∆l] = 0

and so, the variance can be expanded into terms that vanish.

Var[f(X1, . . . , Xn)] = E
[(
f(X1, . . . , Xn)−E[f(X1, . . . , Xn)]

)2]
= E

[( n∑
k=1

∆k

)2]
=

n∑
k=1

E[∆2
k]

Now it remains to show that E[∆2
k] ≤ E[Vark f(X1, . . . , Xn)] for every k. Let us define

∆̃k = f(X1, . . . , Xn)− E[f(X1, . . . , Xn) | X1, . . . , Xk−1, Xk+1, . . . , Xn]

to be the approximation of f(X1, . . . , Xn) "one step" before the final increment. Then, we have

∆k = E[∆̃k | X1, . . . , Xk]

and as Xk and X1, . . . , Xk−1, Xk+1, . . . , Xn are independent, we have

Vark f(X1, . . . , Xn) = E[∆̃2
k | X1, . . . , Xk−1, Xk+1, . . . , Xn]

and therefore using Jensen’s inequality we can prove

E[∆2
k] = E[E[∆̃k | X1, . . . , Xk]

2] ≤ E[∆̃2
k] = E[Vark f(X1, . . . , Xn)]
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What we want to eventually do is prove an inequality of the form where for any function h : R → R and
some X ∼ µ,

Varµ[h] = Var[h(X)] ≤ ||L(h)||2L2(µ)

where L is an operator on h. This will allow us to bound

Var[gk(x1, . . . , xk−1, xk+1, . . . , xn)(Xk)] ≤ ||L(gk(x1, . . . , xk−1, xk+1, . . . , xn))||2

for all x1, . . . , xn, simply by taking h = g(x1, . . . , xk−1, xk+1, . . . , xn). Since this works for all x1, . . . , xn, we
can claim that this inequality holds for all X1(ω), . . . , Xn(ω) for all ω ∈ Ω. That is, we can loosen the fixed
values into random variables.

Vark f(X1, . . . , Xn) = Var[gk(X1, . . . , Xk−1, Xk+1, . . . , Xn)(Xk)]

≤ ||L(gk(X1, . . . , Xk−1, Xk+1, . . . , Xn))||2L2(µ)

Note that all terms are random variables of X1, . . . , Xn, and so the same inequality holds for their expecta-
tions over the entire joint measure.

E[Vark f(X1, . . . , Xn)] ≤ E
[
||L(gk(X1, . . . , Xk−1, Xk+1, . . . , Xn))||2L2(µ)

]
and so by tensorization (i.e. summing them up), we get

Var[f(X1, . . . , Xn)] ≤
n∑
i=1

E
[
Vari f(X1, . . . , Xn)

]
≤

n∑
i=1

E
[
||L(gk(X1, . . . , Xk−1, Xk+1, . . . , Xn))||2L2(µ)

]
Furthermore, this bound is sharp when f is linear. Let us demonstrate this by letting f(x1, . . . , xn) =
a1x1 + . . .+ anxn. On the left hand side, we have

Var[f(X1, . . . , Xn)] = Var

[ n∑
i=1

aiXi

]
=

n∑
i=1

a2i Var[Xi]

and on the right hand side, each component divides up to

Vari f(x1, . . . , xn) = Var[f(x1, . . . , Xi, . . . , xn)]

= Var[a1x1 + . . .+ aiXi + . . . anxn]

= Var[aiXi]

= a2i Var[Xi]

Then? Note that since f is linear, the values of all xj , j ̸= i have no effect on the variance of Xi, and so
Vari f(X1, . . . , Xn), which is originally a random variable of X1, . . . , Xi−1, Xi+1, . . . , Xn, is really just the
constant (random variable) a2i Var[Xi]. This is because no matter what values X1, . . . , Xi−1, Xi+1, . . . , Xn

are realized, these values will only contribute to a translation of the random variable f(X1, . . . , Xn), and
hence will not affect the variance w.r.t. Xi. So, the right hand side also becomes

E
[ n∑
i=1

Vari f(X1, . . . , Xn)

]
= E

[ n∑
i=1

a2i Var[Xi]

]
=

n∑
i=1

a2i Var[Xi]

which is the same as the LHS.

We can view the tensorization of the variance in itself as an expression of the concentration phenomenon.
Vari f(x) quantifies the sensitivity of the function f(x) of the coordinate xi in a distribution-dependent
manner. If this sensitivity w.r.t. each coordinate (E[Vari f(X1, . . . , Xn)]) is small, then f(X1, . . . , Xn) is
close to its mean. However, it might not be so straightforward to compute Vari f , since it depends on both
the function f and on the distribution of Xi. So, we can try combining this with a suitable bound on the
component-wise variance.
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Let us define the quantities:

Dif(x) := sup
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)− inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

and
D−
i f(x) := f(x1, . . . , xn)− inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

which quantifies the sensitivity of the function f to the coordinate xi in a distribution-independent manner.
Now we can introduce the following bounds.

Corollary 7.1 ()

We have

Var[f(X1, . . . , Xn)] ≤
1

4
E
[ n∑
i=1

(
Dif(X1, . . . , Xn)

)2]

Proof.

We start off with

Vari f(X1, . . . , Xn) = Var[f(X1, . . . , Xi, . . . , Xn)]

≤ 1

4

(
Dif(X1, . . . , Xn)

)2
Since these a random variables follow this inequality (for all ω ∈ Ω), we can attach an expectation
on them to get

E[Vari f(X1, . . . , Xn)] ≤ E
[
1

4

(
Dif(X1, . . . , Xn)

)2]
and substituting in the previous theorem gives

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

Vari f(X1, . . . , Xn)

]

=

n∑
i=1

E
[
Vari f(X1, . . . , Xn)

]
≤

n∑
i=1

E
[
1

4

(
Dif(X1, . . . , Xn)

)2]

=
1

4
E
[ n∑
i=1

(
Dif(X1, . . . , Xn)

)2]

Example 7.1 (Random Matrices)

Exercise 7.1 (Banach-Valued Sums)

Let X1, X2, . . . , XN be independent random variables with values in a Banach space (B, || · ||B).
Suppose these random variables are bounded in the sense that ||Xi||B ≤ C a.s. for every i. Show
that

Var

(∣∣∣∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣∣∣∣
B

)
≤ C2

n

This is a simple vector-valued variant of the elementary fact that the variance of 1
n

∑n
k=1Xk for
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real-valued random variables Xk is of order 1
n .

Solution 7.1

We can tensorize the variance to get

Vark

∣∣∣∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣∣∣∣
B

= Var

∣∣∣∣∣∣∣∣ 1nXk

∣∣∣∣∣∣∣∣
B

=
1

n2
Var ||Xk||B

≤ 1

n2

(
1

4
(C − (−C))2

)
=
C2

n2

and so letting f(X1, . . . , Xn) =
∣∣∣∣ 1
n

∑n
k=1Xk

∣∣∣∣
B

, we get

Var[f(X1, . . . Xn)] ≤
n∑
k=1

E[Vark f(X1, . . . , Xn)]

≤
n∑
k=1

C2

n2
=
C2

n

Exercise 7.2 (Rademacher Processes)

Let ϵ1, . . . , ϵn be independent symmetric Bernoulli random variables P(ϵi = ±1) = 1
2 (also called

Rademacher variables), let T ⊂ Rn. The following identity is completely trivial:

sup
t∈T

Var

[ n∑
k=1

ϵktk

]
= sup

t∈T

n∑
k=1

t2k

Prove the following nontrivial fact:

Var

[
sup
t∈T

n∑
k=1

ϵktk

]
≤ 4 sup

t∈T

n∑
k=1

t2k

Solution 7.2

Let us consider a fixed ϵ = (ϵ1, . . . , ϵn) and index i ∈ [n]. Then, consider the random variable formed
by taking the value f(ϵ1, . . . , ϵn) and loosening ϵi to be an random variable. That is,

P
[
f(ϵ1, . . . , ϵn) = sup

t∈T
{ϵ1t1 + . . .+ 1ti + . . .+ ϵntn}

]
=

1

2

P
[
f(ϵ1, . . . , ϵn) = sup

t∈T
{ϵ1t1 + . . .− 1ti + . . .+ ϵntn}

]
=

1

2

Then, we compute

D−
i f(ϵ1, . . . , ϵn) = inf

ϵi∈{−1,1}
sup
t∈T

n∑
k=1

ϵktk
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and we can estimate

D−
i f(ϵ) = f(ϵ1, . . . , ϵn)−Dif(ϵ1, . . . , ϵn)

= sup
t∈T

n∑
k=1

ϵktk − inf
ϵi∈{−1,1}

sup
t∈T

n∑
k=1

ϵktk

≤ sup
t∈T

2|ti|

We can finally bound

Var[f(ϵ1, . . . , ϵn)] ≤ E
[ n∑
i=1

(
D−
i f(ϵ)

)2]

≤ 4E
[ n∑
i=1

sup
t∈T

t2i

]

= 4 sup
t∈T

n∑
i=1

t2i

Exercise 7.3 (Bin Packing)

This is a classical application of bounded difference inequalities. Let X1, . . . , Xn i.i.d. random
variables with values in [0, 1]. Each Xi represents the size of a package to be shipped. The shipping
containers are bins of size 1 (so each bin can hold a set packages whose sizes sum to at most 1).
Let Bn = f(X1, . . . , Xn) be the minimal number of bins needed to store the packages. Note that
computing Bn is a hard combinatorial optimization problem, but we can bound its mean and variance
by easy arguments.

1. Show that Var[Bn] ≤ n/4
2. Show that E[Bn] ≥ nE[X1]

Thus the fluctuations ∼
√
n of Bn are much smaller than its magnitude ∼ n.

Solution 7.3

Listed.
1. Given fixed sizes X1, . . . , Xn and some i ∈ [n], we can see that a property of f is that

f(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) + 1 = f(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)

since for an extra package with size 1, you would for sure need one more bin. So the maximum
difference of f based on the xi value is the constant random variable

Dif(X1, . . . , Xn) = sup
z∈[0,1]

f(X1, . . . , z, . . . ,Xn)− inf
z∈[0,1]

f(X1, . . . , z, . . . ,Xn)

= f(X1, . . . , 1, . . . , Xn)− f(X1, . . . , 0, . . . , Xn) = 1

and so by the bounded difference inequalities,

Var[Bn] = Var[f(X1, . . . , Xn)] ≤
1

4
E
[ n∑
i=1

(
Dif(X1, . . . , Xn)

)2]

=
1

4

n∑
i=1

E
[(
Dif(X1, . . . , Xn)

)2]
≤ n

4
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2. Given the sizes X1, . . . , Xn, Bn must satisfy

Bn = f(X1, . . . , Xn) ≥ X1 + . . .+Xn

since the total volume of bins Bn must exceed the total volume X1 + . . .+Xn of packages. So,

E[Bn] ≥ E
[ n∑
k=1

Xk

]
= nE[X1]

Exercise 7.4 (Order Statistics and Spacings)

Let X1, . . . , Xn be independent random variables, and denote by X(1) ≥ . . . ≥ X(n) their decreasing
rearrangement (X(1) = maxiXi, X(n) = miniXi, etc.). Show that

Var[X(k)] ≤ kE[(X(k) −X(k+1))
2] for 1 ≤ k ≤ n/2

and that
Var[X(k)] ≤ (n− k + 1)E[(X(k−1) −X(k))

2] for n/2 < k ≤ n

Exercise 7.5 (Convex Poincare Inequality)

Let X1, . . . , Xn be independent random variables taking values in [a, b]. The bounded difference
inequalities estimate the variance Var[f(X1, . . . , Xn)] in terms of discrete derivatives Dif or D−

i f of
the function f . The goal of this problem is to show that if the function f is convex, then one can
obtain a similar bound in terms of the ordinary notion of derivative ∇if(x) = ∂f(x)/∂xi in Rn.

1. Show that if g : R −→ R is convex, then

g(y)− g(x) ≥ g′(x) (y − x) for all x, y ∈ R

2. Show using part (a) and the bounded difference inequalities that if f : Rn → R is convex, then

Var[f(X1, . . . , Xn)] ≥ (b− a)2E[||∇f(X1, . . . , Xn)||2]

3. Conclude that if f is convex and L-Lipschitz, i.e. |f(x)− f(y)| ≤ L||x− y|| for all x, y ∈ [a, b]n,
then Var[f(X1, . . . , Xn)] ≥ L2(b− a)2.

Solution 7.4

Listed.
1. Assuming g is differentiable, let us choose any x, y ∈ R and define some z = λx + (1 − λ)y in

between. Then, pictorially, we would like to formally show that

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x

and take the limit as z → x to get f ′(x) on the LHS. By definition, we have

f(z) = f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

Subtracting f(x) and then dividing by 1− λ > 0 on both sides gives

f(z)− f(x)

1− λ
≤ f(y)− f(x)
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Note that z − x = λx+ (1− λy)− x = (1− λ)(y − x). So, dividing by y − x > 0 on both sides
gives

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x

and taking the limit on the LHS gives

f ′(x) = lim
z→x

f(z)− f(x)

z − x
≤ f(y)− f(x)

y − x

Since y − x > 0, we can multiply both on the same side to get

f(y)− f(x) ≥ f ′(x) (y − x)

If y < x, then the proof is the same, and the inequality sign ends up getting switched around
twice, leading to the same conclusion.

2. Note that from the above result, we can multiply both sides by −1 to get that g(x) − g(y) ≤
g′(x)(x− y) for all x, y ∈ R, and then swap the two variables to get g(y)− g(x) ≤ g′(y)(y− x).
Let us consider fixed x1, . . . , xn and some i ∈ [n]. Given f : Rn → R, we define fi(x) : R → R
by unfixing the ith variable. Then, given some α, β ∈ [a, b],

fi(x)(β)− fi(x)(α) ≤ g′(β)(β − α)

or equivalently,

f(x1, . . . , β, . . . , xn)− f(x1, . . . , α, . . . , xn) ≤
∂f

∂xi
(x1, . . . , β, . . . , xn) (β − α)

Now let z∗ ∈ [a, b] be the value s.t.

z∗ = arg min
z∈[a,b]

f(x1, . . . , z, . . . , xn)

Then,

D−
i f(x) = f(x1, . . . , xi, . . . xn)− f(x1, . . . , z

∗, . . . , xn) ≤
∂f

∂xi
(x1, . . . , xi, . . . , xn) (xi − z∗)

and so (
D−
i f(X)

)2 ≤ ∇if(x)
2 (xi − z∗)2 ≤ ∇if(x)

2 (b− a)2

which gives from the bounded difference inequality

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

(
D−
i f(X1, . . . , Xn)

)2]

≤ E
[ n∑
i=1

∇if(x)
2 (b− a)2

]
= (b− a)2E

[∣∣∣∣∇f(X)
∣∣∣∣2]

3. If f is L-lipschitz, then ||∇f(X)|| ≤ L, and so

Var[f(X1, . . . , Xn)] ≤ (b− a)2L2
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7.1 Markov Semigroups

Definition 7.1 (Markov Process)

Let (Ω,F ,P) be a probability space and (S,S) be a measurable space. A homogeneous Markov process
{Xt}t≥0 is a stochastic process that satisfies the Markov property: for every bounded measurable
function f and s, t ≥ 0, there exists a bounded measurable function Psf satisfying

E[f(Xt+s) | {Xr}r≤t] = (Psf)(Xt) = E[f(Xt+s) | Xt]

Definition 7.2 (Stationary Measure)

A probability measure µ is called stationary or invariant if

Eµ[f ] = Eµ[Ptf ] i.e.
∫
S

f dµ =

∫
S

Ptfdµ

for all t ≥ 0 and bounded measurable f . By abusing notation, this is conventionally written

µ(f) = µ(Ptf)

To interpret this notion, suppose that X0 ∼ µ. Then,

E[f(Xt)] = E[E[f(Xt) | X0]] = E[Ptf(X0)] = Eµ[Ptf ]

and if µ is stationary, then we have E[f(Xt)] = Eµ[f ]. If f = 1A for some measurable A ⊂ S, then
E[1A(Xt)] = P(Xt ∈ A), and

P(Xt ∈ A) = Eµ[1A] =
∫
S

1A dµ =

∫
A

dµ = µ(A) = P(X0 ∈ A)

which means that the probability that for all A ∈ S and all t ≥ 0, the probability of Xt realizing in A is
equivalent to the initial probability of X0 realizing in A. This means that the process remains distributed
according to the stationary measure Xt ∼ µ for every time t. In summary, stationary measures describe the
equilibrium or steady-state behavior of the Markov process.

From now, given the state space (S,S) we can put a measure µ on it to get a measure space (S,S, µ). The
Banach space of all µ-measurable functions f : (S,S, µ) → (R,R) (i.e. for every Borel B ∈ R, f−1(B) ∈ S)
will be denoted Lp(µ), equipped with the norm

||f ||Lp(µ) := Eµ[fp]1/p =
(∫

S

|f |p dµ
)1/p

If p = 2, then we can define the inner product

⟨f, g⟩µ := Eµ[fg] =
∫
S

fg dµ

Lemma 7.2 ()

Let µ be a stationary measure. Then, the following hold for all p ≥ 1, t, s ≥ 1, α, β ∈ R, and bounded
measurable functions f, g.

1. Contraction:
||Ptf ||Lp(µ) ≤ ||f ||Lp(µ) = Eµ[fp]1/p
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2. Linearity:
Pt(αf + βg) = αPtf + βPtg

3. Semigroup Property:
Pt+sf = PtPsf

4. Conservativeness:
Pt1 = 1

Lemma 7.3 ()

Let µ be a stationary measure. Then, t 7→ Varµ[Ptf ] is a decreasing function of time for every function
f ∈ L2(µ).

Proof.

Note that

Varµ[Ptf ] = ||Ptf − µf ||2L2(µ) = ||Pt(f − µf)||2L2(µ) = ||Pt−sPs(f − µf)||2L2(µ)

≤ ||Ps(f − µf)||2L2(µ) = ||Psf − µf ||2L2(µ) = Varµ(Psf)

We now define the analogous operator to the transition rate matrix in discrete time chains with a finite state
space.

Definition 7.3 (Generator)

The generator L is defined as

L f := lim
t↓0

Ptf − f

t

for every f ∈ L2(µ) for which the above limit exists in L2(µ). The set of f for which L f is defined is
called the domain Dom(L ) of the generator, and L defines a linear operator from Dom(L ) ⊂ L2(µ)
to L2(µ).

We have defined the generator L from the Markov semigroup {Pt}t≥0. Now, let’s try to define the semigroup
in terms of the generator L . Given that we have some map L ), can we define some semigroup {Pt} satisfying
the definition? To do this, we must solve the differential equation:

d

dt
Pt = lim

δ↓0

Pt+δ − Pt
δ

= lim
δ↓0

PtPδ − Pt
δ

= Pt lim
δ↓0

Pδ − I

δ
= PtL

For function Pt to satisfy this differential equation, we have the solution

Pt = etL

which also implies that L and Pt must commute.

Definition 7.4 (Reversibility)

The Markov semigroup {Pt}t≥0 with stationary measure µ is called reversible if

⟨f, Ptg⟩µ = ⟨Ptf, g⟩µ

for every f, g ∈ L2(µ). Equivalently, we can say that Pt is self-adjoint on L2(µ), or since Pt = etL ,
we have L is self-adjoint.
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Definition 7.5 (Ergodicity)

The Markov semigroup {Pt}t≥0 with stationary measure µ if called ergodic if

Ptf → µf

in L2(µ) as t→ +∞ for every f ∈ L2(µ). Note that µf = µ(f) is the constant function in L2(µ).

Exercise 7.6 (Elementary Identities)

Let Pt be a Markov semigroup with generator L and stationary measure µ. Prove the following
elementary facts.

1. Show that µ(L f) = 0 for every f ∈ L2(µ)
2. If ϕ : R → R is convex, then Ptϕ(f) ≥ ϕ(Ptf) when f, ϕ(f) ∈ L2(µ)
3. If ϕ : R → R is convex, then L ϕ(f) ≥ ϕ′(f)L f when f, ϕ(f) ∈ L2(µ)
4. Let f ∈ L2(µ). Show that the following process is a martingale.

Mf
t := f(Xt)−

∫ t

0

L f(Xs) ds

Solution 7.5

Listed.
1. This is simply a property of the generator. Not worrying about interchanging limits and inte-

grals, we have

µ(L f) = Eµ[L f ] =

∫
S

lim
t↓0

Ptf − P0f

t
dµ

= lim
t↓0

∫
S

Ptf − P0f

t
dµ

= lim
t↓0

1

t

(
Eµ[Ptf ]− Eµ[f ]

)
= lim

t↓0

1

t
· 0 = 0

2. By Jensen’s inequality,

Psϕ(f) = E[ϕ(f)(Xt+s) | Xt]

≥ ϕ

(
E[f(Xt+s | Xt]

)
= ϕ(Psf)

7.2 Poincare Inequalities
Recall that a Poincare inequality for µ is, informally, of the form

variance(f) ≤ Eµ[||gradient(f)||2]

At first sight, such an inequality has nothing to do with Markov processes. However, the validity of a Poincare
inequality for µ turns out to be related to the rate of convergence of an ergodic Markov process for which
µ is the stationary distribution. That is, a measure µ satisfies a Poincare inequality for a certain notion of
gradient if and only if an ergodic Markov semigroup associated to this gradient converges exponentially fast
to µ.
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Definition 7.6 (Dirichlet Form)

Given a Markov process with generator L and stationary measure µ, the corresponding Dirichlet
form is defined as

E(f, g) := −⟨f,L g⟩µ

Theorem 7.2 (Poincare Inequality)

Let Pt be a reversible ergodic Markov semigroup with stationary measure µ. The following are
equivalent given c ≥ 0.

1. Varµ(f) ≤ cE(f, f) for all f (Poincare Inequality)
2. ||Ptf − µf ||L2(µ) ≤ e−t/c||f − µf ||L2(µ)

3. E(Ptf, Ptf) ≤ e−2t/cE(f, f) for all f, t
4. For every f there exists κ(f) s.t. ||Ptf − µf ||L2(µ) ≤ κ(f)e−t/c

5. For every f there exists κ(f) s.t. E(Ptf, Ptf) ≤ κ(f)e−2t/c

We should view properties 2 through 5 as different notions of exponential convergence of the Markov semi-
group Pt to the stationary measure µ. Properties 2 and 4 directly measure the rate of convergence of Ptf to
µf in L2(µ), while properties 3 and 5 measure the rate of convergence of the "gradient" (now depicted as
E) of Ptf to 0.

7.2.1 The Gaussian Poincare Inequality

Definition 7.7 (Ornstein-Uhlenbeck Process)

Given standard Brownian motion (Wt)t≥0, the Ornstein-Uhlenbeck process is defined as

Xt = e−tX0 + e−tWe2t−1

Lemma 7.4 (Gaussian Integration by Parts)

If ξ ∼ N (0, 1), then
E[ξf(ξ)] = E[f ′(ξ)]

Proof.

Assuming that f is smooth with compact support, we have by integration by parts

E[f ′(ξ)] =
∫ ∞

−∞
f ′(x)

e−x
2/2

√
2π

dx

=
e−x

2/2

√
2π

f(x)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
f(x)

d

dx

(
e−x

2/2

√
2π

)
dx

= −
∫ ∞

−∞
−xf(x)e

−x2/2

√
2π

dx

=

∫ ∞

−∞

(
xf(x)

)e−x2/2

√
2π

dx = E[ξf(ξ)]
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Theorem 7.3 ()

The Ornstein-Uhlenbeck Process (Xt)t≥0

1. is a Markov process with semigroup

Ptf(x) = E
[
f(e−tx+

√
1− e−2tξ)

]
with ξ ∼ N (0, 1)

2. admits µ = N (0, 1) as its stationary measure
3. is ergodic
4. has generator and Dirichlet form given by

L f(x) = −xf ′(x) + f ′′(x), E(f, g) = ⟨f ′, g′⟩µ

5. is reversible

Proof.

Let s ≥ t.
1. By definition of Xt, we have Xt = e−tX0 + e−tWe2t−1 and

Xs = e−sX0 + e−sWe2s−1 =⇒ X0 = (Xs − e−sWe2s−1)e
s

Substituting in the equation for Xs gives

Xt = e−(t−s)Xs + e−t(We2t−1 −We2s−1)

= e−(t−s)Xs +
√
1− e−2(t−s)ξ

where ξ = (We2t−1 −We2s−1)/
√
e2t − e2s ∼ N(0, 1) is independent of {Xr}r≤s. Therefore, we

can write

E[f(Xt) | {Xr}r≤s] = Pt−sf(Xs) = E
[
f
(
e−(t−s)Xs +

√
1− e−2(t−s)ξ

)]
which proves the Markov property and gives the semigroup.

2. We can clearly see that if Xt ∼ N(0, 1), then Xt+s = e−sXt+
√
1− e−2sξ is a sum of Gaussians,

one with variance e−2s and the other with variance 1− e−2s, and so their sum has variance 1.
3. We will take for granted that this is ergodic.
4. To compute the generator, we use the chain rule (and not worry about whether we take the

derivative within the expectation integral) and then use Gaussian integration by parts to get

d

dt
Ptf(x) = E

[
f ′(e−tx+

√
1− e−2tξ)

(
e−2t

√
1− e−2t

ξ − e−tx

)]
= E

[
e−txf ′(e−tx+

√
1− e−2tξ) + e−2tf ′′(e−tx+

√
1− e−2tξ)

]
and therefore have

d

dt
Ptf(x) =

(
− x

d

dx
+

d2

dx2

)
Ptf(x)

The Dirichlet form can be simplified using the Gaussian integration by parts as

E(f, g) = −⟨f,L g⟩µ
= E[f(ξ)

(
xg′(ξ)− g′′(ξ)

)
]

= E[ξf(ξ)g′(ξ)]− E[f(ξ)g′′(ξ)]
= E[f ′(ξ)g′(ξ) + f(ξ)g′′(ξ)]− E[f(ξ)g′′(ξ)]
= E[f ′(ξ)g′(ξ)]

5. Since E(f, g) = E[f ′(ξ)g′(ξ)], it is symmetric and so L is self-adjoint.
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From the previous theorem part 4, we can see that

E(f, f) = ⟨f ′, f ′⟩µ = ||f ′||2L2(µ) = Eµ[f ′2]

which means that the Dirichlet form of an Ornstein-Uhlenbeck process is precisely the expected square
gradient of function f ! Therefore, with the Poincare inequality, we can bound the variance of f with the
Dirichlet form, which is the expected square gradient of f .

Theorem 7.4 ()

Let µ = N (0, 1). Then,
Varµ[f ] ≤ ||f ′||2L2(µ)

Proof.

We have from the properties of the Ornstein-Uhlenbeck process that

d

dx
Ptf(x) =

d

dx
E[f(e−tx+

√
1− e−2tξ)]

= E
[
d

dx
f(e−tx+

√
1− e−2tξ)]

= E[f ′(e−tx+
√
1− e−2tξ) e−t]

= e−tE[f ′(e−tx+
√
1− e−2tξ)]

= e−tPtf
′(x)

Thus
E(Ptf, Ptf) = ||(Ptf)′||2L2(µ) = e−2t||Ptf ′||2L2(µ) ≤ e−2t||f ′||2L2(µ) = e−2tE(f, f)

where the inequality follows from contraction.

By tensorization, we can prove the following.

Corollary 7.2 (Gaussian Poincare Inequality)

Let X1, . . . , Xn ∼ N(0, 1) be iid. Then,

Var[f(X1, . . . , Xn)] ≤ E[||∇f(X1, . . . , Xn)||2]

Proof.

Computation.

Var[f(X1, . . . , Xn)] ≤ E
[ n∑
i=1

Varif(X1, . . . , Xn)

]

≤ E
[ n∑
i=1

∣∣∣∣∣∣∣∣ ddxi f(X1, . . . , Xn)

∣∣∣∣∣∣∣∣2]
= E[||∇f(X1, . . . , Xn)||2]

So what have we done so far? If we have some distribution µ and want to prove an inequality that bounds
Varµ[f ], then we should choose some (reversible ergodic) Markov process that has a stationary distribution
µ. We can identify its semigroup, generator, and ultimately its Dirichlet form E(f, g), which will allow us to
invoke the Poincare inequality to bound

Varµ[f ] ≤ cE(f, f)
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and since µ = N(0, 1), we have shown above using both the properties of the generator of the Ornstein-
Uhlenbeck process and Gaussian integration by parts that this Dirichlet form is precisely the norm of f ′.
This is clear since the Dirichlet form ⟨f,L g⟩µ only depends on L and µ. However, the Dirichlet form does
not have to be this form.

1. If µ is some other distribution, we would not be able to reduce E(f, f) to the norm of its derivative,
and so it make take on a different form.

2. If we choose a different Markov process, even with the same stationary measure µ = N(0, 1), the
generator may be different and so will the Dirichlet form.

Exercise 7.7 (Carre du Champ)

We have interpreted the Dirichlet form E(f, f) as a general notion of “expected square gradient” that
arises in the study of Poincare inequalities. There is an analogous quantity Γ(f, f) that plays the
role of “square gradient” in this setting (without the expectation). In good probabilistic tradition, it
is universally known by its French name carre du champ (literally, “square of the field”). The carre
du champ is defined as

Γ(f, g) :=
1

2

[
L (fg)− fL g − gL f

]
in terms of the generator L of a Markov process with stationary measure µ.

1. Show that E(f, f) =
∫
Γ(f, f) dµ and that E(f, g) =

∫
Γ(f, g) dµ if the Markov process is in

addition reversible.
2. Show that Γ(f, f) ≥ 0 so it can indeed by interpreted as a square.
3. Prove the Cauchy-Schwartz inequality Γ(f, g)2 ≤ Γ(f, f) Γ(g, g)
4. Compute the carre du champ of the Ornstein-Uhlenbeck process and confirm that it should

indeed be interpreted as the appropriate notion of "square gradient."

Solution 7.6

Listed.
1. By stationarity, we have

µ(L f) =

∫
S

L f dµ = 0

for all f ∈ L2(µ), which reduces the first term below to 0. So, we can reduce the carre du
champ to ∫

S

Γ(f, f) dµ =
1

2

(∫
S

L (f2) dµ− 2

∫
S

fL f dµ

)
= −

∫
S

fL f dµ = −⟨f,L f⟩µ = E(f, f)

Furthermore, assuming that Pt is reversible, we have

E(f, g) = −⟨f,L g⟩µ = −⟨L f, g⟩µ = −⟨g,L f⟩µ = E(g, f)

and so ∫
Γ(f, g) dµ =

1

2

(∫
L (fg) dµ−

∫
fL g dµ−

∫
gL f dµ

)
=

1

2

(
− ⟨f,L g⟩µ − ⟨g,L f⟩µ

)
= −⟨f,L g⟩µ = E(f, g)
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2. Since Γ(f, f) = 1
2

(
L (f2)− 2fL f

)
, the problem now reduces to proving that L (f2) ≥ 2fL f .

By Jensen’s inequality, we have Pt(f2) ≥ (Ptf)
2, and so

L (f2) = lim
t↓0

Pt(f
2)− f2

t
≥ lim

t↓0

(Ptf)
2 − f2

t

=
d

dt
(Ptf)

2

∣∣∣∣
t=0

=

(
2(Ptf) ·

d

dt
(Ptf)

)∣∣∣∣
t=0

= 2fL f

3. We know that Γ(f + tg, f + tg) ≥ 0 from above, and so if we expand out, we get

Γ(f + tg, f + tg) =
1

2

[
L

(
(f + tg)2

)
− 2(f + tg)L (f + tg)

]
= Γ(g, g)t2 + 2Γ(f, g)t+ Γ(f, f) ≥ 0

for all t. Since this quadratic is nonnegative, its discriminant must be ≤ 0, and so

∆ =
(
2Γ(f, g)

)2 − 2Γ(g, g)Γ(f, f) ≤ 0 =⇒ Γ(f, g)2 ≤ Γ(f, f)Γ(g, g)

4. The generator of the Ornstein-Uhlenbeck process is L f(x) = −xf ′(x) + f ′′(x). Therefore,

Γ(f, g)(x) =
1

2

[
L (fg)(x)− f(x)L g(x)− g(x)L f(x)

]
=

1

2

[(
− x(fg)′(x) + (fg)′′(x)

)
− f(x)

(
− xg′(x) + g′′(x)

)
− g(x)

(
− xf ′(x) + f ′′(x)

)]
which simplifies down to f ′(x)g′(x), and so Γ(f, f) = [f ′(x)]2 can be interpreted as the square
gradient of f .

7.3 Variance Identities and Exponential Ergodicity
Now, let us develop some intuition on the connection between Markov semigroups, Varµ[f ] and the Dirichlet
form E(f, f).

Lemma 7.5 ()

The following identity holds.
d

dt
Varµ[Ptf ] = −2E(Ptf, Ptf)

Proof.

By stationarity, µ(Ptf) = µ(f), and so

d

dt
Varµ[Ptf ] =

d

dt

{
µ((Ptf)

2)− µ(Ptf)
2
}

=
d

dt

{
µ((Ptf)

2)− µ(f)2
}
=

d

dt
µ((Ptf)

2)

=
d

dt

∫
S

(Ptf)
2 dµ =

∫
S

d

dt
(Ptf)

2 dµ = 2

∫
S

(Ptf)
d

dt
Ptf dµ

= 2Eµ[Ptf,L (Ptf)] = 2⟨Ptf,LPtf⟩µ = −2E(Ptf, Ptf)
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Theorem 7.5 ()

E(f, f) ≥ 0 for every f .

Proof.

We know that t 7→ Varµ[Ptf ] is a decreasing function of t (by contraction of Pt), so

d

dt
Varµ[Ptf ] = −2E(Ptf, Ptf) ≤ 0

Theorem 7.6 ()

Suppose that the Markov semigroup is ergodic. Then, we have for every f

Varµ[f ] = 2

∫ ∞

0

E(Ptf, Ptf) dt

8 Subgaussian Concentration and log-Sobolev Inequalities

8.1 Subgaussian Variables and Chernoff Bounds
We should first consider how one might go about proving that a random variable satisfies a Gaussian tail
bound. Most tail bounds in probability theory are proved using some form of Markov’s inequality.

Lemma 8.1 (Markov’s Inequality)

Given a nonnegative random variable X, we have

P(X > α) ≤ E[X]

α

which means that the probability that X > α goes down at least as fast as 1/α.

Markov’s inequality is very conservative but very general, too. If we make further assumptions about
the random variable X, we can often make stronger bounds. Chebyshev’s inequality assumes a (possibly
negative) random variable with finite variance and states that the probability will go down as 1/x2.

Theorem 8.1 (Chebyshev Inequality)

Given (possibly negative) random variable X, if E[X] = µ < +∞ and Var(X) = σ2 < +∞, then for
all α > 0,

P
(
|X − µ| > kσ

)
≤ 1

k2
⇐⇒ P(|X − µ| > α) ≤ Var[X]

α2

That is, the probability that X takes a value further than k standard deviations away from µ goes
down by 1/k2. Therefore, if σ is small, then this bound will be small since there is more concentration
in the mean.
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Proof.

We apply Markov’s inequality to the non-negative random variable |X − µ|.

P(|X − µ| > α) = P(|X − µ|2 > α2) ≤ E(|X − µ|2)
α2

=
Var[X]

α2

since the numerator on the RHS is the definition of variance.

Using higher powers, we can obtain better and better bounds, but not exponential ones. To obtain these
Gaussian tail bounds, we must use more sophisticated methods.

Lemma 8.2 (Chernoff Bound)

Define the log-moment generating function ψ of a random variable X and its Legendre dual ψ∗ as

ψX(λ) := logE[eλ(X−E[X])] = E[eλX ]− λE[X] ψ∗
X(t) = sup

λ≥0
{λt− ψX(λ)}

Then, the following is known as the Chernoff bound.

P[X − E[X] ≥ t] ≤ e−ψ
∗
X(t)

for all t ≥ 0. We can lower bound it too with

P[X − E[X] ≤ −t] ≤ e−ψ
∗
X(t)

and union bounding them gives

P(|X − E[X]| ≥ t] ≤ 2e−ψ
∗
X(t)

Proof.

We take some λ ≥ 0 and given that the map x 7→ eλx is nondecreasing, we can exponentiate and then
use Markov’s inequality:

P[X − E[X] ≥ t] = P[eλ(X−E[X]) ≥ eλt] ≤ e−λtE[eλ(X−E[X])] = e−(λt−ψX(λ)) ≤ e−ψ
∗
X(t)

as the left hand does not depend on the choice of λ, we have the additional flexibility of tuning λ to
get potentially better bounds. We can also use Chernoff bound on the random variable −X to bound

P(X − E[X] ≤ −t) = P(−X − E[−X] ≥ t)

= P(eλ(−X+E[X]) ≥ eλt]

≤ e−λtE[eλ(−X+E[X])]

= e−(λt−ψ−X(λ)) ≤ e−ψ
∗
−X(t)

There seems to be a minor problem in the fact that −ψ∗
X and −ψ∗

−X are different, and so provide
different bounds for the upper and lower tail. But note that ψX(λ) = ψ−X(−λ), and so their
maximum will coincide and ψ∗

X(t) = ψ∗
−X(t), allowing us to get the union bound.

P(|X − E[X]| ≥ t] ≤ 2e−ψ
∗(t)

To observe how the Chernoff bound can give rise to Gaussian tail bounds, let us first consider the case of an
actual Gaussian random variable.
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Example 8.1 ()

Let X ∼ N(µ, σ2). Then, E[eλ(X−E[X])] = eλ
2σ2/2, so

ψ(λ) =
λ2σ2

2
, ψ∗(t) = sup

λ≥0

{
λt− λ2σ2

2

}
=

t2

2σ2

and by the Chernoff bound, we have P(X − E[X] ≥ t] ≤ e−t
2/2σ2

.

Note that in order to get the tail bound, the fact that X is Gaussian was not actually important. It would
suffice to assume that the log-MGF is bouded from above by a Gaussian.

Definition 8.1 (Subgaussian Random Variables)

A random variable is called σ2-subgaussian if its log-MGF satisfies

ψ(λ) ≤ λ2σ2

2

for all λ ∈ R. The constant σ2 is called the variance proxy.

Remember that if ψ(λ) is the log-MGF of a random variable X, then ψ(−λ) is the log-MGF of the random
variable −X. For a σ2-subgaussian random variable X, we can therefore apply the Chernoff bound to both
the upper and lower tails and union bound to obtain

P(|X − E[X]| ≥ t) ≤ 2e−t/2σ
2

We have only worked with Gaussians, which are trivially subgaussian. A nontrivial results is that every
bounded random variable is subgaussian.

Lemma 8.3 (Hoeffding’s Lemma)

Let a ≤ X ≤ b a.s. for some a, b ∈ R. Then,

E[eλ(X−E[X])] ≤ exp

(
λ2(b− a)2

8

)
That is, X is (b− a)2/4-subgaussian.

Proof.

We assume without loss of generality that E[X] = 0. Then, we have ψ(λ) = logE[eλX ], and we can
compute

ψ′(λ) =
E[XeλX ]

E[eλX ]
, ψ′′(λ) =

E[X2eλX ]

E[eλX ]
−

(
E[XeλX ]

E[eλX ]

)2

and thus

ψ′′(λ) =

∫
Ω

X2 eλX

E[eλX ]
dP−

(∫
Ω

X
eλX

E[eλX ]
dP

)2

can be interpreted as the variance of the random variable X under the twisted probability measure
dQ = eλX

E[eλX ]
dP. But a ≤ X ≤ b, so we can bound the variance by its infimum and suprememum
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ψ′′(λ) = VarQ[X] ≤ (b− a)2/4, and the fundamental theorem of calculus yields

ψ(λ) =

∫ λ

0

∫ µ

0

ψ′′(ρ) dρ dµ ≤ λ2(b− a)2

8

using ψ(0) = 0 and ψ′(0).

Exercise 8.1 (Subgaussian Variables)

There are several different notions of random variables with a Gaussian tail that are all essentialy
equivalent up to constants. The aim of this problem is to obtain some insight into these notions.

1. Show that if X is σ2-subgaussian, then Var[X] ≤ σ2.
2. Show that for any increasing and differentiable function Φ,

E[Φ(|X|)] = Φ(0) +

∫ ∞

0

Φ′(t)P(|X| ≥ t) dt

In the following, we will assume for simplicity that E[X] = 0. We now prove that the following three
properties are equivalent for suitable constants σ, b, c: (1) X is σ2-subgaussian; (2) P(|X| ≥ t) ≤
2e−bt

2

; and (3) E[ecX2

] ≤ 2.
3. Show that if X is σ2-subgaussian , then P(|X| ≥ t) ≤ 2e−t

2/2σ2

4. Show that if P(|X| ≥ t) ≤ 2e−t
2/2σ2

, then E[eX2/6σ2

] ≤ 2.
5. Show that if E[eX2/6σ2

] ≤ 2, then X is 18σ2-subgaussian.
In addition, the subgaussian property of X is equivalent to the fact that the moments of X scale as
is the case for the Gaussian distribution.

6. Show that if X is σ2-subgaussian, then E[X2q] ≤ (4σ2)qq! for all q ∈ N.
7. Show that if E[X2q] ≤ (4σ2)qq! for all q ∈ N, then E[eX2/8σ2

] ≤ 2.

Solution 8.1

Listed.
1. We can expand out

E[eλ(X−EX ] = E
[
1 + λ(X − EX) +

λ2

2
(X − EX)2 + . . .

]
= 1 +

λ2

2
Var[X] + o(λ2)

≤ eλ
2σ2/2 = 1 +

λ2σ2

2
+ o(λ2)

which is true for all λ. Setting λ = 0, we get Var[X] ≤ σ2.
2. Unfinished.
3. Since X is σ2 subgaussian, its log-MGF satisfies ψ(λ) = logE[eλX ] ≤ λ2σ2

2 =⇒ −ψ(λ) ≥
−λ2σ2

2 . Then, its Legendre dual is

ψ∗(t) = sup
λ≥0

{λt− ψ(λ)} ≥ sup
λ≥0

{λt− λ2σ2

2
} =

t2

2σ2

where we optimize the quadratic w.r.t. λ. Therefore, −ψ∗(t) ≤ − t2

2σ2 =⇒ P(X ≥ t) ≤
e−ψ

∗(t) ≤ e−t
2/2σ2

.
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4. By using the identity above with Φ(t) = et
2/6σ2

, we have

E[eX
2/6σ2

] = E[e|X|2/6σ2

]

= e0
2/6σ2

+

∫ ∞

0

et
2/6σ2 t

3σ2
P(|X| ≥ t) dt

≤ 1 +
1

3t2

∫ ∞

0

tet
2/6σ2

2e−t
2/2σ2

dt

= 1 +
2

3σ2

∫ ∞

0

te−
1
3

t2

σ2 dt

= 1− 1

σ2

∫ ∞

0

(
− 2

3σ
t
)
e−

t2

3σ2 dt

= 1− e−
t2

3σ2

∣∣∣∣∞
0

= 1− (0− 1) = 2

5. Unfinished.
6. We know X2q = |X|2q for all q ∈ N. By setting Φ(t) = t2q from the identity above, we can get

E[|X|2q] = 02q +

∫ ∞

0

(2q)t2q−1P(|X| ≥ t) dt

and from (3), we get the first line, where we can just keep doing integration by parts:

E[|X|2q] ≤
∫ ∞

0

(2q)t2q−1e−t
2/2σ2

dt

= 2(4qσ2)

∫ ∞

0

(2q − 2)t2q−3e−t
2/2σ2

dt

= 2(4qσ2)(4(q − 1)σ2)

∫ ∞

0

(2q − 4)t2q−5e−t
2/2σ2

dt

= . . .

= 2(4qσ2) . . . (4 · 2σ2)

∫ ∞

0

2te−t
2/2σ2

dt

=

q∏
k=1

(4kσ2) = (4σ2)qq!

7. We can expand and from the inequality above, we get

E[eX
2/8σ2

] = E
[
1 +

X2

8σ2
+

1

2

(
X2

8σ2

)2

+ . . .

]
= 1 +

∞∑
q=1

1

(8σ2)qq!
E[X2q]

≤ 1 +

∞∑
q=1

1

(8σ2)qq!
(4σ2)qq!

= 1 +

∞∑
q=1

1

2q
= 2
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Exercise 8.2 (Tightness of Hoeffding’s Lemma)

Show that the bound on Hoeffding’s lemma is the best possible by consider P(X = a) = P(X = b) = 1
2 .

Solution 8.2

From computing the expectation

E[eλ(X−EX)] = eλ(a−
a+b
2 )P(X = a) + eλ(b−

a+b
2 )P(X = b) =

1

2
eλ

a−b
2 +

1

2
eλ

b−a
2

we know that this is always less than λ2(b− a)2/8 for all λ. But setting λ = 0 satisfies equality.

8.2 The Martingale Method
In this section, we will use the martingale method to derive useful results. Recall that in order to derive
some property (like tensorization of variance) of f(X1, . . . , Xn) − E[f(X1, . . . , Xn)], we can expand it as a
telescoping sum of martingale differences

f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] =

n∑
k=1

∆k

where
∆k = E[f(X1, . . . , Xn) | X1, . . . , Xk]− E[f(X1, . . . , Xn) | X1, . . . , Xk−1]

and then deriving bounds on each difference. Note that these are martingale differences because given the
filtration F = {Fk = σ(X1, . . . , Xk)}, the stochastic process

Yk =

k∑
i=1

∆i = E[f(X1, . . . , Xn) | X1, . . . , Xk]− E[f(X1, . . . , Xn)]

is a martingale.

Lemma 8.4 (Azuma)

Let F = {Fk}k≤n be any filtration, and ∆1, . . . ,∆n be random variables that satisfy the following
properties for k = 1, . . . , n.

1. Martingale Difference Property: ∆k is Fk-measurable and E[∆k | Fk−1] = 0

2. Conditional Subgaussian Property: E[eλ∆k | Fk−1] ≤ eλ
2σ2

k/2 a.s.
Then, the sum

∑n
k=1 ∆k is subgaussian with variance proxy

∑n
k=1 σ

2
k.

Proof.

For any 1 ≤ k ≤ n, we can compute

E[eλ
∑k

i=1 ∆i ] = E[eλ
∑k−1

i=1 ∆iE[eλ∆k | Fk−1]] ≤ eλ
2σ2

k/2 E[eλ
∑k−1

i=1 ∆i ]

and by induction, this proof is finished. Note that E[eλ∆k | Fk−1] ≤ eλ
2σ2

k/2 can only hold if
E[∆k | Fk−1] = 0.

What this lemma basically says is that if we decompose a random variable into martingale differences, and
each martingale difference is conditionally subgaussian, then their sum is also subgaussian. Now, if we just
assume that each of these martingale differences are bounded, then we can use Hoeffding’s lemma on each of
them to make them subgaussian, and then use Azuma’s lemma to show that their sum is subgaussian. This
is exactly what we do here.

65/ 71



Stochastic Processes Muchang Bahng Spring 2023

Theorem 8.2 (Azuma-Hoeffding Inequality)

Let F = {Fk}k≤n be any filtration, and let ∆k, Ak, Bk satisfy the following properties for k = 1, . . . , n.
1. Martingale Difference Property: ∆k is Fk-measurable and E[∆k | Fk−1] = 0
2. Predictable bounds: Ak, Bk are Fk−1-measurable and Ak ≤ ∆k ≤ Bk a.s.

Then,
∑n
k=1 ∆k is subgaussian with variance proxy 1

4

∑n
k=1 ||Bk − Ak||2∞. In particular, we obtain

for every t ≥ 0 the tail bound

P
( n∑
k=1

∆k ≥ t

)
≤ exp

(
− 2t2∑n

k=1 ||Bk −Ak||2∞

)

The Azuma-Hoeffding’s inequality is often applied in the following setting. Let X1, . . . , Xn be independent
random variables s.t. a ≤ Xi ≤ b for all i (we can interpret a and b as simply constant random variables).
Then, let ∆k = (Xk − E[Xk])/n be martingale differences, which we can show that ∆k is clearly Fk-
measurable and that by independence of Xi’s, E[∆k | Fk−1] = E[∆k] = 0. Therefore, we can show that its
sum satisfies

P
(
1

n

n∑
k=1

{Xk − E[Xk]} ≥ t

)
≤ e−2nt2/(b−a)2

which is consistent with the central limit theorem.

Now we can return to the case of functions f(X1, . . . , Xn) of independent random variables. Recall that the
discrete derivative is defined

Dkf(x) = sup
z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)− inf

z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)

Theorem 8.3 (McDiarmid)

For X1, . . . , Xn independent, f(X1, . . . , Xn) is subgaussian with variance proxy 1
4

∑n
k=1 ||Dkf ||2.

That is,

P
[
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t

]
≤ exp

(
− 2t2∑n

k=1 ||Dkf ||2∞

)

Proof.

We use the martingale method again to write

f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] =

n∑
k=1

∆k

where
∆k = E[f(X1, . . . , Xn) | X1, . . . , Xk]− E[f(X1, . . . , Xn) | X1, . . . , Xk−1]

What we want to do is set some upper and lower bound on E[f(X1, . . . , Xn) | X1, . . . , Xk], which will
set bounds on ∆k. We can do this by bounding f by the infimum and supremum w.r.t. each element,
getting

E[inf
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) | X1, . . . , Xk]

≤ E[f(X1, . . . , Xn) | X1, . . . , Xk]

≤ E[sup
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) | X1, . . . , Xk]

but by independence of Xk’s, we have

E[inf
z
f(X1, . . . , z, . . . ,Xn) | X1, . . . , Xk] = E[inf

z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) | X1, . . . , Xk−1]
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So, setting

Ak = E[inf
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)− f(X1, . . . , Xn) | X1, . . . , Xk−1]

Bk = E[sup
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)− f(X1, . . . , Xn) | X1, . . . , Xk−1]

we have Ak ≤ ∆k ≤ Bk for all k, and by Azuma-Hoeffding’s inequality along with the fact that
||Bk −Ak|| ≤ ||Dkf ||∞, we get

P[f(X1, . . . , Xn)−E[f(X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

k=1 ||Bk −Ak||2∞

)
≤ exp

(
− 2t2∑n

k=1 ||Dkf ||2∞

)

We should treat McDiarmid’s inequality as a subgaussian form of the bounded difference inequality

Var[f(X1, . . . , Xn)] ≤
1

4
E
[ n∑
k=1

(
Dkf(X1, . . . , Xn)

)2]
The bounded difference inequality says that the variance is controlled by the expectation of the square
gradient of the function f . In contrast, McDiarmid’s inequality asserts the stronger subgaussian inequality,
but under the stronger condition that the variance proxy is controlled by a uniform upper bound on the
square gradient rather than its expectation. This will be a recurring theme:

1. the expectation of the square gradient controls the variance

2. a uniform bound on the square gradient controls the subgaussian property

Note that McDiarmid’s theorem is not satisfactory. The appropriate notion of a square gradient in both
inequalities is the random variable

∑n
k=1 |Dkf |2. To control the variance, we want to take its expectation

E[
∑n
k=1 |Dkf |2], and to control the upper bound of the square gradient, we simply want to take its supremum

||
∑n
k=1 |Dkf |2||∞. However, McDiarmid’s inequality only yields control in terms of the larger quantity∑n

k=1 ||Dkf ||2∞ (by triangle inequality), which gets worse in higher dimensions. Rather than taking the
supremum of square gradient, we just take the supremum of each (squared) component and add them up,
which may be much greater than the actual upper bound. Therefore, the martingale method is far too crude
to capture this idea, and we will need new techniques for more refined bounds.

Exercise 8.3 (Bin Packing)

For the Bin packing problem previoulsly, show that the variance bound Var[Bn] ≤ n/4 can be
strengthened to a Gaussian tail bound

P(|Bn − EBn| ≥ t) ≤ 2e−2t2/n

Solution 8.3

We can see that

Dkf(X1, . . . , Xn) = f(X1, . . . , Xk−1, 1, Xk+1, . . . , Xn)− f(X1, . . . , Xk−1, 1, Xk+1, . . . , Xn) = 1

and by McDiarmid’s inequality, we are done.

Exercise 8.4 (Rademacher Processes)
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Exercise 8.5 (Sums in Hilbert Space)

Let X1, . . . , Xn be independent random variables with zero mean that map to a Hilbert space, and
suppose that ||Xk|| ≤ C a.s. for every k.

1. Show that for all t ≥ 0,

P
[∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≥ E
∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣+ t

]
≤ e−nt

2/2C2

2. Show that

E
∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≤ Cn−1/2

3. Conclude that for all t ≥ Cn−1/2,

P
[∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≥ t

]
≤ e−nt

2/8C2

4. Finally, argue that for all t ≥ 0,

P
[∣∣∣∣∣∣∣∣ 1n

n∑
k=1

Xk

∣∣∣∣∣∣∣∣ ≥ t

]
≤ e−nt

2/8C2

8.3 The Entropy Method
In order to develop more sophisticated concentration inequalities, let us introduce another term that is used
to measure the deviation of a random variable.

Definition 8.2 (Entropy)

The entropy of a nonnegative random variable Z is defined

Ent[Z] := E[Z logZ]− E[Z] logE[Z]

Lemma 8.5 (Herbst)

Suppose that random variable X satisfies

Ent[eλX ] ≤ λ2σ2

2
E[eλX ] for all λ ≥ 0

Then, X is σ2-subgaussian. That is,

ψ(λ) := logE[eλ(X−E[X])] ≤ λ2σ2

2
for all λ ≥ 0

Proof.

As ψ(λ) = logE[eλX ]− λE[X], we have

d

dλ

ψ(λ)

λ
=

1

λ

E[XeλX ]

E[eλX ]
− 1

λ2
logE[eλX ] =

1

λ2
Ent[eλX ]

E[eλX ]
≤ σ2

2
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where the last inequality yields from the assumption. By the fundamental theorem of calculus, we
have

ψ(λ)

λ
= lim

λ↓0

ψ(λ)

λ
+

∫ λ

0

1

t2
Ent[etX ]

E[etX ]
dt ≤ λσ2

2
=⇒ ψ(λ) ≤ λ2σ2

2

Exercise 8.6 ()

It turns out that the converse is true up to a constant: If X is σ2

4 -subgaussian, then

Ent[eλX ] ≤ λ2σ2

2
E[eλX ]

Solution 8.4

We know that by Jensen’s inequality and concavity of the logarithm,

logE[eλ(X−EX)] ≥ E[λ(X − EX)] = 0 =⇒ E[eλ(X−EX)] ≥ 1

Furthermore, note that given Z = eλX/E[eλX ], we have

E[Z logZ] = E
[
eλX

E[eλX ]
log

(
eλX

E[eλX ]

)]
=

1

E[eλX ]
E
[
eλX

(
log eλX − logE[eλX ]

)]
=

1

E[eλX ]
E
[
eλXλX − eλX logE[eλX ]

]
=

1

E[eλX ]

(
E[eλXλX]− E[eλX ] logE[eλX ]

)
=

Ent[eλX ]

E[e[λX]

Since this theorem assumes a bound on Ent[eλX ] rather than Ent[X], we will mainly be working with the
entropy of exponentials of a random variable.

It turns out that entropy behaves very similarly to variance and extends nicely into the subgaussian setting.
Just like variance, we define the partial entropy of function f(x1, . . . , xn) as

Entk f(x1, . . . , xn) := Ent[f(x1, . . . , xk−1, Xk, xk+1, . . . , xn)]

That is, Ent[f(X1, . . . , Xn)] is the entropy of f(X1, . . . , Xn) with respect to the variable Xk only, the
remaining variables kept fixed.

Theorem 8.4 (Tensorization of Entropy)

Given that X1, . . . , Xn are independent,

Ent[f(X1, . . . , Xn)] ≤ E
[ n∑
k=1

Entk f(X1, . . . , Xn)

]

Recall that the basic method for deriving Poincare inequalities is that we have some bound on the variance
of a single random variable

Varµ[g] ≤ E[|∇g|2]
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and by tensorization, we can take the multivariate function f and derive

Varµ[f ] ≤ E[||∇g||2]

In here, we derive modified log-Sobolev inequalities by bounding the entropy of the form

Entµ[e
g] ≤ E[|∇g|2 eg]

and then using tensorization to bound

Entµ[e
λf ] ≤ E[||∇(λf)||2 eλf ]

Lemma 8.6 (Discrete Modified log-Sobolev)

Let D−f := f − inf f . Then,

Ent[ef ] ≤ Cov[f, ef ] ≤ E[|D−f |2ef ]

Proof.

Note that logE[ef ] ≥ E[f ] by Jensen’s inequality. Therefore,

Ent[ef ] = E[fef ]− E[ef ] logE[ef ] ≤ E[fef ]− E[f ]E[ef ] = Cov[f, ef ]

To prove the second part, we have

Cov[f, ef ] = E[(f − E[f ]))(ef − E[ef ])] ≤ E[(f − inf f)(ef − einf f )]

and since ex is convex, the first-order condition gives

einf f ≥ ef + ef (inf f − f) =⇒ ef − einf f ≤ ef (f − inf f)

and substituting above gives the result.

Now, by defining the one-sided differences

D−
k f(x) = f(x1, . . . , xn)− inf

z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)

D+
k f(x) = sup

z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)− f(x1, . . . , xn)

we can use the discrete modified log-Sobolev inequality on each of them and then tensorize to get the
following.

Theorem 8.5 (Bounded Difference Inequality)

For all t ≥ 0,

P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn) ≥ t] ≤ exp

(
− t2

4||
∑n
k=1 |D

−
k f |2||∞

)
P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn) ≤ −t] ≤ exp

(
− t2

4||
∑n
k=1 |D

+
k f |2||∞

)
whenever X1, . . . , Xn are independent. In particular, f(X1, . . . , Xn) is subgaussian with variance
proxy 2||

∑n
k=1 |Dkf |2||∞, where Dkf = supz f − infz f .

8.4 Modified log-Sobolev Inequalities
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Theorem 8.6 (Modified log-Sobolov Inequality)

Let Pt be a Markov semigroup with stationary measure µ. The following are equivalent:
1. Entµ[f ] ≤ cE(log f, f) for all f (modified log-Sobolev inequality).
2. Entµ[Ptf ] ≤ e−t/c Entµ[f ] for all f, t (entropic exponential ergodicity).

Moreover, if Entµ[Ptf ] → 0 as t→ +∞, then

E(logPtf, Ptf) ≤ e−t/cE(log f, f) for all f, t

implies 1 and 2 above.

9 Lipschitz Concentration and Transportation Inequalities

9.1 Concentration in Metric Spaces
Recall what a Lipschitz function is.

Definition 9.1 (Lipschitz Function)

Let (X, d) be a matrix space. A function f : X → R is called L-Lipschitz if |f(x)− f(y)| ≤ Ld(x, y)
for all x, y ∈ X. The family of all 1-Lipschitz functions is denoted Lip(X).

Remember that given iid X1, . . . , Xn ∼ N(0, 1), Gaussian concentration states that the random variable is
||||∇f ||2||∞-subgaussian. But we can write it in an equivalent way in terms of a Lipschitz property.

Lemma 9.1 ()

Let f : Rn → R be a C1 function. Then, ||||∇f ||2||∞ ≤ L2 if and only if f is L-lipschitz.

Therefore, if given random vector X ∼ N(0, I), then f(X) is 1-subgaussian for every f ∈ Lip(Rn, || · ||).
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