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Manifolds are invaluable in generalizing multiple ideas. For example, it allows us to generalize the
concepts to calculus to spaces that are not only globally, but locally Euclidean.

1 Smooth Manifolds

1.1 Topological Manifolds and Topological Properties

Definition 1.1 (Topological Manifold, Coordinate Chart, Atlas). Suppose M is a topological space. M
is a (real) topological manifold of dimension N if

1. M is Hausdorff: for every pair of points p, q ∈M , there exists disjoint open subsets U, V ⊂M such
that p ∈ U , q ∈ V .

2. M is second countable: There exists a countable basis for the topology of M .

3. M is locally homeomorphic to RN : There exists a covering of open sets in M where each open set
is homeomorphic to an open set in RN . The visual below shows a 1-dimensional and 2-dimensional
manifold.

Given open cover U1, . . . , Un with their respective homeomorphism maps φ1, . . . , φn where

φi : Ui −→ Rn

and component maps

φi ≡ (xi1, xi2, ..., xin)

their pairs (Ui, φi) are called coordinate charts. The collection of all coordinate charts

A = {(Ui, φi)}ni=1

is called the atlas of M .

Note that the Hausdorff and second-countability condition is sometimes ommitted from the definition of
a manifold, but we keep it since:

1. many manifolds in nature have these properties.

2. we can deduce must more interesting properties about manifolds with these assumptions.

Theorem 1.1 (Product Manifolds). Let M1,M2, ...,Mn be topological manifolds of dimensions m1,m2

...mn, respectively. Then, the product space

n∏
i=1

Mi
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is also a topological manifold with

dim

n∏
i=1

Mi =

n∑
i=1

mi

Example 1.1 (Graphs of Continuous Functions). Given a continuous function f : U −→ Rm, its graph

Γ(f) ≡ {(x, y) ∈ Rn × Rm | x ∈ U, y = f(x)}

with the subspace topology is a topological manifold. Actually, this manifold is globally homeomorphic to
an open set in Rn, meaning that this is trivially a manifold.

Example 1.2 (Unit Sphere). The unit sphere Sn is a topological manifold since we can construct an atlas
of charts formed by the stereographic projection. We show the stereographic projection for a 1-sphere.

Example 1.3. The n-sphere with the induced open ball topology of Rn+1 is not homeomorphic to Rn
since Sn is compact and Rn is not. However, the n-sphere with one point p ∈ Sn removed, (Sn \
{p}, τRn+1 |Sn\{p}) is homeomorphic to Rn and is also not compact. We can visualize this homeomorphism
by imagining the ”hole” getting larger and stretching S2 out to ”look like” R2.

Example 1.4. The n-turous, defined

Tn ≡
∏
n

S1

is a product manifold.

We end this section by stating a theorem that gives topological manifolds a nice basis structure. Recall
that a subset U in a topological space X is said to be precompact if the closure Ū is compact.
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Lemma 1.2 (Basis of Topological Manifolds). Every topological manifold has a countable basis of pre-
compact coordinate balls.

Lemma 1.3 (Fundamental Groups of Topological Manifolds). The fundamental group of any topological
manifold is countable.

1.2 Smooth Structures

Note that even though topological manifolds bear some resemblance to Euclidean space, we cannot do
calculus on them since derivatives are not invariant under homeomorphisms. For example, compare the
two homeomorphisms φ1, φ2 : R2 −→ R2 (shown by visualizing the images of the grid lines), where

φ1(u, v) = (u, v) φ2(u, v) = (u1/3, v1/3)

Given function f : M −→ Rm, if topological manifold M has chart φ1, f will be considered smooth at
φ−1(0), but if M has chart φ2, f will not be considered smooth at φ−2(0).
Clearly, it is a problem if two different charts around a point gives contradicting things about its smooth-
ness. We can fix this by introducing a structure that makes smoothness invariant. First, recall the
definition of a diffeomorphism.

Definition 1.2 (Diffeomorphism). If smooth f : U ⊂ Rn −→ V ⊂ Rm is bijective and has a smooth
inverse map, then f is said to be a diffeomorphism. That is, a diffeomorphism is a homeomorphism
where both the function and its inverse is smooth. More specifically,

1. If f, f−1 is of class Ck, then it is a Ck-diffeomorphism.

2. f, f−1 is of class C∞, then it is a C∞-diffeomorphism, or a smooth diffeomorphism.

Definition 1.3 (Transition Maps, Smooth Atlases). Let M be a topological manifold with (U,φ), (V, ψ)
two charts such that U ∩ V ̸= ∅. Then, the composite map (between Euclidean spaces)

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V )

is called the transition map from φ to ψ.
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The two charts are said to be smoothly (or Ck) compatible if either

1. U ∩ V = ∅, or

2. the transition map ψ ◦ φ−1 is a smooth (or Ck) diffeomorphism. Since ψ ◦ φ−1 is a map between
Euclidean spaces, this means that ψ ◦ φ−1 has continuous partial derivatives.

An atlas A is called a smooth (Ck) atlas if any 2 charts in A are smoothly (Ck) compatible with each
other.

Example 1.5. A transition map can be defined between two stereographic projections of the 1-sphere
δ1 : S1 \ {p} −→ R and δ2 : S1 \ {q} −→ R, where p and q are diametrically opposite points of S1. By
placing R within S1 orthogonal to the line segment PQ and intersecting the center of S1, we find that
the transition function δ1 ◦ δ−1

2 (n) = δ2 ◦ δ−1
1 (n) = 1

n .

Let’s go back to our example problem earlier. Given an open neighborhood M around 0 ∈ R2, the two
(global) charts φ1, φ2 are not smoothly compatible since

(φ2 ◦ φ−1
1 )(u, v) = (u1/3, v1/3)

is not smooth. Therefore, they cannot be a part of the same smooth atlas.
Our previous problem hints at another one: Which atlas is the ”right” one? In general, there will be
many possible choices of atlases that give the ”same” smooth structure. The 3 following atlases shown
below (consisting of one global chart, for simplicity), are all viable.
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In the visual above, notice that

1. A1,A2,A3 are all smooth atlases (trivially).

2. φ1 and φ2 are smoothly compatible =⇒ A12 = {(M,φ1), (M,φ2)} is a smooth atlas.

3. φ3 is not smoothly compatible with either φ1 nor φ2. This implies thatA13 = {(M,φ1), (M,φ3)}, A23 =
{(M,φ2), (M,φ3)} are not smooth atlases.

Clearly, φ1 and φ2 are closely related as they are smoothly compatible. Furthermore,

A1 ⊂ A12, A2 ⊂ A12

Now, imagine an atlas that contains (M,φ1), (M,φ2), and all other possible charts that are smoothly
compatible with φ1 and φ2. This creates a ”maximal” smooth atlas.

Definition 1.4 (Maximal Smooth Atlas). A maximal smooth (Ck)atlas is a smooth (Ck) atlas that is
not contained in any strictly larger smooth atlas. In other words, it is the largest possible atlas in which
every chart is smoothly (Ck) compatible with one another.

The existence of this maximal smooth (Ck) atlas wouldn’t be as helpful without the following lemma,
which allows us to easily describe it.

Lemma 1.4 (Induced Maximal Smooth Atlases of Topological Manifolds). Let M be a topological n-
manifold.

1. Every smooth atlas for M is contained in a unique maximal smooth atlas.

2. Two smooth atlases for M determine the same maximal smooth atlas if and only if their union is
a smooth atlas.

That is, let A1, . . . , Aa, B1, . . . , Bb, C1, . . . , Cc be a collection of smooth atlases on M such that any union
of the Ai’s, any union of the Bi’s, and any union of the Ci’s, are smooth atlases. Then, we can imagine
all of the Ai’s as subsets of the unique maximal atlas A∗, all of the Bi’s as subsets of the unique maximal
atlas B∗, and all of the Ci’s as subsets of the unique maximal atlas C∗.

7/ 52



Smooth Manifolds Muchang Bahng August 2021

Therefore, there can exist many smooth structures for topological manifold M .

From the lemma, we can clearly see that the atlases form an equivalence class, one for smooth structure.

Definition 1.5 (Smooth Equivalence Relation). Two atlases A1, A2 are smoothly (Ck) equivalent if
A1 ∪ A2 forms a smooth (Ck) atlas. Note that Ck-equivalence is a relation, and so the collection of all
atlases that are Ck-equivalent forms a Ck-equivalence class, which is actually detremined uniquely by
the maximal atlas.

Definition 1.6 (Smooth (Ck) Structure, Smooth (Ck) Manifolds). Three closely related definitions:

1. A smooth (Ck) structure on a topological n-manifold M is a maximal smooth (Ck) atlas.

2. A smooth (Ck) manifold is a pair (M,A), M being a topological manifold and A a smooth (Ck)
structure.

3. A chart, or a coordinate map, of a smooth manifold, is called a smooth chart.

Three final things to mention:

1. There exist topological manifolds that admit no smooth structures at all. So, we cannot add a
smooth structure to every topological manifold.

2. It is generally not convenient to define a smooth structure by explicitly describing a maximal
smooth atlas, since such an atlas contains many charts. Fortunately, by the previous lemma, we
only need to specify some smooth atlas, which will induce a maximal smooth atlas.

Specify Ai =⇒ Smooth Structure = A∗

Specify Bi =⇒ Smooth Structure = B∗

Specify Ci =⇒ Smooth Structure = C∗

3. In many cases, one proves that a topological manifold M has a smooth atlas by directly computing
and seeing that ψ ◦ φ−1 is smooth, for every pair ψ,φ in the atlas. Clearly, all of the ψ ◦ φ−1

are homeomorphisms (as compositions of homeomorphisms), and since we’ve proved them to be
smooth, it automatically follows that they are diffeomorphisms. j

Definition 1.7 (Other Classes of Manifolds). Let M be a manifold.

1. A C0 manifold is just a topological manifold.

2. If the transition mappings of M can be expressed as real analytic (i.e. expressible as a convergent
power series in a neighborhood of each point), then M is said to have a Cω structure, making M
a real-analytic manifold.

3. IfM has an even dimension 2m, then we can use the fact that R2m ≃ Cm to define a Cm structure,
making M a complex manifold.
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Example 1.6. Consider R with the charts (R, id) and (R, x3). Each of these charts cover R, but they
are not C∞-compatible (since 3

√
x is not C∞), which means that they generate different maximal atlases.

In fact, in R, there are an infinitely many non-compatible maximal atlases each giving the topological
space R the structure of a differentiable manifold.

We can actually prove a stronger theorem.

Theorem 1.5 (Distinct Smooth Structures on Positive-Dimensional Smooth Manifolds). Let M be a
nonempty topological manifold of dimension n ≥ 1. If M has a smooth structure, then it has uncountably
many distinct ones.

1.2.1 Local Coordinate Representations

We describe how one usually thinks about coordinate charts on a smooth manifold. Once we shoose a
smooth chart (U,φ) on M , the coordinate map

φ : U −→ Ũ ⊂ Rn

can be thought of as giving an identification between U and Ũ . Using this identification, we can think
of U simultaneously as an open subset of M and as an open subset of Rn. You can visualize this
identification by thinking of a ”grid” drawn on U representing the inverse images of the coordinate lines
under φ.

Using this identification, we can represent point p ∈ U by its coordinates(
x1, x2, ..., xn

)
= φ(p)

and think of this n-tuple as being the point p (even though p, as an abstract point, really has no
coordinates). This is typically expressed by saying that

(
x1, ..., xn

)
is the (local) coordinate representation

for p” or ”p =
(
x1, ..., xn

)
in local coordinates.” Note that the curves (lines) do not necessarily have to be

rectilinear. The projected lines from Euclidean space onto the manifold can be of any shape, including
polar, as long as it is a homeomorphism.

Definition 1.8 (Einstein Summation Notation). Due to the abundance of summations in this chapter,
we will abbreviate such a sum as such ∑

i

xiEi = xiEi

1.2.2 Construction of a Smooth Manifold

When defining a smooth manifold, we start with a topological space and check that it is a topological
manifold, and then we specify a smooth structure. The following lemma combines these steps into one.

Lemma 1.6 (Smooth Manifold Construction Lemma). Let M be a set, and suppose we are given a
collection {Uα} of subsets of M , together with an injective map φα : Uα −→ Rn for each α, such that
the following properties are satisfied:

1. For each α, φα(Uα) is an open subset of Rn.

2. For each α and β, φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are open in Rn.
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3. Whenever Uα ∩ Uβ ̸= ∅, φα ◦ φ−1
β : φβ(Uα ∩ Uβ) −→ φα(Uα ∩ Uβ) is a diffeomorphism.

4. M is second countable.

5. M is Hausdorff.

Then, M has a unique smooth manifold structure such that each (Uα, φα) is a smooth chart.

1.3 Manifolds with Boundaries

We may come across manifolds which have a ”boundary” of some sort, such as the closed unit ball in
Rn and the closed upper hemisphere in Sn.

Definition 1.9 (Euclidean Upper Half-Space). The closed n-dimensional upper half-space Hn ⊂ Rn is
defined

Hn ≡
{
(x1, x2, ..., xn) ∈ Rn | xn ≥ 0

}
H2 and H3 are shown below.

Clearly, Hn has the subspace topology induced by that of Rn, allowing charts to map open neighborhoods
of boundary points. We also define

Int(Hn) ≡
{
(x1, x2, ..., xn) ∈ Rn | xn > 0

}
∂(Hn) ≡

{
(x1, x2, ..., xn) ∈ Rn | xn = 0

}
Definition 1.10 (Smooth Maps between Subsets). Note that a smooth map from an arbitrary subset
A ⊂ Rn to Rk is defined to be a map that admits a smooth extension to an open neighborhood of each
point.

Definition 1.11 (Topological Manifold with Boundary). An n-dimensional topological manifold with
boundary is a second-countable Hausdorff space M that is locally homeomorphic to Hn. An open subset
U ⊂M together with a homeomorphism φ from U to an open subset of Hn is called a chart.

1. (U,φ) is an interior chart if φ(U) ⊂ Int(Hn).

2. (U,φ) is a boundary chart if φ(U) ∩ ∂Hn ̸= ∅
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A point p ∈ M is a boundary point if its image under some smooth shart is in ∂Hn; the set of all such
boundary points is denoted ∂M . The set of all interior points of M is denoted Int(M). Furthermore, it
turns out that

M = Int(M) ⊔ ∂M

That is, M can be partitioned into its interior and boundary.

To define a smooth structure on a manifold with boundary, we must be able to define smooth maps that
encompasses cases between boundary charts.

Definition 1.12. Thus, if U is an open subset of Hn, a map F : U −→ Rk is smooth if for each x ∈ U
there exists an open neighborhood V ⊂ Rn of x and a smooth map (extension) F̃ : V −→ Rk that agrees
with F on V ∩Hn.

Definition 1.13 (Smooth Manifold with Boundary). LetM be a topological manifold with boundary. A
smooth structure forM is defined to be a maximal smooth atlas, i.e. a collection of charts whose domains
cover M and whose transition maps (and inverses) are smooth as in it admits smooth extensions. With
such a structure, M is called a smooth manifold with boundary.

Note that the boundary of manifold M and the boundary of M as a subset of a bigger topological space
are two completely different sets.

Example 1.7. Let B2 be the open unit disk in R2. Then, B̄2, the closed unit disk, is a smooth manifold
with boundary, with the boundary being the circle S1. However, if we interpret B2 as a topological
subspace

1. R2, the topological boundary is S1.

2. R3, the topological boundary is B̄2.

3. B̄2, the topological boundary is ∅.

Furthermore, every smooth n-manifold can be considered a smooth n-manifold with boundary by com-
posing each chart mapping with a diffeomorphism from Rn to Hn such as(

x1, ..., xn−1, xn
)
7→

(
x1, ..., xn−1, ex

n)
This modifies all manifold charts to take its values in Int(Hn) without affecting the smooth compatibility
condition. Also, given a smooth n-manifold with boundary M , Int(M) is also a topological n-manifold
since the subfamily of all smooth interior charts is also a smooth atlas.

2 Smooth Maps

Definition 2.1 (Smooth Maps from Manifolds to Euclidean Space). If M is a smooth n-manifold, a
function f :M −→ Rk is said to be smooth if for every p ∈M , there exists a smooth chart (U,φ) for M
whose domain contains p and such that the composite function, called the coordinate representation of
f

f̂ = f ◦ φ−1 : φ(U) ⊂ Rn −→ Rk

is smooth.
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By definition, f is smooth if and only if its coordinate representation is smooth in some smooth chart
around every point.

The set of smooth real-valued functions f : M −→ R is denoted as C∞(M). Since sums and constant
multiples of smooth functions are smooth, C∞(M) is a vector space.

Definition 2.2 (Smooth Maps between Manifolds). Let M,N be smooth m,n-manifolds, and let F :
M −→ N be any map. Then, F is a smooth map if for every p ∈ M , there exist smooth charts (U,φ)
containing p and (V, ψ) containing F (p) such that F (U) ⊂ V and the composite map

ψ ◦ F ◦ φ−1 : φ(U) ⊂ Rm −→ ψ(V ) ⊂ Rn

is smooth (in the regular Euclidean sense). The abstraction of F does not do us much good computation
wise, so more often than not, we look at the coordinate representation of F

F̂ ≡ ψ ◦ F ◦ φ−1

In here, F̂ is really just a representation of the abstract map F in specific local coordinates determined
by φ and ψ. Once φ,ψ are determined, we can often ignore the distinction between F and F̂ .
Application-wise, there are three ways to prove that a particular map is smooth:

1. Write the map in smooth local coordinates and recognize its component functions as compositions
of smooth elementary functions.

2. Exhibit the map as a composition of known smooth maps.

3. Use some special-purpose theorem that applies to the particular case.
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Theorem 2.1 (Properties of Smooth Maps between Manifolds). Given M,N smooth m,n-manifolds,
with arbitrary map F :M −→ N , we have the following properties:

1. If F is smooth, then F is continuous.

2. The composition of smooth maps between smooth manifolds is smooth.

3. If there exists an open cover {Uα}α of M and smooth maps Fα : Uα −→ N such that they agree on
overlaps

Fα
∣∣
Uα∩Uβ

= Fβ
∣∣
Uα∩Uβ

for all α, β

then there exists a unique smooth map F :M −→ N such that F agrees with all the Fα’s.

The last property is convenient for when we wish to construct a global smooth map from local ones.

Proof. We prove the first two properties:

1. Suppose F : M −→ N is smooth. The definition of smoothness guarantees that for every p ∈ M ,
we can choose smooth charts (U,φ) containing p and (V, ψ) containing F (p) such that F (U) ⊂ V
and ψ◦F ◦φ−1 : ψ(U) −→ φ(V ) is smooth, hence continuous. Since φ and ψ are homeomorphisms,
this implies that

F
∣∣
U
= ψ−1 ◦

(
ψ ◦ F ◦ φ−1

)
◦ φ : U −→ V

is continuous, as a composition of continuous maps. Since F is continuous at each point, it is
continuous on M .

2. Looking at the diagram below, we can see that since F,G are smooth, the mappings (between
Euclidean spaces) θ ◦ F ◦ φ−1 and ψ ◦G ◦ θ−1 are smooth, meaning that their composition

(ψ ◦G ◦ θ−1) ◦ (θ ◦ F ◦ φ−1) = ψ ◦ (G ◦ F ) ◦ φ−1

is smooth. By definition, this means that G ◦ F is smooth.

■

13/ 52



Smooth Manifolds Muchang Bahng August 2021

2.1 Clarification of Multiple Meanings of Smoothness

We emphasize that the smoothness of a map F between manifolds depends only on the smoothness of
its coordinate representation F̂ ! This warning is more clearly explained through the following example.

Example 2.1 (Mappings between Lines with Different Smooth Structures). Let us have manifold R with
the standard smooth structure determined by global mapping id: R −→ R. Let us have a second manifold
R̃ with smooth structure determined by global mapping ψ(x) = x1/3. Now, let us have mappings (between
manifolds) F1, F2, F3 : R −→ R̃ where F1(x) = x, F2(x) = x3, F3(x) = x6, as shown below.

Then,

ψ ◦ F1 ◦ id−1(x) = x1/3 =⇒ F1 not smooth

ψ ◦ F2 ◦ id−1(x) = x =⇒ F2 smooth

ψ ◦ F3 ◦ id−1(x) = x2 =⇒ F3 smooth

Note that the smoothness of the Fi’s when interpreting them as mappings between manifolds gives results
compared to when we interpret them as regular mappings between Euclidean space. For example, F1 is
not smooth in the manifold sense even though it is clearly smooth in the Euclidean sense (since it is the
identity mapping).

2.2 Diffeomorphisms

Definition 2.3 (Diffeomorphism). A diffeomorphism between smooth manifolds M and N is a smooth
bijective map F : M −→ N that has a smooth inverse. It is said that M and N are diffeomorphic if
there exists a diffeomorphism between them, denoted as

M ≈ N

This is in fact an equivalence relation. Just as two topological spaces are considered to be the same if
they are homeomorphic, two smooth manifolds are essentially indistinguishable if they are diffeomorphic.
Clearly, diffeomorphisms preserve the dimensionalities of M and N .

Clearly, if M is any smooth manifold and (U,φ) is a smooth coordinate chart on M , then φ : U −→
φ(U) ⊂ Rn is a diffeomorphism (by definition).

Example 2.2. Let Bn be the open unit ball in Rn (each with the standard smooth structure). Then, the
map

F : Bn −→ Rn, F (x) ≡ x

1− ||x||2

is a diffeomorphism.

Example 2.3 (Mappings between Lines with Different Smooth Structures). In the diagram below re-
garding a previous example, we have the three maps F1, F2, F3 : R −→ R̃, where R is a smooth manifold
with the standard smooth structure, and R̃ is a smooth manifold with the smooth structure consisting of
ψ.
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To find out whether Fi is a diffeomorphism, we must confirm that Fi is bijective, smooth, and F−1
i is

smooth.

1. F1 is clearly bijective. ψ ◦ F1 ◦ id−1(x) = x1/3, so F1 is not smooth. id ◦ F−1
1 ◦ ψ−1 = x3, so F−1

1

is smooth.

2. F2 is clearly bijective. ψ ◦F2 ◦ id−1(x) = x, so F2 is smooth. id◦F−1
2 ◦ψ−1 = x, so F−1

2 is smooth.

3. F3 is not bijective. ψ ◦ F3 ◦ id−1(x) = x2, so F3 is smooth. Since F3 is not injective, F−1
3 is not

well-defined.

Therefore, F2 is the only diffeomorphism out of the three observed functions.

Definition 2.4 (Local Diffeomorphism). F : M −→ N is called a local diffeomorphism if every point
p ∈M has a neighborhood U such that F (U) is open in N and

F
∣∣
U
: U −→ F (U)

is a diffeomorphism.

2.2.1 Nondiffeomorphic Smooth Structures on Manifolds

We already found out that there are many distinct structures on a positive-dimensional smooth manifold
(in fact, an uncountable number of them). Furthermore, we have seen in this section that there may
exist a diffeomorphism between the two copies of the topological manifold, each with distinct smooth
structures (F2(x) = x3 was a diffeomorphism between (R, id) and (R, ψ).
This leads to the more interesting question of whether a given topological manifold admits smooth
structures that are not diffeomorphic to each other (as in, there exists no diffeomorphism F between two
copies of a given topological manifold, each with distinct smooth structures).

Definition 2.5 (Diffeomorphic Smooth Structures). Given a topological manifold M , let A1 and A2

any two smooth structures on M . Then,

(M,A1) ≈ (M,A2)

if there exists some diffeomorphism F : (M,A1) −→ (M,A2). If the underlying manifold M is known,
then we write this more concisely as

A1 ≈ A2

and say that

1. A1 and A2 are diffeomorphic smooth structures on M , or

2. A1 and A2 are identical smooth structures on M up to diffeomorphism.

In fact, the properties of smooth mappings imply that this relation ≈ endowed on the set of all smooth
structures of M forms equivalence classes of diffeomorphic smooth structures. Visually, given that
A∗, B∗, C∗, . . . are smooth structures on M , they can be classified further into their respective diffeo-
morphism classes.
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Example 2.4 (Diffeomorphic Smooth Structures of R). Since F2 = x3 is a diffeomorphism between
(R, id) and (R̃, ψ), the two atlases {R, id} and {R, ψ} are diffeomorphic smooth structures:

{R, id} ≈ {R, ψ}
It turns out that every smooth structure of R is equivalent in this sense. That is, there is only one smooth
structure on R up to diffeomorphism.

Theorem 2.2 (Classification of Nondiffeomorphic Smooth Structures on Rn). The classification of
smooth structures on Euclidean space is as follows:

1. When n ̸= 4, Rn has one unique smooth structure up to diffeomorphism.

2. R4 has uncountably many distinct smooth structures, no two of which are diffeomorphic to each
other! The study of exotic R4s arises from this phenomenon.

For compact manifolds, the situation is even more fascinating.

Theorem 2.3 (Classification of Nondiffeomorphic Smooth Structure on Sn). The table below details the
number of unique smooth structures on Sn (for n up to 12) up to diffeomorphism.

n 1 2 3 4 5 6 7 8 9 10 11 12
Smooth Struc. on Sn 1 1 1 ? 1 1 28 2 8 6 992 1

Notice that the number of smooth structures on the exotic 4-sphere is still unanswered.

2.3 Lie Groups

Definition 2.6 (Lie Group). A Lie group is a smooth manifold G that is also a group in the algebraic
sense, with the property that

1. the multiplication map m : G × G −→ G, m(g, h) ≡ gh is smooth. That is, the function
ϕ ◦m ◦ (φ× ψ)−1 : R2m −→ Rm in the visual below is smooth in the Euclidean sense.
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2. the inversion map i : G −→ G, i(g) ≡ g−1 is smooth. That is, the function θ◦ i◦φ−1 : Rm −→ Rm
in the visual below is smooth in the Euclidean sense.

Definition 2.7 (Lie Group Homomorphism). If G and H are Lie groups, a Lie group homomorphism
from G to H is a smooth map F : G −→ H that is also a group homomorphism. The smoothness of F
(a smooth property) and its preservance of the algebraic structure of G (an algebraic property) can be
comphrensively shown in the commutative diagram below.

Rm × Rm G×G G Rm

Rn × Rn H ×H H Rn

φ×φ
m1

F×F

φ

F

ψ×ψ
m2 ψ

Note that

1. φ×m1 × (φ×φ)−1 : Rm×Rm −→ Rm and ψ ◦m2 ◦ (ψ×ψ)−1 : Rn×Rn −→ Rn are smooth since
G and H are Lie groups.

2. F ◦ m1 : G × G −→ H and m2 ◦ (F × F ) : G × G −→ H are smooth since F is a Lie group
homomorphism. Note that since F ◦m1 and m2 ◦ (F ×F ) are smooth maps between manifolds, it
really means that the maps

ψ ◦ F ◦m1 ◦ (φ× φ)−1 :Rm × Rm −→ Rn

ψ ◦m2 ◦ (F × F ) ◦ (φ× φ)−1 :Rm × Rm −→ Rn

are smooth in the Euclidean sense.

F is called a Lie group isomorphism if it is also a diffeomorphism, which implies that it has an inverse
that is also a Lie group homomorphism. This means that G and H are isomorphic Lie groups, meaning
that they are indistinguishable as topological spaces, smooth manifolds, and as algebraic structures.

2.4 Smooth Covering Maps, Proper Maps

TBD TBD

2.5 Partitions of Unity

Recall the Gluing Lemma from topology, which allows us to construct continuous maps by ”gluing
together” maps defined on subspaces.
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Lemma 2.4 (Pasting Lemma, Gluing Lemma). Let X = A ∪ B, where A,B are closed in X. Let
f : A −→ Y and g : B −→ Y be continuous. If

f(x) = g(x) for all x ∈ A ∩B
Then f and g can be combined to form a continuous function h : X −→ Y , defined

h(x) ≡


f(x) x ∈ A \B
f(x) or g(x) x ∈ A ∩B
g(x) x ∈ B \A

For smooth manifolds, however, the gluing lemma is of limited usefulness, since the produced map, while
continuous, is rarely smooth. Observe the following example.

Example 2.5. Given two functions f+ : [0,∞) −→ R and f− : (−∞, 0] −→ R defined by

f+(x) = +x,x ∈ [0,∞)

f−(x) = −x,x ∈ (−∞, 0]

are both smooth and agree at the point 0 where they overlap, but the continuous map f : R −→ R that
they define, f(x) = |x|, is not smooth at the origin.

Partitions of unity solves this problem as tools for patching together local smooth maps into global
ones. We must first establish the existence of smooth functions that are positive in a specified part of a
manifold and identically zero in some other part.

Lemma 2.5. The function f : R −→ R defined by

f(t) ≡

{
e−1/t t > 0

0 t ≤ 0

is smooth.

Proof. By induction, showing that the kth derivative of f is of the form

f (k)(t) =
pk(t)

t2k
e−1/t

■

Lemma 2.6. There exists a smooth function h : R −→ R, called the cutoff function, such that

h(t) ≡


1 t ≤ 1

0 < h(t) < 1 1 < t < 2

0 t ≥ 2

Definition 2.8. If f is any real-valued or vector-valued function on a topological space M , the support
of f , denoted by suppf , is the closure of the set of points where f is nonzero.

suppf ≡ cl
(
{p ∈M | f(p) ̸= 0}

)
If suppf is contained in some set U , we say that f is supported in U . A function f is said to be compactly
supported if suppf is a compact set. Clearly, every function on a compact space is compactly supported.

Lemma 2.7. There is a smooth function H : Rn −→ R such that 0 ≥ H(x) ≥ 1 everywhere, H ≡ 1 on
B̄1(0), and suppH = B̄2(0), where Bi(c) is the open ball with radius i centered at c.

Proof. Just set H(x) = h(||x||), where h is the cutoff function. ■

We can visualize the function H in the preceding lemma by assigning a greyscale color to the space Rn
(1 representing black, 0 representing white, and everything in between is greyscale). Then, H would
produce a black closed ball of radius 1 in Rn, with a smoothly changing shade of grey outside the ball of
radius 1 but in the ball of radius 2, which then smoothly transitions to white for the rest of Rn \B2(0).
The function H constructed in this lemma is an example of a smooth bump function, a smooth real-valued
function that is equal to 1 on a specified closed set (in this case, B̄1(0)) and is supported in a specified
open set (in this case, any open set containing B̄2(0)). Later, we will generalize this notion to manifolds.
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2.5.1 Paracompactness

In order to rigorously define the existence of partitions of unity, we must introduce some technical
definitions. The biggest takeaway from this section is that a smooth manifold M that is paracompact
admits a smooth partition of unity.

Definition 2.9. Let X be a topological space. A collection U of subsets of X is said to be locally finite
if each point of X has a neighborhood that intersects at most finite many of the sets in U .
Clearly, an open cover of X where each open set intersects finitely many others is locally finite.

Definition 2.10. Given an open cover U of X, another open cover V is called a refinement of U if for
each V ∈ V there exists some U ∈ U such that V ⊂ U (in a way, V is finer than U).

Definition 2.11. A topological space X is paracompact if every open cover of X admits a locally finite
refinement.

Proposition 2.8. Let M be a smooth manifold. Every open cover of M has a regular refinement. In
particular, M is paracompact.

Definition 2.12. Let M be a topological space, and let X = {Xα}α∈A be an arbitrary open cover of
M . A partition of unity subordinate to X is a collection of continuous functions {ψα : M −→ R} with
the following properties.

1. 0 ≤ ψα(x) ≤ 1 for all α ∈ A and all x ∈M .

2. suppψα ⊂ Xα.

3. The set of supports {suppψα} is locally finite.

4.
∑
α∈A ψα(x) = 1 for all x ∈M .

A smooth partition of unity is one for which each of the functions ψα is smooth.

Theorem 2.9 (Existence of Partitions of Unity). If M is a smooth manifold and X = {Xα}α∈A is any
open cover of M , there exists a smooth partition of unity subordinate to X .

Proposition 2.10 (Existence of Bump Functions). Let M be a smooth manifold. For any closed set
A ⊂M and any open set U containing A, there exists a smooth bump function for A supported in U .

3 Tangent Vectors

In order to utilize linear approximations on smooth manifolds, we introduce the notion of a tangent space
on a manifold.

3.1 Geometric Tangent Vectors

Let us assign a vector space, called a tangent space to each point in Rn. That is, the geometric tangent
space to Rn at the point a ∈ Rn is defined

Rna ≡ {(a, v) | v ∈ Rn}

under the natural operations

va + wa ≡ (v + w)a

c(va) ≡ (cv)a

A geometric tangent vector in Rn is an element of this space, denoted va, and Rna ≃ Rn. Note that while
these tangent spaces are isomorphic, we distinguish them with the subscripts a representing the point.
When looking at other sets in Euclidean space, such as Sn−1 ⊂ Rn, we can define the tangent space as
the space of vectors that are orthogonal to the radial unit vector through a. But this definition is limited
within the confines of Euclidean space and not for abstract manifolds. Therefore, we must utilize the
concept of directional derivatives, which is provided by a tangent vector, to construct tangent spaces.
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For example, a geometric tangent vector va ∈ Rna yields a map

Dv

∣∣
a
: C∞(Rn) −→ R

which takes the directional derivative in the directoin v at a.

Dv

∣∣
a
f = Dvf(a) =

d

dt

∣∣∣∣
t=0

f(a+ tv)

This differential operation at the point a is linear and satisfies the product rule

Dv

∣∣
a
(fg) = f(a)Dv

∣∣
a
g + g(a)Dv

∣∣
a
f

If va = viei|a in terms of the standard basis (where ei|a is the basis of Rna), then by the chain rule Dv|af
can be written more concretely as

Dv

∣∣
a
f = vi

∂f

∂xi
(a)

Definition 3.1. If a ∈ Rna , a linear map X : C∞(Rn) −→ R is called a derivation at a if it satisfies the
following product rule

X(fg) = f(a)Xg + g(a)Xf

Furthermore, let Ta(Rn) denote the set of all derivations of C∞(Rn) at a. Let us endow this set with
the operations of addition and scalar multiplication

(X + Y )f ≡ Xf + Y f

(cX)f ≡ c(Xf)

It can be checked that if X,Y are derivations (i.e. satisfies linearity and the product rule), then X + Y
and cX are also derivations, which makes Ta(Rn) a vector space.

Proposition 3.1. For any a ∈ Rn, the map va 7→ Dv|a is an isomorphism from Rna to Ta(Rn).

Corollary 3.1.1. For any a ∈ Rn, the n derivations

∂

∂x1

∣∣∣∣
a

, ...,
∂

∂xn

∣∣∣∣
a

,
∂

∂xi

∣∣∣∣
a

f =
∂f

∂xi
(a)

form a basis for Ta(Rn), which therefore has dimension n. These basis vectors are more commonly known
as the partial derivatives of the C∞ function f at the point a.

Proof. Use the fact that
∂

∂xi

∣∣∣∣
a

= Dei

∣∣
a

■

So far, given the Euclidean space Rn, we have constructed this: for every a ∈ Rn, the tangent space
Ta(Rn) consists of vectors that are also derivations of C∞(Rn). In other words, we can view the tangent
space at a as the vector space of linear differential operators that each take in a C∞ function f : Rn −→ R
and outputs the directional derivative of f in direction v, evaluated at a, which is a real number. It
turns out that in each tangent space at, say a ∈ Rn, there exists a basis of directional derivatives (more
commonly known as the partial derivatives) in direction ei, the basis vectors, and of course, evaluated
at point a.
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3.1.1 Tangent Vectors on Manifolds

Before we define tangent spaces on a smooth manifold M , recall that the definition of a smooth (or C∞)
function f : M −→ R says that there exists a smooth chart (U,φ) for M whose domain contains p and
the composite function

f ◦ φ−1 : Rn −→ R

is smooth on the open subset φ(U) ⊂ Rn. In other words, we are defining the smoothness of f really
through the smoothness of f ◦ φ−1.

Definition 3.2. LetM be a smooth manifold and let p be a point ofM . A linear mapX : C∞(M) −→ R
is called a derivation at p if it satisfies

X(fg) = f(p)Xg + g(p)Xf

for all f, g ∈ C∞(M). The set of all derivatives at p is a vector space called the tangent space to M at
p, and is denoted by TpM . An element of TpM is called a tangent vector at p.

Therefore, we can think of the tangent space of point p in a smooth manifold M as the space of all
directional derivatives of a smooth function

f ◦ φ−1 : Rn −→ R

evaluated at the point φ−1(p). It is good to visualize tangent vectors to an abstract smooth manifold M
as arrows that are tangent to M and whose base points are attached to M at the given point. Theorems
about tangent vectors must always be proved using the abstract definition in terms of derivations, but
the intuition should be guided by the geometric picture.

3.2 Pushforwards

We now observe the way that tangent vectors behave under smooth maps. In the case of a smooth map
between Euclidean spaces, the total derivative of the map at a point (represented by its Jacobian matrix)
is a linear map that represents the ”best linear approximation” to the map near the given point. In the
manifold case, there is a similar linear map, but it acts between tangent spaces.

Definition 3.3. Given smooth manifolds M and N with a smooth map F : M −→ N , we can define
for each p ∈M a map

F∗ : TpM −→ TF (p)M,
(
F∗X

)
(f) ≡ X

(
f ◦ F

)
to be the pushforward associated with F . Note that X is a tangent vector of M , while F∗X is a tangent
vector of N . Furthermore, if f ∈ C∞(N), then f ◦F ∈ C∞(M), which is consistent with the operations.
The operation F∗X is clearly linear and it satisfies the product rule because

(F∗X)(fg) = X
(
(fg) ◦ F

)
= X

(
(f ◦ F )(g ◦ F )

)
= f ◦ F (p)X(g ◦ F ) + g ◦ F (p)X(f ◦ F )
= f

(
F (p)

)(
F∗X

)
(g) + g

(
F (p)

)(
F∗X

)
(f)

Lemma 3.2 (Properties of Pushforwards). Let F :M −→ N and G : N −→ P be smooth maps, and let
p ∈M . Then,

1. F∗ : TpM −→ TF (p)M is linear.

2. (G ◦ F )∗ = G∗ ◦ F∗ : TpM −→ TG◦F (p)P .

3.
(
IdM

)
∗ = IdTpM : TpM −→ TpM .

4. If f is a diffeomorphism, then F∗ : TpM −→ TF (p)N is an isomorphism.

Note that while the tangent space is defined in terms of smooth functions on the whole manifold,
coordinate charts are in general defined on open subsets. The key point is that the tangent space is
really a purely local construction.
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Proposition 3.3. Suppose M is a smooth manifold with p ∈ M and X ∈ TpM . If f and g are both
smooth functions on M that agree on some neighborhood of p, then Xf = Xg.

Clearly, this implies that tangent spaces of open submanifolds can be naturally identified with those of
the whole manifold.

Proposition 3.4. Let M be a smooth manifold and let U ⊂M be an open submanifold with i : U −→M
the canonical inclusion map. Then, for any p ∈ U ,

i∗ : TpU −→ TpM

is an isomorphism.

This identification of X to i∗X just says that they are the same derivation, with the exception that X
acts on functions on the bigger manifold M instead of functions on U . This is a harmless claim, since
functions can be defined locally. This means that any tangent vector X ∈ TpM can be unambiguously
applied to functions defined only in a neighborhood of p and not necessarily on all of M .
Note that every finite-dimensional vector space has a natural smooth manifold structure that is inde-
pendent of any choice of basis or norm. The follow proposition shows that the tangent space to a vector
space can be naturally identified with the vector space itself.

Proposition 3.5 (Tangent Space to a Vector Space). For each finite dimensional vector space V and
each point a ∈ V , there is a natural isomorphism V → TaV such that for any linear map L : V −→ W
the following diagram commutes.

V TaV

W TLa
W

∼=

L L∗

∼=

3.3 Computations in Coordinates

The work that we have done is quite abstract, so we will do some down-to-earth computations in local
coordinates. Let (U,φ) be a smooth coordinate chart on M . Note that φ is a diffeomorphism from U to
an open subset Ũ ⊂ Rn. Thus, treating φ(U) = Ũ as a submanifold of the manifold Rn, the pushforward
of the function φ : U −→ Rn

φ∗ : TpM −→ Tφ(p)Rn

is an isomorphism. We know that Tφ(p)Rn has a basis consisting of the derivations ∂/∂xi
∣∣
φ(p)

, i =

1, 2, ..., n. Therefore, the pushforwards of these vectors under (φ−1)∗ form a basis for TpM . The images
of these vectors will be denoted

∂

∂xi

∣∣∣∣
p

=
(
φ−1

)
∗
∂

∂xi

∣∣∣∣
φ(p)

It is clear that ∂/∂xi
∣∣
p
acts on smooth functions f : U −→ R by

∂

∂xi

∣∣∣∣
p

≡ ∂

∂xi

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
=

∂f̂

∂xi
(p̂)

where f̂ = f ◦ φ−1 is the coordinate representation of f , and p̂ = (p1, ..., pn) = φ(p) is the coordinate
representation of p. This can be summarized in the following lemma.

Lemma 3.6. Let M be a smooth manifold. For any p ∈ M , TpM is an n-dimensional vector space. If(
U, (xi)

)
is any smooth chart containing p, the coordinate vectors{

∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
form a basis for TpM . Thus any tangent vector can be written uniquely as a linear combination.
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X = Xi ∂

∂xi

∣∣∣∣
p

using the summation convention.

The numbers Xi are the components of X. If X is known, its components can be computed easily from
its action on the coordinate functions. That is, for each j, we can think of xj (which outputs the jth
component of a vector) as a smooth real valued function on U , to get

X
(
xj
)
=

(
Xi ∂

∂xi

∣∣∣∣
p

)(
xj
)
= Xi ∂x

j

∂xi
(p) = Xj

Abridged, the components of X are given by Xj = X(xj).
Now, we observe how pushforwards look in coordinates, starting off with maps between Euclidean spaces.
Let F : U ⊂ Rn −→ V ⊂ Rn be a smooth map (U, V open sets in their respective spaces). For any p ∈ U ,
the pushforward is a linear map F∗ : TpRn −→ TF (p)Rm, which has a certain matrix representation under

the standard basis coordinates. Taking a typical basis vector ∂/∂xi
∣∣
p
in TpRn, we find its image in TpRm

under F∗. Using the chain rule,

(
F∗

∂

∂xi

∣∣∣∣
p

)
f =

∂

∂xi

∣∣∣∣
p

(
f ◦ F

)
=

∂f

∂yj
(
F (p)

)∂F j
∂xi

(p)

=

(
∂F j

∂xi
(p)

∂

∂yj

∣∣∣∣
F (p)

)
f

Thus,

F∗
∂

∂xi

∣∣∣∣
p

=
∂F j

∂xi
(p)

∂

∂yj

∣∣∣∣
F (p)

This means that the matrix of the pushforward F∗ in terms of standard coordinate bases is precisely the
Jacobian matrix, or total derivative, of F . ∂F 1

∂x1 (p) ... ∂F 1

∂xn (p)
... ... ...

∂Fm

∂x1 (p) ... ∂Fm

∂xn (p)


Therefore, F∗ : TpRn −→ TpRm corresponds to the total derivativeDF (p) : Rn −→ Rm. Now considering
the more general case of smooth maps between smooth manifolds: F : M −→ N , the derivation is not
very different. Choosing smooth coordinate charts (U,φ) for M near p and (V, ψ) for N near F (p), we
obtain the coordinate representation

F̂ ≡ ψ ◦ F ◦ φ−1 : φ
(
U ∩ F−1(V )

)
−→ ψ(V )

Using the fact that F ◦ φ−1 = ψ−1 ◦ F̂ , we compute F∗ : TpM −→ TpN

F∗
∂

∂xi

∣∣∣∣
p

= F∗

(
(φ−1)∗

∂

∂xi

∣∣∣∣
φ(p)

)
= (ψ−1)∗

(
F̂∗

∂

∂xi

∣∣∣∣
φ(p)

)
= (ψ−1)∗

(
∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F̂ (φ(p))

)
=
∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F (p)

Thus, F∗ : TpM −→ TpN is represented in terms of the coordinate bases by the Jacobian matrix of the
coordinate representation of F . One can see that the concept of the pushforward allows us to abstractify
the Jacobian matrix into an abstract linear transformation from TpM to TpN . Because of this, the

23/ 52



Smooth Manifolds Muchang Bahng August 2021

pushforward of a smooth map F : M −→ N is sometimes called its differential or its total derivative.
We will denote F∗ for the pushforward of a smooth map between smooth manifolds and DF (p) for the
total derivative of a map between finite dimensional vector spaces.

3.3.1 Change of Coordinates

Let (U,φ) and (V, ψ) be two smooth charts on M with p ∈ U ∩V . Let us denote the coordinate function
of φ by (xi) and those of ψ by (x̃i). Then, any tangent vector at p can be represented to either basis(
∂/∂xi

∣∣
p

)
or

(
∂/∂x̃i

∣∣
p

)
.

It isn’t too difficult to find out how these two representations are related. With the transition map

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V ), ψ ◦ φ−1(x) =
(
x̃1(x), ..., x̃n(x)

)
the pushforward of ψ ◦ φ−1 ∈ End(TpRn) can be written

(
ψ ◦ φ−1

)
∗
∂

∂xi

∣∣∣∣
φ(p)

=
∂x̃j

∂xi
(
φ(p)

) ∂

∂x̃j

∣∣∣∣
ψ(p)

Letting p̄ = φ(p), we compute

∂

∂xi

∣∣∣∣
p

=
(
φ−1

)
∗
∂

∂xi

∣∣∣∣
φ(p)

=
(
φ−1

)
∗

(
ψ ◦ φ−1

)
∗
∂

∂xi

∣∣∣∣
φ(p)

=
(
ψ−1

)
∗
∂x̃j

∂xi
(
φ(p)

) ∂

∂x̃j

∣∣∣∣
ψ(p)

=
∂x̃j

∂xi
(
φ(p)

)(
ψ−1

)
∗
∂

∂x̃j

∣∣∣∣
ψ(p)

=
∂x̃j

∂xi
(p̂)

∂

∂x̃j

∣∣∣∣
p

This formula conveniently, looks exactly like the multivariate chain rule of partial derivatives in Rn.
Applying this to the components of a vector,

X = Xi ∂

∂xi

∣∣∣∣
p

= Xi

(
∂x̃j

∂xi
(p̂)

∂

∂x̃j

∣∣∣∣
p

)
=

(
Xi ∂x̃

j

∂xi
(p̂)

)
∂

∂x̃j

∣∣∣∣
p

= X̃j ∂

∂x̃j

∣∣∣∣
p

We can find that the components transform by the rule

X̃j =
∂x̃j

∂xi
(p̂)Xi

3.4 Tangent Vectors to Curves

Definition 3.4. We define a curve in manifold M to be a continuous map

γ : J −→M

where J ∈ R is an interval.

Our construction of tangent vectors and pushforwards leads to a very natural definition of tangent vectors
of curves in manifolds.

Definition 3.5. If γ is a smooth curve in smooth manifold M , the tangent vector to γ at t0 ∈ J is the
vector

γ′(t0) ≡ γ∗

(
d

dt

∣∣∣∣
t0

)
∈ Tγ(t0)M

where d/dt
∣∣
t0

is the standard coordinate basis vector for the 1 dimensional Tt0R.
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The tangent vector acts on C∞(M) functions f (that is, f :M −→ R) by

γ′(t0)f =

(
γ∗
d

dt

∣∣∣∣
t0

)
f =

d

dt

∣∣∣∣
t0

(f ◦ γ) = d(f ◦ γ)
dt

(t0)

where f ◦ γ : R −→ R. In other words, γ′(t0) is the derivation at γ(t0) obtained by taking the derivative
of a function along γ. Note also that the path function γ is also a smooth map between manifolds.
Let (U,φ) be a smooth chart with coordinate functions (xi). If γ(t0) ∈ U , we can write the coordinate
representation of γ as γ(t) =

(
γ1(t), ..., γn(t)

)
for t near t0. (Note that explicitly speaking, we are really

writing the shorthand form of (φ ◦ γ)(t) =
(
(φ ◦ γ)1(t), ..., (φ ◦ γ)n(t)

)
). Then, the formula for the

pushforward in coordinates becomes

γ′(t0) = (γi)′(t0)
∂

∂xi

∣∣∣∣
γ(t0)

This means that γ′(t0) is given by essentially the same formula sit would be in Euclidean space: It is the
tangent vector whose components in a coordinate basis are the derivatives of the component functions
of γ.

Lemma 3.7. Let M be a smooth manifold and p ∈ M . Then, every X ∈ TpM is the tangent vector to
some smooth curve in M .

This lemma tells us that we can think of the tangent space at p as the set of tangent vectors to smooth
curves in M passing through p. Similar results hold under compositions of smooth maps.

Proposition 3.8. Let F :M −→ N be a smooth map, and let γ : J −→M be a smooth curve. For any
t0 ∈ J , the tangent vector at t = t0 to the composite curve F ◦ γ : J −→ N is given by

(F ◦ γ)′(t0) = F∗
(
γ′(t0)

)
We can think of this composition as the double pushforward of the basis vector d/dt

∣∣
t0

to Tγ(t0)M first

and T(F◦γ)(t0)N second).

4 Vector Fields

4.1 The Tangent Bundle

Definition 4.1. For any smooth manifold M , we define the tangent bundle of M , denoted TM to be
the disjoint union of the tangent spaces at all points of M .

TM ≡
⊔
p∈M

TpM

Elements of TM are written as an ordered pair(
p,X

)
or Xp, p ∈M,X ∈ TpM

The tangent bundle also comes with an natural projection map

π : TM −→M, π
(
p,X

)
= p

which sends each vector in TpM to the point p at which it is tangent.

The following lemma reveals an important property of tangent bundles.

Lemma 4.1. For any smooth n-manifold M , the tangent bundle TM has a natural topology and smooth
structure that make it into a 2n-dimensional smooth manifold. With this structure,

π : TM −→M

is a smooth map.
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4.2 Vector Fields on Manifolds

Definition 4.2. Given a smooth manifold M , a vector field on M is a continuous map

Y :M −→ TM, p 7→ Yp

with the property that

π ◦ Y = IdM

or equivalently, Yp ∈ TpM for each p ∈ M . We also say that the vector field is a section (as in cross
section) of the map π : TM −→M (i.e. a continuous right inverse of π).

While each vector in the vector field Y ”lives” in distinct tangent spaces, we can visualize a vector
field on manifold M as an arrow attached to each point of M , chosen to be tangent to M and to vary
continuously from point to point.

Definition 4.3. A smooth vector field is a smooth map from M to TM . A rough vector field is a (not
necessarily continuous) map Y :M −→ TM satisfying the condition that π ◦ Y = IdM .

If Y : M −→ TM is a rough vector field and
(
U, (xi)

)
is any smooth coordinate chart for M , we can

write the value of Y at any point p ∈ U in terms of the coordinate basis vectors.

Yp = Y i(p)
∂

∂xi

∣∣∣∣
p

This defines n functions Y i : U −→ R, called the component functions of Y in the given chart.

Lemma 4.2 (Smoothness Criterion for Vector Fields). Let M be a smooth manifold, and let Y :M −→
TM be a rough vector field. If

(
U, (xi)

)
is any smooth coordinate chart on M , then Y is smooth on U if

and only if its component functions with respect to this chart are smooth.

With this lemma, it is now sufficient to check the smoothness of the component functions in order to
check the smoothness of the entire vector field. The next lemma shows that every tangent vector at a
point can be extended to a smooth global vector field.

Lemma 4.3. Let M be a smooth manifold. If p ∈ M and X ∈ TpM , then there exists a smooth vector

field X̃ on M such that X̃p = X.

Definition 4.4. Just as for functions, the support of a vector field Y is defined to be the closure of the
set {p ∈M | Yp ̸= 0}. A vector field is said to be compactly supported if its support is a compact set.

Furthermore, if U is any open set of M , the fact that TpU is naturally identified with TpM for each
p ∈ U allows us to identify the subset π−1(U) ⊂ TM . Therefore, a vector field on U can be thought of
either as a map from U to TU or a map from U to TM . If Y is a vector field on M , its restriction Y |U
is a vector field on U , which is smooth if Y is.

Definition 4.5. Let us denote the set of all smooth vector fields on M as T (M). It is a vector space
under pointwise addition and scalar multiplication. That is, given Y,Z ∈ T (M)

(aY + bZ)p = aYp + bZp

The zero element of this vector space is also the zero vector field. In addition, smooth vector fields can
be multiplied by smooth real-valued functions. That is, if f ∈ C∞(M) and Y ∈ T (M), then we can
define fY :M −→ TM as

(fY )p = f(p)Yp

The coordinate representation of a vector field Y can also be written as an equation between vector fields
rather than at a single point.

Yp = Y i(p)
∂

∂xi

∣∣∣∣
p

=⇒ Y = Y i
∂

∂xi
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A property of vector fields is that they induce operators on the space of smooth real-valued functions
C∞(M). That is, if Y ∈ T (M) and f ∈ C∞(U), where U is an open set in M , then we obtain a new
function Y f : U −→ R, defined

Y f ≡ Y i
∂

∂xi
(f) =⇒ Y f(p) ≡ Ypf ≡ Y i(p)

∂

∂xi
f

∣∣∣∣
p

Note that there is a concrete difference between Y f and fY . Y f is a real valued function shown above,
while fY is a smooth vector field gotten by multiplying the vector produced by Y at point p (Yp) with
the value of f at p (f(p)). Because the action of a tangent vector on a function is determined by the
values of the function in an arbitrarily small neighborhood, it follows that Y f is locally determined. This
leads to another sufficient condition for smoothness of vector fields.

Lemma 4.4. Let M be a smooth manifold, and let Y : M −→ TM be a rough vector field. Then, Y is
smooth if and only if for every open set U ⊂ M and every f ∈ C∞(U), the function Y f : U −→ R is
smooth.

Notice that due to to this lemma, a smooth vector field Y ∈ T (M) defines a map from C∞(M) to itself
by the mapping f 7→ Y f . This is clearly linear over R and satisfies the product rule

Y (fg) = fY g + gY f

since it satisfies for arbitrary point p ∈M .

Definition 4.6. A linear endomorphism Y of C∞(M) satisfying

Y (fg) = fY g + gY f, f, g ∈ C∞(M)

is called a derivation of C∞(M).

The next proposition shows that derivations of C∞(M) can be identified with smooth vector fields.

Proposition 4.5. Let M be a smooth manifold. A map Y : C∞(M) −→ C∞(M) is a derivation if and
only if it is of the form Yf = Y f for some smooth vector field Y ∈ T (M).

4.2.1 Pushforwards of Vector Fields

If F : M −→ N is a smooth map and Y is a vector field on M , then for each point p ∈ M , we obtain
a vector F∗Yp ∈ TF (p)N by pushing forward Yp. However, this does not in general define a vector field
on N . For example, if F is not surjective, we cannot assign a vector to point q ∈ N \ F (M). If F is not
injective, then for some point of N there may be several different vectors obtained as pushforwards of Y
from different points of M . Therefore, vector fields do not always push forward.

Definition 4.7. If F : M −→ N is smooth and Y is a vector field on M , suppose there happens to be
a vector Z on N with the property that for each p ∈ M , F∗Yp = ZF (p). In this case, we say that the
vector fields Y and Z are F -related.

The vector field Z in the definition above represents the ”closest” vector field on N that we can get that
is a pushforward of Y . If F is not surjective, the vector field Z can take any value at points p ∈ N \F (M)
(meaning that the F -related vector field to Y is not unique). If F is not injective, for all points ai that
map onto r ∈ N , the pushforward of F at each ai must agree on their output vector in TrN . There is a
useful criterion to see if two vector fields are F -related.

Proposition 4.6. Suppose F :M −→ N is a smooth map, Y ∈ T (M), and Z ∈ T (N). Then, Y and Z
are F -related if and only if for every smooth real-valued function defined on an open subset of N ,

Y (f ◦ F ) = (Zf) ◦ F

Note that for a given smooth map F : M −→ N and vector field Y ∈ T (M), there may not be any
vector field on N that is F -related to Y . However, there is one special case in which there always exists
a unique vector field.

Proposition 4.7. Suppose F : M −→ N is a diffeomorphism. For every Y ∈ T (M), there is a unique
smooth vector field on N that is F -related to Y .
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It is quite easy to see why the proposition above is true. Since F is a diffeomorphism (and thus a bijecti-
ion), there will be no points on N where the F -related vector field Z is undefined (due to surjectivity) and
there will be no contradictions in the values of Z (due to injectivity). Finally, F being a diffeomorphism
will ensure smoothness of Z. .

Definition 4.8. In the case where F : M −→ N is a diffeomorphism, the unique vector field F∗Y
that is F -related to Y is called the pushforward of Y by F . Note that F∗Y is defined only if F is a
diffeomorphism.

4.2.2 Vector Fields on Manifolds with Boundary

4.3 Lie Brackets

We can fix this problem using the Lie bracket operator.

Definition 4.9. The operator

[·, ·] : T (M)× T (M) −→ T (M)

is called the Lie bracket. Given two vector fields V,W on smooth manifold M , we define the [V,W ] as

[V,W ] : C∞(M) −→ C∞(M), [V,W ]f ≡ VWf −WV f

Lemma 4.8. The Lie bracket of any pair of smooth vector fields is a smooth vector field.

The value of the vector field [V,W ] at a point p ∈M is the derivation at p given by the formula

[V,W ]pf ≡ Vp(Wf)−Wp(V f)

but the formula is of limited usefulness for practical computations. The following lemma simpliies it
greatly.

Lemma 4.9. Let V,W be smooth vector fields on a smooth manifold M , and let

V = V i
∂

∂xi
and W =W j ∂

∂xj

be the coordinate expressions for V and W in terms of some smooth local coordinates (xi) for M . Then,
[V,W ] hsa the following coordinate expression:

[V,W ] =

(
V i
∂W j

∂xi
−W i ∂V

j

∂xi

)
∂

∂xj

or more concisely,

[V,W ] =
(
VW j −WV j

) ∂

∂xj

Proof. Since [V,W ] is a smooth vector field, its values are determined locally. Thus, it suffices to compute
in a single smooth chart.

[V,W ]f = V i
∂

∂xi

(
W j ∂f

∂xj

)
−W j ∂

∂xj

(
V i

∂f

∂xi

)
= V i

∂W j

∂xi
∂f

∂xj
+ V iW j ∂2f

∂xi∂xj
−W j ∂V

i

∂xj
∂f

∂xi
−W jV i

∂2f

∂xj∂xi

= V i
∂W j

∂xi
∂f

∂xj
−W j ∂V

i

∂xj
∂f

∂xi

where we’ve used the product rule in the first to second step and the fact that mixed partial derivatives
of a smooth function are equal in any order. ■

Example 4.1. Let us define smooth vector fields V,W ∈ T (R3) by

V = x
∂

∂x
+

∂

∂y
+ x(y + 1)

∂

∂z

W =
∂

∂x
+ y

∂

∂z
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After some tedious calculations, we compute a total of nine separate terms to get

[V,W ] = − ∂

∂x
− (y + 1)

∂

∂z
+

∂

∂z

= − ∂

∂x
− y

∂

∂z

Lemma 4.10 (Properties of the Lie Bracket). The Lie bracket satisfies the following identities for all
V,W,X ∈ T (M).

1. Bilinearity. For all a, b ∈ R,

[aV + bW,X] = a[V,X] + b[W,X]

[X, aV + bW ] = a[X,V ] + b[X,W ]

2. Antisymmetry.
[V,W ] = −[W,V ]

3. Jacobi Identity.
[V, [W,X]] + [W, [X,V ]] + [X, [V,W ]] = 0

4. For f, g ∈ C∞(M),
[fV, gW ] = fg[V,W ] + (fV g)W − (gWf)V

The next proposition states the naturality of the Lie bracket. That is, F -relatedness is preserved with
the Lie bracket.

Proposition 4.11. Let F : M −→ N be a smooth map, and let V1, V2 ∈ T (M) and W1,W2 ∈ T (N) be
vector fields such that Vi is F -related to Wi for i = 1, 2. Then, [V1, V2] is F -related to [W1,W2].

Corollary 4.11.1. Suppose F :M −→ N is a diffeomorphism and V1, V2 ∈ T (M). Then

F∗[V1, V2] = [F∗V1, F∗V2]

4.4 The Lie Algebra of a Lie Group

Definition 4.10. Let G be a Lie group. Any g ∈ G defines maps Lg, Rg : G −→ G, called left translation
and right translation, respectively, by

Lg(h) ≡ gh,Rg(h) ≡ hg

Because Lg can be written as the composition of smooth maps

G G×G G
ig m

where ig(h) ≡ (g, h) and m is multiplication, it follows that Lg is smooth. It is actually a diffeomorphism
of G since Lg−1 is a smooth inverse for it. The same goes for Rg. Notice that given any two points

g1, g2 ∈ G, there is a unique left translation of G taking g1 to g2. This is the translation g2g
−1
1 . Many

important Lie groups follow from the fact that we can systematically map any point to any other by
such a global diffeomorphism.

Definition 4.11. A vector field X on G is said to be left-invariant if it is invariant under all left
translation, in the sense that it is Lg-related to itself for every g ∈ G. More explicitly, this means that

(Lg)∗Xg′ = Xgg′ for all g, g
′ ∈ G

Furthermore, because

(Lg)∗
(
aX + bY

)
= a(Lg)∗X + b(Lg)∗Y

the set of all smooth left-invariant vector fields on G is a linear subspace of T (M). Even further, it is a
Lie algebra, which will be defined shortly.
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Lemma 4.12. Let G be a Lie group, and suppose X and Y are smooth left-invariant vector fields on G.
Then [X,Y ] is left-invariant.

Proof. Since (Lg)∗X = X and (Lg)∗Y = Y by definition of left-invariance, it follows that

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ]

meaning that [X,Y ] is Lg-related to itself. ■

Definition 4.12. A Lie algebra is a real vector space g endowed with a map called the bracket from
g×g −→ g, usually denoted by (X,Y ) 7→ [X,Y ], that satisfies the following properties for all X,Y, Z ∈ g.

1. Bilinearity. For all a, b ∈ R,

[aV + bW,X] = a[V,X] + b[W,X]

[X, aV + bW ] = a[X,V ] + b[X,W ]

2. Antisymmetry.
[V,W ] = −[W,V ]

3. Jacobi Identity.
[V, [W,X]] + [W, [X,V ]] + [X, [V,W ]] = 0

Notice that the Jacobi identity is a substitute for associativity, which does not hold in general for brackets
in a Lie algebra.

Definition 4.13. If g is a Lie algebra, a linear subspace h ⊂ g is called a Lie subalgebra of g if it is
closed under brackets. In other words, h is itself a Lie algebra under the restriction of the bracket to h.

Definition 4.14. If g and h are Lie algebras, a linear map

A : g −→ h

if if preserves brackets. That is, if

A[X,Y ] = [AX,AY ]

An invertible Lie algebra homomorphism is called a Lie algebra isomorphism. Two Lie algebra with an
isomorphism between them are said to be isomorphic Lie algebras.

Example 4.2. The space T (M) of all smooth vector fields on a smooth manifold M is a Lie algebra
under the Lie bracket.

Example 4.3. Any vector space V becomes a Lie algebra if we define all brackets to be 0. Such a Lie
algebra is said to be abelian, because the underlying product · in the commutator [A,B] = A · B − B · A
is commutative.

Example 4.4. If V is a vector space, the linear space of endomorphisms of V , denoted gl(V ), becomes
a Lie algebra with the commutator bracket

[A,B]x ≡ A(Bx)−B(Ax)

This can be represented using matrices, making the set of all n×n matrices with the commutator defined
[A,B] ≡ AB −BA also a Lie algebra.

Definition 4.15. If G is a Lie group, the set of all smooth left-invariant vector fields on G is a Lie
subalgebra of T (G) and it therefore a Lie algebra. This Lie algebra is denoted Lie(G).

Note that we have already proved that the set of smooth left-invariant vector fields on G is closed under
the Lie bracket.

Theorem 4.13. Let G be a Lie group. The evaluation map

ε : Lie(G) −→ TeG, ε(X) = Xe

where e is the identity element of G, is a vector space isomorphism. Thus, Lie(G) is finite dimensional,
with dimension equal to dimG.
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Proof. Will be done. ■

Note also that the preceding proof shows that the assumption of smoothness in the definition of Lie(G)
is unnecessary.

Corollary 4.13.1. Every left-invariant rough vector field on a Lie group is smooth.

Proposition 4.14 (Lie algebra of the General Linear Group). The composition of the natural maps

Lie
(
GL(n,R)

)
→ TIn GL(n,R) → gl(n,R)

gives a Lie algebra isomorphism between Lie
(
GL(n,R)

)
and the matrix algebra gl(n,R).

4.4.1 Induced Lie Algebra Homomorphisms

It can be seen that each Lie group homomorphism induces a Lie algebra homomorphism.

Theorem 4.15. Let G and H be Lie groups, and let g and h be their Lie algebras. Suppose F : G −→ H
is a Lie group homomorphism. For every X ∈ g, there is a unique vector field h that is F -related to X.
With this vector field, denoted F∗X, the map F∗ : g −→ h so defined is a Lie algebra homomorphism.

Lemma 4.16 (Properties of the Induced Homomorphism). 1. The homomorphism (IdG)∗ : Lie(G) −→
Lie(G) induced by the identity map of G is the identity of Lie(G).

2. If F1 : G −→ H and F2 : H −→ K are Lie group homomorphisms, then (F2 ◦F1)∗ = (F2)∗ ◦ (F1)∗ :
Lie(G) −→ Lie(G).

3. Isomorphic Lie groups have isomorphic Lie algebras.

5 Vector (Fiber) Bundles

We have already seen that the tangent bundle of a smooth manifold has a natural structure as a smooth
manifold in its own right. The standard coordinates on TM make it look, locally, like M × Rn. This
kind of structure arises frequently. That is, a collection of vector spaces (one for each point in M) glued
together so that it looks locally liked the Cartesian product of M with Rn, but globally it may not be.
This is called the vector bundle. Note that a tangent bundle is one type of vector bundle.

Definition 5.1. Let M be a topological space. A (real) vector bundle of rank k over M is a topological
space E together with a surjective continuous map π : E −→M satisfying:

1. For each p ∈ M , the set Ep ≡ π−1(p) ⊂ E (called the fiber of E over p) is endowed with the
structure of a k-dimensional real vector space.

2. For each p ∈ M , there exists a neighborhood U of p in M and a homeomorphism Φ : π−1(U) −→
U × Rk (called a local trivilization of E over U), such that the following diagram commutes:

π−1(U) U × Rk

U

Φ

π
π1

where π1 is the projection onto the first factor. Furthermore, for each q ∈ U , the restriction of Φ
to Eq is a linear isomorphism from Eq to {q} × Rk ≃ Rk.

Note that E is not the same space as M × Rk, but rather every two tuple in M × Rk can be associated
with every element in E through the surjective map π (unless E is a trivial bundle).

Definition 5.2. If M and E are smooth manifolds, π is a smooth projection map, and the local
trivializations can be chosen to be diffeomorphisms, then E is called a smooth vector bundle. In this case,
we will call any local trivialization that is a diffeomorphism onto its image a smooth local trivialization.
The space E is called the total space of the bundle, M called its base, and π called its projection. Also,
if U ⊂ M is any open set, it is easy to verify that the subset E|U = π−1(U) is again a vector bundle
with the restriction of π as its projection map, called the restriction of E to U .
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A rank-1 vector bundle is often called a line bundle. Complex bundles are also defined with vector space
over C.

Definition 5.3. If there exists a local trivialization over all of M (called a global trivialization of E),
then E is said to be a trivial bundle. In this case, E itself if homeomorphic to the product space M ×Rk.
If E −→M is a smooth bundle that admits a smooth global trivialization, then we say that E is smoothly
trivial (in this case, E is diffeomorphic to M × Rk, not just homeomorphic).

Example 5.1 (Trivial Bundle). Let E = M × Rk, and let π = π1 : M × Rk −→ M be the projection
onto the first factor. Then E is a fiber bundle of Rk over M . Here E is not just locally a product but
globally one. Every trivial bundle is of this form, with the identity map as a global trivialization. If M
is a smooth manifold, then M × Rk is smoothly trivial.

Example 5.2 (The Cylinder as a Trivial Bundle). Let E be a cylinder, i.e. a cylindrical surface. We
remind the reader that E stretches infinitely long, and that it is ”hollow.” Then the 1-sphere, denoted
S1, is the base space, and R is the fiber. Geometrically, we can think of S1 to be the base of the cylinder,
while an infinite number of real lines orthogonally intersect S1 at one point to cover E. We can then
define a map S1 × R −→ E to be

(θ, z) −→ (cos θ, sin θ, z)

The standard fiber F is R, but we most note that there are an infinite number of copies of R passing
through each point in E. So given points p, q ∈ E, the specific fibers associated with p and q are different
Rs. We can think of this fiber R as the collection of all real lines that fill the surface of cylinder E.
Note that we could have very well just chosen R to be the base space and S1 to be the fiber. The base
space would then be unbounded, but this doesn’t pose as a problem.
Furthermore, in the example shown before, the map B × F −→ E doesn’t have to be so simple as

(z, θ) −→ (cos θ, sin θ, z)

In this mapping, all of the R passing through each point is paramaterized the same, since the same value
of z gives the same heights everywhere. However, for the more complex paramaterization

(θ, z) −→ (cos θ, sin θ, (2 + sin θ)z)

the paramaterizations in each R are different for every point θ ∈ S1. So, the same value of z will not give
you the same height everywhere. However, note that while all of these R are paramaterized differently,
every single R are diffeomorphic since, once picking all of them to have the same paramaterization, we
can identify the identity mapping as a diffeomorphism between all of them.
Usually,we deal with nontrivial bundles that have a cover of open sets. Here is an example.

Example 5.3 (Mobius Bundle). Let I = [0, 1] ⊂ R be the unit interval, and let p : I −→ S1 be the
quotient map p(x) ≡ e2πix, which identifies the two endpoints of I. Consider the ”infinite strip” I × R,
and let π : I×R −→ I be the projection on the first factor. Let ∼ be the equivalence relation on I×R that
identifies each point (0, y) in the fiber over 0 with the point (1,−y) in the fiber over 1. Geometrically,
we are half-twisting the right hand side of the strip and gluing it into the left-hand edge. The resulting
quotient space is E ≡ (I × R)/ ∼, with q : I × R −→ E the quotient map.
Because p◦π1 is constant on each equivalence class, it descends to a continuous map p◦π1 = π : E −→ S1.
THis makes E into a smooth real line bundle over S1.

Proposition 5.1 (The Tangent Bundle as a Vector Bundle). Let M be a smooth n-manifold and let
TM be its tangent bundle. With its standard projection map, its natural vector space structure on each
fiber, and the smooth manifold structure, TM is a smooth vector bundle of rank n over M .

Proof. Given any smooth chart (U,φ) for M with coordinate functions (xi), we define the map Φ :
π−1(U) −→ U × Rn by

Φ

(
vi

∂

∂xi

∣∣∣∣
p

)
≡

(
p, (v1, v2, ..., vn)

)
This is obviously linear on fibers and satisfies π ◦ Φ = π. The composite map

π−1(U)
Φ−→ U × Rn φ×IdRn−−−−−→ φ(U)× Rn

Since both φ̃ and φ× IdRn are diffeomorphisms, Φ is also a diffeomorphism, satisfying all the conditions
of a local trivialization. ■
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We still have to deal with overlaps between trivializing neighborhoods. The next lemma introduces
transition functions between different representations of a fiber.

Lemma 5.2 (Overlaps between Trivializing Neighborhoods). Let π : E −→M be a smooth vector bundle,
and suppose Φ : π−1(U) −→ U ×Rk and Ψ : π−1(V ) −→ U ×Rk be two smooth local trivializations of E
such that U ∩V ̸= ∅. Then, there exists a smooth map τ : U ∩V −→ GL(k,R) such that the composition
Φ ◦Ψ−1 : (U ∩ V )× Rk −→ (U ∩ V )× Rk has the form

Φ ◦Ψ−1(p, v) ≡
(
p, τ(p)v

)
where τ(p)v denotes the usual action of the k×k matrix τ(p) on the vector v ∈ Rk. Furthermore, Φ◦Ψ−1

is a diffeomorphism. We can represent this consistency by the following commutative diagram.

(U ∩ V )× Rk π−1(U ∩ V ) (U ∩ V )× Rk

U ∩ V

π1

Ψ

Φ

π
π1

Definition 5.4. The smooth map τ : U ∩ V −→ GL(k,R) is called the transition function between the
local trivializations Φ and Ψ. For example, ifM is a smooth manifold and Φ,Ψ are the local trivializations
of TM associated with two different smooth charts, then the transition functions between them is jsut
the Jacobian matrix of the coordinate transition map.

In order to make a vector bundle into a smooth one, we would need to construct a manifold topology and a
smooth structure on the disjoint union of all the vector spaces, and then construct the local trivializations
and show that they have the requisite properties. The following lemma provides a shortcut by showing
that it is sufficient to construct the local trivializations, as long as they overlap with smooth transition
functions.

Lemma 5.3 (Vector Bundle Construction Lemma). Let M be a smooth manifold and suppose that we
are given for each p ∈M , a real vector space Ep of some fixed dimension k. Furthermore, let

E ≡
⊔
p∈M

Ep

and let π : E −→ M be the map that takes each element of Ep to point p. Suppose furthermore that we
are given

1. an open cover {Uα}α∈A of M .

2. for each α ∈ A, a bijective map Φα : π−1(Uα) −→ Uα×Rk whose restriction to each Ep is a linear
isomorphism from Ep to {p} × Rk ≃ Rk.

3. for each α, β ∈ A such that Uα ∩ Uβ ̸= ∅, a smooth map ταβ : Uα ∩ Uβ −→ GL(k,R) such that the
composite map Φα ◦ Φ−1

β from
(
(Uα ∩ Uβ)

)
× Rk to itself has the form

Φα ◦ Φ−1
β (p, v) ≡

(
p, ταβ(p)v

)
Then, E has a unique smooth manifold structure making it into a smooth vector bundle of rank k over
M , with π as projection and the maps Φα as smooth local trivializations.

5.1 Categories and Functors

We summarize the basic definitions of category theory, which provides a convenient and powerful language
for talking about many mathematical structures.

Definition 5.5. A category C consists of three things:

1. a class of objects

2. for each pair X,Y of objects a set HomC(X,Y ) whose elements are called morphisms
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3. for each triple X,Y, Z of objects a map called composition

HomC(X,Y )×HomC(Y, Z) −→ HomC(X,Z)

written (f, g) 7→ g ◦ f

The morphisms are also required to satisfy the following properties:

1. Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h)

2. Existence of Identities: For each objectX in C, there exists an identity morphism IdX ∈ HomC(X,X)
satisfying

IdY ◦ f = f = f ◦ IdX
for all f ∈ HomC(X,Y )

Definition 5.6. A morphism f ∈ HomC(X,Y ) is called an isomorphism in C if there exists a morphism
g ∈ HomC(Y,X) such that f ◦ g = IdY and g ◦ f = IdX .

Example 5.4 (Categories). When working with categories, the objects are sets with some extra structure,
the morphisms are maps that preserve that structure, and the composition laws and identity morphisms
are the obvious ones. Some common examples are:

1. SET: Sets and maps

2. TOP: Topological spaces and continuous maps.

3. TM: Topological manifolds and continuous maps.

4. SM: Smooth manifolds and smooth maps.

5. VB: Smooth vector bundles and smooth bundle maps.

6. VECTR: Real vector spaces and real-linear maps.

7. VECTC: Complex vector spaces and complex-linear maps.

8. GROUP: Groups and group homomorphisms.

9. AB: Abelian groups and group homomorphisms.

10. LIE: Lie group and Lie group homomorphisms.

11. lie: Lie algebras and Lie algebra homomorphisms.

We use the word class instead of set for the collection of objects in a category is that some categories
are ”too large” to be considered sets. For example, in the category SET, the class of objects is the class
of all sets. Any attempt to treat this class as a set in its own right leads to the Russell paradox of set
theory.
Relations among morphisms are often depicted using commutative diagrams.

Definition 5.7. Morphisms can have any of the following properties. A morphism f : X −→ Y is a

1. monomorphism (or monic) if f ◦ g1 = f ◦ g2 implies g1 = g2 for all morphisms g1, g2 : Z −→ X.

2. epimorphism (or epic) if g1 ◦ f = g2 ◦ f implies g1 = g2 for all morphisms g1, g2 : Y −→ Z.

3. bimorphism if f is both monic and epic.

4. isomorphism if (defined above).

5. endomorphism if X = Y . End(X) denotes the class of endomorphisms of X.

6. automorphism if f is both an endomorphism and an isomorphism. Aut(X) denotes the class of
automorphisms of X.

7. retraction if a right inverse of f exists, i.e. if there exists a morphism g : Y −→ X such that
f ◦ g = IdY .
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8. section if a left inverse of f exists, i.e. if there exists a morphism g : Y −→ X such that g◦f = IdX .

Theorem 5.4. Every retraction is an epimorphism. Every section is a monomorphism. Furthermore,
the following three statements are equivalent

1. f is a monomorphism and a retraction.

2. f is a epimorphism and a section.

3. f is an isomorphism.

Definition 5.8. If C and D are categories, a covariant functor from C to D is a rule F that assigns
each object X in C to an object F(X) in D, and to each morphism f ∈ HomC(X,Y ) to a morphism
F(f) ∈ HomD(F(X),F(Y )), so that identities and composition are preserved.

F(IdX) = IdF(X),F(g ◦ h) = F(g) ◦ F(h)

There are also functors that reverse morphisms.

Definition 5.9. A contravariant functor F from C to D assigns to each object X in C an object F(X)
in D, and to each morphism g ∈ HomC(X,Y ) a morphism F(g) ∈ HomD(F(Y ),F(X)), such that

F(IdX) = IdF(X),F(g ◦ h) = F(g) ◦ F(h)

If the functor is understood, it is common for the morphism induced by a covariant functor to be denoted
by g∗ (instead of F(g)) and that induced by a contravariant functor by g∗.

Definition 5.10. A covariant functor from any category to itself is the identity functor, which takes
each object and each morphism to itself.

Definition 5.11. If C is a category whose objects are sets with some additional structure and whose
morphisms are maps preserving that structure (all categories listed in the example except for the first
one), the forgetful functor F : C −→ SET assisns to each object its underlying set and to each morphism
the same map thought of as a map between sets.

Some more interesting functors arise in the following examples.

Example 5.5. The assignment G 7→ Lie(G), F 7→ F∗ is a covariant functor from LIE (category of Lie
groups) to lie (category of Lie algebras). Note that every object G in LIE gets mapped to object Lie(G)
in lie, and every morphism F gets mapped to morphism F∗.

Example 5.6. If we define TOP∗ to be the category whose objects are pointed topological spaces (topo-
logical spaces with a choice of base point in each), and whose morphisms are continuous maps taking base
points to base points, then the fundamental group is a covariant functor from TOP∗ to GROUP.

Definition 5.12. The tangent functor is a covariant functor from the category SM of smooth manifolds
to the category VB of smooth vector bundles. TO each smooth manifoldM is assigns the tangent bundle
TM →M , and to each smooth map F :M −→ N , it assigns the pushforward F∗ : TM −→ TN .

Definition 5.13. If F and G are covariant functors between the categories C and D, then a natural
transformation η from F to G associates to every object X in C a morphism ηX : F (X) −→ G(X) in
D such that for every morphism f : X −→ Y in C, we have ηY ◦ F (f) = G(f) ◦ ηX , meaning that the
following diagram is commutative.

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

The two functors F and G are called naturally isomorphic if there exists a natural transformation from
F to G such that ηX is an isomorphism for every object X in C.
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6 The Cotangent Bundle

Whereas tangent vectors give us a coordinate free interpretation of derivatives of curves, it turns out that
derivatives of real-valued functions on a manifold are most naturally interpreted as tangent covectors.
Thus, we will define the differential of a real-valued function as a covector field, similar to a coordinate-
independent analogue of the classical gradient.
We will assume that the reader is familiar with the concepts of the dual space and its respective dual
basis. Recall the following.

Proposition 6.1. The dual map satisfies the following properties

1. (A ◦B)∗ = B∗ ◦A∗

2. (IdV )
∗ : V ∗ −→ V ∗ is the identity map of V ∗.

The dual map has a nice interpretation within the context of category theory.

Corollary 6.1.1. The assignment that sends a vector space to its dual space and a linear map to its
dual map is a contravariant functor from the category of real vector spaces to itself.

6.1 Tangent Covectors on Manifolds

Definition 6.1. Let M be a smooth manifold. For p ∈M , we define the cotangent space at p, denoted
by T ∗

pM , to be the dual space to TpM .
T ∗
pM ≡ (TpM)∗

Elements of T ∗
pM are called tangent covectors at p, or just covectors at p. That is, if ω ∈ T ∗

pM , then

ω : TpM −→ R

If (xi) are smooth local coordinate on an open subset U ⊂M , then for each p ∈ U , the coordinate basis
(∂/∂xi|p) of TpM induces the dual basis of T ∗

pM , denoted (λi|p). Therefore, any covector ω ∈ T ∗
pM can

be written uniquely as

ω = ωiλ
i
∣∣
p
, where ωi = ω

(
∂

∂xi

∣∣∣∣
p

)

6.1.1 Basis Transformations

Suppose that (x̃j) is another set of smooth coordinates whose domain contains p and let
(
λ̃j

∣∣
p

)
denote

the basis for T ∗
pM dual to

(
∂/∂x̃j

∣∣
p

)
. We can compute the components of the same covector ω with

respect to the new coordinate system as follows. First, note that coordinate vector fields transform as
follows:

∂

∂xi

∣∣∣∣
p

=
∂x̃j

∂xi
(p)

∂

∂x̃j

∣∣∣∣
p

Writing ω with respect to both bases

ω = ωiλ
i
∣∣
p
= ω̃j λ̃

j
∣∣
p

we can compute the components ωi in terms of ω̃j .

ωi = ω

(
∂

∂xi

∣∣∣∣
p

)
= ω

(
∂x̃j

∂xi
(p)

∂

∂x̃j

∣∣∣∣
p

)
=
∂x̃j

∂xi
(p)ω̃j

Definition 6.2. Covariant vectors transform in the same way as coordinate partial derivatives. Given
a vector V in coordinates with respect to basis vectors (xi) and Ṽ in coordinates with respect to basis
vectors (x̃i), we have

xi =
∂x̃j

∂xi
x̃j

where the indices of x̃j cancel out with the upper term of the derivative meaning that if x̃j is doubled,
then the derivative is doubled and so xi is doubled.Contravariant vectors transform in the opposite way.

Ṽ j =
∂x̃j

∂xi
(p)V i
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where the indices of V i cancel out with the lower term of the derivative, meaning that if V i is doubled,
then the derivative is halved and so Ṽ j is halved.

Proposition 6.2. It is useful to note the following:

1. Basis vectors of V , by definition, transform covariantly.

2. Coefficients of vectors in V transform contravariantly.

3. Basis covectors of V ∗ transform contravariantly.

4. Coefficients of covectors of V ∗ transform covariantly.

Note that the use of the terms covariant and contravariant has nothing to do with the covariant and
contravariant functors of category theory!

6.2 The Cotangent Bundle

Definition 6.3. Given smooth manifold M , the disjoint union

T ∗M =
⊔
p∈M

T ∗
pM

is called the cotangent bundle of M . It has a natural projection map π : T ∗M −→M sending ω ∈ T ∗
pM

to p ∈M . In addition, given any smooth local coordinates (xi) on U ⊂M , for each p ∈ U we denote the
basis for T ∗

pM dual to (∂/∂xi|p) by (λi|p). This defines n maps λ1, ..., λn : U −→ T ∗M , called coordinate
covector fields.

As expected, T ∗M can be naturally turned into a vector bundle over M .

Proposition 6.3. Let M be a smooth manifold and let T ∗M be its cotangent bundle. With its standard
projectoin map and the natural vector space structure on each fiber, T ∗M has a unique smooth manifold
structure making it into a rank-n vector bundle over M for which all coordinate covector fields are smooth
local sections.

Smooth local coordinates for M induces smooth local coordinates for its cotangent space, which in turn
induces local coordinates for its cotangent bundle. That is, if (xi) are smooth coordinates on an open
set U ⊂M , the map from π−1(U) to R2n given by

ζiλ
i
∣∣
p
7→

(
x1(p), ..., xn(p), ζ1, ..., ζn

)
is a smooth coordinate chart for T ∗M , called the standard coordinates for T ∗M associated with (xi).

Definition 6.4. A section of T ∗M is called a covector field, or a differential 1-form. The value of a
covector field ω at a point p ∈ M is denoted ωp (since writing w(p) is used to denote the action of a
covector on a vector).

Definition 6.5. In any smooth local coordinates on an open set U ⊂ M , a covector field ω can be
written in terms of the coordinate covector fields (λi) as ω = ωiλi for n functions ωi : U −→ R, called
the component functions of ω. They are characterized by

ωi(p) = ωp

(
∂

∂xi

∣∣∣∣
p

)
Similarly for vector fields, there are several ways to check for smoothness of a covector field.

Lemma 6.4 (Smoothness Criteria for Covector Fields). Let M be a smooth manifold, and let ω :M −→
T ∗M be a rough section.

1. If ω = ωiλ
i is the coordinate representation for ω in any smooth chart

(
U, (xi)

)
for M , then ω is

smooth on U if and only if its component functions ωi are smooth.

2. ω is smooth if and only if for every smooth vector field X on an open subset U ⊂M , the function
⟨ω,X⟩ : U −→ R defined by

⟨ω,X⟩(p) ≡ ⟨ωp, Xp⟩ ≡ ωp(Xp)

is smooth.
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6.3 The Differential of a Function

In elementary calculus, the gradient of a smooth real valued function f on Rn is defined as the vector
field whose components are the partial derivatives of f . In our notation, this would read

gradf =

n∑
i=1

∂f

∂xi
∂

∂xi

However, the gradient does not make coordinate independent sense. In general, although the first partial
derivatives of a smooth function cannot be interpreted in a coordinate independent way as the components
of a vector field, it turns out that they can be interpreted as the components of a covector field. This is
the most important application of covector fields.

Definition 6.6. The covector field of f , or the differential of f , denoted df is defined

dfp(Xp) ≡ Xpf for Xp ∈ TpM

In general, given a vector field existing on a manifold M , applying the covector field df to it would give
a scalar field on M . The definition above says that this application of the covector field df to vector field
X is merely just applying the function f itself to all points in X, outputting a scalar field.
This intuition along with the following theorem leads to an alternate definition of the cotangent space.

Theorem 6.5. T ∗
pM is isomorphic to C∞(M)/ ∼, where ∼ is the equivalence relation between curves

that pass through point p ∈ M in the same direction with the same speed. The direction of the curves
in an equivalence class determines the direction of the cotangent vector and the paramaterization of the
curve determines its magnitude.

Definition 6.7. The vector space
{(df)p | f ∈ C∞(M)}

is called the cotangent space at p ∈M .

Lemma 6.6. The differential of a smooth function is a smooth covector field.

To see what df looks like more concretely, let us compute its coordinate representation. Let (xi) be
smooth coordinates on an open subset U ⊂M and let (λi) be the corresponding coordinates. Then, the
coordinate representation of df is

dfp =
∂f

∂xi
(p)λi

∣∣
p

But by letting f = xj : U −→ R, we find that

dxj
∣∣
p
=
∂xj

∂xi
= δji λ

i
∣∣
p
= λj

∣∣
p

meaning that λj is dxj ! Therefore, the formula for the coordinate representation of df can be rewritten
as

dfp =
∂f

∂xi
(p)dxi

∣∣
p

=⇒ df =
∂f

∂xi
dxi

which is called the total differential of f .

Example 6.1. If f(x, y) = x2y cosx on R2, then

df =
∂(x2y cosx)

∂x
dx+

∂(x2y cosx)

∂y
dy

= (2xy cosx− x2y sinx)dx+ x2 cosxdy

Proposition 6.7 (Properties of the Differential). let M be a smooth manifold, and let f, g ∈ C∞(M).

1. For any a, b ∈ R, we have d(af + bg) = a df + b dg.

2. d(fg) = f dg + g df

3. d(f/g) = (g df − f dg)/g2 on the set where g ̸= 0.
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4. If J ⊂ R is an interval containing the image of f , and h : J −→ R is a smooth function, then
d(h ◦ f) = (h′ ◦ f)df .

5. f is constant =⇒ df = 0

Clearly, if f is a smooth real-valued function on a smooth manifold M , then df = 0 if and only if f is
constant on each component of M .

Proposition 6.8 (Derivative of a Function along a Curve). Suppose M is a smooth manifold, γ : J −→
M is a smooth curve, and f :M −→ R is a smooth function, then the derivative of real valued function
f ◦ γ : R −→ R is

(f ◦ γ)′(t) = dfγ(t)
(
γ′(t)

)
Proof. For any t0 ∈ J ,

dfγ(t0)
(
γ′(t0)

)
= γ′(t0)f

=

(
γ∗
d

dt

∣∣∣∣
t0

)
f

=
d

dt

∣∣∣∣
t0

(f ◦ γ)

= (f ◦ γ)′(t0)

■

So far, we have defined two types of derivatives for a smooth real valued function f :M −→ R at a point
p ∈ M . The first is the pushforward f∗ as a linear map from TpM to Tf(p)R. Later, we have defined
the differential dfp a a covector at p, which is just a linear map from TpM to R. But the canonical
isomorphism between R and its tangent space at any point leads to these two interpretations of the
derivative being exactly the same.
Similarly, if γ is a smooth curve in M , we have two different meanings for the expression (f ◦ γ)′(t).

1. f ◦ γ can be interpreted as a smooth curve in R, and thus (f ◦ γ)′(t) is its tangent vector at the
point (f ◦ γ)(t) ∈ R, i.e. an element of the tangent space T(f◦γ)′(t)R.

2. Or, f ◦γ can be considered as an ordinary function from R to R, with (f ◦γ)′ being just its ordinary
derivative.

Either one of these two interpretations are equally correct since the derivative shown in 2 is equal to the
real number dfγ(t)

(
γ′(t)

)
.

6.4 Pullbacks

We know that a smooth map yields a linear map on the tangent vectors called the pushforward. Dualizing
this leads to a linear map on covectors going in the opposite direction.

Definition 6.8. Let F :M −→ N be a smooth map, and let p ∈M be arbitrary. The pushforward map

F∗ : TpM −→ TF (p)N

yields a dual linear map
(F∗)

∗ : T ∗
F (p)N −→ T ∗

pM

called the pullback associated with F . More simply, we rewrite the above as

F ∗ : T ∗
F (p)N −→ T ∗

pM

We can see that F ∗ is defined by

(F ∗ω)(X) = ω(F∗X) for ω ∈ T ∗
F (p)N,X ∈ TpM

Note that (F ∗ω)(X) is a scalar field on M (since F ∗ω is a covector field on M and X is a vector field
on M).
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We have noted that pushforwards do not always work on vector fields, but smooth covector fields always
pull back to smooth covector fields. That is, given a smooth map G : M −→ N and a smooth covector
field ω on N , we can define a covector field G∗ω on M by

(G∗ω)(p) = G∗(ωG(p))

Notice that there is no ambiguity about what point to pull back from.

Lemma 6.9. Let G :M −→ N be a smooth map, and let f ∈ C∞(N) and ω ∈ T ∗(N). Then

G∗df = d(f ◦G)
G∗(fω) = (f ◦G)G∗ω

Proposition 6.10. Suppose G : M −→ N is smooth, and let ω be a smooth covector field on N . Then
G∗ω is a smooth covector field on M .

The formula for the pullback of a covector field with respect to smooth coordinates (xi) on the domain
and (yj) on the range is

G∗ω = G∗(ωjdy
j) = (ωj ◦G)d(yj ◦G) = (ωj ◦G)dGj

where Gj is the jth component function of G in these coordinates. This makes the computation of
pullbacks in coordinates very simple.

Example 6.2. Let G : R3 −→ R2 be the map given by

(u, v) = G(x, y, z) = (x2y, y sin z)

and let ω ∈ T ∗(R2) be the covector field

ω = u dv + v du

Then, the pullback G∗ω is given by

G∗ω = (u ◦G)d(v ◦G) + (v ◦G)d(u ◦G)
= (x2y)d(y sin z) + (y sin z)d(x2y)

= x2y(sin zdy + y cos zdz) + y sin z(2xydx+ x2dy)

= 2xy2 sin zdx+ 2x2y sin zdy + x2y2 cos zdz

6.5 Line Integrals

We would like to make a coordinate independent sense of the line integral.

Definition 6.9. Let [a, b] ⊂ R be a compact interval, and let ω be a smooth covector field on [a, b] (note
that at the endpoints, smoothness of ω means that ω admits a smooth extension of to some neighborhood
of [a, b]). Letting t denote the one standard coordinate in R, then we can write ω in terms of t coordinates
as

ωt ≡ f(t) dt

for some smooth f : [a, b] −→ R. Then, the integral of ω over [a, b] is defined

ˆ
[a,b]

ω ≡
ˆ b

a

f(t) dt

This definition gives rise to the following property of the line integral.

Proposition 6.11 (Diffeomorphism Invariance of the Integral). Let ω be a smooth covector field on
the compact interval [a, b] ⊂ R. If φ : [c, d] −→ [a, b] is an increasing diffeomorphism (meaning that
t1 < t2 =⇒ φ(t1) < φ(t2)), then ˆ

[c,d]

φ∗ω =

ˆ
[a,b]

ω
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Proof. Let t denote the standard coordinate on [a, b] and s denote that of [c, d]. Then the formula for
the pullback of the covector field, in coordinate expression, is

(φ∗)ω)s = f
(
φ(s)

)
φ′(s) ds

meaning that ˆ
[c,d]

φ∗ω =

ˆ d

c

f
(
φ(s)

)
φ′(s) ds =

ˆ b

a

f(t) dt =

ˆ
[a,b]

ω

by the change of variables formula for ordinary integrals. ■

Definition 6.10. LetM be a smooth manifold. A curve segment inM is a continuous curve γ : [a, b] −→
M whose domain is a compact interval. It is a smooth curve segment if it has a smooth extension to
an open interval containing [a, b]. A piecewise smooth curve segment is a curve segment γ : [a, b] −→M
with the property that there exists a finite partition of [a, b] such that the image of each partition is
smooth.

Now we can define line integrals over smooth covector fields on an arbitrary manifold M .

Definition 6.11. If γ : [a, b] −→M is a smooth curve segment and ω is a smooth covector field on M ,
the line integral of ω over γ is defined to be the real number

ˆ
γ

ω ≡
ˆ
[a,b]

γ∗ω

More generally, if γ is piecewise smooth (with partitions [ai−1, ai] for i = 1, ..., k), then we define

ˆ
γ

ω ≡
k∑
i=1

ˆ
[ai−1,ai]

γ∗ω

Note that this definition now gives rigorous meaning to classical line integrals such as
ˆ
γ

P dx+Qdy

in R2 or ˆ
γ

P dx+Qdy +Rdz

Proposition 6.12 (Properties of Line Integrals). Let M be a smooth manifold. Suppose γ : [a, b] −→M
is a piecewise smooth curve segment and ω, ω1, ω2 ∈ T ∗(M).

1. For any c1, c2 ∈ R, ˆ
γ

(c1ω1 + c2ω2) = c1

ˆ
γ

ω1 + c2

ˆ
γ

ω2

2. If γ is a constant map, then ˆ
γ

ω = 0

for all ω.

3. If a < c < b, then ˆ
γ

ω =

ˆ
γ1

ω +

ˆ
γ2

ω

where γ1 = γ
∣∣
[a,c]

and γ2 = γ
∣∣
[a,c]

.

The next lemma gives a useful alternative expression for the line integral of a covector field on a manifold.
This is good for computations.

Lemma 6.13. If γ : [a, b] −→M is a piecewise smooth curve segment, the line integral of ω over γ can
also be expressed as the ordinary integral

ˆ
γ

ω =

ˆ b

a

ωγ(t)
(
γ′(t)

)
dt
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Example 6.3. Let M = R2 \ {0}, and let ω be the covector field on M given by

ω ≡ x dy − y dx

x2 + y2

and let γ : [0, 2π] −→M be the curve segment defined

γ(t) ≡
(
cos t, sin t

Since γ∗ω can be computed by substituting x = cos t and y = sin t everywhere in the formula for ω, we
get ˆ

γ

ω =

ˆ
[0,2π]

cos t(cos t dt)− sin t(− sin t dt)

sin2 t+ cos2 t
=

ˆ 2π

0

dt = 2π

Another important property of line integrals is invariance under reparamaterizations.

Definition 6.12. Let γ : [a, b] −→ M and γ̃ : [c, d] −→ M be smooth curve segments. If γ̃ = γ ◦ φ for
some diffeomorphism φ : [c, d] −→ [a, b], then it is said that γ̃ is a reparamaterization of γ.
If φ is an increasing function, then γ̃ is a forward paramaterization, and if φ is decreasing, then γ̃ is a
backward paramaterization.

Proposition 6.14. Let M be a smooth manifold, ω a smooth covector field on M , and γ a piecewise
smooth curve segment in M . For any reparamaterization γ̃ of γ, we have

ˆ
γ̃

ω =

{´
γ
ω, γ̃ is a forward paramaterization

−
´
γ
ω, γ̃ is a backward paramaterization

Proof. This is a direct result of the diffeomorphism invariance property of the integral. ■

There is one special case in which a line integral is trivial to compute: the line integral of a differential.

Theorem 6.15 (Fundamental Theorem of Line Integrals). Let M be a smooth manifold. Let f is a
smooth real-valued function on M and let γ : [a, b] −→ M be a piecewise smooth curve segment in M .
Then ˆ

γ

df =

ˆ
γ

∂f

∂xi
dxi = f

(
γ(b)

)
− f

(
γ(a)

)
Proof. Suppose that γ is smooth. Then,

ˆ
γ

df =

ˆ b

a

dfγ(t)
(
γ′(t)

)
dt =

ˆ b

a

(f ◦ γ)′(t) dt = f ◦ γ(b)− f ◦ γ(a)

This naturally extends to piecewise smooth functions, since then the right hand side will be a telescoping
sum in which the middle terms cancel out. ■

6.6 Conservative Covector Fields

The fundamental theorem of line integrals shows that if a covector field ω can be written as the differential
of a smooth function, then the line integral can be computed extremely easily once the smooth function
is known. We formally define this kind of vector field.

Definition 6.13. A smooth covector field ω on manifold M is exact (or an exact differential) on M if
there exists a function f ∈ C∞(M) such that ω = df . The function f is called the potential for ω.

Note that the potential of an exact smooth covector field is not uniquely determined, but the differ-
ence between any two potentials must be constant. We now define a similar construction called the
conservative covector field.

Definition 6.14. A smooth covector field ω is conservative if the line integral of ω over any closed
piecewise smooth curve segment is 0.

It is easy to understand the following lemma given the definition of conservative covector fields.
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Lemma 6.16. A smooth covector field ω is conservative if and only if the line integral of ω depends on
the endpoints of the curve. That is, ˆ

γ

ω =

ˆ
γ̃

ω

if γ and γ̃ are piecewise smooth curve segment swith the same starting and ending points.

This leads to the equivalence of exact and conservative vector fields.

Theorem 6.17. A smooth covector field is conservative if and only if it is exact.

7 Submersions, Immersions, and Embeddings

Because the pushforward represents the ”best linear approximation” to the map near a given point, we
can learn a great deal about the map itself by studying linear-algebraic properties of its pushforward at
each point. The most important property is the rank of the pushforward.

7.1 Maps of Constant Rank

Definition 7.1. If F :M −→ N is a smooth map, the rank of F at p ∈M is the rank of the linear map

F∗ : TpM −→ TF (p)M

In an abstract sense, it is the dimension of the image of F∗ in TF (p)M . Given any charts in the neigh-
borhoods of p and F (p), the rank of F at p is the rank of the matrix of partial derivatives of F .

Note that the rank does not depend on the choice of basis for our chart mappings.

Definition 7.2. If F : M −→ N has the same rank k at every point, then we can say that F has
constant rank. That is,

rankF = k

Definition 7.3. A smooth map F :M −→ N is called a submersion if F∗ is surjective at each point, or
equivalently, rankF = dimN .

Definition 7.4. A smooth map F :M −→ N is called an immersion if F∗ is injective at each point, or
equivalently, rankF = dimM .

We can imagine submersions and immersions behaving locally like surjective and injective linear maps,
respectively.

Definition 7.5. A smooth embedding is an immersion F :M −→ N that is also a topological embedding
(i.e. a homeomorphism onto its image F (M) ⊂ N in the subspace topology).

7.2 The Inverse Function Theorem

Definition 7.6. Let X be a metric space. A map G : X −→ X is said to be a contraction if there
is a constant λ < 1 such that d

(
G(x), G(y)

)
≤ λd(x, y) for all x, y ∈ X. Clearly, any contraction is

continuous.

Theorem 7.1 (Inverse Function Theorem on Euclidean Space). Suppose U and V are open subsets in
Rn, and F : U −→ V is a smooth map. If DF (p) is nonsingular at some point p ∈ U , then there exists
connected neighborhoods U0 ⊂ U of p and V0 ⊂ V of F (p) such that

F
∣∣
U0

: U0 −→ V0

is a diffeomorphism.

8 Tensors

We will always assume that the base field of every vector space mentioned is R.
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8.1 The Algebra of Tensors

We will assume that the reader is already familiar with the notion of tensors both as multilinear maps
and as the abstract tensor product of vector spaces. There will be slight changes in notation compared
to the descriptions of tensors in previous chapters.

Definition 8.1. A covariant k-tensor is an element of

T k(V ) =
⊗
k

V ∗

which is just a multilinear map from the Cartesian product of V ’s to R. A contravariant l-tensor is an
element of

Tl(V ) =
⊗
l

V

Generally, for any nonnegative integers k, l, the space of mixed tensors of type (k, l) is defined as

T kl (V ) ≡
⊗
k

V ∗ ⊗
⊗
l

V

which is really the space of real-valued multilinear functions of k vectors and l covectors.

Strictly speaking, the T k(V ) and the space of all covariant tensors are not the same, but rather naturally
isomorphic to each other. However, we will treat them as the same thing.

Example 8.1 (Covariant Tensors). 1. Every linear map ω : V −→ R is multilinear. It is a covariant
1-tensor.

2. An inner product on V is a covariant 2-tensor, since by definition an inner product is bilinear.

3. The determinant, thought of as a function of n vectors (columns of a matrix) is a covariant n-tensor
of Rn.

4. Suppose ω, η ∈ V ∗. We define a map ω ⊗ η : V × V −→ R as

ω ⊗ η(X,Y ) ≡ ω(X) η(Y )

where the product on the right is ordinary multiplication of real numbers. The linearity of ω and η
guarantees that ω ⊗ η is a bilinear function of X and Y .

We will now provide another abstract construction of a tensor product space.

Definition 8.2. Let S be a set. A finite formal linear combination is a function F : S −→ R such that
F(s) = 0 for all but finitely many s ∈ S.

Definition 8.3. Let S be a set. The free vector space on S, denoted R⟨S⟩, is the set of all finite
formal linear combination of elements of S with real coefficients. Under pointwise addition and scalar
multiplication, R⟨S⟩ becomes a real vector space.

Identifying each element x ∈ S with the function that takes the value 1 on x and 0 on all other elements
of S, any element F ∈ R⟨R⟩ can be written uniquely as a linear combination of these functions as the
basis. This means that R⟨S⟩ is finite dimensional if and only if S is a finite set.
Now, we construct the tensor product space in a more abstract way.

Definition 8.4. Let V,W be finite-dimensional real vector spaces, and let R be the subspace of the free
vector space R⟨V ×W ⟩ spanned by all elements of the form

a(v, w)− (av, w),

a(v, w)− (v, aw),

(v, w) + (v′, w)− (v + v′, w)

(v, w) + (v, w′)− (v, w + w′)

for a ∈ R, v, v′ ∈ V , and w,w′ ∈W . The tensor product of V and W , denoted by V ⊗W , is the quotient
space

V ⊗W ≡ R⟨V ×W ⟩
R

The equivalence class of an element (v, w) in V ⊗W is denoted by v ⊗ w.
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Proposition 8.1 (Bilinearity of the Tensor Product). The construction of the tensor product implies

a(v ⊗ w) = av ⊗ w = v ⊗ aw

v ⊗ w + v′ ⊗ w = (v + v′)⊗ w

v ⊗ w + v ⊗ w′ = v ⊗ (w + w′)

Proposition 8.2 (Characteristic Property of Tensor Products). Let V and W be finite-dimensional real
vector spaces. If A : V ×W −→ X is a bilinear map into any vector space X, there is a unique linear
map Ã : V ⊗W −→ X such that the following diagram commutes.

V ×W X

V ⊗W

A

π
Ã

where π(v, w) = v ⊗ w.

This is called the characteristic property because it uniquely characterizes the tensor product up to
isomorphism.

Proposition 8.3 (Properties of Tensor Products). Let V,W , and X be finite-dimensional real vector
spaces.

1. The tensor product V ∗⊗W ∗ is canonically isomorphic to the space B(V,W ) of bilinear maps from
V ⊗W to R.

2. If (Ei) is a basis for V and (Fj) is a basis for W , then the set of all elements of the form Ei ⊗ Fj
is a basis for V ⊗W , with dimV ⊗W = (dimV )(dimW ).

3. There is a unique isomorphism V ⊗ (W ⊗X) −→ (V ⊗W )⊗X sending v⊗ (w⊗x) 7→ (v⊗w)⊗x.

In most cases, we will concern ourselves with covariant tensors.

8.2 Tensors and Tensor Fields on Manifolds

Definition 8.5. Let M be a smooth manifold. The bundle of covariant k-tensors on M is defined to be

T kM ≡
⊔
p∈M

T k(TpM)

The bundle of contravariant l-tensors is defined

TlM ≡
⊔
p∈M

Tl(TpM)

and the bundle of mixed tensors of type (k, l) is defined

T kl M ≡
⊔
p∈M

T kl (TpM)

These are all called tensor bundles over M .

This allows us to generalize previously defined bundles, leading to the identifications:

1. T 0M = T0M =M × R

2. T 1M = T ∗M

3. T1M = TM

4. T k0M = T kM

5. T 0
l M = TlM

45/ 52



Smooth Manifolds Muchang Bahng August 2021

Definition 8.6. A section of a tangent bundle is called a (covariant, contravariant, or mixed) tensor
field on M . A smooth tensor field is a section that is smooth in the usual sense of smooth sections of
vector bundles. The vector spaces of smooth sections of these bundles is denoted

T k(M) ≡ {smooth sections of T kM}
Tl(M) ≡ {smooth sections of T lM}

T k
l (M) ≡ {smooth sections of T kl M}

In any smooth local coordinates (xi), sections of these bundles can be written (using the summation
convention) as

σ =


σi1...ik dx

i1 ⊗ ...⊗ dxik , σ ∈ T k(M)

σj1...jl ∂
∂xj1

⊗ ...⊗ ∂
∂xjl

, σ ∈ Tl(M)

σj1...jli1...ik
dxi1 ⊗ ...⊗ dxik ⊗ ∂

∂xj1
⊗ ...⊗ ∂

∂xjl
, σ ∈ T k

l (M)

The functions σj1...jli1...ik
:M −→ R are called the component functions of σ.

Lemma 8.4. Let M be a smooth vector field. The following are equivalent.

1. σ is smooth.

2. In any smooth coordinate chart, the component functions of σ are smooth.

3. If X1, ..., Xk are smooth vector fields defined on any open subset U ∈ M , then the function
σ(X1, ..., Xk) : U −→ R defined by

σ(X1, ..., Xk)(p) ≡ σp(X1

∣∣
p
, ..., Xk

∣∣
p
)

is smooth.

8.2.1 Pullbacks

8.3 Symmetric Tensors

Definition 8.7. Let V be a finite-dimensional vector space. A covariant k-tensor T on V is said to be
symmetric if its value is unchanged by interchanging any pair of arguments.

T (X1, ..., Xi, ..., Xj , ..., Xk) = T (X1, ..., Xj , ..., Xi, ..., Xk)

Since the set of transpositions form the generating set of the set of all permutations of n elements, a
symmetric tensor is invariant under any permutation of its arguments.

Definition 8.8. The set of symmetric covariant k-tensors on V is denoted Σk(V ), which is a vector
subspace of T k(V ). There is a natural surjective projection

Sym : T k(V ) −→ Σk(V )

called symmetrization. Given a k-tensor T and a permutation σ ∈ Sk (Sk is the symmetric group of k
elements), we define the symmetrization of tensor T by

Sym(T ) ≡ 1

k!

∑
σ∈Sk

T (Xσ(1), ...Xσ(k))

Note that if S and T are symmetric tensors on V , then S ⊗ T is not symmetric in general. But we can
simply define a new product that does produce a symmetric product.

Definition 8.9. Given S ∈ Σk(V ) and T ∈ Σl(V ), their symmetric product is the (k + l)-tensor ST
defined

ST ≡ Sym(S ⊗ T )

We can explicitly define this as

ST (X1, ..., Xk+l) ≡
1

(k + l)!

∑
σ∈Sk+l

S
(
Xσ(1), ..., Xσ(k)

)
T
(
Xσ(k+1), ..., Xσ(k+l)

)
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Note that the symmetric product (written using juxtaposition of tensors above) is the same product as
the product ”⊙” mentioned in the linear algebra chapter.

Proposition 8.5 (Properties of the Symmetric Product). We list two additional important properties.

1. The symmetric product is symmetric and bilinear. For all symmetric tensors R,S, T and all a, b ∈
R,

ST = TS

(aR+ bS)T = aRT + bST = T (aR+ bS)

2. If ω and η are covectors, then

ωη =
1

2
(ω ⊗ η + η ⊗ ω)

Definition 8.10. A symmetric tensor field on a manifold is a covariant tensor field whose value at any
point is a symmetric tensor.

8.4 Riemannian Metrics

Definition 8.11. A Riemannian metric on manifold M is a smooth symmetric 2-tensor field that is
positive definite at each point. A Riemannian manifold is a pair (M, g) where M is a smooth manifold
and g is a Riemannian metric on M .

Note that a Riemannian metric is not the same as a metric on a vector space.

Proposition 8.6 (Existence of Riemannian Metrics). Every smooth manifold admits a Riemannian
metric.

If g is a Riemannian metric onM , then for each p ∈M , gp is an inner product on TpM . For X,Y ∈ TpM ,
the expression ⟨X,Y ⟩g is used to denote the real number gp(X,Y ). Furthermore, in any smooth local
coordinates (xi), a Riemannian metric can be written

g = gigdx
i ⊗ dxj

where gij is a symmetric positive definite matrix of smooth functions. The symmetry of g also allows us
to write g as

g = gijdx
i ⊗ dxj

=
1

2
(gijdx

i ⊗ dxj + gjidx
i ⊗ dxj)

=
1

2
(gijdx

i ⊗ dxj + gijdx
i ⊗ dxj)

= gijdx
idxj

Example 8.2. The simplest example of a Riemannian metric is the Euclidean metric ḡ on Rn, defined
in standard coordinates as

ḡ(x, y) ≡ δijdx
idxj

where δij is the Kronecker delta. It is common to use the notation ω2 for the symmetric product of tensor
ω with itself, so the Euclidean metric can also be written

ḡ = (dx1)2 + ...+ (dxn)2

8.4.1 Pseudo-Riemannian Metrics

Relaxing the requirement that the metric be positive definite results in a generalization of the Riemannian
metric.

Definition 8.12. A 2-tensor g on a vector space V is said to be nondegenerate if g(X,Y ) = 0 for all
Y ∈ V if and only if X = 0.

Just as any inner product can be transformed to the Euclidean one by switching to an orthonormal basis,
every nondegenerate symmetric 2-tensor can be transformed by a change of basis to one with a diagonal
matrix of diagonal entire ±1. However, the number of −1’s and +1’s are invariant under a choice of
basis. That is, the signature of g is an invariant of g.
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9 Differential Forms

We have introduced line integrals of covector fields, which generalized ordinary integrals to curves in
manifolds. Now, we will generalize the theory of multiple integrals over manifolds.

9.1 The Algebra of Alternating Tensors

Definition 9.1. A covariant k-tensor T on a finite-dimensional vector space V is said to be alternating
if its has the property

T (X1, ..., Xi, ..., Xj , ..., Xk) = −T (X1, ..., Xj , ..., Xi, ..., Xk)

An alternating k-tensor is also called a k-covector. Note that this

Bilinearity and the alternating properties of the alternating k-tensor indicates that it is a good measure
of the signed volume of a parallelopiped. The following lemma also supports this notion, since a m-
dimensional parallelopiped in an n-dimensional space has volume 0 when m < n.

Lemma 9.1. Suppose Ω is a k-tensor on a vector space V with the property that Ω(X1, ..., Xk) = 0
whenever X1, ..., Xk is linearly dependent. Then Ω is alternating.

Proof. By bilinearity, the hypothesis says that Ω gives the value 0 whenever two arguments are the same.
So,

0 = Ω(X1, ..., Xi+j , ...Xi+j , ..., Xn)

= Ω(X1, ..., Xi, ...Xi, ..., Xn) + Ω(X1, ..., Xi, ...Xj , ..., Xn)

+ Ω(X1, ..., Xj , ...Xi, ..., Xn) + Ω(X1, ..., Xj , ...Xj , ..., Xn)

= Ω(X1, ..., Xi, ...Xi+j , ..., Xn) + Ω(X1, ..., Xj , ...Xi+j , ..., Xn)

which means that

Ω(X1, ..., Xi, ...Xi+j , ..., Xn) = −Ω(X1, ..., Xj , ...Xi+j , ..., Xn)

■

Because of these properties, alternating tensor fields are good candidates for objects that can be inte-
grated in a coordinate-independent way.

Proposition 9.2. The following are equivalent for a covariant k-tensor T .

1. T is alternating.

2. For any vectors X1, ..., Xn,

T (Xσ(1), ..., T (Xσ(n)) = (sgn(σ)T (X1, ..., Xn)

3. T gives zero whenever two of its arguments are equal.

4. T = 0 whenever its arguments are linearly dependent.

Note that any 2-tensor can be expressed as a sum of its symmetric components and alternating compo-
nents, since

T (X,Y ) =
1

2

(
T (X,Y )− T (X,Y )

)
+

1

2

(
T (X,Y ) + T (Y,X)

)
= A(X,Y ) + S(X,Y )

where A(X,Y ) = 1
2

(
T (X,Y ) − T (X,Y )

)
is alternating and S(X,Y ) = 1

2

(
T (X,Y ) + T (X,Y )

)
is sym-

metric. However, this is not true for tensors of higher rank.
Note that S is just defined as SymT , the symmetric projection of T . We can define a similar projection

Alt : T k(V ) −→ Λk(V )

called the alternating projection, defined

AltT ≡ 1

k!

∑
σ∈Sk

(sgnσ)(Xσ(1), ..., Xσ(k))
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Example 9.1. Let T be a 1-tensor. Then AltT = T . It T is a 2-tensor, then

AltT (X,Y ) =
1

2

(
T (X,Y )− T (Y,X)

)
If T is a 3-tensor,

AltT (X,Y, Z) =
1

6

(
T (X,Y, Z) + T (Y,Z,X) + T (Z,X, Y )

− T (Y,X,Z)− T (X,Z, Y )− T (Z, Y,X)
)

Lemma 9.3 (Properties of the Alternating Projection). For any tensor T , AltT is alternating. T is
alternating if and only if AltT = T .

Proposition 9.4. Let V be an n-dimensional vector space. If (εi) is any basis for V ∗, then for each
positive integer k ≤ n, the collection of k-covectors

E = {εI | I is an increasing multi-index of length k}

is a basis for Λk(V ). Therefore,

dimΛk(V ) =

(
n

k

)
and if k > n, then dimΛk(V ) = 0.

9.2 The Wedge Product

Definition 9.2. If ω ∈ Λk(V ) and η ∈ Λl(V ), the wedge product, or exterior product of ω and η is the
alternating (k + l)-tensor

ω ∧ η ≡ (k + l)!

k!l!
Alt(ω ⊗ η)

Lemma 9.5. Let (ε1, ..., εn) be a basis for V ∗. For any multi-indices I = (i1, ..., ik) and J = (j1, ..., jl),

εI ∧ εJ = εIJ

where IJ is the multi-index (i1, ..., ik, j1, ..., jl) obtained by concatenating I and J .

Proposition 9.6 (Properties of the Wedge Product). We list properties of the wedge product.

1. Bilinearity.

(aω + a′ω′) ∧ η = a(ω ∧ η) + a′(ω′ ∧ η)
η ∧ (aω + a′ω′) = a(η ∧ ω) + a′(η ∧ ω′)

2. Associativity.
ω ∧ (η ∧ ζ) = (ω ∧ η) ∧ ζ

3. Anticommutativity.
ω ∧ η = (−1)klη ∧ ω

4. If (ε1, ..., εn) is any basis for V ∗ and I = (i1, ..., ik) is any multi-index, then

εi+1 ∧ ... ∧ εik = εI

5. For any covectors ω1, ..., ωk and vectors X1, ..., Xk,

ω1 ∧ ... ∧ ωk(X1, ..., Xk) = det
(
ωj(Xi)

)
Definition 9.3. For any n-dimensional vector space V , the vector space Λ∗(V ) is defined

Λ∗(V ) =

n⊕
k=0

Λk(V )

called the exterior algebra of V .

Definition 9.4. An algebra A is said to be graded if it has a direct sum decomposition A =
⊕

k A
k

such that the product satisfies (Ak)(Al) ⊂ Ak+l.
A graded algebra is anticommutative if the product satisfies ab = (−1)klba for a ∈ Ak, b ∈ Al.

Clearly, Λ∗(V ) is an anticommutative graded algebra.
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9.3 Differential Forms on Manifolds

Definition 9.5. Given an n-dimensional smooth manifold M , the subset of T kM consisting of alternat-
ing tensors is defined

ΛkM =
⊔
p∈M

Λk(TpM)

It is a smooth subbundle of T kM .

Definition 9.6. A section of ΛkM is called a differential k-form, or just a k-form. In other words, it is
a continuous tensor field whose value at each point is an alternating tensor. The integer k is called the
degree of the form.

Definition 9.7. The vector space of smooth sections of ΛkM is denoted AkM .

In any smooth chart, a k-form ω can be written locally as

ω =
∑
I

ωI dx
i1 ∧ ... ∧ dxik =

∑
I

ωI dx
I

where the coefficients ωI are continuous functions defined on the coordinate domain. We use dxI as an
abbreviation for dxi1 ∧ ... ∧ dxik . Interpreting the basis forms as forms themselves,

dxi1 ∧ ... ∧ dxik
(

∂

∂xj1
, ...,

∂

∂xjk

)
= δIJ

Thus, the component functions are determined by

ωI = ω

(
∂

∂xi1
, ...,

∂

∂xik

)
Example 9.2. On R3, some examples of smooth 2-forms are given by

ω = (sinxy) dy ∧ dz
η = dx ∧ dy + dx ∧ dz + dy ∧ dz

A 0-form is just a continuous real-valued function, and a 1-form is a covector field. Every n-form Rn is
a continuous real-valued function times dx1 ∧ ... ∧ dxn.

We can take the vector spaces of smooth sections of Λk(M) of all the degrees k and direct sum them to
create an algebra.

Definition 9.8. Defining the wedge product of two differential forms pointwise

(ω ∧ η)p ≡ ωp ∧ ηp

we can see that the wedge product of a k-form with an l-form is a (k + l)-form. Defining

A∗(M) ≡
n⊕
k=0

Ak(M)

equipped with the wedge product turns this set into a associative, anticommutative graded algebra.

If F :M −→ N is a smooth map and ω is a smooth differential form on N , the pullback F ∗ω is a smooth
differential form on M , defined as for any smooth tensor field

(F ∗ω)p(X1, ..., Xk) ≡ ωF (p)(F∗X1, ..., F∗Xk)

If i : N −→M is the inclusion map of an immersed submanifold, then we denote it as ω
∣∣
N

for i∗ω.
The following lemma gives a computational rule for pullbacks of differential forms. It can also be used
to compute the expression for a differential form in another smooth chart.

Lemma 9.7. Suppose F :M −→ N is smooth.

1. F ∗ : Ak(N) −→ Ak(M) is linear.
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2. F ∗(ω ∧ η) = (F ∗ω) ∧ (F ∗η)

3. In any smooth chart

F ∗
(∑

I

ωI dy
i1 ∧ ... ∧ dyik

)
=

∑
I

(ωI ◦ F ) d(yi1 ◦ F ) ∧ ... ∧ d(yik ◦ F )

Proposition 9.8. Let F :M −→ N be a smooth map between n-manifolds. If (xi) and (yj) are smooth
coordinates on open sets U ⊂M and V ⊂ N , respectively, and u is a smooth real-valued function on V ,
then the following holds on U ∩ F−1(V ).

F ∗(udy1 ∧ ... ∧ dyn) = (u ◦ F )(detDF ) dx1 ∧ ... ∧ dxn

where DF represents the matrix of partial derivatives of F in coordinates.

Corollary 9.8.1. If
(
U, (xi)

)
and

(
Ũ , (x̃j)

)
are overlapping smooth coordinate charts on M , then the

following identity holds on U ∩ Ũ :

dx̃1 ∧ ... ∧ dx̃n = det
(∂x̃j
∂xi

)
dx1 ∧ ... ∧ dxn

9.4 Exterior Derivatives

Theorem 9.9 (The Exterior Derivative). For every smooth manifold M , there are unique linear maps

d : Ak(M) −→ Ak+1(M)

defined for each integer k ≥ 0 and satisfying the following conditions:

1. If f is a smooth real-valued function (i.e. a 0-form), then df is the differential of f , defined as

df(X) ≡ Xf

2. If ω ∈ Ak(M) and η ∈ Al(M), then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

3. d ◦ d = 0

The operator d also satisfies the following properties:

1. In every smooth coordinate chart, d is given by

d

(∑
J

ωJdx
J

)
=

∑
J

dωJ ∧ dxJ

2. d is local. That is, if ω = ω′ on an open set U ⊂M , then dω = dω′ on U .

3. d commutes with restriction. That is, if U ⊂M is any open set, then

d(ω|U ) = (dω)
∣∣
U

Lemma 9.10 (Naturality of the Exterior Derivative). If G : M −→ N is a smooth map, then the
pullback map

G∗ : Ak(N) −→ Ak(M)

commutes with d. That is, for all ω ∈ Ak(N),

G∗(dω) = d(G∗ω)
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10 Orientations

10.1 Orientations on Vector Spaces

In order to properly define the integration of k-forms in a way that is consistent with signed volume of
a parallelopiped, we must properly define the orientation of certain vector spaces.
We could try this using a certain choice of basis. For example, given a choice of ordered basis vectors
{f1, ..., fn}, we can define the orientation of the vector space spanned by these vectors by computing
the sign of the determinant of the matrix with column vectors fi. However, since abstract vector spaces
have no canonical vector spaces, we cannot say which vector spaces have the ”positive orientation” or
is ”right-handed.” However, we can compare whether two bases have a consistent orientation. Thus, we
are led to the following definition.

Definition 10.1. Let V be a vector space of dimension n ≥ 1. We say that two ordered bases

(E1, ..., En)

(Ẽ1, ..., Ẽn)

are consistently oriented if the transition matrix (Bji ), defined by the equation

Ei = Bji Ẽj

has positive determinant.

Definition 10.2. Given vector space V with dimV ≥ 1, the orientation of V is an equivalence class of
ordered bases. If (E1, ..., En) is any ordered basis for V , we denote that orientation that it determines
by (the equivalence class)

[E1, ..., En]

A vector space together with a choice is called an oriented vector space. If V is oriented, then any ordered
basis (E1, ..., En) that is in the given orientation is said to be oriented or positively oriented. Any basis
that is not in the given orientation is said to be negatively oriented.
For the special case of a 0-dimensional vector space V , we define an orientation of V to be simply a
choice of one of the number ±1.

Example 10.1. The orientation [e1, ..., en] of Rn determined by the standard basis is called the standard
orientation. The standard orientation for

1. R is the unit vector pointing to the right.

2. R2 is one which the rotation from the first vector to the second is counterclockwise.

3. R3 is one that has a right-handed orientation.

There is an important connection between orientation and alternating tensors, expressed in the following
lemma.

Lemma 10.1. Let V be a vector space of dimension ≥ 1, and let Ω is a nonzero element of Λn(V ). The
set of ordered bases (E1, ..., En) such that Ω(E1, ..., En) > 0 is an orientation of V .

Definition 10.3. if v is an oriented vector space and Ω is an n-covector that determines the orientation
of V as described in the previous lemma, it is said that Ω is an oriented (or positively oriented) n-covector.

Example 10.2. The n-covector e1 ∧ ... ∧ en is positively oriented for the standard orientation on Rn.

10.2 Orientations on Manifolds

Definition 10.4. LetM be a smooth manifold with a given pointwise orientation. It is said that a local
frame (Ei) for M is (positively) oriented if (E1

∣∣
p
, ..., En

∣∣
p
) is a positively oriented basis for TpM at each

point p ∈M . A negatively oriented manifold is defined analogously.

Definition 10.5. A pointwise orientation is said to be continuous if every point of M is in the domain
of an oriented local frame. An orientation of M is a continuous pointwise orientation. An oriented
manifold is a smooth manifold together with a choice of orientation. It is said that M is orientable if
there exists an orientation for it, and nonorientable if there isn’t.
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