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A few notes I have taken from reading Hrbacek and Jech’s Introduction to Set Theory, plus some other
supplementary resources.

Consider the set of all students at Duke University, or the set of all stars in our universe, or the set of all
pink elephants. We can construct all kinds of sets, but they are not real objects of the world and are only
created by our minds. When we say the number 2, can we see “2” with our own eyes, or hold “2” on the
palm of our hand? No. They are merely an abstraction of our minds, and so care must be taken to treat
them as abstractions. Often, we may rely on our intuition in the real world to talk about sets, but as we
will find our shortly, this may not work. Therefore, we will go with Cantor’s definition of a set, created in
his naive attempt to construct set theory at the end of the 19th century.

Unlike axiomatic set theories, which are defined using formal logic, naive set theory was defined informally
at the end of the 19th century by Cantor, in natural language (like English).

Definition 0.1 (Cantor)

A set is a collection into a whole of definite (i.e. well-defined), distinct objects of our intuition or our
thought. These objects are called elements.

Okay, sounds simple enough, but there are a lot of holes in this definition. It all stems from the lack
of specification of what “well-defined” means. According to Cantor, we can construct a set by specifying a
defined property P and talking about the set of all elements x satisfying P (x), denoted in set-builder notation
as

{x | P (x)} (1)

But the property P cannot by itself guarantee the consistency and unambiguity of what exactly constitutes
and what does not constitute a set, and therefore this is not a formal definition. Since such a formalism is
absent, we cannot have any sets to work with in the first place.

Perhaps this is all a bit too philosophical. If I talk about the set {1, 2, 3} or the set of all prime numbers
under 100, this is pretty concrete and well-defined, and there is really no problem at first glance. This is
to be expected, since Cantor relied on natural language (like English) to construct his naive set theory. It
describes the aspects of mathematical sets using words (e.g. satisfying, such as, ...) and sufficed for the
everyday use of set theory in mathematics back then. Such issues did not arise until Russell formulated such
a “well-defined” set that lead to a paradox.

Definition 0.2 (Russell Set)

Let R = {x | x ̸∈ x}, i.e. the set of all sets that do not contain themselves as elements. This is called
the Russell set.

While the property may sound a bit confusing, this is still well-defined since for any set, we can check this
property to be either true or false.

Example 0.1 (Russell Property is Verifiable)

Let’s consider some examples of sets.
1. {1} ∈ R since it does not contain {1} as an element.
2. The set of everythinga is not in R since it contains itself (as an element of everything).
aeverything is indeed well-defined... or is it?

However, this leads to a paradox that violates the law of the excluded middle.
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Theorem 0.1 (Russell’s Paradox)

The Russell set exists and does not exist.

Proof.

We will determine if R is an element of itself.
1. If R ∈ R, then by it does contain itself, so it does not satisfy the property and R ̸∈ R.
2. If R ̸∈ R, then it satisfies the property, so R ∈ R.

Therefore, it is both the case that x ∈ R and x ̸∈ R, which contradicts the membership definition.
Therefore, R is both a set from set-builder construction and not a set due to the membership definition.

There are other paradoxes out there, which are similar to Russell’s paradox.

Corollary 0.1 (Universal Set)

The set of all sets E, called the universal sets, both exists and does not exist. Furthermore, the set
of all singleton sets does not exist.

Proof.

We can define U ′ = {x | {} = {}}, which defines a set. Then the property P that {} = {} is always
true, and U ′ would contain everything, and by the definition of equality U = U ′. Now since the
Russell set R is both a set and not a set from Russell’s paradox, we have R ∈ U and R ̸∈ U , which
means that U cannot exist. Therefore U does not exist.
Alternatively, we can prove it as such. E exists according to naive set theory due to set builder
notation. Then by definition E ∈ E. Now we can construct Russell’s paradox from this by defining

{x ∈ E | x ̸∈ x} (2)

To prove the second claim, note that if such a set S existed, then ∪S = E, which leads to the same
paradox.

So the sufficiency a well-defined property to be able to construct a set is too powerful in that we can construct
any set we want. This leads us to construct the Russell set, which opens up a lot of paradoxes. This ability
to take a set of all objects satisfying such an arbitrary property is known as the schema of general
comphrension, and is the major flaw of naive set theory. Therefore, we would like to restrict the notion
of well-defined in a way, which leads to axiomatic set theories. Attempting to achieve this will be done in
axiomatic set theory, like ZFC.
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1 Sets
So with these paradoxes in mind, we would like to construct an axiomatic formulation of sets. My take is
to think that sets “exist” out there somewhere in the universe, and our job is to find them. Cantor with
his naive set theory believed that for every meaningful property of things there is a set whose members are
exactly all the things with that property. Russell shows this this cannot be the case. Nevertheless, some
sets exist, and we have intuitive experience thinking about finite sets. Therefore, the axioms of set theory
are a limited list of assumptions that we hope are true about that actually existing universe of sets. As
long as they are true, then whatever we conclude from them by valid reasoning steps must also be true.1
Hence we have the following definition, which first requires the familiar property of acting like a collection
of something, and then obeys the axioms we set.

Definition 1.1 (Set)

A set X is anything
1. that has the innate property of containing elements, and
2. obeys the axioms of ZFC.

Let’s first talk about the language, where they are defined formally using the axioms in the next subsection.
From first-order logic, note that we have the following symbols in our alphabet LZFC.

1. The logical connectives ¬, ∨, ∧.

2. The quantifier symbols ∃,∀

3. Brackets ().

To represent sets, we also need symbols, and the membership property requires us to define a symbol for
that too.

1. A countably infinite amount of variables used for representing sets.

2. The set membership symbol ∈. In fact, when we say x ∈ A, this is a proposition formed from the
predicate P (x).

This is what we have to work with so far. We will construct the rest of the symbols (=,⊂,⊃,∪,∩) from the
axioms.

Now we state the axioms, which is the foundation of ZF set theory. A question one might ask is: how do we
even know for sure that these axioms aren’t contradictory? The answer is that we don’t, and that is why
we take them as axioms rather than provable theorems. Fortunately, from the formulation in the early 20th
century up until now, no contradictions have been found, and if there is one, then it would be very bad news
for us.

As obvious as the axioms may seem, none of them can be rigorously proven since we need to start from a
set of assumptions and some principles of logic to use some deductive reasoning.

Axiom 1 (Axiom of Existence)

There exists a set which has no elements.

Definition 1.2 (Empty Set)

The empty set is denoted ∅.a

aNote that this is not determined to be unique... yet!

1This idea is called naive Platonism.
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Why do we need to axiomize what seems to be such an obvious thing? The rest of the axioms that follow
talk about what we can or cannot do with sets, but this whole theory would be useless if we didn’t know if
there exists any set that obeys the following axioms! Therefore, we would like to assert the existence of at
least one set, namely the empty set. This asserts that our universe of discourse is not void, and so it gives
us a starting set to work with, which we can build on to create more sets.

1.1 Axiom of Extensionality
The empty set is simply described as the set containing nothing, but it can be constructed in various ways.
I can describe it as the set of humans that have negative age, or the set of married bachelors. All examples
of this kind describe one and the same set ∅, but we cannot yet prove this. This is why we need our second
axiom, which states that a set is uniquely characterized simply by its elements.

Axiom 2 (Axiom of Extensionality)

Two sets are equal (are the same set) if they have the same elements.

∀A∀B
[
∀x(x ∈ A ⇐⇒ x ∈ B) ⇐⇒ A = B

]
(3)

Definition 1.3 (Equality)

This axiom allows us to define the equality operator =, which we now add to our alphabet.

Theorem 1.1 (Uniqueness of Empty Set)

The empty set is unique.

Proof.

Assume that A and B are sets with no elements. Then it is vacuously true that every element of A
is an element of B, and vice versa. Therefore by the axiom of extensionality A = B.

This next theorem now shows that every set is uniquely characterized by its distinct elements, which aligns
with our established notion that sets don’t contain repeated elements.

Theorem 1.2 (Sets Don’t Contain Repeated Elements)

Sets are unique up to distinct elements. That is, given 2 sets A,B,

∀x(x ∈ A ⇐⇒ x ∈ B) =⇒ A = B (4)

As an example, we have the following:

{1, 1, 2} = {1, 2} = {1, 1, 2, 2} (5)

Though note that we don’t even know if any of the sets above even exist with our axioms so far!

1.2 Axiom of Restricted Comprehension
The axiom assists us in regulating which sets are viable and which are not, preventing Russell’s paradox.
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Axiom 3 (Axiom Schema of Restricted Comprehension)

Given P a formula with P (x) specifying a property of x, for any set A, there exists a set B such that
x ∈ B if and only if x ∈ A and P (x). That is, if A exists, then the set, written in set-builder notation,

B = {x ∈ A | P (x)} (6)

exists.a

aNote that this axiom does not allow the construction of entities of the more general form {x | P (x)}. This restriction
is obviously needed to avoid Russell’s paradox, hence the name restricted comprehension.

Lemma 1.1 (Uniqueness of Restricted Commprehension)

The set B = {x ∈ A | P (x)} is unique, and therefore it makes sense to treat it as a unique object.

The axiom of specification allows us to denote subsets.

Definition 1.4 (Subset, Superset)

Notationally, if A is a subset of B, then we write A ⊂ B. Similarly, we say A is a superset of B,
written A ⊃ B, if B ⊂ A.

We can extend this to the restriction of more sets.

Theorem 1.3 (Existence of Binary Intersection)

That is, if A,B are sets, then there is a set C such that x ∈ C if and only if x ∈ A and x ∈ B. This
allows us to define intersection as

A ∩B := {x ∈ A | x ∈ B} (7)

Proof.

We can extend this proof to define the intersection of a set of sets.

Definition 1.5 (Intersection)

Given a nonemptya set of sets S, the intersection ∩S is the unique set satisfying x ∈ ∩S if and only
if x ∈ A for all A ∈ S. In set builder notation, we can write⋂

S := {x ∈ A | ∀B(B ∈ S =⇒ x ∈ B)} (8)

We can also expand our notation by defining the following.
1. Just another way of writing is

∪S =
⋂
A∈S

A (9)

2. By the axiom of extensionality, we can define

A1 ∩ . . . ∩An = ∩{A1, . . . , An} (10)
a∩∅ is not defined since every x belongs to all A ∈ ∅ vacuously, and so such a set would be the universal set, which

does not exist.
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Definition 1.6 (Disjoint Sets)

Two sets A and B are disjoint if A ∩B = ∅.

Unfortunately, the union cannot be expressed in this specification schema, and we need a separate axiom for
this.

Definition 1.7 (Set Minus)

We can however define set minus. Given sets A,B

A \B := {x ∈ A | x ̸∈ B} (11)

Definition 1.8 (Set Complement)

Given B and a subset A ⊂ B, the complement of A with respect to B is

Ac := {x ∈ B | x ̸∈ A} = B \A (12)

Definition 1.9 (Symmetric Difference)

Given sets A,B, the symmetric difference between the two sets is defined

A△B := (A \B) ∪ (B \A) (13)

1.3 Axiom of Pairing
Okay this is all great, but the only set that we have claimed the existence of is ∅, and the schema of restricted
comprehension is useless in constructing any new sets since

{x ∈ ∅ | P (x)} = ∅ (14)

for any property P . Starting from now, we provide more helpful axioms to construct new sets.

Axiom 4 (Axiom of Pairing)

If A,B are sets, then there exists a set which contains A and B as elements.a

∀A∀B∃C((A ∈ C) ∧ (B ∈ C)) (15)

This allows us to construct sets from old ones.
aFor example, if A = {1, 2} and B = {2, 3},then {{1, 2}, {2, 3}} exists.

Note that clearly, this set is not necessarily unique, since there can be other elements in C in addition to A
and B.

Theorem 1.4 (Nested Sets)

By the axiom of pairing, if we have a set X, then {X} is also a set, since we can set A = B = X
which asserts the existence of {X,X} = {X}.
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Example 1.1 (More Sets)

Now we have unlocked our first sets that are not the empty set! Consider the following.
1. If A = B = ∅, then by the axiom of pairing we can get C = {∅, ∅}, which is equal to {∅} by the

axiom of extensionality.
2. Now we let A = ∅, B = {∅}, and so C = {A,B} = {∅, {∅}}.

1.4 Axiom of Union

Axiom 5 (Axiom of Union)

For any set of sets S, there exists a set U such that x ∈ U if and only if x ∈ A for some A ∈ S.

∀F∃U∀X∀x
[
(x ∈ X ∧X ∈ F) =⇒ x ∈ U

]
(16)

Lemma 1.2 (Union is Unique)

The union U is unique.

Proof.

Again use the axiom of extensionality.

Definition 1.10 (Union)

The set U , is called the union of sets A ∈ S, denoted ∪S. We can also expand our notation by
defining the following.

1. Just another way of writing is
∪S =

⋃
A∈S

A (17)

2. By the axiom of extensionality, we can define

A1 ∪ . . . ∪An = ∪{A1, . . . , An} (18)

Sometimes, it is formulated alternatively as follows: For any set of sets S, there is a set U containing every
element that is a member of S. This does not necessarily mean that U is unique, and so ∪S is not defined
yet. However, we can define it by using the axiom of restricted comprehension and defining

∪S := {x ∈ A | ∃X(x ∈ X ∧X ∈ S)} (19)

Example 1.2 ()

{{∅}} ∪ {∅, {∅}} = {∅, {∅}} (20)

1.5 Rules of Set Operations
Let’s first talk about rules following the union, intersection, and set minus operators.
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Theorem 1.5 (Commutativity)

Union and intersection are commutative.

A ∪B = B ∪A (21)
A ∩B = B ∩A (22)

Theorem 1.6 (Associativity)

Union and intersection are associative.

(A ∪B) ∪ C = A ∪ (B ∪ C) (23)
(A ∩B) ∩ C = A ∩ (B ∩ C) (24)

Theorem 1.7 (Distributivity)

Given sets A,B,C,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (25)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (26)

Proof.

Listed.
1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(a) A∩ (B ∪C) ⊂ (A∩B)∪ (A∩C). Assume x ∈ A∩ (B ∪C). Then x ∈ A and x ∈ B ∪C. If
x ∈ B, then x ∈ A ∩B. If x ∈ C, then x ∈ A ∩ C. Therefore, since x ∈ B ∪ C, it must be
the case that x ∈ A ∩B or x ∈ A ∩ C, which by definition implies x ∈ (A ∩B) ∪ (A ∩ C).

(b) A ∩ (B ∪ C) ⊃ (A ∩B) ∪ (A ∩ C). Assume that x ∈ (A ∩B) ∪ (A ∩ C). Then WLOG let
x ∈ A ∩B. Then x ∈ A and x ∈ B ⊂ (B ∪ C), so by definition x ∈ A ∩ (B ∪ C).

2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(a) A ∪ (B ∩C) ⊂ (A ∪B) ∩ (A ∪C). Assume x ∈ A ∪ (B ∩C). Then x ∈ A or x ∈ B ∩C. If

x ∈ A, then since A ⊂ (A∪B) and A ⊂ (A∪C), we have x ∈ (A∪B) and x ∈ (A∪C), which
by definition means x ∈ (A∪B)∩ (A∪C). If x ̸∈ A, then x ∈ B∩C =⇒ x ∈ B ⊂ (A∪B)
and x ∈ C ⊂ (A ∪ C), and so x ∈ (A ∪B) ∩ (A ∪ C).

(b) A∪ (B∩C) ⊃ (A∪B)∩ (A∪C). Assume x ∈ (A∪B)∩ (A∪C). Then x ∈ A∪B. If x ∈ A,
then since A ⊂ A ∪ (B ∩ C), x ∈ A ∪ (B ∩ C). If x ̸∈ A, then x ∈ B. Since x ∈ A ∪ C,
x ∈ C also. Therefore by definition x ∈ (B ∩ C) ⊂ A ∪ (B ∩ C) =⇒ x ∈ A ∪ (B ∩ C).

Theorem 1.8 (DeMorgan’s Laws)

If X is a set and A,B ⊂ X, then

X \ (A ∪B) = (X \A) ∩ (X \B) (27)
X \ (A ∩B) = (X \A) ∪ (X \B) (28)

Proof.

Listed.
1. X \ (A ∪B) = (A \A) ∩ (X \B).

(a) X \ (A ∪B) ⊂ (A \A) ∩ (X \B). Assume x ∈ X \ (A ∪B) ⇐⇒ x ∈ X and x ̸∈ (A ∪B).
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Since x ̸∈ (A ∪ B, x ̸∈ A and x ̸∈ B. However, x ∈ X, so x ̸∈ A =⇒ x ∈ X \ A. Same
goes for B, and so x ∈ (X \A) ∩ (X \B).

(b) X\(A∪B) ⊃ (A\A)∩(X\B). Assume x ∈ (X\A)∩(X\B). Then x ∈ X\A ⇐⇒ X ∈ X
and x ̸∈ A, and x ∈ X \ B ⇐⇒ x ∈ X and x ̸∈ B. Since x ̸∈ A and x ̸∈ B, x ̸∈ A ∪ B.
Combined with the fact that x ∈ X, we have x ∈ X \ (A ∪B).

2. X \ (A ∩B) = (A \A) ∪ (X \B).
(a) X \ (A∩B) ⊂ (A \A)∪ (X \B). Let x ∈ X \ (A∩B). Then x ∈ X and x ̸∈ A∩B. Since

x ̸∈ A ∩ B, it must be the case that at least x ̸∈ A or x ̸∈ B. WLOG let x ̸∈ A. Then
x ∈ X and x ̸∈ A =⇒ x ∈ (X \A) ⊂ (X\) ∪ (X \B) =⇒ x ∈ (X \A) ∪ (X \B).

(b) X \ (A ∩ B) ⊃ (A \ A) ∪ (X \ B). WLOG let x ∈ (X \ A). Then x ∈ X and x ̸∈ A,
and x ̸∈ A =⇒ x ̸∈ (A ∩ B) ⊂ A (contrapositive is trivial). Therefore, x ∈ X and
x ̸∈ (A ∩B) ⇐⇒ x ∈ X \ (A ∩B).

Theorem 1.9 (Properties of Set Difference)

We have the following.
1. A ∩ (B \ C) = (A ∩B) \ C
2. A \B = ∅ if and only if A ⊂ B.

Proof.

Theorem 1.10 (Properties of Symmetric Difference)

We have the following.
1. A△A = ∅
2. A△B = B△A
3. (A△B)△C = A△(B△C)
4. A△B = (A ∪B) \ (A ∩B)

Proof.

1.6 Axiom of Regularity

Axiom 6 (Axiom of Regularity)

Every non-empty set A contains a member x such that A and x are disjoint sets.

∀A
[
A ̸= ∅ =⇒ ∃x(x ∈ A ∧A ∩ x = ∅)

]
(29)

This, along with the axioms of pairing and union, implies that no set is an element of itself and that
every set has an ordinal rank.
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2 Correspondences

2.1 Axiom of Power Set
Now that we have constructed the Von Neumann ordinals, we are allowed to do indexing.

Axiom 7 (Axiom of Power Set)

The axiom of power set states that for any set A, there is a set B that contains every subset of A.

∀A∃B∀S(S ⊂ A =⇒ S ∈ B) (30)

The axiom of schema of restricted comprehension is then used to define the power set as the unique
subset of such B containing the subset of A exactly.

P(A) = 2A = {X ∈ B | X ⊂ A} (31)

The existence of the power set allows us to define subfamilies of subsets of a given set, namely things such as
the topology or σ-algebra. But a perhaps more important consequence is the ability to construct Cartesian
products of sets. So far, a set of say {a, b} is an unordered pair since by the axiom of extensionality,
{a, b} = {b, a}. We would like to consider some way to order the elements into (a, b), and this ordered pair
(a, b) must be a set. There are many ways to do this, but the most established is to take (a, b) as an element
of the power set of the power set of the union of sets.

Definition 2.1 (Cartesian Product)

The power set axiom allows for the definition of the Cartesian product of two sets A and B. Note
that if a ∈ A, b ∈ B, then by the axiom of union a, b ∈ A ∪ B and by the axiom of power set
{a}, {a, b} ∈ P(A ∪B). Therefore, using the axiom of power set again we can define

(a, b) := {{a}, {a, b}} ∈ P(P(A ∪B)) (32)

and the Cartesian product is defined

A×B := {(a, b) ∈ P(P(A ∪B)) | a ∈ A ∧ b ∈ B} (33)

which is a valid set by the axiom schema of specification.

Theorem 2.1 ()

(a, b) = (a′, b′) if and only if a = a′ and b = b′.

Proof.

The backwards implication is trivial. For the forward, let us assume that {{a}, {a, b}} =
{{a′}, {a′, b′}}. If a ̸= b, then {a} = {a′} and {a, b} = {a′, b′}. So first a = a′ and then {a, b} = {a, b′}
implies b = b′. If a = b, then {{a}, {a, a}} = {{a}}. So {a} = {a′} and {a} = {a′, b′}, and we get
a = a′ = b′, and so a = a′ and b = b′.

Theorem 2.2 ()

We have
A× (B ∪ C) = (A×B) ∪ (A× C) (34)

From this we can define the Cartesian product of any finite collection of sets recursively. It is indeed the
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case that (X × Y ) × Z is a different set from X × (Y × Z), but as we will see in later functions, we can
define a canonical bijection between them, treating them as equivalent. Furthermore, notice that we have
not defined the Cartesian product of infinite sets yet. We can define them using functions actually.

The definition of Cartesian products allows us to formally define correspondences. The most notable
correspondences are functions, order relations, and equivalence relations.

Definition 2.2 (Correspondence, Relation)

A correspondence, or a binary relation, R on a set A is a subset of A×A. We write aRb if and
only if (a, b) ∈ R.a But not all relations may be meaningful or interesting. Therefore we usually like
to have certain properties on these relations, including but not limited to

1. Reflexive. For all a ∈ A, aRa
2. Symmetric. For all a, b ∈ A, if aRb then bRa
3. Antisymmetric. For all a, b ∈ A, if aRb and bRa then a = b
4. Transitive. For all a, b, c ∈ A, if aRb and bRc then aRc
5. Total. For all a, b ∈ A, either aRb or bRa

aIt is a way of describing precisely which two elements are related to one another.

2.2 Functions
We explore our first—and most universally used—relation.

Definition 2.3 (Function)

Given two sets X,Y , a function f : X → Y is a subset f ⊂ X × Y satisfying the following
1. For all x ∈ X, there exists y ∈ Y s.t. (x, y) ∈ f .a
2. For all x ∈ X and y, y′ ∈ Y , if (x, y) ∈ f and (x, y′) ∈ f , then y = y′.b

The set X is said to be the domain and Y the codomain.

X Y
f

Figure 1: A diagram representing the function f : X → Y .

aThis says that f must be defined for all inputs in X.
bIn other words, f must map one element to exactly one element.

Lemma 2.1 ()

Given functions f, g, f = g if and only if the domains of f and g are equal and f(x) = g(x) for all
x ∈ domain(f).

2.2.1 Sets Mapped Through Functions

Definition 2.4 (Image, Preimage)

Given some f : X → Y and A ⊂ X, the image of A under f is defined

f(A) := {y ∈ Y | ∃x ∈ X(f(x) = y)} (35)

Given B ⊂ Y , the preimage of B under f is defined

f−1(B) := {x ∈ X | f(x) ∈ B} (36)
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Now let’s see how these operations behavior under functions.

Theorem 2.3 (Preservation Under Mapping Back and Forth)

Given f : A → B, with A0, A1 ⊂ A and B0, B1 ⊂ B, the following hold
1. A0 ⊂ f−1(f(A0)), with equality holding if f is injective.
2. f(f−1(B0)) ⊂ B0, with equality holding if f is surjective.

Proof.

Listed.
1. Assume that x ∈ A0. Then f(x) ∈ f(A0). The preimage is

f−1(f(A0)) := {y ∈ A | f(y) ∈ f(A0)} (37)

and x certainly satisfies the condition that f(x) ∈ f(A0). Therefore x ∈ f−1(f(A0)) and so
A0 ⊂ f−1(f(A0)).
Now assume that f is injective. It suffices to prove that f−1(f(A0)) ⊂ A0 since the other
direction is proven for all functions. We prove this by proving the contrapositive, i.e. x ̸∈
A0 =⇒ x ̸∈ f−1(f(A0)). Suppose x ̸∈ A0 =⇒ f(x) ̸∈ f(A0) =⇒ f−1(f(x)) ̸⊂ f−1(f(A0))
by definition of the image and preimage. But note that since f is injective, f−1(f(x)) = x.a
and thus x ̸∈ f−1(f(A0)).

2. We prove this using the contrapositive. Assume that x ̸∈ B0. Then, with abuse of notation,
we have by definition of the preimage and the image f−1(x) ̸⊂ f−1(B0) =⇒ f(f−1(x)) ̸⊂
f(f−1(B0)). But f(f−1(x)) = {x}, since we are just mapping the preimage of x back across to
f . Therefore, x /∈ f(f−1(B0)).
Now assume that f is surjective. It suffices to prove that B0 ⊂ f(f−1(B0)). Assume y ∈ B0.
Since f is surjective, we know that f−1(y) is nonempty in A. We can state f−1(y) ⊂ f−1(B0)

b

which then implies f(f−1(y)) ⊂ f(f−1(B0)).c But f(f−1(y)) = y as mentioned previously, and
so y ∈ f(f−1(B0)).

aMore specifically, if we treat x as the singleton set, f(x) is also a singleton set by definition of a function. Since
f is injective, the preimage of a singleton set must be a singleton set. If it were not, then there exists x, y with x ̸= y
that maps to the same z, which contradicts the definition of injectivity.

bThe formal proof of this is given in Munkres 1.2.2.a.
cAgain formal proof of this given in Munkres 1.2.2.e.

Example 2.1 (Counterexamples)

To see why equality does not hold in general for the two cases, look at the counterexamples below.
1. A0 ̸⊃ f−1(f(A0)).
2. f(f−1(B0)) ̸⊃ B0. Consider X = Y = {0, 1} and f : X → Y defined f(0) = f(1) = 0. Consider

C = Y . We have f−1(C) = f−1(0)∪f−1(1) = X∪∅ = X. Then f(f−1(C)) = f(X) = {0} ≠ C.

Theorem 2.4 (Preservation Under Preimages)

Given f : A → B, with Aα ⊂ A and Bα ⊂ B, f preserves the inclusion, union, intersection, and set
difference under the preimage.

1. Inclusion. B0 ⊂ B1 =⇒ f−1(B0) ⊂ f−1(B1).
2. Union. f−1(∪Bα) = ∪αf

−1(Bα).
3. Intersection. f−1(∩Bα) = ∩αf

−1(Bα).
4. Set Difference. f−1(B0 \B1) = f−1(B0) \ f−1(B1).
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Proof.

Listed.
1. Inclusion. If x ∈ B0, then f−1(x) ⊂ A maps to x by definition. But since x ∈ B0, f−1(x) maps

to a point in B0, and so f−1(x) ⊂ f−1(B0). Since B0 ⊂ B1 by assumption, x ∈ B1, and by the
previous logic but with B0 replaced by B1 we have f−1(x) ⊂ f−1(B1). We have just proved
that f−1(x) ∈ f−1(B0) =⇒ f−1(x) ∈ f−1(B1), and so f−1(B0) ⊂ f−1(B1).

2. Union. We prove bidirectionally.
(a) f−1(B0 ∪ B1) ⊂ f−1(B0) ∪ f−1(B1). Let x ∈ f−1(B0 ∪ B1) which by definition of the

preimage means f(x) ∈ B0 ∪ B1. Therefore f(x) ∈ B0 or B1. Without loss of generality,
let f(x) ∈ B0. Then we have

x ∈ f−1(f(x)) ⊂ f−1(B0) (38)

where the first inclusion comes from [Munkres 1.2.1.a] when treating A0 = {x}, and
the second subset comes from [Munkres 1.2.2.a] when treating B0 = {f(x)}, B1 = B1.
Therefore x ∈ f−1(B0) ⊂ f−1(B0) ∪ f−1(B1).

(b) f−1(B0)∪f−1(B1) ⊂ f−1(B0∪B1). Let x ∈ f−1(B0)∪f−1(B1). Without loss of generality,
let x ∈ f−1(B0) which by definition of the preimage implies f(x) ∈ B0 ⊂ (B0 ∪ B1) =⇒
f(x) ∈ (B0 ∪B1). Therefore, we have

x ∈ f−1(f(x)) ⊂ f−1(B0 ∪B1) (39)

where the inclusion claim comes from [Munkres 1.2.1.a] when treating A0 = {x}, and the
subset claim comes from [Munkres 1.2.2.a] when treating B0 = {f(x)}, B1 = B0 ∪ B1.
Therefore x ∈ f−1(B0 ∪B1).

Therefore, f−1(B0) ∪ f−1(B1) = f−1(B0 ∪B1).
3. Intersection. We prove bidirectionally.

(a) f−1(B0 ∩B1) ⊂ f−1(B0)∩ f−1(B1). Assume x ∈ f−1(B0 ∩B1), which by definition of the
preimage means f(x) ∈ B0 ∩B1. So

f(x) ∈ B0 =⇒ x ∈ f−1(f(x)) ⊂ f−1(B0) (40)

f(x) ∈ B1 =⇒ x ∈ f−1(f(x)) ⊂ f−1(B1) (41)

where the inclusion claim comes from [Munkres 1.2.1.a] when treating A0 = {x}, and the
subset claim comes from [Munkres 1.2.2.a] when treating f(x) as a singleton set. Therefore
x is in both of the preimages and so x ∈ f−1(B0) ∩ f−1(B1).

(b) f−1(B0) ∩ f−1(B1) ⊂ f−1(B0 ∩ B1). Let x ∈ f−1(B0) ∩ f−1(B1). Then by definition of
intersection and preimage,

x ∈ f−1(B0) =⇒ f(x) ∈ B0 (42)

x ∈ f−1(B1) =⇒ f(x) ∈ B1 (43)

and so f(x) ∈ B0 ∩ B1 by definition of intersection. This means by definition of the
preimage that x ∈ f−1(B0 ∩B1).

4. Set Difference. We prove bidirectionally.
(a) f−1(B0 \B1) ⊂ f−1(B0) \ f−1(B1). Let x ∈ f−1(B0 \B1) which by definition of preimage

means f(x) ∈ B|0 \B1. This implies two things. First,

f(x) ∈ B0 =⇒ x ∈ f−1(f(x)) ⊂ f−1(B0) (44)

where the inclusion comes from [Munkres 1.2.1.a] when treating A0 = {x} as the single set,
and the subset claim comes from [Munkres 1.2.2.a] stating that inclusions are preserved
under the preimage operator. Secondly, we claim that

f(x) ̸∈ B1 =⇒ x ̸∈ f−1(B1) (45)

since if x ∈ f−1(B1), then f(x) ∈ B1 by definition of the preimage.
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(b) f−1(B0) \ f−1(B1) ⊂ f−1(B0 \B1). Let x ∈ f−1(B0) \ f−1(B1). Then the following holds

x ∈ f−1(B0) =⇒ f(x) ∈ B0 (46)

x ̸∈ f−1(B1) =⇒ f(x) ̸∈ B1 (47)

from the definition of the preimage and the contrapositive of its implication. Therefore
f(x) ∈ B0 \B1 which by definition of the preimage x ∈ f−1(B0 \B1).

Theorem 2.5 (Preservation Under Images)

Given f : A → B, with Aα ⊂ A and Bα ⊂ B, f preserves the inclusion and union under the image,
but inclusion properties for the intersection and set difference hold.

1. Inclusion. A0 ⊂ A1 =⇒ f(A0) ⊂ f(A1).
2. Union. f(∪αAα) = ∪αf(Aα).
3. Intersection. f(∩αAα) ⊂ ∩αf(Aα), and equality holds if f is injective.
4. Set Difference. f(A0 \A1) ⊃ f(A0) \ f(A1), and equality holds if f is injective.

Proof.

Listed.
1. Inclusion. Let x ∈ A0. Then by definition of the image f(x) ∈ f(A0). Since A0 ⊂ A1, then

x ∈ A1 and it immediately follows that f(x) ∈ f(A1). Therefore f(A0) ⊂ f(A1).
2. Union. We prove bidirectionally.

(a) f(A0 ∪ A1) ⊂ f(A0) ∪ f(A1). Let y ∈ f(A0 ∪ A1). Then by definition there exists some
x ∈ A0 ∪ A1 s.t. f(x) = y. WLOG let x ∈ A0. Then by definition y = f(x) ∈ f(A0) ⊂
f(A0) ∪ f(A1).

(b) f(A0) ∪ f(A1) ⊂ f(A0 ∪ A1). Let y ∈ f(A0) ∪ f(A1). WLOG y ∈ f(A0), and there
exists some x ∈ A0 s.t. f(x) = y. Since x ∈ A0, x ∈ A0 ∪ A1, and by definition
y = f(x) = f(A0) ∪ f(A1).

3. Intersection. Assume that y ∈ f(A0 ∩ A1). Then by definition there exists some x ∈ A0 ∩ A1

s.t. f(x) = y. So we have

x ∈ A0 =⇒ f(x) ∈ f(A0) (48)
x ∈ A1 =⇒ f(x) ∈ f(A1) (49)

and therefore y = f(x) ∈ f(A0) ∩ f(A1).
To prove equality, it suffices to show that f(A0)∩ f(A1) ⊂ f(A0 ∩A1) if f is injective. Assume
that y ∈ f(A0) ∩ f(A1). Then y ∈ f(A0), and so there exists an x ∈ A0 s.t. y = f(x) ∈ f(A0).
By the same logic there exists an x′ ∈ A1 s.t. y = f(x′) ∈ f(A1). But since f is injective, this
implies that x = x′. So x ∈ A0 ∩A1, and so y = f(x) ∈ f(A0 ∩A1).

4. Set Difference. Assume that y ∈ f(A0) \ f(A1). Since y ∈ f(A0), there exists some x ∈ A0 s.t.
y = f(x). Since y ̸∈ f(A1), there exists no x′ ∈ A1 s.t. y = f(x′). Therefore, x ∈ A0 \ A1 =⇒
y = f(x) ∈ f(A0 \A1).
To prove equality, it suffices to show that f(A0 \A1) ⊂ f(A0) \ f(A1) if f is injective. Assume
that y ∈ f(A0 \ A1). Then there exists some x ∈ A0 \ A1 s.t. f(x) = y. We claim that x
is unique since if there were two x, x′, then f(x) = f(x′) with x ̸= x′, which means f is not
injective. We see that x ∈ A0 =⇒ y = f(x) ∈ f(A0), and x ̸∈ A1 =⇒ y = f(x) ̸∈ f(A1).
Therefore, x ∈ f(A0) \ f(A1).
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Example 2.2 (Intersection Not Necessarily Preserved)

Note that intersection is not necessarily preserved. To see why, look at the counterexample. Consider
A = {0, 1}, B = {1, 2}, and define

f(0) = f(2) = 0, f(1) = 1 (50)

Then f(A) = f(B) = {0, 1} =⇒ f(A) ∩ f(B) = {0, 1}. On the other hand, we have A ∩ B =
{1} =⇒ f(A ∩B) = {1}.

2.2.2 Composite Functions

Definition 2.5 (Composition)

Given functions f : X → Y , g : Y → Z, we define the composite, denoted g ◦ f or g(f(·)), of f and
g as the subset

g ◦ f := {(x, z) ∈ X × Z | ∃y ∈ Y (f(x) = y ∧ f(y) = z)} (51)

Theorem 2.6 (Compositions)

A composite is a function.

X Y

Z

f

g◦f
g

Figure 2: Commutative diagram representing a composition of functions.

Proof.

Using the definition above, we prove the two properties.
1. For all x ∈ X, there exists y ∈ Y s.t. (x, y) ∈ f . Similarly, for all y ∈ Y , there exists z ∈ Z s.t.

(y, z) ∈ g. Therefore, for all x ∈ X, there exists a y ∈ Y , which follows that there exists also a
z ∈ Z. Therefore g ◦ f is defined for all inputs in X.

2. For all x ∈ X and z, z′ ∈ Z, say that (x, z), (x, z′) ∈ g ◦ f . Then by definition of composition
there exists a y, y′ ∈ Y s.t. f(x) = y, f(y) = z and f(x) = y′, f(y′) = z′. Since f is a function,
y = y′. Since g is a function, y = y′ =⇒ z = z′. Therefore g ◦ f is a function.

For the computer science students, note that a function behaves precisely like functional dependencies in a
relational database. A composition represents a natural join.

Theorem 2.7 (Associativity)

Composition is associative. That is, consider f : Y → Z, g : X → Y, h : W → X functions. Then

(f ◦ g) ◦ h = f ◦ (g ◦ h) (52)

Therefore, we write this as
f ◦ g ◦ h (53)
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X Y

W Z

g

g◦h
hf

g◦f

Figure 3

Proof.

Consider any w ∈ W , and let us label x = h(w), y = g(x), z = f(y), where x, y, z must be uniquely
determined by w since it is a function. Then,

((f ◦ g) ◦ h)(w) = (f ◦ g)(h(w)) = (f ◦ g)(x) = z (54)
(f ◦ (g ◦ h))(w) = f((g ◦ h)(w)) = f(y) = z (55)

and they coincide for all w ∈ W .

If we are familiar with algebra, this gives the set of functions {f : X → X} the structure of a monoid under
composition. We can also talk about commutativity.

Definition 2.6 (Commutativity)

Two functions f, g : X → X are said to be commute if

f ◦ g = g ◦ f (56)

X X

X X

f

g g

f

Figure 4: Commutative diagram representing commuting functions f, g.

Theorem 2.8 (Composition)

Let f : X → Y and g : Y → Z.
1. f injective and g injective =⇒ g ◦ f injective.
2. f surjective and g surjective =⇒ g ◦ f surjective.
3. f bijective and g bijective =⇒ g ◦ f bijective.

2.2.3 Injective, Surjective, Bijective Functions

Definition 2.7 (Injectivity, Surjectivity, Bijectivity)

A function f : X → Y is said to be
1. injective if ∀x ∈ X,∀x′ ∈ X

(
f(x) = f(x′) =⇒ x = x′).

2. surjective if ∀y ∈ Y ∃x ∈ X(y = f(x)).
3. bijective if it is injective and surjective.
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Definition 2.8 (Inverse Function)

If a function f : X → Y is bijective, then there exists an inverse function f−1 : Y → X satisfying

∀x ∈ X
[
f(f−1(x)) = f−1(f(x)) = x

]
(57)

Definition 2.9 (Restriction, Extension)

If f : X → Y and X0 ⊂ X, we define the restriction of f to X0 to be the function mapping to Y
whose rule is

f |X0
:= {(x, f(x)) ∈ fx ∈ X0} (58)

Letting g : X0 → Y , any function f : X ⊃ X0 → Y satisfying f(x) = g(x) for all x ∈ X0 is said to be
an extension of g to X.

Theorem 2.9 (Injectivity/Surjectivity)

Let f : X → Y , g : Y → Z, and h = g ◦ f . The following hold:
1. h injective =⇒ f injective.
2. h surjective =⇒ g surjective.
3. h bijective =⇒ f injective and g bijective.

Corollary 2.1 (Bijection Equals Existence of Inverse)

f : X → Y has a inverse function f−1 : B → A iff it is bijective.

Corollary 2.2 (Decomposition)

Any function h : X → Y can be decomposed to the form h = g ◦ f , where f is injective and g is
surjective.

Proof.

Given X, let us define an equivalence class where for any x, y ∈ X, x ∼ y iff f(x) = f(y). Call this
quotient space X/ ∼. Then we can define the mappings.

1. ι : X → X/ ∼ which maps each element to its equivalence class. ι(x) = [x]
2. f ′ : X/ ∼→ Y which maps each class to the element of Y that it maps to. f ′([x]) = f(x).

ι is surjective since for every [x] ∈ X/ ∼, there exists at least one element x ∈ X that maps to it. f ′

is injective since have squished all the points x that map to the same y into a single class [x].

X Y

X/ ∼

f

ι
f ′

Figure 5: Decomposition of f into surjective ι and injective f ′.

Theorem 2.10 (Inverse of Inverses)

If f is bijective, then f = (f−1)−1.
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Theorem 2.11 (Inverse of Compositions)

If f, g are both bijective, then
(f ◦ g)−1 = g−1 ◦ f−1 (59)

Theorem 2.12 (Finite Set Mappings)

Suppose X and Y are finite sets, each with n elements, and f : X → Y . If f is injective or bijective,
then f is bijective.

2.2.4 Cartesian Products as Functions

Remember that we have used the power set to construct the binary Cartesian product of sets. Now we
extend this to arbitrary Cartesian products using functions.

Lemma 2.2 ()

Let A and B be sets. Then the set of all functions f : A → B is denoted BA. We claim that this set
exists.

Proof.

Definition 2.10 (Cartesian Product)

Let I be some set (used for indexing) and S = {Si}i∈I be an indexed set of sets. Then we define the
Cartesian product of Si’s as∏

S =
∏
i∈I

Si := {f ∈ (∪S)I | f(i) ∈ Si ∀i ∈ I} (60)

Note that we need the property since we want f(i) to map specifically into Si.

With this more general construction, we can pretty much forget about the previous construction of binary
Cartesian products.

2.3 Order Relations

Definition 2.11 (Partial Order)

An order is a relation R, usually denoted ≤, that satisfies the following properties.
1. Reflexive. For all a ∈ A, a ≤ a
2. Antisymmetric. For all a, b ∈ A, if a ≤ b and b ≤ a then a = b
3. Transitive. For all a, b, c ∈ A, if a ≤ b and b ≤ c then a ≤ c

Note that when we say x ≤ y, this means "x is related to y" (but does not necessarily mean that y
is related to x), or "x is less than or equal to y." A set X with a partial order is called a partially
ordered set.

Example 2.3 (Partially Ordered Sets)

We list some examples of partially ordered sets.
1. The real numbers ordered by the standard "less-than-or-equal" relation ≤ (totally ordered set
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as well).
2. The set of subsets of a given set X ordered by inclusion. That is, the power set 2X with the

partial order ⊆ is partially ordered.
3. The set of natural numbers equipped with the relation of divisibility.
4. The set of subspaces of a vector space ordered by inclusion.
5. For a partially ordered set P , the sequence space containing all sequences of elements from P ,

where sequence a precedes sequence b if every item in a precedes the corresponding item in b.

Definition 2.12 (Comparable Elements)

Given elements a, b of partially ordered set A, if either a ≤ b or b ≤ a, then a and b are comparable.
Otherwise, they are incomparable.

While partial ordering is nice, we would often want a stricter structure so that the order “encompasses” the
whole set, i.e. every element is comparable. This property is sometimes known as totality.

Definition 2.13 (Total Order)

A partial order in which every pair of elements is comparable is called a total order, or linear
order. Note that from this ≤ relation, we can similarly define

1. a < b ⇐⇒ (a ≤ b) ∧ (a ̸= b).
2. a ≥ b ⇐⇒ ¬(a < b).
3. a > b ⇐⇒ ¬(a ≤ b).

Almost always when we talk about ordered sets, we mean totally ordered sets. So we will work with them
by default and define following terms according to totally ordered sets. For convenience of notation, we also
write a < x < b ⇐⇒ (a < x) ∧ (x < b).

Definition 2.14 (Interval)

Given a totally ordered set X, we denote the intervals as
1. (a, b) := {x ∈ X | a < x < b}
2. [a, b) := {x ∈ X | a ≤ x < b}
3. (a, b] := {x ∈ X | a < x ≤ b}
4. [a, b] := {x ∈ X | a ≤ x ≤ b}

Definition 2.15 (Extrema)

Given a totally ordered set X,
1. x ∈ X is a maximum X if y ≤ x for all y ∈ X.
2. x ∈ X is a minimum X if x ≤ y for all y ∈ X.

Definition 2.16 (Bounds)

Given a totally ordered set X and some subset S ⊂ X.
1. x ∈ X is an upper bound of S if x ≥ y for all y ∈ S.
2. x ∈ X is a lower bound of S if x ≤ y for all y ∈ S.
3. x ∈ X is a supremum, or least upper bound, of S if x is the minimum of the set of all

upper bounds of S.
4. x ∈ X is a infimum, or greatest lower bound, of S if x is the maximum of the set of all

lower bounds of S.
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Note that we have defined max/min separately from the concept of bounds. You can define the maximum
of a set with just knowing the set, but the bounds require both some subset S with respect to an enclosing
set X.2 Intuitively, the main difference between the supremum/infimum and maximum/minimum is that
the supremum/infimum accounts for limit points of the subset S.

Definition 2.17 (Convexity on Ordered Sets)

Given a totally ordered set (X,≤), a subset S is said to be convex if for all a, b ∈ S,

a ≤ c ≤ b =⇒ c ∈ S (61)

2.4 Equivalence Relations

Definition 2.18 (Equivalence Relation)

An equivalence relation on a set A is a relation, denoted ∼ satisfying
1. Reflexive. For all a ∈ A, a ∼ a
2. Symmetric. For all a, b ∈ A, if a ∼ b then b ∼ a
3. Transitive. For all a, b, c ∈ A, if a ∼ b and b ∼ c then a ∼ c

Given an equivalence relation, we can define an equivalence class as

[y] := {x ∈ A | x ∼ y} (62)

Definition 2.19 (Partition)

A partition of a set X is a collection of disjoint nonempty subset of X whose union is all of A.

Theorem 2.13 (Quotient Space, Map)

The set of equivalence classes of a set X with an equivalence relation ∼ is a partition of X, denoted as
the quotient set X/ ∼. Therefore, the map ι : X → X/ ∼ is well-defined and is called a quotient
map.

Proof.

Assume the contrary. If X has one element, then its equivalence class is [x] and this is trivially proven.
If X has at least 2 elements, let us call them x, y ∈ X with x ̸= y. [x], [y] are their equivalence classes.
Clearly due to reflexivity, x ∈ [x] and y ∈ [y] and so they are nonempty. Since we assumed that
this is not a partition, there exists some z ∈ X in both [x], [y]. But z ∈ [x] =⇒ z ∼ x and
z ∈ [y] =⇒ y ∼ z. So by transitivity, x ∼ z, meaning that [x] = [y]. Therefore they must be the
same element of a partition.

Example 2.4 (Circles)

M is the set of circles in R2. Given a, b ∈ M , a ∼ b iff the radii are equal in length. We can denote
each equivalence class by {r}, where r is the length of the radius. We can define addition as

{a}+ {b} ≡ {a+ b} (63)

2For example, it makes sense to define the maximum of a set S = [0, 1] by itself, but not an upper bound for it. If X = Q,
then the supremum is 1, but if X was the set of all irrationals, then this has no supremum.
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3 Structures

3.1 Algebraic Structures
Now sets are very boring when studying by themselves. It is often the case that we endow a set with some
additional information, which we call structure. Consider the familiar integers, which come with certain
operations such as + and ×, along with the concepts identity elements—namely 0 and 1—which allows us
to define (additive and multiplicative) inverses.

Definition 3.1 (Structure)

A structure on a set is some additional information on the set, such as relations, constants, and
operations associated with the set.

A lot of these properties depend on what operations you can do with them.

Definition 3.2 (Operation)

A p-ary operationa ∗ on a set A is a map

∗ : Ap −→ A (64)

where Ap is the p-fold Cartesian product of A. In specific cases,
1. If p = 1, then ∗ is said to be unary.
2. If p = 2, then ∗ is binary.

We can consider for p > 2 and even if p is infinite.
aor called an operation of arity p.

Definition 3.3 (Monoid)

A monoid is a set S with an operation +.

Definition 3.4 (Group)

Definition 3.5 (Ring)

Definition 3.6 (Field)

A field is an algebraic structure (F,+, ·) where
1. F is an abelian group under +, with 0 being the additive identity.
2. F \ {0} is an abelian group under ·, with 1 being the multiplicative identity.
3. It connects the two operations through the distributive property.

x · (y + z) = x · y + x · z (65)

Lemma 3.1 (Left = Right Distributivity)

Left and right distributivity are equivalent.

x · (y + z) = (y + z) · x (66)
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Proof.

x · (y + z) = x · y + x · z (Distributive)
= y · x+ z · x (Commutative)
= (y + z) · x (Distributive)

Lemma 3.2 (Properties of Addition)

The properties of addition hold in a field.
1. If x+ y = x+ z, then y = z.
2. If x+ y = x, then y = 0.
3. If x+ y = 0, then y = −x.
4. (−(−x)) = x.

Proof.

For the first, we have

x+ y = x+ z =⇒ −x+ (x+ y) = −x+ (x+ z) (addition is a function)
=⇒ (−x+ x) + y = (−x+ x) + z (+ is associative)
=⇒ 0 + y = 0 + z (definition of additive inverse)
=⇒ y = z (definition of identity)

For the second, we can set z = 0 and apply the first property. For the third, we have

x+ y = 0 =⇒ −x+ (x+ y) = −x+ 0 (addition is a function)
=⇒ (−x+ x) + y = −x+ 0 (+ is associative)
=⇒ 0 + y = −x+ 0 (definition of additive inverse)
=⇒ y = −x (definition of identity)

For the fourth, we simply follow that if y is an inverse of z, then z is an inverse of y. Therefore, −x
being an inverse of x implies that x is an inverse of −x. −(−x) must also be an inverse of −x. Since
inverses are uniquea, x = −(−x).

aThis is proved in algebra.

Lemma 3.3 (Properties of Multiplication)

The properties of multiplication hold in a field.
1. If x ̸= 0 and xy = xz, then y = z.
2. If x ̸= 0 and xy = x, then y = 1.
3. If x ̸= 0 and xy = 1, then y = x−1.
4. If x ̸= 0, then (x−1)−1 = x.

Proof.

The proof is almost identical to the first. Since x ̸= 0, we can always assume that x−1 exists. For
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the first, we have

xy = xz =⇒ x−1(xy) = x−1(xz) (multiplication is a function)

=⇒ (x−1x)y = (x−1x)z (× is associative)
=⇒ 1y = 1z (definition of multiplicative inverse)
=⇒ y = z (definition of identity)

For the second, we can set z = 1 and apply the first property. For the third, we have

xy = 1 =⇒ x−1(xy) = x−11 (multiplication is a function)

=⇒ (x−1x)y = x−11 (× is associative)

=⇒ 1y = x−11 (definition of multiplicative inverse)

=⇒ y = x−1 (definition of identity)

For the fourth, we simply see that x−1 is a multiplicative inverse of both x and (x−1)−1 in the group
(F \ {0},×), and since inverses are unique, they must be equal.

Lemma 3.4 (Properties of Distribution)

For any x, y, z ∈ F, the field axioms satisfy
1. 0 · x = 0.
2. If x ̸= 0 and y ̸= 0, then xy ̸= 0.
3. −1 · x = −x.
4. (−x)y = −(xy) = x(−y).
5. (−x)(−y) = xy.

Proof.

For the first, note that

0x = (0 + 0) · x = 0x+ 0x (67)

and subtracting 0x from both sides gives 0 = 0x. For the second, we can claim that xy ̸= 0
equivalently claiming that it will have an identity. Since x, y ̸= 0, their inverses exists, and we claim
that (xy)−1 = y−1x−1 is an inverse. We can see that by associativity,

(y−1x−1)(xy) = y−1(x−1x)y = y−1y = 1 (68)

For the third, we see that

0 = 0 · x = (1 + (−1)) · x = 1 · x+ (−1) · x = x+ (−1) · x (69)

which implies that −1 · x is the additive inverse. The fourth follows immediately from the third by
the associative property. For the fifth we can see that

(−x)(−y) = (−1)x(−1)y (property 3)
= (−1)(−1)xy (× is commutative)
= −1 · (−xy) (property 3)
= −(−xy) (property 3)
= xy (addition property 4)
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Note that given a set, we can really put whatever order we want on it. However, consider the field with the
following order.

F = {0, 1}, 0 < 1 (70)

This does not behave well with respect to its operations because for example if we have 0 < 1, then adding the
same element to both sides should preserve the ordering. But this is not the case since 0+1 = 1 > 1+1 = 0.
While it may be easy to define an order, we would like it to be an ordered field.

Definition 3.7 (Ordered Ring/Field)

An ordered ring is a ring that has an order satisfying
1. y < z =⇒ x+ y < x+ z for all x ∈ F.
2. x > 0, y > 0 =⇒ xy > 0.

An ordered field has the same definition, and an ordered field is an ordered ring.

Theorem 3.1 (Properties)

In an totally ordered ring,
1. x > 0 =⇒ −x < 0.
2. x ̸= 0 =⇒ x2 > 0.
3. If x > 0, then y < z =⇒ xy < xz.

Proof.

The first property is a single-liner

0 < x =⇒ 0 +−x < x+−x =⇒ −x < 0 (71)

For the second property, it must be the case that x > 0 or x < 0. If x > 0, then by definition x2 > 0.
If x < 0, then

x2 = 1 · x2 = (−1)2 · x2 = (−1 · x)2 = (−x)2 (72)

and since −x > 0 from the first property, we have x2 = (−x)2 > 0. For the third, we use the
distributive property.

y < z =⇒ 0 < z − y (73)
=⇒ 0 = x0 < x(z − y) = xz − xy (74)
=⇒ xy < xz (75)

3.2 Topological and Metric Spaces

Definition 3.8 (Topology)

Note that an order can be used to generate an order topology, which we will define below.

Example 3.1 (Order Topology on Q)

The order topology on Q is the topology generated by the set B of all open intervals

(a, b) := {x ∈ Q | a < x < b} (76)
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Definition 3.9 (Metric)

Given an arbitrary set X, a metric on X is a function

d : X ×X → R (77)

satisfying

3.3 Vector Spaces

Definition 3.10 (Vector Space)

A vector space V over a field F is a.

Example 3.2 (Norm)

Given a vector space V over subfield F ⊂ C, the norm

|| · || : V → R (78)

Example 3.3 (Inner Product)

Given a vector space V over subfield F ⊂ C, the inner product

⟨·, ·⟩ : V × V → C (79)

is a map satisfying

Definition 3.11 (Convex Sets)

A set S is convex if for every point x, y ∈ S, the point

z = tx+ (1− t)y ∈ S (80)

where 0 ≤ t ≤ 1.

3.4 Measure Spaces
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4 The Naturals

4.1 Axiom of Infinity
Now we attempt to try and construct the natural numbers. We start with existence of the empty set
S0 = ∅ = {}. Now given Sn, we can define inductively Sn+1 through a successor function S that maps to
the “next number.”

Sn+1 = S(W ) := Sn ∪ {Sn} (81)

where

1. Sn exists either by induction on n or from the base case where the axiom of empty set applies.

2. {Sn} exists through the axiom of pairing.

3. Sn ∪ {Sn} exists through the axiom of union.

Note that even though we did not talk about what n + 1 means, we can just treat it as some elements of
some indexing set. Great, so we can indeed prove that each element Sn exists. This motivates the following
definition.

Definition 4.1 (Inductive Set)

A set I is called inductive if
1. 0 = {} ∈ I.
2. If n ∈ I, then n+ 1 = S(n) = n ∪ {n} ∈ I

Therefore, an inductive set contains 0 and with each element, its sucessor. This makes us motivate the
definition of the naturals as an inductive set which contains no other elements but the natural numbers, i.e.
it is the smallest inductive set. We can express this minimal property by letting every natural number x be
contained in every inductive set, leading us to the following definition.

N = {x | x ∈ I for every inductive set I} (82)

But note that this does not follow the schema of restricted specification, so we must first take some existing
inductive set A and define

N = {x ∈ A | x ∈ I for every inductive set I} (83)

Now the question remains of whether there are any inductive sets at all. The intuitive answer is yes, but
with our axioms so far, the existence of infinite sets cannot be proven actually. The reason is that we have
started out with a finite set ∅, and the construction of new sets with our axioms only allows us to create
more finite sets. Therefore, while we can construct finite sets with an unbounded number of elements, we
can never reach an infinite set. This is why we must axiomatically claim that a finite inductive set exists.

Axiom 8 (Axiom of Infinity)

An inductive set exists.

This allows us to utilize the axiom of restricted specification to construct the primitive form of the naturals.

Definition 4.2 (Von Neumann Ordinals)

The Von Neumann ordinals is the minimal set X satisfying the axiom of infinity. It is the set
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containing

0 = {} = ∅
1 = {0} = {∅}
2 = {0, 1} = {∅, {∅}}
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
4 = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

. . . = . . .

Now note that the von Neumann ordinals are not the only way to construct such a set. The Zermelo
ordinals define the successor function to be S(w) = {w} and state that the inductive set with this successor
function exists. However, the von Neumann ordinals have the nice property that the cardinality n of the set
is precisely the natural number that we would like to identify it with, and the fact that a natural number n
contains all naturals 0, . . . , n− 1 as elements of n.

4.2 Natural Numbers
From this, with a few more structures we can define the naturals as a commutative monoid with respect to
both the addition and multiplication operations.

Definition 4.3 (Natural Numbers)

The natural numbers N = {0, 1, 2, . . .} is the set of von Neumann ordinals with the following
structure.

1. Order. The relation ≤ defined as
m ≤ n ⇐⇒ m ∈ n (84)

is an order relation.
2. Addition can be defined recursively with the successor function asa

n+ 0 := n (85)
n+ 1 := S(n) (86)

n+ S(m) := S(n+m) (87)

3. Multiplication is also defined recursively using the definition of addition.

n× 0 := 0 (88)
n× S(m) := (n×m) + n (89)

which is familiar to the process of adding m to itself n times.
4. Additive Identity is 0, following directly from the definition of addition.
5. Multiplicative Identity is 1, following directly from the definition of multiplication.
anote that I am using := to denote that this is an identity, not an equation to be solved.

Example 4.1 (Order)

I assert that 3 ≤ 4 since
{0, 1, 2} = 3 ∈ {0, 1, 2, 3} = 4 (90)

29/ 62



Set Theory Muchang Bahng Spring 2025

Example 4.2 (Addition)

To define 5 + 2, we can see that

5 + 2 = 5 + S(1) (91)
:= S(5 + 1) (92)
= S(5 + S(0)) (93)
:= S(S(5 + 0)) (94)
:= S(S(5)) (95)
= S(6) (96)
= 7 (97)

Example 4.3 (Multiplication)

To define 4× 3, we apply the recursive definitions

4× 3 = 4× S(2) (98)
:= 4× 2 + 4 (99)
= 4× S(1) + 4 (100)
:= 4× 1 + 4 + 4 (101)
:= 4× S(0) + 4 + 4 (102)
= 4× 0 + 4 + 4 + 4 (103)
= 0 + 4 + 4 + 4 (104)
= 12 (105)

Theorem 4.1 (Commutative)

+ and × are commutative in N.

Theorem 4.2 (Associativity)

+ and × are associative in N.

4.3 Induction

Lemma 4.1 (Well Ordering Principle)

Every nonempty subset of N has a minimal element.

Proof.

Take a subset A ⊂ N.
1. If 0 ∈ A, the minimum is 0.
2. Else if 1 ∈ A, the minimum is 1.
3. ...

We can use this inductive property of natural numbers to prove properties of them. Note that this can only
be used to prove for finite (yet unbounded) numbers!
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Lemma 4.2 (Induction Principle)

Given P (n), a property depending on a natural number n ∈ N,
1. if P (n0) is true for some n0 ∈ N, and
2. if for every k ≥ n0, P (k) true implies P (k + 1) true,

then P (n) is true for all n ≥ n0.

Lemma 4.3 (Strong Induction Principle)

Given P (n), a property depending on a positive integer n,
1. if P (n0), P (n0+1), . . . , P (n0+m) are true for some positive integer n0, and nonnegative integer

m, and
2. if for every k > n0 +m,P (j) is true for all n0 ≤ j ≤ k implies P (k) is true,

then P (n) is true for all n ≥ n0.

Theorem 4.3 (Equivalence of 3 Principles)

The well-ordering principle, induction principle, and the strong induction principle are all equivalent.

Proof.

We prove the steps.
1. Well Ordering =⇒ Strong Induction.
2. Strong Induction =⇒ Induction.
3. Induction =⇒ Well-Ordering.

The idea behind the strong induction principle leads to the proof using infinite descent. Infinite descent
combines strong induction with the fact that every subset of the positive integers has a smallest element, i.e.
there is no strictly decreasing infinite sequence of positive integers.

Theorem 4.4 (Infinite Descent)

Given P (n), a property depending on positive integer, assume that P (n) is false for a set of integers
S. Let the smallest element of S be n0. If P (n0) false implies P (k) false, where k < n0, then by
contradiction P (n) is true for all n.

4.4 Sequences and The Recursion Theorem
Since we have defined the naturals, we can construct a function that takes in a natural number and outputs
to an arbitrary set. This is called a sequence.

Definition 4.4 (Sequence)

Given a nonempty set X, a function f : N → X is called a sequence. We usually denote it by

x1, x2, x3, . . . (106)

It is often shorthand written as (xn).a There are two ways to define such a sequence:
1. Explicitly. We denote xn = f(n) in some closed form.
2. Recursively. We denote xn+1 = g(xn, n) for all n ∈ N, with some base case x0.
aNote that this is different from {xn}, which is considered a set and is unordered.
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The explicit definition gives us a well-defined sequence, but the recursive definition requires a bit more care.
Given an initial condition x0 and some recursive condition (similar to differential equations), such a definition
is only well-formulated if there exists such a sequence (or function) that satisfies these two conditions. The
recursion theorem proves both the existence and uniqueness of such an infinite sequence.

Theorem 4.5 (Recursion Theorem)

For any set A, any a ∈ A, and function g : A × N → A, there exists a unique infinite sequence
f : N → A such that

1. f(0) = a.
2. f(n+ 1) = g(f(n), n) for all n ∈ N.

Sequences are particularly important in topology and analysis, where they are used as a tool to analyze
properties of topological spaces or metric spaces. Since we are working in an arbitrary set, we cannot do
much more than this.

32/ 62



Set Theory Muchang Bahng Spring 2025

5 The Integers and Rationals

5.1 Integers
We then construct the integers as an ordered commutative ring that embeds N through a canonical ordered
monoid homomorphism.

Definition 5.1 (Integers)

The integers, denoted with Z is constructed by defining the equivalence relation on N×N given by

(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c (107)

which we can think of as (a, b) being the solution to a = x+b. We call the quotient set Z := (N×N)/∼,
with the following structure.

1. Order defined by
[(a, b)] ≤Z [(c, d)] ⇐⇒ a+ d ≤N b+ c (108)

2. Addition.
[(a, b)] +Z [(c, d)] := [(a+ c, b+ d)] (109)

3. Multiplication.
[(a, b)]×Z [(c, d)] := [(ac+ bd, ad+ bc)] (110)

4. Additive Identity is 0.
5. Multiplicative Identity is 1.
6. Additive Inverse of z = (a, b) ∈ Z is denoted −z = (b, a).a

This makes Z an ordered ring.
aSince (a, b) + (b, a) = (a+ b, a+ b) ∼ (0, 0).

Note that we could have chosen other extensions, but the reason that we choose this is that it preserves
the structure of N. Even though set-theoretically, N and Z are disjoint, you can embed the naturals in the
integers, which aligns with our intuition.

Theorem 5.1 (Embedding of N in Z)

The map f : N → Z defined f(n) = [(n, 0)] is an ordered monoid homomorphism. That is, it satisfies
the following

f(n+N m) = f(n) +Z f(m), (111)
f(n×N m) = f(n)×Z f(m) (112)

n ≤ m ⇐⇒ f(n) ≤Z f(m) (113)

Theorem 5.2 (Countability)

Z is countably infinite.

5.2 Rational Numbers
Just as we have done before, we construct the rationals Q as an ordered field that embeds Q through a
canonical ordered ring homomorphism.
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Definition 5.2 (Rationals)

Given the ordered ring of integers (Z,+Z,×Z,≤Z) the rational numbers (Q,+Q,×Q) are defined as
such.

1. Q is the quotient space on Z× Z \ {0} with the equivalence relation ∼

(a, b) ∼ (c, d) ⇐⇒ a×Z d = b×Z c (114)

We denote this class as (a, b), where b > 0, since if b < 0, we know that (−a,−b) are also in
this order.

2. The additive and multiplicative identities are

0Q := (0Z, a), 1Q := (a, a) (115)

3. Addition on Q is defined

(a, b) +Q (c, d) :=
(
(a×Z d) +Z (b×Z c), b×Z d

)
(116)

4. The additive inverse is defined
−(a, b) := (−a, b) (117)

5. Multiplication on Q is defined

(a, b)×Q (c, d) :=
(
a×Z c, b×Z d

)
(118)

6. The multiplicative inverse is defined

(a, b)−1 := (b, a) (119)

7. The order ≤Q defined on the rationals as

(a, b) ≤Q (c, d) ⇐⇒ ad ≤Z bc (120)

is a total order.

Theorem 5.3 (Order on Rationals)

The order ≤Q defined on the rationals as

(a, b) ≤Q (c, d) ⇐⇒ ad ≤Z bc (121)

is a total order. Remember that we have defined b, d > 0.

Proof.

We prove the three properties.
1. Reflexive.

(a, b) ≤Q (a, b) ⇐⇒ ab ≤Z ab (122)

2. Antisymmetric.

(a, b) ≤Q (c, d) =⇒ ad ≤Z bc(c, d) ≤Q (a, b) =⇒ bc ≤Z ad (123)

This implies that both ad = bc, which by definition means that they are in the same equivalence
class.

3. Transitivity. Assume that (a, b) ≤ (c, d) and (c, d) ≤ (e, f). Then, we notice that b, d, f > 0
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and therefore by the ordered ring propertya of Z, we have

(a, b) ≤Q (c, d) =⇒ ad ≤Z bc =⇒ adf ≤Z bcf (124)
(c, d) ≤Q (e, f) =⇒ cf ≤Z de =⇒ bcf ≤Z bde (125)

Therefore from transitivity of the ordering on Z we have adf ≤ bde. By the ordered ring
propertyb we have 0 ≤ bde − adf = d(be − af). But notice that d > 0 from our definition of
rationals, and therefore it must be the case that 0 ≤ be−af =⇒ af ≤Z be, which by definition
means (a, b) ≤Q (e, f).

aIf a ≤ b and 0 ≤ c, then ac ≤ bc.
bIf a ≤ b, then a+ c ≤ b+ c.

Theorem 5.4 (Rationals are a Field)

Q is a field.

Proof.

We do a few things.
1. Verify the additive identity.

(a, b) + (0, c) = (ac+ 0b, bc) = (ac, bc) ∼ (a, b) (126)

2. Verify the multiplicative identity.

(a, b)× (c, c) = (ac, bc) ∼ (a, b) (127)

3. Additive inverse is actually an inverse.

(a, b) + (−a, b) = (ab+ (−ba), bb) = (0, bb) ∼ (0, 1) (128)

4. Multiplicative inverse is actually an inverse.

(a, b)× (b, a) = (ab, ba) = (ab, ab) ∼ (1, 1) (129)

5. Addition is commutative.

(a, b) + (c, d) = (ad+ bc, bd) = (cb+ ad, bd) = (c, d) + (a, b) (130)

6. Addition is associative.

(a, b) + ((c, d) + (e, f)) = (a, b) + (cf + de, df) (131)
= (adf + bcf + bde, bdf) (132)
= (ad+ bc, bd) + (e, f) (133)
= ((a, b) + (c, d)) + (e, f) (134)

7. Multiplication is commutative.

(a, b)× (c, d) = (ac, bd) = (ca, db) = (c, d)× (a, b) (135)

8. Multiplication is associative.

(a, b)× ((c, d)× (e, f)) = (a, b)× (ce, df) (136)
= (ace, bdf) (137)
= (ac, bd)× (e, f) (138)
= ((a, b)× (c, d))× (e, f) (139)
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9. Multiplication distributes over addition.

(a, b)× ((c, d) + (e, f)) = (a, b)× (c, d) + (a, b)× (e, f) (140)
= (ac, bd) + (ae, bf) (141)

= (abcf + abde, b2df) (142)
= (acf + ade, bdf) = (a, b)× (cf + de, df) (143)

Theorem 5.5 (Rationals are an Ordered Field)

Q is an ordered field.

Proof.

We show that our defined order satisfies the definition.
1. Assume that y = (a, b) ≤ (c, d) = z. Let x = (e, f). Then x + y = (af + be, bf), x + z =

(cf + de, df). Therefore

(af + be)df = adf2 + bedf (144)

≤ bcf2 + bedf (145)
= (cf + de)bf (146)

But (af + be)df = (cf + de)bf is equivalent to saying (af + be, bf) ≤Q (cf + de, df), i.e.
x+ y ≤ x+ z!

2. Let x = (a, b), y = (c, d). Since 0 < x, 0 < y, by construction this means that 0 < a, 0 < c (since
b, d > 0 in the canonical rational form). By the ordered ring property of the integers, 0 < ac.
So

0 < ac ⇐⇒ 0 · bd < ac · 1 ⇐⇒ (0, 1) < (ac, bd) ⇐⇒ 0Q < (a, c)×Q (b, d) = xy (147)

We have successfully defined the rationals, but now these are almost completely separate elements. We know
that all integers are rational numbers, and so to show that the rationals are an extension of Z we want to
identify a canonical injection ι : Z → Q. This can’t just be any canonical injection; it must preserve the both
the order and algebraic structure between the two sets and must therefore be a ordered ring homomorphism.

Theorem 5.6 (Canonical Injection of Z to Q is an Ordered Ring Homomorphism)

Let us define the canonical injection ι : Z → Q to be ι(a) = (a, 1). This is a ring homomorphism.

Proof.

We show a few things.
1. Preservation of addition.

ι(a) +Q ι(b) = (a, 1) +Q (b, 1) (148)

= (1a+Z 1b, 12) (149)
= (a+Z b, 1) (150)
= ι(a+Z b) (151)
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2. Preservation of multiplication.

ι(a)×Q ι(b) = (a, 1)×Q (b, 1) (152)

= (a×Z b, 12) (153)
= (a×Z b, 1) (154)
= ι(a×Z b, 1) (155)

3. Preservation of multiplicative identity.

ι(1Z) = (1, 1) = 1Q (156)

4. Preservation of order.

a ≤Z b ⇐⇒ a · 1 ≤Z b · 1 (157)
⇐⇒ (a, 1) ≤Q (b, 1) (158)
⇐⇒ ι(a) ≤Q ι(b) (159)

Theorem 5.7 (Rational Numbers)

Q is countable.

Proof.

Since N ≈ Z, it suffices to prove that N×N is countable. We wish to find the bijection f : N×N → N.
We claim that

f(x, y) =
1

2

{
(x+ y − 1)2 − (x+ y − 1) + 2

}
+ x− 1 (160)

1 3 6 10 15

2 5 9 14

4 8 13

7 12

11

Figure 6: You can see that given (x, y) it is on the (x+ y + 1)th diagonal, which starts from the 1
2

(
(x+ y +

1)2 − (x+ y + 1) + 2)th number and increments by x− 1. Therefore, we have the formula above.

Theorem 5.8 (Finite Fields)

There are no finite ordered fields.
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Proof.

Assume F is such an ordered field. It must be the case that 0, 1 ∈ F, with 0 < 1. Therefore, we also
have 0 + 1 < 1 + 1 =⇒ 1 < 1 + 1. Repeating this we get

0 < 1 < 1 + 1 < 1 + 1 + 1 < . . . (161)

where these elements must be distinct (since only one of >,<,= must be true for a totally ordered
set). Since this can be done for a countably infinite number of times, F cannot be finite.

5.2.1 Norm, Metric, and Topology on Rationals

Note that we can also define a norm on the rationals with just the order and algebraic properties.

Theorem 5.9 (Norm on Q)

The following is indeed a norm on Q.

|x| :=

{
x if x ≥ 0

−x if x < 0
(162)

It is well known that the metric induced by any norm is indeed a metric. Therefore we state the metric as
a definition.

Definition 5.3 (Metric on Q)

The Euclidean metric on Q is defined

d(x, y) := |x− y| =

{
x− y if x ≥ y

y − x if x < y
(163)

Thus we get to what we want: the induced topology of open balls. Again, since we know from point-set
topology that metric topologies are indeed topologies, we will state this as a definition rather than a theorem.

Definition 5.4 (Open-Ball Topology on Q)

The Euclidean topology on Q is the topology generated by the set B of all open balls

B(x, r) := {y ∈ Q | |x− y| < r} (164)

Note that this is the same topology as the order topology. This should however be proved.

Theorem 5.10 (Metric and Order Topologies on Q)

The metric and order topologies on Q are the same topologies.

Proof.
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6 The Reals
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7 Complex Numbers
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8 Cardinal Numbers
Now we would like to rigorously construct the intuitive concept of the “size” of a set. Before we can even
label any set with such a number, which we call the cardinal number, we can with our current tools compare
the sizes, or cardinalities, of sets. This is a bit counterintuitive since we’re able to compare sizes but not
know what the sizes actually are!

Definition 8.1 (Equipotence)

Two sets A and B are equipotent, written A ≈ B, if there exists a bijective map f : A → B. This
implies that their cardinalities are the same: |A| = |B|. It has the following properties:

1. Reflexive: A ≈ A
2. Symmetric: A ≈ B implies B ≈ A
3. Transitive: A ≈ B and B ≈ C implies A ≈ C

Now equipotence behaves like an equivalence relation, though we can’t define an equivalence class on the
nonexistent set of all sets.

Theorem 8.1 ()

The following hold for equipotence.
1. A ≈ A.
2. A ≈ B =⇒ B ≈ A.
3. A ≈ B,B ≈ C =⇒ A ≈ C.

Proof.

Listed.
1. Take the identity map.
2. Take the inverse, which is well defined under bijection.
3. Take the composition of bijections which we proved is a bijection.

Definition 8.2 (Comparison of Cardinality)

The cardinality of A is said to be less than or equal to the cardinality of B, denoted |A| ≤ |B|) if
there is a one-to-one mapping of A into B.

Just like how equipotence behaves like an equivalence relation, comparison of cardinality behaves like an
ordering on the collection of equivalence classes.

Theorem 8.2 ()

The following hold.
1. |A| ≤ |A|.
2. |A| ≤ |B|, |A| = |C| =⇒ |C| ≤ |B|
3. |A| ≤ |B|, |B| = |C| =⇒ |A| ≤ |C|.
4. |A| ≤ |B|, |B| ≤ |C| =⇒ |A| ≤ |C|.

However, we still have to establish antisymmetry, which—unlike the other properties—is a major theorem.

Theorem 8.3 (Cantor-Bernstein)

If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.
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Proof.

So far, we have proved many properties of cardinality without actually defining what cardinality is. We
don’t actually need to define such a thing, but for convenience and convention we do. The following is really
a theorem, which can be proved by the axiom of choice, but we introduce it as a definition.

Definition 8.3 (Cardinal Numbers)

There exists sets called cardinal numbers with the property that for every set X, there is a unique
cardinal |X|, called the cardinality of X, and sets X and Y are equipotent if and only if |X| is equal
to Y .a

aHowever, there does not exist a set containing all the cardinals!

We should intuitively see that the natural numbers can be treated as a subset of the cardinals, but it is not
sufficient since by the axiom of infinity, there exists infinite sets X in which |X| ̸∈ N. We will start off with
finite set and continue onto finite sets.

8.1 Finite Sets

Definition 8.4 (Finite Set)

A set S is finite if it is equipotent to some natural number n ∈ N.a We define |S| = n and say S has
n elements.

aNote that n is a set.

Definition 8.5 (Infinite Set)

A set S that is not finite is called infinite.

It follows that the cardinal numbers of finite sets are the natural numbers, and natural numbers are themselves
finite sets, meaning that |n| = n for all n ∈ N. It remains to prove that |S| for a finite set is unique.

Lemma 8.1 (No Proper Inclusion)

If n ∈ N, then there is no bijective mapping of n onto a proper subset X ⊊ n.

Proof.

We do strong induction on n.

Corollary 8.1 ()

The following is immediate.
1. If n ̸= m, then there is no bijective mapping f : n → m.
2. If |S| = n and |S| = m, then n = m.
3. N is infinite.
4.
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Theorem 8.4 (Preservation of Finite Cardinality)

Finiteness is preserved under many set operations and maps.
1. Subset. If X is finite and Y ⊂ X, then Y is finite and |Y | ≤ |X|.
2. Function. If X is finite, and f is a function, then f(X) is finite with |f(X)| ≤ |X|.
3. Binary Union. If X and Y are finite, X ∪ Y is finite with |X ∪ Y | ≤ |X| + |Y |. If they are

disjoint, then |X ∪ Y | = |X|+ |Y |.
4. Arbitrary Union. If a set of sets S is finite and every X ∈ S is finite, then ∪S is finite.
5. Power Set. If X is finite, then P(X) is finite.
6. Cartesian Product. If X1, . . . , Xn is finite, then

∏
Xi is finite.

8.2 Countable Sets
Now we go into our first class of infinite sets, which we know are the naturals.

Definition 8.6 (Aleph Null)

The cardinal number of the naturals N is denoted ℵ0 = |N|.

Definition 8.7 (Countable Set)

A set S is countable if |S| = ℵ0 = |N|. A set is at most countable if |S| ≤ |N|.

At this point, we may already be familiar with the fact that Q is countable and R is uncountable. Let
us formalize the statement that a countable infinity is the smallest type of infinity. We can show this by
taking a countable set and showing that every infinite subset must be countable. If it was not countable (e.g.
uncountable), then this would mean that a countable set contains some other class of infinite sets, which
means that that infinite set would be “smaller” than ℵ0.

Theorem 8.5 ()

Every infinite subset of a countable set A is countable.

Now that we’ve established that ℵ0 is the smallest infinity, let’s try to see which set operations preserve this
cardinality.

Theorem 8.6 (Countable Union is Countable)

An at most countable union of countable sets is countable.

Theorem 8.7 (Finite Product is Countable)

A finite Cartesian product of countable sets is countable.

Proof.

By induction it suffices to prove that if X and Y are countable, then X × Y is countable. We can
find an enumeration by going across the diagonals.
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Theorem 8.8 (Further Properties)

1. The set of all finite sequences in countable X is countable.
2. The set of all finite subsets of a countable set is countable.
3. An equivalence relation on a countable set has at most countably many equivalence classes.

8.3 Cardinal Arithmetic
So far, the only sets we have to work with is the naturals, which are countable. To extend this to other
infinities, we would want to use these cardinal numbers to hopefully create larger cardinals. Therefore, we
need to define operations on cardinals. First, we need a lemma to prove that our definitions are consistent.

Lemma 8.2 ()

If A,B,A′, B′ are sets such that |A| = |A′| and |B| = |B′|, with A ∩ B = A′ ∩ B′ = ∅, then
|A ∪B| = |A′ ∪B′|.

Definition 8.8 (Addition of Cardinals)

Given cardinals κ, λ where κ = |A| and λ = |B| for some sets A,B satisfying A∩B = ∅, we can define

κ+ λ := |A ∪B| (165)

Now to define multiplication as the cardinality of Cartesian products, we also prove consistency.

Lemma 8.3 ()

If A,B,A′, B′ are sets such that |A| = |A′| and |B| = |B′|, then |A×B| = |A′ ×B′|.

Definition 8.9 (Multiplication of Cardinals)

Given cardinals κ, λ where κ = |A| and λ = |B| for some sets A,B, we can define

κ · λ := |A×B| (166)

These operations behave pretty nicely, as outlined below.

Theorem 8.9 (Commutativity, Associativity)

Given cardinals κ, λ, µ, we have
1. Commutativity of Addition. κ+ λ = λ+ κ.
2. Associativity of Addition. κ+ (λ+ µ) = (κ+ λ) + µ.
3. Commutativity of Multiplication. κ · λ = λ · κ
4. Associativity of Multiplication. κ · (λ · µ) = (κ · λ) · µ.
5. Distributivity. κ · (λ+ µ) = κ · λ+ κ · µ.

Theorem 8.10 (Inequalities)

We have
1. κ ≤ κ+ λ.
2. κ1 ≤ κ2, λ1 ≤ λ2 =⇒ κ1 + λ1 ≤ κ2 + λ2.
3. κ ≤ κ · λ if λ > 0.
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4. κ1 ≤ κ2, λ1 ≤ λ2 =⇒ κ1 · λ1 ≤ κ2 · λ2.
5. κ+ κ = 2 · κ.
6. κ+ κ ≤ κ · κ whenever κ ≥ 2.

Now these don’t actually help us create larger infinities, and to do this we define exponentiation of cardinal
numbers.

Lemma 8.4 ()

if |A| = |A′| and |B| = |B′|, then |AB | = |(A′)B
′ |.

Therefore the definition is consistent.

Definition 8.10 (Exponentiation of Cardinals)

Given cardinals κ, λ where κ = |A| and λ = |B| for some sets A,B, we can define

κλ = |AB | (167)

Theorem 8.11 (Properties of Exponentiation)

The following holds.
1. κ ≤ κλ if λ > 0.
2. λ ≤ κλ if κ > 1.
3. κ1 ≤ κ2, λ1 ≤ λ2 =⇒ κλ1

1 ≤ κλ2
2

4. κ · κ = κ2.
5. κλ+µ = κλ · κµ.
6. (κλ)µ = κλ·µ.
7. (κ · λ)µ = κµ · λµ.

Now that we’ve established a useful collection of properties of cardinals, we are ready to extend beyond ℵ0

and 2ℵ0 .

Theorem 8.12 (Cantor’s Theorem)

Actually the first part is known as Cantor’s theorem, but the second is also used often together.
1. For every set X, |X| < |P(X)|.
2. For every set X, |P(X)| = 2|X|.a

aIn terms of cardinal numbers, we have κ < 2κ for all cardinal κ.

Therefore, given any collection of sets, we can always find a set that has a strictly greater cardinality. Despite
the existence of each cardinal number, you would be surprised to find that there exists no set containing all
the cardinal numbers!

Theorem 8.13 (Set of Cardinal Numbers Does Not Exist)

The set of all cardinal numbers does not exist.

Proof.

Assume that C was the set of all cardinals. Then ∪C would be a cardinal exceeding all the cardinals
in C, which is a contradiction.
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8.4 Uncountable Sets

Definition 8.11 (Uncountable Set)

A set S is uncountable if it is infinite and not countable.

We know that Q is countable with cardinality ℵ0 and R is uncountable with cardinality 2ℵ0 . The question
of whether there exists an intermediate infinity κ such that ℵ0 < κ < 2ℵ0 is still not fully resolved today.

Theorem 8.14 (Continuum Hypothesis)

There is no uncountable cardinal number κ such that κ < 2ℵ0 .

Now, how do we prove that a set is uncountable? We can’t really use the contrapositive of Theorem 8.2, since
to prove that an arbitrary set A is uncountable, then we must find an infinite subset that is not countable.
But now we must prove that this subset itself is not countable, too! Therefore, we can use this theorem.

Theorem 8.15 ()

Given an arbitrary set A, if every countable subset B is a proper subset of A, then A is uncountable.

Proof.

Assume that A is countable. Then A itself is a countable subset of A, but by the assumption, A
should be a proper subset of A, which is absurd. Therefore, A is uncountable.

Theorem 8.16 ()

The set of all functions f : R → R has cardinality 22
ℵ0

> 2ℵ0 .
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9 Ordinal Numbers
We have introduced the natural numbers as an inductive set that contains the empty set and recursively
adding each element through the sucessor function S(x) = x ∪ {x}. This gives us the natural numbers N,
but there is no barrier to stopping, and so we can count beyond the natural numbers by imagining some
infinite number ω and continuing the counting process into the transfinite.

ω = N = {0, 1, 2, . . .} (168)
S(ω) = ω ∪ {ω} = {0, 1, 2 . . . , ω} (169)

S(S(ω)) = S(ω) ∪ {S(ω)} = {0, 1, 2, . . . , ω, S(ω)} . . . = . . . (170)

This is the motivation behind ordinal numbers, which are numbers that describe the order of some element
in a set, analogous to how cardinal numbers were designed to describe the size of sets.

9.1 Axiom of Replacement

Axiom 9 (Axiom Schema of Replacement)

This axiom asserts that the image of a set under any definable function will fall inside a set.

9.2 Transfinite Induction and Recursion
The induction principle and recursion theorem are the main tools for proving theorems about the natural
numbers and constructing functions with domain N, respectively. We can generalize them to ordinal numbers.

9.3 Ordinal Arithmetic
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10 Axiom of Choice
The axioms up to this point are pretty much undisputed and completes ZF set theory. Now that we’ve
defined a function, let’s quickly extend the definition of a Cartesian product into an arbitrary union of sets.

Definition 10.1 (Cartesian Product)

If {Xα}α∈A is an indexed family of sets, then their Cartesian product is defined as a set of functions.
That is, ∏

α∈A

Xα :=

{
f : A →

⋃
α∈A

Xα

∣∣∣ ∀α ∈ A, f(α) ∈ Xα

}
(171)

Each function f is called a choice function, which assigns to each Xα some element f(α) ∈ Xα.

Therefore, we have used the power set axiom to define a finite Cartesian product, to then define a function, to
then define a general Cartesian product. But this detail is irrelevant later on. Note also that this definition of
Cartesian product is not the same as that of the previous definition. The binary Cartesian product is defined
as (a, b) = {{a}, {a, b}} while this defines as a function f : {1, 2} → A,B. But once we have overwritten the
old definition (which is still necessary!) we can just forget about it and use this new definition of Cartesian
product since there is a canonical bijection between them. It is a lot less annoying to think of ordered tuples
as just tuples rather than as sets of sets.

However, in our definition, we just call this a “set of functions” and have never proved that it actually
contains anything. But we can see obviously that if this Cartesian product is nonempty then there exists a
choice function, and if there exists a choice function then the Cartesian product is nonempty. It would be
ideal if we can prove one of the two conditions, but it turns out we can’t, and therefore we introduce the
final axiom, called the axiom of choice. Though controversial, it is required in the proofs of some notable
theorems. If we include this axiom of choice, then we have ZFC set theory. The axiom of choice has many
equivalent definitions.

Colloquially, the axiom of choice says that a Cartesian product of a collection3 of non-empty sets is non-
empty. That is, it is possible to construct a new set by choosing one element from each set, even if the
collection is infinite.

Axiom 10 (Axiom of Choice)

Let us have an indexed family X = {Si}i∈I of nonempty sets. Then the axiom states the following,
which are all equivalent.

1. There exists an indexed set {xi}i∈I such that xi ∈ Si for every i ∈ I.
2.

∏
i∈I Si is nonempty.

3. There exists a choice function f : I → ∪i∈ISi.

The existence of a choice function when X is finite is easily proved from the ZF axioms, and AC only matters
for certain infinite sets. One may argue that if each Si is nonempty, then choose si ∈ Si and you’re done!
While this is an intuition for why the axiom of choice may be true, we can’t make the choice of all the
infinitely many si in any “canonical” fashion. That is,k while this works for any single i at a time, this
doesn’t define a function i 7→ si. Note that for any sets where you can make this choice (e.g. there is a total
ordering on X, so choose the minimum element), AC holds as a theorem and not as an axiom.

Example 10.1 ()

Let I be the set of all nonempty subsets of R, and Xi = i ∈ I. Then an element f in
∏

i∈I Xi is a
function which picks an element f(T ) ∈ T for every nonempty T ⊂ R. How do you define such an

3Note that this does not have to be finite
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f? If we have N instead of R, we could take f(T ) = min(T ), but this doesn’t work for R. Therefore,
there is no canonical choice of an element in a nonempty set of real numbers. But AC tells us that we
don’t have to worry about this. It gives us such a function, even if we cannot “write it down” (which
means, construct it from the other ZF axioms).
If we let I be the set of all nonempty open subsets of R, then there is a choice function. Choose
any bijection τ : N → Q, and then assign to each nonempty open subset U ⊂ R the element
τ(min{n ∈ N | τ(n) ∈ U}). This works since U ∩Q ̸= ∅.

It is characterized as nonconstructive because it asserts the existence of a choice function but says nothing
about how to construct one, unlike the axiom of infinity. This choice function was used in the proof of the
following, which turns out to be equivalent.

Axiom 11 (Axiom of Well-Ordering)

For any set X, there exists a binary relation R which well-orders X, i.e. is a total order and has the
property that every nonempty subset of X has a least element under the order R.

∀X∃R(R well-orders X) (172)

We can see generally that we would like to use a choice function to select a representative element of each
set in X. Then we can use these to construct an order. Finally, we state the last form of the axiom of choice.

Axiom 12 (Zorn’s Lemma)

Let X be a partially ordered set that satisfies the two properties.
1. P is nonempty.
2. Every chain (a subset A ⊂ P where A is totally ordered) has an upper bound in P .

Then P has at least one maximal element.

Zorn’s lemma is required to show that every vector space has a basis.
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11 Exercises

Exercise 11.1 (Math 531 Spring 2025, PS2.6)

Assume that S is a set with exactly n elements. Assume that T : S → S. Prove that there exists
some x ∈ S so that

T j(x) = x, (173)

for some j ∈ {1, 2, ..., n}. Here T j means the composition of T with itself j-times.

Solution 11.1

Assume that the statement is false, and there exists no such x ∈ S. Let’s choose any x ∈ S and write
out

x = T 0(x), T 1(x), T 2(x), . . . , Tn(x) (174)

These are n + 1 elements living in a space S of size n, so by pigeonhole principle there exists a
repeat. Let us choose any of these repeats and label them 0 ≤ i < j ≤ n s.t. T i(x) = T j(x). It
cannot be the case that i = 0 since we assumed that it was false. Therefore, it must be the case that
1 ≤ i < j ≤ n =⇒ j − i ≤ n− 1. Consider the sequence

y = T 0(y) = T i(x), T 1(y) = T i+1(x), . . . , Tn(y) (175)

Starting from y = T i(x) ∈ S. Since 0 < j − i ≤ n − 1, we know that T j−i(y) = T j(x) lies in this
sequence. Since both y = T 0(y) = T i(x) and T j−i(y) = T j(x) are equal and present, we have shown
an instance of when this claim is true, and the statement is true.

Exercise 11.2 (Shifrin Appendix A.3.1)

Consider the following relations on the set Z:
(i) (a, b) ∈ R1 if ab ≥ 0
(ii) (a, b) ∈ R2 if ab > 0
(iii) (a, b) ∈ R3 if ab > 0 or a = b = 0

Decide whether each is an equivalence relation. (If not, which requirements fail?)

Solution 11.2

Listed.
1. Not a relation since transitivity fails. 4 ∼ 0 since 4 · 0 = 0 ≥ 0. 0 ∼ −2 since 0 · −2 = 0 ≥ 0.

But 4 ̸∼ −2 since 4 · −2 = −8 < 0.
2. Not a relation since 0 is not related to itself. 0 ̸∼ 0 since 0 · 0 = 0 ̸> 0.
3. It is a relation.

Exercise 11.3 (Shifrin Appendix A.3.2)

Find the flaw in the so-called proof in the Remark on p. 380.

Exercise 11.4 (Shifrin Appendix A.3.3)

Define a relation on R as follows: x ∼ y if and only if x − y is an integer. Prove that ∼ is an
equivalence relation and describe the set of equivalence classes.
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Solution 11.3

We prove the three properties.
1. Identity. For x ∈ R, x− x = 0 ∈ Z so x ∼ x.
2. Symmetricity. For x, y ∈ R, if x− y ∈ Z, then by the ring properties −(x− y) = −1 · (x− y) =

−1 · x+−1 · −y) = −x+ y = y − x ∈ Z and so y ∼ x.
3. Transitivity. For x, y, z ∈ R, if x ∼ y and y ∼ z. Then x− y, y− z ∈ Z. Since Z is closed under

addition and addition is associative, we have

(x− y) + (y − z) = x+ (−y + y)− z = x+ 0 +−z = x− z ∈ Z (176)

and so x ∼ z.
The set of all equivalence classes can be represented by the interval [0, 1), where each x ∈ R gets
mapped to x (mod 1).

Exercise 11.5 (Shifrin Appendix A.3.4)

Define a relation on N as follows: x ∼ y if and only if x and y have the same last digit in their
base-ten representation. Prove that ∼ is an equivalence relation, and describe the set of equivalence
classes.

Exercise 11.6 (Shifrin Appendix A.3.5)

Define a relation on R2 as follows: (x1, x2) ∼ (y1, y2) if and only if x2
1 + x2

2 = y21 + y22 . Prove that ∼
is an equivalence relation, and describe the set of equivalence classes.

Exercise 11.7 (Shifrin Appendix A.3.6)

(a) Define a relation on R as follows: x and y are related if |x− y| < 1. Decide whether this is an
equivalence relation.

(b) Define an equivalence relation on R whose equivalence classes are intervals of length 1.

Exercise 11.8 (Shifrin Appendix A.3.7)

Which of the following functions f : Q → Q are well-defined?
(a) f(ab ) =

a+1
b+1

(b) f(ab ) =
a+b
b

(c) f(ab ) =
2a2

3b2

(d) f(ab ) =
b
a

(e) f(ab ) =
a2+ab+b2

a2+b2

Exercise 11.9 (Shifrin Appendix A.3.8)

Define an equivalence relation on X = N× N as follows:

(a, b) ∼ (c, d) ⇔ a+ d = c+ b.

(a) Prove that ∼ is indeed an equivalence relation.
(b) Identify the set of equivalence classes.
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Exercise 11.10 (Shifrin Appendix A.3.9)

Define a relation on N as follows: x ∼ y if and only if there are integers j and k so that x|yj and y|xk.
(a) Show that ∼ is an equivalence relation.
(b) Determine the equivalence classes [1], [2], [9], [10], and [20].
(c) Describe explicitly the equivalence classes [x] in general.

Solution 11.4

We first prove the three properties.
1. Identity. Since we can set j = k = 1 to get x|x, trivially x ∼ x.
2. Symmetricity. Assume that x ∼ y. Then there exists some j, k such that x|yj and y|xk. We

can just swap j, k to identify the integers that hold for y ∼ x.
3. Transitivity. Assume that x ∼ y, y ∼ z. Then there exists some integers i, j, k, l s.t.

x|yi, y|xj , y|zk, z|yl. We would like to find integers a, b such that x|za and z|xb. We can set
a = ik and b = jl. By replacing unimportant integer constants with ∗, we write

zik = (zk)i = (∗y)i = ∗yi = ∗x (177)

xjl = (xj)l = (∗y)l = ∗yl = ∗z (178)

and therefore x ∼ z.
The equivalence classes are as shown, with brief explanations.

1. [1] = {1}. Since we are looking for naturals where y|1k, i.e. y|1, y = 1 is the only natural.
2. [2] = {2n}∞n=1, i.e. all naturals with powers of 2. 2|yj tells me that y must at least be even, but

y|2k tells me that y must be a power of 2.
3. [9] = {3n}∞n=1. 9|yj tells me that as long as y is a multiple of 3, we can set j ≥ 2. y|9k tells me

that y must not have any other prime divisors.
4. [10] = {2i · 5j}i,j∈N. 10|yj tells me that y must have at least 2 and 5 as prime divisors. y|10k

tells me that it cannot have any other prime divisors.
5. [20] = [10]. 20|yj tells me that y must have at least 2 and 5, and then by setting j = 2, y2 is

guaranteed to be divisible by 20. y|20k tells me that it cannot have any other divisors. This is
the same definition as that of [10].

The equivalence class [x] is described as such. Given a natural x ∈ N, let P = {p1, . . . , pn} ⊂ N be the
set of prime divisors of x, which is guaranteed to be finite and unique by the fundamental theorem
of arithmetic. Then,

[x] := {pi11 · pi22 · . . . · pinn | i1, . . . , in ≥ 1} (179)

Exercise 11.11 (Shifrin Appendix A.3.10)

Given a function f : S → T , consider the following relation on S:

x ∼ y ⇔ f(x) = f(y).

(a) Prove that ∼ is an equivalence relation.
(b) Prove that if f maps onto T , then there is a one-to-one correspondence between the set of

equivalence classes and T .

Exercise 11.12 (Math 531 Spring 2025 PS1.2)

Prove that Q is countable.
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Solution 11.5

Proved in theorem above.

Exercise 11.13 (Math 531 Spring 2025, PS2.5)

Prove that if X is a set and A,B,C ⊂ X, we have that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), (180)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), (181)

X \ (A ∪B) = (X \A) ∩ (X \B), (182)

X \ (A ∩B) = (X \A) ∪ (X \B). (183)

Solution 11.6

Proved in deMorgan’s laws.

Exercise 11.14 (Shifrin Abstract Algebra Appendix 2.3)

Let f : X → Y . Let A,B ⊂ X and C,D ⊂ Y . Prove or give a counterexample (if possible, provide
sufficient hypotheses for each statement to be valid):

1. f(A) ∪ f(B) = f(A ∪B)
2. f(A) ∩ f(B) = f(A ∩B)
3. f(A−B) = f(A)− f(B)
4. f−1(C) ∪ f−1(D) = f−1(C ∪D)
5. f−1(C) ∩ f−1(D) = f−1(C ∩D)
6. f−1(C −D) = f−1(C)− f−1(D)
7. f(f−1(C)) = C
8. f−1(f(A)) = A

Solution 11.7

Listed.
1.

Exercise 11.15 (Munkres 1.1)

Check the distributive laws for ∪ and ∩ and DeMorgan’s laws.

Solution 11.8

Exercise 11.16 (Munkres 1.2)

Determine which of the following statements are true for all sets A, B, C, and D. If a double
implication fails, determine whether one or the other of the possible implications holds. If an equality
fails, determine whether the statement becomes true if the "equals" symbol is replaced by one or the
other of the inclusion symbols ⊂ or ⊃.

1. A ⊂ B and A ⊂ C ⇐⇒ A ⊂ (B ∪ C).
2. A ⊂ B or A ⊂ C ⇐⇒ A ⊂ (B ∪ C).
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3. A ⊂ B and A ⊂ C ⇐⇒ A ⊂ (B ∩ C).
4. A ⊂ B or A ⊂ C ⇐⇒ A ⊂ (B ∩ C).
5. A− (A−B) = B.
6. A− (B −A) = A−B.
7. A ∩ (B − C) = (A ∩B)− (A ∩ C).
8. A ∪ (B − C) = (A ∪B)− (A ∪ C).
9. (A ∩B) ∪ (A−B) = A.

10. A ⊂ C and B ⊂ D ⇒ (A×B) ⊂ (C ×D).
11. The converse of (j).
12. The converse of (j), assuming that A and B are nonempty.
13. (A×B) ∪ (C ×D) = (A ∪ C)× (B ∪D).
14. (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).
15. A× (B − C) = (A×B)− (A× C).
16. (A−B)× (C −D) = (A× C −B × C)−A×D.
17. (A×B)− (C ×D) = (A− C)× (B −D).

Solution 11.9

Exercise 11.17 (Munkres 1.3)

1. Write the contrapositive and converse of the following statement: "If x < 0, then x2 − x > 0,"
and determine which (if any) of the three statements are true.

2. Do the same for the statement "If x > 0, then x2 − x > 0."

Solution 11.10

Exercise 11.18 (Munkres 1.4)

Let A and B be sets of real numbers. Write the negation of each of the following statements:
1. For every a ∈ A, it is true that a2 ∈ B.
2. For at least one a ∈ A, it is true that a2 ∈ B.
3. For every a ∈ A, it is true that a2 /∈ B.
4. For at least one a /∈ A, it is true that a2 ∈ B.

Solution 11.11

Exercise 11.19 (Munkres 1.5)

Let A be a nonempty collection of sets. Determine the truth of each of the following statements and
of their converses:

1. x ∈
⋃

A∈A A ⇒ x ∈ A for at least one A ∈ A.
2. x ∈

⋃
A∈A A ⇒ x ∈ A for every A ∈ A.

3. x ∈
⋂

A∈A A ⇒ x ∈ A for at least one A ∈ A.
4. x ∈

⋂
A∈A A ⇒ x ∈ A for every A ∈ A.

Solution 11.12
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Exercise 11.20 (Munkres 1.7)

Given sets A, B, and C, express each of the following sets in terms of A, B, and C, using the symbols
∪, ∩, and −.
D = {x | x ∈ A and (x ∈ B or x ∈ C)},
E = {x | (x ∈ A and x ∈ B) or x ∈ C},
F = {x | x ∈ A and (x ∈ B ⇒ x ∈ C)}.

Solution 11.13

Exercise 11.21 (Munkres 1.8)

If a set A has two elements, show that P(A) has four elements. How many elements does P(A) have
if A has one element? Three elements? No elements? Why is P(A) called the power set of A?

Solution 11.14

Exercise 11.22 (Munkres 1.9)

Formulate and prove DeMorgan’s laws for arbitrary unions and intersections.

Solution 11.15

Exercise 11.23 (Munkres 1.10)

Let R denote the set of real numbers. For each of the following subsets of R×R, determine whether
it is equal to the cartesian product of two subsets of R.

1. {(x, y) | x is an integer}.
2. {(x, y) | 0 < y ≤ 1}.
3. {(x, y) | y > x}.
4. {(x, y) | x is not an integer and y is an integer}.
5. {(x, y) | x2 + y2 < 1}.

Solution 11.16

Exercise 11.24 (Munkres 2.1)

Let f : A → B. Let A0 ⊂ A and B0 ⊂ B.
1. Show that A0 ⊂ f−1(f(A0)) and that equality holds if f is injective.
2. Show that f(f−1(B0)) ⊂ B0 and that equality holds if f is surjective.

Solution 11.17

Solved in 2.2.1.
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Exercise 11.25 (Munkres 2.2)

Let f : A → B and let Ai ⊂ A and Bi ⊂ B for i = 0 and i = 1. Show that f−1 preserves inclusions,
unions, intersections, and differences of sets:

a) B0 ⊂ B1 ⇒ f−1(B0) ⊂ f−1(B1).
b) f−1(B0 ∪B1) = f−1(B0) ∪ f−1(B1).
c) f−1(B0 ∩B1) = f−1(B0) ∩ f−1(B1).
d) f−1(B0 −B1) = f−1(B0)− f−1(B1).

Show that f preserves inclusions and unions only:
e) A0 ⊂ A1 ⇒ f(A0) ⊂ f(A1).
f) f(A0 ∪A1) = f(A0) ∪ f(A1).
g) f(A0 ∩A1) ⊂ f(A0) ∩ f(A1); show that equality holds if f is injective.
h) f(A0 −A1) ⊃ f(A0)− f(A1); show that equality holds if f is injective.

Solution 11.18

(a)-(d) proved in 2.2.1. (e)-(h) proved in 2.2.1.

Exercise 11.26 (Munkres 2.3)

Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and intersections.

Solution 11.19

Exercise 11.27 (Munkres 2.4)

Let f : A → B and g : B → C.
1. If C0 ⊂ C, show that (g ◦ f)−1(C0) = f−1(g−1(C0)).
2. If f and g are injective, show that g ◦ f is injective.
3. If g ◦ f is injective, what can you say about injectivity of f and g?
4. If f and g are surjective, show that g ◦ f is surjective.
5. If g ◦ f is surjective, what can you say about surjectivity of f and g?
6. Summarize your answers to (b)–(e) in the form of a theorem.

Solution 11.20

Exercise 11.28 (Munkres 2.5)

In general, let us denote the identity function for a set C by iC . That is, define iC : C → C to be
the function given by the rule iC(x) = x for all x ∈ C. Given f : A → B, we say that a function
g : B → A is a left inverse for f if g ◦ f = iA; and we say that h : B → A is a right inverse for f if
f ◦ h = iB .

1. Show that if f has a left inverse, f is injective; and if f has a right inverse, f is surjective.
2. Give an example of a function that has a left inverse but no right inverse.
3. Give an example of a function that has a right inverse but no left inverse.
4. Can a function have more than one left inverse? More than one right inverse?
5. Show that if f has both a left inverse g and a right inverse h, then f is bijective and g = h = f−1.
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Solution 11.21

Exercise 11.29 (Munkres 2.6)

Let f : R → R be the function f(x) = x3−x. By restricting the domain and range of f appropriately,
obtain from f a bijective function g. Draw the graphs of g and g−1. (There are several possible
choices for g.)

Solution 11.22

Exercise 11.30 (Munkres 3.1)

Define two points (x0, y0) and (x1, y1) of the plane to be equivalent if y0 − x2
0 = y1 − x2

1. Check that
this is an equivalence relation and describe the equivalence classes.

Solution 11.23

Exercise 11.31 (Munkres 3.2)

Let C be a relation on a set A. If A0 ⊂ A, define the restriction of C to A0 to be the relation
C ∩ (A0 ×A0). Show that the restriction of an equivalence relation is an equivalence relation.

Solution 11.24

Exercise 11.32 (Munkres 3.3)

Here is a "proof" that every relation C that is both symmetric and transitive is also reflexive: "Since
C is symmetric, aCb implies bCa. Since C is transitive, aCb and bCa together imply aCa, as desired."
Find the flaw in this argument.

Solution 11.25

Exercise 11.33 (Munkres 3.4)

Let f : A → B be a surjective function. Let us define a relation on A by setting a0 ∼ a1 if
f(a0) = f(a1).

1. Show that this is an equivalence relation.
2. Let A∗ be the set of equivalence classes. Show there is a bijective correspondence of A∗ with B.

Solution 11.26
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Exercise 11.34 (Munkres 3.5)

Let S and S′ be the following subsets of the plane:
S = {(x, y) | y = x+ 1 and 0 < x < 2},
S′ = {(x, y) | y − x is an integer}.

1. Show that S′ is an equivalence relation on the real line and S′ ⊃ S. Describe the equivalence
classes of S′.

2. Show that given any collection of equivalence relations on a set A, their intersection is an
equivalence relation on A.

3. Describe the equivalence relation T on the real line that is the intersection of all equivalence
relations on the real line that contain S. Describe the equivalence classes of T .

Solution 11.27

Exercise 11.35 (Munkres 3.6)

Define a relation on the plane by setting (x0, y0) < (x1, y1) if either y0 − x2
0 < y1 − x2

1, or y0 − x2
0 =

y1 − x2
1 and x0 < x1. Show that this is an order relation on the plane, and describe it geometrically.

Solution 11.28

Exercise 11.36 (Munkres 3.7)

Show that the restriction of an order relation is an order relation.

Solution 11.29

Exercise 11.37 (Munkres 3.8)

Check that the relation defined in Example 7 is an order relation.

Solution 11.30

Exercise 11.38 (Munkres 3.9)

Check that the dictionary order is an order relation.

Solution 11.31

Exercise 11.39 (Munkres 3.10)

1. Show that the map f : (−1, 1) → R of Example 9 is order-preserving.
2. Show that the equation g(y) = 2y/[1 + (1 + 4y2)1/2] defines a function g : R → (−1, 1) that is

both a left and a right inverse of f .
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Solution 11.32

Exercise 11.40 (Munkres 3.11)

Show that an element in an ordered set has at most one immediate successor and at most one
immediate predecessor. Show that a subset of an ordered set has at most one smallest element and
at most one largest element.

Solution 11.33

Exercise 11.41 (Munkres 3.12)

Let Z+ denote the set of positive integers. Consider the following order relations on Z+ × Z+:
1. The dictionary order.
2. (x0, y0) < (x1, y1) if either x0 − y0 < x1 − y1, or x0 − y0 = x1 − y1 and y0 < y1.
3. (x0, y0) < (x1, y1) if either x0 + y0 < x1 + y1, or x0 + y0 = x1 + y1 and y0 < y1.

In these order relations, which elements have immediate predecessors? Does the set have a smallest
element? Show that all three order types are different.

Solution 11.34

Exercise 11.42 (Munkres 3.13)

Prove the following theorem. If an ordered set A has the least upper bound property, then it has the
greatest lower bound property.

Solution 11.35

Exercise 11.43 (Munkres 3.14)

If C is a relation on a set A, define a new relation D on A by letting (b, a) ∈ D if (a, b) ∈ C.
1. Show that C is symmetric if and only if C = D.
2. Show that if C is an order relation, D is also an order relation.
3. Prove the converse of the theorem in Exercise 13.

Solution 11.36

Exercise 11.44 (Munkres 3.15)

Assume that the real line has the least upper bound property.
1. Show that the sets

[0, 1] = {x | 0 ≤ x ≤ 1},
[0, 1) = {x | 0 ≤ x < 1}
have the least upper bound property.

2. Does [0, 1] × [0, 1] in the dictionary order have the least upper bound property? What about
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[0, 1)× [0, 1]?

Solution 11.37

Exercise 11.45 (Munkres Topology 5.5)

Which of the following subset of Rω can be expressed as the Cartesian product of subsets of R?a

aNote that the existence of these sets depend on the axiom of choice.

Solution 11.38

Listed. We will denote the sets in question as A.
1. We claim that

A = Z× Z× . . . (184)

2. Let us denote R≥i be the set of reals greater than or equal to i. This is clearly a subset of R.
Then

A =

∞∏
i=1

R≥i (185)

3. We claim

A =

( 100∏
i=1

R
)
×

( ∞∏
j=1

Z
)

(186)

4. This is not possible

Exercise 11.46 (Math 531 Spring 2025, PS1.1)

Find a formula for the sum of the first n odd numbers and prove that it is correct.

Solution 11.39

I claim that f(n) = n2. I prove using induction. For n = 1, f(1) = n2 = 12 = 1. Now assume f holds
for some k ∈ N. Then, the kth off number is 2k − 1. Therefore

f(k + 1) = f(k) + (2k + 1) = k2 + 2k + 1 = (k + 1)2 (187)

and the formula holds for k = 1. By the principle of induction, f(n) = n2 is true for all n ∈ N.

Exercise 11.47 (Shifrin Abstract Algebra 1.1.4.C)

We check for n = 1 denoting our formula as f . Indeed, we have

f(1) =
1 · 2 · 3

6
= 1 = 12 (188)
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For the induction step, assume that f(k) is true for some k ∈ N. Then,

f(k + 1) = f(k) + (k + 1)2 (189)

=
k(k + 1)(2k + 1)

6
+

6(k + 1)2

6
(190)

=
(k + 1){k(2k + 1) + 6(k + 1)}

6
(191)

=
(k + 1)(2k2 + 7k + 6)

6
(192)

=
(k + 1)(k + 2)(2(k + 1) + 1)

6
(193)

= f(k + 1) (194)

Therefore f holds for all n ∈ N.

Exercise 11.48 (Shifrin Abstract Algebra 1.1.4.G)

We prove the base cases for n = 1, 2, 3.
1. n = 1. n+ 2 = 3 is divisible by 3.
2. n = 2. n+ 4 = 6 is divisible by 3.
3. n = 3. n+ 2 = 3 is divisible by 3.

For our inductive step, assume that for some n = k ∈ N, one of the elements in Sk = {k, k+2, k+4}
is divisible by 3. Let us denote this element a. We wish to show that this claim is true for n = k+3 on
the set Sk+3 = {k+3, k+5, k+7}. Since a ∈ Sk, this means that a+3 ∈ Sk+3, and 3|a =⇒ 3|(a+3).
So we can always identify the element a+3. Since we proved the base cases for n = 1, 2, 3, and proved
the recursive step, we have essentially proved the claim for all naturals of the form 3k+1, 3k+3, 3k+3
(k ∈ N0), which is precisely the natural numbers.

Exercise 11.49 (Shifrin Abstract Algebra 1.1.4.J)

Let n = 1. Then 1+ x ≥ 1+ x trivially. For the induction step, assume that this inequality holds for
some n ∈ N. Then, we have

1 + (n+ 1)x = 1 + nx+ x (195)
≤ (1 + x)n + x (196)
≤ (1 + x)n + x(1 + x)n (197)

= (1 + x)n+1 (198)

where the prove the penultimate step by applying the ordered field axioms to the 2 cases:
1. If x ≥ 0, then addition preserves order so 1+x ≥ 0+1 = 1. Since 1+x, 1 > 0, order is preserved

under multiplication by a positive element, so (1 + x)2 ≥ 1 + x ≥ 1. Using induction, we can
show that for all n ∈ N, (1 + x)n ≥ 1, and again by preservation of order under multiplication
by a positive element, this implies x(1 + x)n ≥ x for all n ∈ N.

2. If 0 > x > −1, we have 0 < 1 + x < 1 and by the same induction proof, we can bound
0 < (1 + x)n < 1 for all n. Finally by reversal of order under multiplication by a negative
element, we have x(1 + x)n > x.

Therefore, we take the less restrictive of the 2 bounds: x(1 + x)n ≥ x.
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Exercise 11.50 (Shifrin Abstract Algebra 1.1.7)

Let us denote

x =
1 +

√
5

2
, y =

1−
√
5

2
(199)

Note the identities

x2 =

(
1 +

√
5

2

)2

=
3 + 2

√
5

2
= 1 + x (200)

y2 =

(
1−

√
5

2

)2

=
3− 2

√
5

2
= 1 + y (201)

We check the base case for n = 1

a1 =
1√
5
(x+ y) =

1√
5

2
√
5

2
= 1 (202)

and for n = 2

a2 =
1√
5
(x2 − y2) =

1√
5
((1 + x)− (1 + y)) =

1√
5
(x+ y) = a1 = 1 (203)

For the inductive step, assume that this formula holds for some k − 1, k ∈ N. Then, we have

ak+1 = ak + ak−1 (204)

=
1√
5
(xk−1 − yk−1) +

1√
5
(xk − yk) (205)

=
1√
5

{
xk−1(1 + x)− yk−1(1 + y)

}
(206)

=
1√
5
(xk+1 − yk+1) (207)

and we are done.
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