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An overview of probability using measures. We will denote probability measures defined over σ-algebras with
P and probability functions defined over some sample space Ω or R with P or p. When we say countable,
we mean finite or countably infinite. I have used resources from:

1. Rick Durret’s Elementary Probability and Probability textbooks.

2. Dr. Krishna’s Probability Foundation for Electrical Engineers lectures at IIT.

3. Various quant interview books and websites for examples.
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1 Measure Spaces
Let’s do a little refresher on measure theory.

1.1 Sigma Algebras and Measures

Definition 1.1 (σ-algebra)

A σ-algebra on a set X is a collection of subsets of X, denoted A ⊂ 2X , satisfying
1. Contains Empty Set: ∅ ∈ A
2. Stability under Complementation: A ∈ A =⇒ Ac ∈ A, where Ac = X −A
3. Stability under Countable Union: If {Ai} is a countable sequence of sets, then⋃

i

Ai ∈ A (1)

At first, we might wonder why we need σ-algebras in the first place. We want to identify sets that are
measurable in the way that their size can be determined, but why not just use 2X? This is because of the
Banach-Tarski paradox, which gives you contradictions if you try to define a measure over 2X .

Lemma 1.1 (Additional Property of σ-Algebras)

A commonly known property of any σ-algebra A is that it is stable under countable intersections,
too.

A1, A2, . . . ,∈ A =⇒
∞⋂
k=1

Ak ∈ A (2)

Proof.

We can utilize the fact that
∞⋂
k=1

Ak = X \
∞⋃
k=1

Ack (3)

A σ-algebra is similar to the topology τ of topological space. Both A and τ require ∅ and X to be in it. The
three differences are that (i) τ does not allow compelmentation, (ii) τ allows any (even uncountable) union
of sets (condition is strengthened), and (iii) τ allows only finite intersection of sets (condition is weakened).
Now in order to construct σ-algebras, the following theorems are useful since they allow us to construct
σ-algebras from other σ-algebras. It turns out that the intersection of σ-algebras is a σ-algebra, but not for
unions.

Theorem 1.1 ()

Let {Ak} be a family of σ-algebras of X. Then, ∩Ak is also a σ-algebra of X.

Proof.

Clearly, ∅, X is in ∩Ak. To prove complementation,

A ∈
⋂

Ak =⇒ A ∈ Ak ∀k =⇒ Ac ∈ Ak ∀k =⇒ Ac ∈
⋂

Ak (4)

To prove countable union, let {Aj}j∈J be some countable family of subsets in ∩Ak. Then,

Aj ∈
⋂

Ak ∀j ∈ J =⇒ Aj ∈ Ak ∀k∀j =⇒
⋃
Aj ∈ Ak ∀k =⇒

⋃
Aj ∈

⋂
Ak (5)
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This allows us to easily prove the following proposition, which just establishes the existence of σ-algebras.

Proposition 1.1 ()

Let F ⊂ 2X be a collection of subsets of X. Then there exists a unique smallest σ-algebra σ(F )
containing F . σ(F ) is called the σ-algebra generated by F .

Proof.

Let us denote M as the set of all possible σ-algebras B of X. M is nonempty since it contains 2X .
Then, the intersection ⋂

B∈M
B (6)

is the unique smallest σ-algebra.

Now, how do we measure a size on subsets of X? We use measures.

Definition 1.2 (Measure)

Given a measurable space (X,A), a measure is a function µ : A −→ [0,+∞] satisfying
1. Positive Definite: µ(A) ≥ µ(∅) = 0
2. Countable Additivity: For all countable collections {Ak}∞k=1 of pairwise disjoint subsets Ak ∈ A,

µ

( ∞⊔
k=1

Ak

)
=

∞∑
k=1

µ(Ak) (7)

Remember that we are allowed to take countable unions inside our σ-algebra, so this makes
sense. Disjointness is clearly important since if it wasn’t, then µ(A) = µ(A∪A) = 2µ(A), which
is absurd.

The triplet (X,A, µ) is called a measure space.

Theorem 1.2 (Properties of Measure)

Let µ be a measure on (X,A).
1. Monotonicity: If A ⊂ B, then µ(A) ≤ µ(B).
2. Subadditivity: If A ⊂ ∪∞

i=1Ai, then µ(A) ≤
∑∞
i=1 µ(Ai)

3. Continuity from Above: If A1 ⊂ A2 ⊂ A3 ⊂ . . ., then

µ

( ∞⋃
k=1

Ak

)
= lim
k→∞

µ(Ak) (8)

4. Continuity from Below: If A1 ⊃ A2 ⊃ A3 ⊃ . . . and µ(A1) <∞, then

µ

( ∞⋂
k=1

Ak

)
= lim
k→∞

µ(Ak) (9)

Proof.

Listed.
1. Let B \A := B ∩Ac. Then, since A and B \A are disjoint, we have

µ(B) = µ
(
A ∪ (B \A)

)
= µ(A) + µ(B \A) ≥ µ(A) (10)
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2. We again try to divide this union into disjoint sets. Let A′
i = A ∩Ai, and let B1 = A′

1 with

Bi = Ai \
i−1⋃
j=1

A′
j (11)

Since Bi’s are disjoint with Bi ⊂ Ai, we can use the first property to get

µ(A) =

∞∑
i=1

µ(Bi) ≤
∞∑
i=1

µ(Ai) (12)

3. This is the first time we introduce limits. With the fact that µ(Ak) must be nondecreasing, we
can use real analysis and see that it is bounded by ∞, meaning that it must have a limit. But
why does this limit equal to the left hand side? We can see that

µ

( ∞⋃
k=1

Ak

)
= µ(A1) +

∞∑
k=2

µ(Bk) (13)

= µ(A1) + lim
k→∞

∞∑
k=2

µ(Bk) (14)

= lim
k→∞

µ(A1 ∪B2 ∪ . . . Bk) = lim
k→∞

µ(Ak) (15)

where Bk = Ak \Ak−1.
4. The µ(A1) <∞ is a necessary condition, since if we take Ak = [k,∞) on the real number line,

then we have ∩∞
k=1Ak = ∅, but the limit of the measure is ∞. Well we can define Bk = Ak\Ak+1

and write ∩∞
k=1Ak = A1 \ ∪∞

k=1Bk, which means that

µ

( ∞⋂
k=1

Ak

)
= µ

(
A1 \

∞⋃
k=1

Bk

)
(16)

= µ(A1)− µ

( ∞⋃
k=1

Bk

)
(17)

= µ(A1)−
∞∑
k=1

µ(Bk) (18)

= µ(A1)− lim
K→∞

K∑
k=1

µ(Bk) (19)

= lim
K→∞

(
µ(A1)−

K∑
k=1

µ(Bk)

)
(20)

= lim
K→∞

µ

(
A1 \

K⋃
k=1

Bk

)
= lim
K→∞

µ(AK) (21)

Now the first line uses the fact that if A ⊂ B, then µ(B\A)+µ(A) = µ(B), and with the further
assumption that µ(A) <∞, we can subtract on both sides like we do with regular arithmetic.

Theorem 1.3 (Inclusion Exclusion Principle)

One familiar property commonly seen in probability and combinatorics is the inclusion exclusion
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principle. If A,B ∈ A,
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) (22)

and by induction, if A1, . . . , An ∈ F , then

µ

( n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai)−
∑
i<j

µ(Ai ∩Aj)+
∑
i<j<k

µ(Ai ∩Aj ∩Ak)+ . . .+(−1)n−1µ

( n⋂
i=1

µ(Ai)

)
(23)

Finally, here is a definition which will be useful shortly when talking about how σ-algebras model knowledge.

Definition 1.3 (Sub-σ-Algebras)

Given a σ-algebra F , a sub-σ-algebra of F is a σ-algebra G s.t. G ⊂ F .

This will allows us to compare σ-algebras by taking two σ-algebras G,H ⊂ F , which µ is guaranteed to be
defined on since it is defined over F .

1.1.1 Construction of Measure on Rn

Let Rn be the continuum and Rn be the Borel σ-algebra, defined as the σ-algebra generated by the open
sets of Rn.

Example 1.1 (Stieltjes Measure Function)

Measures on (R,R) are defined by giving a Stieltjes measure function with the following proper-
ties:

1. F is nondecreasing
2. F is right continuous:

lim
y↓x

F (y) = F (x) (24)

Theorem 1.4 ()

Associated with each Stieltjes measure function F there is a unique measure µ on (R,R) with

µ((a, b]) = F (b)− F (a) (25)

When F (x) = x, then the resulting measure is called the Lebesgue measure.

This is quite a hard proof, but we outline the construction of this measure on R. First, we would like to
define a "nice" set of half-open half-closed intervals, which we show is a semialgebra S. We can easily define
a measure µ on this semialgebra. We can extend this semialgebra to an algebra S, along with a proper
extension µ that is a unique measure on S.

Definition 1.4 (Semialgebra, Algebra)

A collection S of sets is said to be a semialgebra if
1. it is closed under intersection
2. If S ∈ S, then Sc is a finite disjoint union of sets in S

A collection A of subsets is said to be an algebra if
1. it is closed under union
2. it is closed under complementation
3. the first two imply that it is closed under intersection

We can see that a set that is a σ-algebra =⇒ it is an algebra.
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Here is an example of a semialgebra, which we will utilize in building a measure on Rn.

Example 1.2 ()

Let Sd be the empty set plus all sets of the form

(a1, b1]× . . .× (ad, bd] ⊂ Rd (26)

where −∞ ≤ ai < bi ≤ +∞. Sd is a semialgebra since(∏
i

(a1i , b
1
i ]

)
∩
(∏

i

(a2i , b
2
i ]

)
=

∏
i

(max{a1i , a2i },min{b1i , b2i }] (27)

and ...

Now, we show that we can extend this semialgebra to an algebra.

Lemma 1.2 ()

If S is a semialgebra, then S = {finite disjoint unions of sets in S} is an algebra, called the algebra
generated by S.

Proof.

Example 1.3 ()

Given R and its semialgebra S1, then S1 consists of the empty set and all sets of the form

n⋃
i=1

(ai, bi] where −∞ ≤ ai < bi ≤ +∞ (28)

Now as for extending our measure function to S, we can simply use the properties. Note that since since an
algebra is constructed from finite disjoint unions of a semialgebra, given that the finite collection {Ai}ni=1

all reside in S and are disjoint, then their disjoint union must be in S and must be measurable, defined as

µ

( n⊔
i=1

Ai

)
=

n∑
i=1

µ(Ai) (29)

Definition 1.5 (σ-finite measure)

Given a measure on an algebra A, µ is said to be σ-finite if there is a sequence of sets A1, A2, . . . ∈ A
s.t. µ(Ai) <∞ and ∪iAi = Ω .

Theorem 1.5 ()

Let S be a semialgebra and let µ defined on S have µ(∅) = 0. Suppose
1. if S ∈ S is a finite disjoint union of sets {Si}ni=1, then

µ(S) =

n∑
i=1

µ(Si) (30)
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2. f S is a countably infinite disjoint union of sets {Sj}∞j=1, then

µ(S) ≤
∞∑
j=1

µ(Sj) (31)

Then, µ has a unique extension µ̄ that is a measure on S, the algebra generated by S. If µ̄ is σ-finite,
then there is a unique extension ν that is a measure on σ(S) (the smallest σ-algebra containing S).

1.2 Probability Spaces

Definition 1.6 (Probability Space)

A probability space is a measure space (Ω,F ,P) with P(Ω) = 1.
1. Ω is called the sample space and an element ω ∈ Ω is called an outcome.
2. F is called the event space and an element A ∈ F is called an event.
3. The measure of an event P(A) is called the probability of that event.

We can think of the sample space Ω as the set of all conceivable futures and an event F ∈ F as
some subset of conceivable futures. The probability P(F ) represents our degree of certainty that our
future will be contained in such an event. If some measure space X has a finite total measure, we
can construct a probability space from it by normalizing the measure.

1.2.1 Sigma-Algebras as Models of Knowledge

Let us focus on the σ-algebra F . We can see that the σ-algebra models our knowledge of the experiment.
That is, given some outcome space Ω, let us have two σ-algebras F and G such that F ⊂ G, i.e. F is a
sub-σ-algebra of G. What does this mean? Remember that the elements of the event space are the events
that can be measured. If G is finer than F , then every set F that is F-measurable is also G-measurable, and
so someone who has knowledge of µ over G knows more than another who has knowledge of µ over F .

For example, let us have a dice roll, with Ω = {1, 2, 3, 4, 5, 6}.

1. Abby’s knowledge is modeled by F = {∅, {1, 2, 3}, {4, 5, 6},Ω}, with

P(F ) =


0 if F = ∅
1/2 if F = {1, 2, 3}, {4, 5, 6}
1 if F = Ω

(32)

2. Bob’s knowledge is modeled by G = 2Ω with the following values

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1

6
(33)

We can see that F ⊂ G and that Bob has more information than Abby since from the values of P over his
σ-algebra, he can deduce that P({1, 2, 3}) = P({1}) + P({2}) = P({3}) = 1/2 (and likewise for 4, 5, 6). All
Abby knows is that the probability that the roll is 1, 2, 3 is 1/2, but in her view, the individual probabilities
may not be uniformly 1/6 at all (it could be P({1}) = P({2}) = 0 and P({3}) = 1/2, for example). More
specifically, Bob has complete information of the experiment since G = 2Ω, so he knows the probability of
every possible event. But no matter how little information one has about the experiment, everybody will
always know that the probability that any outcome will happen is 1 (hence P(Ω) = 1) and the probability
that no outcome will happen is 0 (P(∅) = 0), which is consistent with the definition of σ-algebras requiring
to have ∅ and Ω. Note that we can have two σ-algebras s.t. both model incomplete information and aren’t
strictly finer than one another, i.e. F ̸⊂ G and G ̸⊂ F .
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Note that given the same random experiment, we don’t need to always have the same sample space or the
same random variable. For example, let’s have a coin toss. One could be interested in whether it lands
heads or tails, which means Ω = {0, 1}, but another could be interested in the number of times the coin flips
midair, in which Ω = N0. We could even be interested in the set of all trajectories of the coin, which would
result in a huge space of all trajectories of the flip, or the velocity at which it lands on the table, which would
lead to Ω = R+.

Note that as you get more and more information, your σ-algebra can "grow" and get closer to something that
models complete information. This means that given some σ-algebra F that models complete information,
we can take a sequence of nondecreasing sub-σ-algebras of F

F1 ⊂ F2 ⊂ . . . ⊂ Fi ⊂ . . . (34)

such that Fi ⊂ F , which models our increasing knowledge of the experiment.

Definition 1.7 (Filtration)

Let (Ω,F ,P) be a probability space and I be an index set with total order ≥ (usually, N,R). For
every i ∈ I, let Fi be a sub-σ-algebra of F satisfying

Fi ⊂ Fj if i ≥ j (35)

Note that we do not write it as a sequence like before since I may be uncountable. Then, a filtration
F = {Fi}i∈I is a family of σ-algebras that are ordered nondecreasingly. If F is a filtration, then
(Ω,F ,F,P) is called a filtered probability space.

Example 1.4 (Filtration of 3 Coin Tosses)

Let us describe a concrete example of a 3-coin toss filtration. The probability space is

Ω = {000, 001, 010, 011, 100, 101, 110, 111} (36)

which has 8 outcomes so a complete σ-algebra would consist of 28 = 256 outcomes.
1. Before the experiment, we have no information at all, so

F0 = {∅,Ω} (37)

which has 22
0

= 2 elements.
2. After the first coin toss, we would have information on what the first flip landed on (whether it

was of form (0, ∗, ∗) or (1, ∗, ∗)), so we have a σ-algebra generated by these two events

F1 = σ({(0, ∗, ∗)}, {(1, ∗, ∗)})
= σ({000, 001, 010, 011}, {100, 101, 110, 111})
= {∅, {000, 001, 010, 011}, {100, 101, 110, 111},Ω}

which has 22
1

= 4 elements.
3. After the second coin toss, we would have information on what the first two flips landed on

(whether it was of form (0, 0, ∗), (0, 1, ∗), (1, 0, ∗), (1, 1, ∗)), so we have a σ-algebra generated
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by these 4 events

F2 = σ({(0, 0, ∗)}, {(0, 1, ∗)}, {(1, 0, ∗)}, {(1, 1, ∗)}) (38)
= σ({000, 001}, {010, 011}, {100, 101}, {110, 111}) (39)
= {∅, {000, 001}, {010, 011}, {100, 101}, {110, 111}, (40)

{000, 001, 010, 011}, {000, 001, 100, 101}, {000, 001, 110, 111}, (41)
{010, 011, 100, 101}, {010, 011, 110, 111}, {100, 101, 110, 111}, (42)
{000, 001, 010, 011, 100, 101}, {000, 001, 010, 011, 110, 111}, (43)
{000, 001, 110, 101, 110, 111}, {010, 011, 110, 101, 110, 111},Ω} (44)

which has 22
2

= 16 elements.
4. After the third coin toss, we would have information on what the first three flips landed on (all

8 possibilities in Ω), so we have a σ-algebra generated by these 8 events

F3 = σ({000}, {001}, {010}, {011}, {100}, {101}, {110}, {111}) (45)

This is too big to write down explicitly, but it has 22
3

= 256 elements.

1.2.2 Types of Probability Spaces

Definition 1.8 (Discrete Probability Space)

If Ω is a countable set, then we can take its σ-algebra F to be the power set of Ω and construct the
measurable space (Ω, 2Ω,P). From the axioms, for any event A ∈ F , we have

P(A) =
∑
ω∈A

P({ω}) and
∑
ω∈Ω

P({ω}) = 1 (46)

The greatest σ-algebra F = 2Ω describes the complete information. The cases P({ω}) = 0 is permitted
by the definition, but rarely used since such ω can safely be excluded from the sample space. Therefore,
we can define the probability measure P by simply defining it for all singleton sets {ω}.

This may be confusing, since for discrete spaces, it looks like we’re assigning probabilities to each ω ∈ Ω,
but we are actually assigning them to singleton sets. We should be writing P({ω}), but sometimes we abuse
notation and write P(ω).

Example 1.5 ()

Consider the flip of a fair coin with outcomes either hands or tails. Then, Ω = {H,T}. The σ-algebra
F = 2Ω contains 22 = 4 events:

{} = Neither heads nor tails
{H} = Heads
{T} = Tails

{H,T} = Either heads or tails
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That is, F = {{}, {H}, {T}, {H,T}}. Our probability measure P is defined

P(f) =


0 f = {}
0.5 f = {H}
0.5 f = {T}
1 f = {H,T}

(47)

Being able to consider the event space as 2X is very nice, since countability of X allows us to avoid the
Banach-Tarski paradox. It doesn’t matter whether F = 2X itself is uncountable or not.

Example 1.6 (3 Coin Tosses)

A fair coin is tossed 3 times, creating 8 possible outcomes.

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} (48)

The complete information is described by the σ-algebra F = 2Ω = 28 = 256 events, where each of
the events is a subset of Ω.
Alice knows the outcome of the second toss only. Thus, her incomplete information is described by
the partition

Ω = A1 ⊔A2 = {HHH,HHT, THH, THT} ⊔ {HTH,HTT, TTH, TTT} (49)

and the corresponding σ-algebra is

FAlice = {∅, A1, A2,Σ} (50)

Bryan knows only the total number of tails, so his partition contains 4 parts:

Ω = B0 ⊔B1 ⊔B2 ⊔B3

= {HHH} ⊔ {HHT,HTH, TTH} ⊔ {TTH, THT,HTT} ⊔ {TTT}

When we calculate Bryan’s event space, we have

FBryan =
{
∅, {HHH}, {HHT}, {HTH}, {THH}, {HHT,HTH}, {HHT, THH},

{TTH, THT}, {TTH}, {THT}, {HTT}, {TTH, THT}, {TTH,HTT},
{THT,HTT}, {TTT},Ω

}
Note that the event space of Bryan (and Alice) is not merely just 2Ω since we have some predetermined
knowledge of the outcome space Ω. Therefore, we can partition it into 4 cases and construct the event
space by putting only the events that are subsets of each partition. For example, it wouldn’t make
sense to have an event

{HHH,TTT} (51)

since the events {HHH} and {TTT} are in completely different outcome spaces (given the number
of tails). That is, if we knew that 3 tails were thrown, the event {HHH,TTT} wouldn’t make any
sense. However, the event Ω or ∅ is viable since they describe the case of whether the coin was tossed
at all or not. Furthermore, FAlice and FBryan are incomparable. That is, FAlice ̸⊆ FBryan and
FBryan ̸⊆ FAlice, even though both are subalgebras of 2Ω.
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Example 1.7 (Geometric Measure on N)

Let Ω = N and F = 2N. We can completely define the probability measure by assigning them to
singletons k ∈ N. One such assignment is

P({k}) = 1

2k
(52)

or more generally,
P({k}) = p(1− p)k−1 (53)

Example 1.8 (Poisson Measure on N0)

Let Ω = N ∪ {0}. Then, F = 2Ω and we can define P on the singleton sets as

P({k}) = e−λλk

k!
(54)

for any λ > 0. We can then compute the probability of, say all primes, by taking

P(primes) =
∑

k prime

P({k}) (55)

which we know to be monotonically increasing and bounded above, so it must converge. Whether this
has a closed form solution is another matter. Again, in reality we are assigning probability measures
on all F-measurable sets, but just doing it through assignment of measure through singleton sets.

Example 1.9 (Voters)

If 100 voters are to be drawn randomly from among all voters in California and asked whom they will
vote for governor, then the set of all sequences of 100 Californian voters would be the sample space
Ω. We assume that sampling without replacement is used: only sequences of 100 different voters are
allowed. For simplicity an ordered sample is considered, that is a sequence {Alice,Bryan} is different
from {Bryan,Alice}. We also take for granted that each potential voter knows exactly his/her future
choice, that is he/she doesn’t choose randomly.
Alice knows only whether or not Arnold Schwarzenegger has received at least 60 votes. Her incomplete
information is described by the σ-algebra FAlice that contains:

1. the set of all sequences in Ω where at least 60 people vote for Schwarzenegger
2. the set of all sequences where fewer than 60 vote for Schwarzenegger
3. the whole sample space Ω
4. the empty set ∅

Bryan knows the exact number of voters who are going to vote for Schwarzenegger. His incomplete
information is described by the corresponding partition Ω = B0⊔B1 . . . B100 and the σ-algebra FBryan
consists of 2101 events.
In this case Alice’s σ-algebra is a subset of Bryan’s: FAlice ⊂ FBryan. Bryan’s σ-algebra is in turn a
subset of the much larger "complete information" σ-algebra 2Ω consisting of 2n(n−1)...(n−99) events,
where n is the number of all potential voters in California.

Now if we move to uncountable outcome spaces, then things are not as nice, which is why we need to
machinery of measure theory to study them. Let us try to model a probability measure on Ω = [0, 1]. It
is uncountable, and it turns out that 2Ω has cardinality strictly greater than even the continuum. If we
try to model a uniform probability measure P, then for some subset A ∈ 2Ω, it should be the case that
P(A) = P(A⊕ k), where A⊕ k is just some translated version of A still contained within [0, 1]. This applies
to singleton sets, and it turns out that if we try to assign a nonzero probability measure to any singleton
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{k}, then the probability measure of Ω blows up to infinity, which we can’t have. So the only thing we can
do is have every singleton have zero probability. Remember that a measure by definition has the countable
additivity property, which says that

µ

( ∞⊔
k=1

Ak

)
=

∞∑
k=1

µ(Ak) (56)

for all countable collections {Ak}. Summation is not defined for uncountable collections, and so having a
probability 0 on every singleton does not imply that the probability of any uncountable set has is 0. That
is, having P({k}) = 0 for all k ∈ [0, 1] does not tell you what P([0, 1]) is. So now rather than assigning
probabilities to singletons, like we did with discrete sets, the approach is to assign probabilities directly to
our event space F . We can do this by directly assigning the Lebesgue measure to the Borel algebra of [0, 1],
which has the properties

1. P((a, b)) = P([a, b)) = P((a, b]) = P([a, b]) = b− a

2. Translation invariance as stated above.

Over uncountable Ω, we cannot afford to work with 2Ω, since there is an impossibility theorem that says
that there is no measure defined on 2[0,1] with the two properties above. Therefore, we must work with a
smaller σ-algebra. Since the subsets of interest are usually intervals (or more generally, open sets), people
usually take the Borel σ-algebra of open intervals on [0, 1]. The Lebesgue measure on R is not a probability
measure since it λ(R) = ∞, but we can construct a uniform probability measure on any bounded set of R.
Usually, these continuous probability spaces are Rn, and we define some measure µ directly on its σ-algebra.

Definition 1.9 (Atom)

Let (Ω,F ,P) be uncountable. If for some ω ∈ Ω, P({ω}) ̸= 0, then ω is called an atom.

Now, given a general (discrete or continuous, or a combination of both) distribution, the set of all the atoms
are an at most countable (maybe empty) set whose probability is the sum of probabilities of all atoms (by
countable additivity). That is, given ω1, ω2, . . . atoms,

P
( ∞⊔
i=1

{ωi}
)

=

∞∑
i=1

P({ωi}) (57)

1. If this sum is equal to 1 then all other points can be safely excluded from the sample space Ω, returning
us to the discrete case.

2. If this sum is 0 then we just have some continuous sample space. This means P({ω}) = 0 for all ω ∈ Ω,
and so Ω must be uncountable (since if it was countable, then we should be able to sum the P({ω})’s
to get 1, but it’s 0). Remember that summation is only defined for at most countable elements.

3. If the sum of probabilities of all atoms is strictly between 0 and 1, then the probability space decomposes
into a discrete, atomic part and a non-atomic, continuous part.

1.2.3 Conditioning on Events

Definition 1.10 (Conditional Probability w.r.t. Events)

Given a measure space (Ω,F ,P), letB be an event such that P(B) > 0. The conditional probability
of A given B is defined

P(A | B) =
P(A ∩B)

P(B)
(58)

Note that we can’t condition on events that have probability 0, which is why we need the P(B) > 0 condition.
If this is the case, it doesn’t even make sense to talk about a conditional probability P(A | B). For example,
if we take the probability space [0, 1] with its Borel algebra and the Lebesgue measure, then we cannot
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condition something on the rationals, e.g. P({ω < 0.5} | ω ∈ Q) does not make sense. In fact, doing so can
lead to contradictions, one being the Borel-Kolmogorov paradox.

An extremely useful theorem is that the conditional probability taken as a measure gives us a new viable
measure on the same probability space Ω.

Theorem 1.6 ()

Given probability space (Ω,F ,P), let B ∈ F with P(B) > 0. Then, P(· | B) : F −→ [0, 1] is a
probability measure on (Ω,F).

Proof.

We prove the properties of a probability measure.
1. The empty set has measure 0.

P(∅ | B) =
P(∅ ∩B)

P(B)
=

P(∅)
P(B)

=
0

P(B)
= 0 (59)

2. The entire space has measure 1.

P(Ω | B) =
P(Ω ∩B)

P(B)
=

P(B)

P(B)
= 1 (60)

3. Countable additivity of disjoint events. Let Ai ∈ F for i = 1, 2, . . . which are disjoint. Then,
their union is in F by definition of σ-algebra. Now,

P
( ∞⋃
i=1

Ai

∣∣∣∣B)
=

1

P(B)
P
[( ∞⋃

i=1

Ai

)
∩B

]

=
1

P(B)
P
[ ∞⋃
i=1

(Ai ∩B)

]

=
1

P(B)

∞∑
i=1

P(Ai ∩B)

=

∞∑
i=1

P(Ai ∩B)

P(B)
=

∞∑
i=1

P(Ai | B)

Lemma 1.3 (Law of Total Probability)

Suppose A1, A2, ..., An is a partition of Ω. Then,

{B ∩Ak}nk=1 (61)

is a partition of B, and

P(B) =

n∑
k=1

P(B|Ak)P(Ak) (62)

This is also called the Partition rule.
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Theorem 1.7 (Bayes Rule)

Let A,B ∈ F . Then,

P(B | A) = P(A | B)P(B)

P(A)
(63)

Proof.

We know that
P(A | B) =

P(A ∩B)

P(B)
and P(B | A) = P(B ∩A)

P(B)
(64)

and so we can write
P(A | B)P(B) = P(A ∩B) = P(B | A)P(A) (65)

1.3 Distributions, Random Variables, Measurable Functions
Random variables are motivated by the following. When you have a random experiment, the experimenter
may not be interested in the specific elementary outcomes. So if you have sample space Ω, you may not be
concerned about what ω ∈ Ω shows up, but more interested in some numerical function of the elementary
outcome. For example, if you toss a coin 10 times, you’re not interested in what sequence in {0, 1}10 shows
up, but you may want to just know how many heads came up. In other words, your interest defines a
numerical function X : Ω → R. This is useful, since in many cases the sample space Ω can be extremely
complicated (e.g. the sample space of all weather conditions) and the elementary outcomes also complicated,
so you may want to know some simpler aspect (e.g. the temperature).

The name "random variable" is very misleading. It’s not random nor a variable. It is a deterministic function
X : (Ω,F ,P) −→ R that assigns numbers to outcomes. The only source of randomness itself is which ω ∈ Ω
is chosen. But we can’t just choose any function on Ω; they must satisfy the nice property of measurability.
Now, to talk about random variables, recall that the definition of a measurable function f : (X,A) −→ R
is one where the preimage of every Borel set B ∈ R is in A. With a potential measure µ, this allows us to
define the Lebesgue integral of f . Note that this is also equivalent to the more easily provable fact that the
preimage of every half-interval (−∞, t) is in A. That is, f−1((−∞, t]) ∈ A for all t ∈ R.

Definition 1.11 (Random Variable)

A random variable X on probability space (Ω,F ,P) is an F-measurable function X : (Ω,F ,P) −→
R. That is, for every subset B ∈ R, its preimage

X−1(B) = {ω ∈ Ω | X(ω) ∈ B} ∈ F (66)

The reason we want X to be F-measurable is because now we can define probabilities on Borel sets B of
R by computing the probabilities of the preimage of B, which must be F-measurable. In a way, a random
variable "pushes forward" the probability measure P, originally defined on F , to R.

Definition 1.12 (Probability Law of Random Variable X)

Let X be a random variable on probability space (Ω,F ,P). The probability law of X is a function
PX : R −→ [0, 1] defined, for each Borel set B of R, as

PX(B) := P
(
X−1(B)

)
= P

(
{ω ∈ Ω | X(ω) ∈ B}

)
(67)

Note that P refers to the probability measure on F , and PX refers to the probability law on R. In
shorthand, we can write PX = P ◦X−1. By abuse of notation, it is generally written

P(X ∈ B) (68)
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It is important to get used to this notation. Whenever we write P(X . . .), we are always working in
the probability law of X. Furthermore, whatever condition we put within the parentheses describes
a measurable set. For example,

1. P(X = x) describes the probability law of X evaluated on the set {x}.
2. P(X ≤ x) describes the probability law of X evaluated on the set (−∞, x].
3. P(Y ≤ y) describes the probability law of Y evaluated on the set (−∞, y].
4. P(a ≤ Y < b) describes the probability law of Y evaluated on the set [a, b).
5. P(Z ∈ Q) describes the probability law of Z evaluated on the set Q.

Theorem 1.8 (σ-Algebra Generated by Random Variable X)

Given probability space (Ω,F ,P) and a random variable X, PX is a probability measure on (R,R).
Now, it turns out that the collection of all preimages of Borel sets under X forms a σ-algebra on Ω.
We call it

σ(X) :=
{
A ⊂ Ω | A = X−1(B) for some B ∈ R

}
(69)

which is a σ-algebra of Ω. Since X is a measurable function, every X−1(B) is F-measurable, and so
σ(X) is a sub-σ-algebra of F . It is never the case that σ(X) ⊃ F , since that means that X itself is
not F-measurable.

Theorem 1.9 ()

Given (Ω,F ,P) and a random variable X : Ω → R, let us define a probability law PX = P ◦ X−1.
Then,

(R,R,PX) (70)

is a probability space.

This theorem is extremely useful, since in practical applications, one does not consider an abstract Ω and
works immediately in R. Once we have determined our numerical values of interest (heads or tails, number
of heads, sum of dice rolls) with our random variable X, we can just throw away (Ω,F ,P) and work directly
in probability space (R,R,PX). Therefore, we don’t actually control Ω by explicitly defining it as we said
before.

We could just leave Ω to be some arbitrary large set, and construct an appropriate random variable X that
will generate an appropriate σ-algebra σ(X) that captures the information of the experiment. This allows us
to "simplify" the σ-algebra F to the scope of the random variable. That is, let Ω be the sample space of all
trajectories of a coin flip before it comes to rest. If we are just looking at whether it is heads or tails, we can
define X to have image {0, 1}. Then, σ(X) will be a sub-σ-algebra of F that looks at only the four subsets
∅,Ω, the set of all trajectories landing heads, and the set of all trajectories landing tails. This simplifies F
to a scope that we are interested in.

Let us review once more on the hierarchy of random variables. We usually classify random variables X by
the smallest σ-algebra that they generate, which is σ(X). That is, not only is X σ(X)-measurable, but for
all σ-algebras G s.t. σ(X) ⊂ G ⊂ F , X is also G-measurable. Remember, since this is the case, the only
relevant measure on these random variables is how coarse/small σ(X) is.

1. The finest random variable has σ(X) = F .

2. The coarsest random variable is a constant random variable, which has σ(X) to be the trivial σ-algebra
H = {∅,Ω}. Note that a constant random variable is still F-measurable.

3. Every other random variable X has H ⊂ σ(X) ⊂ F .
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1.3.1 Cumulative Distribution Function

Now, remember that the Borel algebra R is generated by the semi-infinite intervals of form (−∞, t] (for all
t ∈ R), which are considered "nice" Borel sets. So, PX((−∞, t]) is well defined for all t ∈ R. In fact, this
has a name, and when we talk about the "distribution" of some random variable, we refer to the CDF.

Definition 1.13 (Cumulative Distribution Function)

Given (Ω,F ,P) and a random variable X : Ω → R. Then, the cumulative distribution function
of X is defined

FX(x) = P
(
{ω ∈ Ω | X(ω) ≤ x}

)
(71)

We can also define this with the probability law PX as

FX(x) = PX
(
(−∞, x]

)
(72)

By abuse of notation, we will write the CDF as P (X ≤ x). It satisfies the properties:
1. Limits:

lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1 (73)

2. Monotonicity:
x ≤ y =⇒ FX(x) ≤ FX(y) (74)

3. Right-continuity: For all x ∈ R

lim
ϵ→0+

FX(x+ ϵ) = FX(x) (75)

So, if there are jumps, the hole can exist as the function approaches a value from the left.
What is remarkable is that any function satisfying these three properties satisfies these 3 properties
gives you a viable CDF (and as shown below, completely determines a unique random variable).

So if you give me the probability law for all Borel sets of R, then I can easily define the CDF since (−∞, x]
are also Borel sets. It turns out that if we know just the CDF, then since the semi-infinite intervals form a
generating class of R, it turns out that we can completely define PX . The proof of the theorem below is a
bit more involved, using π-systems, but it is good to know.

Theorem 1.10 ()

The CDF FX(·) uniquely specifies the probability law PX for any random variable X.

To summarize, given a probability space (Ω,F ,P), a random variable just pushes a measure onto the measure
space (R,R). If we only care about the values of the random variable, then we can forget about Ω and only
look at (R,R,PX). The CDF on (R,R,PX) will be well defined since semi-finite intervals are also Borel.
If I am just given a CDF FX(·), then this is enough for me to specify a unique probability measure PX on
(R,R). So although PX contains the complete description of the random variable X, in practice we will use
FX since it also captures all the information of X and it’s easier to work with.

1.3.2 Types of Random Variables

You classify random variables based on the nature of the measure PX induced on the real line. Note that
we can have a continuous probability space Ω with a discrete random variable X (e.g. coin flips). There are
only three fundamental types of measures: discrete, continuous and singular random variables. In fact, a
result in measure theory called Lebesgue’s Decomposition Theorem says that every measure on R are either
one of these 3 or mixtures thereof. We are used to the first two; the third one is very bizzare and has little
to no practical applications.

Note that if we are working in a discrete probability space Ω, then we can simply take the σ-algebra to be
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2Ω, and so we can take any function on Ω as a random variable since its preimage will always be in 2Ω.

Definition 1.14 (Discrete Random Variable)

Given (Ω,F ,P), let us have a random variable X that induces a probability law on (R,R). X is
said to be discrete if there exists a countable set E ⊂ R s.t. PX(E) = 1 (i.e. E’s preimage has
probability measure 1). Since E is at most countable, we can enumerate it E = {e1, e2, . . .}, and by
countable additivity of disjoint sets, we have

1 = PX(E) = P

( ∞⋃
i=1

{ei}
)

=

∞∑
i=1

PX({ei}) =
∞∑
i=1

P (X = ei) (76)

and for any B ∈ R,
PX(B) =

∑
x∈E∩B

P (X = x) (77)

Therefore, the entire probability measure is determined by the probabilities of the singleton sets
P (X = ei). Therefore, the function

pX(x) := P (X = x) (78)

is called the probability mass function of X, and we can compute using the Lebesgue integral,
which reduces to the summation:

PX(B) =

∫
B

pX(x) dPX =
∑

x∈E∩B
pX(x) (79)

Sometimes, the definition of discrete X involves having a countable image in R, but our definition allows us to
have some B ∈ R where its preimage is not necessarily the sample space Ω, but a smaller subset of measure
1. What’s nice about the discrete random variable is that the probability mass function pX completely
describes its probability law. The CDF of a discrete probability function will look like an increasing series
of steps. If we have E = {e1, e2, e3, e4, e5}, its CDF would look like:

If E was countable, then it would have countably infinite discontinuities. Now we’ll give some examples of
discrete random variables, and in here we’ll completely ignore the sample space Ω, since once we have a
random variable X, we can just work in (R,R,PX). Remember that we will write P (X = x) as shorthand
for PX({x}).

Definition 1.15 (Indicator/Bernoulli Random Variable)

Given (Ω,F ,P), let A ∈ F be an event. A useful random variable is the indicator random variable
1A : Ω −→ R defined

1A(ω) =

{
1 if ω ∈ A

0 if ω ̸∈ A
(80)

This is a random variable since the preimages of ∅, {0}.{1}, {0, 1} are ∅, Ac, A,Ω, which are all F-
measurable. Since the probability measure of A is P(A) = p, then P(Ac) = 1− P(A) = 1− p, and so
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we get the PMF

p1A(x) =

{
1− p if x = 0

p if x = 1
(81)

The CDF of this function will look like a step function

F1A(x) =


0 if x < 0

P (Ac) if 0 ≤ x < 1

1 if 1 ≤ x

(82)

Example 1.10 (Uniform Random Variable)

Given a finite set E = {ei}ni=1 ⊂ R, we define the PMF as

pX(ei) = P(X = ei) =
1

n
∀i = 1, 2, . . . n (83)

which induces the probability measure PX(B) =
∑
x∈E∩B pX(x).

The Bernoulli RV leads to the geometric and binomial random variables.

Example 1.11 (Geometric Random Variable)

Given E = N, we can define the PMF associated with random variable X ∼ Geometric(p) as

pX(k) = P(X = k) = (1− p)k−1p for k ∈ N, p ∈ [0, 1] (84)

which induces the probability measure PX(B) =
∑
x∈E∩B pX(x). We can interpret this as the number

of times you have to (independently) toss a p-coin (probability of heads is p) until you get a heads.

Example 1.12 (Binomial Random Variable)

We let E = N0 and define the PMF associated with random variable X ∼ Binomial(n, p) as

pX(k) = P(X = k) =

(
n

k

)
pk(1− p)n−k for k ∈ E, p ∈ [0, 1] (85)

We can interpret this as the number of heads occurring in a sequence of n independent tosses of a
p-coin.

Example 1.13 (Poisson Random Variable)

We let E = N0 and define the PMF of X ∼ Poisson(λ) as

pX(k) =
e−λλk

k!
for k ∈ E, λ > 0 (86)
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Definition 1.16 (Negative Binomial Distribution)

The negative binomial distribution, denoted NB(r, p) is defined as

P(X = x) ≡
(
k + r − 1

k

)
(1− p)r pk (87)

It can be interpreted as the distribution that models the number of successes in a sequence of iid
Bernoulli-p trials before a specified number r failures occurs.

A slight generalization of a discrete random variable is a simple random variable. Recall that the indicator
random variable is a function 1A : Ω → R defined

1A(ω) :=

{
1 if ω ∈ A

0 if else
(88)

As simple random variable generalizes this into multiple sets that form a partition of Ω. It is analogous to
a simple function, introduced in measure theory.

Definition 1.17 (Simple Random Variable)

Let {Ai}i form a partition of probability space Ω. A simple random variable X is a random
variable of the form

X(ω) =
∑
i

ai1Ai
(ω) (89)

that assigns value ai if the input ω ∈ Ai.

Now, let’s move on to continuous random variables.

Definition 1.18 (Absolutely Continuous Measures)

Let µ, ν be measures defined on (Ω,F). We say that ν is absolutely continuous w.r.t. µ if for
every N ∈ F s.t. µ(N) = 0, we have ν(N) = 0.

Definition 1.19 (Continuous Random Variable)

A random variable X is continuous if its induced measure PX : (R,R) → [0, 1] is absolutely contin-
uous w.r.t. the Lebesgue measure λ : (R,R) → R, i.e. if for every Borel set N of Lebesgue measure
0, we have PX(N) = 0 also.

A common misconception is that a random variable X is continuous if the induced measure on every singleton
set in B(R) is 0, i.e. PX({x}) = 0 for all x ∈ R. The definition above implies this since the Lebesgue measure
of every singleton set is 0.

We introduce a theorem that is useful to know, but we won’t prove it.

Theorem 1.11 (Radon-Nikodym Theorem (Special Case))

Let X be a continuous random variable. Then, there exists a nonnegative measurable function
fX : R −→ [0,∞) s.t. for any B ∈ R, we have

PX(B) =

∫
B

fX dλ (90)

where the above is the Lebesgue integral. Note that we must define using the Lebesgue integral
because Riemann integral is not compatible with any Borel set. fX is called the probability den-
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sity function, aka PDF. Furthermore, we can get fX from PX by taking the Radon-Nikodym
derivative (which we will not define now)

fX =
dPX
dλ

(91)

which basically says that if we have a set of very small Lebesgue measure dλ tending to 0, then its
probability measure PX will also be very small, and the infinitesimal ratio of these two measures on
an arbitrarily small set is fX . Also, note that the integral does not change if the value of f changes on
sets of Lebesgue measure 0, and so there is no unique PDF describing PX . It is unique up to sets of
Lebesgue measure 0, so when we refer to such a PDF fX , we are really talking about an equivalence
class of functions.

This theorem guarantees the existence of some fX that completely describes the probability law PX ! Take
a special case of when B = (−∞, x]), and we can define the CDF as

FX(x) = PX((−∞, x]) =

∫
(−∞,x]

fX dλ (92)

If the set of integration is an interval (and the function is continuous a.e.), then the Lebesgue integral and
Riemann integral coincides, and we get the familiar formula

FX(x) =

∫ x

−∞
fX(t) dt (93)

and we can differentiate it to get back the PDF fX (or more accurately, some function that agrees with fX
a.e.). We can show that the CDF of a continuous random variable X

1. is absolutely continuous, and

2. is differentiable almost everywhere, which means that its PDF will be defined almost everywhere (and
we can fill in the undefined points however we want).

Note that the PDF fX itself has no interpretation as a probability (indeed, we can change its value at a
countable number of points to anything we want). It is only when we integrate it over some Borel set that
gives us a probability.

Example 1.14 (Uniform Random Variable)

Let us define the uniform probability measure PX on (R,R) with the CDF

FX =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if 1 < x

(94)

It is differentiable almost everywhere except for at the two points x = 0 and x = 1. Therefore, the
PDF fX is defined for all real numbers except x = 0 and x = 1. But it doesn’t matter: we can assign
any value fX we want on 0 and 1 since it won’t affect the integral of it. In this example, we just set

fX =

{
1 if 0 ≤ x ≤ 1

0 if else
(95)

22/ 110



Probability Theory Muchang Bahng Spring 2023

Example 1.15 (Exponential Random Variable)

The exponential random variable has the following CDF:

FX(x) =

{
1− e−λx if x ≥ 0

0 if x < 0
for λ > 0 (96)

which is differentiable everywhere except at x = 0. Differentiating it (and assigning a convenient
value at x = 0 f(0) = λ) gives the PDF

fX(x) =

{
λe−λx if x ≥ 0

0 if else
(97)

Example 1.16 (Gaussian Random Variable)

The PDF is easier to specify for the Gaussian, so we define the Gaussian RV as having PDF

fX(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
for µ ∈ R, σ > 0 (98)

Note that this PDF decreases very quickly as we get further from µ. The CDF cannot be written in
closed form, and we call the CDF of the standard Gaussian the error function:

Erf(x) = FX(x) =

∫ x

−∞

1√
2π
e−t

2/2 dt (99)

Example 1.17 (Cauchy Random Variable (Standardized))

The Cauchy random variable gives the PDF

fX(x) =
1

π

1

1 + x2
for x ∈ R (100)

Integrating this gives the inverse tangent, which after scaling it down by π satisfies the conditions of
the CDF. Note that the Cauchy distribution falls off much more slowly around the mean (at a rate
of 1

1+x2 , like a power law) than the Gaussian (which is even faster than an exponential, it is at the
rate of e−x

2

). If such a PDF falls off at a slow rate, like a power law, then this is called a heavy-tailed
random variable.

Example 1.18 (Gamma Random Variable)

The PDF associated with random variable X ∼ Gamma(n, λ) is defined

fX(x) =
λnxn−1

Γ(n)
e−λx for x ≥ 0 (101)

where Γ is the gamma function, which is an extension of the factorial function to the domain of
complex numbers.

Γ(x) :=

∫ ∞

0

zx−1e−z dz, Re(x) > 0 (102)
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Example 1.19 (Beta Random Variable)

The PDF associated with random variable X ∼ Beta(α, β), for positive reals α, β, is defined

fX(x) ≡ xα−1 (1− x)β−1

B(α, β)
, where B(α, β) ≡ Γ(α)Γ(β)

Γ(α+ β)
(103)

and Γ is the Gamma function.

Example 1.20 (Uniform RV defined on Cantor Set)

The cantor set C ⊂ [0, 1] is defined by removing (1/3, 2/3) from [0, 1] and then removing the middle
third from each interval that remains. We define the distribution on this set by defining its CDF: We
set

1. F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1.
2. F (x) = 1/2 for x ∈ [1/3, 2/3],
3. F (x) = 1/4 for x ∈ [1/9, 2/9] and F (x) = 3/4 for x ∈ [7/9, 8/9], ...

and extend F to all of [0, 1] using monotonicity.

Example 1.21 (Dense Discontinuities)

Let q1, q2, . . . be an enumeration of the rationals. Let αi > 0 have
∑∞
i=1 αi = 1, and let

F (x) =

∞∑
i=1

αi1[qi,∞)(x) (104)

where 1[qi,∞)(x) = 1 if x ∈ [qi,∞) and 0 if otherwise.

To summarize, once we have a random variable X : Ω → R, we can throw away the sample space and work
in (R,R,PX) with the induced measure PX , which is known as the probability distribution of X.

1. If X is discrete, then let there be some at most countable set E = {ei} where P (E) = 1. it turns out
that PX can be completely defined by a probability mass function pX : R → R defined

pX(x) = PX({x}). (105)

Given that we have this PMF , we can define PX as such: Given any Borel B ∈ R,

PX(B) =
∑

x∈E∩B
pX(x) (106)

2. IfX is continuous, then the Radon-Nikodym Theorem asserts the existence of a nonnegative probability
density function fX that completely describes the probability law PX . Given that we have this PDF,
we can then define PX as such: Given any Borel B ∈ R,

PX(B) =

∫
B

fX dλ (107)

1.3.3 Space of Measurable Functions

Now it turns out that the space of F-measurable functions X : Ω → R forms a function space, which means
that the set of all random variables on Ω forms a vector space. We formally show it here.
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Lemma 1.4 ()

The set of all F-measurable functions X : (Ω,F) → R forms a vector space, denoted LF (Ω;R), or
LF (Ω) for short.

Proof.

Naturally, we can put the Lp-norm on this space, defined

||X||p :=
(∫

Ω

|X|p dP
)1/p

(108)

Moreover, if p = 2, then we can put an inner product defined

⟨X,Y ⟩ =
(∫

Ω

XY dP
)1/2

(109)

Definition 1.20 ()

The Banach space of F-measurable functions is denoted LpF (Ω), and the Hilbert space is denoted
L2
F (Ω).

This means that if we have some probability space (Ω,F ,P) and sub-σ-algebra G ⊂ F , then any G-measurable
function is also F-measurable, since if the preimage of every B ∈ R is in G, then it B ∈ F . This immediately
results in the following.

Theorem 1.12 ()

If G is a sub-σ-algebra of F , then LG(Ω) is a subspace of LF (Ω).

This means that as we get coarser and coarser random variables, the space in which these random variables
live in get smaller and smaller, until we get to the constant random variables, which form a 1-dimensional
line in LF (Ω). The origin is simply the constant 0 random variable.

1.4 Independence

Definition 1.21 (Independence of 2 Events)

Given probability space (Ω,F ,P), events A,B ∈ F are said to be independent under P if

P(A ∩B) = P(A)P(B) (110)

This leads to the immediate property that if P(B) > 0, with A,B independent, then

P(A | B) = P(A) (111)

Note that A and B may be independent under one measure, but not under another measure. The property
that P(A | B) = P(A) is not the definition of independence, since it has the more restricting property that
P(B) > 0, so only refer to the definition that P(A∩B) = P(A)P(B). This is the true definition of independent
events that we should rely on, not the one that says that A and B are independent if "one does not affect
the other." This old definition is misleading and false. For example, take the probability space [0, 1], with
Borel σ-algebra, and Lebesgue measure P = λ, and let A = Q and B = R \ Q. Then, contradictory to our
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old definition, A and B are independent since P(A ∩ B) = P(A)P(B) = 0! By the definition, an event A is
independent of itself if P(A) = 0 or 1 (e.g. A is rationals, irrationals, cantor set, ∅, Ω, etc.).

Definition 1.22 (Independence of n Events)

Given probability space (Ω,F ,P),
1. Let us have a finite collection of events A1, A2, . . . , An ∈ F . They are independent if for all

nonempty I0 ⊂ {1, 2, . . . n},

P
( ⋂
i∈I0

Ai

)
=

∏
i∈I0

P(Ai) (112)

Note that it is not enough to just prove that

P(A1 ∩ . . . ∩An) =
n∏
i=1

P(Ai) (113)

We must verify this for all 2n possible choices (to be precise, we don’t need to prove for I0 = ∅
and I0 = {Ai}), so for 2n − n− 1 choices.

2. Let {Ai}i∈I be a collection of events indexed by a possibly uncountable I. They are independent
if for all nonempty and finite I0 ⊂ I, we have

P
( ⋂
i∈I0

Ai

)
=

∏
i∈I0

P(Ai) (114)

Now when we are trying to compare two σ-algebras, the measure defined for one may not even be defined on
the other. To ensure that a measure is defined on both, it makes sense to take its σ-algebra and construct
two sub-σ-algebras, which µ is guaranteed to be defined on.

Definition 1.23 (Independence of σ-Algebras)

Let us have probability space (Ω,F ,P).
1. Let F1,F2 be two sub-σ-algebras of F . F1 and F2 are independent if for any A1 ∈ F1, A2 ∈ F2,
A1 and A2 are independent.

2. Let {Fi}i∈I be an arbitrary collection of sub-σ-algebras of F , indexed by possibly uncountable
I. Then, they are independent if for any choices of Ai ∈ Fi for i ∈ I, {Ai}i∈I are independent
events.

Definition 1.24 (Independent Random Variables)

Two random variables X,Y are independent if σ(X) and σ(Y ) are independent σ-algebras. That
is, for any Borel sets B1, B2 ∈ R, the events X−1(B1) and Y −1(B2) are independent:

P
[
X−1(B1) ∩ Y −1(B2)

]
= P(X−1(B1))P(Y −1(B2)) (115)

or by abusing notation,
P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)P(Y ∈ B2) (116)

If X,Y are independent, then we can say something about the CDFs

FX,Y (x, y) = FX(x)FY (y) (117)

In fact, we can say something stronger.
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Theorem 1.13 ()

X and Y are independent RVs if and only if

FX,Y (x, y) = FX(x)FY (y) (118)

Moving onto multiple variables, we can define that X1, X2, . . . , Xn are independent RVs if σ(X1), . . . , σ(Xn)
are independent σ-algebras.

1.5 Functions of Random Variables
In many applications, it happens that we are interested not in the value of the random variable X, but a
function of it. That is, given a probability space (Ω,F ,P), let us have a random variable X : Ω → R. We
can then define another function f : R → R and consider the potential random variable f ◦X : Ω → R. We
say potential because we don’t know yet whether f ◦X is measurable (i.e. the preimage of every Borel set
in R is in F). This condition suffices if f itself is a measurable function, i.e. for every Borel set B ∈ R, its
preimage f−1(B) is Borel in R, and by measurablility of X, its preimage under X is F-measurable, making
f ◦ X a viable random variable. With this new random variable f ◦ X, we would now like to answer the
question: What is the probability law Pf◦X of R?

This also works for joint random variables, which we will learn later. Given a joint random variable
(X1, X2, . . . Xn) : Ω → Rn, we can define a measurable function f : Rn −→ R and define the scalar
random variable f ◦ (X1, . . . Xn) on Ω. But again, we want to find what the CDF of this composition.

1.5.1 Maximum/Minimum of Random Variables

Let X1, X2, . . . , Xn be random variables of (Ω,F ,P) with joint CDF FX1...Xn(x1, . . . , xn). Let Yn =
min(X1, . . . , Xn) and Zn = max(X1, . . . , Xn). Note that Yn and Zn are also functions of Ω to R. To
prove that they are random variables, we just have to prove that min and max are measurable functions
from Rn to R, which we can do by proving that the preimage of all semi-infinite interval (−∞, x] are Borel
in Rn.

1. The preimage of (−∞, x] under max is just the set of all n-vectors whose max is less than x, which is
just the semi-infinite cuboid (−∞, x]n ⊂ Rn, which is Borel in Rn.

2. The preimage of (−∞, x] under min is the set of all n-vectors whose min is less than x, i.e. at least
one element must be less than x. But this is just the complement of all vectors that have elements all
greater than x, which is Rn \ (x,+∞)n ⊂ Rn, which is Borel in Rn.

Now we must determine the CDF of Yn and Zn.

1. We have

FZn(z) = P({ω | Zn(ω) ≤ z})
= P({ω | X1(ω) ≤ z, . . . , Xn(ω) ≤ z})
= FX1...Xn(z, . . . , z)

where the last equality is describes simply the joint CDF of the joint distribution (X1, . . . , Xn). If we
assume independence of Xi’s, it simplifies out to∏

i

FXi
(z) (119)

and if iid, then we have [FX(z)]n, where X is the common distribution.
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2. For Yn, we work with complements again and have

FYn
(y) = P({ω | Yn(ω) ≤ y})

= 1− P({ω | Yn(ω) > y})
= 1− P({ω | X1(ω) > y, . . .Xn(ω) > y})

where P({ω | X1(ω) > y, . . .Xn > y}) can be calculated from the joint distribution. If we assume
independence of Xi, it simplifies out to

1−
∏
i

P({ω | Xi(ω) > y}) = 1−
∏
i

(
1− FXi(y)

)
(120)

and if iid, then we have 1− [1− FX(y)]n.

Example 1.22 (Uniforms)

Let X1, X2 be iid distributed as Uniform[0, 1], and let Z = max(X1, X2) with Y = min(X1, X2), i.e.
Z is the greater of the two and Y is the lesser. We would expect the PDF of Z to have more mass
towards 1 and the PDF of Y to have more mass towards 0. Our common CDF is

FX(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if 1 < x

(121)

Let’s calculate the CDF of Z.

FZ(z) = P({ω | Z(ω) ≤ z})
= P({ω | X1(ω) ≤ z,X2(ω) ≤ z})
= FX1,X2(z, z)

= [FX(z)]2 =


0 if x < 0

x2 if x ∈ [0, 1]

1 if 1 < x

This CDF is differentiable everywhere except the two points 0 and 1, so we can get the PDF to be
fZ(z) = 2z for z ∈ (0, 1) and 0 otherwise. For the values of fZ at 0 and 1, we can fill it in with
anything we want (since the measure of these sets are 0), so we will just defined fZ(0) = 0 and
fZ(1) = 2, getting

fZ(z) =

{
2z if z ∈ [0, 1]

0 if else
(122)

Let’s calculate the CDF of Y .

FY (y) = P({ω | Y (ω) ≤ y})
= 1− P({ω | Y (ω) > y})
= 1− P({ω | X1(ω) > y,X2(ω) > y})
= 1− P({ω | X1(ω) > y})P({X2(ω) > y})

= 1− [1− FX(y)]2 =


0 if y < 0

1− (1− y)2 if y ∈ [0, 1]

1 if y > 1

and differentiating it (with setting any values of the PDF at the nondifferentiable points 0 and 1)
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gives

fY (y) =

{
2− 2y if y ∈ [0, 1]

0 if else
(123)

Example 1.23 (Exponentials)

Let X1, X2, . . . , Xn be independent exponential random variables with parameters λ1, . . . , λn, respec-
tively (not identical!). Then, for each Xi, its CDF is

FXi
(x) = 1− e−λix for x ≥ 0 (124)

and let Y = min(X1, . . . , Xn). Then, we have

FY (y) = 1−
n∏
i=1

[1− FXi(y)]

= 1−
n∏
i=1

e−λix

= 1− e−(
∑n

i=1 λi)x

which is the CDF of an exponential distribution. So,

Y ∼ Exponential(λ1 + . . .+ λn) (125)

This is nice, since the minimum of a bunch of exponentials is an exponential. However, this is not
the case for the maximum.

This has nice practical applications. For example, recall the memoryless property of the exponential, which
nicely models radioactive decay. If we have n elements each decaying at some Exponential(λi) rate, then
we can model the time at which the first alpha particle will emit amongst all n elements will also be an
exponential. These processes where the inter-emission times are exponentials are called Poisson process,
which we will discuss later.

Definition 1.25 (Order Statistic)

Let X1, X2, ..., Xn be a finite collection of independent, identically distributed random variables.
Suppose that they are continuously distributed with density f and CDF F . Define the random
variable X(k) to be the kth ranked value, called the kth order statistic. This means that

X(1) = min{X1, X2, ..., Xn}, X(n) = max{X1, X2, ..., Xn} (126)

and in general, for any k ∈ {1, 2, ..., n},

X(k) = Xj if
n∑
l=1

IXl<Xj
= k − 1 (127)

which means that exactly k − 1 of the values of Xl are less than Xj . Since F is continuous,

X(1) < X(2) < ... < X(n) (128)

holds with probability 1. This leads us to define the random variable X(k) representing the kth order
statistic.

f(k)(y) =

{
n
(
n−1
k−1

)
yk−1(1− y)n−k y ∈ (0, 1)

0 y ̸∈ (0, 1)
(129)

That is, X(k) has the Beta(k, n− k1) distribution.
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1.5.2 Convolutions and Sums of Random Variables

Now given two random variables X,Y : Ω → R that each push their own probability laws PX ,PY onto
R, their sum Z = X + Y is also a random variable that pushes its own probability law PZ . We must
actually prove that Z is a random variable, which we can do by proving that the preimage of every (−∞, x]
is F-measurable. Equivalently (by complementation), we must prove that the preimage of every (x,+∞)
(that is, all sets of form {ω | Z(ω) > z}) is F-measurable. Now we can write z as the sum of two numbers
z = q + (z − q), where q ∈ R, and say that

{ω | Z(ω) > z} =
⋃
q∈R

{ω | X(ω) > q, Y (ω) > z − q} (130)

But using the fact that Q is dense in R, we can turn this from an uncountable union to a countable union
and say

{ω | Z(ω) > z} =
⋃
q∈Q

{ω | X(ω) > q, Y (ω) > z − q} (131)

=
⋃
q∈Q

(
{ω | X(ω) > q} ∩ {ω | Y (ω) > z − q}

)
(132)

and since I have a countable union of (an intersection of) these F-measurable sets, {ω | Z(ω) > z} is
F-measurable, and we are done. This equation above even gives us a hint of how to compute the CDF of Z.

Theorem 1.14 ()

Given random variables X1, X2, . . . , Xn of probability space (Ω,F ,P),
1. X1 + . . .+Xn is a random variable.
2. X1 · . . . ·Xn is a random variable.

For simplicity, we will only consider jointly discrete or jointly continuous random variables. The probability
law PZ can be confusing to define, since given some Borel set B ∈ R, we must now look at the preimage
under the sum X +Y . A simpler way to approach this is to consider the joint distribution X,Y and look at
its distribution, which we call the convolution of X and Y . This is especially simple to consider for discrete
random variables.

Definition 1.26 (Sums of Discrete Random Variables)

Take two discrete random variables X,Y with their joint PMF pX,Y (x, y) and their sum Z = X +Y .
We can see that the PMF of Z is

pZ(z) =
∑

(x,y) : x+y=z

pX,Y (x, y) =
∑
x∈X

pX,Y (x, z − x) (133)

which by abuse of notation, we denote

P(Z = z) =
∑
x∈X

P(X = x, Y = z − x) (134)

The CDF is very simple, since we just have to sum over all (x, y) such that their sum is less than z:

FZ(z) =
∑

(x,y) : x+y≤z

pX,Y (x, y) (135)

which by abuse of notation, we write

P(Z ≤ z) =
∑

(x,y) : x+y≤z

P(X = x, Y = y) (136)
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If X and Y are independent, then their joint distribution is the product of their singular distributions,
and so we have

pZ(z) =
∑
x

pX(x) pY (z − x) := pX ∗ pY (137)

where pZ = pX ∗ pY is called the convolution of pX and pY . By abuse of notation,

P(Z = z) =
∑
x∈X

P(X = x)P(Y = z − x) (138)

Example 1.24 (Sums of Poisson RVs)

Let X1 and X2 be independent Poisson random variables with parameters λ1, λ2 > 0, and let Z =
X1 +X2. The PMF of each Xi is

pXi
(k) =

e−λiλki
k!

for k ∈ Z (139)

and taking the convolution gives the PMF of Z:

pZ(z) = (pX1
∗ pX2

)(z)

=

+∞∑
k=−∞

e−λ1λk1
k!

· e
−λ2λz−k2

(z − k)!

=

z∑
k=0

e−λ1λk1
k!

· e
−λ2λz−k2

(z − k)!

=
e−(λ1+λ2)

z!

z∑
k=0

(
z

k

)
λk1λ

z−k
2

=
e−(λ1+λ2)(λ1 + λ2)

z

z!

for z ∈ N0, which is the PMF of another Poisson. So, Z ∼ Poisson(λ1 + λ2).

This has a nice visualization, since the joint distribution ofX and Y over R2 is being "summed up/integrated"
over the diagonals of R2, i.e. the lines where x + y = z for some z, sort of like marginalizing over these
diagonals. This creates a new "diagonally marginal distribution" Z.

Definition 1.27 (Sums of Continuous Random Variables)

Take two continuous random variablesX,Y with their joint PDF fX,Y (x, y) and their sum Z = X+Y .
To calculate the CDF, we must basically integrate the joint PDF over the borel set {(x, y) ∈ R2 |
x+ y ≤ z}.

P(Z ≤ z) = FZ(z) =

∫
(x,y) : x+y≤z

fX,Y (x, y) dy dx

=

∫ +∞

−∞

∫ z−x

−∞
f(x, y) dy dx

We can see that the PDF of Z is

fZ(z) =

∫
R
fX,Y (x, z − x) dx (140)
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If X and Y are independent, then

fZ(z) =

∫
R
fX(x) fY (z − x) dx := fX ∗ fY (141)

where fZ = fX ∗ fY is the convolution of fX and fY .

Definition 1.28 (Convolution)

Given two functions f, g : R −→ R, the convolution of f and g is a new function f ∗ g defined

(f ∗ g)(t) :=
∫
R
f(t) g(t− τ) dτ (142)

Usually, when we take convolutions, it is not pretty and even for nice distributions like two Gaussians,
convolving them is quite complicated. What we can do is transform them (using Laplace, Fourier, etc.) to
make calculations easier and more elegant, which we will talk about later.

Example 1.25 ()

Let X1 and X2 be independent exponential with parameters λ1, λ2, with individual PDFs fXi
(x) =

λie
−λix for x ≥ 0. Let Z = X1 +X2. Then,

fZ(z) = (fX1
∗ fX2

)(z) =

∫ ∞

−∞
λ1e

−λ1x λ2e
−λ2(z−x) dx

=

∫ z

0

λ1e
−λ1x λ2e

−λ2(z−x) dx

= λ1λ2e
−λ2z

∫ z

0

e(λ2−λ1)x dx

=

{
λ1λ2

λ2−λ1

(
e−λ1z − e−λ−2z

)
if λ1 ̸= λ2

λ2ze−λz if λ1 = λ2 = λ

The distribution for when µ1 = µ2 is called the Erlang distribution, which has many applications,
but the other case is an ugly form and not studied very well.

Theorem 1.15 (Sums of Discrete Variables)

Assume that X and Y are independent.
1. X ∼ Binomial(n, p), Y ∼ Binomial(m, p) =⇒ X + Y ∼ Binomial(n+m, p).
2. X ∼ Poisson(λ), Y ∼ Poisson(γ) =⇒ X + Y ∼ Poisson(λ+ γ).
3. If X1, ..., Xn are Geometric(p), then X1 + ...+Xn is NB(n, p).

Theorem 1.16 (Sums of Densities)

Assume that X and Y are independent.
1. X ∼ Normal(µ1, σ

2
1), Y ∼ Normal(µ2, σ

2
2) =⇒ X + Y ∼ Normal (µ1 + µ2, σ

2
1 + σ2

2).
2. If X1, X2, ..., Xn are Exponential(λ), then X1 + ...+Xn ∼ Gamma(n, λ).
3. X ∼ Gamma(n, λ), Y ∼ Gamma(m,λ) =⇒ X + Y ∼ Gamma(n+m,λ).
4. X ∼ Gamma (n, λ), Y ∼ Exponential (λ) =⇒ X + Y ∼ Gamma(n+ 1, λ).
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1.5.3 Sum of Random Number of Random Variables

Now we consider a random variable where the number of terms we are summing is a random variable.
Let {Xi}i be a countable sequence of independent random variables with CDF FXi . Let N be a positive
integer-valued random variable with PMF pN (n) = P(N = n). Assume that N is independent of Xi’s. Now,
consider the function

SN :=

N∑
i=1

Xi (143)

To interpret this, consider the sample space Ω. We have all Xi’s and N defined on the same Ω. Once ω ∈ Ω
realizes, the {Xi}’s will realize as a sequence of numbers, and N will realize as a positive integer. We simply
sum them up according to the rule SN , and by this definition, SN is a real-valued function on Ω. We first
have to prove that SN is a random variable (since we only know that a fixed sum of random variables is a
random variable), and then we must find the CDF of SN P(SN ≤ x).

First, note that the realization of N partitions the sample space as

Ω =

∞⊔
n=1

{ω | N(ω) = n} (144)

Once I have this partition, I can invoke the partition rule and write

P(SN ≤ x) =

∞∑
k=1

P(SN ≤ x | N = k)P(N = k)

=

∞∑
k=1

P(Sk ≤ x | N = k)P(N = k) (conditioned on N = k)

=

∞∑
k=1

P(Sk ≤ x)P(N = k) (N is indep. of Xis)

where P(N = k) is known since we know the PMF of N , and the CDFs P(Sk ≤ x) can be computed by
computing the deterministic sums and computing their CDF.

Example 1.26 ()

Let Xi’s be iid Exponential(λ), and N ∼ Geometric(p). We know that the deterministic sum of iid
exponentials gives an Erlang. So, SN =

∑N
i=1Xi, and its CDF is

P(SN ≤ x) =

∞∑
k=1

P(Sk ≤ x)P(N = k) (145)

where P(N = k) = (1− p)k−1p. The PDF of the Erlang is

pSk
(x) =

λnxn−1

(n− 1)!
e−λx (146)

and doing the brute force calculations gives a clean SN ∼ Exponential(λp).

1.5.4 General Transformations of Random Variables

Now we will look at more general transformations that are not just minimum, maximum, deterministic sums,
or random sums. Let us have a probability space (Ω,F ,P), a random variable X : Ω → R, and a measurable
function f : R → R. Now given that we know the CDF (and therefore distribution) of X, we want to find
the CDF of random variable Y = f(X) = f ◦X (which we have established as a random variable already due
to measurability of f): FY (y) = P(Y ≤ y), which is just PY ((−∞, y]) (where PY is the probability law on
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Y ). But rather than trying to take the preimage of the entire composite random variable Y and calculating
P
(
Y −1((−∞, y])

)
under the probability on F , let’s just take the preimage one step at a time. Note that

f−1
(
(−∞, y]

)
= {x ∈ R | f(x) ≤ y}. We can then write the CDF of Y in terms of the probability law of X:

FY (y) = PX
(
f−1((−∞, y])

)
= PX

(
{x ∈ R | f(x) ≤ y}

)
= P

(
X−1 ◦ f−1((−∞, y])

)
Depending on how complicated f is, this may be easy or not, but conceptually, this is no problem. But
theoretically, this is as far as we can go. Let’s move onto some examples. We start with a practical way to
generate a Gaussian distribution, which is how most modern software computes.

Example 1.27 (Box-Muller Transform)

Given that you have a uniform random number generator in [0, 1], you can generate a normal N(0, 1)
by transforming it using the inverse CDF of the normal. This is usually computationally heavy
since the inverse CDF of the Gaussian requires expensive operations. An easier way is to use the
Box-Muller transform, where you take two uniforms u1, u2 and transform it as

x1 =
√

−2 ln(u1) cos(2πu2)

x2 =
√

−2 ln(u1) sin(2πu2)

Once you have x ∼ N(0, 1), you can use µ+ σx ∼ N(µ, σ2). You can extend this to a n-dimensional
normal distribution x ∼ N(0, I) and transform it to get µ+Σ1/2x ∼ N(µ,Σ).

Example 1.28 (Chi-Squared Distribution)

Let X ∼ N (0, 1) and Y = f(X) = X2. Note that X takes values in (−∞,+∞) and Y in [0,+∞).
Then, we can write

FY (y) = P(Y ≤ y)

= PY ((−∞, y])

= PY ([0, y]) (range of Y )

= PX(f−1([0, y])) (work in prob. law of X)

= PX([−√
y,
√
y])

=

∫ √
y

−√
y

fX(x) dx

Rewriting this in our abuse of notation notation, we have

FY (y) = P(Y ≤ y)

= P(X2 ≤ y)

= P(−√
y ≤ X ≤ √

y)

= 2P(0 ≤ X ≤ √
y) (Symmetry of Gaussian)

=
2√
2π

∫ √
y

0

e−x
2/2 dx

and this is clearly differentiable, since it is written like an integral. Doing so gives the PDF

fY (y) =
1√
2πy

e−y/2 for y ≥ 0 (147)

This describes the PDF of a Chi-Squared distribution.
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Example 1.29 (Log-Normal Distribution)

Let X ∼ N (0, 1) and Y = f(X) = eX . Note that the range of f is (0,+∞). So,

FY (y) = P(Y ≤ y)

= PY ((−∞, y])

= PY ((0, y])
= PX(f−1((0, y]))

= PX((−∞, ln y])

=

∫ ln y

−∞
fX(x) dx

Rewriting this in our abuse of notation notation, we have

FY (y) = P(eX ≤ y)

= P(X ≤ ln(y))

=

∫ ln(y)

−∞

1√
2π
e−x

2/2 dx

We can differentiate this to get

fY (y) =
1

y
√
2π
e−

(lny)2

2 for y ≥ 0 (148)

This describes the PDF of a log-normal distribution.

We now show a more specific formula under more specific assumptions about the transformation. Suppose X
is a continuous random variable with density fX and g : R → R a monotonic differentiable function. Then,
the CDF of the random variable Y = g(X) can be written in the probability law of X, which can then by
written as an integral by invoking the Radon-Nikodym theorem:

P(Y ≤ y) = PX(f−1((−∞, y])

=

∫
x : g(x)≤y

fX(x) dx

Note that we can now talk about the actual inverse g−1 since differentaible and monotonic implies invert-
ibility.

1. Assuming g is monotonically increasing, we can use the change of variables x = g−1(t) and g(x) =
t =⇒ g′(x) dx = dt to get the above integral as∫ g−1(y)

−∞
fX(x) dx =

∫ t

−∞

fX
(
g−1(t)

)
g′
(
g−1(t)

) dt (149)

but since this is simply the CDF of Y , the PDF must equal

fY (y) =
fX(g−1(y))

g′(g−1(t))
(150)

2. If g is monotonically decreasing, we get

fY (y) =
fX(g−1(y))

−g′(g−1(t))
(151)
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In general, we can consider both cases by putting an absolute value

fY (y) =
fX(g−1(y))

|g′(g−1(t))|
(152)

and g′(g′(y)) is the Jacobian, the same one that we use when we perform a change of variables in integration.

Example 1.30 (Log-Normal Revisited)

Given X ∼ N (0, 1) and Y = eX (which is monotonically increasing), we can simply plug in the
formula to get the PDF:

fY (y) =
fX(g−1(y))

|g′(g−1(t))|
=
fX(ln y)

|eln y|
=

1√
2πy

e−(ln y)2/2 (153)

for y > 0. This domain is important since ln y is only defined for y > 0.

Example 1.31 ()

Given X ∼ N (0, 1) and Y = f(X) = X2, we cannot use the formula since f is not monotonic on the
range of X, which is (−∞,+∞).

Example 1.32 ()

Given X ∼ Exponential(λ) and Y = f(X) = X2, it may seem like the formula is not applicable here,
but f is monotonic on the range of X, which is [0,+∞).

However, there is much less chance of error by deriving using first principles, so I would recommend using it
always rather than these formulas.

Let’s do the n-dimensional version of this. Given random variables X1, X2, . . . , Xn iid random variables with
joint density fX1...Xn

(x1, . . . , xn), we define the transformation g : Rn → Rn asY1...
YN

 =

 g1(X1)
...

gn(XN )

 (154)

Then, the PDF of Y will be

fY1...Yn(y1, . . . , yn) = fX1...Xn

(
g−1(y)

)
· |J(y)|

= fX1...Xn

(
g−1
1 (y1), . . . , g

−1
n (yn)

)
· |J(y)|

where

J(y) = det


∂x1

∂y1
. . . ∂xn

∂y1
...

. . .
...

∂x1

∂yn
. . . ∂xn

∂yn

 (155)
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2 Integration

2.1 Construction and Properties
2.1.1 Simple Functions

Remember that Riemann integration is characterized by the approximation of step functions, which are
the "building blocks" of Riemann integrable functions. To define the Lebesgue integral, we will consider a
generalization of step functions called simple functions. A function will be Lebesgue integrable if it can be
approximated by these simple functions in some appropriate way.

Definition 2.1 (Simple Functions)

For A ⊂ X (any subset, not just in some σ-algebra), the characteristic, or indicator function of
A is the function 1A : X −→ R defined

1A(x) =

{
1 if x ∈ A

0 if else
(156)

A function ϕ : R −→ R is called a simple function if it is a finite linear combination of characteristic
functions.

ϕ =

n∑
i=1

ai1Ai
(157)

Lemma 2.1 (Measurability on Simple Functions)

Now, let (X,A) be a measurable space. Then,

ϕ =

n∑
i=1

ai1Ai
: (X,A) −→ R (158)

is measurable if all Ai are measurable, i.e. Ai ∈ A for all i.

Proof.

Let T be an open set in R. Then, for characteristic function 1A,

1−1
A (T ) =


∅ if 0, 1 ̸∈ T

A if 1 ∈ T, 0 ̸∈ T

X \A if 0 ∈ T, 1 ̸∈ T

X if 0, 1 ∈ T

(159)

and so 1A must be measurable if A ∈ A (which also by definition implies that Ac = X \ A ∈ A). If
1Ai

is measurable, then the linear combination of measurable functions is also measurable.

Also observe that the coefficients need not be unique, since we can write

1 · 1[0,1] + 1 · 1[0.5,1] = 1 · 1[0,0.5] + 2 · 1[0.5,1] (160)

If the Ei’s are disjoint, then this decomposition is unique and is called the standard representation of ϕ.
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Example 2.1 (Step Function as Simple Function)

For a, b ∈ R, with a < b, let f : [a, b] −→ R be a step function. That is, there exists a partition
a = x0 < x1 < . . . < xn = b and constants c1, c2, . . . , cn ∈ R s.t. f(x) = ci for all x ∈ (xi−1, xi) and
each i = 1, . . . , n. Then, f is equal to the following simple function, taken over all open intervals and
the points xj at the boundary of each interval.

f =

n∑
i=1

ci1(xi−1,xi) +

n∑
j=0

f(xj)1{xj} (161)

If we ignore the behavior of f on the partition points xj ’s, then f agrees almost everywhere with the
simple function

n∑
i=1

ci1(xi−1,xi) (162)

If the Ai’s above are just intervals in R, then ϕ reduces to a step function. But the entire problem with
intervals is that they are too coarse. We can’t work with them, so we generalize them to all measurable
sets in (X,A). The Riemann integral is built on an approximation scheme of a function, which we usually
want to be continuous to satisfy this approximation, and so, if we want to build an approximation scheme
for Lebesgue integrals, we want a similar scheme, i.e. if we take a sequence of simple measurable functions,
I can get arbitrarily close to any measurable function f . This is exactly what we show below.

Theorem 2.1 ()

If f : (X,A) −→ [0,∞] is measurable, there are simple measurable functions fk : (X,A) −→ [0,∞)
s.t.

fk ≤ fk+1 and f = lim
k→∞

fk (163)

where the inequalities and limits are pointwise.

Proof.

We give a general picture of this proof for a function f : R −→ [0,∞]. We can first divide the codomain
of the graph below into segments of t = 1, 2, . . ., and take the preimage of all these units under f to
get f1. More specifically, At1 = f−1([t,∞]) for all t. By measurability of f , At1 is measurable, and we
can assign f1 = 1A1

1
+ 1A2

1
≤ f .

Doing this again with finer subintervals of the codomain gives us, with f2 = 1A1
2
+1A2

2
+1A3

2
+1A4

2
≤ f .
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and in general, we have fk =
∑∞
j=1

1
2k−1 1Aj

k
. But we said a simple function is a finite sum, and if

∞ is in the range of f , then this becomes a problem. We can quickly fix this by just truncating the
summation at a certain point in the codomain (f1 only considers intervals up to 1, f2 up to 2 and so
on), ultimately giving us

fk =

k2k−1∑
j=1

1

2k−1
1Aj

k
(164)

2.1.2 Lebesgue Integral

Finally, we can learn how to integrate. We require the positiveness condition on f below because our
previous theorem on approximating arbitrary functions with simple measurable functions fk requires that it
be positive, too.

Definition 2.2 (Lebesgue Integral of Positive Simple Functions)

If f =
∑n
k=1 ck1Ak

is a positive simple Lebesgue measurable function on measure space (X,A, µ),
then the Lebesgue integral of f is ∫

f dµ =

n∑
k=1

ckµ(Ak) (165)

This Lebesgue integral agrees with the Riemann integral for step functions. Let c1, . . . , cn ∈ [0,∞) and
a = x0 < x1 < . . . < xn = b be a partition. Let f : [a, b] −→ [0,∞] be a step function taking the value ci on
the interval (xi−1, xi) for i = 1, . . . , n. Then the Riemann integral of f is simply∫

f(x) dx =

n∑
i=1

ck|xi − xi−1| (166)

The Lebesgue integral is ∫
f dµ =

n∑
i=1

ciµ((xi−1, xi)) +

n∑
j=0

f(xj)µ({xj})

=

n∑
i=1

ck|xi − xi−1|

which agrees with the Riemann integral. In the Riemann integral, we write dx to indicate the variable that is
being integrated over, but in the Lebesgue integral, we write dµ, the measure which we are integrating over.

39/ 110



Probability Theory Muchang Bahng Spring 2023

Therefore, there are many possible values that can come out of a Lebesgue integral of a certain function,
while a Riemann integral outputs only one value if exists.

Example 2.2 ()

Consider the simple function (consisting of one characteristic function) 1Q∩[0,1]. Q∩[0, 1] is a Lebesgue
measurable set of R, and we have 1Q∩[0,1] ≥ 0, so its Lebesgue integral is given by the above definition:∫

R
1Q∩[0,1] dλ = 1 · λ(Q ∩ [0, 1]) = 0 (167)

Definition 2.3 (Lebesgue Integral on Positive Measurable Functions)

If f : (X,A, µ) −→ [0,∞] is measurable, then∫
X

f dµ = sup
{∫

g dµ
∣∣∣ g simple , g ≤ f

}
(168)

Unlike Riemann integration, which looks at both the supremum and infimum of integrals of simple functions,
Lebesgue integration only looks at the supremum, given that f is nonnegative, so for all these f , the Lebesgue
integral always exists. Defining Lebesgue integration for all real-valued functions, requires a simple extension.

Definition 2.4 (Lebesgue Integral)

Given a function f : (X,A, µ) −→ R, we can split f into a positive and negative part:

f = f+ − f− (169)

where f+ = max(f, 0) and f− = max(−f, 0). Then, the Lebesgue integral of f is∫
f dµ =

∫
f+ dµ−

∫
f− dµ (170)

given that at least one of these integrals is finite. If one is infinite and the other is finite, then we can
call it infinite. If we have both infinite integrals, then the integral doesn’t exist. It has the properties:

1. Monotonicity:

g ≤ f =⇒
∫
g dµ ≤

∫
f dµ (171)

2. Scalar Multiplication: ∫
cf dµ = c

∫
f dµ (172)

3. Addition: ∫
f + g dµ =

∫
f dµ+

∫
g dµ (173)

Since |f | = f+ + f−, f is also Lebesgue integrable if∫
|f | dµ <∞ (174)

since by triangle inequality, we have ∣∣∣∣ ∫ f dµ

∣∣∣∣ ≤ ∫
|f | dµ (175)
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Definition 2.5 ()

The set of all functions f : (X,A, µ) −→ R that are Lebesgue integrable is denoted L1(X,A, µ;R),
or for short L1(X,A, µ).

Theorem 2.2 ()

f : R −→ R is Riemann integrable iff it is continuous λ almost everywhere. If so, then f is Lebesgue
measurable and ∫

[a,b]

f dλ =

∫ b

a

f dx (176)

for all a < b.

2.1.3 Integral Inequalities

We introduce 3 important inequalities on the integral.

Theorem 2.3 (Jensen’s Inequality)

Suppose ϕ is convex, that is,

λϕ(x) + (1− λ)ϕ(y) ≥ ϕ(λx+ (1− λ)y) (177)

for all λ ∈ (0, 1) and x, y ∈ R. If µ is a probability measure, and f and φ(f) are integrable, then

φ

(∫
f dµ

)
≤

∫
φ(f) dµ (178)

Theorem 2.4 (Holder’s Inequality)

If p, q are Holder conjugates, then ∫
|fg| dµ ≤ ||f ||p||g||q (179)

Corollary 2.1 (Cauchy-Schwarz Inequality)

Given that p = q = 2 above, then we have∫
|fg| dµ ≤ ||f ||2||g||2 (180)

which is similar to the familiar equation ⟨u, v⟩ ≤ ||u||||v||.

2.1.4 Convergence Theorems

Now, we want to give conditions that guarantee

lim
n→∞

∫
fn dµ =

∫ (
lim
n→∞

fn
)
dµ (181)
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Definition 2.6 (Convergence in Measure)

A sequence of functions fn → f in measure if for any ϵ > 0,

µ
(
{x : |fn(x)− f(x)| > ϵ}

)
→ 0 as n→ ∞ (182)

Theorem 2.5 (Bounded Convergence Theorem)

Let E be a set with µ(E) <∞. Suppose fn = 0 on Ec, |fn(x)| ≤M , and fn → f in measure. Then,∫
f dµ = lim

n→∞

∫
fndµ (183)

Lemma 2.2 (Fatou’s Lemma)

If fn ≥ 0, then

lim
n→∞

inf

∫
fn dµ ≥

∫ (
lim
n→∞

inf fn

)
dµ (184)

Theorem 2.6 (Monotone Convergence Theorem)

Given a nondecreasing sequence of measurable nonnegative functions {fn}, its limit fn ↑ f always
exists (since fn is nondecreasing), is measurable, and∫

fn dµ ↑
∫
f dµ (185)

This allows us to integrate the limit of nice functions fn by integrating these fn first and then finding
what the values converge to.

Theorem 2.7 (Dominated Convergence Theorem)

If fn → f a.e., |fn| ≥ g for all n, and g is integrable, then∫
fn dµ→

∫
f dµ (186)

2.1.5 Product Measures, Fubini’s Theorem

Let (X,A, µ1) and (Y,B, µ2) be two measure spaces. Let

Ω = X × Y = {(x, y) | x ∈ X, y ∈ Y }
S = {A×B | A ∈ A, B ∈ B}

The sets in S are called rectangles. It is easy to see that S is a semi-algebra:

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

(A×B)c = (Ac ×B) ∪ (A×Bc) ∪ (Ac ×Bc)
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Theorem 2.8 ()

There is a unique measure µ = µ1 × µ2 (or denoted µ1 ⊗ µ2) on F with

µ(A×B) = µ1(A)µ2(B) (187)

Theorem 2.9 (Fubini’s Theorem)

Let (X,A, µ1) and (Y,B, µ2) be two measure spaces and (X × Y,F , µ = µ1 × µ2) be their product
space. Then, if f ≥ 0 or

∫
X×Y |f | dµ <∞, then∫

X

∫
Y

f(x, y)µ2µ1 =

∫
X×Y

f dµ =

∫
Y

∫
X

f(x, y)µ1µ2 (188)

2.2 Random Vectors
Now when we consider several random variables, they will all be defined on the same probability space.
Given two random variables X and Y on (Ω,F ,P), they will each induce a probability law PX and PY which
completely characterizes them. Note that it is the same underlying randomness that is feeding these random
variables, and so if I know some information about the value of X, then we know something about outcome
ω, which can be used to find something about the value of Y . To capture this, we can imagine the map
(X,Y ) : Ω −→ R2 defined (X,Y )(ω) := (X(ω), Y (ω)). And just like how X induces a measure PX onto R,
we can imagine (X,Y ) inducing a measure onto B(R2), which can be generated by all semi-infinite rectangles
(−∞, x]× (−∞, y]. Ideally, we would want to put a measure PX,Y on R2 s.t.

PX,Y (B) := P((X,Y )−1(B)) (189)

where (x, y)−1(b) = {ω ∈ ω | (x(ω), y(ω)) ∈ b} denotes the preimage of (x, y). but is (x, y)−1(b) {-
measurable? it turns out that it is.

Theorem 2.10 ()

Let f : (X,A, µ) −→ Rn have component functions f1, f2, . . . , fn. Then, f is measurable (i.e.
f−1(B) ∈ A for all B ∈ B(Rn)) if and only if all of its component functions are measurable (i.e.
f−1
i (B) ∈ A for all B ∈ B(Rn)).

From the theorem above, I have a probability law PX,Y on all Borel sets of R2, making (R2,B(R2),PX,Y ) a
probability space. Now, since X and Y are both random variables dependent on the same ω ∈ Ω, we could
expect certain "combinations" of X and Y to be more probable than other combinations.

Definition 2.7 (Joint Probability Law)

Given two random variables X,Y on (Ω,F ,P), the joint random variable (X,Y ) : Ω −→ R2 is a
measurable function defined

(X,Y )(ω) := (X(ω), Y (ω)) (190)

which induces a joint probability law PX,Y : B(R2) −→ [0, 1] defined

PX,Y (B) := P((X,Y )−1(B)) ∀B ∈ R (191)

of X,Y . This law captures everything there is about the interdependence of X and Y .

Given joint probability law PX,Y , we can get the probability laws of X and Y separately. For example, we
can take a specific Borel set of R representing the outcomes of X and look at every single combination of it
with every Y . But knowing PX and PY is not enough to know the joint PX,Y .
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Definition 2.8 (Marginal Probability Law)

Given a joint probability law PX,Y of X,Y , we can get the marginal probability law of X by
feeding in Borel sets of form B × R ∈ B(R2).

PX(B) = PX,Y (B × R) (192)

and the marginal probability law of Y as

PY (B) = PX,Y (R×B) (193)

Definition 2.9 (Joint Cumulative Distribution Function)

Since sets of the form (−∞, x] × (−∞, y] are Borel in R2, the joint cumulative distribution
function

FX,Y := PX,Y
(
(−∞, x]× (−∞, y]

)
= P

(
{ω | X(ω) ≤ x} ∩ {ω | Y (ω) ≤ y}

)
is well-defined. By abuse of notation, we will write FX,Y (x, y) = P(X ≤ x, Y ≤ y). The marginal
CDFs are defined

FX(x) := PX,Y ((−∞, x)× R)
FY (y) := PX,Y (R× (−∞, y))

Lemma 2.3 (Properties of Joint CDF)

Some common properties of the joint CDF are as follows:
1. Limits.

lim
(x,y)→(+∞,+∞)

FX,Y (x, y) = 1 and lim
(x,y)→(−∞,−∞)

FX,Y (x, y) = 0 (194)

2. Monotonicity.
x1 ≤ x2, y1 ≤ y2 =⇒ FX,Y (x1, y1) ≤ FX,Y (x2, y2) (195)

3. Continuity from above.

lim
ϵ→0+

FX,Y (x+ ϵ, y + ϵ) = FX,Y (x, y) for all x, y ∈ R (196)

4. Maringal CDFs.
lim
y→∞

FX,Y (x, y) = FX(x), lim
x→∞

FX,Y (x, y) = FY (y) (197)

2.2.1 Joint Discrete Random Variables

Definition 2.10 (Joint PMF)

Given discrete random variables X and Y , let their countable images be denoted EX , EY ⊂ R. Then,
EX ×EY is also countable, and so the joint random variable (X,Y ) is also discrete. This means that
we can write for some Borel B of R2,

PX,Y (B) =
∑

(x,y)∈(EX×EY )∩B

PX,Y ({(x, y)}) (198)

and we can define the PMF as pX,Y (x, y) := PX,Y ({(x, y)}). By abuse of notation, we write
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pX,Y (x, y) = P(X = x, Y = y) and write

PX,Y (B) =
∑

(x,y)∈(EX×EY )∩B

P(X = x, Y = y) (199)

If you give me a joint PMF pX,Y , by the definition above this determines the entire probability law
of PX,Y .

Definition 2.11 (Conditional PMF)

Let X,Y be discrete random variables on (Ω,F ,P). The conditional PMF of X given Y = y is
defined

pX|Y (x | y) := pX,Y (x, y)

pY (y)
=

PX,Y ({x, y})
PY ({y})

(200)

and again by abuse of notation, we can simply write

P(X = x | Y = y) :=
P(X = x, Y = y)

P(Y = y)
(201)

Theorem 2.11 (TFAE)

Let X and Y be discrete random variables. Then, the following are equivalent:
1. X and Y are independent.
2. For all x, y ∈ R, the events {X = x} (aka X−1({x})) and {Y = y} (aka Y −1({y})) are

independent. That is,

P
[
X−1({x}) ∩ Y −1({y})

]
= P(X−1({x}))P(Y −1({y})) (202)

3. For all x, y ∈ R, pX,Y (x, y) = pX(x) · pY (y).
4. For all x, y ∈ R such that pY (y) > 0, we have pX|Y (x | y) = pX(x).

2.2.2 Joint Continuous Random Variables

Definition 2.12 ()

X and Y are jointly continuous if the joint law PX,Y is absolutely continuous w.r.t. the Lebesgue
measure on R2 (i.e. a Borel set of Lebesgue measure 0 must have PX,Y = 0 also).

However, X and Y continuous does not always imply that (X,Y ) are jointly continuous! If we have X ∼
N (0, 1) and Y = 2X ∼ N (0, 4). Jointly continuous allows us to define a PDF on it.

Theorem 2.12 (Radon-Nikodym Theorem)

If X and Y are jointly continuous RVs, then there exists a measurable fX,Y : R2 −→ [0,∞) s.t. for
any B ∈ B(R2), we have

PX,Y (B) =

∫
B

fX,Y dλ (203)

The Radon-Nikodym Theorem guarantees the existence of such fX,Y . Taking B = (−∞, x] × (−∞, y], we
can define the joint CDF as

FX,Y (x, y) = P(X ≤ x, Y ≤ y) := PX,Y
(
(−∞, x]× (−∞, y]

)
=

∫ x

−∞

∫ y

−∞
fX,Y (s, t) dt ds (204)
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2.3 Expectation

Definition 2.13 (Expectation)

Given a probability space (Ω,F ,P) and a random variable X : Ω −→ R, the expectation of X is
defined

E[X] :=

∫
Ω

X dP (205)

Generally, if we are integrating over the entire probability space, then it is conventional to not write
Ω in the integral at all: E[X] =

∫
X dP.

Definition 2.14 (Expectation of Discrete RV)

If X is a discrete random variable that takes positive values, then let E = {e1, e2, . . .} denote the set
where PX(E) = 1, and let Ei = X−1({ei}) ⊂ Ω. Then, we can see that since X is constantly ei on
Ei, ∫

Ei

X dP = ei · P(Ei) = ei · PX({ei}) = ei · P(X = ei) (206)

which implies

E[X] =

∫
Ω

X dP =

∞∑
i=1

∫
Ei

X dP =

∞∑
i=1

ei · P(X = ei) (207)

If X is discrete RV possibly taking negative values, then let X = X+ −X−, where X+ = max(X, 0)
and X− = −min(X, 0). Then, we can compute

E[X] = E[X+]− E[X−] (208)

which is well-defined as long as we don’t have "∞−∞."

Note that the reason why expectations of the form ∞ − ∞ are indeterminate is because of the Riemann
rearrangement theorem.

Theorem 2.13 (Riemann’s Rearragenement Theorem)

Given a series
∑
an that is conditionally convergent (i.e. converges but not absolutely convergent),

the terms can be arranged so that the new series converges to an arbitrary real number, or diverges.

Lemma 2.4 (Properties of Expectation)

Let X and Y be random variables with finite expectations.
1. Monotonicity: If X ≤ Y (i.e. X(ω) ≤ Y (ω) for all ω ∈ Ω), then

E[X] ≥ E[Y ] (209)

2. Non-Negativity: This is implied from the above if we set the lower bound to the constant
random variable 0. If X ≥ 0, then

E[X] ≥ 0 (210)

3. Linearity: For all a, b, c ∈ R,

E[aX + bY + c] = aE[X] + bE[Y ] + c (211)

We now show a widely-used, but nontrivial, theorem.
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Theorem 2.14 (Expectation of Independent Events)

Given independent RVs X and Y ,
E[XY ] = E[X]E[Y ] (212)

Proof.

We show only for simple random variables which will give us a start in proving for all random variables
in full generality. Let X and Y be simple random variables, i.e.

X =
∑
i

ai1Ai
and Y =

∑
j

bj1Bj
(213)

Since {Ai}i and {Bj}j are both partitions, {Ai ∩Bj}i,j is also a partition, and

XY =
∑
i,j

aibj 1Ai∩Bj
(214)

Its expectation can be expanded out by linearity, and since E[1A] = P(A), we have

E[XY ] =
∑
i,j

aibj P(Ai ∩Bj)

=
∑
i,j

aibj P(Ai)P(Bj) = E[X]E[Y ]

Now that we have proved for simple random variables, we can just approximate X from below using
simple functions.

Theorem 2.15 (Tail Sum Formula)

If a discrete random variable X takes values in the non-negative integers {0, 1, 2, 3, ...}, then

E[X] =

∞∑
k=1

P(X ≥ k) (215)

In any case (continuous or discrete), if X is a non-negative random variable, then

E[X] =

∫ ∞

0

P(X > x) dx =

∫ ∞

0

1− F (x) dx (216)

where F is the CDF of X.
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Proof.

Suppose that X takes values in {0, 1, 2, 3, ...}. Then,

E[X] =
∑
k≥1

k P(X = k)

=
∑
k≥1

k∑
j=1

P(X = k)

=
∑
k≥1

k∑
j=1

1j≤k P(X = k)

=

∞∑
j=1

∑
k≥1

1j≤k P(X = k)

=

∞∑
j=1

∑
k≥j

P(X = k)

=

∞∑
j=1

P(X ≥ j)

Corollary 2.2 ()

For any m > 0 and α > 0,

P
(
|X| > α

)
≤ 1

αm
E
(
|X|m

)
(217)

Example 2.3 (Geometric RV)

Recall that given X ∼ Geometric(p), we have P(X = i) = (1− p)i−1p for i ≥ 1. So,

E[X] =

∞∑
x=1

xP(X = x) =

∞∑
x=1

x (1− p)i−1p =
p

(1− (1− p))2
=

1

p
(218)

Example 2.4 (Infinite Expectation)

Let us have discrete random variable s.t. P(X = k) = 6
π2

1
k2 for k ≥ 1. So,

E[X] =

∞∑
k=1

k P(X = k) =
6

π2

∞∑
k=1

1

k
= +∞ (219)

Example 2.5 (Undefined Expectation)

Let P(X = k) = 3
π2

1
k2 for k ∈ Z \ {0}. The expectation of this can be computed by getting the

expectation of all the positive terms and the negative terms.

E[X] = E[X+]− E[X−] =

∞∑
k=1

k · 3

π2

1

k2
+

∞∑
k=1

(−k) · 3

π2

1

k2
= ∞−∞ (220)

Note that by the Riemann rearrangement theorem, we can’t just say that the expectation is 0 since
the terms "cancel out." We could only do this if the series is absolutely convergent also, which works
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if X takes positive values only.

Note that when we compute expectation, what we do it multiply the PMF/PDF by x and sum/integrate
over it. The Cauchy distribution is a power function of form 1

x2 , so if we multiply it by x, we have the new
1
x which is divergent.

2.3.1 Law of the Unconscious Statistician

Given probability space (Ω,F ,P) and a random vector X : Ω → Rn, this induces a probability law PX acting
as a measure on Rn. Assume that this probability law PX is known. Now introduce a function g : Rn → R.
We can create a new random variable Y = g ◦ X : Ω → R with its own probability law PY on R. Since
we already know the probability distribution of X, so we can easily get the expected value of X as (in the
discrete case)

E[X] =
∑
x∈X

x · P(X = x) (221)

where X is the support of X. But what if we wanted to get the expected value of Y ?

E[Y ] =
∑
y∈Y

y · P(Y = y) =? (222)

The problem is that we don’t know the probability distribution of Y . But since we know that all the values
of X are transformed by g, we are taught to compute it in terms of the probability distribution of X.

E[Y ] =
∑
x∈X

g(x) · P(X = x) (223)

This "identity" that is often used must actually be treated as a rigorous theorem. This is like a change of
basis formula that allows us to shift to a convenient space to compute integrals.

Theorem 2.16 (LOTUS)

Given probability space (Ω,F ,P), a random variable X : Ω → Rn, and a function g : Rn → R, the
expectation of g(X) is

E[g(X)] =

∫
Ω

g(X) dP =

∫
Rn

g dPX =

∫
R
dPg(X) (224)

It is usually the case that we don’t know the distribution of g(X) since g is too complicated (hard to
compute the right integral) and we don’t want to integrate over an abstract space Ω where we can’t
do calculus on (hard to compute the left integral). But we do know the distribution of X, so we can
indeed compute the middle integral.

Note that if g : R → R is the identity function id, then we have

E[X] =

∫
Ω

X dP =

∫
R
id dPX (225)

1. For the discrete case, the above integral simplifies to

E[g(X)] =

∫
Rn

g dPX =
∑

x∈X⊂Rn

g(x)pX(x) (226)

2. For the continuous case, we have

E[g(X)] =

∫
Rn

g dPX =

∫
Rn

g(x) fX(x) dx (227)
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2.3.2 Expectation w.r.t. Different Measures

Sometimes, we just write the expectation of a measurable function f : (S,S) → R as E[f ]. If we need to
specify with respect to what measure we are integrating over, we write

Eµ[f ] :=
∫
S

f dµ (228)

Usually, if f represents some transformation of a random variable X : Ω → S, then we assume that we are
integrating w.r.t. the probability measure P defined on Ω or the probability law PX induced by X.

E[f ] = E[f(X)] =

∫
Ω

f(X) dP =

∫
S

f dPX (229)

Example 2.6 (Expectation of Exponential RV)

The PDF of exponential random variable X is defined fX = ke−kx for x ≥ 0. So,

E[X] =

∫
R
xfX dλ =

∫ ∞

0

xke−kx dx =
1

k
(230)

Similarly, if we want the expectation of X2, then we can get

E[X2] =

∫
R
x2fX dλ =

∫ ∞

0

x2ke−kx dx =
2

k2
(231)

Example 2.7 (Expectation of Gaussian RV)

The expectation of a Gaussian random variable X is

E[X] =

∫ ∞

−∞
x · 1

σ
√
2π
e−

(x−µ)2

2σ2 dx = µ (232)

Example 2.8 (Expectation of One-Sided Cauchy)

If we have fX(x) = 2
π

1
1+x2 for x ≥ 0, then

E[X] =

∫ ∞

0

2

π

x

1 + x2
dx (233)

and making the substitution t = 1+x2

, dt = 2x, we have∫ ∞

1

1

π

1

t
dt =

ln(t)

π

∣∣∣∣∞
1

= +∞ (234)

Example 2.9 (Expectation of Two-Sided Cauchy)

The two-sided Cauchy is just another copy of the one sided into the negatives, so fX(x) = 1
π

1
1+x2 for

x ∈ R. The expectation of X should be split up into for positive and negative images, but computing
it gives

E[X] = E[X+]− E[X−] =

∫ ∞

0

1

π

x

1 + x2
dx−

∫ 0

−∞

1

π

x

1 + x2
dx = ∞−∞ (235)

and so it is undefined.
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With LOTUS, we can make sense of an extremely important inequality.

Theorem 2.17 (Jensen’s Inequality)

If f is a convex function, then E[f(X)] ≥ f(E[X]).

Proof.

We will assume that f is differentiable for simplicity and let E[X] = µ. Define the linear function
centered at µ to be l(x) := f(µ) + f ′(µ)(x− µ). Then, we know that f(x) ≥ l(x) for all x, so

E[f(X)] ≥ E[l(X)]

= E[f(µ) + f ′(µ) (X − µ)]

= E[f(µ)] + f ′(µ)(E[X]− µ)

= E[f(µ)]
= f(E[X])

A nice way to visualize which side is greater (which I tend to always forget) is to think about a Bernoulli(p)
distribution. f(E[X]) is visualized to be lower than the region in which the E[f(X)] must lie.

Figure 1: The function f essentially transforms the Bernoulli defined on 0, 1 to the Bernoulli defined on f(0), f(1).
Therefore, E[f(X)] ∈ [f(0), f(1)], which lies completely over f(E[X]).

2.4 Variance, Covariance, Correlation

Definition 2.15 (Variance)

Let X be a random variable and suppose E[X] <∞. The variance of X is defined

Var[X] = σ2
X := E[(X − E[X])2] (236)

and σX =
√

Var[X] is called the standard deviation. This is a measure of how much the probability
distribution deviates from its mean. We can use linearity of expectation to write

Var[X] = E
[
X2 + E[X]2 − 2XE[X]

]
= E[X2] + E[X]2 − 2E[X]E[X]

= E[X2]− E[X]2

which is often easier to compute, since it only requires us to compute the expectation of X and X2.
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Since variance is always nonnegative, we also know that E[X2] ≥ E[X]2. The variance is always
defined, whether it’s finite or +∞.

Likewise for expectation, the variance of a function f w.r.t. µ is

Varµ(f) = Eµ[f2]− Eµ[f ]2 (237)

Proposition 2.1 ()

The variance of a random variable X is 0 if and only if it constant almost everywhere on Ω.

Proof.

The if part is easy, so let’s prove the only if part. Let E[(X −E[X])2] = 0. Then, we can think of the
function x 7→ (x− E[X])2 and write the variance as

Var[X] =

∫
Ω

(X − E[X])2 dP = 0 (238)

But by nonnegativity of the function, we know that (X −E[X])2 = 0 w/ probability 1, which implies
that X = E[X] with prob. 1.

Lemma 2.5 (Properties of Variance)

Let X and Y be random variables with well-defined variances.
1. Translation Invariance: Given that X + a is a new random variable defined (X + a)(ω) =
X(ω) + a,

Var[X] = Var[X + a] (239)

2. Quadratic Scaling: Given that aX is a new random variable defined (aX)(ω) = aX(ω),

Var[aX] = a2Var[X] (240)

From the properties of expectation and variance, we can now standardize a random variable X. If X is a
random variable with mean µ = E[X] and variance σ2 = Var(X), then the random variable

Y =
X − µ

σ
(241)

has mean E(Y ) = 0 and variance Var(Y ) = 1.

Example 2.10 (Bernoulli)

Given X ∼ Bernoulli(p), we have

E[X] = 0 · P(X = 0) + 1 · P(X = 1) = p

E[X2] = 02 · P(X = 0) + 12 · P(X = 1) = p

and so Var[X] = p− p2 = p(1− p).
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Example 2.11 (Poisson)

Given X ∼ Poisson(X), then

E[X] =

∞∑
k=0

k · e
−λλk

k!
=

∞∑
k=1

· e
−λλk

(k − 1)!
= λ

∞∑
k=1

·e
−λλk−1

(k − 1)!
= λ

E[X] =

∞∑
k=0

k2 · e
−λλk

k!
= . . . = λ2 + λ

So Var[X] = λ2 + λ− λ2 = λ.

Example 2.12 (Uniform)

Let X ∼ Uniform[a, b]. Then,

E[X] =

∫
R
xfX dλ =

∫ b

a

x · 1

b− a
dx =

a+ b

2

E[X2] =

∫
R
x2fX dλ =

∫ b

a

x2

b− a
dx =

a2 + ab+ b2

3

So Var[X] = . . . = 1
12 (b− a)2. This is consistent with the fact that if we spread out our measure over

a wider interval, then the variance will be bigger.

Example 2.13 (Exponential)

Let X ∼ Exp(λ). Then, E[X] = 1
λ and E[X2] = 2

λ2 , so

Var[X] =
1

λ2
(242)

This is consistent with the fact that if λ is greater, then the PDF is much more concentrated at 0,
making the variance small.

Just like how we explained that computing finiteness or infiniteness of expectation is similar to multiplying
the PMF/PDF by x and determining if the series/integral converges or diverges, we can do the same for
variance by multiplying the PMF/PDF by x2. For a probability distribution of form 1

x2 , it diverges if we
multiply by x and also diverges if we multiply by x2. But also, we could construct a distribution where the
expectation may be finite, but the variance may be infinite. For example, if we have a distribution of form
1
x3 , multiplying it by x leads to form 1

x2 , which is finite (so finite expectation), but multiplying by x2 leads
to a harmonic, i.e. infinite variance.

Definition 2.16 (Moment)

The nth (raw) moment of a random variable X is E[Xn]. Unlike the raw moment, which is
calculated around the origin, the nth central moment of X is its moment centered around its mean
E[(X − E[X])n].

1. the first moment is the mean E[X]
2. the second central moment is the variance E[(X − E[X])2]
3. the third central moment, divided by σ3, is the skew 1

σ3E[(X − E[X])3]

The variance is a measure for one random variable X, which measures how much it deviates from its mean.
Now, the covariance is defined for two random variables and captures how they jointly vary.
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Definition 2.17 (Covariance)

The covariance of random variables X and Y is defined as

Cov[X,Y ] = E
[
(X − E[X])(Y − E[X])

]
= E[XY ]− E[X]E[Y ]

where the intermediate expectations are well-defined. X and Y are said to be uncorrelated if

Cov[X,Y ] = 0 (243)

The covariance is also easy to interpret. Given two random variables X and Y , if whenever X is greater
than its expected value E[X], Y also tends to be greater than E[Y ], then the covariance will be some positive
number. If they tend to be on opposite sides of their expected values, then the covariance will be negative.
And the degree with which these RVs lie on which side of the expected value determines the magnitude of
the covariance.

Theorem 2.18 ()

If X and Y are independent random variables, then they are uncorrelated, meaning that independence
is a stronger condition.

We show an example of why the converse is not true. Consider X ∼ Uniform[−1, 1]. We can show that x
and Y = X2 are dependent but uncorrelated. It is clearly dependent, but its covariance is

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

= E[X3]− E[X]E[X2]

=

∫ 1

−1

x3 · 1 dx− 0 · E[X2] = 0

Theorem 2.19 (Variance of Sums of Random Variables)

If X and Y are two random variables, then

Var(X + Y ) = Var[X] + Var(Y ) + 2Cov(X,Y ) (244)

and by induction, we can show that

Var

(∑
i

Xi

)
=

∑
i

Var(Xi) +
∑
i,j

Cov(Xi, Xj) (245)

Proof.

Simple computation. The LHS expands to

E[(X + Y )2]− E[X + Y ]2 = E[X2 + 2XY + Y 2]− (E[X] + E[Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

=
(
E[X2]− E[X]2

)
+

(
E[Y 2]− E[Y ]2

)
+ 2

(
E[XY ]− E[X]E[Y ]

)
= Var[X] + Var(Y ) + 2Cov(X,Y )

Therefore, if we have n random variables X1, . . . , Xn, then we can compute their pairwise covariance
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Cov(Xi, Xj) and compute their covariance matrix Σ, which is an n× n symmetric matrix with entries

Σij = Cov(Xi, Xj) for i, j = 1, . . . , n (246)

Theorem 2.20 (Simple Bound on Covariance)

If X and Y are two random variables with finite variance, then the magnitude of their covariance is
bounded by the following inequality.

|Cov(X,Y )| ≤
√
Var(X) Var(Y ) = std(X) std(Y ) (247)

Finally we define the correlation.

Definition 2.18 (Correlation Coefficient)

The correlation coefficient of random variables X and Y is defined

ρX,Y = Corr(X,Y ) :=
Cov(X,Y )

σXσY
=

Cov(X,Y )√
Var[X] Var(Y )

(248)

By definition, this implies that −1 ≤ Corr(X,Y ) ≤ 1. When Corr(X,Y ) > 0 (which also means that
Cov(X,Y ) > 0), it is said that X and Y are positively correlated, and when Corr(X,Y ) < 0 (which also
means that Cov(X,Y ) < 0), it is said that they are negatively correlated.

Theorem 2.21 ()

Corr(X,Y ) = ±1 indicates a linear relationship between X and Y .
1. Let Corr(X,Y ) = 1. Then, there exists a m > 0 and b ∈ R such that Y = mX + b.
2. Let Corr(X,Y ) = −1. Then, there exists a m < 0 and b ∈ R such tat Y = mX + b.

This implies that Corr(X,Y ) = ±1 indicates that the joint distribution of (X,Y ) is concentrated on
a line in R2.

2.4.1 Hilbert Space of Random Variables

In some sense the correlation is a scaled version of the covariance. It is scale-invariant, and it is always a
number that lies between −1 and 1, making it a nice way to represent the correlation between two variables
without having to worry about scale. We can prove this.

Theorem 2.22 (Cauchy-Schwartz)

For any two random variables X,Y , we have |Cov(X,Y )| ≤ σXσY , or in other words,

−1 ≤ ρX,Y ≤ 1 (249)

Furthermore, whenever ρX,Y = 1 or −1, there exists a deterministic relationship between X and Y .
1. If ρX,Y = 1, there exists a a > 0 s.t.

Y − E[Y ] = a(X − E[X]) (250)

2. If ρX,Y = −1 there exists a a < 0 s.t.

Y − E[Y ] = a(X − E[X]) (251)

This implies that Corr(X,Y ) = ±1 indicates that the joint distribution of (X,Y ) is concentrated on
a line in R2.
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The fact that this is called the Cauchy-Schwartz inequality hints at the existence of inner products, norms,
and vector spaces. That is, we can treat the random variables X,Y as vectors in the functional space of
real-valued maps over Ω. In some sense, Cov(X,Y ) sort-of plays the role of an inner product.

1. It satisfies symmetricity:

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[Y X]− E[Y ]E[X] = Cov(Y,X) (252)

2. It satisfies binlinearity. It suffices to show only for first argument, since we have symmetricity.

Cov(aX + bY, Z) = E[(aX + bY )Z]− E[aX + bY ]E[Z]
= aE[XZ] + bE[Y Z]− aE[X]E[Z]− bE[Y ]E[Z]
= a

(
E[XZ]− E[X]E[Z]

)
+ a

(
E[Y Z]− E[Y ]E[Z]

)
= aCov(X,Z) + bCov(Y,Z)

3. We want the inner product of X with itself to always be greater than 0, with equality holding iff X = 0.
Indeed, we have

Cov(X,X) = Var[X] ≥ 0 (253)

but it is not necessarily true that Var[X] = 0 =⇒ X = 0. We can say that X is equal to a constant
almost everywhere at best. We can solve this problem by looking at the functional subspace of 0-mean
random variables (which is a vector space due to linearity of expectation). So now all random variables
X that are 0 almost everywhere have inner product 0, so we must add an equivalence class on this
subspace that says two X,Y are equivalent if they agree almost everywhere.

The standard deviation σX and σY act as norms on this quotient subspace of 0-mean random variables. So
the correlation coefficient ρX,Y can be interpreted as the cosine of the angle between X and Y . This now
makes our desired space a Hilbert space, and our uncorrelated random variables are like orthogonal vectors.

Definition 2.19 ()

Let L2
F (Ω) be the function space consisting of equivalence classes of 0-mean random variables X :

(Ω,F) → R that are almost surely equal. Then,
1. we can define the inner product on this space as

⟨X,Y ⟩ := E[XY ]− E[X]E[Y ] = E[XY ] =

∫
Ω

XY dP (254)

2. which induces the L2-norm on this space defined

||X||2 := Var(X) = E[X2]− E[X]2 = E[X2] =

∫
Ω

X2 dP (255)

We set L2
F (Ω) to be a Banach space with bounded norm E[X2] <∞.
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3 Convergence

3.1 Borel-Cantelli Lemmas
There are many Borel-Cantelli lemmas, and we will introduce the two most famous ones. To understand
what these lemmas say, given a sequence A1, A2, . . . of events in σ-algebra F , we must first understand what
the daunting term

∞⋂
n=1

∞⋃
i=n

Ai (256)

means. Now let’s try to explain what the intersection of the unions mean. First, remember that σ-algebras
are stable under both countable unions and countable intersections, this is also in F . We can interpret

∞⋂
n=1

∞⋃
i=n

Ai = {An i.o.} (257)

as the event that infinitely many An’s occur, where i.o. means "infinitely often." To parse this, let’s start
from the innermost term and call it

Bn =

∞⋃
i=n

Ai =⇒ {An i.o.} =

∞⋂
n=1

Bn (258)

Bn is the event that at least one of the An, An+1, An+2, . . . occurs, often referred to as the nth tail event.
Now the intersection of all Bn’s is the event that all Bn’s occur. In other words, this is the event that for
no matter how big of an N ∈ N I choose, there is always at least an event An with n > N that occurs. This
is shortly summarized as the event that infinitely many An’s occur.

Lemma 3.1 (1st Borel-Cantelli Lemma)

Given probability space (Ω,F ,P), if A1, A2, . . . is a sequence of events such that

∞∑
n=1

P(An) <∞ (259)

the almost surely (with probability 1) only finitely many An’s will occur.

P
( ∞⋂
n=1

∞⋃
i=n

Ai

)
= 0 (260)

Proof.

Setting Bn as above, we have

P
( ∞⋂
n=1

Bn

)
= lim
n→∞

P(Bn) (continuity of probability)

= lim
n→∞

P
( ∞⋃
i=1

Ai

)
(substitute Bi)

≤ lim
n→∞

∞∑
i=n

P(Ai) = 0 (tail sum of convergent series is 0)

The second Borel-Cantelli lemma is like a partial contrapositive to the first lemma, where it starts with the
assumption that the sum of the P(An)’s are infinite (along with the addition case that they are independent).
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Lemma 3.2 (2nd Borel-Cantelli Lemma)

If A1, A2, . . . are independent events such that

∞∑
n=1

P(An) = ∞, (261)

then almost surely (with probability 1) infinitely many An’s will occur. That is,

P
( ∞⋂
n=1

∞⋃
i=n

Ai

)
= 1 (262)

The intuition behind this lemma is challenging: We can let P(An) = Pn and interpret the sum as a series of
Pn’s. Since the series P1 + P2 + . . . is finite, this implies that

lim
n→∞

Pn = 0 (263)

(but not the converse) and going to zero rather fast such that the series is finite. So, you are working with a
sequence of events An that are becoming more and more unlikely rather fast. The lemma says that beyond
a certain point n0, none of the events An will occur almost surely. For the second lemma, we can go as far
as we like in the sequence of An’s, up to any An0

, but beyond that there is always an infinite number of An’s
that occur beyond An0

.

3.2 Transforms
3.2.1 Probability Generating Function (PGF)

The PGF is only defined for discrete random variable, and is analogous to the Z-transform in singal process-
ing.

Definition 3.1 (Probability Generating Function)

Let X be a discrete random variable taking values in N0. Then, the probability generating
function of X is defined

GX(z) := E[zX ] =

∞∑
i=0

zi P(X = i) (264)

Now there is the problem of convergence, but we will not pay attention to this technicality for now
and just consider the PGF as a tool.

Example 3.1 (PGF of Poisson)

The random variable X ∼ Poisson(λ) has pmf P(X = i) = e−λλi

i! for i ∈ {0, 1, . . .}. Then,

GX(z) = E[zX ] =

∞∑
i=0

zi
e−λλi

i!
=

∞∑
i=0

e−λ(λz)i

i!
= eλ(z−1) (265)

Example 3.2 (PGF of Geometric)

For X ∼ Geometric(p), its PGF is

GX(z) =

∞∑
i=1

zi (1− p)ip =
pz

1− z(1− p)
(266)
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Lemma 3.3 (Properties of PGF)

Given random variable X and its PGF GX , we have the following:
1. Evaluate at z = 1:

GX(1) = E[1X ] = E[1] = 1 (267)

2. Derivative at z = 1:
dGX(z)

dz

∣∣∣∣
z=1

= E[X] (268)

3. kth derivative at z = 1:

dkGX(z)

dzk

∣∣∣∣
z=1

= E[X(X − 1)(X − 2) . . . (X − k + 1)] (269)

4. Transformation: Given the sum Z = X + Y (where X,Y are independent), rather than com-
puting its convolution, the PGF of Z is simply the product of the PGFs of X and Y :

GZ(z) = GX(z)GY (z) (270)

For example, since a Poisson(λ) random variable has PGF of form eλ(z−1), if we have two
Poissons X and Y with parameters λ, µ, then we can easily multiply their PGFs to get the PGF
of Z = X + Y , which is e(λ+µ)(z−1), which is the PGF of a Poisson(λ+ µ) random variable.

3.2.2 Moment Generating Function (MGF)

Definition 3.2 (Moment Generating Function (MGF))

The moment generating function associated with a random variable X is a function MX : R −→
[0,∞] defined

MX(s) := E[esX ] (271)

It is like an exponential moment. The region of convergence of MX is the set DX = {s |MX(s) <∞}.
and we always have MX(0) = 1, so 0 ∈ DX always.

Lemma 3.4 (Properties of MGF)

Let X be a random variable with MGF MX(s).
1. MX(0) = 1, so 0 is always in the region of convergence.
2. If Y = aX + b, then

MY (s) = ebsMX(as) (272)

3. If X and Y are independent and Z = X + Y , then

MZ(s) =MX(s)MY (s) (273)

Proof.

Listed.
1. MX(0) = E[e0X ] = E[1] = 1.
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2. We have

MY (s) = E[es(aX+b)]

= E[easXebs]

= E[e(as)X ]E[ebs]
= ebsMX(as)

where the penultimate step was due to independence of constant RV with any other RVs.
3. We can see

MZ(s) = E[es(X+Y )] = E[esX esY ] = E[esX ]E[esY ] =MX(s)MY (s) (274)

since X,Y independent means that any function of X and Y are independent.

Theorem 3.1 (Inversion Theorem)

Suppose MX(s) is finite for all s ∈ [−ϵ, ϵ] for some ϵ > 0. Then, MX uniquely determines the CDF of
X. This implies that if X and Y are random variables such that MX(s) = MY (s) for all s ∈ [−ϵ, ϵ]
for some ϵ > 0, then X and Y have the same CDF.

This theorem is useful for comparing random variables with the MGFs, but a limitation is that it is not
always clear that the MGF is defined beyond 0. Now, we explain why this is called a moment generating
function.

Theorem 3.2 (Moment Generating Property)

Suppose MX(s) <∞ for s ∈ [−ϵ, ϵ] with ϵ > 0. Then, the derivatives at s = 0 generate the moments
of X:

dmMX(s)

dsm

∣∣∣∣
s=0

= E[Xm] (275)

Proof.

A hand-wavy proof is that we can take the derivative and put it "in" the expectation.

d

ds
E[esX ] = E

[ d
ds
esX

]
= E[XesX ] (276)

which evaluates to E[X] when s = 0. Differentiating m times just gets E[XmesX ]. However, this
should be questioned, since the expectation is an integral and we are putting the derivative inside the
integral.

Example 3.3 (Exponential RV)

The PDF of X ∼ Exponential(µ) is fX(x) = µe−µx for x ≥ 0. The MGF is

MX(s) :=

∫ ∞

0

µe−µxesx dx =

{
µ
µ−s for s < µ

∞ for s ≥ µ
(277)
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Example 3.4 (Gaussian RV)

The PDF of a standard Gaussian X is fX(x) = 1√
2π
e−x

2/2 for x ∈ R, and the MGF is

MX(s) =

∫ ∞

−∞

1√
2π
e−x

2/2esx dx = es
2/2

∫ ∞

−∞

1√
2π
e−

(x−s)2

2 dx = es
2/2 (278)

which is valid for all s ∈ R.

Example 3.5 (Cauchy RV)

If we have fX(x) = 1
π

1
1+x2 for x ∈ R, the MGF is

MX(s) =

∫ ∞

−∞

esx

π(1 + x2)
dx =


1 if s = 0

∞ if s > 0

∞ if s < 0

(279)

So the region of convergence is just {0}. It is infinity everywhere else since the exponential function
grows exponentially as x→ ±∞.

Example 3.6 ()

Given X1 ∼ Exponential(λ1) and X2 ∼ Exponential(λ2) are independent, the MGF of Z = X1 +X2

is
MZ(s) =MX(s)MY (s) =

λ1λ2
(λ1 − s)(λ2 − s)

for s < min{λ1, λ2} (280)

and we can perform our inverse transform on it.

3.2.3 Characteristic Function

We can see that the MGF has its limitations: for some random variables (like the Cauchy), its MGF was
not defined at all beyond {0}. On the contrary, the characteristic function is always defined everywhere and
is finite everywhere (in fact, is bounded by 1, shown below). Also, it is a bit easier to invert (similar to how
the Fourier transform is a bit easier to invert than the Laplace).

Definition 3.3 (Characteristic Function)

Given a random variable X : Ω −→ R, the characteristic function is defined to be

φX(t) = E[eitX ]

= E[cos (tX)] + iE[sin (tX)]

If X admits a PDF, then the characteristic function is its Fourier transform with a small sign reversal.

φX(t) =

∫
R
eitxfX(x) dx (281)

Theorem 3.3 (Properties of CF)

Let X be a random variable with CF φX(t).
1. φX(0) = 1 and |φX(t)| ≤ 1 for all t ∈ R.
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2. If Y = aX + b, then
φY (t) = eibtφX(at) (282)

3. If X and Y are independent random variables and Z = X + Y , then

φZ(t) = φX(t)φY (t) (283)

4. φX(t) is uniformly continuous on R, i.e. for all t ∈ R, there exists a ϕ(h) ↓ 0 as h ↓ 0 such that

|φX(t+ h)− φX(t)| ≤ ϕ(h) (284)

5. φX is a nonnegative-definite kernel, i.e. for any n reals t1, . . . , tn and n complex numbers
z1, . . . zn, we have ∑

i,j

ziφX(ti − tj) z̄j ≥ 0 (285)

Proof.

Listed.
1. We just set φX(0) = E[ei0X ] = E[1] = 1, and for continuous random variables, we can bound

∣∣φX(t)
∣∣ = ∣∣∣∣ ∫ ∞

−∞
eitxfX(x) dx

∣∣∣∣
≤

∫ ∞

−∞

∣∣eitxfX(x)
∣∣ dx

≤
∫ ∞

−∞

∣∣eitx∣∣ · ∣∣fX(x)
∣∣ dx

=

∫ ∞

−∞
fX(x) dx = 1

2. We have
φY (t) = E[eit(aX+b)] = E[eiatX eibt] = E[ei(at)X ]E[eibt] = eibtφX(at) (286)

3. We have
φZ(t) = E[eit(X+Y )] = E[eitX eitY ] = E[eitX ]E[eitY ] = φX(t)φY (t) (287)

4. We have

|φX(t+ h)− φX(t)| = |E[eitX(eihX − 1)]|
≤ E[|eitX(eihX − 1)|]
≤ E[|eihX − 1|] . . .

Now this next theorem states the uniqueness of each characteristic function. It is a highly nontrivial result.

Theorem 3.4 (Inversion Theorem)

If two random variables have the same characteristic function, then their CDFs are the same. Further,
if X is a continuous random variable, then the PDF can be recovered from the characteristic function
as follows:

fX(x) = lim
T→∞

1

2π

∫ T

−T
e−itxφX(t) dt (288)

for every x where fX(x) is continuous.
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Just like how we can recover moments from the MGF, we can always recover the moments from the charac-
teristic function, with the added advantage that the CF will always exist.

Theorem 3.5 (Moment Generating Property)

Let X be a random variable and φX(t) its CF.
1. If φ(k)

X (t) ( the kth derivative) exists at t = 0, then

E[|Xk|] <∞ for k even

E[|Xk−1|] <∞ for k odd

2. If E[|Xk|] <∞, then
φ
(k)
X (0) = ikE[Xk] (289)

3. Further, given that the moments are finite, we can expand the CF by moments of X as

φX(t) =

k∑
j=0

E[Xj ]

j!
(it)j + o(tk) (290)

Example 3.7 (Bernoulli)

Given X ∼ Bernoulli(p), we have

E[eitX ] =
∑

x∈{0,1}

eitx · P(X = x)

= eit0(1− p) + eitp

= 1− p+ peit

Example 3.8 (Exponential)

Given X ∈ Exponential(λ), we have

E[eitX ] =

∫ ∞

0

eitxλe−λx dx

=

∫ ∞

0

λ e−(λ−it)x dx

=
λ

λ− it
for all t ∈ R

where the complex integral requires some complex analysis.

3.3 Convergence of Random Variables
Unlike convergence of numbers, which is well-defined with respect to some metric or topology, there are
many types of convergence of random variables. We must always specify which convergence when talking
about them. Remember that a random variable X is just a function from Ω to R, so we can talk about
pointwise convergence. That is, given a sequence of random variables {Xn} and some ω ∈ Ω, the sequence

X1(ω), X2(ω), X3(ω), . . . (291)

is simply a sequence of real numbers. If this sequence converges to the real number X(ω), then Xn converges
to X at ω. If this occurs for all ω ∈ Ω, then we have sure convergence, and if this happens for an event (a
F-measurable subset of Ω) with probability 1, then we have almost sure convergence.
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Definition 3.4 (Sure Convergence of RVs)

The sequence of random variables {Xn}n∈N is said to converge pointwise or converge surely to
X if

Xn(ω) → X(ω) (292)

for every ω ∈ Ω. That is, we can choose any ω ∈ Ω, and the realized sequence X1(ω), X2(ω), . . . will
always converge to X(ω). We can visualize the function X with a surface defined over Ω and can
imagine the Xn’s as surfaces that converges to that of X.

But this definition is too strong of a form of convergence, since in probability we don’t care about values
over sets of measure 0. That is, if we have two probability distributions that differ from each other on a set
of measure 0, then they can be considered essentially the same probability distribution.

Definition 3.5 (Almost Sure Convergence of RVs)

The sequence of random variables {Xn}n∈N is said to converge almost surely or converge with
probability 1 to X if Xn(ω) → X(ω) on a subset of probability 1. That is,

P
(
{ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)}

)
= 1 (293)

Considering small technicalities, it can be shown that this set of ω’s can be considered an event in
F . This can be visualized similarly as sure convergence, but now the surfaces don’t have to converge
on sets of measure 0.

Crudely put, we just have to look at each ω ∈ Ω, see if Xn(ω) converges to X(ω) as n → ∞, and
determine if the set of all ω’s that satisfy this have probability 1. In other words, let us have some
experiment with outcome space Ω. With probability 1, some ω ∈ Ω will be realized, which will realize
the sequence of realized random variables

X1(ω), X2(ω), X3(ω), . . . (294)

that will converge to X(ω). Visually, we can imagine selecting a random point in Ω, which will not
hit the curve or point (with probability 1), and in these cases, the sequence of points will converge
to X(ω).

64/ 110



Probability Theory Muchang Bahng Spring 2023

Definition 3.6 (Convergence in Probability)

The sequence of random variables {Xi}i∈N is said to converge to X in probability if for all ϵ > 0,

lim
n→∞

P
(
|Xn −X| > ϵ

)
= 0 (295)

To understand what this means, fix an ϵ > 0. Then, X1 may be very far from X, meaning that the
event |X1 −X| > ϵ, i.e. the set of all ω ∈ Ω satisfying |X1(ω)−X(ω)| > ϵ may be a larger portion of
Ω. Now, as we increase n, this event will become smaller (in the way that it’s probability decreases)
until it reaches 0.

Example 3.9 ()

GivenXn ∼ Exponential(n) with fXn
(x) = ne−nx, we show that the sequence converges in probability

to the 0 random variable. Given ϵ > 0, we have

lim
n→∞

P(|Xn − 0| > ϵ) = lim
n→∞

P(Xn > ϵ ∪Xn < −ϵ)

= lim
n→∞

P(Xn > ϵ)

= lim
n→∞

∫ ∞

ϵ

ne−nx dx

= lim
n→∞

e−nϵ = 0

We can imagine this since given any small ϵ > 0, we can see that increasing n results in the distribution
of Xn to decrease at a faster rate, and thus a bigger portion of the distribution would lie within ϵ of
the 0 random variable.
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Definition 3.7 (Convergence in rth Mean)

We say Xn converges to X in the rth mean if

lim
n→∞

E
[
|Xn −X|r

]
= 0 (296)

For r = 2, Xn is said to converge to X in the mean-squared sense.

Definition 3.8 (Convergence in Distribution)

We say Xn converges to X in distribution if the CDF of Xn converges pointwise to the CDF of
X, i.e.

lim
n→∞

FXn
(x) = FX(x) (297)

for all x where FX is continuous.

So for practical purposes there are 5 notions of convergence that we will work with:

1. Sure convergence: Xn
p.w.−−−→ X

2. Almost sure convergence: Xn
a.s.−−→ X

3. Convergence in probability: Xn
i.p.−−→ X

4. Convergence in rth mean: Xn
rth−−→ X (Mean square: Xn

m.s.−−−→ X)

5. Convergence in distribution: Xn
D−→ X

Theorem 3.6 (Hierarchy of Convergence)

The following implications hold:
1. Pointwise c. =⇒ almost sure c. =⇒ c. in probability =⇒ c. in distribution.
2. rth mean c. =⇒ c. in probability =⇒ c. in distribution.

Trying to understand these relationships can be very hard, so we will take some time to do that, with some
examples. First, convergence in distribution is clearly the weakest, since convergence in distribution does
not imply that the random variables need be close to each other. Take a look at the random variables
X ∼ Bernoulli(1/2) and Y = 1−X. X and Y are both Bernoulli(1/2) with the same distribution, but they
are not the same random variable since X −Y = 1 always. Therefore, we can think of two random variables
that have the same distribution but are not "close" to each other as functions over Ω that divide it into
identical, but differently cut, distributions.

66/ 110



Probability Theory Muchang Bahng Spring 2023

Ω
X

Y

FX = FY ̸⇒ X = Y a.s.

Figure 2: Two identical distributions may not model the same phenomenon.

Example 3.10 (C. in Distribution ≠⇒ C. in Probability)

Let X1, X2, . . . be such that Xi = X for all i where X ∼ Bernoulli(1/2). This does not mean that
the Xi’s are iid Bernoulli; they are all copies of the same X, i.e. forms a constant sequence. Let
Y = 1−X. Clearly, Xn

D−→ Y since the CDF of every Xi is the same as that of Y , but |Xn − Y | = 1
for all n, so there is no convergence.

Example 3.11 (C. in Distribution ≠⇒ C. in Probability)

Let X1, X2, . . . ∼ N (0, 1) and Y = −X. Then, by symmetry of the standard Gaussian, both X and
Y have the same CDF, but they are not the same random variable: their signs are opposite.

3.3.1 Convergence in Probability vs Almost Surely

Convergence almost surely and convergence with probability are very different. Almost sure convergence
has the limit inside the probability, which indicates that we are talking about convergence of a sequence of
random variables. On the other hand, convergence in probability has the limit on the outside, which talks
about convergence of a sequence of probabilities. But a key point is that almost sure convergence implies
convergence in probability. It happens so because there could exist a subset of small probability in Ω where
the Xn’s and X need not be close, but the probabilities of them deviating over whole Ω is small.

Example 3.12 (C. in Probability ≠⇒ C. Almost Surely)

Consider the interval Ω = [0, 1] and the subsets A1 = [0, 0.1], A2 = [0.1, 0.2], . . ., such that at A10 =
[0.9, 1.0], the size with halve and will go to the left boundary, A11 = [0, 0.05], . . .. Then, the sequence
of indicator random variables

Xn := 1An
(298)

looks like it’s converging to the 0 random variable. Indeed, Xn
i.p.−−→ 0 since the probability that Xn

deviates from 0 by more than some small ϵ is simply the measure of An itself, which decreases to 0.
That is, given some small ϵ > 0, we have

lim
n→∞

P(|Xn − 0| > ϵ) = lim
n→∞

P(1An
> ϵ) = lim

n→∞
P(An) = 0 (299)

Now let’s show that this doesn’t converge almost surely. For any outcome ω ∈ Ω, the sequence
of random variables X1(ω), X2(ω), . . . will hit these intervals An infinitely many times and will not
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converge to 0, since there will always be a 1 down the sequence. They will occur with decreasing
frequency but they will always occur. Therefore, with probability 1, whatever realized sequence will
not converge to the 0 random variable.

Here is another standard counterexample.

Example 3.13 (C. in Probability ≠⇒ C. Almost Surely)

Let us take the sequence X1, X2, . . . of independent random variables where Xn ∼ Bernoulli(1/n).
That is,

P(Xn = 1) =
1

n
and P(Xn = 0) = 1− 1

n
(300)

So, as n gets large we expect Xn to realize values of 0 more and more. Showing that Xn
i.p.−−→ 0 is

easy, since we can compute for any ϵ > 0

lim
n→∞

P(|Xn − 0| > ϵ) = lim
n→∞

P(|Xn| > ϵ)

= lim
n→∞

P(Xn = 1)

= lim
n→∞

1

n
= 0

We want to show that this does not converge almost surely to 0, i.e. there is some set of nonzero
measure such that for some ω in that set, the sequence X1(ω), X2(ω), . . . does not converge to 0. This
can be hard to see at first, but the fact that we have independence and the terms are 1

n hints at the
Borel-Cantelli lemma. Let An be the event that {Xn = 1} (i.e. the preimage of the singleton set
under Xn: X−1

n ({1})). Then, the An’s are independent, and

∞∑
n=1

P(An) = +∞ (301)

By the Borel-Cantelli lemma 2, this implies that almost surely infinitely many An’s will occur. That
is, we can choose as large of an n as we like, go down the sequence until we look at Xn, Xn+1, . . .,
and we are guaranteed with probability 1 that at least one of the Xi’s after n will realize a 1. This
means that in every realization of X1, X2, . . ., we will get a sequence of 0s and 1s, but since BCL
states that no matter how far down the road you will always get at least another 1, this sequence
does not converge to 0.

The commonality between these two examples is that sequence of random variables satisfies convergence in
probability as follows: As n increases, Xn is more and more likely to be near X (in the way that |Xn−X| < ϵ
for some ϵ > 0), ultimately satisfying this closeness property with probability 1 as n→ ∞. For example, we
could have

P(|X1 −X| > ϵ) = 1

P(|X2 −X| > ϵ) = 1/2

P(|X3 −X| > ϵ) = 1/3

. . . = . . .

This definitely satisfies convergence in probability, but this leaves open the possibility that P(|Xn −X| > ϵ)
an infinite number of times, although at infrequent intervals. Therefore, when looking at the sequence

X1, X2, X3, . . . (302)

each random variable individually may have less chance of being more than ϵ away from X, but since there
is an infinite number of them in the sequence, the sequence in totality may contain an infinite number of

68/ 110



Probability Theory Muchang Bahng Spring 2023

cases where |Xn −X| > ϵ. Convergence almost surely tells us that we are guaranteed (with probability 1)
that this sequence will converge to X. That is, we can specify an N ∈ N such that |Xn − X| < ϵ for all
n > N .

Let us define some ϵ > 0 and consider a sequence of random variables {Xn}n∈N. Given some outcome ω ∈ Ω,
we will consider it a success if |Xn(ω) − X(ω)| < ϵ and failure if not. Then, convergence in probability
tells us that the probability of failure goes to 0 as n goes to infinity and therefore we get better and better
estimates of X. Convergence almost surely is a bit stronger and says that the total number of failures is
finite. That is, after a certain point N , the random variable Xn will always estimate X within an error of
ϵ (i.e. such that |Xn −X| < ϵ). But since you don’t know when you’ve exhausted all failures, there is not
much of a difference from a practical point of view.

3.3.2 Complete Convergence

When proving almost sure convergence, we’d ideally just look at all the ω ∈ Ω where Xn(ω) → X(ω), and if
this set has probability measure 1, then we are done. But this is not very practical, so we use the following
theorem, which gives a sufficient condition for Xn

a.s.−−→ X.

Theorem 3.7 ()

If for all ϵ > 0,
∞∑
n=1

P(|Xn −X| > ϵ) <∞ (303)

then Xn
a.s.−−→ X. This condition is a bit stronger, since not only are we saying that P(|Xn −X| > ϵ)

tends to 0 as n→ ∞, but that it goes down fast enough to keep the series convergent.

Proof.

Let the event that |Xn − X| > ϵ be denoted An(ϵ) (i.e. the preimage of (ϵ,∞) under the map
|Xn −X|, which is a F-measurable set). Since the sum of their probabilities is finite, by the Borel-
Cantelli lemma 1, finitely many An(ϵ)’s will occur with probability 1. This means that for any ϵ > 0,
|Xn −X| ≤ ϵ for all large enough n, meaning that it converges to 0.

3.4 Laws of Large Numbers

Theorem 3.8 (Weak Law of Large Numbers)

Let X1, X2, ..., Xn be a sequence of iid random variables, with finite mean E[X]. Then, the average
of the random variables Sn/n converges in probability to E[X].

Sn
n

=
1

n

n∑
i=1

Xi
i.p−−→ E[X] (304)

That is, for any ϵ > 0,

lim
n→∞

P
(∣∣∣∣( 1

n

n∑
k=1

Xk

)
− E[X]

∣∣∣∣ > ϵ

)
= 0 (305)

Proof.

We first do the proof assuming additionally that X has finite variance, so Var[X] <∞. We will show
that the random variable Sn/n converges in mean square to E[X], which will imply convergence in
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probability. Note that E[Sn/n] = E[X], and

lim
n→∞

E
[∣∣∣∣Snn − E[X]

∣∣∣∣2] = lim
n→∞

E
[∣∣∣∣Snn − E

[Sn
n

]∣∣∣∣2]
= lim
n→∞

Var
(Sn
n

)
= lim
n→∞

Var(Sn)

n2

= lim
n→∞

Var[X]

n
= 0

Theorem 3.9 (Strong Law of Large Numbers)

Let X1, X2, ..., Xn be a sequence of iid random variables, with finite mean E(Xk) and with finite
variance. Then, the average of the random variables Sn/n converges almost surely to E[X].

Sn
n

a.s.−−→ E[X] (306)

That is,

P
({

ω ∈ Ω | lim
n→∞

( 1

n

n∑
i=1

Xi(ω)
)
= E[X]

})
= 1 (307)

Now let’s compare these two laws. They both deal with averages of random variables, i.e. we keep sampling
from X and compute the averages Xn. The weak law states that for a specified large n, the average Xn is
likely to be near E[X]. But it leaves open the possibility that |Xn − E[X]| > ϵ happens an infinite number
of times (although less frequently). So no matter how big of an n we choose, there could always be an Xn

in the future that fails to satisfy |Xn − E[X]| > ϵ. However, the strong law shows that this almost surely
will not occur. That is, with probability 1, we have for any ϵ > 0 the inequality |Xn−E[X]| < ϵ for all large
enough n greater than a certain N . Note that the weak law does not guarantee the existence of such an N .

This result is very useful because it justifies experiments that estimate some value by taking averages.

Example 3.14 (Estimating Speed of Light)

Say that we are conducting an experiment to justify the speed of light, which will have true value µ.
The laws of large numbers say that in theory, after obtaining enough data, we can get arbitrarily close
to the true speed of light. Choose ϵ > 0 arbitrarily small. We can obtain n estimates X1, . . . , Xn of
the speed of light and compute the average

Xn =
1

n

n∑
i=1

Xi (308)

As we obtain more data, we can compute Xn for each n = 1, 2, . . .. The weak law says that P(|Xn −
µ| > ϵ) → 0 as n→ ∞, i.e. the probability of our estimate being off by more than ϵ goes to 0 (though
it may happen with nonzero probability if we consider the infinite sequence). The strong law says
that the number of times |Xn − µ| is greater than ϵ is finite (with probability 1), and after a certain
point our estimates will perfectly lie within the error ϵ. This gives us considerable confidence in the
value Xn because it guarantees the existence of some N ∈ N s.t. |Xn − µ| < ϵ for all n > N , i.e. the
average never fails for n > N .
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3.5 Concentration Inequalities
Concentration inequalities give you probability bounds on random variables taking atypical values. For
example, given a random variable with certain mean and variance, the probability of that random variable
taking values outside a certain range around the mean is very small. It’s called concentration because the
probability concentrates around a certain range.

The basic question here is that we would like to model a random variable X over a probability space Ω
and have some data X1, X2, . . . , Xn iid according to X. Let us have a fixed function f : Rn −→ R that
transforms the joint random variable (X1, . . . , Xn) to create a new scalar RV

f(X1, . . . , Xn) = f ◦ (X1, . . . , Xn) : Ω −→ R (309)

f(X1, . . . , Xn) is a random variable so it has a mean, denote it E[f ]. Then concentration generally refers to
the probability that the value of f is at least some distance further from its mean.

P
(
|f(x)− E[f ]| ≥ t

)
≤ ϵ (310)

for some small positive ϵ. Usually, we would like this ϵ to be an exponentially decaying function of t so that
the bound goes down fast. This is what’s so great about the Gaussian, which is why we’ll introduce it here.

Theorem 3.10 (Gaussian Tail Inequality)

Given X ∼ N (0, 1), the inequality says that the probability of X taking values past a certain t decays
exponentially.

P
(
|X| > t

)
≤ 2e−t

2/2

t
(311)

If we have X1, . . . , Xn ∼ N (0, 1), then

P
(
|X| > t

)
≤ 2√

nt
e−nt

2/2 (312)

We can assume that the coefficient is less than 1 if n is large. The above tells us that this bound
exponentially decays with t but also with the number of samples n.

Proof.

We can simply check

ϕ(s) =
1√
2π
e−s

2/2 =⇒ ϕ′(s) = s ϕ(s) (313)

and use this to evaluate

P(X > t) =

∫ ∞

t

ϕ(s) ds

=

∫ ∞

t

s

s
ϕ(s) ds

<
1

t

∫ ∞

t

sϕ(s) ds

=
1

t

∫ ∞

t

ϕ′(s) ds

=
ϕ(t)

t

Due to the exponential nature of the probability bound, we are extremely confident in getting the majority
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of our samples from a small interval. If we had taken some distribution like a Cauchy, with PDF of form

f(x) ∝ 1

1 + x2
(314)

Then we see that even though the shape looks like a Gaussian at first glance, the fat tails go down at the
rate of 1/x2. It turns out that due to this, when we sample numerically, we occasionally get extreme values.

Theorem 3.11 (Markov’s Inequality)

If X is a non-negative random variable of finite expectation and α > 0, then

P(X > α) ≤ E[X]

α
(315)

That is, the probability that X takes a value greater than α is at most the expectation of X divided
by α. This is meaningful only when E[X] < α, since otherwise the RHS will be greater than 1.

Proof.

Given any α > 0, we can set
X = X · 1X≤α +X · 1X>α (316)

and by linearity,

E[X] = E[X · 1X≤α +X · 1X>α]
≥ E[X · 1X>α]
≥ αE[1X>α]
= αP(X > x)

In other words, the probability thatX > α goes down at least as fast as 1/α. For example, setting α = 2E[X],
the probability that X takes value that is at least twice its expectation is at most 1/2. Furthermore, as X
gets very large, the probability that it will take a value beyond a large α goes down faster than 1/α. But
this is a very conservative inequality, and usually the probability goes down much faster.

Markov’s inequality is very conservative but very general, too. If we make further assumptions about
the random variable X, we can often make stronger bounds. Chebyshev’s inequality assumes a (possibly
negative) random variable with finite variance and states that the probability will go down as 1/x2.

Theorem 3.12 (Chebyshev Inequality)

Given (possibly negative) random variable X, if E[X] = µ < +∞ and Var(X) = σ2 < +∞, then for
all α > 0,

P
(
|X − µ| > kσ

)
≤ 1

k2
⇐⇒ P(|X − µ| > α) ≤ Var[X]

α2
(317)

That is, the probability that X takes a value further than k standard deviations away from µ goes
down by 1/k2. Therefore, if σ is small, then this bound will be small since there is more concentration
in the mean.

Proof.

We apply Markov’s inequality to the non-negative random variable |X − µ|.

P(|X − µ| > α) = P(|X − µ|2 > α2) ≤ E(|X − µ|2)
α2

=
Var[X]

α2
(318)

since the numerator on the RHS is the definition of variance.
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Chebyshev inequality is just Markov’s inequality applied to X2 (assuming 0 mean), and often yields a better
bound. But even Chebyshev’s inequality turns out to be quite loose, and even this 1/k2 is not a very nice
bound. We could apply Markov’s inequality to higher powers of X, e.g. given a random variable X, we can
apply Markov’s inequality to the kth power of nonnegative random variable |X − E[X]|:

P(|X − E[X]| > α) = P
(
|X − E[X]|k > αk

)
≤ E(|X − E[X]|k)

αk
(319)

The natural culmination of all this is to apply Markov’s inequality to eX (or, for a little flexibility, etX ,
where t is a constant to be optimized). This gives us an exponential bound on P(X > α).

Example 3.15 (Gaussian)

For the normal distribution, recall the 67-95-99.7 rule. It is well known that the probability of a
random variable taking values within 2 standard deviations from the mean is 95%, so the probability
that it takes outside is 5%, or 1/20, which is less than the 1/22 = 1/4 bound given by Chebyshev.

3.5.1 Chernoff Bound and MGFs

Theorem 3.13 (Chernoff Bound)

Given a (possibly negative) random variable X, assume that its moment generating function MX(s) =
E[esX ] is finite for every s ∈ [−ϵ, ϵ]. Then, since x 7→ esx is monotonically increasing, we have the
identity

P(X > α) = P(esX > esα) for s > 0 (320)

But since the new random variable esX is nonnegative, we can now go back to Markov inequality and
write

P(X > α) = P(esX > esα) ≥ E[esX ]

esα
=MX(s) e−sα (321)

for s > 0 (for identity above to hold) and s ∈ DX (and it is in domain of convergence). Now, we have
an exponentially decaying bound in terms of α. We have the freedom to choose s, since our bound is
in terms of α, so we must choose s that minimizes MX(s) e−sα. Ultimately, our best bound is

P(X > α) ≤ inf
s>0

MX(s) e−sα (322)

After we optimize over s what remains on the RHS is a function of α.

Now, we can calculate the MGF of X directly if we knew the distribution of X, but we can also get bounds
on it given some coarse statistics of X.

Lemma 3.5 ()

Let X be a 0-mean random variable s.t. a ≤ X ≤ b with probability 1. Then for all t > 0,

E[etX ] ≤ et
2(b−a)2/8 (323)

Proof.

We can write x = λa+ (1− λb), 0 ≤ λ ≤ 1, and convexity of the exponential tells us that

etx ≤ λeta + (1− λ)etb (324)
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Plugging in λ = (b− x)/(b− a) then gives

etx ≤ b− x

b− a
etx +

x− a

b− a
etb (325)

Take expectations of both sides, and using linearity of expectation and the fact that E[X] = 0.

E[etX ] ≤ b− EX
b− a

eta +
EX − a

b− a
etb =

beta − aetb

b− a
≤ et

2(b−a)2/8 (326)

3.5.2 Hoeffding’s Inequality

Hoeffding’s inequality is one of the most important inequalities in concentration of measure. The proof of
this inequality involves many useful tricks.

Theorem 3.14 (Hoeffding’s Inequality)

Let X1, X2, . . . , Xn be independent (not necessarily identical) random variables s.t. ai ≤ Xi ≤ bi
almost surely. Consider the random variable X = 1

n (X1 + . . .+Xn). Then, for all t > 0, we have the
two inequalities

P
(
X − E[X] ≥ t

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
P
(
X − E[X] ≤ −t

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
which can be combined to produce

P
(∣∣X − E[X]

∣∣ ≥ t
)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
(327)

We can create an equivalent bound on the sum Sn = X1 + . . .+Xn:

P
(
|Sn − E[Sn]| ≥ t

)
= P

(
n|X − E[X]| ≥ t

)
= P

(
|X − E[X]| ≥ t

n

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)

Proof.

We will prove just with the case where X1, . . . Xn are all bounded by [a, b], which gives

P
(
|X − E[X]| ≥ t

)
≤ 2 exp

(
− 2nt2

(b− a)

)
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Now, we can write

P(Xn > ϵ) = P
( n∑
i=1

Xi ≥ nϵ
)

= P
(
et

∑
Xi ≥ etnϵ

)
(Variational Technique)

≤ e−tnϵ E[et
∑
Xi ] (Markov’s Inequality)

= e−tnϵ
(
E[etXi ]

)n
(Independence)

≤ e−tnϵen
t(b−a)2

2 (prev. lemma)

The step where we introduce an extra parameter t is called a variational technique, used for optimiza-
tion, and we can adjust t to make it as small as possible. Taking the derivative of the final expression
w.r.t. t and solving for 0 gives us t = 4ϵ

(b−a)2 , and substituting into the expression gives the bound as

P(Xn > ϵ) ≤ exp

(
− 2nϵ2

(b− a)2
(328)

By further rearranging, we can write it as

P
(
|X − E[X]| ≥ t

√∑n
i=1(bi − ai)2

n2

)
≤ 2 exp(−2t2) (329)

which now looks like our Chebyshev inequality, but without a notion of standard deviation. But note the
fact if ai ≤ Xi ≤ bi, then Var(Xi) ≤ (bi − ai)

2 (since Var(Xi) = E[(Xi − E[Xi])
2] ≤ E[(bi − ai)

2]). So, we
have

Var(X) ≤
∑n
i=1(bi − ai)

2

n2
=⇒ P

(
|X − E[X]| ≥ t

√∑n
i=1(bi − ai)2

n2
≥ Var(X)

)
≤ 2 exp(−2t2) (330)

which allows us to interpret Hoeffding’s inequality in a more familiar way. It says that the probability that
the sample average is more than t standard deviations from its expectation is at most 2e−2t2 .

Corollary 3.1 ()

If X1, X2, . . . , Xn are independent with P(ai ≤ Xi ≤ bi) = 1 and common mean µ, then

P
[∣∣Xn − µ

∣∣ ≤ √∑n
i=1(bi − ai)2

2n2
log

(2
δ

)]
≥ 1− δ (331)

Example 3.16 (Bernoulli)

Applying Hoeffding’s inequality to a sequence of n p-coin tosses X1, . . . , Xn ∼ Bernoulli(p) gives

P
(
|Xn − p| > ϵ

)
≤ 2 exp−2nϵ2 (332)

Example 3.17 (Mean)

Suppose we have X1, X2, . . . Xn ∼ Bernoulli(p), all iid. Then, by Hoeffding’s inequality, the average
X = 1

n (X1 + . . .+Xn) is tightly concentrated around p.

P
(
|X − p| ≥ t

)
≤ 2e−2nt2 (333)

Note that bi− ai = 1− 0 = 1 for all i. There is an exponential decay in the probability of the sample
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mean deviating from its expectation.

Example 3.18 (Hypercube)

Pick X ∈ [−1,+1]d uniformly at random, i.e. choose iid X1, . . . , Xd ∼ Uniform[−1,+1]. The
expectation is

E||X||2 =

d∑
i=1

EX2
i =

d∑
i=1

∫ 1

−1

x2fX(x) dx =

d∑
i=1

∫ 1

−1

1

2
x2 dx =

d

3
(334)

Then, it can be shown that ||X|| = is tightly concentrated around
√
d/3. We show this again with

Hoeffding’s inequality by showing the concentration of ||X||2 around d/3.

P
(∣∣∣∣||X||2 − d

3

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− dt2

2

)
(335)

This tells us that if we choose the uniform random vector X ∈ [−1,+1]d, the vast majority of our
samples will have ||X|| ≈

√
d/3.

Hoeffding’s inequality does not use any information about the random variables expect for the fact that they
are bounded. If the variance of Xi is small, then we can get a sharper inequality from Bernstein’s inequality.

Theorem 3.15 (Bernstein’s Inequality)

If P(|Xi| ≤ c) = 1 and E[Xi] = 0, set X = 1
n

∑n
i=1Xi. Then, for any t > 0,

P
(∣∣X∣∣ > ϵ

)
≤ 2 exp

(
− nϵ2

2σ2 + 2cϵ/3

)
(336)

where σ2 = 1
n

∑n
i=1 Var(Xi).

3.5.3 Concentration of Lipshitz Functions

Observing the Hoeffding bound, one might wonder whether such concentration applies only to averages or
sums of random variables. After all, what’s so special about averages? It turns out that the relevant feature
of the average that yields tight concentration is that it is smooth in the way that if we change the value of
one random variable the function does not change dramatically.

Theorem 3.16 (Bounded Difference Inequality)

Let has have independent random variables X1, X2, . . . , Xn and a function f : Rn −→ R that satisfies
the bounded difference property that∣∣f(x1, . . . , xk, . . . , xn)− f(x1, . . . , x

′
k, . . . , xn)

∣∣ ≤ ck (337)

for every x, x′ ∈ Rn. That is, the function changes by at most ck if its kth coordinate is changed.
Then, for all t ≥ 0, we have the concentration inequality:

P
(
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t

)
≤ exp

(
− 2t2∑n

k=1 c
2
k

)
P
(
f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≤ −t

)
≤ exp

(
− 2t2∑n

k=1 c
2
k

)
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Combining the two gives

P
(∣∣f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t

∣∣) ≤ exp

(
− 2t2∑n

k=1 c
2
k

)

In fact, any smooth function of bounded independent random variables is tightly concentrated around its
expectation, and the notion of smoothness is Lipshitz continuity.

Definition 3.9 ()

A function f : Rn −→ R is L-Lipschitz w.r.t. the lp-metric if for all x,y ∈ Rn,

|f(x)− f(y)| ≤ L||x− y||p (338)

Example 3.19 ()

For x = (x1, x2, . . . , xn), we define the average a(x) = 1
n (x1 + . . . + xn). Then, a is (1/n)-Lipschitz

w.r.t. the l1 metric, since for any x,y,

|a(x)− a(y)| =
∣∣∣∣ 1n[(x1 − y1) + . . .+ (xn − yn)

]∣∣∣∣
=

1

n

(
|x1 − y1|+ . . .+ |xn − yn|

)
=

1

n
||x− y||1

It turns out that Hoeffding’s bound holds for all Lipschitz functions w.r.t. the l1 metric.

Theorem 3.17 ()

Suppose X1, X2, . . . , Xn are independent and bounded with ai ≤ xi ≤ bi. Then, for any f : Rn −→ R
that is L-Lipschitz w.r.t. the l1-metric, we have

P[f ≥ E(f) + t] = P[f − E(f) ≥ t] ≤ exp

(
− 2t2

L2
∑n
i=1(bi − ai)2

)
P[f ≤ E(f)− t] = P[f − E(f) ≤ −t] ≤ exp

(
− 2t2

L2
∑n
i=1(bi − ai)2

)
and combining these inequalities gives

P[|f − E(f)| ≥ t] ≤ exp

(
− 2t2

L2
∑n
i=1(bi − ai)2

)
(339)

3.6 Central Limit Theorem
By the law of large numbers, the sample averages converge almost surely (and therefore converge in prob-
ability) to the expected value µ as n → ∞. The CLT describes the size and the distributional form of
the stochastic fluctuations around µ during this convergence. That is, it states that as n gets larger, the
distribution of the difference Xn−µ approximates a N (0, σ2/n) distribution, where σ2 is the variance of X.

Roughly speaking, the (weak) law of large numbers says that

Sn − nE[X]

n

i.p.−−→ 0 (340)
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That is, if we consider the sequence of functions {Sn − nE[x]}n∈N, this sequence is sublinear (i.e. is o(n)).
CLT does two things:

1. It specifically quantifies this fluctuation {Sn − nE[X] by saying that it is approximately of order
√
n.

2. Furthermore, this fluctuation, when divided by
√
n converges in distribution to a Gaussian.

Sn − nE[X]√
n

D−→ N (0, σ2
X) (341)

Theorem 3.18 (Central Limit Theorem)

Let X1, X2, X3, ... be a sequence of iid random variables, with mean µ = E[X] and with variance
Var(X) = σ2 < ∞. Then, the sequence of random variables {Xn}n∈N converges in distribution to a
Gaussian N (µ, σ2/n). That is,

Xn − µ

σ
√
n

D−→ N (0, 1) (342)

Proof.

Let Zi = Xi−µ
σ and let Un = 1√

n

∑n
i=1 Zi (we can normalize the Xi’s since they have finite mean and

variance). Note that since we have finite second moments

E[Zi] = 0 <∞
Var[Zi] = E[(Zi − E[Zi])2] = E[Z2

i ] = 1 <∞

we can Taylor expand the characteristic function φZi
(t) up to at least the second order (from moment

generating property theorem). So, we have

φZi
(t) = 1 +

E[Zi]
1!

(it)1 +
E[Z2

i ]

2!
(it)2 + o(t2)

= 1 + 0 +
1

2
(it)2 + o(t2)

= 1− 1

2
t2 + o(t2)

Now calculate the CF of Un. Since the Zi’s are iid, we can get

φUn
(t) =

(
φZi

( t√
n

))n
=

(
1− t2

2n
+ o

( t2
n

))n
(343)

The o(t2/n) term vanishes as n→ ∞, and using the limit ex = limn→∞
(
1 + x

n

)n, we have

lim
n→∞

φUn
(t) = lim

n→∞

(
1− t2

2n
+ o

( t2
n

))n
= e−t

2/2 (344)

which is precisely the CF of a standard Gaussian random variable. Since CFs are unique, our result
is proven. Essentially, we have proved convergence in distribution of random variables by showing
convergence of their characteristic functions.

A big misconception is that this normalized sum has PDF that converges to a bell curve. It is the CDF
(by definition of convergence in distribution) that converges to that of a Gaussian. That way, we can state
this for discrete, continuous, mixtures: doesn’t matter. They don’t even need to have a density, since if we
just took a bunch of Bernoulli’s, the PMF of their sum would never be defined for an irrational number
like π. But it would be defined for the CDF, and even though the CDF of a discrete random variable will
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have jumps, these jumps would get smaller and smaller until it converges pointwise. Even if the Xi’s had
densities, the CLT does not say that their mean converges to the PDF of a normal. Just because the CDF
converges, it doens’t mean the PDF will look similiar.

It also turns out (?) that we can use CLT to prove the weak law of large numbers, since (roughly speaking)
as n increases, the distribution of Xn concentrates more and more around µ, and therefore the probability
of |Xn − µ| < ϵ tends to 1.
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4 Conditional Expectation
Conditional expectation is extremely important, especially in the context of stochastic processes, which is
talked about in more detail in another set of notes.

First, note that when we talk about the probability of event A happening, or equivalently, the probability
of ω ∈ A, we can write this as the expected value of the indicator function A.

P(A) = E[1A] (345)

This will come in handy later in connecting conditional probability and expectation.

Now conditional expectation is quite tricky to understand at first. We will start by defining it given a
σ-algebra and then given a random variable.

Definition 4.1 (Conditional Expectation)

Given a probability space (Ω,F ,P), a sub-σ-algebra G ⊂ F , and an F-measurable random variable
X (with E[X] <∞), the conditional expectation of X given G is defined to be the G-measurable
random variable Y = E[X | G] satisfying∫

A

X dP =

∫
A

Y dP (346)

or equivalently,
E[X · 1A] = E[Y · 1A] (347)

for all A ∈ G. Any Y satisfying these two conditions is said to be a version of E[X | F ]. The critical
detail to note here is that the conditional expectation Y , has the same expected value as X does, not
over just the whole G, but in every subset G of G.

We state without proof that E[X | G] exists and is almost surely unique. For now, we can interpret this as
the best approximation of the F-measurable X with the G-measurable Y . Here is a useful analogy. Say that
we have some "fine" function X defined on the interval [0, 1] with a fine Borel σ-algebra F .

1. If we are given some sub-σ-algebra G composed of ∅, [0, 0.5], (0.5, 1], [0, 1], then Y would be the step
function defined constantly on these intervals.

2. If we are given a finer sub-σ-algebra H generated by [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1], then this
would give a H-measurable function that is a better approximation of X.

Therefore, we can see that if E[X | G] is F-measurable, then

X = E[X | G] (348)
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since its value coincides with X for every event in F . One way to think about it is that E[X | G] is the
conditional expectation of X (which is "detailed" up to resolution σ(G)) taken with a camera of resolution
G. The finer (bigger) the σ-algebra is, the higher the resolution.

4.1 Properties of Conditional Expectation

Theorem 4.1 (Tower Rule)

The expectation of X and its approximation always coincides.

E[X] = E[E[X | G]] (349)

Lemma 4.1 ()

Let E[|X|],E[|Y |] <∞. Then,
1. Conditional expectation is linear

E[aX + bY | G] = aE[X | G] + bE[Y | G] (350)

2. If X ≤ Y , then
E[X | G] ≤ E[Y | G] (351)

Theorem 4.2 (Jensen’s Inequality)

If φ is convex and E[|X|],E[|φ(X)|] <∞, then

φ(E[X | G]) ≤ E[φ(X) | G] (352)

Theorem 4.3 ()

Conditional expectation is a contraction in Lp, p ≥ 1.

Theorem 4.4 ()

If X is F-measurable and E[|Y |],E[|XY |] <∞, then

E[XY | F ] = XE[Y | F ] (353)

Theorem 4.5 ()

Suppose E[X2] < ∞. Then, E[X | G] is the G-measurable function Y that minimizes the mean
squared error

E[(X − Y )2] (354)

This gives a nice geometric interpretation of E[X | G]. Given that X lives in the Hilbert space L2
F (Ω),

E[X | G] is the projection of X onto the subspace L2
G(Ω).
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Therefore, we can change the way think about E[X]. It is not just a value, but rather, we can think of it as
our best prediction of X given no information. Specifically,

E[X] = E[X | {∅,Ω}] (355)

That is, letting G be the trivial σ-algebra, we must find the best approximation of X that is G-measurable.
But any random variable that is G-measurable must be constant, since if we take the preimage of any
singleton set {x} ∈ R, then it must be either ∅ (X does not map to it) or Ω (X maps all of Ω to it).

4.2 Perfect Information vs No Information
Now let us state some properties on how certain σ-algebras can change the conditional expectation of certain
random variables.

Theorem 4.6 (Perfect Information)

If X is G-measurable, then
E[X | G] = X (356)

That is, the values of X are defined on σ(X) ⊂ F and so has a detail level of σ(X). But if we
condition it on an even finer G ⊃ σ(X), then we are taking a picture of X with something that has
overly high resolution, and so our best approximation of X is X itself. Indeed, if X lives in LG(Ω),
then its projection onto LG(Ω) is X itself.

Theorem 4.7 (Irrelevant Information)

If X is independent of G, i.e. σ(X) and G are independent σ-algebras, then

E[X | G] = E[X] (357)

That is, our best approximation of X given information G is E[X] itself, i.e. if you don’t know
anything about X, then the best guess is the mean E[X]. To see why, note that independence means
that for all A ∈ G and B ∈ R,

P(X−1(B) ∩A) = P(X−1(B)) · P(A) (358)

Theorem 4.8 (Trivial Information)

If G = {∅,Ω}, then
E[X | G] = E[X] (359)

This makes sense since we’re trying to measure σ(X)-measurable X with the trivial G, and the only
function that is measurable w.r.t. the trivial σ-algebra is a constant function (since the preimage of
every Borel set in R must be either Ω or ∅). This is the same as projecting X to the line of constant
functions in LF (Ω).
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Theorem 4.9 ()

If F1 ⊂ F2, then
1. E[E[X | F1] | F2] = E[X | F1].
2. E[E[X | F2] | F1] = E[X | F1].

In other words, the smaller σ-algebra always wins.

We can see this visually since in both cases, we are projecting X onto L2
F1

(Ω) and onto L2
F2

(Ω), but either
way, we end up in L2

F1
(Ω). Additionally, this is also consistent with our camera analogy, where E[X | G]

is like taking a picture of random variable X with a camera of resolution G. Conditional expectation is
essentially an averaging/blurring operator. So, E[E[X | G] | H] is like taking a picture of X with resolution
H and then with G. The lower resolution would always win.

4.3 Computation of Conditional Expectation

Definition 4.2 ()

Given probability space (Ω,F ,P), the conditional expectation of Y given X is the random variable

E[X | Y ] := E[X | σ(Y )] (360)

Note that since both X and Y are random variables, they are both F-measurable. However, this
doesn’t mean that they may be G-measurable for some sub-σ-algebra G. So, as long as σ(Y ) ⊂ σ(X)
(neither of which may be F), we have some nontrivial approximation.

Now let’s introduce a new way to think about expectation and conditional expectation in general.

1. The first step is to think of E[X] not as a value µ but as the best estimate for the value of a random
variable X in the absence of any information. To minimize the squared error

E[(X − e)2] = E[X2 − 2eX + e2] = E[X2]− 2eE[X] + e2 (361)

we differentiate with respect to e to obtain 2e − 2E[X] = 0 =⇒ e = E[X]. For example, if I throw
a fair die and you have to estimate its value X, according to the analysis above, your best bet is to
guess E[X] = 3.5 since Ω = {1, 2, 3, 4, 5, 6}. On specific rolls of the die, this will be an over-estimate of
an underestimate, but on the long run it minimizes the mean square error.

2. If we do have additional information, then we use conditional expectation. Suppose that I tell you that
X is an even number. Then, I would guess that the possible values of X are {2, 4, 6}, and so the our
conditional expectation is 4. Similarly, if I told you that X is odd, then the conditional expectation is
3. This additional information can be put into a random variable Y : Ω → R defined

Y (ω) =

{
0 if ω = 2, 4, 6

1 if ω = 1, 3, 5
(362)

Then, we can say that E[X | Y = 0] = 4 and E[X | Y = 1] = 3. We can interpret this as the conditional
expectation given the σ-algebra generated by these two sets {2, 4, 6} and {1, 3, 5}.

3. Now, imagine that I roll the die and I tell you the parity of X. You should see that a single numerical
response cannot cover both cases. You would respond 3 if I tell you X is odd (Y = 1) and 4 if I
tell you X is even (Y = 0). A single numerical response is not enough because the particular piece of
information I give you is itself random. In fact, your response is necessarily a function of this particular
piece of information, represented in our notation as

g(Y ) = E[X | Y ] =

{
3 if Y = 1

4 if Y = 0
(363)
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This is a function of Y , and it is consistent with our understanding of E[X | Y ] as our "best estimate"
of X with random variable Y .

From the visual above, we can see that we take the joint distribution X × Y , and for each value Y = y, we
can estimate X as E[X | Y = y]. But now there is the additional uncertainty of what value Y will take,
which turns this value estimate E[X | Y = y] in a distribution E[X | Y ]. So, for the discrete case,

P
(
E[X | Y ] = E[X | Y = y]) = P(Y = y) (364)

Now we can talk about how to compute conditional expectation. In essence, the conditional expectation
E[X | Y ] is simply a function of a random variable Y that is this best approximation. Given a joint random
variable (X,Y ) : Ω → R2, we can fix a value of Y = y. Therefore, we are given the information that event
Y −1({y}) happened, and so we can construct our conditional distribution X | Y = y, which defines a new
probability measure. Taking the expectation of that gives us a number.

Definition 4.3 (Discrete Conditional Expectation Given Y = y)

Let X,Y be discrete random variables, with joint random variable (X,Y ) : Ω → R2 and its joint
PMF pX,Y (x, y). Recall that the conditional PMF is

pX|Y (x | y) := pX,Y (x, y)

pY (y)
(365)

The conditional expectation of X given Y = y is

E[X | Y = y] =
∑
x∈X

x pX|Y (x | y) (366)

Definition 4.4 (Continuous Conditional Expectation Given Y = y)

Let X,Y be jointly continuous with joint PDF fX,Y (x, y). Recall that the conditional PDF is

fX|Y (x | y) := fX,Y (x, y)

fY (y)
(367)

The conditional expectation of X given Y = y is

E[X | Y = y] =

∫
x∈R

x fX|Y (x | y) dx (368)

Again, we can set ψ(y) := E[X | Y = y], which is a function of y and therefore a random variable.
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As a visual, we can take a "slice" of the joint distribution of some value of Y , look at the distribution of X
on this slice, and compute its expectation. That is, for every value of Y = y, there exists some (conditional)
distribution of X with PMF of pX|Y (x | y) or PDF of fX|Y (x | y).

So given a value of Y = y, we generally know something about X (e.g. if I know humidity, I know something
about the temperature) and want to find the best estimate of X. This is precisely the conditional expectation
E[X | Y = y], and we can interpret this as a regression function ψ(y) := E[X | Y = y], which predicts the
expected value of X given Y = y.

But since we don’t know what exactly Y is, this process is random itself, and it is only after this Y is realized
that we can provide the expected value of X. Thus, by replacing the little y’s with the big Y ’s, we can
construct a random variable that will estimate X for us given Y , denoted E[X | Y ] = ψ(Y ). This turns out
to be a σ(Y )-measurable random variable itself.

Example 4.1 ()

Let fX,Y (x, y) = 1
x for 0 < y ≤ x ≤ 1. Find E[Y | X]. We first calculate the marginal density of X,

which will allow us to calculate the conditional density of Y :

fX(x) =

∫ x

0

1

x
dy =

y

x

∣∣∣∣x
0

= 1 =⇒ fY |X(y | x) = fX,Y (x, y)

fX(x)
=

1/x

1
=

1

x
for 0 < y ≤ x ≤ 1 (369)

Since the conditional density of Y is not dependent on x, Y is uniform from 0 to x. Now calculate
the expectation:

E[Y | X = x] =

∫ x

0

y · 1
x
dy =

x

2
(370)

and so the conditional expectation is

E[Y | X] =
1

2
X (371)

A fundamental result in statistical learning theory is that if we have two random variables X and Y , the
best predictor of Y as a function of X is the conditional expectation E[Y | X].

Theorem 4.10 ()

Let us have two random variables X and Y , with g(X) = E[Y | X]. Then, the function g minimizes
the cost function E[(Y − h(X))2]. That is,

inf
h meas.

E[(Y − h(X))2] = E[(Y − g(X))2] (372)
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We restate the tower rule again.

Theorem 4.11 (Tower Rule)

We know that E[Y | X] is the random variable ψ(X) that is a transformed version of X. Then, we
have

E[E[Y | X]] = E[Y ] (373)

This is confusing notation due to the iterated expectations, but note that the term on the inside is
a transformed random variable of X, while the expectation on the outside computes the expectation
of this transformed random variable. So, letting ψ(X) = E[Y | X], we can equivalently write

E[ψ(X)] = E[Y ] (374)

Intuitively, this makes sense, since E[Y | X] is the random variable that tries to "model" Y given
(random) information from X, so its expectation must be the expectation of Y itself.

Proof.

We can just expand this out. We will do it for the discrete case.

E[E[Y | X]] =
∑
x

pX(x) E[Y | X = x]︸ ︷︷ ︸
ψ(x)

=
∑
x

(
pX(x) ·

∑
y

y · pY |X(y | x)
)

=
∑
x

(
pX(x) ·

∑
y

y · pX,Y (x, y)
pX(x)

=
∑
x,y

y · pX,Y (x, y)

=
∑
y

(
y ·

∑
x

pX,Y (x, y)

)
=

∑
y

y · pY (y)

= E[Y ]

Example 4.2 ()

Consider the random sum of random variables SN =
∑N
i=1Xi, where Xi are iid and N is independent

of Xi’s. Then, we can use the tower rule to write E[SN ] = E[E[SN | N ]]. E[SN | N ] is a transformed
random varibale of N , and to compute its closed form we should just compute E[SN | N = n] and
replace n with N .

E[SN | N = n] = E[Sn] = E
( n∑
i=1

Xi

)
= nE[X] (375)

remember that E[X] is just a number, so replacing n with N gives E[SN | N ] = NE[X], i.e. the
random variable N multiplied by E[X]. Therefore,

E[E[SN | N ]] = E[NE[X]] = E[N ]E[X] (376)

This makes sense intuitively, since we want to approximate this value by taking the expected value
of X and multiplying it by the expected number of summands.
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Now, we can simply use the property to talk about what P(X | Y ) means. Formally, using the fact that the
probability that X will realize in A, i.e. P(X ∈ A) = EX [1A], we can define the conditional probability as

P(X ∈ A | Y ) = E[1X | Y ] (377)

We can interpret this in multiple ways, in increasing level of rigor. Let (Ω,F ,P) be a probability space, with
random variables X,Y with their probability laws PX ,PY .

1. When Y realizes, we can use this definition to have a better educated guess of where X will land. But
since Y is random, so is our guess.

2. Let us have the joint distribution (X,Y ). Given that Y = y, we can take the conditional distribution
X | Y = y and compute the event that this random variable lands in A by replacing the little y’s with
the big Y ’s.

3. Let A be an event in R. Then, the probability that X will land in A is

P(X ∈ A) = PX(A) = P(X−1(A)) (378)

where the first is abuse of notation, the second is the probability law of R, and the third is the probability
law of Ω. Then, 1A generates a σ-algebra σ(1A) on Ω, consisting of the sets {∅, X−1(A), X−1(A)c,Ω}.

4.4 Conditional Expectation given Multiple Random Variables
Now the σ-algebra generated by multiple random variables should intuitively be bigger than the σ-algebra
generated by one random variable. We can’t simply take the union of the individual σ-algebras.

Definition 4.5 (σ-algebra generated by Multiple Random Variables)

Given random variables {Xi}i∈I indexed by some set (possibly uncountable), the σ-algebra generated
by this collection is defined

σ(X1, . . . , Xn) := σ

(⋃
i∈I

σ(Xi)

)
(379)

Let us look at E[X | Y,Z] and compare it to E[X | Y ]. From this definition, we know that the information
about X contained in σ(Y, Z) is at least as great as the corresponding information in σ(Y ). Therefore, we
can simply define conditional expectation as such:

Definition 4.6 (Conditional Expectation given Multiple Random Variables)

Given random variables {Xi}i∈I , the conditional expectation is defined

E[Y | {Xi}i∈I ] = E[Y | σ({Xi}i∈I ] (380)

which is the random variable where∫
A

Y dP =

∫
A

E[Y | {Xi}i∈I ] dP (381)

for all A ∈ σ({Xi}i∈I).

4.5 Conditional Variance
Similar to conditional expectation, we can define the conditional variance Var(Y | X = x) as a function h(x)
that outputs the variance of Y given X = x. We have

Var(Y | X = x) = E
[
(Y − E[Y | X = x])2 | X = x

]
(382)
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Definition 4.7 (Conditional Variance)

The conditional variance of Y given X is defined as

Var(Y | X) = E
[(
Y − E[Y | X]

)2 | X
]

(383)

which tells us how much variance is left if we use E[Y | X] to predict Y .
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5 Order Statistics
Let X1, X2, ..., Xn be a finite collection of independent, identically distributed random variables. Suppose
that they are continuously distributed with density f and CDF F .

Definition 5.1 (Order Statistic)

Define the random variable X(k) to be the kth ranked value, called the kth order statistic. This means
that

X(1) = min{X1, X2, ..., Xn}, X(n) = max{X1, X2, ..., Xn} (384)

and in general, for any k ∈ {1, 2, ..., n},

X(k) = Xj if
n∑
l=1

IXl<Xj
= k − 1 (385)

which means that exactly k − 1 of the values of Xl are less than Xj . Since F is continuous,

X(1) < X(2) < ... < X(n) (386)

holds with probability 1. This leads us to define the random variable X(k) representing the kth order
statistic.

f(k)(y) =

{
n
(
n−1
k−1

)
yk−1(1− y)n−k y ∈ (0, 1)

0 y ̸∈ (0, 1)
(387)

That is, X(k) has the Beta(k, n− k1) distribution.

5.1 Poisson Arrival Process
A Poisson Arrival Process with rate λ > 0 on the interval [0,∞) is a model for the occurence of some
events which may have at any time. We can interpret the process as a collection of random points in [0,∞)
which are the times at which the arrivals occur.

1. Interpretation 1. Set T0 = 0. The arrival times are random variables 0 < T1 < T2 < T3 < ... such that
the inter-arrival waiting times

Wk = Tk − Tk−1, k ≥ 0 (388)

have the property that {Wk}∞k=1 are independent Exp(λ) random variables.

2. Interpretation 2. For any interval I ⊂ [0,∞), let

NI ≡ number of arrivals that occur in interval I (389)

Then, NI ∼ Poisson(λ|I|), and for any collection of disjoint intervals I1, I2, ..., In, the random variables

{NIk}nk=1 (390)

are independent.

Theorem 5.1 ()

These two interpretations of the arrival process are equivalent.
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Proof.

In the 2nd interpretation, the statement NI ∼ Poisson(λ|I|) means that

P(NI = m) = e−λ|I|
(λ|I|)m

m!
, m = 0, 1, 2, 3, ... (391)

where |I| is the length of interval I. From the first perspective, notice that

Tk =W1 +W2 + ...+Wk (392)

so that the kth arrival time Tk is a sum of k independent Exp(λ) random variables. Thus,

Tk ∼ Gamma(k, λ) (393)

and therefore has density

λe−λt
(λt)k−1

(k − 1)!
, t > 0 (394)

Note that the arrival times Ti are not independent of each other, but the wait times Wi are indeed
independent.

We can slightly modify this to create a Poisson arrival process over some finite time horizon [0, L]. Again,
you can do this two ways:

1. Starting with independent Exp(λ) random variables W1,W2, ..., we define

Tk =

k∑
i=1

Wi (395)

Once you have Tk > L, stop.

2. We letN ∼ Poisson(λL), since we are only working in finite interval L. GivenN = n, let U1, U2, ..., Un ∼
Uniform([0, L]). These define the arrival times, and let us order them to get

Tk = U(k), k = 1, 2, ..., N (396)

where U(k) is the kth ordered point, with T1 = min(U1, ..., UN ).

Lemma 5.1 (Memoryless Property)

The Exp(λ) distribution has the property that for all t, s ≥ 0,

P(W > t+ s |W > t) = P(W > s) (397)

which is called the memoryless property. We can interpret this in the following way. Let W be
the time you have to wait for the first arrival. Given that you already waited t units of time, the
probability that you have the wait s additional units of time is just the probability that you wait at
least s from the beginning. That is, knowing that t units of time have elapsed does not affect the
distribution of the remaining waiting time.

Theorem 5.2 ()

Let W be a continuously distributed random variable. Then W ∼ Exp(λ) for some λ > 0 if and only
if W satisfies the memoryless property.
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6 Markov Chains
I have an entire set of notes dedicated to stochastic processes, but we talk about it on a basic level here.

6.1 Discrete Time Chains

Definition 6.1 (Markov Chain)

A Markov chain is a sequence of random variables {Xn}∞n=0, which take values in some set S, called
the state space satisfying the Markov property. Since we are working with discrete time chains,
we will assume that S is a countable (and in most cases, finite). Thus, the Xn will all be discrete
random variables. We can also think of Xn as a discrete "time" index; that is, Xn is the state of the
system at time n. Therefore, the sequence of random variables models a system evolving in a random
way.

Definition 6.2 (Markov Property)

A sequence of random variables {Xi} satisfies the Markov property if

P(Xn+1 = y | Xn = xn, Xn−1 = xn−1, ..., X0 = x0} = P(Xn+1 = y | Xn = xn} (398)

holds for any choice oc states y, xn, xn−1, ..., x0 ∈ S and for any n ≥ 1.

Colloquially, given that one is at state Xn = xn, knowing all the previous states does not help in predicting
Xn+1. Knowing only the current state is relevant in predicting the next one. We can model this entire
system using a matrix.

Definition 6.3 (Transition Matrix)

Assuming that the chain is time-homogeneous, the transition probability matrix P has elements Pxy
defined

Pxy = P (x, y) = P(X1 = y |X0 = x) = P(Xn+1 = y |Xn = x) (399)

which is the probability of moving from state x to state y in one step. The time homogeneous
condition refers to the last equality; that is, the one-step transition probabilities don’t change with
the time index n. Note that if S is finite, then P is a |S| × |S| matrix, and if S is countably infinite,
then P is an infinite-dimensional matrix. The axioms of probability imply that AT is an entry-wise
nonnegative stochastic matrix.

Example 6.1 (Random Walks)

A random walk on the integers S = Z where a point has equal probability of moving right or left can
be modeled with the probability function.

P (x, y) = P(Xn+1 = y |Xn = x) =


1
2 y = x+ 1
1
2 y = x− 1

0 otherwise

(400)

This can be generalized to multiple dimensional random walks on graphs with probability function

P (x, y) =
1

deg(x)
(401)

where deg(x) is the number of adjacent nodes to node x. In this way, the point hops randomly from
node to node, and if the graph is connected, then the walker can visit any vertex in the graph.
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Example 6.2 (Discrete Moran Model)

Consider a population of size N . Each individual is one of two types (say, red or blue). At each time
step, the system evolves in the following way: First, one of the individuals is chosen uniformly at
random to be eliminated from the population; and another individual is chosen uniformly at random
to produce one offspring identical to itself. These two choices are made independently. So, if a red
individual is chosen to reproduce, and a blue one is chosen for elimination, then the total number of
red particles increases by one and the number of blue particles decreases by one. If a red is chosen
for reproduction and a red is chosen for elimination, then there is no net change in the number of
reds and blues. Let Xn be the number of red individuals at time n. The transition matrix for this
chain is

Pij =



i
N

(
N−i
N

)
j = i− 1, i ̸= 0(

N−i
N

)
i
N j = i+ 1, i ̸= N

1− 2

(
N−i
N

)
i
N j = i

0 otherwise

(402)

Note that the states Xn = 0 and Xn = N are absorbing states, which represents a phenomenon called
fixation.

Definition 6.4 (Absorbing State)

A certain state F in the state space S of a Markov chain is called an absorbing state if

P(Xn+1 = F | Xn = F ) = 1 ⇐⇒ P(Xn+1 ̸= F | Xn = F ) = 0 (403)

Theorem 6.1 ()

Let there exist a time homogeneous Markov chain with transition probability matrix P . Given a
probability distribution νn (a row vector) representing the a state of a system at time t = n, the
probability distribution of which state the system will be at when t = n+ 1 can be calculated by

νn+1 = νnP (404)

The probability distribution of the state of the system at t = n+ k can be calculated by summing up
all of the possible probabilities that lead to each state at t = n + k. It is calculated equivalently as
matrix multiplication:

νn+k = νnP
k (405)

Definition 6.5 (Initial Distribution)

The distribution ν of a Markov chain at time t = 0 is called the initial distribution for the chain.
That is, ν is the initial distribution if

P(X0 = x) = ν(x) (406)

Definition 6.6 (Stationary Distribution)

An invariant distribution, or stationary distribution, is a probability distribution π such that

πP = π (407)

92/ 110



Probability Theory Muchang Bahng Spring 2023

This means that
πP k = π (408)

for all k ∈ N. We can equivalently call π the left eigenvector of matrix P with eigenvalue 1. If π
is an invariant distribution for the chain, and X0 ∼ π, then the distribution of Xn does not change
with n; it is invariant. Note that this does not mean that Xn is constant; rather, it means that the
distribution of Xn is not changing.

Example 6.3 ()

Let us have a two node system with nodes labeled L and R. That is, S = {L,R}. Consider a chain
on this state space with transition probability matrix.

P =

(
1− a a
b 1− b

)
(409)

which can be visualized in the following diagram below.

RL1-a

a

1-b

b

Then, the stationary distribution is

π =
( b

a+ b
,

a

a+ b

)
(410)

Notice that if a = b = 0, then this definition is ill-defined, and any probability distribution is invariant
since P = I2, the identity matrix.

Definition 6.7 (Recurrent)

A state x ∈ S is recurrent if

P(Xn = n for some n ≥ 1 |X0 = x} = 1 (411)

That is, if the initial state is x, the chain has probability 1 of returning to x at some later time. If a
state is not recurrent, then the state is said to be transient. That is, if x is transient, there is some
positive probability that the chain will never return to x.

Definition 6.8 (Communication)

Two states x, y ∈ S are said to communicate, denoted x ↔ y, if there are positive integers n and m
such that

P (n)(x, y) > 0 and P (m)(y, x) > 0 (412)

That is, there is some positive probability that the chain can go from x to y and from y to x in some
number of steps.

Definition 6.9 (Irreducible Chains)

If all pairs x, y ∈ S communicate, then the chain is said to be irreducible. If there exists a pair of
states that do not communicate, then the chain is said to be reducible.

Note that the notion of communication is an equivalence relation between states. That is, it satisfies the
properties.
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1. x↔ x.

2. x↔ y =⇒ y ↔ x.

3. x↔ y, y ↔ z =⇒ x↔ z.

This relation partitions the state space S uniquely into transient states and irreducible sub-chains

S = T ∪ C1 ∪ C2 ∪ ... (413)

More specifically, T is the set of all transient states, and the sets Ck are closed communication classes,
meaning that

1. For all x, y ∈ Ck, x↔ y.

2. P (x, z) = 0 whenever x ∈ Ck but z ̸∈ Ck.

Note that for all x, y ̸∈ T , x and y communicate if and only if x and y are in the same class Ck. Moreover,
once the chain reaches one of the sets Ck, it cannot leave Ck.

Definition 6.10 (Period)

For any state x ∈ S, the period of x is defined to be

d(x) ≡ gcd{n ≥ 1 | P (n)(x, x) > 0} (414)

Theorem 6.2 ()

It follows that if two states x and y communicate, then they must have the same period: d(x) = d(y).
It naturally follows that if the chain is irreducible, then all states must have the same period, and we
can define the period of the chain to be d(x) for any x we choose.

Definition 6.11 ()

If an irreducible chain has period 1, the chain is said to be aperiodic. Otherwise, the chain is periodic
with period d > 1.

Theorem 6.3 ()

Suppose |S| <∞. If the chain is irreducible, then there always exists a unique stationary distribution
π. If the chain is also aperiodic, then for any initial distribution ν,

lim
k→∞

νP k = π (415)

Hence
lim
k→∞

P (k)(x, y) = π(y) (416)

for all x, y ∈ S. Furthermore, for any function F : S −→ R, the limit

lim
N→∞

1

N

N∑
n=1

F (Xn) =
∑
x∈S

F (x)π(x) = E
(
F (x)

)
(417)

holds with probability 1. In particular, the limit does not depend on the initial distribution.
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Proof.

The Frobenius Extension to Perron’s theorem (Linear Algebra, Theorem 7.31) combined with its
applications to stochastic matrices (Linear Algebra, Theorem 7.30) proves this statement.

Definition 6.12 (First Visit)

For each x ∈ S, define the first visit to x by

Tx ≡ min{n ≥ 1 | Xn = x} (418)

This Tx is an integer-valued random variable. We say Tx = +∞ if Xn never reaches x. Then, we
define the mean return time to x by

µx ≡ E
(
Tx |X0 = x) (419)

If x is transient, then µx = +∞, since there is positive probability that Tx = +∞.

Definition 6.13 ()

It is possible that x is recurrent while µx = +∞. If this is the case, then x is said to be null-recurrent.
If x is recurrent and µx <∞, then x is said to be positive recurrent.

Theorem 6.4 ()

An irreducible chain has a stationary probability distribution π if and only if all states are positive
recurrent. If a chain is irreducible and all states are positive recurrent, then

π(x) =
1

µx
(420)

for all x ∈ S. π is also unique.

6.1.1 Exit Probabilities

Suppose a chain is finite and irreducible. Let a, b ∈ S be given states, and let us define h(x) to be the
probability of hitting b before a, given that we start from x.

h(x) ≡ P(Xn reaches b before a |X0 = x) (421)

Clearly, h(b) = 1 and h(a) = 0. By conditioning on the first jump out of x, we also have

h(x) = P(Xn reaches b before a |X0 = x)

=
∑
y

P(Xn reaches b before a |X1 = y,X0 = x)P(X1 = y |X0 = x)

=
∑
y

P(Xn reaches b before a |X1 = y,X0 = x)P (x, y)

=
∑
y

P(Xn reaches b before a |X1 = y)P (x, y)

=
∑
y

h(y)P (x, y)
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The sum is over all y ∈ S for which P (x, y) ̸= 0. This gives us a linear system of equations to solve for h

h(x) =
∑
y

P (x, y)h(y) ∀x ∈ S \ {a, b},

h(b) = 1,

h(a) = 0

6.1.2 Exit Prize

Let B ⊂ S be some subset of the state space, and let g : B −→ R be some function. Consider the function

h(x) = E
(
g(Xτ ) |X0 = x

)
(422)

where τ = min{n ≥ 0 |Xn ∈ B} is the first time that the chain reaches some state in the set B (this time is
random). We can interpret g(y) as a "prize" that is awarded if the chain first reaches B at state y, which
means that h(x) is the expected prize, given that X0 = x. If x ∈ B, then τ = 0 =⇒ h(x) = g(x). But if
x ̸∈ B, then by the same argument as shown in exit probabilities, it is true that h satisfies the linear system
of equations

h(x) =
∑
g

P (x, y)h(y), ∀x ∈ S \B,

h(x) = g(x), x ∈ B

Note that Exit probability system is a special case of the Exit prize system. In the former, we have defined
B = {a, b} and g defined by g(a) = 0, g(b) = 1.

6.1.3 Occupation Times, Absorbing States

Suppose that a chain on a finite S is irreducible. Let B ⊂ S be some subset of states and let A = S \B be
the other states. Then for x ∈ A, we wish to know how many steps the chain will take before reaching a
state in the set B. We define

τB = min{n ≥ 0 |Xn ∈ B} (423)

which represents the first time that X is in B, an integer valued random variable. We wish to compute

h(x) = E(τB |X0 = x) (424)

Clearly, h(y) = 0 for all y ∈ B. For x ∈ A, it takes at least one step to reach B =⇒ h(x) ≥ 1 for x ∈ A.
We condition on the first step from x. This leads to the system

h(x) = 1 +
∑
y∈S

P (x, y)E(τB |X1 = y),∀x ∈ A = S \B

Since the chain is time-homogeneous, this means that

h(x) = 1 +
∑
y∈S

P (x, y)h(y),∀x ∈ A

Since h(y) = 0 for all y ∈ B, we now have

h(x) = 1 +
∑
y∈A

P (x, y)h(y),∀x ∈ A
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To solve this system, let us define M as the |A| × |A| submatrix of P obtained by keeping only the entries
P (x, y) with x, y ∈ A. So, the system can be written as

h(x) = 1 +
∑
y∈A

M(x, y)h(y),∀x ∈ A

We can solve this system of equations through the equivalent matrix equation

(I −M)h = 1 (425)

where 1 = (1, 1, ..., 1)T is the column vector consisting of all 1’s. The solution vector is therefore

h = (I −M)−11 (426)

So, for a particular x ∈ A,
h(x) =

∑
y∈A

(I −M)−1(x, y) (427)

Alternatively, we can slightly modify the chain to chain X̃n by replacing the transition probability matrix P
with another one defined as

P̃ (x, y) =


P (x, y) x ∈ A, y ∈ S
1 x = y ∈ B

0 else
(428)

This modification means that all transitions from state in A to any other state are preserved and the only
transitions from a state x ∈ B are self loops. In particular, all transitions from states x ∈ B to states y ∈ A
are removed. Therefore, under this modified transition matrix, the states in B are absorbing states. The
tail sum formula implies that

E(τB |X0 = x) =

∞∑
k=0

P(τB > k |X0 = x) (429)

Notice that since the chain Xn and X̃n have the same transition rules before hitting a state B, we have

P (k)(x, y) = P̃ (k) =M (k)(x, y) (430)

where M is the |A| × |A| submatrix defined previously. Therefore, putting this all together, we have

E(τB |X0 = x) =

∞∑
k=0

P(τB > k |X0 = x)

=

∞∑
k=0

P(X̃k ∈ A |X0 = x)

=

∞∑
k=0

∑
y∈A

P̃ (k)(x, y)

=

∞∑
k=0

∑
y∈A

M (k)(x, y)

=
∑
y∈A

( ∞∑
k=0

M (k)

)
(x, y)

Using a theorem from linear algebra, we can show that if all the eigenvalues of a d × d matrix M have
modulus strictly less than 1, then I −M is invertible and

∞∑
k=0

M (k) = (I −M)−1 (431)
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where I is the d× d identity matrix. If M is the |A| × |A| submatrix described above, one can show that M
has his property and that I −M is invertible. Hence,

E(τB |X0 = x) =
∑
y∈A

( ∞∑
k=0

M (k)

)
(x, y) =

∑
y∈A

(I −M)−1(x, y) (432)

which refers to the (x, y) entry of the matrix (I−M)−1. This is indeed consistent with our previous derivation
of the formula for h(x), the expected number of steps before the state reaches B.

6.2 Markov Chain Monte Carlo Algorithms
In statistics, Markov chain Monte Carlo (MCMC) methods comprise of a class of algorithms for sampling from
a probability distribution by constructing a Markov chain that has the desired distribution as its equilibrium
distribution. That way, by recording samples from the chain, one may get better approximations of the
actual distribution.

Let there exist a state space S with some probability distribution π(x) for every x ∈ S. Clearly,∑
x∈S

π(x) = 1 (433)

but the problem is that we do not know that π is. We do know, however, another function f that is directly
proportional to π.

π(x) =
f(x)

c
, where c =

∑
x∈S

f(x) (434)

is the normalizing constant. It is often the case that c is unknown and the state space S is so large that
computing c directly is expensive. Therefore, we construct Markov chains that can provide approximations
to π.

6.2.1 Metropolis-Hastings Algorithm

This algorithm is useful because it does not require knowledge of the normalizing constant c. The algorithm
only requires evaluations of

π(x)

π(y)
=
f(x)

f(y)
(435)

We first have the state space S consisting of all the possible states. We now construct (any) probability
transition matrix q for a Markov chain on S. Note that q is a |S|× |S| matrix and qT is a stochastic matrix.
This matrix is constructed by the user and is completely well-defined and known. We start off with any
initial state x0 ∈ S and iterate the following 2-steps to construct a Markov chain.

1. Given a state Xn = x, we generate a new state Xn+1 by first proposing a new state y ∈ S with
probability q(x, y) (determined from the matrix q).

2. With this chosen state y, we decide whether to accept to reject the proposal. With probability

min

(
1,
π(y) q(y, x)

π(x) q(x, y)

)
(436)

we accept the proposal and set Xn+1 = y. Otherwise, the proposal is rejected and the new state is the
same Xn+1 = x.

Note that there are two levels of randomness here: which state the new state y will be and whether to accept
this state to be the next one or not. If step two did not exist (i.e. the probability of accepting the proposal
is always 1), then this would just be a regular Markov chain represented by the matrix q. But the addition
of step 2 means that while q is used in constructing the discrete chain Xn, it is not the transition probability
matrix of Xn.
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There is also a lot of flexibility on choosing q, although the performance of the algorithm (speed of convergence
of the distribution of Xn to the stationary distribution) will depend on the choice.

Proposition 6.1 ()

For the chain defined by the Metropolis-Hastings algorithm, the distribution π is stationary.

Proof.

Let us write in shorthand
α(x, y) =

π(y) q(y, x)

π(x) q(x, y)
(437)

First, observe that if x ̸= y, the transition probability for the chain defined by the algorithm is just

P (x, y) = q(x, y) min{1, α(x, y)} (438)

Next, we claim that for all x, y ∈ S,

π(x)P (x, y) = π(y)P (y, x) (439)

This condition is called detailed balance. Assuming that α(x, y) ≤ 1, it is true that

π(x)P (x, y) = π(x)q(x, y)
π(y)q(y, x)

π(x)q(x, y)
= π(y)q(y, x) (440)

In this case, we also have α(y, x) = 1/α(x, y) ≤ 1. So,

π(y)P (y, x) = π(y)q(y, x) (441)

and we have proved what we had claimed. Now, summing over x,∑
x

π(x)P (x, y) =
∑
x

π(y)P (y, x) = π(y)
∑
x

P (y, x) = π(y) (442)

since PT is stochastic.

6.2.2 Gibbs Sampling

Let A = {a1, ..., ak} be some finite set. Suppose that the state space

S = A× ...×A = AM (443)

for some M ∈ N. The following algorithm generates a Markov chain on S with stationary distribution

π(x) =
f(x1, x2, ..., xM )

c
, x = (x1, x2, ..., xM ) ∈ S (444)

where c > 0 is a normalizing constant. Note that |S| = kM , so computing c may be expensive when M is
large. The current state of the chain is denoted

Xn = (X1
n, X

2
n, ..., X

M
n ) (445)

We think of Xn as having M components, each component taking values in A. We start off with any initial
state X0 = (X1

0 , X
2
0 , ..., X

M
0 ) and construct a Markov chain by iterating the following two steps.

1. Given Xn = (X1
n, X

2
n, ..., X

M
n ), we generate the next state Xn+1 by picking a component index i ∈

{1, ...,M} uniformly at random.
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2. With this chosen, well-defined i, we choose a random Y i ∈ A according to the distribution

P(Y i = a) =
f
(
X1
n, ..., X

i−1
n , a,Xi+1

n , ..., XM
n

)∑k
j=1 f

(
X1
n, ..., X

i−1
n , aj , X

i+1
n , ..., XM

n

) , a ∈ {a1, ..., ak} (446)

3. Then, set Xn+1 =
(
X1
n, ..., X

i−1
n , Y i, Xi+1

n , ..., XM
n

)
.

Note that at each step, only one component of Xn is updated. Observe that the distribution above is also
equal to

P(Y i = a) =
π
(
X1
n, ..., X

i−1
n , a,Xi+1

n , ..., XM
n

)∑k
j=1 π

(
X1
n, ..., X

i−1
n , aj , X

i+1
n , ..., XM

n

) (447)

which is the marginal distribution of the ith component, given the values of the other components.

Proposition 6.2 ()

For the chain defined by this algorithm, the distribution π is stationary.

Proof.

We verify that the detailed balance condition holds. It is also helpful to note that P (x, y) ̸= 0 if and
only if x and y differ in one coordinate.

6.3 Continuous Time Markov Chains
As the name suggests, in a continuous time Markov chain Xt, the time parameter is continuous (t ≥ 0). As
before, the system jumps randomly between states in S, but now the jumps may occur at any time and they
occur randomly. This implies that there are two sources of randomness:

1. where the system jumps and

2. when the system jumps

Definition 6.14 (Continuous Time Markov Chain)

The Markov property in the continuous time case says that for any s, t ≥ 0 and y ∈ S,

P(Xt+s = y |Xt) = P(Xt+s = y |Xr ∀0 ≤ r ≤ t) (448)

Colloquially, the conditional distribution of Xt+s given the history up to time t is the same as the
conditional distribution of Xt+s given only Xt. Thus, if we know the current state at t, knowing
information about the past doesn’t help us better predict the future state Xt+s.
In order for the Markov property to hold, the times between jumps must be exponentially distributed
random variables because it is the only density that has the memoryless property. This fact has
already been stated in a theorem when covering Poisson arrival processes. This is what makes
Exp(λ) so important for continuous time Markov chains.

Lemma 6.1 ()

Let T1, T2, ..., Tn be independent exponential random variables with rates λ1, λ2, ..., λn, respectively.
Then the random variable T ≡ min{T1, T2, ..., Tn} is

T ∼ Exp
( n∑
i=1

Ti

)
(449)
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Moreover,

P(Tk = min{T1, ..., Tn}) =
λk

λ1 + ...+ λn
(450)

We can interpret the lemma above by imagining that we have n alarm clocks all set simultaneously, which
will ring independently at random times. Suppose that clock k will ring after Tk units of time have expired,
where Tk is a random variable distributed as Exp(λk). Then, T = min{T1, ..., Tn} is the time at which the
first ring occurs.

Example 6.4 ()

The simplest and the most important continuous time Markov chains is the Poisson arrival process.
The process really has a single parameter λ > 0 (the rate of process) by definition and is integer
valued. At each jump time, the process increases by 1, and the time between jumps are independent,
distributed as Exp(λ).
Notice that when λ is large, the arrivals occur more frequently than when λ is small, because the
expected time between arrivals is 1/λ. The second way we can interpret it is to choose an interval of
time t and let Xt be the number of jumps that have occurred up to time t. It is a fact that Xt is a
integer-valued, Poisson(λt) distribution. That is,

P(Xt = k) = e−λt
(λt)k

k!
, k = 0, 1, 2, ... (451)

In particular, E(Xt) = λt and Var(Xt) = λt.

6.4 Branching Processes

Definition 6.15 (Branching Process)

A branching process is a type of Markov chain modeling a population in which each individual
produces a random number of children (possibly 0) and dies. The state space is S = {0, 1, 2, 3, ...}.
Furthermore, there is a discrete-time version and a continuous time version of the chain. In the
discrete case, the state is Zn, the size of the population at time n = 0, 1, 2, ..., and in the continuous
case, the state is Zt for t ≥ 0.

6.4.1 Discrete-time Branching Process

In the discrete case, all of the Zn individuals in the current generation branch at the same time and imme-
diately die. The branching is independent and distributed according to the offspring distribution {pk}∞k=0.
Specifically, if Zn = m, then

Zn+1 = Y n1 + Y n2 + ...+ Y nm (452)

where Y ni represents the number of offspring the ith individual in the nth generation has. All of them are
distributed as

P(Y ni = k) = pk, k = 0, 1, 2, 3, ... (453)

where pk is the probability that a parent has k children. Note that if p0 ̸= 0, then there is positive probability
that Y ni = 0 for all i, meaning that the population can go extinct. A sample branching process up to the
second generation is shown below.
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Z0 = 1

Z1 = 3

Z2 = 5

Y 0
1 = 3

Y 1
1 = 2
Y 1
2 = 0
Y 1
3 = 3

Suppose that the mean number of offspring of a single parent is finite.

µ = E(Y ) =

∞∑
k=0

k P(Y = k) =

∞∑
k=0

k pk <∞ (454)

If Y1 and Y2 are two independent, discrete random variables, we can define their convolution and use the
fact that P(Yi = k) = pk to get

P(Y1 + Y2 = k) =
∑
j

P(Y1 = k − j)P(Y2 = j)

=

∞∑
j=0

pk−jpj , k = 0, 1, 2, ...

This is a two-fold convolution of the sequence {pk} with itself, denoted

p∗2k =

∞∑
j=0

pk−j pj (455)

Extending this, we can find the m-fold convolution of the sequence {pj} with itself, represented by the
sequence {p∗mj }, where p∗mk is the kth term in this sequence. This gives us

p∗n+1
k =

∞∑
j=0

pk−j p
∗n
j (456)

for all n ∈ N. Using this, we can write down the transition probabilities for the Markov chain Zn.

P(Zn+1 = k |Zn = m) =

{
0 if m = 0

p∗mk if m ≥ 1, k ≥ 0
(457)

where P(Zn+1 = k |Zn = m) represents the probability of the nth generation consisting of m individuals
producing a total of k offspring for the (n + 1)th generation. Thus, the branching process is completely
determined by the distribution of Z0 and the offspring distribution {pk}∞k=0.

Lemma 6.2 ()

Given this discrete-time branching process, let µ be the mean of the offspring distribution. Then,

E(Zn |Z0 = 1) = µn (458)

If µ > 1, the mean of Zn grows exponentially, and if µ1, the mean of Zn decreases exponentially.

6.4.2 Continuous-time Branching Process

A continuous time branching process Zt has very similar structure to the discrete time branching process,
except that the times between branch events (for each individual) are independent exponentially distributed
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random variables Exp(λ), where the parameter λ > 0 is the branching rate. It is as though each individual
has an independent alarm clock which rings as a time that is Exp(λ), independently of all other clocks. So,
if there are currently N individuals, then the next alarm will ring at rate λN ; that is, the time until the next
ring is distributed as Exp(λN), since it is the minimum of N independent Exp(λ) random variables. When
an individual branches (clock rings), that individual produces a random number of offspring, according to
the offspring distribution {pk}, as before. So, a continuous time branching process has the same geneological
structure as the discrete time process, but the times between branch events is randomized. Consequently,
whether or not the process eventually goes extinct, depends only on the offspring distribution, not on the
branching rate λ.

Let m1(t) = E(Zt) denote the expected population size at time t. Then, it is a fact that m1(t) satisfies the
ordinary differential equation

d

dt
m1(t) = λ(µ− 1)m1(t) (459)

where

µ =

∞∑
k=1

kpk (460)

is the mean of the offspring distribution. Solving this equation reveals that

m1(t) = eλ(µ−1)tm1(0) (461)

If µ > 1, the mean population size grows exponentially, and if µ < 1, the mean population size decreases
exponentially.

6.4.3 Extinction Probability, Generating Functions

The expression for the transition probabilities of Zn (disrete case) is quite difficult to work with. Alterna-
tively, it can be convenient to work with generating functions.

Definition 6.16 (Generating Function)

The generating function for the offspring distribution is the function

G(s) ≡
∞∑
k=0

pk s
k = E(sY ) (462)

where Y ∼ {pk} is a random variable representing the number of children produced by a given indi-
vidual. Note that G is a power series that simply encodes information about the offspring distribution
(also a sequence) {pk}∞k=0.

Theorem 6.5 (Properties)

Properties of the generating function.
1. The radius of convergence of G(s) is at least 1. G(s) defines a continuous function on |s| ≤ 1.
2. On the interval [0, 1], G(s) is increasing and convex. If p0 + p1 < 1, then G(s) is strictly convex

for s ∈ [0, 1].
3. G(0) = p0.
4. G(1) = 1.
5. G′(1−) = µ is the expected number of offspring of a single individual.
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Proof.

We use the fact that
∞∑
k=0

pk = 1 and 0 ≥ pk ≥ ∀k = 0, 1, 2, ...

Theorem 6.6 ()

Suppose that Z0 = 1 and that p0 + p1 < 1. Then

lim
n→∞

P(Zn = 0) = P(eventual extinction) = t (463)

where t ∈ [0, 1] is the smallest non-negative root of the equation t = G(t). If µ ≤ 1, then t = 1
(clearly, since the population will exponentially decrease on average). If µ > 1, there is a positive
probability that the population never goes extinct.

Proof.

Let t be the probability that an individual’s descendent family tree goes extinct. That is, t = P(Zn = 0
for some n ≥ 1 | Z0 = 1). To derive the equation t = G(t), let us condition on the first generation,
with Y1 denoting the number of offspring of the single parent.

t = P(eventual extinction | Z0 = 1)

=

∞∑
k=0

P(eventual extinction | Z0 = 1, Y1 = k)P(Y1 = k | Z0 = 1)

=

∞∑
k=0

P(eventual extinction | Z0 = 1, Y1 = k) pk

That is, given that there are k children of the first individual, the probability that this first individual’s
descendent family tree will go extinct is equal to the probability that each of the k children’s trees
go extinct. These k extinction events are independent. Therefore,

P(eventual extinction | Z0 = 1, Y1 = k) = tk (464)

which implies that

t =

∞∑
k=0

P(eventual extinction | Z0 = 1, Y1 = k) pk =

∞∑
k=0

tk pk = G(t) (465)

Additionally, under the hypothesis that p0 + p1 < 1, then G(s) is strictly convex on [0, 1]. Hence if
G′(1) = µ ≤ 1, the smallest non-negative root of t = G(t) must be t = 1 =⇒ extinction occurs with
probability 1. On the other hand, if G′(1) = µ > 1, then the smallest root of t = G(t) occurs in the
interval [0, 1).

Note that this result applies to both the discrete time case and the continuous time case. In continuous-time
chains, whether or not the population goes extinct does not depend on λ, the rate at which individuals give
birth. The λ affects the time at which extinction occurs (if it occurs), but it does not affect the probability
that it occurs. However, the extinction probability certainly does depend on the offspring distribution.
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Definition 6.17 (Counting Variable)

A random variable X is a counting variable if it takes values in {0, 1, 2, ...}.

Note that generating functions is a mapping from X, the set of counting variables (all assumed to be pairwise
independent) to the algebra of power series over variable s.

G : X −→ F [[s]] (466)

Lemma 6.3 ()

Let X and Y be two independent random counting variables, with generating functions GX(s) =
E(sX) and GY (s) = E(sY ). Then, the generating function for the random variable Z = X + Y is
GZ(s) = GX(s)GY (s). That is, the generating function mapping G is a homomorphism that maps
addition to multiplication. In particular, if X and Y are iid, then GZ(s) = GX(s)2.

Proof.

Since X and Y are independent,

GZ(s) = E(sZ) = E(sX+Y ) = E(sXsY ) = E(sX)E(sY ) = GX(s)GY (s) (467)

Applying this argument iteratively, we get the following lemma.

Lemma 6.4 ()

Let N ≥ 1 be a fixed positive integer. Let Y1, Y2, ..., YN be independent, identically distributed
random counting variables with generating function GY (s) = E(sY ). Then, the generating function
for the sum Z = Y1 + ...+ Yn is

GZ(s) = GY (s)
N (468)

Now, suppose that N is not fixed, but another random variable. We wish to describe the distribution of the
sum of a random number of random variables.

Lemma 6.5 ()

Let Y1, Y2, Y3, ... be a collection of independent, identically distributed random variables with gener-
ating function GY (s) = E(sY ). Let N be a random counting variable, independent of the Yi. Let N
have generating function GN (s). Then the generating function for Z = Y1 + Y2 + ...+ YN is

GZ(s) = GN
(
GY (s)

)
(469)

105/ 110



Probability Theory Muchang Bahng Spring 2023

Proof.

Just condition on N = k

GZ(s) = E(sZ) =
∞∑
k=0

E
(
sZ |N = k

)
P(N = k)

=

∞∑
k=0

E(sY1+...+Yk |N = k)P(N = k)

=

∞∑
k=0

GY (s)
k P(N = k)

= E
(
GY (s)

N
)
= GN

(
GY (s)

)
Theorem 6.7 ()

Let G(s) be the generating function for the offspring distribution G(s) =
∑∞
k=0 pks

k. Suppose that
Z0 = 1 and let Gn(s) = E(sZn) be the generating function for the random variable Zn. Then,

Gn+m(s) = Gn
(
Gm(s)

)
= Gm

(
Gn(s)

)
(470)

Hence,
Gn(s) = G(G(G(...(G(s))...))) n-fold composition (471)

Example 6.5 ()

Suppose the offspring distribution is
pk = qpk, k ≥ 0 (472)

for some p ∈ (0, 1), where q = 1− p. Thus, the number of children from a given parent is Y = X − 1,
where X ∼ Geom(q). Then, E(Y ) = 1

q − 1 = p
q . With some computation, this means that

G(s) =
q

1− ps
(473)

and t = min{1, qp}.
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7 Common Distributions

7.1 Multivariate Gaussians
Recall X ∼ N (µ, σ2) implies that its PDF is

fX(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2

Now we will consider a Gaussian random vector, which can be considered a vector of random variables

X =


X1

X2

...
Xn


mapping from Ω to Rn. It is not merely a vector where every Xi is Gaussian, as we will show later. That is,
a joint distribution that has all n marginal distributions Gaussians does not make a multivariate Gaussian.

This measurable function X : Ω → Rn induces a probability law PX on B(Rn), and the Radon-Nikodym
theorem states the existence of a PDF fX such that PX(B) =

∫
B
fX dλ.

7.1.1 Bivariate Gaussians

Let us first begin with two-variable Gaussians.

Definition 7.1 (Standard Bivariate Gaussian RV)

A random variable (X,Y ) is said to be a standard bivariate Gaussian if its PDF is of form

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
− x2 − 2ρxy + y2

2(1− ρ2)

)
for ρ ∈ (−1, 1)

Proposition 7.1 ()

Given a standard bivariate Gaussian (X,Y ),
1. X and Y are marginally distributed as N (0, 1). That is, if we integrate a variable (say, x) out,

we will get a univariate standard Gaussian PDF of the other (y):∫ ∞

−∞

1

2π
√
1− ρ2

exp

(
− x2 − 2ρxy + y2

2(1− ρ2)

)
dx =

1√
2π
e−y

2/2

2. ρX,Y , the correlation coefficient of X and Y , is equal to ρ.
3. The conditional distribution of X given Y = y is X | Y = y ∼ N (ρy, 1− ρ2). That is,

fX|Y (x | y) = 1

2π
√

1− ρ2
exp

(
− x2 − 2ρxy + y2

2(1− ρ2)

)
=

1√
2π(1− ρ2)

exp

(
− (x− (ρy))2

2(1− ρ2)

)
4. From (3), we can see that the conditional expectation E[X | Y = y] = ρy since X | Y = y has

mean at ρy. Therefore, the conditional expectation of X given Y (which is a random variable)
is

E[X | Y ] = ρY

i.e. E[X | Y ] is a linear function of Y .

107/ 110



Probability Theory Muchang Bahng Spring 2023

The formula of the general bivariate Gaussian X = (X1, X2) PDF is messy, but we will put it here.

fX1,X2
(x, y) =

σ1σ2
√
1− ρ2

exp

[
− 1

2

(
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ
(x1 − µ1)

σ1

(x2 − µ2)

σ2

)]
It is cleaner to put it into matrix form.

fX1,X2
(x1, x2) =

1

2π
√
det(Σ)

exp

(
− (x− µ)TΣ−1(x− µ)

2

)
where

x =

(
x1
x2

)
, µ =

(
µ1

mu2

)
, Σ = E

[
(X− µ)(X− µ)T

]
=

(
Var(X1) Cov(X1, X2)

Cov(X1, X2) Var(X2)

)

Note that visually, Σ will determine how much the Gaussian distribution is "stretched" on one way or
another. Obviously, the "peak" of the distribution will be µ. If Σ = I, then we could visualize the Gaussian
distribution as being perfectly symmetric. However, if we scale the distribution up to a certain constant
(below shown Σ = I, Σ = 0.61I, Σ = 2I), we get

Now we’ve made a remark before that given a multivariate distribution X = (X1, . . . , Xn), all of its marginal
distributions being Gaussian does not mean that X is a multivariate Gaussian. We give a counterexample.

Example 7.1 ()

Let Y1, Y2 be iid random variables distributed according to the PDF

fY (y) =

√
2

π
e−y

2/2 for y > 0

which we can interpret as a one-sided Gaussian. Let W ∼ Bernoulli( 12 ) be independent of Y1 and Y2.
Now, define the random variables

X1 =W Y1 and X2 =W Y2

This is clearly not a multivariate Gaussian, even though the marginals are X1, X2 ∼ N (0, 1). We
could make the degenerate case that X1 = X2, which would make the image of (X1, X2) just the line
at x1 = x2, but we can think of this as a degenerate Gaussian with a singular Σ.
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Figure 3: Now note that Y1 and Y2 are both positive, and since X1 and X2 are both dependent on the same
value of W , it is either X1 and X2 are both positive or both negative. So, the joint distribution of X1, X2

will be on only the 1st and 3rd quadrant with no mass on the 2nd and 4th.

7.1.2 Multivariate Gaussians

There are three equivalent definitions of multivariate Gaussians of n-variables.

Definition 7.2 (Multivariate Gaussian)

Let us have a vector-valued random variable X = (X1 . . . Xn)
T ∼ N (µ,Σ).

1. X is a multivariate Gaussian distribution with mean µ ∈ Rn and symmetric, positive-
definite covariance matrix Σ ∈ Rn×n if its probability density function is

fX(x) =
1

(2π)n/2det(Σ)1/2
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
The covariance matrix Σ is the n × n matrix whose (i, j)th entry is Cov(Xi, Xj). That is, for
any random vector X with mean µ, its covariance matrix

Σ = E
[
(X− µ)(X− µ)T

]
= E[XXT ]− µµT

is positive definite and symmetric, which implies by the spectral theorem we can break it down
into n orthogonal eigenspaces of positive eigenvalues.

2. X is a multivariate Gaussian distribution if it can be expressed as

X = Dw + µ

where w is a vector of independent N (0, 1) Gaussians, µ ∈ Rn, and D ∈ Rn×n. The mean of
X is µ and its covariance is Σ = DDT ; D is called the standard deviation matrix. When
modeling high-dimensional Gaussians, this way is most computationally feasible.

3. X is a multivariate Gaussian distribution if for every a ∈ Rn, aTx is a Gaussian RV. This means
that if we take a = 0, then the entire X is constantly 0, which we will take to be the degenerate
Gaussian with mean, variance 0.

The n semi-axes of the (n−1)-dimensional isocontour ellipsoid formed by an n-dimensional Gaussian
distribution are precisely the normalized eigenvectors of Σ multiplied by their eigenvalues.

If we let Σ = I, then this means that all the Xi’s are pairwise uncorrelated since Σij = Cov(Xi, Xj) = 0.
In general, this does not mean that the Xi’s are independent, but for joint Gaussians, this also implies
independence!
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Theorem 7.1 ()

Given multivariate Gaussian X = (X1 . . . Xn)
T ∼ N (µ,Σ), the Xi’s are pairwise independent if and

only if they are uncorrelated.

Proof.

We can expand the PDF of X as

fX(x) =
1

(2π)n/2
exp

(
− 1

2
(x− µ)T (x− µ)

)
=

(
1√
2π

)n
exp

( n∑
i=1

−1

2
(xi − µi)

2

)

=

n∏
i=1

1√
2π

exp

(
− 1

2
(xi − µi)

2

)
which is the product of n single-variable Gaussians Xi. Therefore this means that independence and
uncorrelation are equivalent!

Therefore, if the nondiagonal entries of the covariance matrix are all 0, then we know that the variables are
all uncorrelated and therefore independent.
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