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Given a set, what are some fundamental structures that you can put on a set? We can first talk about
relations, such as ordering, or functions, such as a norm or a distance. These are constructed as subsets of a
Cartesian product of finite X’s. Another structure on set X is to define a set of subsets T ⊂ 2X that allow
us to interpret how certain elements of a set are “nearby” each other without the notion of a metric.1 This
set of subsets is called a topology, with its elements being open sets. So how do you define such a thing?
Well intuitively, given two elements x, y ∈ X, if there exists two disjoint open sets U1, U2 such that x ∈ U1

and y ∈ U2, then we can distinguish these points in such a way. If this is true for all points in X, then this
gives us a nice Hausdorff property to work with. If there exists no open sets that can do this, then x and
y, although distinct in X, may be indistinguishable in the topological sense.

If this notion of nearness can be rigorously defined, we may be able to characterize the elements and subsets
of X. One nice notion is the concept of limit points which asks whether x is “infinitesimally close” to a
certain set. This allows us to define limits without the notion of a metric, and with this foundation we build
the notion of continuity.

A trivial way to construct such a topology is to take the power set 2X itself. However, this may be “too
big” in a sense that no interesting properties can be deduced. But this doesn’t mean we can take any subset
of 2X . We compromise by defining topologies to be a subset of 2X with certain properties, which we will
mention in the next section.

The construction of the topology allows us to study properties of these spaces. Moreover, if we have a
function that maps from one topological space to another, how do we know what kinds of properties will be
preserved and what will be lost? It turns out that these topological properties are invariant under certain
mappings called homeomorphisms. Therefore, topology can also be seen as a method to study spaces and
properties that are preserved under homeomorphisms.

1In ZFC set theory, a topology may be more fundamental in the sense that it is a subset of the power set, while the other
structures are subsets of a Cartesian product, which itself is a construction from the power set.
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1 Open and Closed Sets
The first thing to define is a topology.

Definition 1.1 (Topology)

Let X be a set and T be a family of subsets of X. Then T is a topology on Xa if it satisfies the
following properties.

1. Contains Empty and Whole Set :
∅, X ∈ T (1)

2. Closure Under Union. If {Uα}α∈A is a class of sets in T , then⋃
α∈A

Uα ∈ T (2)

3. Closure Under Finite Intersection: If U1, . . . , Un is a finite classb of sets in T , then

n⋂
i=1

Ui ∈ T (3)

A topological space is denoted (X,T ).
aI will use script letters to denote topologies and capital letters to denote sets.
bNote that we restrict property 3 to be a finite intersection because it turns out that the finiteness of intersection

allows us to prove many nice properties about topologies, which we will mention later. Another reason is that if we
remove this finite restriction, the open ball topology on R would imply that ∩∞

i=1(−1/i,+1/i) = 0 is an open set =⇒
all points are open sets too, which is generally not what we want in analysis.

This leads to the most general definition of an open set. Note that an open set doesn’t really mean anything
without talking about with respect to its topology.

Definition 1.2 (Open Set)

The elements of T are called open sets in X.a
1. An open set U which contains a point x is called an open neighborhood of x, denoted Ux.
2. Given an open neighborhood Ux of x, the set Ux \ {x} is called the punctured open neigh-

borhood of x.
aAs implied from the definition of a topology, the arbitrary union and finite intersection of any number of open sets

is an open set.

For the sake of giving at least one nontrivial example, here is an example of a finite topology.

Example 1.1 (Topologies of a Set of Cardinality 3)

There are a total of 29 topologies that we can construct on {1, 2, 3}. Two such examples are
1. {∅, {1, 2}, {1, 2, 3}}
2. {∅, {3}, {2, 3}, {1, 2, 3}}

When we define a new topology, we must first prove that they are topologies, and so these definitions are
really theorems. However, I will introduce them as definitions and reserve the theorem environment for
actual theorems.
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Definition 1.3 (Discrete, Indiscrete Topologies)

Given a set X,
1. 2X is a topology, called the discrete topology.
2. {∅, X} is a topology, called the indiscrete topology.

Proof.

Listed.
1. The first property is trivially proven. From the theorems of set theory, Uα ⊂ X =⇒ ∪Uα ⊂

X =⇒ ∪Uα ∈ 2X . Finally the same logic holds for intersection as well.
2. The first property is trivially proven. We can check for the 4 combinations of unions and

intersections and see that they all result in either ∅ or X.

Definition 1.4 (Finer, Coarser Topologies)

Suppose that T and T ′ are two topologies on a given set X. If T ⊂ T ′, we say that T ′ is finer
than T , or equivalently, we say that T is coarser than T ′.

We can think of the topology of a set X as a truck full of gravel as the open sets. If the gravel is smashed
into smaller, finer pieces, then the amount of stuff that we can make from the finer gravel increases, which
corresponds to a bigger topology. Clearly, the indiscrete topology is the coarsest topology and the discrete
topology is the finest.

Theorem 1.1 (Intersection of Topologies)

Given a family of topologies {T }α∈A, the set

T =
⋂
α∈A

T α (4)

is a topology.

Corollary 1.1 (Unique Coarsest and Finest Topology)

Given a family of topologies {T }α∈A, there exists
1. a unique smallest topology on X containing all the collections T α.
2. a unique largest topology on X contained in each T α.

Example 1.2 ()

Let X = {a, b, c}, and let

T 1 = {∅, X, {a}, {a, b}} (5)
T 2 = {∅, X, {a}, {b, c}} (6)

We claim that the
1. smallest topology containing T 1,T 2 is

T 1∪2 = {∅, X{a}, {b}, {a, b}, {b, c}} (7)

Note that this is not simply the union of topologies. The union wouldn’t have {b}, making it
not a topology.
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2. largest topology contained in T 1,T 2 is

T 1∩2 = {∅, X, {a}} (8)

Note that this is simply the intersection of the two topologies.

1.1 Basis
So far so good. We have introduced a topology as a collection satisfying some properties, but given a topology
on X, it is often a bit difficult to see whether an arbitrary set S ⊂ X is open. For this, we have the following.

Lemma 1.1 (A Set Full of Open Sets is Open)

Given X with a topology T , let S ⊂ X. Then S is open if for every x ∈ S, there exists an open
neighborhood Ux satisfying x ∈ Ux ⊂ S.

Proof.

Since we can set
S =

⋃
x∈S

Ux (9)

it is an arbitrary union of open sets and therefore must be open.

We want to continue analyzing the properties of a topology, but sometimes working with the entire topology
is a bit thorny. There is a tamer representation of a topology, which can also give us the starting point to
construct topologies.

Definition 1.5 (Basis)

If X is a set, a basis on X is a collection B of subsets of X (called basis elements) such that
1. For each x ∈ X, there is at least one basis element B ∈ B containing x. That is, the elements

of B covers X.
2. If x belongs to the intersection of two basis elements B1 and B2, then there is a basis element

B3 containing x such that B3 ⊂ (B1 ∩B2).

The name gives away the clue that a topology may be created from this basis.

Theorem 1.2 (Basis to Topology)

Given a basis B on a set X, we can define a topology T , called the topology generated by B, in
the following equivalent ways.

1. T consists of subsets U of X satisfying the property that for each x ∈ U , there exists a basis
element B ∈ B such that x ∈ B ⊂ U .a

U

x

B

2. T consists of all possible unions of elements in B.

T ≡
{⋃

i

Bi | Bi ∈ B
}

(10)
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aNote that since we can always set U = ∅, the basis doesn’t need to contain ∅.

Proof.

We prove that the 2 methods generate a topology, and then finally prove that it they are the same
topology.

1. Clearly, ∅ and X itself are in T . To prove property 2, given a certain indexed family of subsets
{Uα}α∈I of T , we must show that

U =
⋃
α∈I

Uα ∈ T (11)

Given x ∈ U , there exists at least one index α such that x ∈ Uα. Since Uα ∈ T already, there
exists a basis element b ∈ B such that x ∈ b ⊂ Uα. But

Uα ⊆ U =⇒ b ⊂ U (12)

So, by definition, any arbitrary union of U of these subsets is also in T .
To prove property 3, we must show that

W =
⋂
α∈I

Uα ∈ T (13)

Given x ∈W , by definition of a basis element, there exists a b ∈ B such that

x ∈ b ⊂ (Uβ ∩ Uγ)∀β, γ ∈ I =⇒ there exists b̃ ∈ B s.t. x ∈ b̃ ⊂
⋂
α∈I

Uα (14)

By definition, W is also open. Since this arbitrary set of subsets T suffices the 3 properties, it
is a topology of X by definition.

2. (→) Given a collection of elements in B, they are also elements of T . Since T is a topology,
their union in also in T .
(←) Given an open set U ∈ T , for every point x ∈ U , by definition we can choose a basis
element b ∈ B such that x ∈ b ⊂ U . Then, the union of all these basis elements is by definition
b.

We have learned how to go from a basis to a topology. The following lemma tells us how to identify a basis
within a topology.

Theorem 1.3 (Topology to Basis)

Let (X,T ) be a topological space, and let B be a collection of open subsets of X such that for every
open set U and each x ∈ U , there exists an element B ∈ B such that

x ∈ B ⊂ U (15)

Then, B is a basis for the topology of X.

Proof.

Note that there are two claims here: B is a basis and the topology that B generates is equal to T .
1. To prove that B is a basis, note that X is an open set, and by assumption, for every x ∈ X,

there exists a B ∈ B s.t. x ∈ B ⊂ X. Therefore B covers X. Now take two basis elements
B1, B2 ∈ B with x ∈ B1 ∩B2. Since we know that B1, B2 are open, B1 ∩B2 is open and so for

7/ 143



Point Set Topology Muchang Bahng Fall 2024

each x ∈ B1 ∩B2, there exists a basis element B3 s.t. x ∈ B3 ∈ (B1 ∩B2). Thus B is a basis.
2. Let us call T ′ the topology generated by B. Then, given U ∈ T , by assumption for any x ∈ U ,

there exists a basis element B ∈ B s.t. x ∈ B ⊂ U , so x ∈ T ′. Conversely, if U ∈ T ′, then U
is an arbitrary union of elements B ∈ B where each B is open in T , so U ∈ T . So T = T ′.

Characterizing topologies in terms of basis is quite effective since we can work with more manageable sets.

Lemma 1.2 (Fineness w.r.t. Basis)

Given two topologies T and T ′ with their bases B and B′, respectively, the following are equivalent.
1. T ′ is finer than T .
2. For each x ∈ X and basis element B ∈ B containing x, there exists a basis element B′ ∈ B′

such that x ∈ B′ ⊂ B.

So we have seen how we can take a collection of sets satisfying the basis properties and construct a topology
as the union of the sets in this collection. What happens if we can relax some of these conditions? Note that
the first condition was that the basis elements must cover X. This is non-negotiable. However, if we remove
the second requirement that a basis element must be contained in an intersection of basis elements, we can
get a subbasis.

Definition 1.6 (Subbasis)

A subbasis S for a topology on X is a collection of subsets of X whose union is equal to X.

Theorem 1.4 (Subbasis to Topology)

Given a subbasis S on a set X, the topology generated by S is defined to be the collection T
of all unions of finite intersections of elements of S .

Proof.

It suffices to show that the collection of finite intersections of elements form a basis.

1.2 Limit Points and Closed Sets
First, we need to learn what it generally means for a point to be infinitesimally close to a set.

Definition 1.7 (Limit Point)

Given a topological space (X,T ), let x ∈ X be a point and S ⊂ X a subset. x is a limit point of S
if every punctured neighborhood of x intersects S.a The set of all limit points of a set S is denoted
S′.

aNote that limit point are generally used to talk about points that are infinitesimally close to a set S. A limit point
may not necessarily be in S, and a point of S may not necessarily be a limit point. This is why we use a punctured
neighborhood, rather than an open neighborhood. For continuity as we will see later, we just talk about neighborhoods
since we also claim that the limit exists and the function value is the limit.

Example 1.3 (Examples of Limit Points)

What about the limit points that are not in S? Generally, there are two instances.
1. Let S represent the gray area. B is in the “interior” of S and therefore is a limit point. A and

C are on the “boundary” of S yet not in S, and we can show that they are limit points as well.
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A

B
C D

Figure 1: Points A,B,C are limit points of the open set.

2. A point can be at the “convergence point” of a sequence.

p

Figure 2: Note that if S is a sequence of points in R2 that converges to p without ever hitting it, we can say
that p ̸∈ S is a limit point of S.

Example 1.4 (Examples of Non-Limit Points)

There are generally two instances of non-limit points. Let X = R and S = (0, 1) ∪ {2}.
1. 5 is clearly not a limit point.
2. 2, although in S, is not a limit point since we are talking about the punctured neighborhood.

A point in S that is not a limit point is called an isolated point.

Example 1.5 (Counterintuitive Limit Points in Lower Limit Topology)

Note that given an interval (a, b) ⊂ R in the lower limit topology, a is a limit point but b is not a
limit point!

Definition 1.8 (Closed Set)

A set S ⊂ X is closed if its complement X \ S is open in T .a

aNote that open and closed sets are not mutually exclusive. A set might be open, closed, both, or neither. A set
that is both open and closed is called clopen.

Another property, which is often used as the definition of a closed set, is that it contains all of its limit
points.

Lemma 1.3 (Closed Sets Contain Limit Points)

A set S ⊂ X is closed iff it contains all of its limit points.

Proof.

We prove bidirectionally.

Theorem 1.5 (Topological Space wrt Closed Sets)

Let X be a topological space. Then, the following conditions hold
1. ∅ and X are clopen.
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2. Arbitrary intersections of closed sets are closed.
3. Finite unions of closed sets are closed.

Definition 1.9 (Dense Subsets)

Let S ⊂ (X, τX). S is dense in X if every point p ∈ X is a limit point of S. In other words, for any
point p ∈ X and any open neighborhood Up of p, Up ∩ S is nontrivial. Otherwise, p is a point of S.

The following example is a crucial fact for proving further properties of topological spaces.

Example 1.6 ()

Qn is a dense set of Rn with the open ball topology. If we have the discrete topology of R2, an open
neighborhood of a point is the point itself, so no limit points would exist beyond the points in S itself.
So Qn is not dense in Rn with this topology.

1.3 Interiors and Closures
Now that we’ve determined limit points, we would like to extend sets into their limit points. The process of
doing this is called the closure of a set.

Definition 1.10 (Closure)

The closure of set S is S is defined in the following equivalent ways.
1. S = S ∪ S′, i.e. the union of itself and its limit points.
2. S is the intersection of all closed sets C containing S.

Proof.

Example 1.7 ()

If S is an open ball, S̄ is the closed ball.

From semantics, it may seem like the interior and exterior (defined later) are related, but from a mathematical
point of view, the interior and closure are dual notions.

Definition 1.11 (Interior)

Let S ⊂ X. Then, the following definitions of the interior of S, denoted S◦, are equivalent.
1. x ∈ S◦ if ∃Ux ∋ x s.t. Ux ⊂ S.
2. S◦ is the union of all open sets contained in S.
3. So is the complement of the closure of the complement of S.

So =
(
Sc
)c (16)

Proof.
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Lemma 1.4 (Open and Closed in Terms of Interiors and Closures)

Let S be a subset of some topological space X.
1. S is open iff S = So. So is always open.
2. S is closed iff S = S. S is always closed.

Theorem 1.6 (Clopen sets in Reals)

There are no proper clopen sets in R.

1.4 Exteriors and Boundaries

Definition 1.12 (Exteriors)

Let S ⊂ X. The exterior of S, denoted Se, is defined in the following equivalent ways.a
1. Se is the complement of the closure of S.
2. Se is the interior of the complement of S.
aWe can informally think of the exterior being strictly outside of S and its boundary.

Proof.

Definition 1.13 (Boundary)

Let S ⊂ X. The boundary of S, denoted ∂S, is defined in the following equivalent ways.
1. ∂S is the closure minus the interior of S in X.
2. ∂S is the intersection of the closure of S with the closure of its complement, i.e the set of all

points x such that every neighborhood Ux intersects both the interior and exterior.
3. ∂S is the set of points that are neither in the exterior nor the interior.
4. x ∈ ∂S if every neighborhood of x intersects both the interior and exterior of S.

Proof.

From the above, we get the intuitive notion that these three parts divide up the whole space.

Theorem 1.7 (Partitioning of Space)

Given S ⊂ X, X is partitioned into the interior, boundary, and exterior of S.

X = S◦ ⊔ ∂S ⊔ Se (17)

Proof.

The fact that

One counterintuitive result is the Lakes of Wada, which are three disjoint connected open sets of the open
unit square (0, 1)2 with the property that they all have the same boundary. In other words, for any point
selected on the boundary of one of the lakes, the other two lakes’ boundaries also contain that point.
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2 Common Topologies
We have given some examples of how we can construct topologies from scratch given an arbitrary set X,
possibly with some structure. Now given a collection of 1 or more topological spaces, we will talk about how
we can construct new topologies. Note that the topologies introduced in this section don’t really require us
to talk about functions yet. They can be constructed and completely described in terms of sets.

2.1 Orderings and the Dictionary Topology

Definition 2.1 (Dictionary Topology)

Let X be a set with a simple order relation. Let B be the collection of all sets of the following types.
1. All open intervals (a, b) ⊂ X
2. All half-open intervals [a0, b), where a0 is the minimum element of X
3. All half-open intervals (a, b0], where b0 is the maximum element of X.

This set B is a basis for the order topology of X. If X has no minimum or maximum, then there
are no sets of type of 2 or 3, respectively.

Example 2.1 (Standard Order Topology on R)

The standard topology on R is precisely the order topology derived from the usual order on R. Since
R has no minimum or maximum, the basis consists of open intervals (a, b) ⊂ R with a, b ∈ R.

Example 2.2 (Basis of Open Intervals with Rational Endpoints)

We can however get away with smaller basis that generate the same topology on R. If we take the
set of all open intervals (a, b) ⊂ R with a, b ∈ Q, this is also a basis for the same standard order
topology. Too see why, let us denote this basis as B′ and the basis of all open intervals with real
endpoints be B. Then, clearly B′ ⊂ B =⇒ T ′ ⊂ T . As for the other, way, let us take an open
interval (a, b) ∈ B. Then we can see that

(a, b) =
⋃

p,q∈Q
a<p,q<b

(p, q) (18)

where equality follows from density of rationals in R.

Example 2.3 (R2 with Dictionary Order)

Given R × R with the dictionary order, then R × R has neither a largest nor smallest element.
Therefore, the order topology on R× R consists of all "intervals" of form(

(a, b), (c, d)
)
≡ {(x, y) ∈ R2 | (a, b) < (x, y) < (c, d)} (19)

12/ 143



Point Set Topology Muchang Bahng Fall 2024

(a, b)

(c, d)

Figure 3: This means that open rays and lines are also a part of the topology of R× R.

Example 2.4 (Positive Integers)

The set of positive integers Z+ form an ordered set with a smallest element. The order topology for
Z+ is precisely the discrete topology since every one-point set is an open set.

{n} = (n− 1, n+ 1) (20)

Example 2.5 (Two Copies of Positive Integers)

The dictionary order topology on {1, 2}×Z+ results in every one point set being open, except for the
point (2, 1). Since every neighborhood of (2, 1) must contain some point of form (1, n) for arbitrarily
large n, {(2, 1)} is not open.

Definition 2.2 ()

If X is an ordered set a a ∈ X, then there are 4 subsets of X called rays determined by a.
1. (a,+∞)
2. (−∞, a)
3. [a,+∞)
4. (−∞, a]

The first two sets are called open rays, and the latter two sets are called closed rays.

We can extend the basis of open intervals to some other basis based on the order, which generates other
topologies.

Example 2.6 (Lower/Upper Limit Topology)

Given a totally ordered set (X,≤),
1. the lower limit topology is the topology generated by the basis of all half-closed half-open

intervals of form
[a, b) := {x ∈ X | a ≤ x < b} (21)

2. the upper limit topology is the topology generated by the basis of all half-open half-closed
intervals of form

(a, b] := {x ∈ X | a < x ≤ b} (22)
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Example 2.7 (Nested Interval Topology)

In the space X = (0, 1), the nested interval topology is the topology generated by the basis of
nested intervals of the form

Bni := {(0, 1−
1

n
) | n ∈ N} (23)

A topology generated by closed intervals can also be a topology!

Example 2.8 (Closed Interval Topology)

In the set X = [−1, 1], the following set

Bci := {[−1, a) | a > 0
}⋃{

(b, 1] | b < 0} (24)

is a basis. The topology it generates is called the closed interval topology, denoted T ci.

Finally, we talk about a seemingly arbitrary topology called the K-topology, but it is useful for counterex-
amples.

Example 2.9 (K-Topology)

In R, let us denote K = {1/n}n∈N. Then the K-topology on R is the topology generated by the
basis consisting of

1. all open intervals (a, b) with a, b ∈ R.
2. all sets of the form (a, b) \K with a, b ∈ R.

Now that we have some collection of topologies, let’s try to compare them. We claim the following.

Theorem 2.1 (Comparison of Topologies of the Real Line)

2.2 Metric Topology
For common sets like Rn, which has an inner product, or Q, which has an order, it is easy to build these
topologies with set-builder notation. Consider the following.

Definition 2.3 (Metric Topology)

Given a metric space (X, d), let us denote the metric topology, or open-ball topology, as the
set of subsets U satisfying the property that for all x ∈ U , there exists a positive r ∈ R such that
B(x, r) ⊂ U , where B(x, r) := {y ∈ X | d(x, y) < r} is the open ball of radius r around x. We claim
that this is a topology.

Proof.

We show that the properties of a topology hold.
1. For the empty set, the inclusion of an open ball for a point in ∅ is vacuously satisfied. For the

whole set, we choose any point x and any r, and the open ball is trivially a subset of X.
2. Let {Uα}α∈I be a collection of open subsets of X. Let their union be denoted U . We claim U is

open. Pick any point x ∈ U . Then by definition of union, there exists some α ∈ I s.t. x ∈ Uα.
Since Uα is open, there exists a r > 0 s.t. B(x, r) ⊂ Uα ⊂ U . Therefore U is open.

3. Let U1, . . . , Uk be open, and let us denote their intersection as U . We claim U is open. Pick a
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point x ∈ U . Then for each i = 1, . . . , k, x ∈ Ui and there exists a corresponding ri > 0 such
that the open ball B(x, ri) ⊂ Ui. Take the set R = {ri}, which is a finite set living in R. We
will take for granted that every finite subset of an ordered set has a minimum.a Let us denote
r∗ = minR, and we claim that r∗ gives us a ball that can fit inside U . Assume y ∈ B(x, r∗).
Then

y ∈ B(x, r∗) =⇒ d(x, y) < r∗ (25)
=⇒ d(x, y) < minR (26)
=⇒ d(x, y) < ri for i = 1, . . . , k (27)
=⇒ y ∈ B(x, ri) for i = 1, . . . , k (28)

Since B(x, ri) by construction is contained within Ui, y ∈ Ui for all i. This means by definition
of intersection that y ∈ U , and we have proven that B(x, r∗) completely fits inside U .

aIf we wish to prove it, we can start with a singleton set, claim that its minimum is the only element. Then we use
induction by assuming for a set R of size k that a minimum exists, and by adding 1 more element r we update the
minimum to be min{r,minR} and show that this is indeed the minimum.

Note that while open balls are used to define whether a set is open or not, the definition doesn’t state whether
open balls themselves are open sets. It turns out that it is easy to prove that they are.

Lemma 2.1 (Open Balls are Open Sets)

The open ball wrt any metric d is an open set wrt the metric topology.

Proof.

Let y ∈ B(x, r). Then d(x, y) < r =⇒ 0 < r − d(x, y). To show that B(x, r) is open, we would like
to show that there exists some r′ > 0 s.t. y ∈ B(y, r′) ⊂ B(x, r). Set r′ = r − d(x, y). Then

z ∈ B(y, r′) =⇒ d(y, z) < r − d(x, y) (29)
=⇒ d(x, y) + d(x, y) < r (30)
=⇒ d(x, z) < r (31)
=⇒ z ∈ B(x, r) (32)

and so B(y, r′) ⊂ B(x, r). We are done.

Example 2.10 (Discrete Metric Induces Discrete Topology)

Given a set X, induce the metric d defined

d(x, y) ≡

{
1 if x ̸= y

0 if x = y
(33)

This metric induces the discrete topology on X, since the basis elements of the open balls

Br(x) ≡ {y ∈ X | d(x, y) < r} (34)

consists of two types of open sets. When r ≤ 1, then Br(x) = x (since the radius is 0). If r > 1, then
the open set is the entire space X.

While the behavior for finite sets are predictable under the metric topology, as soon we we get into infinite
sets, the properties of the metric topology may differ.
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Example 2.11 (Metric Topologies on Z and Q)

Z and Q are countable sets, so there is a bijection between them. If we give each of them the metric
topology, Z ends up having the discrete topology (take the 0.5-ball around each integer), whereas for
Q, we will see later that by the density of the rationals there are an infinite number of rationals in
(q− r, q+ r) for q ∈ Q. Therefore, the metric topology may or may not induce the discrete topology.

Example 2.12 (Supremum Norm in R3)

x

2r

Figure 4: In R3, each basis element is a cube centered at x with side lengths 2r.

Theorem 2.2 (Metric Topologies on Finite Sets)

If (X, d) is a finite metric space, then the metric topology on it is the discrete topology.

Proof.

Take all pairwise points and compute ϵ = minx ̸=y{d(x, y)}. Since X is finite, all pairs are finite and
therefore the minimum exists. Now let us take the ϵ-ball around x. Then every y ̸= x has distance
d(x, y) ≥ ϵ, and therefore y ̸∈ B(x, ϵ). So all single points are open sets, which induces the discrete
topology.

It is easy to go from a metric to a topology, but a natural question is that given a topology, does there
exist a metric that induces this topology? This is precisely the notion of metrizability, which is a highly
desirable attribute for spaces, and there are many existence theorems that proves metrizability given certain
conditions.

Definition 2.4 (Metrizable Space)

If (X,T ) is a topological space, (X,T ) is said to be metrizable if there exists a metric d on X that
induces the topology T of X.

Example 2.13 (Non-Metrizable Finite Spaces)

Let X = {a, bc}. Then the topology

T = {∅, {b}, {a, b}, {b, c}, X} (35)

is not metrizable from the theorem above since the only metrizable topologies are discrete.
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Lemma 2.2 (Fineness of Metric Topologies)

Let d and d′ be two metrics on the set X with their respective induced topologies T ,T ′. We claim
that T ⊂ T ′ iff there exists a M > 0 s.t.

d′(x, y) < M · d(x, y) (36)

for all x, y ∈ X. That is, we can bound d′ with a constant multiple of d.

Proof.

2.3 Euclidean Topology
More specifically, the metric topology generated by the L2-metric on Rn is called the Euclidean topology.
Note that the topological property of stability under countable intersection was required to show that the
minimum of R existed. This is not true for infinite sets in general. This gives us some motivation as to why
we need the finite intersection rather than an infinite one.

Lemma 2.3 (Singletons are Not Open in Rn)

A singleton set is not open in Rn with the Euclidean topology.

Proof.

We claim that the singleton set S = {0} is not open under the Euclidean metric. We pick a point
in S, which can only be 0. Assume that there exists an r > 0 s.t. B(x, r) ⊂ S. R is Archimedean,
so there exists a natural number N s.t. 0 < 1/N < r. We construct the vector v = (v1, . . . , vn) s.t.
v1 = 1/N and vi = 0 everywhere else. The distance between 0 and v is

∥v − 0∥ = ∥v∥ =
√

(1/N)2 = 1/N < r (37)

so v ∈ B(x, r). But v ̸= 0, and by contradiction such an r cannot exist. In Rn we consider the
countable intersection of open balls (which we have proved in class are open sets) around 0 of radius
1/N for n ∈ N. We claim that ⋂

n∈N
B(0, 1/n) = {0} (38)

We see that 1/n must always be positive and so ∥0− 0∥ = 0 < 1/n. Therefore the LHS ⊃ RHS. To
see that the intersection contains no other element, consider any vector v ̸= 0. Then by definition
of the metric, d(v, 0) > 0. By the Archimedean property, there exists a natural N ∈ N s.t. 0 <
1/N < d(v, 0), which means that v ̸∈ B(0, 1/N), and so v cannot be in the intersection. Therefore,
the intersection must be {0}, and we have shown that B0 is not open, so we are done.

Theorem 2.3 ()

For a metric space (X, d), the metric topology is finer than the cofinite topology.

Proof.

Note that if X is finite, then both are reduced to the discrete topologies.

While it is not surprising that a basis uniquely generates a topology, it is not immediately obvious what the
generated topology looks like. It turns out that many different bases may generate the same topology, and
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the concept of fineness allows us to compare these topologies more effectively. For example, if two topologies
are both finer than the other, then they must be equal.

Theorem 2.4 (Euclidean Topology on Rn)

Lp norms all generate the same topology on Rn.

Proof.

We can show that
nqd∞ ≤ nqd2 ≤ nqd1 ≤ dp ≤ n−pd∞ (39)

where q is the holder conjugate of p. Visually, we can see that every open ball in (Rn, d) (with the
Euclidean metric) is the form to the left, while an open ball in (Rn, ρ) (with the square metric) is of
form on the right.

x r
x

r
r

Clearly, we can form any open set of any "shape" using any arbitrary combination of these "circles"
or "squares," indicating that they generate the same topology.

2.4 Cofinite Topology

Definition 2.5 (Cofinite Topology)

Given a set X, the set of all subsets U , satisfying the property that X \ U is finite, is a topology,
called the cofinite topology or the finite complement topology.a

aWhile this definition may seem a bit arbitrary, this is very similar to the Zariski topology, which is used in algebraic
topology.

Proof.

Let us denote this set T c.
1. By definition ∅ ∈ T c. It is clear that X \X = ∅ has cardinality 0, and therefore is in T c.
2. Let {Uα}α∈I ∈ Tc by a collection of open sets of X. Then by deMorgan’s laws,

X \
⋃
α∈I

Uα =
⋂
α∈I

(X \ Uα) (40)

X \ Uα is countable for all α ∈ I, so let us fix some α′. Then⋂
α∈I

(X \ Uα) ⊂ Uα′ =⇒
∣∣∣∣ ⋂
α∈I

(X \ Uα)

∣∣∣∣ ≤ ∣∣Uα′
∣∣ (41)

and so the intersection is also countable.
3. Let {Ui}ni=1 by a finite collection of open sets of X. Then by deMorgan’s laws,

X \
n⋂

i=1

Ui =

n⋃
i=1

(X \ Ui) (42)

Since Ui are open, X\Ui are countable, and since the finite union of countable sets are countable,
the RHS is countable, which implies the LHS is countable and so ∩ni=1Ui is open as well.
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Slightly modifying the definition does not result in a topology.

Example 2.14 (Countable Complement is Not A Topology)

Given a set X, consider the collection

T ∞ := {U ⊂ X | X \ U is infinite or empty or all of X} (43)

This is not a topology. Let us take X = R, and look at the sets Z≥0,Z≤0 consisting of all the non-
negative and non-positive integers. They are both infinite, and so R \ Z≥0 and R \ Z≤0 are in T∞.
Consider their union.

(R \ Z≥0) ∪ (R \ Z≤0) = R \ (Z≥0 ∩ Z≤0) = R \ {0} (44)

But R \ (R \ {0}) = {0}, and so R \ {0} is not open. Therefore Tc doesn’t satisfy the definition of a
topology.
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3 Functions and Continuity
Note that from set theory, we can construct functions as a subset of Cartesian product of two spaces X,Y .
There is nothing new here.

Definition 3.1 (Continuous Function)

A function f between 2 topological spaces (X,T X) and (Y,T Y ) is continuous at x ∈ X if the
preimage of every open neighborhood of f(x) ∈ Y is an open neighborhood of x ∈ X.

Uf(x) ∈ T Y =⇒ x ∈ f−1(Uf(x)) ∈ T X (45)

f is said to be continuous (at all points) if the preimage of every open set in Y is an open set in
X.a

aNote that continuity of a function f is not only determined by the function itself, but also by the topologies of X
and Y .

Note that it is easier for f to be continuous when the T X is finer (since there are more open sets in X for
the preimage of V ⊂ Y to map to) or T Y is coarser (since there are fewer open sets that we have to check
to map to open sets of X).

Theorem 3.1 (Sufficient Properties for Continuity)

Let X,Y , be topological spaces and let f : X −→ Y . Then, the following are equivalent to f being
continuous.

1. The preimage of every basis element B ∈ T Y is open in X.
2. For every closed set B in Y , the set f−1(B) is closed in X.
3. For every subset A of X, f(Ā) ⊂ ¯f(A).

Proof.

Listed.
1. An arbitrary open set V of Y can be written as V = ∪α∈Jbα. Then,

f−1(V ) = f−1
( ⋃

α∈J

bα

)
=
⋃
α∈J

f−1(bα) (46)

Great, so we have a few ways in which we can check continuity of a function. There are a few special cases.

Lemma 3.1 (Trivially Continuous Functions)

We have the following for general topological spaces.
1. The identity function Id : (X,T 1)→ (X,T 2) is continuous if T 1 ⊃ T 2.
2. A constant function f : (X,T )→ (Y,T 2) is always continuous, regardless of the topologies.

Proof.

If we take an open set U ∈ T 2, its preimage is the same set U , which is guaranteed to be in T 1 since
T 1 is finer than T 2.

Lemma 3.2 (Composition of Continuous Functions)

If f : X → Y and g : Y → Z is continuous, then g ◦ f : X → Z is continuous.
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3.1 Construction of Continuous Functions

Theorem 3.2 (Arithmetic on Real Continuous Functions)

If X is a topological space, and if f, g : X −→ R are continuous, then f + g, f − g, and f · g are also
continuous. f/g is continuous if g(x) ̸= 0 for all x ∈ X.

Theorem 3.3 (Analytic Continuity = Topological Continuity)

Given metric spaces with their induced metric topologies (X,T X , dX) and (Y,T Y , dY ). The following
are equivalent.

1. f : X → Y is continuous at x.
2. For every δ > 0, there exists an ϵ = ϵ(δ) > 0 such that for all z ∈ X, dX(x, z) < ϵ =⇒

dY (f(x), f(x)) < δ.a

aThis is the definition of continuity at a point in analysis.

Proof.

(→) Assume f is continuous according to the ϵ− δ definition. Let U be any open set in Y containing
the point y, and let x be an element in f−1(U) such that y = f(x). We must prove that f−1(U)
is also open. Since open sets contain neighborhoods (e.g. open balls) of all of its points, we can
claim that, since U is open by assumption, there exists an open ball By around y with radius ϵ > 0.
This guarantees the existence of a point z ∈ U such that ρ(y, z) < ϵ for any ϵ > 0 that we choose.
Since f is continuous, for every ϵ > 0 that we chose previously, there exists a δ > 0 such that
d(x,w) =⇒ ρ(f(x), f(w)) < ϵ. Since ρ(f(x), f(w)) < ϵ, we can conclude that f(w) ∈ By ⊂ U
when d(x,w) < δ. Therefore, d(x,w) < δ =⇒ w ∈ f−1(U). But this is equivalent to saying that
if w ∈ B(x, δ), then w ∈ f−1(U), which means that every single point x ∈ f−1(U) contains an open
ball neighborhood fully contained in f−1(U). So, by definition, f−1(U) is open.
(←) Assume f−1(U) is open when U is an open set in Y , i.e. f is continuous under the topological
definition. Let us define the open ball

B(f(x), ϵ) ≡ {y ∈ Y | ρ(f(x), y) < ϵ} ∈ τY

By our assumption, f−1
(
B(f(x), ϵ)

)
is an open set in τX , and clearly, x ∈ f−1

(
B(f(x), ϵ)

)
since f−1

maps the point f(x) ∈ B(f(x), ϵ) to x ∈ f−1
(
B(f(x), ϵ)

)
. But since f−1

(
B(f(x), ϵ)

)
is open, we

can construct an open ball around x with radius δ fully contained within the open set. Moreover, by
selecting a point p ∈ B(f(x), δ) ⊂ f−1

(
B(f(x), ϵ)

)
, we can guarantee that f(p) ∈ B(f(x), ϵ). This is

precisely the ϵ − δ definition of continuity. That is, given an ϵ > 0 to be the radius of an open ball
B(f(x), ϵ) in Y , we can always choose a δ > 0 to be the radius of the open ball B(x, δ) in X that is
fully contained within the preimage of B(f(x), ϵ). In mathematical notation,

p ∈ B(x, δ) ⊂ f−1
(
B(f(x), ϵ)

)
=⇒ f(p) ∈ f

(
B(x, δ)

)
⊂ B(f(x), ϵ)

or equivalently in terms of metrics,

d(x, p) < δ =⇒ ρ(f(x), f(p)) < ϵ

21/ 143



Point Set Topology Muchang Bahng Fall 2024

3.2 Sequences

Definition 3.2 (Sequence)

A sequence (xα) of points in topological space (X,T ) is said to converge to the point x ∈ X if for
every neighborhood U of x there exists a N ∈ N such that

xn ∈ U for all n ≥ N (47)

3.3 Homeomorphisms

Definition 3.3 (Homeomorphism)

A bijective, bicontinuous function f : X −→ Y between two topological spaces is called a homeo-
morphism between X and Y . If there exists at least one homeomorphism between X and Y , then
X is said to be homeomorphic to Y , denoted X ∼= Y .

Figure 5: The visual below shows a homeomorphism between the plane X and the surface Y .

Theorem 3.4 (Sufficient Properties of Homeomorphism)

Suppose f : X → Y is a bijection. TFAE.
1. U ⊂ Y is open iff f−1(U) is open.
2. U ⊂ X is open iff f(U) is open.
3. f is a homeomorphism.

Note that we may have functions that are bijective and continuous, but not bicontinuous. In order to
construct such examples one of the easiest things we can do is just endow the codomain with the discrete
topology, which guarantees continuity.

Example 3.1 (Bijective and Continuous but not Homeomorphism)

Z and Q are countable sets, so there is a bijection between them. If we give each of them the metric
topology, Z ends up having the discrete topology (take the 0.5-ball around each integer), whereas
for Q, we will see later that by the density of the rationals there are an infinite number of rationals
in (q − r, q + r) for q ∈ Q. Note that this bijection f : Z → Q is continuous (since Z has discrete
topology) but not bicontinuous.
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Example 3.2 (Comparability and Homeomorphic Spaces)

Consider the set X = {a, b} with the two topologies T 3 = {∅, {a}, X} and T 4 = {∅, {b}, X}. They
are not comparable but they seem “similar” in a way in that if we swap all the a’s and b’s in T 3, then
we get T 4. We can make this rigorous by defining f : (X,T 3) → (X,T 4) with f(a) = b, f(b) = a,
and showing that it is a homeomorphism.

In fact, a homeomorphism f is an equivalence relation between two topological spaces. This partitions the set
of all topological spaces into homeomorphism classes. Analogous to how isomorphisms preserve algebraic
structures, homeomorphisms preserve topological structure between topological spaces.

Example 3.3 (Homeomorphism Classes of 2D Manifolds)

There is an infinite family of 2-dimensional manifolds, call them M and N , and each set in each
family is not homeomorphic to another.

1. M0 = S2 (sphere). M1 = T 2 (torus). M2 is a donut with two holes. M3 has three holes, and so
on.

2. N1 is the Mobius strip. N2 is the Klein bottle.

Additionally, not only does a homeomorphism give a bijective correspondence between points in X and Y ,
but it also determines a bijection between the set of all open sets in X and Y (that is, a bijection
between their topologies)! This bijection then allows two spaces that are homeormophic to have the same
topological properties.

Theorem 3.5 (Preservation of Topological Properties)

A homeomorphism f between two topological spaces (X, τx) and (Y, τY ) preserves all topological
properties (e.g. separability, countability, compactness, (path) connectedness) of X onto Y and Y
onto X.

Definition 3.4 (Embedding)

Suppose that f : X −→ Y an injective continuous map with X,Y topological spaces. Let Z ≡ Im f .
Then, the function

f ′ : X −→ Z ⊂ Y (48)

obtained by restricting the codomain of f is bijective. If f ′ happens to be a homeomorphism of X
with Z, then we say that the map

f : X −→ Y (49)

is a topological embedding, or more simply an embedding, of X in Y .

A homeomorphism can be useful, but we can work a lot more flexibly with it by knowing that the restriction
of a homeomorphism is a homeomorphism.

Theorem 3.6 (Restriction of Homeomorphism is Homeomorphism)

If f : X → Y is a homeomorphism, then for any x ∈ X, the restriction

f |X\{x} : X \ {x} → Y \ {f(x)} (50)

is also a homeomorphism.
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3.4 Hausdorff Axiom (To be Moved)

Lemma 3.3 ()

For any metric space, the metric topology is Hausdorff.

Lemma 3.4 ()

X Hausdorff implies any sequences converges to at most one point.

Lemma 3.5 ()

X Hausdorff implies any finite subset is closed.

Example 3.4 ()

X is an infinite set, then finite complement topology is not Hausdorff.

Definition 3.5 ()

One point sets are closed is the T1 axiom. Equivalently, for any pair x1 ̸= x2, there is an open set U
s.t. x1 ∈ U and x2 ̸∈ U .

Example 3.5 (Line with Two Origins)

X = R \ {0} ∪ {01, 02} with basis given by intervals (a, b) for b < 0 or a > 0, and (a, 0)∪ {0i} ∪ (0, b)
for a < 0 < b.
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4 Induced Topologies

4.1 Initial and Final Topologies
We have seen some examples of how to create topologies. They can be created without any assumptions on
the set, such as the discrete, indiscrete, and the cofinite topologies. More often, we want to consider how
a certain structure like the order or a metric induces a topology. Now, we will consider how functions can
induce a topology. The uniqueness of such induced topologies is called the universal property.

Definition 4.1 (Initial Topology)

Given a space X and a family of topological spaces {Yα}α∈A

fi : X → (Yα,T α) (51)

the initial topology on X is the coarsest topology T on X s.t. that each

fi(X,T )→ (Yα,T α) (52)

is continuous.

Definition 4.2 (Final Topology)

Given a space Y and a family of topological spaces {Xα}α∈A

f : (X,T α)→ Y (53)

the final topology on Y is the finest topology T on Y s.t. each

f : (X,T α)→ (Y,T ) (54)

is continuous.

Note that it makes sense to talk about the coarsest topology on the domain and the finest topology on the
codomain. If it were the other way around, i.e. the finest topology on the domain, then the initial topology
on X would be the discrete topology, making every function defined on X continuous. In the same logic,
the coarsest topology on Y would trivially be the trivial topology, making all Y -valued functions continuous.
With these current definitions, if T Y is too fine (e.g. if T Y = 2Y ), then the open sets of T Y would be too
fine and therefore would have a preimage that may not be open in X.

4.2 Subspace Topology
The reason we want to do this is because we want to think of Y as its own entity, independent of X.

Definition 4.3 (Subspace Topology)

Given topological space X and subspace Y ⊂ X, the subspace topology on Y is defined in the
equivalent ways.

1. It is the initial topology on the subspace Y with respect to the inclusion map ι : Y → X.
2. It is the topology consisting of X-open sets intersection Y .

T Y = {(U ∩ Y ) ⊂ Y | U ∈ T X} (55)

We can also say that A ⊂ Y is closed in Y iff it is the inersection of Y with a closed set of X.
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U ∈ TR2

ℓ ⊂ R2

V ∈ Tℓ

(a) The subspace topology of a line l in R2.

S ⊂ R3

U ∈ TR3

V ∈ TS

(b) The subspace topology of a surface L in R3.

Figure 6: Visual of subspace topology.

Proof.

We prove the properties.
1. Trivial. We see that ∅ = ∅ ∩ Y and Y = X ∩ Y .
2. Stability under Union. Suppose {Vα}α∈A are setes that are open in Y . Then for each α there

exists an open set Uα ⊂ X that is open in X. Therefore,⋃
α∈A

Vα =
⋃
α∈A

(Uα ∩ Y ) (56)

= Y ∩
( ⋃

α∈A

Uα

)
(57)

where ∪αUα is open in X, and therefore we shown that there exists such an open set.
3. Stability under Finite Intersection. Suppose {Vi}ni=1 are open in Y . Then we can do the same

thing.

Furthermore, we can immediately retrieve the basis of the subspace topology.

Theorem 4.1 (Induced Basis of Subspace Topologies)

If B is a basis for the topology of X, then

BY := {B ∩ Y | B ∈ B} (58)

is a basis for the subspace topology of Y .

Proof.

Now if the subspace Y were to be an open or closed subset of X, the properties of openness and closedness
carry over nicely.

Lemma 4.1 (Open/Closed Subspaces)

Let X be a topological space, Y ⊂ X have the subspace topology, and S ⊂ Y .
1. If Y is open in X, then S open in Y iff S open in X.
2. If Y is closed in X, then S closed in Y iff S closed in X.
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Since the subspace is so natural to consider, we will by default imply that if X is a topological space and
Z ⊂ X, Z is endowed the subspace topology.

Lemma 4.2 (Restrictions and Injections are Continuous)

The results immediately follow:
1. Given f : X → Y and Z ⊂ X, f |Z : Z → Y is continuous.
2. Given X and Z ⊂ X, the canonical injection ι : Z → X is continuous.

Proof.

Listed.
1. Let us take an open set U in Y . Then it is of the form V ∩ Y for some V open in X. Therefore

taking the preimage gives

f |−1
Z (U) = f−1(U) = f−1(V ∩ Y ) = f−1(V ) ∩ f−1(Y ) = f−1(V ) ∩ Z (59)

where f−1(V ) is open by continuity of f , and so the intersection is open.
2. This is true by definition.

Given these results, one may wonder whether—just like how we restricted a continuous function to a smaller
continuous function—we can “extend” a function to a larger function. However, this is not always true.

Example 4.1 (Combining Continuous Functions May not be Continuous)

Let us take R and divide it into Q and (R \Q) \ {0}. Then let us define

f : Q→ Rf(x) = 0 (60)
g : (R \Q) \ {0} → Rg(x) = x (61)

Then f and g are trivially continuous, but taking the function

h(x) :=

{
f(x) = 0 if x ∈ Q
g(x) = x if x ̸∈ Q

(62)

which is not continuous.a

aInspired from here.

But not all hope is lost. It does turn out that under certain conditions, we can in fact construct such
continuous functions.

Lemma 4.3 (Pasting Lemma, Gluing Lemma)

Let X = A ∪B, where A,B are closed in X. Let f : A −→ Y and g : B −→ Y be continuous. If

f(x) = g(x) for all x ∈ A ∩B (63)

Then f and g can be combined to form a continuous function h : X −→ Y , defined

h(x) ≡


f(x) x ∈ A \B
f(x) or g(x) x ∈ A ∩B

g(x) x ∈ B \A
(64)
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A

B

A ∩B

h

Y

f(A)

g(B)

f

g

f or g

Figure 7: Visual of the pasting lemma.

Consider any set U ⊂ Y . Note that if U is an open set in X that happens to be contained in Y , then we
can set U = U ∩ Y , so U is open in Y . However, we have seen that being open in Y does not necessarily
imply that it is open in X.

Example 4.2 (Non-Open Sets may be Open in Subspace)

Let X = R with the Euclidean topology and let Y = [0, 1].
1. [0, 1] is open in Y but not open in X.
2. Intervals of the form (a, 1] and [0, b) are open in Y but not open (nor closed) in X.

Example 4.3 (Singleton Sets in Subspace Topologies)

Consider X = R with the lower limit topology with Y = [0, 1]. The following
1. [1/2, 1] = Y ∩ [1/2, 2), and
2. {1} = Y ∩ [1, 2)

are open in the subspace topology. It turns out that {1} is the only singleton set open in Y .

Let’s go through a few examples.

Example 4.4 (Closed Unit Interval in R)

The basis for the subspace topology of [0, 1] ⊂ R with the Euclidean topology consists of the intervals
1. (a, b) where 0 ≤ a < b ≤ 1.
2. [0, b) where 0 < b ≤ 1.
3. (a, 1] where 0 ≤ a < 1.

Example 4.5 (Unit Sphere in Rn)

Let Sn ⊂ Rn+1 be the unit n-sphere defined Sn := {x ∈ Rn+1 | ||x||2 = 1}. When thinking about
Sn as a space itself, we use the subspace topology coming from the standard topology of Rn.
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Example 4.6 (S1 ⊂ R2)

Let’s focus on n = 1. For a < b, let

Aa,b = {(cos t, sin t) | a < t < b} (65)

Then, we can see that
1. if b− a > 2π, then Aa,b = S1.
2. If b− a ≤ 2π, then Aa,b is an “open arc” from (cos a, sin a) to (cos b, sin b).

Given that we have an equivalence class defined

Aa,b ∼ Aa+2πk,b+2πk for all k ∈ Z (66)

We claim that {Aa,b} is a basis for the subspace topology of S1. We can see that the open arc covering
the top right quadrant in R2 is

S1 ∩ (0, 1)2 = S1 ∩B∞
(
(
1

2
,
1

2
),
1

2

)
(67)

Now let’s focus more on metric spaces. Note that if we want to construct topologies of subspaces of metric
spaces, there are two ways to do it. It would be quite bad if these resulted in different topologies, but
fortunately we have the following theorem.

Theorem 4.2 (Topologies on Subspaces of Metric Spaces Coincide)

Let (X, dX) be a metric space, with Y ⊂ X. There are 2 ways we can define a topology on Y .
1. Take the metric topology T X on X, and then take the subspace topology on Y .
2. Induce a metric dY = dX|Y on Y which is a restriction of dX to Y , and then take the metric

topology of it.
We claim that these two constructions give the same topology, as shown in the commutative diagram.

dX dY

T X T Y

Figure 8

Proof.

The basis for the subspace topology on Y is

B1 = {BdX
(x, r) ∩ Y | x ∈ X, r > 0} (68)

and the basis for the (induced) metric topology on Y is

B2 = {BdY
(y, r) ∩ Y | y ∈ Y, r > 0} = {BdX

(y, r) ∩ Y | y ∈ Y, r > 0} (69)

It is immediate that B2 ⊂ B1 since it goes over all x ∈ X rather than y ∈ Y . To see why B1 ⊂ B2,
TBD.

Theorem 4.3 (Closures in Subspace Topologies)

Let A ⊂ Y ⊂ X. Let Ā denote the closure of A in X. Then, the closure of A in Y equals Ā ∩ Y .
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4.3 Box Topology
There are multiple ways to define the box and product topologies, but their construction with basis elements
is most simple.

Definition 4.4 (Box Topology)

Given a family of topological spaces {(Xα,T α)}α∈A, the box topology on the space
∏

α∈A Xα is
the topology generated by the basis

B =

{ ∏
α∈A

Uα | Uα ∈ T α

}
(70)

R

R

a b

c

d

(

(

( )

Figure 9: We can visualize the elements of the box topology with the product space R2 = R×R, where each
R has an open ball topology. From the visual below, we can see why this is called the "box" topology.

Proof.

It is easy to prove that the box topology indeed satisfies the 3 properties of topologies in general.

4.4 Product Topology
While the box topology may seem quite "intuitive" for the first learner, the box topology however, has serious
limitations when extending to infinite Cartesian products of spaces. To motivate the product topology, let’s
try to “reverse engineer” a topology on X × Y such that the projection mappings π1 : X × Y → X is always
continuous. We want

1. U × Y to be open for U ⊂ X open.

2. X × V to be open for V ⊂ Y open.

This implies that (U × Y ) ∩ (X × V ) = U × V should be open. This is how we will define the product
topology. The main difference between the construction of open sets in the box topology vs the product
topology is that the box topology merely describes open sets as direct products of open sets from each
coordinate space while the construction of the product topology is completely dependent on the projection
mappings πβ :

∏
α∈I Xα → Xβ to be continuous (and nothing more) so that (by definition) the preimages

of open sets in Xβ under πβ are open sets in
∏

Xα. Therefore, the construction of the continuous πβ ’s
canonically constructs a basis of open sets in

∏
Xα.
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Definition 4.5 (Product Topology)

Given a family of topological spaces {(Xα,T α)}α∈A, the product topology on the space
∏

α∈A Xα

is defined in the following equivalent ways.
1. It is the initial topology on the product space wrt the family of projections pα :

∏
α∈A Xα → Xα.

2. It is the topology generated by the basis of elements∏
α

Uα (71)

where Uα is a proper open subset for at most finitely many α’s, and Uα = Xα for all other α.

e f

h

g

Figure 10: Visually, we can interpret each S (Uβ) as a "strip" in the total product space. For example in R2,
there are two "strips" (e, f) × R and R × (g, h) that intersect. Note that each strip is the preimage of the
projection mapping.

We can deduce some conclusions comparing these topologies. First, the product and box topologies are
precisely the same if we work in finite Cartesian products of spaces, since any element of the box topology
(left hand side) can be expressed as a finite intersection of some open sets (in the right hand side). That is,
if card I <∞, then ∏

α∈I

Ui =
⋂
α∈I

{∏
γ∈I

Wγ |Wγ = Uγ if γ = α, Wγ = Xγ if γ ̸= α
}

(72)

Secondly, we can see that the box topology is finer than the product topology (strictly finer if working in
infinite product spaces).

Example 4.7 ()

The set (0, 1)N ⊂ RN is clearly open in the box topology, but it is considered "too tight" to be in the
product topology. However,

(0, 1)× R× R× . . . (73)

is open in the product topology since only one (a finite amount) of the factors is not the whole space.

The following theorem reveals why the product topology is superior than the box topology in product spaces.

Theorem 4.4 (Continuity of Functions Mapped to Product Topology)

Given the function
f : A→

∏
α∈I

Xα, f(a) ≡
(
fα(a)

)
α∈I

(74)
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with its component functions fα : A→ Xα. Let
∏

Xα have the product topology. Then the function
f is continuous if and only if each function fα is continuous.

Proof.

We prove both directions. Let πβ be the projection of this product onto the βth component space.
By construction πβ is continuous =⇒ π−1

β (Uβ) is a basis element of the product topology of
∏

Xα.
1. (→) f is continuous, so fβ ≡ πβ ◦ f , as the composition of continuous functions, is also contin-

uous.
2. (←) Assume that each fβ is continuous. Let there be an open set Uβ ⊂ Xβ . Then, the canonical

open set π−1
β in the product space

∏
Xα is also open. Now, the preimage of π−1

β (Uβ) under f
is

f−1
(
π−1
β (Uβ)

)
= (f−1 ◦ π−1

β )(Uβ)

= (πβ ◦ f)−1(Uβ)

= f−1
β (Uβ)

Since fβ is already assumed to be continuous, f−1
β (Uβ) is open in A.

This theorem also works for the box topology only if we are working with finite product spaces. But in
general, this theorem fails for the box topology. Consider the following example.

Example 4.8 ()

Let Rω be the countably infinite product of R’s. Let us define the function

f : R→ Rω (75)

with coordinate function defined fn(t) ≡ t for all n ∈ N. Clearly, each fn is continuous. Given the
box topology, we consider one basis element of Rω

B =

∞∏
i=1

(−1

i
,
1

i
) (76)

Assume that f is continuous, that is f−1(B) is open in R. Then, it would contain some finite interval
(−δ, δ) about 0, meaning that f

(
(−δ, δ)

)
⊂ B. This implies that for each n ∈ N,

fn
(
(−δ, δ)

)
= (−δ, δ) ⊂

(
− 1

n
,
1

n

)
(77)

which contradicts the fact that B is open, since the interval (−1/n, 1/n) converges onto a point 0.

However, there is no useful criterion for the continuity of a mapping f : X × Y −→ A even if we have
the product topology on X × Y . One might conjecture that this f is continuous if it is continuous in each
variable separately, but this is in fact not true.

Theorem 4.5 (Topologies on Products of Metric Spaces Coincide)

Given a metric space
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Corollary 4.1 ()

The Euclidean topology on Rn is equivalent to the product topology of the Euclidean topologies on
R.

Theorem 4.6 (Subspace of Products and Products of Subspaces are Equivalent)

If A ⊂ X and B ⊂ Y , then the following topologies are equivalent.
1. The subspace topology on the product topology of X × Y .
2. The product topology on the subspace topologies of A,B.

Example 4.9 (Sorgenfrey Plane)

The Cartesian product of two real lines with the lower limit topology is called the Sorgenfrey plane.

Rℓ × Rℓ (78)

Lemma 4.4 ()

The addition, subtraction, and multiplication operations are continuous functions from R×R −→ R,
and the quotient operation is a continuous function from R× (R \ {0}) −→ R.

Proof.

Standard ϵ− δ proof.

Now that we have defined what it means for binary operations to be continuous, we can talk about topological
algebra, which is the study of algebraic structures such that their algebraic operations and inverses are
continuous. One important such concept is a topological group, which will be mentioned later.

4.5 Quotient Topologies
We have established natural topologies on sets that are constructed from other sets, namely by subsets and
Cartesian products. Another way to construct a set is by taking an equivalence relation, which partitions
the set into its equivalence classes. The method in which we construct such a topology on this quotient
space, called the quotient topology, is slightly less straightforward.

4.5.1 Quotient Maps

Definition 4.6 (Quotient Map)

A function p : X → Y is said to be a quotient map if it is surjective and

U is open in Y ⇐⇒ p−1(U) is open in X (79)

Note that we could have also replaced open with closed sets and the definitions are equivalent.

Definition 4.7 (Saturation)

A subset S ⊂ X is saturated with respect to the surjective map p : X → Y if for every p−1(A)
(where A ⊂ Y ) that intersects S, p−1(A) is completely contained within S. That is,

p−1
(
p(S)

)
= S (80)
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X
Y

C1

C2

p(C1) = p(C2)

p

p

Figure 11: We can see that C1 and C2 alone are not saturated, but C1 ∪C2 is saturated. Visually, for a given
set C ⊂ X to be saturated, there cannot be any points q ̸∈ C such that q ∈ p(C).

We now introduce an alternative, equivalent definition of quotient maps.

Theorem 4.7 (Quotient Maps w.r.t. Mapping Saturated Sets)

p : X → Y is a quotient map if and only if p is continuous and p maps saturated open sets of X to
open sets of Y (or saturated closed sets of X to closed sets of Y ).

The first property is that quotient maps behave nicely under compositions.

Theorem 4.8 (Composition of Quotient Maps)

The composition of two quotient maps is a quotient map.

Proof.

We immediately know that the composition of surjective maps are surjective and that of continuous
maps are continuous.

However, they do not behave nicely under subspace or products. If p : X → Y is a quotient map and A is
a subspace of X, then the map p′ : A → p(A) obtained by restricting both the domain and codomain of P
need not be a quotient map. The product of two quotient maps is not necessarily a quotient map. That is,
given p : A→ B and q : C → D are quotient maps, the map

p× q : A× C → B ×D, (p× q)(a× c) ≡ p(a)× q(c) (81)

is not necessarily a quotient map.

Example 4.10 (Restriction of Quotient Maps are Not Quotient Maps)

Example 4.11 (Products of Quotient Maps are Not Quotient Maps)

Additionally, quotient maps are clearly not homeomorphisms, so topological properties are not preserved.

Example 4.12 ()

However, there is just one extra condition on a quotient map that will make it a homeomorphism.
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Lemma 4.5 (Bijective Quotient Maps)

A quotient map that is injective (and hence bijective) is a homeomorphism.

Definition 4.8 (Retraction)

Given topological space X and A ⊂ X, a retraction f : X → A is a continuous map such that
f(a) = a for all a ∈ A.

So, the restriction of retractions onto their codomain is the identity map.

Lemma 4.6 ()

Let p : X → Y be a continuous map. If there is a continuous map f : Y → X s.t. p ◦ f is the identity
map, then p is a quotient map.

Proof.

Let U ⊂ Y and let p−1(U) be open. Then,

p−1(U) open =⇒ f−1(p−1(U)) ⊂ Y open (82)

=⇒ (p ◦ f)−1(U) = U ⊂ Y open (83)

and since p is continuous, p is a quotient map. Since p ◦ f is the identity, it must follow that p is
surjective.

Theorem 4.9 (Retractions are Quotient Maps)

A retraction r is a quotient map.

Proof.

We know that the canonical injection A ⊂ X is continuous, and r ◦ ι = idA. Therefore, by the lemma,
r must be a quotient map.

4.5.2 Open and Closed Maps

Open and closed functions map open/closed sets to open/closed sets, unlike continuous functions which take
the preimage. However, they do are not natural and most maps are not open nor closed, so this is a pretty
special condition.

Definition 4.9 (Open, Closed Maps)

A map f : X → Y is said to be
1. open if it maps open sets of X to open sets of Y .
2. closed if it maps open sets of X to closed sets of Y .

Note that open and closed maps are completely independent. A map may be open, closed, neither,
or both.
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Example 4.13 (Open but Not Closed)

The projection π1 : X × Y → X is an open map but but closed. Consider π1 : R2 → R with
S = {(x, y) ∈ R2 | xy = 1}. Then π1(S) = R \ {0}, which is not closed.a

aIn open maps, the typical behavior is that points are “copied,” i.e. for projections, the preimage of π−1
1 (x) = x×Y ,

where all y ∈ Y are copied.

Example 4.14 (Closed but Not Open)

f : R→ R with f(x) = x2 is closed but not open since f(R) = [0,+∞) which is not open.

Note that an open map or a closed map (with continuous and surjective) are trivially quotient maps. Since
given a U ⊂ Y with f−1(U) open, then by definition U = f(f−1(U)) is open by definition.

Theorem 4.10 (Open/Closed Maps are Stronger than Quotient Maps)

If p : X → Y is a surjective, continuous map that is either open or closed (that is, maps open sets to
open sets or closed sets to closed sets), then p is a quotient map.a

aNote however, that the converse is not true; there exists quotient maps that are neither open nor closed.

Example 4.15 (Quotient Maps that are Neither Open Nor Closed)

4.5.3 Quotient Topology

Now that we have defined the quotient map, we are ready to define the quotient topology.

Definition 4.10 (Quotient Topology)

Let p : (X,T X) → Y be a surjective map.a Then, the quotient topology induced by p is defined
in the following equivalent ways.

1. It is the final topology on the quotient set X/∼ wrt the projection map p.
2. It is the topology of all subsets U of Y s.t. p−1 is open in X.

U open in X/∼ ⇐⇒ p−1(U) saturated and open in X (84)

3. It is the unique topology T Y relative to which p is a quotient map.b
The quotient set X/∼ with its quotient topology is called the quotient space.

aA natural surjective map that we can construct is by taking an equivalence relation ∼ on X, setting Y = X/∼,
and taking p : x 7→ [x]. Every surjective map can be thought of as a map induced by an equivalence relation, since we
can set x ∼ x′ iff f(x) = f(x′), so these are equivalent.

bWe claim that this topology exists and is unique.

Proof.

The topology T Y on Y is defined by letting it consist of all subsets U of Y such that p−1(U) is open
in X. This is indeed a topology since

1. p−1(∅) = ∅ and p−1(Y ) = X

2. p−1
(⋃

α∈J Uα

)
=
⋃

α∈J p−1(Uα)

3. p−1
(⋂n

i=1 Ui

)
=
⋂n

i=1 p
−1(Ui)

36/ 143



Point Set Topology Muchang Bahng Fall 2024

The intuition is the following. The topology on X is fixed, and we must somehow find some topology on
Y that makes p a quotient map. If we make T Y too coarse, satisfiying continuity of p is easy but it may
not necessarily mean that p−1(U) open in X implies U open in Y . However, if we make T Y too fine,
then continuity may not be satisifed. The theorem states that there is a middle point—in fact exactly one
topology—in which cases both directions are satisfied.

Example 4.16 ()

Let p : (R,T R)→ R/2πR. Then, the final topology of R/2πR would be simply defined

T R/2πR ≡ {U ⊂ R/2πR | U = p(O), O ∈ T R} (85)

That is, the quotient topology is merely the set of all images of open sets in R under f . However, if
R/2πR has the discrete topology 2X , then a single equivalence class, say [0], will get mapped to the
collection of points {2πk | k ∈ Z}, which is clearly not open in R. Note that the final topology (or
the quotient topology) is endowed onto the codomain in order to make f continuous (or a quotient
mapping).

Example 4.17 ()

Let X ≡ [0, 1] ∩ [2, 3] ⊂ R and Y y ≡ [0, 2] ⊂ R. Then, we define p : X → Y as

p(x) ≡

{
x x ∈ [0, 1]

x− 1 x ∈ [2, 3]
(86)

p is continuous (under subspace topology of X ⊂ R), surjective, and closed, meaning that it is a
quotient map. However, it is not open, since the image of the open set [0, 1] of X is [0, 1], which is
not open in Y .

Example 4.18 (Finite Sets)

Let p : R→ {a, b, c} be defined as

p(x) ≡


a x > 0

b x < 0

c x = 0

(87)

Then, the quotient topology of {a, b, c} consists of

∅, {a}, {b}, {a, b}, {a, b, c} (88)

Okay, so we’ve learned yet another way to construct topologies. However, things become interesting when
we start to compare quotient spaces to other topological spaces that we already know of. The following
series of theorems will help in our analysis.

Theorem 4.11 (Induced Maps from Quotient Space)

Let p : X → Y be a quotient map (e.g. Y = X/∼ for some ER ∼). Let f : X → Z be a function
such that if p(x) = p(x′), then f(x) = f(x′), i.e. x ∼ x′ ⇐⇒ f(x) = f(x′). Then,

1. f induces the map f̄ satisfying f = f̄ ◦ p.
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X Z

X/∼

p

f

f̄

Figure 12: The theorem states that the diagram commutes.

2. f continuous iff f̄ continuous.
3. f quotient map iff f̄ quotient map.

Proof.

Listed.
1.
2. Suppose f is continuous. Let U ⊂ Z be open. Then we need to show that f̄−1(U) is open.

But we can see that p−1(f̄−1(U)) = f−1(U) is open since f is continuious. Therefore f̄−1(U)
is open since p is a QM.If f̄ is continuous, then f = f̄ ◦ p is continuous as the composition of
continuous maps.

3. Suppose f is a quotient map with U ⊂ Z s.t. f̄−1(U) is open. We need to show that U is open.
Then p−1(f̄−1(U)) is open since p is continuous =⇒ f−1(U) is open. But f is a quotient map,
so U is open.

Corollary 4.2 ()

If f is a quotient map, then f̄ is a homeomorphism.

Proof.

Show that f̄ is injective, and so its bijective. Since it’s a quotient map, it’s a homeomorphism.

Therefore we can just make up any equivalence relation (surjective map) on X which gives us a quotient
space X/∼. To figure out whether this quotient space is homeomorphic to a topological space that we
already know, we first (cleverly) choose a candidate space Z and try to write a quotient map f : X → Z
that “agrees” with the equivalence relation, i.e. x ∼ x′ ⇐⇒ f(x) = f(x′). We don’t need to worry too
much about surjectivity, since if we have continuity and the “reverse continuity” conditions satisfied then we
can just restrict Z to the image of f to make it surjective anyways. Once we have found such a quotient
map f , using the theorem above we can conclude that X/∼ is homeomorphic to Z, and we are done! We
show various examples in the next section.

We end this section with a warning. It was the case that a lot of the properties get passed down to subspaces,
but this is not the case for quotient maps.

Example 4.19 (Quotient Topology Reduced to Trivial Topology)

Let X = R with x ∼ y ⇐⇒ x− y ∈ Q. We claim that X/∼ is uncountable. If we wish to find open
sets in X/∼, we can do this by finding saturated open sets in X. Let U ⊂ R be open and saturated.
Since it is open, by the density of Q in R, U must contain a rational number =⇒ Q ⊂ U , and so
U = R. Therefore the only saturated open sets are ∅,R, meaning that X/∼ has the trivial topology.

This has a lot of consequences, and even very mild topological properties can be broken in quotient spaces.
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Example 4.20 (Quotient of Hausdorff Space Need not be Hausdorff)

Given X = R2 \ {0} with the ER defined (x, y) ∼ (x′, y′) iff x = x′, and if x = x′ = 0, then
sign(y) = sign(y′). This is the line with 2 origins with the quotient map

f(x, y) =


x if x ̸= 0

a if x = 0, y > 0

b if x = 0, y < 0

(89)

4.5.4 Quotient Spaces

Example 4.21 (1-Sphere)

Let X = [0, 1] with ∼ defined only with 0 ∼ 1. Then our intuition may tell us that by “sticking” the
endpoints together, we can get a unit circle S1.

0 1

(a) Unit interval [0, 1]

(1, 0)

(b) Unit circle S1 in R2

Figure 13: Visual of the homeomorphism between [0, 1] and S1.

So can I come up with a function f : [0, 1]→ S1 s.t. f(0) = f(1)? Yes, we can define

f̄(x) = (cos 2πx, sin 2πx) (90)

which indeed satisfies f(0) = f(1) ⇐⇒ 0 ∼ 1.a Therefore, by the theorem above, X/∼ ∼= S1,
defined by the homeomorphism f̄(x) = (cos 2πx, sin 2πx).

aNote that we could just chosen R2 and restricted the image to S1 at the end as well.

Example 4.22 (Alternative Construction of 1-Sphere)

Let X = R with ∼ defined x ∼ y iff x − y ∈ Z. We call this R/Z. Our intution tells us that by
“folding” the real number line into overlapping unit intervals, we can get the unit circle. We will show
that

R
Z
∼= S1 (91)

Let us construct the set (R,T R) with paramater t. We define maps

p : R→ R/Z, p(t) ≡ t (mod 1)

q : [R]→ S1 ⊂ C, g(t) ≡ e2πit

We claim that p and q are both quotient mappings. Clearly, p is a quotient mapping. As for q, it it
easy to see that it is surjective (but not injective) and continuous (T S1 has the basis of open intervals
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on S1). It is also easy to notice that given an open interval U ⊂ S1, q−1(U) will be the union of open
intervals equally spaced in R. Additionally, given any open interval in R, it maps to an open interval
in S1 (note that S1 itself is also open). These three conditions imply that q is a quotient map. We
now define maps

q ◦ p−1 :R/Z→ S1 (92)

p ◦ q−1 :S1 → R/Z (93)

and claim that these maps are homeomorphisms. We can clearly see that the mapping from an open
set in R/Z to the union of spaced open intervals in R is an injection, and the mapping from this
union of open intervals to the union of open intervals in S1 is a surjection. The composition of these
two mappings clearly defines a bijection. Therefore, q ◦ p−1 is proven to be a bicontinuous bijective
mapping between open sets U ⊂ R/Z and V ⊂ S1 =⇒ q ◦ p−1 is a homeomorphism.
This result clearly makes sense since

R
Z
∼=

[0, 1]

∼
(94)

where the relation ∼ maps every point x ∈ (0, 1) to its own equivalence class and the points 0, 1 to
one equivalence class {0}. Therefore, it is informally said that the quotient space of the real line is a
circle.
One may attempt to construct a simpler set by replacing S1 with the half-open interval [0, 1). How-
ever, while [0, 1) is bijective to R/Z,

R
Z
̸∼= [0, 1) (95)

That is, the two sets are not homeomorphic because the topologies of [0, 1) and R/Z are not compat-
ible. For instance, when we attempt to map the open set{

[x] ∈ R/Z | 0 ≤ x ≤ 1

4
∨ x >

1

2

}
∈ T R/Z (96)

to T [0,1), it does not return an open set.
Furthermore, this means that

S1 × S1 ∼=
[0, 1]2

∼′
∼=
(
R
Z

)2

(97)

where ∼′ is the quotient mapping defined in the previous construction of the torus.

Example 4.23 (Annulus)

Let X = [0, 1]2 with ∼ defined (0, y) ∼ (1, y) for all y ∈ [0, 1]. Then our intuition may tell us that
by sticking the top and bottom together, we can get an annulus, defined as the closed region A ⊂ R2

between the disk of radius 2 and disk of radius 1.

>>

(a) Unit square [0, 1]× [0, 1] (b) Annular region between circles of radius 1 and 2

Figure 14: Unit square and annular region
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We can indeed come up with the function f : [0, 1]2 → A defined

(x, y) 7→
(
(1 + y) cos 2πx, (1 + y) sin 2πx

)
∈ R2 (98)

which satisfies (0, y) ∼ (1, y) ⇐⇒ f(0, y) = f(1, y). Therefore by the theorem above X/∼ ∼= A.

Example 4.24 (Cylinder)

Let X = [0, 1]2 with ∼ defined (0, y) ∼ (1, y) for y ∈ [0, 1]. Then our intuition may tell us that
by sticking the top and bottom together, we can get the cylinder, defined as C ≡ {(x, y, z) ∈ R3 |
x2 + y2 = 1, z ∈ [0, 1]}.

>>

(a) Cylinder as an equivalence class on [0, 1]2. (b) Cylinder as an embedding in R3.

Figure 15: Two geometric figures: a square with labeled sides and a cylinder

We can indeed come up with the function f : [0, 1]2 → C, defined

(x, y) 7→
(
cos 2πx, sin 2πx, y

)
(99)

which satisfies (0, y) ∼ (1, y) ⇐⇒ f(0, y) = f(1, y). Therefore by the theorem above X/∼ ∼= C.

Example 4.25 (Torus)

Let X = [0, 1]2 with ∼ defined (0, y) ∼ (1, y) for y ∈ [0, 1] and (x, 0) ∼ (x, 1) for x ∈ [0, 1]. Then our
intuition may tell us that by first sticking the sides together, we get a cylinder, and by sticking the
top with the bottom, we get a torus, denoted T 2.

>

>

>
>

>
>

(a) Torus as an equivalence class on [0, 1]2. (b) Torus as an embedding in R3.

Figure 16: Representations of a torus.

We can indeed come up with a function f : [0, 1]2 → T 2 ⊂ R3.

(x, y) 7→
(
(2 + cos 2πx) cos 2πy, (2 + cos 2πx) sin 2πy, sin 2πx

)
(100)

which is consistent with the relation.
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Figure 17: The quotient topology of this quotient space consists of open sets of form.

We can check that this mapping is indeed a quotient map. First, it is clearly surjective. By realizing
that individual points on the edge of [0, 1]2 are open sets themselves (by the subspace topology), we
can prove that this map is indeed open and continuous. Therefore, we can see that the induced map
f̂ : [0, 1]2/∼ → T 2 is a homeomorphism.

Example 4.26 (Mobius Strip)

Let X = [0, 1]2 with ∼ defined (x, 0) ∼ (1 − x, 1) for x ∈ [0, 1]. Then our intuition may tell us that
by flipping over the square and sticking the sides together, we get a weird strip, called the Mobius
strip and denoted M1.

>

<

(a) Cylinder as an equivalence class on [0, 1]2. (b) Mobius strip has 1 side and is a non-orientable surface.

Figure 18: Two geometric figures: a square with labeled sides and a cylinder

We can indeed come up with a function f : [0, 1]2 →M1 ⊂ R3

(x, y) =

(
cos y

[
1 +

x

2
cos

y

2

]
, sin y

[
1 +

x

2
cos

y

2

]
,
x

2
sin

y

2

)
(101)

Example 4.27 (Klein Bottle)

Let X = [0, 1]2 with ∼ defined (0, y) ∼ (1, y) for y ∈ [0, 1] and (x, 0) ∼ (1 − x, 1) for x ∈ [0, 1]. We
cannot actually visualize this in R3, but we may try to construct the cylinder by sticking the left/right
sides together, and then trying to glue the top and bottom in opposite direction, which gives us a
Klein Bottle, denoted K2.
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<

>

>
>

>
>

(a) Klein bottle as an equivalence class on [0, 1]2. (b) Klein bottle cannot be visualized in R3. Credits here.

Figure 19: Representations of a torus. Note that we can write a continuous function from K2 to R3, but it
is not injective and therefore not a homeomorphism, which is why there is a self-intersection.

We just claim that there exists a function f : [0, 1]2 → K2 ⊂ R4.a

aHowever, an embedding in R3 is not possible. We will need algebraic topology to prove this.

Example 4.28 (2-Sphere)

Let X be the closed unit disk {(x, y) ∈ R2 | x2+y2 ≤ 1} ⊂ R2 with ∼ defined as x ∼ y ⇐⇒ x, y ∈ S1.
Then our intuition may tell us that by squishing the edges of the disk into a point, we can construct
a 2-sphere, denoted S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

(a) 2-sphere as an equivalence class on the unit disk which
is homeomorphic to the unit square. (b) 2-sphere as an embedding in R3.

Figure 20: Representation of a sphere.

We can indeed come up with a function f : [0, 1]2 → S2, defined

(x, y) 7→
(
sinx cos y, sinx sin y, cosx

)
(102)

Figure 21: The saturated open sets of X consist of open sets of one of the two forms.
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Example 4.29 (Weird Quotient Space)

Given (R,T R), let us define the relation ∼ determined by the quotient mapping

p(x) ≡

{
{x} x ̸∈ Z
Z x ∈ Z

(103)

In words, this quotient map maps every integer to the equivalence class [0] and maps every other
point to its own class.

[0] ... ... ... ... ... ...

Figure 22: It turns out that every interval [j, j + 1] ⊂ R, j ∈ Z will get mapped as a closed loop in R/ ∼
beginning and ending with [0], since j, j + 1 7→ [0]. So geometrically, R/ ∼ consists of an infinite number of
nonintersecting closed loops starting and ending with [0].

This wacky mapping is an example of a quotient mapping that does not preserve topological structure.
While it will not be proven here, it is known that (R,T R) is 1st and 2nd countable, but R/ ∼ under
this relation is not even 1st countable.

Great, so we’ve went over the construction of quotient topologies and have identified them with some familiar
spaces. It turns out that many of these are examples of topological manifolds.

Definition 4.11 (Polygonal Surface)

Take a closed polygon in R2 with an even number of sides. Then we can pair up the edges.

Theorem 4.12 ()

The quotient spaces defined form a polygonal surface is always a topological manifold.

>

>

>

>

>

>

>

>

(a) (b)

Figure 23: Note that in this case (and for some equivalence classes), all vertices of a polygon are equivalent
by transitivity.
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5 Metric Topologies
In R, note that every open ball is really just an interval. In fact, every open ball (x − r, x + r) can be
expressed with just two elements a, b ∈ R, as (a, b). Notice that this method of expressing an open set does
not even require any metric! Extending this to Rn would indicate that the topologies of Rn defined by the
endpoint of the open intervals would not necessarily induce any metric either. Notice that these induced
topologies is not the open ball topology, which must have an associated metric to it. Rather, this induced,
non-metric topology is the box topology! While the box topology and the open ball topology are really the
same topology, they are generated by inherently different bases.

Definition 5.1 (Bounded Set)

Let (X, d) be a metric space with subset A. A is bounded if there exists some number M such that

d(x, y) ≤M for all x, y ∈ A (104)

If A is bounded, the diameter of A is defined to be the number

diamA ≡ sup {d(x, y) | x, y ∈ A} (105)

Note that boundedness on a set is not a topological property since it depends on the particular metric d that
is used for X. For example, we can construct the following metric that makes every subset in X bounded.

Definition 5.2 (Standard Bounded Metric)

Let (X, d) be a metric space. We define a second metric d̃ on X such that

d̃(x, y) ≡ min {d(x, y), 1} (106)

d̃ is called the standard bounded metric corresponding to d.

If we construct open balls with this metric, it is easy to see that they consist of all open balls with radius
less than or equal to 1. That is, the topology T consists of all open balls

T ≡ {Br(x) | x ∈ X, r ≤ 1} (107)

It is also clear that the topology induced by d̃ is the same as the topology induced by d! The significance of
this construction of the standard bounded metric is that we can now work with a basis consisting of bounded
elements, which is much nicer than a basis of open balls that can have arbitrarily large radii.

We now introduce a metrization theorem on Rn.

Theorem 5.1 ()

The topologies on Rn induced by the Euclidean metric d and the square metric ρ are the same as the
product topology on Rn.

Proof.

Given x, y ∈ Rn, simple algebra shows that

ρ(x, y) ≤ d(x, y) ≤
√
nρ(x, y)

=⇒ ∀x, ϵ, Bd(x, ϵ) ⊂ Bρ(x, ϵ) and Bρ(x,
ϵ√
n
) ⊂ Bd(x, ϵ)
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But
{Bρ(x, ϵ) | x ∈ Rn, ϵ ∈ R} = Bρ(x,

ϵ√
n
) | x ∈ Rn, ϵ ∈ R} (108)

which means that the metric topology induced by d is the same as the metric topology induced by
ρ =⇒ the two topologies are the same. We know that the topology induced by ρ is the same as the
product topology since

n∏
i=1

(xi − r, xi + r) =

n⋃
k=1

Rk−1 × (xk − r, xk + r)× Rn−k (109)

With this theorem, we have proved that given a topological space Rn with the product topology, there
exists a metric (the Euclidean and square metric) that induces this product topology. We can attempt to
extrapolate these formulas to Rω by defining

d(x, y) ≡
( ∞∑

i=1

(xi − yi)
2

) 1
2

ρ(x, y) ≡ sup {|xi − yi|}

However, the metrics do not in general map to elements of R, since the sequence (xi − yi)i∈N could diverge.
Therefore, we can redefine the metric ρ to the following bounded one.

ρ̃(x, y) ≡ sup {d̃(xi, yi)} (110)

where d̃ is the standard bounded metric on R. Clearly,

0 ≤ ρ̃(x, y) ≤ 1 (111)

ρ̃ is indeed a metric on Rω, but unfortunately, it does not induce the product topology. We extend this
definition to arbitrary RJ .

Definition 5.3 (Uniform Metric)

Given an indexed set J with points x, y ∈ RJ , we define

ρ̃ ≡ sup {d̃(xα, yα) | α ∈ J} (112)

with d̃ the standard bounded metric on R. ρ̃ is called the uniform metric on RJ , which induces
the uniform topology.

The uniform topology on RJ is finer than the product topology, and they are different if J is infinite. Clearly,
0 ≤ p̃(x, y) ≤ 1, meaning that given the open ball

Br(x) ≡ {y ∈ RJ | p̃(y, x) < r} (113)

if r ≥ 1, then Br(x) = RJ and if r < 1, then Br(x) consists of the n-dimensional box with "radius" r, where
n = dimRJ .

The next theorem gives us a metric that induces the product topology on infinite dimensional Rω by slightly
modifying the uniform metric on R. However, with the box topology Rω is not metrizable.
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Theorem 5.2 ()

Let d̃(a, b) ≡ min {|a− b|, 1} be the standard bounded metric on R. If x, y ∈ Rω, we define

D(x, y) ≡ sup
{ d̃(xi, yi)

i

}
(114)

Then, D is a metric that induces the product topology on Rω.

It is easy to see that 0 ≤ D(x, y) ≤ 1. So, given the open ball

Br(x) ≡ {y ∈ Rω | D(x, y) < r} (115)

Br(x) = Rω if r > 1. When r ≤ 1,

Br(x) ≡ (y − r, y + r)× (y − 2r, y + 2r)× ... =

∞∏
k=1

(y − kr, y + kr) (116)

y
−2 2

1

−1

r

2r

R1

R2

Figure 24: Visually, we take a cross section of this box and look at the slice within R1 × R2, where the subscripts
represent the first and second terms of x.

We can extend the applications of the Bolzano Weierstrass Lemma from analysis to metric spaces in general
with the following lemma.

Lemma 5.1 (Sequence Lemma)

If X be a topological space with A ⊂ X. If there exists a sequence of points of A that converges to
x, then x ∈ Ā. The converse is true if X is metrizable.

Proof.

(→) Our hypothesis says that x is a limit point of A, which by definition means that x ∈ Ā.
(←) Assuming X is metrizable and x ∈ Ā, let d be a metric for the topology of X. Then, for every
n ∈ N, let us define a sequence of open neighborhoods of x to be(

B 1
n
(x)
)

(117)

Since x ∈ Ā, there exists a point

xn ∈ A ∩B 1
n
(x) for all n ∈ N (118)

This sequence (xn) that we have proved must exist converges to x.
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Theorem 5.3 ()

Let f : X −→ Y and let X be metrizable. f is continuous if and only if for every convergent sequence
(xn)→ x of X, the following sequence of Y converges to f(x). That is,(

f(xn)
)
−→ f(x) (119)

We introduce additional methods of constructing continuous functions.

Definition 5.4 (Uniform Convergence)

Let fn : X −→ Y be a sequence of functions from the set X to the metric space (Y, d). The sequence
(fn) is said to converge uniformly to the function f : X −→ Y if, given ϵ > 0, there exists a N ∈ N
such that

d
(
fn(x), f(x)

)
< ϵ (120)

for all n ≥ N and for all x ∈ X.

Theorem 5.4 (Uniform Limit Theorem)

Let fn : X −→ Y be a sequence of continuous functions from topological space X to a metric space
Y . If fn converges uniformly to f , then f is continuous.

Proof.

(→) Trivial.
(←) Let V be open in Y , and let x0 be a point in f−1(V ). It suffices to prove that for every
x0 ∈ f−1(V ), there exists a neighborhood U of x0 such that U ⊂ F−1(V ) or equivalently, F (U) ⊂ V .
Let y0 = f(x0). Since Y is a metric space with metric d, we know that there exists an ϵ-ball Bϵ(y0)
such that

Bϵ(y0) ⊂ V (121)

Then, using uniform convergence, we can choose N ∈ N such that for all n ≥ N and all x ∈ X,

d
(
fn(x), f(x)

)
<

ϵ

4
(122)

which also applies at the point x = x0.

d
(
fn(x0), f(x0)

)
<

ϵ

4
(123)

Using continuity of fn, choose a neighborhood U of x0 such that fn carries U into the open ϵ/2-ball
centered at fn(x0) (note that fn(x0) ̸= y0), meaning that if x ∈ U

d
(
fn(x), fn(x0)

)
<

ϵ

2
(124)

Adding the three inequalities and using the triangle inequality, we get the fact that if x ∈ U , then

d
(
f(x), f(x0)

)
< ϵ (125)

meaning that the f(U) ⊂ Bϵ(x0) ⊂ V .
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f(x0)

fN (x0)

fN (x)

f(x)

ϵ/4
ϵ/2

ϵ

Figure 25: Visually, the three inequalities represent the following open balls in V ⊂ Y .

Theorem 5.5 ()

In a metric space (X, d), a set is closed if the limit of every convergent subsequence in X lies in X.
That is, X contains all of its limit points.
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6 Connectedness
Now that we have seen many examples of topologies, and how one can construct them (e.g. with a metric,
subspace, product, quotient), we can begin to talk about some properties of these spaces. The first one is
connectedness, which is analogous to a topological space being irreducible (e.g. not able to be separated into
two smaller topological spaces). This is what we should keep in mind. Let’s first go and concretely define
what such a separation means.

Definition 6.1 (Separation)

Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty open subsets
of X whose union is X.

Definition 6.2 (Connected Space)

The space X is said to be connected if it satisfies the equivalent definitions
1. there does not exist a separation of X.
2. the only subsets of X that are clopen in X are the empty set and X itself.

and disconnected otherwise.

A

B

A

B

Figure 26: Two examples of spaces X = A⊔B that are not connected. In the right, A and B overlap in their
boundary but are not connected since they are open.

Proof.

If there exists a nontrivial clopen set U ⊊ X, then U⊔U c is a separation of X. If U⊔V is a separation,
then V = U c, and so U is clopen.

Example 6.1 (Discrete and Indiscrete Topology)

Any set |S| > 1 with the discrete topology is disconnected. All subsets in the indiscrete topology is
connected.

Example 6.2 (Disconnected Sets can Share Limit Points)

Let Y denote the subspace [−1, 0) ∪ (0, 1] of R. Each of the sets [−1, 0) and (0, 1] is nonempty and
open in Y (but not in R), so they form a separation of Y . Also, note that neither of these sets
contains a limit point of the other (even though they have a common limit point 0).
On the same note, the space Y = (0, 1)× (0, 1) ∪ (1, 2)× (0, 1) ⊂ R2 has the clear separation

(0, 1)× (0, 1) and (1, 2)× (0, 1) (126)
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Figure 27: We can visualize the separation of Y as such.

Note that the dashed line is not in Y . Even though the dashed line contains limit points of both the
left and right subset of Y , this does not matter.

Note that connectedness is a property of a topological space. Often we will talk about connected subsets
S ⊂ X, but this should be taken to mean that S is connected with respect to the subspace topology endowed
from X.

Now so far, we have treated connectedness as a property of a space, but we may extend this to talk about
whether points are connected. Essentially, we want to describe connectedness as an equivalence relation
between points. The most nontrivial property is transitivity, which will be established in the following
theorem.

Theorem 6.1 (Points are Connected in a Connected Space)

Let X be a topological space. Then X is connected iff ∀x, y ∈ X, ∃ a connected subspace A s.t.
x, y ∈ A.

Proof.

We prove bidirectionally.
1. (→). Take A = X.
2. (←). Let X = U ∪ V with U ∩ V = ∅, both nonempty and open. Take x ∈ U, y ∈ V . So ∃

connected A ⊂ X s.t. x, y ∈ A. But then either A ⊂ U or A ⊂ V from the lemma above.
Therefore, X is connected by contradiction.

Now, we can define connected components as an equivalence class.

Corollary 6.1 (Connectedness is an Equivalence Relation)

Let x ∼c y iff ∃ a connected subspace A ⊂ X s.t. x, y ∈ A.

Proof.

We prove the 3 properties.
1. Reflexive. x ∼c x clearly since A = {x}, which is connected.
2. Symmetric. Let x ∼c y. Then there exists connected subspace A containing both x, y, i.e.

containing y, x, and so y ∼c y.
3. Transitive. Let x ∼c y, y ∼c z. Then there exists connected subspaces A ∋ x, y and B ∋ y, z.

Since y ∈ A ∩B, A ∪B is also a connected subspace containing x, z, and so x ∼c z.

Definition 6.3 (Connected Components)

Given a topological space X, the equivalence classes under ∼c are called connected components
of X.

With the equivalence class interpretation, it will be much easier to prove many properties.
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Theorem 6.2 (Continuous Images of Connected Spaces are Connected)

If X is aconnected and f : X → Y is continuous, then f(X) is a connected subspace of Y .

Proof.

Let f : X −→ Y be a continuous map, and let X be connected. We wish to prove that the image set
Z = f(X) is also connected. Let us denote the restriction of f to Z as

f̃ : X −→ Z (127)

which is continuous and surjective. We prove by contradiction. Assume that Z = A ∪ B is a
separation of Z into 2 disjoint nonempty open sets. Then, f̃−1(A) and f̃−1(B) are disjoint open sets
whose union is X =⇒ f̃−1(A) ∪ f̃−1(B) form a separation of X. This contradicts the hypothesis
that X is connected =⇒ Z is connected.

This establishes the fact that homeomorphisms preserve connectedness, and so connectedness is a topological
property.

Corollary 6.2 (Connectedness is a Topological Property)

If X ∼= Y , then X connected iff Y connected.

Therefore, connectedness is a good way to prove that two spaces are not homeomorphic, whether it is by
assuming a homeomorphism itself or taking the restriction of a homeomorphism with one or more points
taken off the domain.

Example 6.3 (Intervals of Endpoints 0 and 1)

We claim that (0, 1), [0, 1), and [0, 1] are all pairwise not homeomorphic.

Corollary 6.3 (Quotient Spaces)

If X is connected, then any quotient space of X is connected.

Example 6.4 ()

For n ≥ 1, Sn and RPn is connected.

We have proved some pretty basic results, and just like how we have talked about building new topologies
from old ones, we can talk about how to build new connected spaces from old connected spaces. The three
that we will mention are the unions, limit point extensions, and products.

6.1 Subsets, Closures of Connected Spaces
Great, so to prove whether subspaces are connected, we can just think of the subspace topology. But warning:
note that since a separation of Y ⊂ X is a pair of nonempty open sets A,B ⊂ Y s.t. A ⊔ B = Y , since
by openness A = U ∩ Y,B = V ∩ Y for U, V open in X, it may be the case that the larger open sets U, V
actually have an intersection.
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U V

Y

Figure 28: We can see that there is a separation of A = U ∩ Y,B = V ∩ Y of Y , but U and V do intersect.

Therefore, we cannot rely on the topology on X to deduce connectivity on Y . However, there is another
simpler lemma that checks for connectivity of subspaces.

Lemma 6.1 (Closures of One Separated Component is Disjoint from Other)

If A,B is a separation of subspace Y ⊂ X, then A′ ∩ B = ∅ and A ∩ B′ = ∅. It immediately follows
that

A ∩B = A ∩B = ∅ (128)

Proof.

If A,B is a separation, then A ⊂ U,B ⊂ V for U, V open in X, and A∩ V = ∅, B ∩U = ∅. So points
on B ⊂ V are not limit points of A, and same with points on A.

Lemma 6.2 (Connected Subsets Must be Completely Contained in a Separated Compo-
nent)

If the sets C and D form a separation of X, and if Y is a connected subset of X, then Y lies entirely
within either C or D.

Proof.

We can see that A = C ∩ Y and B = D ∩ Y are open in the subspace topology of Y . So A ∩ B = ∅
and A ∩B = Y , so either Y = A or Y = B.

6.2 Union and Products of Connected Sets
Now we talk about constructing connected sets as the union of connected sets. It is pretty clear that the
union and intersection of connected sets are not connected.

Theorem 6.3 (Conditions for Union of Connected Spaces to be Connected)

Suppose Aα ⊂ X are connected subspaces of X s.t. ∀α, β, Aα ∩Aβ = ∅. Then ∪αAα is connected.
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A

B

C

Figure 29: We can see that the connected subspaces A,B,C ⊂ R2 intersect pairwise at a point. Therefore
their unions is connected.

Proof.

Let A = ∪αAα. Suppose A = C ⊔D with C,D both open in subspace topology, so C = A ∩ U,D =
A ∩ V for X-open sets U, V . Each Aα is either in C or D, since otherwise I can create a separation.
But if Aα ⊂ C or Aα ⊂ D, then this is impossible since they intersect at one point at least. So either
all Aα ⊂ C or all Aα ⊂ D.

Theorem 6.4 (Connected Sets plus Some/All Limit Points are Connected)

Let A be a connected subset of X. If A ⊂ B ⊂ Ā, then B is also connected.

Proof.

Assume B = C ∪ D is a separation of B =⇒ A must lie entirely within C or D. Without loss of
generality, suppose A ⊂ C, which implies that Ā ⊂ C̄. Since C̄ and D are disjoint, B cannot intersect
D =⇒ D = ∅, a contradiction. Therefore, there exists no separation of B.

Theorem 6.5 (Products of Connected Spaces are Connected)

Given connected topological spaces Xα with α ∈ J , the Cartesian product∏
α∈J

Xα (129)

under the product topology is connected.a

X

Y

(x, y)

(x, y)

Figure 30: You can see that any two Tx×y have a nontrivial intersection by construction. This is why we need
the + shape.

aBut for infinite products, it is not necessarily connected under the box topology
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Proof.

We will prove for the finite product case. Given (x, y) ∈ X × Y , let us define the space

Tx×y := ({x} × Y ) ∪ (X × {y}) (130)

where both of the components are connected (since they are homeomorphic to Y and X, respectively).
We know that Tx×y is connected since it’s a union of connected space with nontrivial intersection
(x, y), and using the same lemma, the arbitrary union over all points in X × Y is connected.⋃

(x,y)∈X×Y

Tx×y = X × Y (131)

is connected.

6.3 Connected Spaces in Euclidean Space
Now let’s go to our standard space and see which sets are connected. For this, we will need to visit a bit of
real analysis and recall the least upper bound property of the reals.

Theorem 6.6 (Convex Subsets of Reals are Connected)

Y is a convexa subset of R iff Y is connected.
aWe can define it with the order by saying that an ordered set Y is convex is given a, b ∈ Y and a c s.t. a < c < b,

then c ∈ Y .

Proof.

We prove by contradiction.a Suppose Y = A ∪ B disjoint, nonempty, and open in the subspace
topology. Choose a ∈ A, b ∈ B and WLOG let a < b. Now let

A0 = A ∩ [a, b], B0 = B ∩ [a, b] (132)

Then A0⊔A0 = [a, b] with A0, B0 open in the subspace topology in [a, b]. Furthermore, A0 is bounded
above so it has a least upper bound. Let c = supA0.

1. If c ∈ A0, by A0 open there exists a right interval [c, c+ ϵ) ⊂ A0 =⇒ c+ ϵ
2 ∈ A0, which means

c is not an upper bound.
2. If c ∈ B0, by B0 open there exists a left interval (c− ϵ, c] ⊂ B0 =⇒ c− ϵ

2 ∈ B0, which means
c is not least.

aNote that this is sort of similar to proving how if vectors v1, . . . , vn are linearly independent, then a1v1+. . .+anvn =
0 ⇐⇒ a1 = a2 = . . . = an = 0. This is generally, the method to prove whether a space is connected.

Corollary 6.4 ()

R with the standard topology is connected. Furthermore all intervals and rays are connected subsets
of R.

Example 6.5 (More Topologies on Real Lines)

Note that
1. R with the lower limit topology is disconnected, since (−∞, a) ⊔ [a,+∞) is a separation.
2. R with the finite complement topology is connected. In this case, no two open sets are even

disjoint, and so this space is very very connected.
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Example 6.6 (Dense Disconnected Sets)

The rationals Q ⊂ R are not connected since given any irrational number r, we can write Y as the
union of sets

Y ∩ (−∞, r), Y ∩ (r,+∞) (133)

which are open in the subspace topology.

Example 6.7 (Connected Components in Rn)

Rn is connected, since it’s a finite product of R, which we proved was connected. Similarly, all n-cells
of form

∏n
i=1(ai, bi) are also connected as a product of convex sets.

We will expand on this to prove some already intuitive results.

Theorem 6.7 ()

If n > 1, then for any a ∈ Rn, Rn \ {a} is connected.

Proof.

Let U = {x ∈ Rn | xn > an} and V = {x ∈ Rn | xn < an}. These are connected since they are of
form Rn−1 × (a, b). Now let

U ′ = U ∪ {x ∈ Rn | xn = an} \ {a} (134)
V ′ = V ∪ {x ∈ Rn | xn = an} \ {a} (135)

Note that U ′, V ′ are the U, V plus some of its limit points, and so they are connected as well. So
U ′ ∪ V ′ = Rn \ {a} connected since they have a nontrivial intersection.

Corollary 6.5 ()

R ̸∼= Rn for n > 1.

Finally, we conclude with a theorem often seen in calculus, but is really a theorem in topology, since it only
relies on continuity rather than derivatives, like the MVT.

Theorem 6.8 (Intermediate Value Theorem)

Let f : X −→ Y be a continuous map of the connected space X into the ordered set Y , with the
order topology. Given a, b ∈ X and r ∈ Y such that f(a) < r < f(b), then there exists a point c ∈ X
such that f(c) = r.

Proof.

Assuming the hypothesis, the sets

A ≡ f(X) ∩ (−∞, r), B ≡ f(X) ∩ (r,+∞) (136)

are disjoint. They are also nonempty since

f(a) ∈ A, f(b) ∈ B (137)

A and B are open since they are the intersection of open sets. Now, assume that there exists no point
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c ∈ X such that f(c) = r. Then,
f(X) = A ∪B (138)

would define a separation of X, contradicting the fact that the image of a connected space under a
continuous map must be connected. Therefore, c exists.

6.4 Path Connectedness
Now we will be talking about a stronger form called path connectedness. Unlike connectedness—where we
began with the topological definition and then claimed that the connected components form an equivalence
class—we will introduce path connectedness as an equivalence class from the start. Note that connectedness
is about open sets rather than paths.

Definition 6.4 (Path)

A path from x ∈ X to y ∈ X is a continuous function f : [a, b] ⊂ R → Xa s.t. f(a) = x, f(b) = y,
and [a, b] is endowed with the Euclidean topology.b Two points x, y are said to be path connected,
denoted x ∼p y, if there exists a path from x to y, i.e. f(0) = x, f(1) = y.

aNote that we can just reparameterize the path to any other starting and end points with the homeomorphism
[a, b] ∼= [c, d.

bSo far, we’ve been pretty agnostic of topologies in definitions, but here we mention a very specific topology.

Lemma 6.3 (Path Components are Equivalence Classes)

∼p is an equivalence relation, and the equivalence classes formed by ∼p on topological space X are
called path components.

Proof.

We prove the 3 properties.
1. Reflexive. x ∼p x since we can choose the constant function f : t 7→ x.
2. Symmetric. Let x ∼p y. Then there exists a continuous f : [0, 1] → X s.t. f(0) = x, f(1) = y.

We can choose the continuous function g = f ◦ h, where h(x) = 1 − x is continous connecting
y to x.

3. Transitive. Let x ∼p y and y ∼p z. then by the pasting lemma, the overlapping set {y} is closed
and so we can define the continuous function

(f ∗ g)(t) :=

{
f(2t) t ∈ [0, 1/2]

g(2t− 1) t ∈ [1/2, 1]
(139)

which is a path from x to z.

x

y

z

Figure 31: W:
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Definition 6.5 (Path Connected Space)

A topological space X is said to be path connected for every pair of points x, y ∈ X, x ∼p y.

It seems that path connectedness is conceptually easier to deal with, and we might ask if one implies the
other.

Theorem 6.9 (Path Connectedness implies Connectedness)

X is path connected =⇒ X is connected. That is, each path component is contained in a connected
component.

C

D

X = C ∪D

Figure 32: Visually if two spaces are not connected, it doesn’t seem like it’s path connected.

Proof.

We can prove this in two ways.
1. Directly. if x ∼p y, then ∃ a path f : [0, 1]→ X s.t. f(a) = x, f(b) = y, and ℑ(f) is a connected

subspace containing x, y.
2. Contrapositive. X not connected implies that there exists disjoint open subsets C,D such

that C ∪ D = X. Assume that X is path connected, i.e. there exists a continuous function
g : [0, 1] −→ X. Then the preimage of C and D in X must be open sets g−1(C), g−1(D) ⊂ [0, 1]
such that g−1(C) ∪ g−1(D) = [0, 1]. But this isn’t possible since [0, 1] is connected, so by
contradiction, X is not path connected. The contrapositive of this statement results in the
theorem.

But is the converse true? Intuitively, it seems like it, but a pretty nasty construction of a counterexample is
needed. However, note that X connected ≠⇒ X path connected. Note the following example.

Example 6.8 (Topologist’s Sine Curve)

Let
C = {(x, y) ∈ R2 | x > 0, y = sin(1/x)} (140)

This is the image of a continuous function. It is both connected and path connected since C ∼=
(0,+∞). This is not the topologist’s sine curve. C is not closed since it doesn’t contain the limit
points {(0, y) | 0 ≤ y ≤ 1} (in red), but if we do cake the closure C = C ∪ ({0} × [−1, 1]), then this
is the TSC.
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x

y

1 2

−1

1

Figure 33: Topologist’s sine curve is the union of the image of the oscillating sine curve (blue) with its limit
points (red).

C is connected since the closure is the union of connected C and some/all limit points of C. Now
we claim that C is not path connected. Intuitively, given a point on C and point on C ′, it must
zig-zag infinitely many times, and thus cannot get to the red portion in time. Rigorously, suppose
f : [a, b]→ C were a path from (0, 0) to some (x, y) with x > 0. f−1({x} × [−1, 1]) is a closed subset
of [a, b] and thus has a max value; call it c. Now we take the restriction on f : [c, b]→ C. Then

f(c) ∈ C ′ = {0} × [−1, 1], f(t) ∈ C ∀t > c (141)

Now reparaterize so that c = 0, b = 1. Then

f(t) =
(
x(t), y(t)

)
=
(
x(t),

1

sinx(t)

)
(142)

So we can find some sequence of numbers tn → 0 s.t. y(tn) = (−1)n =⇒ limn→+∞ tn = 0 but
limn→+∞ y(tn) does not exist, contradicting the fact that f is continuous.

In general, mathematicians like path connectedness better since it makes our lives easier. We can more easily
prove path connectedness by just building a path and it also implies connectedness.

Example 6.9 (Euclidean Space)

Let us take Rn and we claim the following.
1. Rn is connected since given x, y, we can just draw f(t) = (1 − t)x + ty for t ∈ [0, 1], i.e. a

straight line between them.
2. Rn \{0} is path connected for n > 1 since we can draw a line, and if that line passes through the

origin, i.e. y = λx for lambda < 0, then we choose z ̸∈ span(x) and choose the path x→ z → y.
3. Rn \ S is path connected for any finite set S.

Theorem 6.10 (Continuous Images of Path Connected Spaces as Path Connected)

If X is path connected and f : X → Y is continuous, then f(X) ⊂ Y is path connected.

Proof.

Given y1, y2 ∈ f(X) ⊂ Y , we choose x1, x2 s.t. f(x1) = y1 and f(x2) = y2. Then we choose a path g
from x1 to x2 since X is path connected, and f ◦ g is a path from y1 to y2.

Corollary 6.6 (Path Connectedness is a Topological Property)

If X ∼= Y , then X path connected iff Y path connected.
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Corollary 6.7 (Quotients Path Connected Spaces are Path Connected)

Any quotient of a path connected space is path connected.

Theorem 6.11 (Products of Path Connected Spaces)

Any product of path connected spaces is path connected under the product topology.a

aAny only for finite products in the box topology.

Proof.

Given
∏

α Xα of path connected components Xα, let x = (xα), y = (yα) be its elements. Then for
each α, choose path fα : [0, 1]→ Xα with fα(0) = xα and fα(1) = yα. Then by definition of product
topology, the function

f =
∏
α

fα : [0, 1]→
∏
α

Xα (143)

is continuous.

Example 6.10 ()

Rω is not even connected in the box topology. In fact it is horrifically disconnected. Let

B := {x ∈ Rω | |xi| < R} (144)

be the set of bounded sequences for some R > 0. We claim that B is clopen in the box topology.
Given x ∈ Rω, let us define the open set

Ux =
∏

(xi − 1, xi + 1) (145)

If x is bounded, then x ∈ B and every element in Ux is bounded =⇒ Ux ⊂ B. So B is open. If x
is unbounded, then x ∈ Rω \ B and every element of Ux is also unbounded =⇒ Ux ⊂ Rω \ B. So
Rω \B is open and B is closed.

6.5 Local Connectedness
The property of local connectedness is also important for a space to possess. Roughly speaking, local
connectivity means that each point has "arbitrarily small" neighborhoods that are connected. It is a property
on small scales, i.e. for a property on open sets.

Definition 6.6 (Locally (Path) Connected at a Point)

A space X is said to be locally (path) connected at x if for every neighborhood U of x, there is
a (path) connected open neighborhood V of x contained in U . If X is locally (path) connected at all
of its points, then X is simply said to be locally (path) connected.
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x
V connected U not

connected

X

Figure 34: Visually, in the space X, let U be the union of the two open balls shown below. U is clearly open,
but not necessarily connected. However, we can form a neighborhood V of x contained in U such that V is
connected.

Example 6.11 (Euclidean Space)

Rn plus any open sets in Rn is locally connected and locally path connected since open balls of any
radius are path connected.

Example 6.12 (Topologist’s Sine Curve)

The TSC is not locally connected.

x

y

1 2

−1

1
Zoom

x

y

0.050.10.150.2

0.1

−0.1

Figure 35: If we take a neighborhood around (0, 0), we can see that the intersection of the image of a function
with the open ball around the origin will consists of many almost-vertical lines that are not connected.

Even though local properties alone does not in general allow us to conclude about a global property, there
are times when it does.

Theorem 6.12 (LPC + C =⇒ PC)

If X is locally path connected, connectedness ⇐⇒ path connectedness, i.e. the connected compo-
nents and path connected components are the same. In other words,

Local Path Connectedness + Connectedness =⇒ Path Connectedness (146)

Equivalently, X is locally connected if there exists a basis for X consisting of connected sets. Local connect-
edness and connectedness of a space are independent of each other.
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Theorem 6.13 (Open Components and Local (Path) Connectedness)

Given space X,
1. X is locally connected iff its connected components are open.
2. X is locally path connected if its path connected components are open.

Proof.

For the first claim, we prove bidirectionally.
1. (→) Suppose that X is locally connected. Let U be an open set of X and let C be a component

of U . If x is any point in C, by definition of local connectedness, there exists a connected
neighborhood V of x fully contained in U . Since V is connected, it must additionally lie
completely within C =⇒ C is open in X.

2. (←) Suppose that the components of open sets in X are open. Given a point x ∈ X and
neighborhood U of x, let C be the component of U containing x, which means that C is
connected. By hypothesis, the components of open sets are alsvo open, so C is also open. Since
an open, connected set C exists for all x ∈ X, X is locally connected.

For the second claim, we also prove bidirectionally.
1. TBD.
2. TBD.
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7 Compactness
Now we move onto another pillar of topology: compactness. I personally think compactness is the hardest
conceptually, so I will provide a lot of explanation on it here. The thing to keep in mind when talking about
compactness is that it describes a space being finite or not being able to escape to infinity.

Definition 7.1 (Covers)

A collection C of subsets of a space X is said to cover X, or to be a covering of X, if the union of
the elements of C is equal to X. It is called an open covering of X if its elements are open subsets
of X.

Definition 7.2 (Compact Space)

A topological space X is said to be compact if every open covering of X contains a finite subcovering
(i.e. a finite collection of subcovers) of X. If K ⊂ X is a compact topological space in the subspace
topology, then K is said to be a compact subspace of X.

Note that compactness is a property of a topological space in its entirety. This is opposed to considering
open and closed sets, which exist as a subset of a topological space. However, we will provide a definition
for which it makes sense to talk about compact subsets of a space.

Definition 7.3 (Compact Subspaces)

Given topological space X and A ⊂ Y , we call A a compact subspace of X if either of the two
equivalent conditions are met.

1. A is a compact space with respect to the subspace topology endowed from X.
2. If every X-open cover of A has a finite subcover of A.

Proof.

This is trivial by the definition of the subspace topology.

The concept of compactness does not seem intuitive at first glance. The reason why compactness is such an
important property for a space to have is because X being compact tells us that we can always analyze the
entire X using a finite union of open sets, which can simplify the space greatly. That is, it a measure of
finiteness of a space. You should realize that it is much easier to prove that a space is not compact, since
all we have to do is find a single covering that doesn’t contain a finite subcovering.

Example 7.1 (Non-Compact Spaces)

We show some examples of non-compact spaces.
1. R is not compact since given the open covering F = {(x, x+1) ⊂ R | x ∈ R}, then if we assume

that F has a finite subcovering, it is the case that max{x1, x2, . . . , xn} + 1 ̸∈ F , so this is not
a covering.

2. For R, you can also get a nested covering {(−r,+r) | r > 0}, which also has no finite subcovering.
3. Take X = (1, 1) and take F = {( 1n , 1] | n ∈ N}, which is a cover but has no finite subcover.

Example 7.2 (Open Square is Not Compact)

The subset Y ≡ (0, 1)× (0, 1) ⊂ R2 is not compact. That is, we can choose to cover the subspace by
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the finite union of open sets.

[0, 1]2 ⊂
∞⋃
k=0

(2k − 1

2k
,
2k+1 − 1

2k+1

)
× (0, 1) (147)

Figure 36: We show the first three elements of the infinite union that covers the open square.

Lemma 7.1 (Finite Sets)

A finite set S is compact with respect to any topology.

Proof.

This is because there are only a finite number of open sets to begin with, so every open cover is a
finite cover.

The first property we will state—similar to that for connected spaces—is that continuous images of compact
spaces is compact, which establishes compactness as a topological property.

Theorem 7.1 (Continuous Images of Compact Sets are Compact)

The image of a compact space under a continuous map is compact.

Proof.

Let f : X → Y be continuous, and let X be compact. Let C be a covering of the set f(X) by sets
open in Y . Then, the preimage of these sets is the collection

{f−1(A) | A ∈ C} (148)

which clearly covers X. But since X is compact, a finite number of them, say

f−1(A1), f
−1(A2), . . . , f

−1(An) (149)

covers X =⇒ A1,A2, . . . ,An covers f(X).

Corollary 7.1 (Compactness is a Topological Property)

Let X ∼= Y . Then X compact ⇐⇒ Y compact.

7.1 Properties on Compact, Closed, and Hausdorff Spaces
The three most general statements about compact sets are that closed subsets of compact sets are compact,
continuous images of compact sets are compact, and a nested sequence of closed nonempty sets in a compact
space is nonempty.
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Theorem 7.2 (Closed Subsets of Compact Sets are Compact)

Every closed subset of a compact space is compact.

Proof.

This proof is quite trivial. Let Y be a closed subset of compact space X. Given a covering C of Y
by sets open in X, let us form an open covering B of X by adjoining to C the single open set X \ Y .
Then, we an see that both B and C ∪ (X \ Y ) covers X.

B = C ∪ (X \ Y ) (150)

Since B is finite, the right hand side must also be expressible as a finite union. Looking through B,
we can throw away all the open sets that are entirely in X \ Y . What remains is a finite covering of
Y .

A natural question to ask is: what about the converse? It turns out that Hausdorff provides the sufficient
properties.

Theorem 7.3 (Compact Subsets of Hausdorff Spaces are Closed)

If X is Hausdorff and A ⊂ X is compact. Then A is closed in X.

Proof.

We wish to show that X \ A is open. Let x ∈ X \ A. Then, for each point a ∈ A, we can choose
disjoint neighborhoods Ua ∋ x and Va ∋ a (using the Hausdorff condition). The collection

{Va | a ∈ A} (151)

is an open covering of A. Since A is compact, there must exist a finite subcover V1, V2, . . . , Vn.
Therefore, ∪ni=1Vi contains Y and is disjoint from the intersection of open neighborhoods of x

U :=

n⋂
i=1

Ui (152)

Therefore, U is an open neighborhood of x0, disjoint from A =⇒ X \A is open =⇒ A is closed.

But is it minimal? It turns out that if we don’t have Hausdorff, then a compact subset is not necessarily
closed.

Example 7.3 (Line with 2 Origins)

Consider the line with 2 origins, L = (−∞, 0)∪ (0,+∞)∪ {r, s}. Then A = {r} ∪ (0, 1] = [0, 1] is not
compact, but it is not closed since r is also a limit point.

Lemma 7.2 (Compact Subsets and Points Can Be Separated in Hausdorff Space)

If Y is a compact subset of a Hausdorff space X and x is not in Y , then there exist disjoint open sets
U and V of X containing x and Y , respectively.
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x
Y

compact
U

V

Theorem 7.4 (Continuous Mappings from Compact to Hausdorff Spaces)

Let X be compact, Y Hausdorff, and f : X → Y be a continuous map. Then, f is a closed map, and
moreover,

1. f injective =⇒ f is an embedding.
2. f surjective =⇒ f is a quotient map.
3. f bijective =⇒ f is a homeomorphism.

Proof.

We prove the four statements.
1. To see that f is a closed map, let C ⊂ X be closed. Then C is compact, and so f(C) is also

compact. But since Y is Hausdorff, f(C) is closed.
2.

The previous theorem is nice in that we can prove a lot of the nice properties of topological spaces without
doing much work. Note that compactness and Hausdorff goes very well together in that you can get a lot
more out of a space when they are together.

7.2 Nested Sequence Lemma
Now lets prove something more set-theoretic about compact sets, namely its cardinality.

Lemma 7.3 (Nested Sequence Lemma)

If X is compact, then for any sequence of closed, nonempty sets C1 ⊃ C2 ⊃ . . ., we must have

∞⋃
n=0

Cn ̸= ∅ (153)

Definition 7.4 (Isolated Point)

A point x is called an isolated point if {x} is an open set.

Theorem 7.5 (Uncountability of Compact Hausdorff Spaces)

If X is a nonempty, compact, Hausdorff space with no isolated points, then X is uncountable.

Proof.

Thus, any closed interval in R is uncountable. We didn’t need to use decimal expansions to prove it.
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7.3 Finite Products and Intersections of of Compact Spaces
We now introduce a useful lemma that will come around in many future cases.

Lemma 7.4 (Tube Lemma)

Consider the product space X × Y , where Y is compact. If N is an open set X × Y containing the
slice x0× Y of X × Y , then N contains some tube W × Y about x0× Y , where W is a neighborhood
of x0 in X.

X

Y

W

x0

N

Proof.

Let us cover x0 × Y by basis elements U × V (for the topology of X × Y ) lying in N . The space x0

is compact since it is homeomorphic to Y =⇒ we can cover x0 × Y by finitely such basis elements

U1 × V1, U2 × V2, . . . , Un × Vn (154)

Without loss of generality, we can assume that each Ui×Vi has a nontrivial intersection with x0×Y ,
since otherwise, it would be superfluous. Now, we define the intersection of all the open neighborhoods
of x0 in X of the basis elements Ui × Vi. That is, let

W ≡
n⋃

i=1

Ui (155)

As an intersection of open sets, W is also open containing x0. With this well-defined tube W × Y ,
we claim that it is entirely contained within N . That is, given a point x× y ∈ W × Y , consider the
corresponding point x0 × y that is the image of the projection of x× y onto x0 × Y . Clearly, x0 × y
belongs to some Uk × Vk (for some k) =⇒ y ∈ Vk. Since x ∈ W , x is clearly in Uk, meaning that
x× y ∈ Uk × Vk ⊂ N , as desired.

Theorem 7.6 (Finite Products)

The product of finitely many compact spaces is compact.

Proof.

Using induction, it suffices to prove that the product of 2 compact spaces is compact. Let X and Y
be compact spaces. By the tube lemma, for each x ∈ X, there exists a neighborhood Wx of x such
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that the tube Wx × Y can be covered with finitely (by compactness of Y ) many open sets in X × Y .
The collection of all neighborhoods Wx is an open covering of X. By compactness of X, there exists
a finite subcollection

W1,W2, . . . ,Wk (156)

covering X. The finite union of the tubes

k⋃
i=1

Wi × Y (157)

clearly covers X × Y , meaning that X × Y is compact.

Definition 7.5 (Finite Intersection Condition)

A collection C of subsets of X is said to satisfy the finite intersection condition if for every finite
subcollection

{C1, C2, . . . , Cn} (158)

of C, the intersection
n⋂

i=1

Ci (159)

is nonempty.

Clearly, the empty sets cannot below to any collection with the finite intersection property. Additionally, the
condition is trivially satisfied if the intersection over the entire collection is non-empty or if the collection is
nested. However, here is one example that does satisfy the finite intersection condition.

Example 7.4 ()

Let X = (0, 1) and for each positive integer i, Xi is the set of elements of X having a decimal
expansion with digit 0 in the ith decimal place. Then, any finite intersection of Xi’s is nonempty,
but the intersection of all Xi for i ∈ N is empty, since no element of (0, 1) has all zero digits.

Here is an analogous example to the previous one.

Example 7.5 ()

In the space R, let us define Ci ≡ R \ {i}. That is, Ci is R missing a point at i. Then, the collection
of all Ci’s does satisfy the finite intersection condition. We show below the finite intersection of the
five subsets C0, C1, C2, C3, C4.

⋂4
i=0 Ci

C0

C1

C2

C3

C4
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Theorem 7.7 ()

Let X be a topological space. Then x is compact if and only if for any collection C of closed sets in
X satisfying the finite intersection condition, the intersection⋂

C∈C
C (160)

of all the elements of C is nonempty.

Proof.

Given a collection S fo subets of X, let

C ≡ {X \A | A ∈ S} (161)

be the collection of their complements. Then, the following statements hold
1. S is a collection of open sets if and only if C is a collection of closed sets.
2. The collection S covers X if and only if the intersection⋂

C∈C
C (162)

of all the elements of C is empty.
3. The finite subcollection {A1, A2, . . . , An} of S covers X if and only if the intersection of the

corresponding elements Ci ≡ X \A of C is empty.
Clearly, (1) is trivial, and (2) and (3) follows from DeMorgan’s Law.

X \
⋃
α∈J

Aα =
⋂
α∈J

(X \Aα) (163)

Using statement 3, the existence of a finite collection of closed sets C in X satisfying the finite
intersection condition is equivalent to its complements (which are open sets) covering X, which is
precisely the definition of compactness.

Clearly, the previous example in the real line R shows that R is indeed not compact.

Corollary 7.2 ()

The space X is compact if and only if every collection C of subsets of X satisfying the finite intersection
condition, the intersection ⋂

A∈C

Ā (164)

of their closures is nonempty.

7.4 Compact Subsets of Euclidean Space
In order to construct new compact spaces from old ones, we must prove compactness for a number of
fundamental spaces. The real number line is a good starting point, but before we can fully appreciate the
Heine-Borel theorem, we focus on the properties of closedness and boundedness.

Theorem 7.8 (Compact Subsets of Metric Spaces are Bounded)

Let (X, d) be a metric space and K ⊂ X be compact. Then, K must be bounded.
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Proof.

Given nonempty K, choose a point x ∈ K. Then, construct the open covering.

F = {Bn(x) | n ∈ N} (165)

which is indeed a covering since the naturals are unbounded in R. Then by compactness there is a
finite subcovering, and so there must be some maximum n.

Lemma 7.5 (Closed Intervals are Compact)

Any closed interval [a, b] ⊂ R is compact.

Proof.

Let F be a covering, and let

S = {x ∈ [a, b] | [a, x] is contained in finite subcollection of F} (166)

We wish to show that b ∈ S. Since S is bounded by b, let s = sup{s}. We claim that s ∈ S.
1. We know that a ∈ S since a is covered by at least one given set in S, so if s = a we are done.

Else if s > a, it must also be the case that s ≤ b, so s ∈ (a, b). We choose some open U ∈ F
containing S, i.e. there exists ϵ > 0 s.t. (s− ϵ, s] ⊂ U =⇒ s− ϵ is not an upper bound for S.
So ∃x with s− ϵ < x ≤ s with s ∈ S. So [a, s] is contained in finitely many sets of F , so s ∈ S.

2. Now we will claim s = b. Suppose otherwise, i.e. s < b. Then

[a, s] ⊂ U1 ∪ . . . ∪ Un for Ui ∈ F (167)

But s ∈ Ui for some i, and for some ϵ, [s, s+ ϵ) ⊂ U , and so [a, s+ ϵ
2 ] ⊂ ∪

n
i=1Ui, which implies

s+ ϵ
2 ∈ S, which contradicts that s ∈ S. So s = b.

Now we can extend this to Rn.

Theorem 7.9 (Heine-Borel Theorem)

A subset A of Rn is compact if and only if it is closed and bounded in the Euclidean metric d or the
square metric ρ.

Proof.

The forwards direction is actually very easy. Since A is compact in Hausdorff Rn, it must be closed,
and since Rn is a metric space, it must be bounded. So we are done. For the other way, we assume
that a subset A is closed and bounded. If A is bounded, then ∃R > 0 s.t. d(0, x) < R for all x ∈ A.
So A ⊂ [−R,R]n = B, where B is compact and A is a closed subset. Hence A is compact as well.
Note that bounded w.r.t. metric d is equivalent to being bounded w.r.t metric ρ.

The Heine-Borel theorem is like a reverse implication of the fact that compact sets must be closed and—if in
a metric space—bounded. However, the double implication is not achieved when working in general metric
spaces!

Example 7.6 (Closed and Bounded in Metric Space But Not Compact)

Consider the space X = Q and A = [1,
√
2] ⊂ X. A is closed and bounded, but not compact.
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Example 7.7 ()

The unit sphere Sn−1 and the closed ball Bn in Rn are compact since they are closed and bounded.
The set

A ≡ {(x, 1
x
) | 0 < x ≤ 1} (168)

is closed in R2, but is not compact since it is not bounded. The set

S ≡ {(x, sin 1

x
) | 0 < x ≤ 1} (169)

is bounded in R2, but it is not compact since it is not closed.

Now we present another theorem in analysis that is actually a topological property.

Theorem 7.10 (Extreme Value Theorem)

Let X be compact and f : X → R be continuous. Then f attains both its maximum and minimum
in X.

Proof.

f continuous must imply that f(X) is compact in R, which means that it is closed and bounded.
Since it is bounded, it must have a least upper bound. Since it’s closed, it must contain its least
upper bound, and so attains its maximum. Similarly for minimum.

The theorem says that f : [a, b] → R is bounded, and that bound is realized by something. Note that for
function on noncompact (−1, 1)—say f(x) = x—it is bounded but the extrema are not achieved. It doesn’t
even need to be bounded, e.g. f(x) = x

1−x2 .

Theorem 7.11 (Uniform Continuity Theorem)

Let f : X → Y be a continuous map of the compact metric space (X, dX) to the metric space (Y, dY .
Then, f is uniformly continuous. That is, given ϵ > 0, there exists a δ > 0 such that for any two
points x1, x2 ∈ X,

dX(x1, x2) < δ =⇒ dY
(
f(x1), f(x2)

)
< ϵ (170)

Theorem 7.12 (Compact Metric Spaces are Complete)

A metric space is compact iff it is complete and totally bounded.

Proof.

7.5 Limit Point Compactness
We now state different, weaker types of compactness.

Definition 7.6 (Countably Compact)

A space X is said to be countably compact if every countably open cover has a finite subcover.
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Definition 7.7 (Limit Point Compactness)

A space X is said to be limit point compact if every infinite subset of X has a limit point.

Theorem 7.13 ()

Compactness =⇒ limit point compactness.

Lemma 7.6 (Lebesgue Number Lemma)

Let C be an open covering of the metric space (X, d). If X is compact, then there is a δ > 0 such
that for each subset of X having diameter than δ, there exists an element of C containing it. This
number δ is called a Lebesgue number for the covering C .

Another theorem of calculus, suitably generalized to topological spaces, is stated.

7.6 Sequential Compactness

Definition 7.8 (Sequentially Compact)

A space X is said to be sequentially compact if every sequence of points in X has a subsequence
that converges to a point x ∈ X.

Theorem 7.14 (Equivalence of Compactness in Metrizable Spaces)

Let (X,T ) be a metrizable space. Then the following are equivalent:
1. X is compact.
2. X is limit point compact.
3. X is sequentially compact.
4. X is countably compact.

7.7 Local Compactness

Definition 7.9 (Locally Compact)

A space X is said to be locally compact at x if there is some compact subset C of X that contains a
neighborhood of x. If X is locally compact at each of its points, X is simply to be locally compact.

Example 7.8 ()

The real line R is locally compact since any point x ∈ R lies within a certain closed interval [a, b],
which is compact. The subspace Q is not locally compact.

Two of the most well-behaved classes of spcaes to deal with are metrizable spaces and compact Hausdorff
spaces. If a given space is not one of these types, the next best thing one can hope for is that it is a subspace
of one of these spaces. Clearly, a subspace of a metrizable space is itself metrizable, so one does not get any
new spaces this way. However, a subspace of a compact Hausdorff space need not be compact. This leads to
the question: Under what conditions is a space homeomorphic to a subspace of a compact Hausdorff space?
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Definition 7.10 (Compactification)

Let X be a locally compact Hausdorff space. Take some object outside X, denoted by the symbol
∞, and adjoin it to X, forming the set

Y = X ∪ {∞} (171)

Topologize Y by defining the collection of open sets in Y to be the sets of the following types:
1. U , where U is an open subset of X.
2. Y \ C, where C is a compact subset of X.

Then, this space Y is called the one-point compactification of X. This is in some sense the
minimal compactification of X.

We briefly show that this set of open sets on Y is indeed a topology. First, ∅ is of type 1 and Y itself is of
type 2. Given Ui of type 1 and Y \ Ci of type 2, we have the intersections of two sets

U1 ∩ U2 is type 1
(Y \ C1) ∩ (Y \ C2) = Y \ (C1 ∪ C2) is type 2
U1 ∩ (Y \ C1) = U1 ∩ (X \ C1) is type 1

along with the arbitrary union of sets⋃
Uα = U is type 1⋃
(Y \ Cβ) = Y \ (

⋂
Cβ) = Y \ C is type 2

(
⋃

Uα) ∪ (
⋃

(Y \ Cβ)) = U ∪ (Y \ C) = Y \ (C \ U) is type 2

We now present some properties of one-point compactifications.

Theorem 7.15 ()

Let X be a locally compact Hausdorff space which is not compact, and let Y be a one-point com-
pactification of X. Then Y is a compact Hausdorff space. Additionally, since X ⊂ Y with Y \ X
consisting of a single point, X̄ = Y .

Example 7.9 (Extended Real Number Line)

The one-point compactification of the real line R is homeomorphic to the circle S1. That is,

R ∪ {∞} ∼= S1 (172)

R ∪ {∞} is called the extended real number line.
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s

R

a

p(a)

p(b)

b

p(d)

d

c = p(c)

Figure 37: We can visualize this homeomorphism by visualizing the stereographic projection p : S1 \{s} → R.

Example 7.10 (2-Sphere)

The one point-compactification of the real plane R2 is homeomorphic to the 2-sphere S2. That is,

R2 ∪ {∞} ∼= S2 (173)

Lemma 7.7 ()

Let X be a Hausdorff space. Then X is locally compact at x if and only if for every neighborhood U
of x, there is a neighborhood V of x such that V̄ is compact and V̄ ⊂ U .

Corollary 7.3 ()

Let X be a locally compact Hausdorff space with Y a subspace of X. If Y is closed in X or open in
X, then Y is locally compact.

Corollary 7.4 ()

A space X is homeomorphic to an open subset of a compact Hausdorff space if and only if X is locally
compact and Hausdorff.

7.8 Countable Compactness

7.9 Tychonoff Theorem

Theorem 7.16 (Tychonoff Theorem)

An arbitrary product of compact spaces is compact under the product topology.

Definition 7.11 ()

A space X is completely regular if one-point sets are closed in X and if for each point x0 and each
closed set A not containing x0, there is a continuous function f : X −→ [0, 1] such that f(x0) = 1
and f(A) = {0}.
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Theorem 7.17 ()

A subspace of a completely regular space is completely regular. A product of completely regular
spaces is completely regular.

Theorem 7.18 ()

If X is completely regular, then X can be imbedded in [0, 1]J for some J .

Corollary 7.5 ()

Let X be a space. The following are equivalent:
1. X is completely regular.
2. X is homeomorphic to a subspace of a compact Hausdorff space.
3. X is homeomorphic to a subspace of a normal space.

Definition 7.12 ()

A compactification of a space X is a compact Hausdorff space Y containing X such that X is dense
in Y (that is X̄ = Y ). Two compactifications Y1 and Y2 of X are said to be equivalent if there is a
homeomorphism h : Y1 −→ Y2 such that h(x) = x for every x ∈ X.

Theorem 7.19 ()

Let X be completely regular, and let β(X) be its Stone-Cech compatification. Then every bounded
continuous real-valued function on X can be uniquely extended to a continuous real-valued function
on β(X).

Lemma 7.8 ()

Let A ⊂ X, and let f : A −→ Z be a continuous map of A into the Hausdorff space Z. There is at
most one extension of f to a continuous function g : Ā −→ Z.

Theorem 7.20 ()

Let X be completely regular. Let Y1, Y2 be two compactifications of X having the extension property.
Then there is a homeomorphism ϕ of Y1 onto Y2 such that ϕ(x) = x for each x ∈ X.
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8 Countability

Definition 8.1 (1st-Countability)

A space X is said to have a countable basis at x if there exists a sequence N1, N2, ... of open neigh-
borhoods of x such that for any neighborhood N of x, there exists an integer i such that Ni ∈ N .
That is, the countable basis of neighborhoods get arbitrarily small around x. A space X satisfying
this axiom at every point x ∈ X is said to be a first-countable space.

In particular, every metric space is first-countable, since we can construct the sequence of open balls B(x, 1
n )

for each n ∈ N which forms a countable basis at x. We now generalize some previous statements about
metric spaces to statements about first-countable spaces.

Theorem 8.1 ()

Let X be a space satisfying the first countability axiom, and let A ⊂ X.
1. x ∈ Ā if and only if there exists a sequence of points in A converging to x.
2. The function f : X −→ Y is continuous if and only if for every convergent sequence (xn) → x

in X, the sequence
(
f(xn)

)
→ f(x) in Y .

Definition 8.2 (2nd-Countability)

A topological space X is said to satisfy the second countability axiom if X has a countable basis
for its topology.

Proposition 8.1 ()

Second countability implies first countability.

Proof.

If B is a countable basis for the topology of X, then the subset of B consisting of elements containing
the point x is a countable basis at x.

Example 8.1 ()

The real line R is second countable. We can contrust a countable basis as the set of all open intervals
(a, b) with rational end points. Likewise, Rn has a countable basis, which is the collection of all
products of intervals having rational end points. Additionally, Rω has a countable basis. It is the
collection of all products ∏

n∈N
Un (174)

where Un is an open interval with rational endpoints for finitely many values of n and Un = R for all
other values of n.

Example 8.2 ()

In the uniform topology, Rω satisfies the first countability axiom (since it is metrizable).
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Theorem 8.2 ()

A subspace of a first and second countable space is first and second countable, respectively. A
countable product of first and second countable space is first and second countable, respectively.

Theorem 8.3 ()

A subset A of space X is said to be dense in X if Ā = X.

Theorem 8.4 ()

Suppose that X has a countable basis. Then,
1. Every open cover of X has a countable subcover.
2. There exists a countable subset of X which is dense in X.

Proof.

Listed.
1. Let B = {Bn}n∈N be a countable basis for X, and let A be an open covering of X. For

each integer n ∈ N, chose an element An ∈ A containing the basis element Bn. The newly
formed collection A ′ of all the An’s is countable since it is indexed according to a subset of N.
Furthermore, since Bn ⊂ An for every Bn in the basis, the An clearly covers X.

2. From each nonempty basis element Bn, we choose a point xn. The set

D ≡ {xn | n ∈ N} (175)

is dense in X, since given any x ∈ X, every open basis element Bx about x intersects D. That
is,

Bx ∩D ̸= ∅ (176)

meaning that the set of points xn get arbitrarily close to x.

Definition 8.3 (Lindelof Space)

A space for which every open covering contains a countable subcovering is called a Lindelof space.
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9 Separation
Separability comes in different levels.2 We briefly define some weaker forms of separability.

Definition 9.1 (t0-Separability)

A topological space X is said to be t0-separable if for each pair of distinct points x, y ∈ X, there
exists a neighborhood U that contains x but not y, or a U that contains y but not x.

X x
y

U

Figure 38: t0-separability.

Definition 9.2 (t1-Separability)

A topological space X is said to be t1-separable if for each pair of distinct points x, y ∈ X, we can
find two neighborhoods Ux, Uy where y ̸∈ Ux and x ̸∈ Uy.

X x
y

Ux
Uy

y /∈ Ux x /∈ Uy

Figure 39: t1-separability.

Example 9.1 (Nested Interval Topology is Not t0)

(0, 1) with the nested interval topology is not t0-separable, since we can’t distinguish 1
4 and 1

3 .

Example 9.2 (Cofinite is t1)

(0, 1) with the cofinite topology is t0-separable, since given distinct x1, x2 ∈ (0, 1), we can see that
x1 ∈ X \ x2 and x2 ∈ X \ x1, which are both elements of the cofinite topology. By existence of these
elements, (0, 1) is t1-separable.

9.1 Hausdorff Spaces
Generally, mathematicians consider the Hausdorff condition as a mild extra conditions on topological spaces
that make it much easier to deal with. We will assume that most of the topological spaces we work with are

2Note that this is not to be confused with the separation of a space, which is a completely different topological property.
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Hausdorff.

Definition 9.3 (Hausdorff Space)

A topological space X is called a Hausdorff space, or t2-separable, if for each pair of distinct
points x, y ∈ X, there exists neighborhoods Ux, Uy that are disjoint.

X x
y

Ux

Uy

Figure 40: Every pair of distinct points must satisfy this separability condition in a Hausdorff space.

Theorem 9.1 (Limit Points in Hausdorff Spaces)

Given Hausdorff space X and subset A ⊂ X a point x is a limit point of A if and only if every
neighborhood of x contains infinitely many point of A. It immediately follows that every finite point
set in a Hausdorff space X is closed.

Proof.

We prove both directions
1. (→) Assume that x is a limit point of A with some neighborhood Ux intersecting A in finitely

many points. Then, let the points of intersections be

{x1, ..., xn} = A ∩ {Ux \ {x}} (177)

But Ux \{x} is open =⇒ H ≡ {Ux \({x}∪{x1, ..., xn})} is open. But H∩A = ∅, contradicting
the assumption that x is a limit point.

2. (←) Simple.
It suffices to show that every one point set {x0} is closed. If x and x0 are distinct points, then by
definition of Hausdorff spaces they have disjoint neighborhoods Ux and Ux0 =⇒ x ̸∈ ¯{x0} =⇒
{x0} = ¯{x0}, so {x0} is closed.

Lemma 9.1 (Product of Hausdorff Spaces)

Arbitrary Cartesian products of Hausdorff spaces is Hausdorff.a

aSince this is in the product topology, it immediately follows that the product is also Hausdorff in the finer box
topology.

Lemma 9.2 (Subspaces of Hausdorff Spaces)

A subspace of a Hausdorff space is Hausdorff.
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Theorem 9.2 (Unique Point of Convergence)

If a sequence converges in a Hausdorff space X, it converges to one point.

Proof.

For if (xα) converges to x and if y ̸= x, then we need only choose disjoint neighborhoods of y and x
to prove that (xα), by definition, is not convergent to y.

Example 9.3 ()

The space (0, 1) with the nested interval topology is not Hausdorff. In fact, it is impossible to
distinguish 2 points x, y if x, y ∈ (0, 1

2 ), meaning that the sequence

1

10
,
2

10
,
1

10
, . . . (178)

converges to both 1
10 and 2

10 .

Theorem 9.3 ()

Every metric topology satisfies the Hausdorff Axiom.

Proof.

If x and y are distinct points of (X, d), then letting

ε =
1

2
d(x, y) (179)

the triangle inequality implies that Bε(x) and Bε(y) are disjoint.

9.2 Regular Spaces

Definition 9.4 (Regular Spaces)

Suppose that one-point sets are closed in X. Then, X is said to be regular, or t3-separable, if for
each pair consisting of a point x and a closed set C disjoint from x, there exist disjoint open sets
containing x and C, respectively.

X
x

CUx

UC

Figure 41: Regular space.

80/ 143



Point Set Topology Muchang Bahng Fall 2024

Lemma 9.3 (Product of Regular Spaces)

Arbitrary Cartesian products of regular spaces is regular.

Lemma 9.4 (Subspaces of Regular Spaces)

A subspace of a regular space is regular.

9.3 Normal Spaces

Definition 9.5 (Normal Spaces)

Suppose that one-point sets are closed in X. Then, X is said to be normal, or t4-separable, if
for each pair C,D of disjoint closed sets of X, there exist disjoint open sets containing C and D,
respectively.

X

C D

UC UD

Figure 42: Normal space.

However, neither products nor subspaces of normal spaces are necessarily normal. a subspace of a normal
space is not necessarily normal; a product of normal spaces is not necessarily normal.

Theorem 9.4 ()

Every metrizable space is normal.

Theorem 9.5 ()

Every compact Hausdorff space is normal.

Theorem 9.6 ()

Every regular space with a countable basis is normal.

Theorem 9.7 ()

Every well-ordered set X is normal in the order topology.
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9.4 The Urysohn Lemma

Theorem 9.8 (Urysohn Lemma)

Let X be a normal space, and let A,B be disjoint closed subsets of X. Let [a, b] be a closed interval
in the real line. Then there exists a continuous map

f : X −→ [a, b] (180)

such that f(x) = a for every x ∈ A and f(x) = b for every x ∈ B.

Definition 9.6 (Separation by Continuous Function)

If A and B are two subsets of the topological space X, and if there is a continuous function f : X −→
[0, 1] such that f(A) = {0} and f(B) = {1}, it is said that A and B can be separated by a
continuous function.

More colloquially, the lemma states that if every pair of disjoint closed sets in X can be separated by disjoint
open sets, then each such pair can be separated by a continuous function.

Theorem 9.9 (Tietze Extension Theorem)

Let X be a normal space and let A be a closed subset of X.
1. Any continuous map of A into the closed interval [a, b] ⊂ R may be extended to a continuous

map of all X into [a, b].
2. Any continuous map A into the reals R may be extended to a continuous map of all of X into

R.

9.5 The Urysohn Metrization Theorem

Theorem 9.10 (Urysohn Metrization Theorem)

Every regular space X with a countable basis is metrizable.

Theorem 9.11 (Imbedding Theorem)

Let X be Hausdorff. Suppose that

{fα}α∈J , fα : X −→ R (181)

is a collection of continuous functions satisfying the requirement that for each point x0 ∈ X and each
neighborhood U of x0, there is an index α such that fα is positive at x0 and vanishes outside U .
Then, the function

F : X −→ RJ , F (x) ≡
(
fα(x)

)
α∈J

(182)

is an imbedding of X in RJ .
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10 Homotopies

10.1 Homotopy
Intuitively, a homotopy means that we can interpolate between f0 and f1 with a family of continuous maps
ft varying continuously as a function of t. Sometimes, we slightly modify the definition a homotopy by
restricting the family of continuous functions to agree on a certain subset A. We present both definitions
below.

Definition 10.1 (Homotopy)

Let X and Y be topological spaces, with f0, f1 : X → Y continuous. Then, a homotopy between f0
and f1 is a continuous map

F : X × [0, 1]→ Y (183)

such that F (x, 0) = f0(x) and f(x, 1) = f1(x) for all x ∈ X. In this case, we say f0 and f1 are
homotopic, written f0 ≃ f1.

Figure 43: Think of the blobs as images of a certain function residing in Y . They are changing continuously.

Given spaces X,Y with A ⊂ X,Y and f0, f1 : X → Y continuous maps such that f0|A = f1|A. A
homotopy relative to A between f0 and f1 is a homtopy F with the additional property that

F (a, t) = f0(a, t) = f1(a, t) (184)

for all a ∈ A, t ∈ I. This is an equivalence relation.

Proof.

We prove that this is an equivalence relation.
1. Reflexive. Take F (x, t) = f(x).
2. Symmetric. If f0 ≃ f1 via homotopy F , then G(x, t) = F (x, 1− t) is a homotopy from f1 to f0.
3. Transitive. If f0 ≃ f1 via F and f1 ≃ f2 via G, then we define a new function

H(x, t) :=

{
F (x, 2t) if 0 ≤ t ≤ 1

2

G(x, 2t− 1) if 1
2 ≤ t ≤ 1

(185)

which is continuous by the pasting lemmaa and so is a homotopy.
aThe maps t 7→ F (x, 2t) and t 7→ G(x, 2t− 1) are continuous on the closed domains X × [0, 1

2
] and X × [ 1

2
, 1] that

coincide on X × { 1
2
}.

Example 10.1 (Functions Mapping to Convex Spaces are Null-Homotopic)

If Y = Rn, then for any space X, any two continuous maps f0, f1 : X → Rn are homotopic by defining

F (x, t) = (1− t)f0(x) + tf1(x) (186)
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which is well-defined as Y is convex. Furthermore, it is path connected, and so the value of the
constant function does not matter. Any two constant functions are homotopic.

Example 10.2 (Two Non-Homotopic Functions)

Consider X = S1, Y = R2 \ {0}, with f : S1 → Y the canonical inclusion, and g any constant map.
Then the straight line homotopy no longer works, since the circle gets “stuck” on the hole. That gives
some sort of rigorous definition of what a hole can be.

However, note that if two functions are null-homotopic, it does not mean that they are homotopic to each
other.

Example 10.3 (Null-Homotopic Paths are Not Homotopic)

Given X = R, Y = (0, 1) ∪ (2, 3), say that we are given the functions f, g : X → Y defined f(x) =
0.5, f(y) = 2.5. Then by definition they are null-homotopic, but they are not homotopic to each
other.

This gives us a clue that if a space is path connected, then null-homotopic functions are homotopic to each
other. We will elaborate on this later. The most fundamental way to construct new homotopies from old
ones is by composing them with continuous functions. We can do this either before or after the homotopy.

Lemma 10.1 (Continuous Compositions of Homotopic Maps are Homotopic)

Let f0, f1 : X → Y be continuous maps with f0 ≃A f1.
1. If g : Y → Z is continuous, then g ◦ f0 ≃A g ◦ f1.
2. If h : W → X is continuous, then f0 ◦ h ≃h−1(A) f1 ◦ h.

Proof.

f0 ≃ f1 implies that there is a homotopy

F : X × [0, 1]→ Y (187)

s.t. F (x, 0) = f0(x), F (x, 1) = f1(x).
1. Now we construct the map

G = g ◦ F : X × [0, 1]→ Z (188)

Then, g continuous implies G is continuous, and we have

G(x, 0) = (g ◦ F )(x, 0) = g(f0(x)) = (g ◦ f0)(x) (189)
G(x, 1) = (g ◦ F )(x, 1) = g(f1(x)) = (g ◦ f1)(x) (190)

which is by definition a homotopy.
2. Given h : W → X continuous, then h × id : W × [0, 1] → X × [0, 1] is continuous under the

product topology, and so we define the continuous map

H = F ◦ (h× id) : W × [0, 1]→ Y H (191)

which satisfies

H(x, 0) = (F ◦ (h× id))(x, 0) = F (h(x), 0) = f0(h(x)) = (f0 ◦ h)(x) (192)
H(x, 1) = (F ◦ (h× id))(x, 1) = F (h(x), 1) = f1(h(x)) = (f1 ◦ h)(x) (193)
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Now we have seen that homotopies form an equivalence class. Now it turns out that under function compo-
sitions, homotopies are preserved, making homotopies a congruence class.

Theorem 10.1 (Homotopies is a Congruence Relation Under Composition)

Given f0, f1 : X → Y and g0, g1 : Y → Z,

f0 ≃ f1, g0 ≃ g1 =⇒ g0 ◦ f0 ≃ g1 ◦ f1 (194)

Proof.

We have F : [0, 1]×X → Y and G : [0, 1]× Y → Z. Then, we can simply define the component-wise
composition of maps

G ◦ (F × id) : [0, 1]×X → Z, (G ◦ (F × id))(t, x) := G
(
t, F (t, x)

)
(195)

which is continuous. Also, it is the case that

(G ◦ F )(0, x) = G
(
0, F (0, x)

)
= G(0, f0(x)) = g0(f0(x)) = (g0 ◦ f0)(x) (196)

(G ◦ F )(1, x) = G
(
1, F (1, x)

)
= G(1, f1(x)) = g1(f1(x)) = (g1 ◦ f1)(x) (197)

So this is indeed a homotopy between g0 ◦ f0 ≃ g1 ◦ f1.

10.2 Path Homotopies and the Fundamental Group
Now we limit our scope to closed paths, which will unlock a nice algebraic structure that we can analyze.
This is the beginning of algebraic topology. Remember that a continuous map f : [0, 1] → X with f(0) =
x0, f(1) = x1 is called a path. A path from x to itself is called a loop at x.

Definition 10.2 (Path Homotopy)

Given two paths f0, f1 : [0, 1] → X, a path homotopy is a homotopy relative to {0, 1}, i.e. a
continuous map F : [0, 1]× [0, 1]→ X s.t.

f(s, 0) = f0(s) f(s, 1) = f1(s) (198)
f(0, t) = x f(1, t) = x (199)

for all s, t.a

aNote that the first line is the regular homotopy conditions, while the second line is the “relative to”.

A corollary of the theorem on continuous compositions is that any path is path homotopic to any reparam-
eterization of the same path.

Corollary 10.1 (Reparameterizations are Still Path Homotopic)

Suppose that g : [0, 1] → [0, 1] is a continuous map with g(0) = 0, g(1) = 1. Let f : [0, 1] → X be a
path, and f ′ = f ◦ g. Then f ≃p f ′.

Proof.

We can take the homotopy

G : [0, 1]× [0, 1]→ [0, 1], G(s, t) := (1− t)g(s) + ts (200)
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This is a homotopy between g and the identity map [0, 1] relative the endpoints since G(s, 0) = g(s)
and G(s, 1) = s. Now we compose this with f to get the new continuous map

F = f ◦G : [0, 1]× [0, 1]→ X, (201)

where

F (s, 0) = f(G(s, 0)) = f(g(s)) = (f ◦ g)(s) (202)
F (s, 1) = f(G(s, 1)) = f(s) = f(s) (203)

and so f ◦ g ≃p f .

The goal here is to try and develop some sort of algebraic structure on these paths. Therefore, let us define
the following binary operation.

Definition 10.3 (Concatenation of Paths)

Given two paths f from x0 to x1, and g from x1 to x2, we can obtain a path from x0 to x2 by defining
the concatenation of the paths as

(f ∗ g)(s) :=

{
f(2s) if 0 ≤ s ≤ 1

2

g(2s− 1) if 1
2 ≤ s ≤ 1

(204)

This is indeed a path since it is continuous by the pasting lemma.

It turns out that homotopies—which was originally an equivalence relation—is actually a congruence relation
with respect to concatenation.

Lemma 10.2 (Path Homotopies is a Congruence Relation Under Concatenation)

if f0, f1 are paths from x0 to x1, and g0, g1 are paths from x1 to x2, then

f0 ≃p f1, g0 ≃p g1 =⇒ f0 ∗ g0 ≃p f1 ∗ g1 (205)

Proof.

Suppose F and G are path homotopies from f0 to f1 and g0 to g1. Then, we can define the “concate-
nation” of homotopies as the map

H(s, t) :=

{
F (2s, t) if 0 ≤ s ≤ 1

2

G(2s− 1, t) if 1
2 ≤ s ≤ 1

(206)

Since they overlap on a closed set, then by the pasting lemma H is continuous. Furthermore, we can
see that

H(s, 0) = F (0, t) = f0(s) = (f0 ∗ g0)(s) (207)
H(s, 1) = G(1, t) = g1(s) = (f1 ∗ g1)(s) (208)

Definition 10.4 (Fundamental Group)

We denote by π1(X,x0) as the set of path homotopy classes of loops [f ] based at x0. This, along
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with the binary operation.
[f ] ∗ [g] := [f ∗ g] (209)

and inverses is simply [f ]−1 := [f−1] where f−1(s) = f(1− s).

Proof.

We prove the group axioms.
1. Closure. This is proved since path homotopies is a congruence relation under concatenation.
2. Associativity. We prove something a bit more general. Let f, g, h be paths from x0 to x1 to x2

to x3, respectively. It is not the vase that (f ∗g)∗h = f ∗ (g ∗h) since
(
1
4 ,

1
4 ,

1
2

)
̸=
(
1
2 ,

1
4 ,

1
4

)
. But

they are reparamaterizations of each other, where φ is some monotonically increasing continuous
function from [0, 1] to itself. Reparameterizations are path homotopic, and therefore

([f ] ∗ [g]) ∗ [h] = [h] ∗ ([g] ∗ [h]) (210)

3. Identity. We claim that the constant path at x0 (or more formally, the set of all null-homotopic
paths at x0) is the identity element. Since ex0

: [0, 1] → X is defined ex0
(x) = x0, we have

established that
ex0 ∗ f ≃p f, f ∗ ex0 ≃p f (211)

4. Inverses. If f is a path from x0 to x1, then define f̄ := f(1− x), which is a path from x1 to x0.
Note that f ∗ f̄ is not the constant path ex0 , but it is homotopic since

(f ∗ f̄)(s) :=

{
f(2s) = f(2s) if 0 ≤ s ≤ 1

2

f̄(2s− 1) = f(2− 2s) if 1
2 ≤ s ≤ 1

(212)

But we use a sneaky trick and note that p : [0, 1]→ [0, 1] defined as

p(s) :=

{
2s if 0 ≤ s ≤ 1

2

2− 2s if 1
2 ≤ s ≤ 1

(213)

satisfies p(0) = p(1) = 0, which implies that p is homotopic to a constant path at 0, which
implies that f ∗ p is also null-homotopic.

Note that the identity element of π1(X,x0) is the constant map x 7→ x0, not the identity map! This is
different from a group of transformations.

10.3 Homomorphisms of Fundamental Groups
Now that we have constructed the fundamental group at a point x0, the next things to consider are their
behavior under group homomorphisms, and how different fundamental groups at different points (of the
same topological space) look like.

Definition 10.5 (Induced Group Homomorphism)

Suppose k : X → Y is a continuous map with x0 ∈ X, y0 = f(x0) ∈ Y . Define the map, called the
induced group homomorphism of k as

k∗ : π1(X,x0)→ π1(Y, y0), k∗([f ]) := [k ◦ f ] (214)

which is well defined since f ≃p f ′ in X =⇒ k ◦ f ≃p k ◦ f ′ in Y as a composition with continuous
functions. This is indeed a group homomorphism.
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Proof.

Let’s take a look at f, g : [0, 1]→ X. Then

f ∗ g : [0, 1]→ X, (f ∗ g)(t) :=

{
f(2t) if 0 ≤ t ≤ 1

2

g(2t− 1) if 1
2 ≤ t ≤ 1

(215)

Therefore, mapping this through k∗ gives us

k ◦ (f ∗ g) : [0, 1]→ Y, (k ◦ (f ∗ g))(t) :=

{
(k ◦ f)(2t) if 0 ≤ t ≤ 1

2

(k ◦ g)(2t− 1) if 1
2 ≤ t ≤ 1

(216)

Now take k ◦ f, k ◦ g : [0, 1]→ Y , and we can construct

(k ◦ f) ∗ (k ◦ g) : [0, 1]→ Y,
(
(k ◦ f) ∗ (k ◦ g)

)
=

{
(k ◦ f)(2t) if 0 ≤ t ≤ 1

2

(k ◦ g)(2t− 1) if 1
2 ≤ t ≤ 1

(217)

which matches. Therefore we have k ◦ (f ∗ g) = (k ◦ f) ∗ (k ◦ g), and so under the congruence class

k∗([f ] ∗ [g]) = k∗([f ∗ g]) = [k ◦ f ] ∗ [k ◦ g] = k∗([f ]) ∗ k∗([g]) (218)

Lemma 10.3 (Identity Map Induces Identity Group Homomorphism)

If the continuous map between topological spaces is k = idX , then the induced homomorphism is
simply the identity isomorphism.

(idX)∗ = (idπ1(X,x0)) (219)

Proof.

Just substituting with the formula above gives

k∗([f ] ∗ [g]) = [f ] ∗ [g] (220)

and so k∗ must be the identity.

Theorem 10.2 (Composition of Induced Group Homomorphisms)

If k : X → Y and l : Y → Z are continuous, then

(l ◦ k)∗ = l∗ ◦ k∗ (221)

Proof.

We have

(l ◦ k)∗([f ]) = [(l ◦ k) ◦ f ] (222)
= [l ◦ (k ◦ f)] (223)
= l∗([k ◦ f ]) (224)
= l∗(k∗([f ])) (225)
= (l∗ ◦ k∗)([f ]) (226)
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Corollary 10.2 (Homeomorphisms Induce Fundamental Group Isomorphisms)

If X ∼= Y by a homeomorphism taking x0 to y0, then π1(X,x0) ∼= π1(Y, y0).

Proof.

If k : X → Y is a homeomorphism, then k : Y → X is also a homeomorphism, both continuous. Then
this induces the group homomorphisms k∗ : π1(X,x0) → π1(Y, y0) and k−1

∗ : π1(Y, y0) → π1(X,x0),
and so from the lemma,

k−1 ◦ k = idX =⇒ (k−1 ◦ k)∗ = idπ1(X,x0) (227)

and so (k−1)∗ ◦ k∗ = idπ1(X,x0) and k∗ ◦ (k−1)∗ = Idπ1(Y,y0).

Finally, let’s talk about constructing new groups from old ones.

Theorem 10.3 (Direct Products of Fundamental Groups)

For any spaces X,Y , we have

π1(X × Y, x0 × y0) ≃ π1(X,x0)× π1(Y, y0) (228)

Moreover, the inclusion and projection maps on the topological spaces induce inclusion and projection
maps on the groups.

Proof.

A loop f : I → X × Y with f(0) = f(1) = (x0, y0) is the same as a pair of maps fX : I → X and
fY : I → Y . A homotopy between loops is a continuous map F : I × I → X × Y , which is the sames
as a pair of homotopies FX and FY .

A fancy way to say this is that at every point, there is a group, and π1 is a functor from the category of
pointed topological spaces to the category of groups.

10.4 Simply Connected Spaces
Now the final thing to mention for now is that there is a group at every single point in a topological space.
They may be completely different groups, but the following theorem nicely categorizes them in terms of path
components.

Theorem 10.4 (Fundamental Groups of Points in a Path Component are Isomorphic)

If x0 and x1 are on the same path component of X, then π1(X,x0) ≃ π1(X,x1). The actual isomor-
phism depends on a choice of a path from x0 to x1.

Proof.

Let h be a path from x0 to x1, and let f be a loop around x0. We are given a loop in x0 and want
to essentially find a loop around x1. We can define

Ah : π1(X,x0)→ π1(X1, x1), Ah([f ]) := [h̄ ∗ f ∗ h] (229)

Essentially, we want to start at x1, go to x0, loop around, and then go back to x1, which is in total a
loop around x1. We claim that Ah is an isomorphism by showing that it is a group homomorphism
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and that it has a well-defined inverse.

Ah([f ] ∗ [g]) = [h̄ ∗ f ∗ g ∗ h] (230)
= [h̄ ∗ f ] ∗ [g ∗ h] (231)
= [h̄ ∗ f ] ∗ [h ∗ h̄] ∗ [g ∗ h] (232)
= [h̄ ∗ f ∗ h] ∗ [h̄ ∗ g ∗ h] (233)
= Ah([f ]) ∗Ah([g]) (234)

As for inverses, TBD.

Of course, when x0 and x1 are in different path components, they may or may not have isomorphic funda-
mental groups. Therefore, when we know a space X is path connected, we can just drop the point x0 and
just refer to the fundamental group as π1(X).

Therefore, if the space is path connected, the fundamental group at all points are isomorphic. But even if
all the groups are isomorphic, they may be nontrivial. This motivates the following definition.

Definition 10.6 (Simply Connected Set)

X is called simply connected if it is path connected and π1(X,x0) = {e}.

Note the following.
Simply Connected =⇒ Path Connected =⇒ Connected (235)

Example 10.4 (Simply Connected Spaces)

The following are simply connected.
1. Rn

2. Any convex subset of Rn.
3. Any star-shaped subset of Rn, where a star-shaped set is defined as a set where there exists

some point x0 ∈ A s.t. for all y ∈ A the line segment from x0 to y is in A.

Lemma 10.4 ()

If X is simply connected, then any two paths f, g connecting x to y are path-homotopic.

Proof.

Given two paths f, g, then f ∗ ḡ is defined and is a loop of X based at x. Since X is simply connected,
this is homotopic to the constant loop based at x. Then,

[f ] = [f ∗ ḡ] ∗ [g] = [ex] ∗ [g] = [g] (236)

Theorem 10.5 (Union of Simply Connected Spaces)

Suppose X = U ∪ V , where U, V are open and simply connected and U ∩ V is nonempty and path
connected. Then X is simply connected.
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Proof.

Let x0 ∈ U ∩ V . Given a loop f , we can factor f as a composition f = f1 ∗ · · · ∗ fn, where each fi
is a path contained either in U or in V , from some xi−1 ∈ U ∩ V to xi ∈ U ∩ V , and xn = x0. For
i = 1, . . . , n− 1, choose a path gi from x0 to xi in U ∩ V .

f ≃p f1g1g1f2g2g2f3 . . . fn−1gn−1gn−1fn (237)
≃p (f1g1)(g1f2g2)(g2f3 . . . fn−1gn−1)(gn−1fn) (238)

Each of the factors is a loop in U or V based at x0, so it can be contracted to ex0 . Thus, f ≃ ex0 , as
required.

10.5 Covering Maps
Now it turns out that a lot of sets are simply connected. So we will use this definition to categorize the
fundamental groups of familiar spaces. However, the proofs of these requires the knowledge of covering
spaces and lifts.

Definition 10.7 (Covering Map)

A function p : Y → X is a covering map if p is
1. surjective,
2. continuous,
3. and for every x ∈ X there exists an open U ∋ x s.t. p−1(U) = ∪αVα, where Vα are open and

disjoint, and p|Vα : Vα → U is a homeomorphism.
The sets {Vα} is a partition into slices, and Y is said to be a covering space of X.

You can imagine a covering map as like a stack of pancakes Vα that get all squashed down to U . Now let’s
introduce a few properties of covering maps.

Lemma 10.5 (Preimage of Singletons Have Discrete Topology)

If p : Y → X is a covering map, then for each x ∈ X, the subspace p−1(x) ⊂ X has the discrete
topology.

Proof.

Take some x ∈ X and look at its preimage p−1(x). Then, we can imagine it as some disjoint union of
discrete points, which has the discrete topology. More formally, take some open U ∋ x and then its
preimage will be the disjoint union of open sets ⊔αVα. But each point y ∈ p−1(x) will be contained
in exactly one of the Uα’s, and so y = y ∩ Uα is open in itself, meaning that all the {yα} will have
the discrete topology.

Theorem 10.6 (Covering Maps are Open Maps)

If p : Y → X is a covering map, then it is open, i.e. maps open sets to open sets.

Proof.

Suppose A ⊂ Y is open. We wish to show that p(A) is open. Choose an arbitrary x ∈ p(A). By
definition of covering maps, there must exist an open U ∋ x (but U not necessarily in p(A)) s.t.
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p−1(U) = ⊔αVα for Vα open. There is a point y ∈ U s.t. p(y) = x. Let Uβ be the open slice
containing y. Then, since A is open by assumption, the set Vβ ∩ A is open in Y and hence open in
Vβ . Since p maps Vβ homeomorphically onto U , it maps open sets to open sets and so p(Vβ ∩ A) is
open in U and hence open in X. Furthermore, it is a neighborhood of x contained in p(A). Since for
every x ∈ p(A) has an open neighborhood contained in p(A), p(A) is thus open.

Corollary 10.3 (Covering Maps are Quotient Maps)

A covering map p : Y → X is a quotient map.

Proof.

This is immediate because open maps are quotient maps.a

aHowever, open doesn’t mean closed!

Example 10.5 (Reals to the Circle)

The following is a covering map.

p : R→ S1, p(t) = (sin 2πt, cos 2πt) (239)

It is clearly surjective and continuous. Now given any x ∈ S1, let’s take the open neighborhood
U ∋ x. Then, its preimage is the union of disjoint intervals Vn for n ∈ N, and if we restrict it to each
Vn, then it is a homeomorphism.

Example 10.6 (Positive Reals to the Circle)

The map
p : R+ → S1, p(x) := (cos 2πx, sin 2πx) (240)

is not a covering map. It is surjective and continuous but the point x0 = (1, 0) ∈ S1 has no
neighborhood U that is evenly covered by p. We can see that the inverse image of (0, ϵ) is not
homeomorphic to an open U .

These examples might lead you to think that R is the only connected covering space of S1. It turns out that
a space can be a covering space of itself.

Example 10.7 (Covering Map of S1 to Itself)

We can consider S1 ⊂ C and claim that the following is a covering map.

p : S1 → S1, p(z) = z2 (241)

Theorem 10.7 (Restriction of Covering Maps)

Let p : Y → X be a covering map. If Y0 ⊂ Y and X0 = p−1(Y0), then the restriction p0 : Y0 → X0 is
a covering map.
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Proof.

Given x0 ∈ X0, let U ∋ x0 be an open set. Then let {Vα} be a partition of p−1(U) into slices. We
know that U ∩X0 is an open neighborhood of x0 in X0, and taking the preimage we have

p−1(U ∩X0) = ⊔αVα ∩ p−1(X0) = ⊔αVα ∩ Y0 (242)

The Vα∩Y0 are disjoint, and Vα open in Y implies that Vα∩Y0 is open in Y0. Finally, we can see that
p maps Vα homeomorphically onto U , and so p maps Vα∩Y0 homeomorphically onto p(Vα)∩p(Y0) =
U ∩X0.

Theorem 10.8 (Product of Covering Maps)

If p : Y → X and p′ : Y ′ → X ′ are covering maps, then

p× p′ : X ×X ′ → Y × Y ′ (243)

is a covering map.

Proof.

Given x ∈ X,x′ ∈ X ′, let U ∋ x, U ∋ x′ be open neighborhoods of x and x′ with {Vα}, {V ′
α} the even

slices of p−1, (p′)−1. Then the preimage

(p× p′)−1(U × U ′) =
⋃
α,β

Vα × V ′
β (244)

These are disjoint open sets of X ×X ′, each of which is mapped homeomorphically onto U × U ′ by
p× p′.

Theorem 10.9 (Composition of Covering Maps)

Let q : X → Y and r : Y → Z be covering maps. If r−1(z) is finite for all z ∈ Z, then p = r◦q : X → Z
is a covering map.

Proof.

What we should keep in mind is that locally, covering maps look like homeomorphisms.

Example 10.8 (Projection of Products with Discrete Topology)

Let Y have the discrete topology, and p : X × Y → X is a projection on the first coordinate. Then
we claim that p is a covering map. Note that the open sets are of the form

X × {y} for y ∈ Y (245)

Example 10.9 ()

Say k ∈ Z \ {0} and fk : S1 → S1 defined

fk(cos θ, sin θ) := (cos kθ, sin kθ) (246)

This circularly stretches out the circle by a factor of k. We claim that this is a covering map.
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Theorem 10.10 (Covering Maps as Homeomorphisms)

Let p : Y → X be a covering map with X simply connected and Y path connected. Then p is a
homeomorphism.

10.6 Lifts
There is a nice relationship between the fundamental group and the covering space.

Definition 10.8 (Lift)

If p : Y → X is a covering map and f : Z → X is continuous, then a lift of f is a continuous map
f̃ : Z → Y satisfying p ◦ f̃ = f .a

Y

Z X

p

f

f̃

Figure 44: Commutative diagram of a lift.

aIt is called a lift since it “lifts” the function with codomain Z to the larger covering space Y .

Note that not every f has a lift. However, it turns out that the existence of liftings when p is a covering
map is an important tool for studying covering spaces and the fundamental group. The path lifting property
guarantees that paths can be lifted into a covering space.

Lemma 10.6 (Path Lifting Property)

Suppose p : Y → X is a covering map with p(y0) = x0. Given any path f : [0, 1]→ X with f(0) = x0,
there exists a unique lift f̃ : [0, 1]→ Y with f̃(0) = y0.

Therefore, this essentially means that by taking the covering map p that sends y0 to x0 and a path f starting
at x0, we can construct a corresponding path f̃ starting at y0 such that f = p ◦ f̃ . Let’s do an example.

Example 10.10 (Lift of Real Interval to S1)

Consider the covering map and path defined as below.

p : R→ S1, p(t) = (cos 2πt, sin 2πt) (247)

We can see that p(y0) = p(0) = (1, 0) = x0. Now let’s consider a few paths f : [0, 1]→ S1. We would
like to “lift” this path I → S1 to a path I → R. The lemma states that there is indeed a unique path.

1. When f(s) = (cosπs, sinπs) which satisfies f(0) = x0 = (1, 0), the lift is f̃(t) = t/2 which
satisfies f̃(0) = y0 = 0.

t
f̃−→ t

2

p−→
(
cos 2π

t

2
, sin 2π

t

2

)
= (cosπt, sinπt) = f(t) (248)

2. When f(s) = (cosπs,− sinπs) which satisfies f(0) = x0 = (1, 0), the lift is f̃(t) = −t/2 which
satisfies f̃(0) = y0 = 0.

t
f̃−→ − t

2

p−→
(
cos−2π t

2
, sin−2π t

2

)
= (cosπt, sin−πt) = f(t) (249)

since cos(t) = cos(−t).
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R

[a, b] S1

p

f

f̃

Figure 45

Then, we show that path homotopies can be lifted as well.

Lemma 10.7 (Homotopy Lifting Property)

Suppose p : Y → X is a covering map. If f, g : I → X are paths with f(0) = g(0), f(1) = g(1), and
f ≃p g (path homotopic), and f̃ , g̃ : I → Y are lifts starting at the same y0, then f̃ ≃p g̃.

Great, so we have defined covering maps and have shown that paths admit lifts that are consistent with
the path homotopy relation. Now, to connect this back to fundamental groups, we introduce the following
theorem which allows us to determine the cardinality of fundamental groups through covering maps over
simply connected spaces. This will be very useful to us later on.

Theorem 10.11 (Bijection from Fundamental Group to Preimage of Covering Map on
Simply Connected Space)

If p : Y → X is a covering map and Y is simply connected, then π1(X,x0) is in bijection with p−1(x0).

Proof.

Given a loop f : [0, 1]→ X with f(0) = f(1) = x0, fix y0 ∈ p−1(x0). By the path lifting property, we
can take the lifted path f̃ : [0, 1]→ Y with f̃(0) = y0.

p(f̃(1)) = f(1) = y0, f̃(1) ∈ p−1(x0) (250)

By the homotopy lifting property, this only depends on [f ] ∈ π1(X,x0).
1. To prove surjectivity, since Y is simply connected, this implies Y is path connected. Choose a

path g from y0 to y. Let f = p ◦ g. Then L([f ]) = g(1) = y.
2. To prove injectivity, if L([f ]) = L([g]), then f̃ and g̃ are both paths in Y from y0 to y1. Because

Y is simply connected, f̃ ≃p g̃ =⇒ f ≃p g =⇒ [f ] = [g].

Example 10.11 ()

Take p : R2 → S1 × S1 defined

(s, t) 7→
(
(cos 2πs, sin 2πs), (cos 2πt, sin 2πt)

)
(251)

Think back to the quotient space representation.

T 2 = [0, 1]2/∼, (x, 0) ∼ (x, 1)∀x, (0, y) ∼ (1, y)∀y (252)

Then we can think of p(x, y) = (x (mod 1), y (mod 1)). We claim that this is a covering map.

10.7 Fundamental Groups of Euclidean Space and the Sphere
Now that we have established that Rn is simply connected, along with some tools on sufficient conditions
for simply connectedness and lifts, we can start to categorize fundamental groups of Rn and Sn, with the
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corresponding sets minus a point.

Theorem 10.12 (Fundamental Groups of Sn)

We have
1. For n = 1, S1 is path connected but not simply connected.

π1(S
1) ≃ Z (253)

2. For n ≥ 2, Sn is simply connected, and so

π1(S
n) ≃ {e} (254)

Proof.

Consider the map p : R→ S1 given by t 7→ (cos 2πt, sin 2πt).a For each x ∈ S1, there is an open set U
such that p−1(U) is a disjoint union of open sets Vi, where p|Vi

is a homeomorphism. Let x0 = (1, 0).
Then p−1(x0) = Z. Then here are the key technical steps.

1. For any continuous path f : [0, 1] → S1 with f(0) = x0, and any choice of x̃0 ∈ R with
p(x̃0) = x0 (i.e. some integer), there is a unique continuous function f̃ : [0, 1] → R with
f(0) = x̃0.

2. f̃(1)−f̃(0) measures the “net winding” of f . 1/2π times the net increase in the angle coordinate.
In particular, if f is a loop, then f̃(1)− f̃(0) is an integer, which we’ll call the winding number
of f , denoted ω(f). This doesn’t depend on which choice of f̃ we made.

3. Given two loops f, g based at x0, let f̃ , g̃ by their lifts, with say f̃(0) = g̃(0) = 0. Then f ≃p g

iff f̃ ≃ pg̃. One direction is easy. If F is a path homotopy between f̃ and g̃, then p ◦ F is a
path homotopy between f and g. The other direction requires a somewhat elaborate argument
using compactness.

4. As a consequence, we see that if f ≃p g, then f̃(1) = g̃(1), and hence ω(f) = ω(g).
5. Conversely, if ω(f) = ω(g) = n, then f̃ and g̃ are both paths in R from 0 to n. There is a

straight line homotopy between them. F (s, t) = (1− t)f̃(s) + tg̃(s). So f ≃p g.
6. We then have ω(f ∗ g) = ω(f) + ω(g).
7. Thus, the winding number gives us an isomorphism from π1(S

1)→ Z.
By using the function p : R+ × R → R2 \ {0}, given by p(r, t) = (r cos 2πt, r sin 2πt), we can use the
same logic. Another way to see it is that R2 \ {0} ∼= S1 × (0,∞) ∼= S1 × R.

aThis is a classic example of what’s called a covering map, which we will define later.

Now we explore the fundamental groups of Sn minus a point. This becomes very simple once we know the
stereographic projection.

Theorem 10.13 (Stereographic Projection)

We claim
Sn \ {n} ∼= Rn (255)

Proof.

We can construct a formula, but visually, we can take any x ∈ Sn \ {n}, and there is a unique line
L through x and n. Now let f(x) := Lx ∩ (Rn−1 × {0}), which is bijective. It also turns out to be a
homeomorphism.
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Corollary 10.4 (Fundamental Groups of Sn Minus a Point)

We claim that Sn \ {p} is simply connected, for all n ∈ N.

π1(S
n) ≃ {e} (256)

So informally, Sn minus a point gives us Rn, so what if we remove a point from Rn? It turns out that by
taking n points away from Sn, it is equal to taking n− 1 points away from Rn.

Theorem 10.14 (Fundamental Groups of Rn Minus a Point)

We claim that
1. For n = 1, R \ {0} is not even path connected. For any x0, we have

π1(R \ {0}) ≃ {e} (257)

2. For n = 2, R2 \ {0} is path connected, but it is not simply connected.a

π1(R2 \ {x}) ≃ Z (258)

3. For n ≥ 3, Rn \ {x} is simply connected.b

aWe can think of this as a hole in the middle of the plane that paths cannot unwind through.
bWe can interpret as if the extra dimensions being added gives more space for a path to unwind.

Proof.

For n = 1, we can see that (−∞, 0) and (0,+∞) are convex subsets, so they are simply connected.
For n = 2, we can see in polar coordinates,

R2 \ {0} ≃ S1 × (0,+∞) =⇒ π1(R2 \ {0}) ≃ π1(S
1)× π1((0,+∞)) ≃ Z× {e} ≃ Z (259)

For n = 3, we can construct it from smaller simply connected spaces. Take

U = Rn \ {(0, . . . , 0, z) | z ≥ 0} (260)
V = Rn \ {(0, . . . , 0, z) | z ≤ 0} (261)

These are each open (since the axes that we minus out is closed) and simply connected (since they
are star convex). Also, U ∩ V = (Rn−1 \ {0}) × R, which is path connected since we assumed that
n ≥ 3. Therefore, by the theorem above, Rn \ {0} is simply connected.

Theorem 10.15 (Fundamental Groups of RPn)

We claim that.
1. For n = 1, RP1 ∼= S1 and so π1(RP) ≃ Z.
2. For n ≥ 2, π1(RPn) ≃ Z2

Proof.

For n = 1, recall that S1 is homeomorphic to S1/∼ where x ∼ −x through the homeomorhism
z 7→ z2.
For n ≥ 2, we claim that the projection map p : Sn → RPn defined − ± x → x is a covering
map. Furthermore, we know that Sn is simply connected (since it’s homeomorphic to Rn \ {0}), and
therefore there exists a bijection from π(RPn, x0) with p−1(x0) = {±x0}. Therefore the order of the
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fundamental group must be 2, and it can only be Z2 for all x0.

At this point it’s pretty easy to show the fundamental groups of familiar quotient spaces.

Example 10.12 (Torus)

The torus T ∼= S1 × S1 is path connected has the fundamental group

π1(T ) ≃ π1(S
1)× π1(S

1) ≃ Z× Z (262)

So it is not simply connected.

Example 10.13 (Cylinder)

The cylinder is path connected and the fundamental group is

π1(S
1 × [0, 1]) ≃ π1(S

1)× π1([0, 1]) ≃ Z× {e} ≃ Z (263)

Example 10.14 (Mobius Strip)

The Mobius strip is not simply connected.

Example 10.15 (Klein Bottle)

The Klein bottle is not simply connected and it is not abelian.

10.8 Retractions

Definition 10.9 (Retraction)

If A ⊂ X, a retraction r : X → A is a continuous function such that r(a) = a for all a ∈ A.

Example 10.16 ()

The following are retractions.
r : R→ {x} ⊂ R, r(x) = x (264)

This is also a retraction.
r : R \ {0} → Sn−1, x 7→ x

∥x∥
(265)

Lemma 10.8 (Group Homomorphism Induced By Retraction)

Given A ⊂ X, a retraction r : X → A, and the canonical injection ι : A→ X,
1. The induced homomorphism r∗ : π1(X, a0)→ π1(A, a0) is surjective.
2. The induced homomorphism ι∗ : π1(A, a0)→ π1(X, a0) is injective.

Proof.

It’s pretty easy to show whether a particular example is a retraction or not. However, we will mainly be
interested in the existence of retractions.
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Theorem 10.16 (Unit Interval to Endpoints)

There is no retraction from D1 = [−1, 1] to S0 = {−1, 1}.

Proof.

Let X = [a, b]. There is no retraction f : X → {a, b} since Im(f) must be connected. But f(a) =
a, f(b) = b. Alternatively, we can use IVT.

Theorem 10.17 (Unit Disk to Circular Boundary)

There is no retraction from D2 → S1. Intuitively, we can see that the mapping has to “tear” the disk
somewhere!

Proof.

Theorem 10.18 ()

Let A ⊂ X, and x0 ∈ A, and r : X → A be a retraction. Then the induced map r∗ : π1(X,x0) →
π1(A, x0) is surjective.

Proof.

Given retraction r : X → A and the canonical injection ι : A→ X, we have r ◦ ι = idA by definition.
Now see how it affects the fundamental spaces.

π1(A, x0)
ι∗−→ π1(X,x0)

r∗−→ π1(A, x0) (266)

Therefore r∗ ◦ ι∗ = idA. So for any loop [f ] ∈ π1(A), [f ] = r∗(i∗([f ])), so [f ] ∈ Im(r∗). Also ι∗ is
injective.

Corollary 10.5 ()

If X is simply connected and A is not, then there is no retraction.

Extending this a bit, remember that any continuous function f : [a, b] → [a, b] must have a fixed point by
IVT. Thinking D1 = [−1, 1], we claim the following. Note that a rotation of the disk D2 has a fixed point
in the center.

Theorem 10.19 (Brower’s Fixed Point Theorem)

Any continuous function f : D2 → D2 has a fixed point, i.e. there exists x ∈ D2 s.t. f(x) = x.a

aThis was first proven in the 1930s based on a non-intersection theorem . But it is non-constructive, i.e. doesn’t
show you how to find the point.

Proof.

Suppose f : D2 → D2 has no fixed point. Define a function g : D2 → D2 as follows. For x, take
f(x) ̸= x and draw a ray from f(x) to x (directions matter!). Where it hits the boundary is the
output g(x). It is much more tedious to write out in formulas, but if you do, you can see that it’s

99/ 143



Point Set Topology Muchang Bahng Fall 2024

just the composition of continuous functions and is so continuous. If x ∈ S1, then g(x) = x, so I’ve
just constructed a retraction from D2 to S1, which is a contradiction!

So what about higher dimensions? If we believe that there is no retraction Dn → Sn−1, by the same method
we can prove for Dn → Dn. The problem is that for n ≥ 2 Sn−1 is simply connected and so π1(S

n−1) = {e},
and same holds for Dn. So we can’t prove the non-retraction using fundamental groups π1. This is where
we need higher order homotopy groups.
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11 Exercises

11.1 Open, Closed Sets

Exercise 11.1 (Munkres 13.1)

Let X be a topological space; let A be a subset of X. Suppose that for each x ∈ A there is an open
set U containing x such that U ⊂ A. Show that A is open in X.

Solution 11.1

Given a x ∈ A, let us label its open neighborhood as Ux ⊂ A. We claim that

A =
⋃
x∈A

Ux (267)

We prove bidirectionally.
1. A ⊂ ∪x∈AUx. Let y ∈ A. Then there exists an open Uy containing y. Since Uy is in the union

by construction.
y ∈ Uy ⊂

⋃
x∈A

Ux (268)

2. ∪x∈AUx ⊂ A. Let y ∈ ∪x∈AUx. Then there must be some Uy in this union s.t. y ∈ Uy. But by
construction Uy ⊂ A, so y ∈ A.

We are done.

Exercise 11.2 (Munkres 13.2)

Consider the nine topologies on the set X = {a, b, c} indicated in Example 1 of §12. Compare them;
that is, for each pair of topologies, determine whether they are comparable, and if so, which is the
finer.

Solution 11.2

Given the figure, we denote τi,j as the topology in the ith row (from top) and jth column (from left)
in the figure below. When I say for all i, j, I mean for all i, j ∈ {1, 2, 3}.

Figure 46

τ11 is the indiscrete topology so τ11 ⊂ τi,j for all i, j, i.e. it is coarsest. τ33 is the discrete topology so
τi,j ⊂ τ3,3 for all i, j, i.e. it is the finest. We list all other comparable topologies below.

1. τ1,2 ⊂ τ3,2, τ1,3, τ2,3.
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2. τ3,1 ⊂ τ1,2, τ3,2, τ1,3, τ2,3.
3. τ1,2 ⊂ τ3,2.
4. τ1,3 ⊂ τ2,3.

Exercise 11.3 (Munkres 13.3)

Show that the collection Tc given in Example 4 of §12 is a topology on the set X. Is the collection

T∞ = {U | X − U is infinite or empty or all of X}

a topology on X?

Solution 11.3

We denote Tc as the set of all subsets U ⊂ X such that X \ U is countable is all of X. We show the
4 properties:

1. U = ∅ =⇒ X \ U = X, which is by definition in Tc.
2. U = X =⇒ X \ U = ∅, which has cardinality 0. Therefore it is countable and is in Tc.
3. Let {Uα}α∈I ∈ Tc by a collection of open sets of X. Then

X \
⋃
α∈I

Uα =
⋂
α∈I

(X \ Uα) (269)

X \ Uα is countable for all α ∈ I, so let us fix some α′. Then⋂
α∈I

(X \ Uα) ⊂ Uα′ =⇒
∣∣∣∣ ⋂
α∈I

(X \ Uα)

∣∣∣∣ ≤ ∣∣Uα′
∣∣ (270)

and so the intersection is also countable.
4. Let {Ui}ni=1 by a finite collection of open sets of X. Then

X \
n⋂

i=1

Ui =

n⋃
i=1

(X \ Ui) (271)

Since Ui are open, X\Ui are countable, and since the finite union of countable sets are countable,
the RHS is countable, which implies the LHS is countable and so ∩ni=1Ui is open as well.

As for T∞, it is not a topology. Let us take X = R, and look at the sets Z≥0,Z≤0 consisting of all
the non-negative and non-positive integers. They are both infinite, and so R \ Z≥0 and R \ Z≤0 are
in T∞. Consider their union.

(R \ Z≥0) ∪ (R \ Z≤0) = R \ (Z≥0 ∩ Z≤0) = R \ {0} (272)

But R \ (R \ {0}) = {0}, and so R \ {0} is not open. Therefore Tc doesn’t satisfy the definition of a
topology.

Exercise 11.4 (Munkres 13.4)

(a) If {Tα} is a family of topologies on X, show that
⋂
Tα is a topology on X. Is

⋃
Tα a topology on

X?
(b) Let {Tα} be a family of topologies on X. Show that there is a unique smallest topology on X
containing all the collections Tα, and a unique largest topology contained in all Tα.
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(c) If X = {a, b, c}, let

T1 = {∅, X, {a}, {a, b}} and T2 = {∅, X, {a}, {b, c}}.

Find the smallest topology containing T1 and T2, and the largest topology contained in T1 and T2.

Solution 11.4

Exercise 11.5 (Munkres 13.5)

Show that if A is a basis for a topology on X, then the topology generated by A equals the intersection
of all topologies on X that contain A. Prove the same if A is a subbasis.

Solution 11.5

Exercise 11.6 (Munkres 17.1)

Let C be a collection of subsets of the set X. Suppose that ∅ and X are in C, and that finite unions
and arbitrary intersections of elements of C are in C. Show that the collection

T = {X − C | C ∈ C}

is a topology on X.

Solution 11.6

Exercise 11.7 (Munkres 17.2)

Show that if A is closed in Y and Y is closed in X, then A is closed in X.

Solution 11.7

Exercise 11.8 (Munkres 17.3)

Show that if A is closed in X and B is closed in Y , then A×B is closed in X × Y .

Solution 11.8

It suffices to prove that (X × Y ) \ (A×B) is open.

(X × Y ) \ (A×B) := {(x, y) ∈ X × Y | (x ̸∈ A) ∨ (y ̸∈ B)} (273)
= {(x, y) ∈ X × Y | x ̸∈ A} ∪ {(x, y) ∈ X × Y | y ̸∈ B} (274)
= [(X \A)× Y ] ∪ [X × (Y \B)] (275)

We know that since A,B are closed, X \ A, Y \ B are open. Therefore each the expressions under
definition of the product topology are open and their union must also be open.
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Exercise 11.9 (Munkres 17.4)

Show that if U is open in X and A is closed in X, then U − A is open in X, and A− U is closed in
X.

Solution 11.9

We know that U c is closed and Ac is open. Since U \ A = U ∩ Ac, it is the finite intersection of two
open sets and therefore is open. Since A \ U = A ∩ U c, is an intersection of two closed sets, it is
closed.

Exercise 11.10 (Munkres 17.5)

Let X be an ordered set in the order topology. Show that (a, b) ⊂ [a, b]. Under what conditions does
equality hold?

Solution 11.10

Exercise 11.11 (Munkres 17.6)

Let A, B, and Aα denote subsets of a space X. Prove the following:
1. If A ⊂ B, then Ā ⊂ B̄.
2. A ∪B = Ā ∪ B̄.
3.
⋃

Āα ⊃
⋃
Aα; give an example where equality fails.

Solution 11.11

For the first part, let x ∈ A. If x ∈ A, then x ∈ B ⊂ B and we are done. If x ∈ A′, then by definition
every punctured neighborhood U◦

x has a nonempty intersection with A, i.e. U◦
x ∩ A ̸= ∅ for any Ux.

Choose y ∈ U◦
x ∩A. Since y ∈ A ⊂ B, this means that y ∈ U◦

x ∩B, which proves that A′ ⊂ B′.
For the second part, we show bidirectionally.

1. A∪B ⊂ A ∪B. WLOG let x ∈ A. If x ∈ A, then x ∈ (A∪B) ⊂ A ∪B. If x ̸∈ A, then x ∈ A′.
Therefore for every U◦

x , U◦
x ∩A ̸= ∅. But this means

∅ ≠ (U◦
x ∩A) ∪ (U◦

x ∩B) = U◦
x ∩ (A ∪B) =⇒ x ∈ (A ∪B)′ ⊂ A ∪B (276)

2. A ∪B ⊂ A ∪ B. Let x ∈ A ∪B. If x ∈ A ∪ B, then it must be the case that either x ∈ A ⊂
(A∪A′) = A or x ∈ B ⊂ (B ∪B′) = B, which means x ∈ A∪B. If not, then x ∈ (A∪B)′, and
therefore for all U◦

x ,

U◦
x ∩ (A ∪B) ̸= ∅ =⇒ (U◦

x ∩A) ∪ (U◦
x ∩B) ̸= ∅ (277)

Now assume x is not a limit point of A and not a limit point of B. Then there exists open
neighborhoods U1

x and U2
x such that (U1

x \ {x}) ∩ A = ∅ and (U2
x \ {x}) ∩ B = ∅. But since

Vx = U1
x ∩ U2

x is also open, V ◦
x := Vx \ {x} is also a existing punctured neighborhood that has

a trivial intersection with A and that with B.

V ◦
x ∩A =

(
[U1

x ∩ U2
x ] \ {x}

)
∩A (278)

=
(
[U1

x \ {x}] ∩ [U2
x \ {x}]

)
∩A (279)

= ([U1
x \ {x}] ∩A) ∩ ([U2

x \ {x}] ∩A) (280)

= ∅ ∩ ([U2
x \ {x}] ∩A) = ∅ (281)
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and the analogous argument follows for B. This means that V ◦
x ∩(A∪B) = (V ◦

x ∩A)∪(V ◦
x ∩B) =

∅, contradicting the fact that x ∈ (A∪B)′. Therefore x must be a limit point of at least one of
A or B.

For the third, assume that x ∈
⋃

Aα. Then there exists an α∗ s.t. x ∈ Aα∗ . We know from (1) that

Aα∗ ⊂
⋃
α

Aα =⇒ Aα∗ ⊂
⋃
α

Aα (282)

and so x ∈
⋃
Aα. A counterexample follows from the idea that we’ve depended on Vx being a finite

intersection open open sets from before. Consider the set of singletons Aα = α for α ∈ (0, 1). Then⋃
α∈(0,1)

Aα = (0, 1) = [0, 1] ̸= (0, 1) =
⋃

α∈(0,1)

{α} =
⋃

α∈(0,1)

{α} =
⋃

α∈(0,1)

Aα (283)

Exercise 11.12 (Munkres 17.7)

Criticize the following “proof” that
⋃
Āα ⊂

⋃
Aα: if {Aα} is a collection of sets in X and if x ∈

⋃
Āα,

then every neighborhood U of x intersects
⋃
Aα. Thus U must intersect some Aα, so that x must

belong to the closure of some Aα. Therefore, x ∈
⋃

Āα.

Solution 11.12

Exercise 11.13 (Munkres 17.8)

Let A, B, and Aα denote subsets of a space X. Determine whether the following equations hold; if
an equality fails, determine whether one of the inclusions ⊃ or ⊂ holds.

1. Ā ∩ B̄ = A ∩B.
2.
⋂

Āα =
⋂
Aα.

3. Ā− B̄ = A−B.

Solution 11.13

Exercise 11.14 (Munkres 17.9)

Let A ⊂ X and B ⊂ Y . Show that in the space X × Y ,

A×B = Ā× B̄.

Solution 11.14

Exercise 11.15 (Munkres 17.10)

Show that every order topology is Hausdorff.

Solution 11.15
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Exercise 11.16 (Munkres 17.11)

Show that the product of two Hausdorff spaces is Hausdorff.

Solution 11.16

Given two Hausdorff spaces (X,T X), (Y,T Y ), we will denote their product space as (X×Y,T X×Y ).
Let us have two points (x1, y1), (x2, y2) ∈ X × Y . Then x1, x2 ∈ X, and since X is Hausdorff there
exists U1, U2 ∈ T X containing x1, x2 respectively such that U1 ∩ U2 = ∅. By similar logic we have
V1, V2 ∈ T Y containing y1, y2. Then, (x1, y1) ∈ U1 × V1 open and (x2, y2) ∈ U2 × V2 open, and we
claim that (U1 × V1) ∩ (U2 × V2) = ∅. If not, then there exists a (x′, y′) contained in both sets, but
this implies that x′ ∈ U1 ∩ U2 contradicting the fact that X is Hausdorff. Therefore (U1 × V1) and
(U2 × V2) are disjoint and we have shown such a construction.

Exercise 11.17 (Munkres 17.12)

Show that a subspace of a Hausdorff space is Hausdorff.

Solution 11.17

Let (X,T X) be Hausdorff and (Y,T Y ) be a subspace of X with the subspace topology of X. Choose
two points y1, y2 ∈ Y . Then as elements of X there exists disjoint U1, U2 ∈ T X containing y1, y2
respectively. Therefore, letting V1 = U1 ∩ Y and V2 = U2 ∩ Y be open sets in T Y , we have

V1 ∩ V2 = (U1 ∩ Y ) ∩ (U2 ∩ Y ) = (U1 ∩ U2) ∩ Y = ∅ (284)

Therefore we have constructed two open sets containing y1, y2 that are disjoint, and so (Y,T Y ) is
Hausdorff.

Exercise 11.18 (Munkres 17.13)

Show that X is Hausdorff if and only if the diagonal ∆ = {x× x | x ∈ X} is closed in X ×X.

Solution 11.18

We prove bidirectionally.
1. (→). X is Hausdorff implies X ×X is Hausdorff. We wish to show that a (X ×X) \∆ is open.

So pick a point x ̸∈ ∆, which must be of form (x1, x2) for x1 ̸= x2. Since X is Hausdorff, there
exists disjoint open sets U1 ∋ x1, U2 ∋ x2. Therefore, consider the open set U1×U2, which must
consist of points (z1, z2) where z1 ∈ U1, z2 ∈ U2. Therefore z1 ̸= z2, and so (U1 × U2) ∩∆ = ∅,
and so it is contained within (X ×X) \∆, i.e. is open.

2. (←) Assume that ∆ is closed in X × X, i.e. (X × X) \ ∆ is open. We look at the point
(x1, x2) ∈ (X ×X) \∆, which implies x1 ̸= x2. By openness of (X ×X) \∆, there exists an
open set U(x1,x2) ∋ (x1, x2) in (X × X) \ ∆, which we can write as a basis element U1 × U2

for open U1 ∋ x1, U2 ∋ x2 in X.a Note that since (U1 × U2) ∩∆ = ∅, U1 × U2 cannot contain
a point of the form (x, x), implying that both U1 and U2 cannot contain the same element x,
which implies that U1, U2 are disjoint. Therefore X is Hausdorff.

aSince the basis of the product topology is already defined and choosing (x1, x2) by definition of a basis such a basis
element must exist containing (x1, x2).
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Exercise 11.19 (Munkres 17.14)

In the finite complement topology on R, to what point or points does the sequence xn = 1/n converge?

Solution 11.19

It converges to every point x ∈ R. Take any x ∈ R, then we wish to show that for every open
neighborhood Ux there exists an N ∈ N s.t. xn ∈ Ux for every n > N . Every Ux must be all of R
minus a finite set S. The intersection S ∩ {xn} must be finite so there is a maximum index N such
that xN ̸∈ Ux. Therefore, for all n > N , xn ̸∈ S =⇒ xn ∈ Ux.

Exercise 11.20 (Munkres 17.15)

Show the T1 axiom is equivalent to the condition that for each pair of points of X, each has a
neighborhood not containing the other.

Solution 11.20

Exercise 11.21 (Munkres 17.16)

Consider the five topologies on R given in Exercise 7 of §13.
1. Determine the closure of the set K = {1/n | n ∈ Z+} under each of these topologies.
2. Which of these topologies satisfy the Hausdorff axiom? the T1 axiom?

Solution 11.21

Exercise 11.22 (Munkres 17.17)

Consider the lower limit topology on R and the topology given by the basis C of Exercise 8 of §13.
Determine the closures of the intervals A = (0,

√
2) and B = (

√
2, 3) in these two topologies.

Solution 11.22

Exercise 11.23 (Munkres 17.18)

Determine the closures of the following subsets of the ordered square:

A = {(1/n)× 0 | n ∈ Z+},

B = {(1− 1/n)× 1

2
| n ∈ Z+},

C = {x× 0 | 0 < x < 1},

D = {x× 1

2
| 0 < x < 1},

E = {1
2
× y | 0 < y < 1}.
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Solution 11.23

Exercise 11.24 (Munkres 17.19)

If A ⊂ X, we define the boundary of A by the equation

Bd A = Ā ∩ (X −A).

1. Show that Int A and Bd A are disjoint, and Ā = Int A ∪ Bd A.
2. Show that Bd A = ∅ ⇔ A is both open and closed.
3. Show that U is open ⇔ Bd U = Ū − U .
4. If U is open, is it true that U = Int(Ū)? Justify your answer.

Solution 11.24

Exercise 11.25 (Munkres 17.20)

Find the boundary and the interior of each of the following subsets of R2:
1. A = {x× y | y = 0}
2. B = {x× y | x > 0 and y ̸= 0}
3. C = A ∪B
4. D = {x× y | x is rational}
5. E = {x× y | 0 < x2 − y2 ≤ 1}
6. F = {x× y | x ̸= 0 and y ≤ 1/x}

Solution 11.25

Exercise 11.26 (Munkres 17.21)

(Kuratowski) Consider the collection of all subsets A of the topological space X. The operations of
closure A→ Ā and complementation A→ X −A are functions from this collection to itself.

1. Show that starting with a given set A, one can form no more than 14 distinct sets by applying
these two operations successively.

2. Find a subset A of R (in its usual topology) for which the maximum of 14 is obtained.

Solution 11.26

11.2 Common Topologies

Exercise 11.27 (Munkres 13.6)

Show that the topologies of Rℓ and RK are not comparable.
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Solution 11.27

It suffices to show 2 things. Note that K := {1/n}n∈N.
1. Tℓ is not finer than TK . Let U = [−1, 1). Let U = [0, 1) ∈ Bℓ and 0 ∈ U . We would like to show

that there is no basis element of Bk that both contains 0 and is contained in U . Assume that
there is. It can be of form (a, b) or (a, b) \K. Assume the former. Then 0 ∈ (a, b) =⇒ a < 0.
Therefore −a/2 ∈ (a, b), but −a/2 ̸∈ [0, 1), so (a, b) ̸⊂ U . Therefore it must be of form (a, b)\K.
However, K ∩ {0} = ∅, so 0 ∈ (a, b) \K =⇒ 0 ∈ (a, b). But by the same logic as the first case,
(a, b) \K ̸⊂ U since it must contain a negative number. Therefore our assumption is false, and
Tℓ is not finer than TK .

2. TK is not finer than Tℓ. Let U = (−1, 1) \K ∈ BK and 0 ∈ U . Assume that there is a basis
element [a, b) ∈ Bℓ such that 0 ∈ [a, b) ⊂ U . 0 ∈ [a, b) =⇒ 0 < b, but since R is Archimedean,
there exists a N ∈ N s.t. 0 < 1/N < b, and therefore 1/N ̸∈ U . This contradicts the fact that
[a, b) ⊂ U , and so no such [a, b) exists.

Therefore by Munkres Lemma 13.3, neither is finer than the other, which by definition means they
are incomparable.

Exercise 11.28 (Munkres 13.7)

Consider the following topologies on R:

T1 = the standard topology,
T2 = the topology of RK ,

T3 = the finite complement topology,
T4 = the upper limit topology, having all sets (a, b] as basis,
T5 = the topology having all sets (−∞, a) = {x | x < a} as basis.

Determine, for each of these topologies, which of the others it contains.

Solution 11.28

We claim
T 3,T 5 ⊂ T 1 ⊂ T 2,T 4, T 3 ̸∼ T 5, T 2 ̸∼ T 4 (285)

where ̸∼ means that they are not comparable, and ⊂ means proper subset (strictly finer). We show
the following.

1. T 3 ⊂ T 1. Let x ∈ U3 ∈ T 3. Then R \ U3 is finite. Therefore the following is defined.

r = min
y∈(R\U3)

|x− y| (286)

Therefore, construct the open ball B(x, r) = (x− r, x+ r). Since y ∈ B(x, r) =⇒ |y − x| < d,
and every point z ̸∈ U3 must satisfy |z−x| ≥ d, we proved that B(x, r) ⊂ U3. By definition this
means that U3 ⊂ T 1. To show strictness, take the open ball (0, 1) ∈ T1. R \ (0, 1) is infinite,
so T1 ̸⊂ T 3.

2. T 5 ⊂ T 1. Given x ∈ R, let us choose a T 5-open neighborhood (−∞, a) containing x. Then,
we construct the T 1-open neighborhood of x as (x − 1, a) ⊂ (−∞, a), and we are done. To
show strictness, take the basis element (0, 1) ∈ B1 and set x = 0.5. Then every basis element
of B5 containing x is of form (−∞, a), a > 0.5 and so contains −1. Therefore it cannot be a
subset of (0, 1) and so the topologies are not equal.

3. T 5 ̸∼ T 3. Consider U5 = (−∞, 0) ∈ T5. Its complement [0,−∞) is infinite so U5 ̸∈ T3.
Consider U3 = (−∞, 0) ∪ (0,+∞) ∈ T 3. If U3 is open in T 5, then it must be a union of the
basis elements of form (−∞, a). Since 1 ∈ U3, at least one of the basis elements B must have
a > 1, but this means 0 ∈ B =⇒ 0 ∈ U3. This cannot happen and so U3 is not open in T 5.
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4. T 1 ⊂ T 2 is proven in Munkres Lemma 13.4.
5. T 1 ⊂ T 4. Let x ∈ R and choose a basis element (a, b) ∈ B1 containing x. Then we choose

the basis element (a, x] ∈ B4 which also contains x, and a < x < b =⇒ (a, x] ⊂ (a, b). We are
done. To show strictness, let us choose x ∈ R and choose basis element (a, x]. Then we claim
there is no T 1-open neighborhood of x contained in (a, x]. Assume there was, of form (c, d).
Then x < d, and by density of rationals there exists a q such that x < q < d. Then q ∈ (c, d)
but q ̸∈ (a, x], and (c, d) ̸⊂ (a, x]. By contradiction, there exists no subset, and T 1 ̸⊃ T 4.

6. T 2 ̸∼ T 4. Consider U2 = (0, 1.1) \K ∈ T 2. Note that 2
19 ,

21
20 ∈ U2. Now assume that there is

some basis element (a, b] of T 4 that is contained in U2. It must be the case that a < 2/19 and
b ≥ 21/20, but this means that 1/2 ∈ (a, b], which is not in U2. Therefore, T 4 is not finer than
T 2.
For the other direction, consider x = 2 and U4 = (1, 2] ∈ B2. We claim that there is no basis
element of T 4 that contains x and is contained in U4. From point 5 above, the basis element
cannot be of form (a, b). So it must be of form (a, b) \K. Assume that there was such a set.
Then (a, b) \ K ⊂ (1, 2], but this means that b > 2. Therefore by the same reasoning above,
there must exist some q s.t. 2 < q < b, and so q ∈ (a, b) \K but q ̸∈ (1, 2]. Therefore T 2 is not
finer than T 4.

Exercise 11.29 (Munkres 13.8)

(a) Apply Lemma 13.2 to show that the countable collection

B = {(a, b) | a < b, a and b rational}

is a basis that generates the standard topology on R.
(b) Show that the collection

C = {[a, b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology on R.

Solution 11.29

Listed.
1. For any open set U ⊂ R and x ∈ U , by definition there exists a r > 0 s.t. B(x, r) = (x−r, x+r) ⊂

U . But by the density of the rationals in R, there exists an a, b ∈ Q s.t.

x− r < a < x < b < x+ r =⇒ x ∈ (a, b) ⊂ (x− r, x+ r) ⊂ U (287)

Since we can always find such an element (a, b) ∈ B satisfying x ∈ (a, b) ⊂ U , B is a basis.
2. Call the topology generated by C to be T , and let the lower limit topology be T ′ generated

by its corresponding basis, denoted B. Assume that T = T ′. Then, T ′ ⊂ T , and by Lemma
13.2, it must be the case that for each x ∈ X and basis element B ∈ B, we can find a C ∈ C
s.t. x ∈ C ⊂ B. Consider x =

√
2 and B = [

√
2, 2). We attempt to find an interval [a, b)

with a, b ∈ Q such that
√
2 ∈ [a, b) ⊂ [

√
2, 2). Clearly a ̸=

√
2 since a is rational. If a >

√
2,

then x ̸∈ [a, b). If a <
√
2, then by density of rationals in R, there exists a q ∈ Q satisfying

a < q <
√
2. Therefore, there exists a q ∈ R s.t. q ∈ [a, b) but q ̸∈ [

√
2, 2), implying that

[a, b) ̸⊂ [
√
2, 2). Therefore such an interval cannot exist =⇒ T ′ ̸⊂ T =⇒ T ′ ̸= T .
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Exercise 11.30 (Munkres 20.1)

(a) In Rn, define

d′(x,y) = |x1 − y1|+ · · ·+ |xn − yn|.

Show that d′ is a metric that induces the usual topology of Rn. Sketch the basis elements under d′

when n = 2.
(b) More generally, given p ≥ 1, define

d′(x,y) =

[
n∑

i=1

|xi − yi|p
]1/p

for x,y ∈ Rn. Assume that d′ is a metric. Show that it induces the usual topology on Rn.

Solution 11.30

Let B1,B2 be the basis of open balls with respect to the d′ = d1 and d2 metrics on Rn, with their
generated topologies being T1,T2. We show that

d2(x, y) ≤ d1(x, y) ≤
√
nd2(x, y) (288)

Since all expressions are nonnegative, it suffices to show that

(d2(x, y))
2 ≤ (d1(x, y))

2 ≤ n(d2(x, y))
2 (289)

1. d2(x, y))
2 ≤ (d1(x, y))

2. We see that by expanding and seeing that the product of absolute
values is always nonnegative,

(d1(x, y))
2 =

(∑
i

|xi − yi|
)2

(290)

=
∑
i

(xi − yi)
2 +

∑
i ̸=j

|xi − yi||xj − yj | (291)

≥
∑
i

(xi − yi)
2 (292)

= (d2(x, y))
2 (293)

2. For the second part, we use the Schwartz inequality.

d1(x, y) =
∑
i

|xi − yi| (294)

=
∑
i

|xi − yi| · 1 (295)

≤
√∑

i

(xi − yi)2 ·
√∑

i

1 (296)

= d2(x, y) ·
√
n (297)

Now we show that T 1 = T 2.
1. T 2 ⊂ T 1. Given an T 2-open neighborhood U and x ∈ U , by definition there exists a r > 0

s.t. x ∈ B2(x, r) ⊂ U . We claim that there exists a r′ > 0 such that B1(x, r
′) ⊂ U , making this
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also a T 1-open neighborhood. Set r′ = r. Then

y ∈ B1(x, r) =⇒ d1(x, y) < r (298)
=⇒ d2(x, y) ≤ d1(x, y) < r (299)
=⇒ d2(x, y) < r (300)
=⇒ y ∈ B2(x, r) (301)

and so x ∈ B1(x, r) ⊂ B2(x, r) ⊂ U .
2. T 1 ⊂ T 2. Given an T 1-open neighborhood U and x ∈ U , by definition there exists a r > 0

s.t. x ∈ B1(x, r) ⊂ U . We claim that there exists a r′ > 0 such that B2(x, r
′) ⊂ U , making this

also a T 2-open neighborhood. Set r′ = rn−1/2. Then

y ∈ B2(x, rn
−1/2) =⇒ d2(x, y) < rn−1/2 (302)

=⇒ n1/2d2(x, y) < r (303)
=⇒ d1(x, y) < r (304)
=⇒ y ∈ B1(x, r) (305)

and so x ∈ B2(x, r) ⊂ B1(x, r) ⊂ U .

Solution 11.31

Let the metric be denoted dp(x, y). Let q be the Holder conjugate of p, i.e. the unique q ∈ R s.t.
(1/p)+ (1/q) = 1. If p = 1, then we have proved the equivalence in (a). If p > 1, then by the ordered
field properties of R, 0 < 1/p < 1 =⇒ 0 < 1/q < 1 =⇒ q > 1. Given that we can always define q,
we show two things.

1. d1(x, y) ≤ n1/qdp(x, y) ⇐⇒ nqd1(x, y) ≤ dp(x, y).

d1(x, y) =
∑
i

|xi − yi| (306)

=
∑
i

|xi − yi| · 1 (307)

≤
(∑

i

|xi − yi|p
)1/p

·
(∑

i

1q
)1/q

(308)

= dp(x, y) · n1/q (309)

2. dp(x, y) ≤ n1/pd∞(x, y) ⇐⇒ npdp(x, y) ≤ d∞(x, y). Since both expressions are nonnegative
(since we assumed that it’s a metric), it suffices to prove that (dp(x, y))

p ≤ (d∞(x, y))p.

(dp(x, y))
p =

∑
i

|xi − yi|p (310)

≤
∑
i

(
max

i
{|xi − yi|}

)p (311)

= n ·
(
max

i
{|xi − yi|}

)p (312)

= n · (d∞(x, y))p (313)

dp(x, y) = n1/p · d∞(x, y) (314)

Now we prove the following. Since p = 1 is proved in (a), we assume p > 1, and q > 1 is always
defined. For notation, let T p denote the topology generated by the basis of open balls Bp(x, r) with
respect to the dp metric.
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1. T 1 ⊂ T p. Let U be open in T 1 and x ∈ U . Then by definition there exists a r > 0 s.t.
x ∈ B1(x, r) ⊂ U . We claim that there exists a r′ s.t. Bp(x, r

′) ⊂ U , making this also a
T p-open neighborhood. Set r′ = rnq.

y ∈ Bp(x, r
′) =⇒ dp(x, y) < rnq (315)

=⇒ nq · d1(x, y) ≤ dp(x, y) < rnq (316)
=⇒ d1(x, y) < r (317)
=⇒ y ∈ B1(x, y) (318)

Therefore x ∈ Bp(x, r
′) ⊂ B1(x, y) ⊂ U .

2. T p ⊂ T ∞. Let U be open in T p and x ∈ U . Then by definition there exists a r > 0 s.t.
x ∈ Bp(x, r) ⊂ U . We claim that there exists r′ s.t. B∞(x, r′) ⊂ U , making this also a T ∞-open
neighborhood. Set r′ = rnp.

y ∈ B∞(x, r′) =⇒ d∞(x, y) < rnq (319)
=⇒ nqdp(x, y) ≤ d∞(x, y) < rnq (320)
=⇒ dp(x, y) < r (321)
=⇒ y ∈ Bp(x, r) (322)

Therefore, x ∈ B∞(x, rnq) ⊂ Bp(x, r) ⊂ U .
From (a) and the previous homework, we know that T 1 = T ∞ = T 2, denote this T . Therefore, we
have proved that T ⊂ T p and T p ⊂ T , which means T = T p.

11.3 Continuity

Exercise 11.31 (Munkres 18.1)

Prove that for functions f : R→ R, the ϵ-δ definition of continuity implies the open set definition.

Exercise 11.32 (Munkres 18.2)

Suppose that f : X → Y is continuous. If x is a limit point of the subset A of X, is it necessarily
true that f(x) is a limit point of f(A)?

Solution 11.32

No. Consider X = Y = R with the Euclidean topology and let f(x) = 0. Consider A = (−1, 1) =⇒
f(A) = {0}. 1 is a limit point of A but f(1) = 0 is not a limit point of {0} since it’s an isolated point,
i.e. for any punctured open neighborhood U◦

0 = U0 \ {0},

U◦
0 ∩ f(A) = (U0 \ {0}) ∩ {0} = ∅ (323)

Exercise 11.33 (Munkres 18.3)

Let X and X ′ denote a single set in the two topologies T and T ′, respectively. Let i : X ′ → X be
the identity function.

1. Show that i is continuous ⇔ T ′ is finer than T .
2. Show that i is a homeomorphism ⇔ T ′ = T .

113/ 143



Point Set Topology Muchang Bahng Fall 2024

Exercise 11.34 (Munkres 18.4)

Given x0 ∈ X and y0 ∈ Y , show that the maps f : X → X × Y and g : Y → X × Y defined by

f(x) = x× y0 and g(y) = x0 × y

are imbeddings.

Exercise 11.35 (Munkres 18.5)

Show that the subspace (a, b) of R is homeomorphic with (0, 1) and the subspace [a, b] of R is home-
omorphic with [0, 1].

Exercise 11.36 (Munkres 18.6)

Find a function f : R→ R that is continuous at precisely one point.

Exercise 11.37 (Munkres 18.7)

1. Suppose that f : R→ R is “continuous from the right,” that is,

lim
x→a+

f(x) = f(a),

for each a ∈ R. Show that f is continuous when considered as a function from Rℓ to R.
2. Can you conjecture what functions f : R→ R are continuous when considered as maps from R

to Rℓ? As maps from Rℓ to Rℓ? We shall return to this question in Chapter 3.

Solution 11.33

This definition of continuity at a point in analysis means that for all ϵ > 0 there exists a δ > 0 s.t.
x ∈ [a, a + δ) =⇒ |f(x) − f(a)| < ϵ. Assuming this definition holds, let Uf(a) ∈ T be an open
neighborhood of f(a) (w.r.t. Euclidean topology). We wish to show that the preimage is open in T ℓ.
By definition of open sets in R, there exists an open ball (f(a) − ϵ, f(a) + ϵ) ⊂ Uf(a), and from our
analytical definition of continuity there exists a δ > 0 s.t. f([a, a+δ)) ⊂ (f(a)−ϵ, f(a)+ϵ). Therefore
taking the preimage we have

[a, a+ δ) ⊂ f−1
(
(f(a)− ϵ, f(a) + ϵ)

)
⊂ f−1

(
Uf(a)

)
(324)

Since we can construct an open ball (in T ℓ) [a, a+ δ) ⊂ f−1(Uf(a)), by definition f−1(Uf(a)) is open
in Rℓ, making f continuous at a. Since this holds for all a, f is continuous.a

aWe could have started off with an arbitrary open set U and chosen an arbitrary a ∈ f−1(U) to get the same result.

Exercise 11.38 (Munkres 18.8)

Let Y be an ordered set in the order topology. Let f, g : X → Y be continuous.
1. Show that the set {x | f(x) ≤ g(x)} is closed in X.
2. Let h : X → Y be the function

h(x) = min{f(x), g(x)}.

Show that h is continuous. [Hint: Use the pasting lemma.]
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Exercise 11.39 (Munkres 18.9)

Let {Aα} be a collection of subsets of X; let X =
⋃

α Aα. Let f : X → Y ; suppose that f |Aα is
continuous for each α.

1. Show that if the collection {Aα} is finite and each set Aα is closed, then f is continuous.
2. Find an example where the collection {Aα} is countable and each Aα is closed, but f is not

continuous.
3. An indexed family of sets {Aα} is said to be locally finite if each point x of X has a neighborhood

that intersects Aα for only finitely many values of α. Show that if the family {Aα} is locally
finite and each Aα is closed, then f is continuous.

Exercise 11.40 (Munkres 18.10)

Let f : A→ B and g : C → D be continuous functions. Let us define a map f × g : A×C → B ×D
by the equation

(f × g)(a× c) = f(a)× g(c). (325)

Show that f × g is continuous.

Solution 11.34

Let V be an open set in B × D. Then V can be expressed as the union of basis elements in the
product topology, with the form

V =
⋃

UB × UD (326)

where UB ∈ TB and UD ∈ TD. Now take the preimage.

(f × g)−1(V ) =
⋃

(f × g)−1(UB × UD) =
⋃

f−1(UB)× g−1(UD) (327)

Since f, g are continuous, f−1(UB) ∈ TA and g−1(UD) ∈ TC . Therefore, f−1(UB) × g−1(UD) is a
basis element of the product topology TA×C , and its arbitrary union is indeed an open set in A×C.
Therefore f × g is continuous.

Exercise 11.41 (Munkres 18.11)

Let F : X × Y → Z. We say that F is continuous in each variable separately if for each y0 in Y , the
map h : X → Z defined by h(x) = F (x× y0) is continuous, and for each x0 in X, the map k : Y → Z
defined by k(y) = F (x0×y) is continuous. Show that if F is continuous, then F is continuous in each
variable separately.

Solution 11.35

Let us define ιy0 : X → X × Y as the canonical injection ιy0(x) = (x, y0). We first show that this is
continuous. First choose an open set V ∈ TX×Y , which is of the form

V =
⋃

UX × UY (328)

for open sets UX ∈ TX , UY ∈ TY . Taking the preimage

ι−1
y0

(V ) =
⋃

ι−1
y0

(UX × UY ) (329)

For each term in the union, note that if y0 ̸∈ UY , then the preimage is ∅, which is open. If y0 ∈ UY ,
then the preimage is UX which is open. Therefore the union of such open sets is open. With this,
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note that
h = F ◦ ιy0

(330)

which is a composition of continuous maps and therefore is continuous. The proof for k is identical.

Exercise 11.42 (Munkres 18.12)

Let F : R× R→ R be defined by the equation

F (x× y) =

{
xy/(x2 + y2) if x× y ̸= 0× 0,

0 if x× y = 0× 0.
(331)

1. Show that F is continuous in each variable separately.
2. Compute the function g : R→ R defined by g(x) = F (x× x).
3. Show that F is not continuous.

Solution 11.36

1. Fix y = y0. Then if y0 = 0, h(x) = 0 which is continuous. If y0 ̸= 0, then

h(x) = F (x× y0) =
y0x

x2 + y20
(332)

which is the quotient of two polynomials, which are continuous, and the denominator never
vanishes since x2 + y20 ≥ y20 > 0. Similarly, if we fix x = x0, k(y) = 0 if x0 = 0 and

k(y) = F (x0 × y) =
x0y

y2 + x2
0

(333)

which is the quotient of two polynomials where the denominator never vanishes.
2. We have

g(x) =

{
F (0) = 0 if x = 0

F (x× x) = x2

2x2 = 1
2 if x ̸= 0

(334)

3. We see that g above is not continuous since the preimage of the open set (−0.25, 0.25) is {0}
which is not open. We can write g = F ◦ ι, where ι(x) = (x, x). We claim that ι is continuous.
Take any basis element U × V ∈ TX×X where U, V are open in X. The preimage consists of
all points x that are both in U and V , i.e. ι−1(U × V ) = U ∩ V , which is open. Therefore ι is
continuous. If F was continuous, then F ◦ ι would be continuous, but g is not continuous, so F
must not be continuous.

Exercise 11.43 (Munkres 18.13)

Let A ⊂ X; let f : A → Y be continuous; let Y be Hausdorff. Show that if f may be extended to a
continuous function g : Ā→ Y , then g is uniquely determined by f .

Solution 11.37

Let us consider two such extensions g, h. If A = A, then g = f = h and this is unique. If A ⊊ A then
there exists x ∈ A′ \A. Since Y is Hausdorff, there exists disjoint open neighborhoods U ∋ g(x), V ∋
h(x). It is the case that x ∈ g−1(U)∩ h−1(V ) open (since f, h are continuous and so their preimages
are open). Since x is a limit point of A, there exists a y ∈ g−1(U) ∩ h−1(V ) ∩ A not equal to x.
Mapping through through h, g again gives g(y) ∈ U , h(y) ∈ V . But since y ∈ A, the two must agree
with f , and so f(y) = g(y) = h(y), which contradicts that Y is Hausdorff.
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Exercise 11.44 (Math 411 Spring 2025, PS4)

Suppose X and Y are topological spaces, where Y is Hausdorff, and let f and g be continuous
functions from X to Y . Prove that the set S = {x ∈ X | f(x) = g(x)} is closed.

Solution 11.38

We equivalently wish to show that X \ S is open. For any x ∈ (X \ S), we have f(x) ̸= g(x) ∈ Y .
Since Y is Hausdorff, there exists open Uf(x) ∋ f(x) and open Ug(x) ∋ g(x) s.t. Uf(x) ∩ Ug(x) = ∅.
Therefore, we can take their preimage f−1(Uf(x)), g

−1(Ug(x)) which is open in X by continuity of
f, g. Furthermore we can take their intersection to get another open neighborhood of x.

Vx = f−1(Uf(x)) ∩ g−1(Ug(x)) (335)

We claim that Vx ∩ S = ∅. Assuming not, we have some s ∈ Vx ∩ S. Since s ∈ Vx, f(s) ∈ Uf(x) and
g(s) ∈ Ug(x), but since s ∈ S, f(x) = g(x) and these map to the same point, contradicting the fact
that Uf(x) and Ug(x) are disjoint. Therefore, our claim holds true, which implies that Vx ⊂ X \ S.
Therefore, we have proved that all points x ∈ (X \ S) is an interior point, and thus X \ S is open.a

aThis can be shown by letting X \ S be the union of all Vx for x ∈ (X \ S) which is open.

Exercise 11.45 (Math 411 Spring 2025, PS5)

Let X be a topological space, and let f, g : X → R be continuous maps.
1. Show that the set {x ∈ X | f(x) ≤ g(x)} is closed in X.
2. Show that the function h : X → R given by h(x) = max{f(x), g(x)} is continuous.

Note: If you prefer, instead of R you can use an arbitrary ordered set Y with the order topology in
place of Y , as in §18 #8. (We did not cover the order topology in class; see §14 if you’re curious.)

Solution 11.39

For any y ∈ R. The sets {x ∈ X | f(x) > y} and {x ∈ X | y > g(x)} are open since they are the
preimages of (y,+∞) and (−∞, y) respectively. Therefore their intersection is open, i.e.

Uy = {x ∈ X | f(x) > y > g(x)} (336)

Therefore their union is also open.

U =
⋃
y∈R

Uy = {x ∈ X | f(x) > g(x)} (337)

where we can always identify a y = (f(x) + g(x))/2. Therefore the complement where f(x) ≤ g(x) is
closed.
As for the second part, we will denote Uf = {x ∈ X | f(x) ≤ g(x)} and Ug = {x ∈ X | g(x) ≥ f(x)}.
They are both closed, where Ug can be proved closed by the same symmetric argument. Let us take
any closed set S ⊂ X. Since X = Uf ∪ Ug, we can denote

S = S ∩X = S ∩ (Uf ∪ Ug) = (S ∩ Uf ) ∪ (S ∩ Ug) = Vf ∪ Vg (338)

where Vf , Vg are closed since we proved before that Uf , Ug are closed. The preimage is

h−1(S) = h−1(Vf ) ∪ h−1(Vg) (339)

= g−1(Vf ) ∪ f−1(Vg) (340)

which is the union of open sets and therefore open.
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11.4 Induced Topologies

Exercise 11.46 (Munkres 16.1)

Show that if Y is a subspace of X, and A is a subset of Y, then the topology A inherits as a subspace
of Y is the same as the topology it inherits as a subspace of X.

Solution 11.40

We have A ⊂ (Y,T Y ) ⊂ (X,T X), with T Y the subspace topology from T X . Let us denote T A|Y
and T A|X the subspace topologies on A when considered its superset as Y and X, respectively. We
show the following.

1. T A|Y ⊂ T A|X . Let U ∈ T A|Y . Then U = V ∩A for some V ∈ T Y , and V = W ∩ Y for some
W ∈ T X . Therefore, U = (W ∩ Y )∩A = W ∩ (Y ∩A) = W ∩A for some W ∈ T X , which by
definition means U ∈ T A|X .

2. T A|X ⊂ T A|Y . Let U ∈ T A|X . Then U = V ∩A for some V ∈ T X . But note that A = A∩Y ,
and so U = V ∩ (A∩Y ) = (V ∩Y )∩A. Denote W = V ∩Y . Since V is open in X, W is open in
Y , and therefore we have found such a W ∈ T Y where U = W ∩A, which by definition means
U ∈ T A|Y .

Exercise 11.47 (Munkres 16.2)

If T and T ′ are topologies on X and T ′ is strictly finer than T , what can you say about the
corresponding subspace topologies on the subset Y of X?

Exercise 11.48 (Munkres 16.3)

Consider the set Y = [-1, 1] as a subspace of R. Which of the following sets are open in Y? Which
are open in R?

A = {x | 1
2
< |x| < 1} (341)

B = {x | 1
2
< |x| ≤ 1} (342)

C = {x | 1
2
≤ |x| < 1} (343)

D = {x | 1
2
≤ |x| ≤ 1} (344)

E = {x | 0 < |x| < 1 and
1

x
/∈ Z+} (345)

Solution 11.41

We list the supersets which each set is open in.
1. A is open in Y and R. A1 = (−1,− 1

2 ) and A2 = ( 12 , 1) are open in R, and they are also open
in Y since A1 = A1 ∩ Y and A2 = A2 ∩ Y . Therefore, A = A1 ∪A2 is by definition open.

2. B is open in Y . (−2,− 1
2 ) and ( 12 , 2) are open in R and so (−2,− 1

2 ) ∩ Y = [−1,− 1
2 ) and

( 12 , 2) ∩ Y = ( 12 , 1] is open in Y . It is not open in R because consider the point 1. Assume that
there exists an ϵ > 0 s.t. (1 − ϵ, 1 + ϵ) ⊂ B. This means that 1 + ϵ

2 ∈ (1 − ϵ, 1 + ϵ) but since
1 < 1 + ϵ

2 , 1 + ϵ ̸∈ B.
3. C. Neither. Consider the point x = 1

2 and assume that there exists a ϵ > 0 s.t. B(x, ϵ) =
( 12 − ϵ, 1

2 + ϵ) ⊂ C. If ϵ > 1
2 , then 0 ∈ B(x, ϵ) and so B(x, ϵ) ̸⊂ C. If 0 < ϵ ≤ 1

2 , then this means
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that 1
2 −

ϵ
2 ∈ B(x, ϵ). But 0 ≤ 1

2 −
ϵ
2 < 1

2 , and so 1
2 −

ϵ
2 ̸∈ C, which also implies B(x, ϵ) ̸⊂ C.

Therefore there exists no such open neighborhood around 1
2 . This argument applies to both Y

and R, and so C is not open in both.
4. D. Neither. We repeat the same argument as that for C and show that there exists no open

neighborhood around 1/2 contained in D.
5. E is open in Y and R. We prove a small fact: for every x ∈ R, there exists an integer z ∈ Z s.t.

z − 1 < x ≤ z. Let’s take x > 0. The reals is Archimedean and so for any x ∈ R there exists
a natural s ∈ N s.t. x < n. Consider the set N = {n ∈ Z | x < n} of all upper bounds of x,
which we proved is nonempty. By the well-ordering principle, this set must have a minimum,
which we call z. It must be the case by upper bound that x ≤ z, and z− 1 not an upper bound
implies z − 1 < x. If x = 0 this result is trivial and if x < 0 we can found the integral bounds
0 ≤ z − 1 < −x < z and swap the signs to get −z < x < −z + 1 ≤ 0.
We claim that

G = {x ∈ R | 1/x ̸∈ N} = (−∞, 0) ∪
⋃
n∈N

(
1

n+ 1
,
1

n

)
= H (346)

If x ∈ G, then it can be either positive or negative. If negative, x ∈ (−∞, 0). If positive, then
1/x ∈ R since it’s a field. By the proof above there exists a n ∈ N s.t. n < 1/x < n+ 1 (strict
inequality since 1/x is not natural) and so by ordered field properties 1

n < x < 1
n+1 =⇒ z ∈(

1
n+1 ,

1
n

)
for some n ∈ N. Therefore x ∈ H.

If x ∈ H, then either x is negative or positive. If x ∈ (−∞, 0), then x ∈ G trivially since it
cannot be the case that 1/x > 0. If x is positive then x ̸= 1/n for all n ∈ N, so x ∈ G. Therefore
H = G.
G is an arbitrary union of known open sets in R, and so G is open. This means that E =
((−1, 0) ∪ (0, 1)) ∩H is also open by definition, and so E is open in R. For Y , note that

((−1, 0) ∪ (0, 1)) ∩ Y = (−1, 0) ∪ (0, 1) (347)

and so E = E ∩ Y , which implies that E is open in Y as well.

Exercise 11.49 (Munkres 16.4)

A map f : X → Y is said to be an open map if for every open set U of X, the set f(U) is open in Y.
Show that π1 : X × Y → X and π2 : X × Y → Y are open maps.

Solution 11.42

Let U be open in X×Y . Then U is a union of some basis elements of the product topology on X×Y ,
which are of the form UX × UY where UX , UY are open sets in the topologies of X,Y .

U =
⋃
α∈A

(UX)α × (UY )α (348)

1. We see that π1 maps all (x, y) ∈ UX × UY to x, so it acts on U as

π1(U) =
⋃
α∈A

(UX)α (349)

Since the union of open sets are open, π1(U) is open in X.
2. We see that π2 maps all (x, y) ∈ UX × UY to y, so it acts on U as

π2(U) =
⋃
α∈A

(UY )α (350)

Since the union of open sets are open, π2(U) is open in Y .
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Exercise 11.50 (Munkres 16.5)

Let X and X’ denote a single set in the topologies T and T ′, respectively; let Y and Y’ denote a
single set in the topologies U and U ′, respectively. Assume these sets are nonempty.

1. Show that if T ′ ⊇ T and U ′ ⊇ U , then the product topology on X’ × Y’ is finer than the
product topology on X × Y.

2. Does the converse of (a) hold? Justify your answer.

Solution 11.43

Let us denote the set as (X,T ), (X,T ′) and (Y,U ), (Y,U ′) where T ⊂ T ′ and U ⊂ U ′. We wish
to show that T X×Y ⊂ T X′×X′ . By Munkres Lemma 13.3, this is equivalent to showing that for
any (x, y) ∈ X × Y and basis element UX × UY ∈ T ×U containing (x, y), there is a basis element
UX′ × UY ′ ∈ T ′×U ′ such that

x ∈ (UX′ × UY ′) ⊂ (UX × UY ) (351)

Say we have (x, y) ∈ X×Y , and choose such a UX , UY containing x, y respectively.a Then UX×UY ∈
T ×U is a basis element of T X×Y by definition. We see that UX ∈ T ⊂ T ′ and UY ∈ U ⊂ U ′, so
UX ×UY ∈ T ′×U ′, meaning that it is also a basis element of T X′×Y ′ . Therefore, we set UX′ = UX

and UY ′ = UY , and we are done.
aThis is always possible since X ∈ T and Y ∈ U .

Solution 11.44

Yes, the converse is true. Let us denote the set as (X,T ), (X,T ′) and (Y,U ), (Y,U ′) where T X×Y ⊂
T X′×Y ′ . We wish to show that T ⊂ T ′ and U ⊂ U ′. By Munkres Lemma 13.3, it suffices to show
that for any x ∈ X and basis element BX ∈ T , there exists a basis element BX′ ∈ T ′ such that

x ∈ BX′ ⊂ BX (352)

We construct BX′ as such. Given x ∈ X and basis element BX ∈ T , choose any y ∈ Y to get
(x, y) ∈ X×Y , along with the basis element BX ×BY ∈ T X×Y .a Since T X′×Y ′ is finer, there exists
a basis element U = UX′ × UY ′ ∈ T X′×Y ′ , where UX′ ∈ T ′, UY ′ ∈ U ′, such that

(x, y) ∈ UX′ × UY ′ ⊂ BX ×BY (353)

Consider the projection map π1 : X×Y → X, which we have shown in 16.4 to be open. Therefore, by
mapping the three expressions through π1, we have x ∈ UX′ ⊂ BX , where UX′ ∈ T ′ and BX ∈ T .
Since open sets are an arbitrary union of basis elements, there exists a basis element BX′ ⊂ T ′

satisfying x ∈ BX′ ⊂ UX′ ⊂ BX , and we are done.
Since we have shown that the projection π2 is also an open map, we can do the exact same argument
by choosing any x ∈ X and a basis element BX containing x, giving us U ⊂ U ′.

aSuch a basis element BY is guaranteed to exist by definition of a basis.

Exercise 11.51 (Munkres 16.6)

Show that the countable collection

{(a, b)× (c, d) | a < b and c < d, and a, b, c, d are rational}

is a basis for R2.

120/ 143



Point Set Topology Muchang Bahng Fall 2024

Solution 11.45

Let’s denote the collection as C. For every open set U and each x ∈ U , we know that there exists a
r > 0 such that the L∞-open ball B∞(x, r) ⊂ U , since the set of such open balls forms a basis. This
in R2 is denoted

(x1 − r, x1 + r)× (x2 − r, x2 + r) (354)

By the denseness of Q in R, we can choose an a, b, c, d ∈ Q such that x1 − r < a < 0 < b < x1 + r
and x2 − r < c < 0 < d < x2 + r, which immediately satisfies.

x ∈ (a, b)× (c, d) ⊂ (x1 − r, x1 + r)× (x2 − r, x2 + r) = B∞(x, r) ⊂ U (355)

Therefore, by Munkres Lemma 13.2 C is a basis for the Euclidean topology.

Exercise 11.52 (Munkres 16.7)

Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it follow that Y is
an interval or a ray in X?

Exercise 11.53 (Munkres 16.8)

If L is a straight line in the plane, describe the topology L inherits as a subspace of Rℓ ×R and as a
subspace of Rℓ × Rℓ. In each case it is a familiar topology.

Solution 11.46

The basis of the product topology on Rℓ × R are all sets of form [a, b)× (c, d).
1. If L is vertical, then it is the standard topology.

Figure 47: ℓ1, ℓ2 intersect the open set at open intervals. ℓ3, ℓ4 does not but there are always open sets for
which the intersection are open intervals.

2. If L is not vertical, then it is the lower limit topology (or upper limit topology depending on
how you parameterize the line).
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Figure 48: All nonvertical lines will intersect the left “closed” side of some open set and will therefore induce
the lower/upper limit topology on the line.

The basis of the product topology on Rℓ × Rℓ are all sets of form [a, b)× [c, d).
1. if L has a negative slope (as in the graph represented by y = mx + b where m < 0), then it is

discrete topology since we can imagine the line intersecting the square at the lower-left corner.a

Figure 49: We can construct an open set [a, b)× [c, d) where the point (a, c) lies on any point on a negatively
sloping line. This means that points are open sets, which generates the discrete topology.

2. if L vertical, horizontal, or has a positive slope, then it is the lower limit topology (or upper
limit topology depending on how you parameterize the line).

Figure 50: If there is not a negative slope (vertical, horizontal, or positive sloping), then there is no way
for a rectangle to intersect the line exactly at the lower-left corner without “going through” the rectangle.
Therefore these examples generate half-open half-closed intervals on L.

aWe can also see it as the topology generated by the basis of closed intervals, but since [a, b] ∩ [b, c] = {b}, this is
equivalent to the discrete topology.
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Exercise 11.54 (Munkres 16.9)

Show that the dictionary order topology on the set R×R is the same as the product topology Rd×R,
where Rd denotes R in the discrete topology. Compare this topology with the standard topology on
R2.

Exercise 11.55 (Munkres 16.10)

Let I = [0, 1]. Compare the product topology on I × I, the dictionary order topology on I × I, and
the topology I × I inherits as a subspace of R× R in the dictionary order topology.

Exercise 11.56 (Math 411 Spring 2025, PS3)

Let Pn denote the set of polynomials in n variables with real coefficients. Any such polynomial defines
a function on Rn. If A is any subset of Pn, let V (A) = {x ∈ Rn | p(x) = 0 for all p ∈ A}. A subset
S ⊂ Rn is called algebraic if it is equal to V(A) for some A ⊂ Pn.

1. Show that ∅ and Rn are both algebraic.
2. Show that if Aα are subsets of Pn (indexed by α ∈ I for some set I), then

V

(⋃
α∈I

Aα

)
=
⋂
α∈I

V (Aα).

In other words, any intersection of algebraic sets is algebraic.
3. Suppose A1, . . . , Ak are subsets of Pn. Let B be the set of polynomials that can be factored as

f = f1 · · · fk, where fi ∈ Ai. Prove that

V (B) = V (A1) ∪ · · · ∪ V (Ak).

In other words, any finite union of algebraic sets is algebraic. (Hint: For the inclusion V (B) ⊂
V (A1)∪ · · · ∪V (Ak), it may be easier to show that if x ̸∈ V (A1)∪ · · · ∪V (Ak), then x ̸∈ V (B).)

4. Show that T = {U ⊂ Rn | Rn − U is algebraic} is a topology on Rn. This is known as the
Zariski topology, named for the mathematician Oscar Zariski (1899-1986). It is very important
in algebraic geometry and related fields.

5. Show that for n = 1, the Zariski topology on R1 is precisely the finite complement topology.
Note: Instead of doing this with R, you could also do it with C, Q, or any other field.

Solution 11.47

Listed.
1. Consider A = {f(x) = 1}. Then V (A) = ∅ since f never vanishes.
2. Consider A = {f(x) = 0}.Then V (A) = Rn since f always vanishes.
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Solution 11.48

We see that

V

( ⋃
α∈I

Aα

)
=
{
x ∈ Rn | ∀p ∈ ∪α∈IAα(p(x) = 0)

}
(356)

=
{
x ∈ Rn | ∀α ∈ I∀p ∈ Aα(p(x) = 0)

}
(357)

=
⋂
α∈I

{
x ∈ Rn | ∀p ∈ Aα(p(x) = 0)

}
(358)

=
⋂
α∈I

V (Aα) (359)

Solution 11.49

We prove bidirectionally.
1. ∪iV (Ai) ⊂ V (B). Let x ∈ ∪iV (Ai). Then x ∈ V (Aj) for some 1 ≤ j ≤ k, which implies that

fj(x) = 0 for all fj ∈ Aj . Therefore by the field properties of R,

f(x) = f1(x) . . . fj(x)︸ ︷︷ ︸
=0

. . . fk(x) = 0 (360)

and therefore f(x) = 0 for all f ∈ B, which means that x ∈ V (B).
2. ∪iV (Ai) ⊃ V (B). Assume that x ̸∈ ∪iV (Ai). Then for all 1 ≤ i ≤ k, x ̸∈ V (Ai), which implies

that for all i there exists some f∗
i ∈ Ai s.t. f∗

i (x) ̸= 0. Now construct the function f∗ =
∏

i f
∗
i ,

where f∗
i ∈ Ai, f∗ ∈ B. But

f∗(x) =

k∏
i=1

f∗
i (x) ̸= 0 (361)

since f∗
i (x) ̸= 0 for all i, and so we have shown the existence of a function f∗ ∈ B such that

f∗(x) ̸= 0. Therefore x ̸∈ V (B).

Solution 11.50

We prove the properties of a topology.
1. From (a), ∅ is algebraic =⇒ Rn \ ∅ = Rn is in T . Also, Rn is algebraic =⇒ Rn \ Rn = ∅ is

in T .
2. Let {Uα}α∈I be a collection of open sets in T . Then by definition Rn \ Uα is algebraic, and

Rn \
( ⋃

α∈I

Uα

)
=
⋂
α∈I

(Rn \ Uα) (362)

we know from (b) that arbitrary intersections of algebraic sets is algebraic, so the LHS is also
algebraic, which by definition means the union is in T .

3. Let U1, . . . , Uk be a collection of open sets in T . Then by definition Rn \ Ui is algebraic for
1 ≤ i ≤ k, and

Rn \
( k⋂

i=1

Ui

)
=

k⋃
i=1

(Rn \ Ui) (363)

we know from (c) that finite unions of algebraic sets is algebraic, and so the LHS is also algebraic,
which by definition means the finite intersection is in T .
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Solution 11.51

For an open set U , inclusion in the finite complement topology asserts that R \ U must be finite
or U = ∅, and inclusion in the Zariski topology asserts that R \ U must be algebraic. Therefore it
satisfies to show that the complements (within the universe of the power set) are equal, i.e. that the
set of all finite subsets of R plus R itself and the set of all algebraic subsets of R is equal. Let us
denote the former S and the latter T .

1. S ⊂ T . Let Y ∈ S (Y is a set). If Y = R, then it is algebraic as shown in (a). Otherwise,
it is finite and we can enumerate it as Y = {y1, . . . , yn}, and define the singleton subset of
polynomials

A =

{
f(x) =

n∏
i=1

(x− yi)

}
(364)

V (A) consists of all reals where f(x) = 0, which happens exactly when x = yi for some i.a
Therefore, Y = V (A) =⇒ Y is algebraic =⇒ Y ⊂ T .

2. T ⊂ S. Let Y ∈ T . Then we know that there exists some subset of polynomials A such that
Y = V (A). If A is empty, then V (A) = R since the predicate in the set-builder notation is
vacuously true, and R is contained in the S. If A is not empty, then there exists some polynomial
f from A. By definition it must be the case that for all y ∈ Y , f(y) = 0. We consider two cases.
(a) f is constant. If f ̸= 0, then V (A) = ∅, which is in S. If f = 0, then V (A) = R, which is

in S.
(b) f has degree n ≥ 1. Since this is a polynomial ring over a field F[x], f(y) cannot have

more than n real roots.b Therefore |Y | ≤ n and Y must be finite.
We have shown that V ({f}) is finite. Since V (A) consists of y’s that hold for all f ∈ A,
V (A) ⊂ V ({f}).c The subset of finite sets is finite, and therefore Y = V (A) ∈ S.

aIf not, then every (x− yi) is nonzero, and the product is nonzero.
bUsing the single factor theorem of commutative rings we can use induction to prove that the set of roots cannot

go beyond n. For linear polynomials f(x) = mx+ b there is one root x = −b/m which satisfies the base case, and for
higher degrees of n we show that if there is a root where p(a) = 0, then p(x) = (x− a)q(x) where q is of degree n− 1
which cannot have more than n− 1 factors.

cTo see why, look at my solution for (b).

Exercise 11.57 (Munkres 19.4)

Show that (X1 × · · · ×Xn−1)×Xn is homeomorphic with X1 × · · · ×Xn.

Exercise 11.58 (Munkres 19.5)

One of the implications stated in Theorem 19.6 holds for the box topology. Which one?

Exercise 11.59 (Munkres 19.6)

Let x1,x2, . . . be a sequence of the points of the product space
∏

Xα. Show that this sequence
converges to the point x if and only if the sequence πα(x1), πα(x2), . . . converges to πα(x) for each
α. Is this fact true if one uses the box topology instead of the product topology?

Exercise 11.60 (Munkres 19.7)

Let R∞ be the subset of Rω consisting of all sequences that are “eventually zero,” that is, all sequences
(x1, x2, . . .) such that xi ̸= 0 for only finitely many values of i. What is the closure of R∞ in Rω in
the box and product topologies? Justify your answer.
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Solution 11.52

In the box topology, R∞ = R∞. We show this by taking any sequence not in R∞ and showing that
there exists an open neighborhood that has a trivial intersection with R∞. Consider a non-eventually
zero sequence y ∈ Rω \ R∞, which must have an infinite number of nonzero terms. y is contained
within the open set (in the box topology)

U = U1 × U2 × . . . , Ui =


(0,+∞) if yi > 0

(−1, 1) if yi = 0

(−∞, 0) if yi < 0

(365)

This is an open set that clearly contains y, but it has an empty intersection with Rω since there are
an infinite number of nonzero terms yi and so there are an infinite number of Ui’s that do not contain
0.
In the product topology, basis elements are all sets of the form

∏
Ui where Ui is open in R and Ui = R

except for finitely many values of i. Therefore, Ui ̸= R for finite values. Now given any sequence
y ∈ Rω, we claim that it is a limit point of R∞. An open neighborhood of y of form Uy =

∏
Ui must

have some maximum index N for which Ui = R when i > N , and so the eventually-zero sequence
x = (y1, y2, . . . , yN , 0, 0, . . .) must be in U , implying that Uy ∩ R∞ ̸= ∅, and so y is a limit point of
Uy. Therefore all sequences are limit points, which means R∞ = Rω.

Exercise 11.61 (Munkres 19.8)

Given sequences (a1, a2, . . .) and (b1, b2, . . .) of real numbers with ai > 0 for all i, define h : Rω → Rω

by the equation
h((x1, x2, . . .)) = (a1x1 + b1, a2x2 + b2, . . .). (366)

Show that if Rω is given the product topology, h is a homeomorphism of Rω with itself. What happens
if Rω is given the box topology?

Solution 11.53

We first show h is a bijection. Indeed, the element-wise mappings are bijections and the inverse is

h−1((x1, . . . , )) =

(
. . . ,

xi − bi
ai

, . . .

)
(367)

Now we show that it is continuous. Given an open set in Rω in the product topology, it has the form

U = (l1, u1)× (l2, u2)× . . .× (ln, un)× R× . . . (368)

The preimage under h is

h−1(U) =

(
l1 − b1
a1

,
u1 − b1

a1

)
× . . .×

(
ln − bn
an

,
un − bn

an

)
× R× . . . (369)

where l1 < u1 =⇒ (l1 − b1)/a1 < (u1 − b1)/a1. This is also of the form of open sets in the product
topology, and therefore is continuous. Now considering the continuity of the inverse function, we can
see that taking the same U as before, we have

h(U) = (a1l1 + b1, a1u1 + b1)× . . .× (anln + bn, anun + bn)× R . . . (370)

which is also open in the product topology. Therefore h is a homeomorphism under the product
topologies.
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Now we consider the box topology. Given an box-topology open set of the form

U = (l1, u1)× (l2, u2)× . . . (371)

then the preimage and image are

h−1(U) =

(
l1 − b1
a1

,
u1 − b1

a1

)
×
(
l2 − b2
a2

,
u2 − b2

a2

)
× . . . (372)

h(U) = h(U) = (a1l1 + b1, a1u1 + b1)× (a2l2 + b2, a2u2 + b2)× (373)

which are both open in the box topology and so h and h−1 are continuous. Thus h is also a homeo-
morphism.

Exercise 11.62 (Munkres 19.9)

Show that the choice axiom is equivalent to the statement that for any indexed family {Aα}α∈J of
nonempty sets, with J ̸= ∅, the cartesian product∏

α∈J

Aα

is not empty.

Exercise 11.63 (Munkres 19.10)

Let A be a set; let {Xα}α∈J be an indexed family of spaces; and let {fα}α∈J be an indexed family of
functions fα : A→ Xα.

1. Show there is a unique coarsest topology T on A relative to which each of the functions fα is
continuous.

2. Let

Sβ = {f−1
β (Uβ) | Uβ is open in Xβ},

and let S =
⋃
Sβ . Show that S is a subbasis for T .

3. Show that a map g : Y → A is continuous relative to T if and only if each map fα ◦ g is
continuous.

4. Let f : A→
∏

Xα be defined by the equation

f(a) = (fα(a))α∈J ;

let Z denote the subspace f(A) of the product space
∏

Xα. Show that the image under f of
each element of T is an open set of Z.

Exercise 11.64 (Munkres 22.2)

(a) Let p : X → Y be a continuous map. Show that if there is a continuous map f : Y → X such
that p ◦ f equals the identity map of Y , then p is a quotient map.

(b) If A ⊂ X, a retraction of X onto A is a continuous map r : X → A such that r(a) = a for each
a ∈ A. Show that a retraction is a quotient map.
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Solution 11.54

Listed.
1. Let U ⊂ Y , and let p−1(U) be open. Then,

p−1(U) ⊂ X open =⇒ f−1(p−1(U)) ⊂ Y open (374)

=⇒ (p ◦ f)−1(U) = U ⊂ Y open (375)

and since p is continuous, p is a quotient map. Since p ◦ f equals the identity map, it must be
the case that p is surjective.

2. We know that the canonical injection ι : A→ X is continuous, and r ◦ ι = I, the identity map
of A. Therefore by (a), p is a quotient map.

Exercise 11.65 (Munkres 22.3)

Let π1 : R×R→ R be projection on the first coordinate. Let A be the subspace of R×R consisting
of all points x× y for which either x ≥ 0 or y = 0 (or both); let q : A→ R be obtained by restricting
π1. Show that q is a quotient map that is neither open nor closed.

Solution 11.55

The restriction of a continuous function is always continuous, so q is continuous. Furthermore q is
surjective since given any x ∈ R, we can always see that (x, 0) ∈ q−1({x}). Finally, let U ⊂ R
s.t. q−1(U) ⊂ A is open. Then, for any x ∈ U , we know (x, 0) ⊂ q−1(U), and so ∃ϵ > 0 s.t.
B((x, 0), ϵ) ∩A) ⊂ q−1(U). Mapping both sides through q again gives

(x− ϵ, x+ ϵ) = q
(
B((x, 0), ϵ) ∩A)

)
⊂ q(q−1(U)) = U (376)

and so U is open. Therefore, q is a quotient map. To see why it is not open, consider the open set of
A

U = [0, 1)× (0, 1) = [(−1, 1)× (0, 1)] ∩A (377)

Then q(U) = [0, 1) which is not open in R. To see why not closed, consider the closed set C =
{(x, y) ∈ R2 | xy = 1, x > 0}.a Then p(C) = (0,+∞) which is not closed in R.

aAlso stated to be closed by example 2 of chapter 22.

Exercise 11.66 (Munkres 22.4)

(a) Define an equivalence relation on the plane X = R2 as follows:
x0 × y0 ∼ x1 × y1 if x0 + y20 = x1 + y21 .

Let X∗ be the corresponding quotient space. It is homeomorphic to a familiar space; what is
it?

(b) Repeat (a) for the equivalence relation
x0 × y0 ∼ x1 × y1 if x2

0 + y20 = x2
1 + y21 .

Solution 11.56

Listed.
1. Graphing this shows that X∗ is the set of all horizontal parabolas of the same scale and opening

leftwards with the vertex on the x-axis, i.e. the elements are just left-right shifts of one another.
We claim that it is homeomorphic to R. Let p : R2 → X∗ be the quotient map and f : R2 → R
be defined f(x, y) = x+ y2, which satisfies (x, y) ∼ (x′, y′) ⇐⇒ f(x, y) = f(x′, y′). Therefore,
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this induces a function f̄ : X∗ → R s.t. f̄ ◦ p = f . Since f is continuous, f̄ is continuous.
Also, we can see that f̄ is a bijection since we can map every element in the equivalence class
of [(x, y)] s.t. x + y2 = c to c ∈ R. Finally, we show that f̄−1 is continuous. We can think of
f̄−1 as the composition of maps c 7→ (c, 0) 7→ [(c, 0)], where the first map is trivially continuous
and the second map is p, which is also continuous. Therefore f̄−1 is continuous, and it is a
homeomorphism.

2. We can see that X∗ is the set of all circles of nonnegative radius (the origin is a circle of radius
0), and we claim that it is homeomorphic to [0,+∞). Let p : R2 → X∗ be the quotient map
and f : R2 → [0,+∞) be defined f(x, y) = x2 + y2, which satisfies (x, y) ∼ (x′, y′) ⇐⇒
f(x, y) = f(x′, y′). Therefore, this induces a function f̄ : X∗ → [0,+∞) s.t. f̄ ◦ p = f . Since
f is continuous, f̄ is continuous. Also, we can see that f̄ is a bijection since we can map every
element in the equivalence class of [(x, y)] s.t. x2+y2 = c to c ∈ [0,+∞). Finally, we show that
f̄−1 is continuous. We can think of f̄−1 as the composition of maps c 7→ (

√
c, 0) 7→ [(

√
c, 0)],

where the first map is continuousa and the second map is p, which is also continuous. Therefore
f̄−1 is continuous, and it is a homeomorphism.

aThe square root function from R+
0 to itself is continuous since the preimage of an open interval (a, b) is (

√
a,

√
b)

which is also open in R+
0 , and for [0, b) the preimage is [0,

√
b).

Exercise 11.67 (Munkres 22.5)

Let p : X → Y be an open map. Show that if A is open in X, then the map q : A → p(A) obtained
by restricting p is an open map.

Exercise 11.68 (Munkres 22.6)

Recall that RK denotes the real line in the K-topology. (See §13.) Let Y be the quotient space
obtained from RK by collapsing the set K to a point; let p : RK → Y be the quotient map.

(a) Show that Y satisfies the T1 axiom, but is not Hausdorff.
(b) Show that p× p : RK × RK → Y × Y is not a quotient map. [Hint: The diagonal is not closed

in Y × Y , but its inverse image is closed in RK × RK .]

Exercise 11.69 (Math 411 Spring 2025, PS6)

For each integer n ≥ 1, let us consider the following spaces:

Sn = {x ∈ Rn+1 | ∥x∥ = 1}
Xn+1 = Rn+1 − {0}

(Note: the superscript is just a decoration that indicates the “dimensionality” of the space; it does
not indicate raising something to a power.)

(1) Show that the function r : Xn+1 → Sn defined by r(x) = x/∥x∥ is a quotient map, and describe
the corresponding equivalence relation. (Hint: Use #2 from §22.)

(2) We now define a space called real projective n-space, or RPn. We can define it in either of two
ways:
(a) Xn+1/∼, where x ∼ y iff x = λy for some λ ∈ R− {0}.
(b) Sn/∼, where x ∼ y iff x = ±y.

Let p : Xn+1 → RPn be the quotient map. Prove that p|Sn : Sn → RPn is also a quotient map,
and hence that the two descriptions above produce homeomorphic spaces. (Hint: It may help
to observe that p|Sn ◦ r = p.)

(3) Using the description of RPn as a quotient of Sn, prove that RPn is a Hausdorff space. (Hint:
note that for x ∈ Sn and ϵ > 0, the set (B(x, ϵ) ∪B(−x, ϵ)) ∩ Sn is open and saturated.)
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(4) Let Dn
+ denote the “upper hemisphere” in Sn: Dn

+ = {x ∈ Sn | xn+1 ≥ 0}. Show that Dn
+ is

homeomorphic to Dn = {x ∈ Rn | ∥x∥ ≤ 1}, the unit disk in Rn.
(5) The restriction of p to Dn, viewed as a map Dn → RPn, can be shown to be a quotient map.

Assuming this, describe an equivalence relation on Dn whose quotient space is homeomorphic
to RPn. In the case where n = 2, describe how we may concretely describe RP2 as a “video
game.”

Solution 11.57

Listed.
1. We claim r is a retraction, since r(x) = x for all x ∈ Sn ⊂ Rn+1. r is also continuous since a

basis element of the topology of Sn can be written B =
{
(a1, b1) × . . . × (an+1, bn+1)

}
∩ Sn.

Therefore the preimage of such a set is

r−1(B) =
⋃
c>0

{
(ca1, cb1)× . . .× (can+1, cbn+1)

}
∩ Sn (378)

which is the union of open sets in Sn and therefore is open in Sn. From the first exercise, r is
a quotient map. It consists of each ray starting from the origin, and maps each direction to the
unit vector, creating a sphere.

2. p|Sn ◦r = p. Since p is a quotient map, it is continuous and its restriction p|Sn is also continuous.
Since p is a quotient map, it is surjective and therefore p|Sn must be surjective.a Now let
U ⊂ RPn s.t. p|−1

Sn(U) is open in Sn. Then,

r−1
(
p|−1

Sn(U)
)
= (p|Sn ◦ r)−1(U) = p−1(U) (379)

is open since r is continuous. But since p is a quotient map, U is open, implying that p|Sn is a
quotient map. Therefore, we have shown that

Xn+1/ ∼∼= RPn and Sn/ ∼∼= RPn =⇒ Xn+1/ ∼∼= Sn/ ∼ (380)

3. Let us have x, y ∈ RPn with x ̸= y. Then there exists u, v ∈ Sn s.t. p|−1
Sn(x) = {u,−u} and

p|−1
Sn(y) = {v,−v}. We can let ϵ = 1

2 min{∥u− v∥, ∥u+ v∥}, which means that

B(±u, ϵ) ∩B(±v, ϵ) = ∅ (381)

in Rn, and so the open neighborhoods around ±u,±v, denoted U±, V± are all pairwise disjoint
in Sn. Note that U+ ∪ U− and V+ ∪ V− are open, saturated, and disjoint, and so p|Sn , as a
quotient map, maps both of these sets to disjoint open neighborhoods of x, y, proving that RPn

is Hausdorff.
4. We can visualize this as if we were just “pushing up” the disk onto the hemisphere. More

formally, let us define f : Dn → Dn
+ as

f(x) = f(x1, . . . , xn) = (x1, . . . , xn,
√

1− ∥x∥) (382)

This is well-defined since we assume that ∥x∥ ≤ 1. This is trivially injective since changing any
of the xi’s will result in a different values in the first n terms of the output. It is surjective
since given any element y = (y1, . . . , yn+1) ∈ D+, we know that ∥y∥ = 1 and so we can find the
preimage to be x = (y1, . . . , yn) which will satisfy ∥x∥ ≤ 1. Therefore, f is bijective, with the
inverse function

f−1(y) = f−1(y1, . . . , yn+1) = (y1, . . . , yn) (383)

To prove continuity of f , consider the basis element of the form

(a1, b1)× . . .× (an+1, bn+1) ∩Dn
+ (384)
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the preimage is

f−1
(
(a1, b1)× . . .× (an+1, bn+1)

)
∩ f−1(Dn

+) = (a1, b1)× (an, bn) ∩Dn (385)

which is a basis element of Dn. To prove continuity of f−1, we consider its extension f−1 :
Rn+1 → Rn, which is simply a projection of the first n elements and is therefore continuous.
The restriction of this function f−1 : Dn

+ → Rn is therefore continuous, and since the image of
f−1 only hits Dn, every open set in Dn is of the form U = V ∩ Dn for V open in Rn, where
the preimage will simply be f(U) = f(V ) ∩ f(Dn). We know f(V ) is openb and f(Dn) = Dn

+,
f(U) is open in Dn

+.
5. In Dn, we define the equivalence relation ∼ where x ∼ −x if ∥x∥ = 1, and every other point

(in the interior of the disk) is equivalent to itself only. When n = 2, we can imagine a player
walking in a circular disk in R2, and when it crosses the boundary it will end up at the antipodal
point.

aIf p|Sn wasn’t surjective, then p|Sn ◦ r is not surjective and p is not surjective, a contradiction.
bby continuity of f−1 with codomain Rn

11.5 Metric Topologies

Exercise 11.70 (Munkres 20.1)

(a) In Rn, define

d′(x,y) = |x1 − y1|+ · · ·+ |xn − yn|.

Show that d′ is a metric that induces the usual topology of Rn. Sketch the basis elements under
d′ when n = 2.

(b) More generally, given p ≥ 1, define

d′(x,y) =

[
n∑

i=1

|xi − yi|p
]1/p

for x,y ∈ Rn. Assume that d′ is a metric. Show that it induces the usual topology on Rn.

Exercise 11.71 (Munkres 20.2)

Show that R× R in the dictionary order topology is metrizable.

Exercise 11.72 (Munkres 20.3)

(a) Let X be a metric space with metric d. Show that d : X ×X → R is continuous.
(b) Let X ′ denote a space having the same underlying set as X. Show that if d : X ′ ×X ′ → R is

continuous, then the topology of X ′ is finer than the topology of X.
One can summarize the result of this exercise as follows: If X has a metric d, then the topology
induced by d is the coarsest topology relative to which the function d is continuous.

Exercise 11.73 (Munkres 20.4)

Consider the product, uniform, and box topologies on Rω.
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(a) In which topologies are the following functions from R to Rω continuous?

f(t) = (t, 2t, 3t, . . .),

g(t) = (t, t, t, . . .),

h(t) = (t,
1

2
t,
1

3
t, . . .).

(b) In which topologies do the following sequences converge?

w1 = (1, 1, 1, 1, . . .), x1 = (1, 1, 1, 1, . . .),

w2 = (0, 2, 2, 2, . . .), x2 = (0,
1

2
,
1

2
,
1

2
, . . .),

w3 = (0, 0, 3, 3, . . .), x3 = (0, 0,
1

3
,
1

3
. . .),

. . . . . .

y1 = (1, 0, 0, 0, . . .), z1 = (1, 1, 0, 0, . . .),

y2 = (
1

2
,
1

2
, 0, 0, . . .), z2 = (

1

2
,
1

2
, 0, 0, . . .),

y3 = (
1

3
,
1

3
,
1

3
, 0, . . .), z3 = (

1

3
,
1

3
, 0, 0, . . .),

. . . . . .

Exercise 11.74 (Munkres 20.5)

Let R∞ be the subset of Rω consisting of all sequences that are eventually zero. What is the closure
of R∞ in Rω in the uniform topology? Justify your answer.

Exercise 11.75 (Munkres 20.6)

Let ρ̄ be the uniform metric on Rω. Given x = (x1, x2, . . .) ∈ Rω and given 0 < ϵ < 1, let

U(x, ϵ) = (x1 − ϵ, x1 + ϵ)× · · · × (xn − ϵ, xn + ϵ)× · · · .

(a) Show that U(x, ϵ) is not equal to the ϵ-ball Bρ̄(x, ϵ).
(b) Show that U(x, ϵ) is not even open in the uniform topology.
(c) Show that

Bρ̄(x, ϵ) =
⋃
δ<ϵ

U(x, δ).

Exercise 11.76 (Munkres 20.7)

Consider the map h : Rω → Rω defined in Exercise 8 of §19; give Rω the uniform topology. Under
what conditions on the numbers ai and bi is h continuous? a homeomorphism?
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Exercise 11.77 (Munkres 20.8)

Let X be the subset of Rω consisting of all sequences x such that
∑

x2
i converges. Then the formula

d(x,y) =

[ ∞∑
i=1

(xi − yi)
2

]1/2
defines a metric on X. (See Exercise 10.) On X we have the three topologies it inherits from the
box, uniform, and product topologies on Rω. We have also the topology given by the metric d, which
we call the ℓ2-topology. (Read "little ell two.")

(a) Show that on X, we have the inclusions

box topology ⊃ ℓ2-topology ⊃ uniform topology.

(b) The set R∞ of all sequences that are eventually zero is contained in X. Show that the four
topologies that R∞ inherits as a subspace of X are all distinct.

(c) The set

H =
∏

n∈Z+

[0, 1/n]

is contained in X; it is called the Hilbert cube. Compare the four topologies that H inherits as
a subspace of X.

Exercise 11.78 (Munkres 20.9)

Show that the euclidean metric d on Rn is a metric, as follows: If x,y ∈ Rn and c ∈ R, define

x+ y = (x1 + y1, . . . , xn + yn),

cx = (cx1, . . . , cxn),

x · y = x1y1 + · · ·+ xnyn.

(a) Show that x · (y + z) = (x · y) + (x · z).
(b) Show that |x · y| ≤ ∥x∥∥y∥. [Hint: If x,y ̸= 0, let a = 1/∥x∥ and b = 1/∥y∥, and use the fact

that ∥ax± by∥ ≥ 0.]
(c) Show that ∥x+ y∥ ≤ ∥x∥+ ∥y∥. [Hint: Compute (x+ y) · (x+ y) and apply (b).]
(d) Verify that d is a metric.

Exercise 11.79 (Munkres 20.10)

Let X denote the subset of Rω consisting of all sequences (x1, x2, . . .) such that
∑

x2
i converges. (You

may assume the standard facts about infinite series. In case they are not familiar to you, we shall
give them in Exercise 11 of the next section.)

(a) Show that if x,y ∈ X, then
∑
|xiyi| converges. [Hint: Use (b) of Exercise 9 to show that the

partial sums are bounded.]
(b) Let c ∈ R. Show that if x,y ∈ X, then so are x+ y and cx.
(c) Show that

d(x,y) =

[ ∞∑
i=1

(xi − yi)
2

]1/2
is a well-defined metric on X.

133/ 143



Point Set Topology Muchang Bahng Fall 2024

Exercise 11.80 (Munkres 20.11)

Show that if d is a metric for X, then

d′(x, y) = d(x, y)/(1 + d(x, y))

is a bounded metric that gives the topology of X. [Hint: If f(x) = x/(1 + x) for x > 0, use the
mean-value theorem to show that f(a+ b)− f(b) ≤ f(a).]

Exercise 11.81 (Munkres 21.1)

Let A ⊂ X. If d is a metric for the topology of X, show that d|A × A is a metric for the subspace
topology on A.

Exercise 11.82 (Munkres 21.2)

Let X and Y be metric spaces with metrics dX and dY , respectively. Let f : X → Y have the
property that for every pair of points x1, x2 of X,

dY (f(x1), f(x2)) = dX(x1, x2).

Show that f is an imbedding. It is called an isometric imbedding of X in Y .

Exercise 11.83 (Munkres 21.3)

Let Xn be a metric space with metric dn, for n ∈ Z+.
1. Show that

ρ(x, y) = max{d1(x1, y1), . . . , dn(xn, yn)} (386)

is a metric for the product space X1 × · · · ×Xn.
2. Let d̃i = min{di, 1}. Show that

D(x, y) = sup{d̃i(xi, yi)/i} (387)

is a metric for the product space
∏

Xi.

Solution 11.58

For the first part, we prove the properties of the metric.
1. Nonnegativity. Note that ρ is the maximum of a finite set of metrics, which must be nonnegative,

and so ρ(x, y) ≥ 0. Second,

ρ(x, y) = 0 ⇐⇒ max{di(xi, yi)} = 0 (388)
⇐⇒ di(xi, yi) = 0 for all i = 1, . . . , n (389)
⇐⇒ xi = yi for all i (390)
⇐⇒ x = y (391)

2. Symmetricity.
ρ(x, y) = max{di(xi, yi)} = max{di(yi, xi)} = ρ(y, x) (392)
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3. Triangle inequality.

ρ(x, y) + ρ(y, z) = max
i
{di(xi, yi)}+max

j
{dj(yj , zj)} (393)

≥ max
i
{di(xi, yi) + di(yi, zi)} (394)

≥ max
i
{di(xi, zi)} (395)

= ρ(x, z) (396)

For the second part, we do the same.
1. Nonnegativity. Since d̃i ≥ 0, d̃i/i ≥ 0/i = 0 and so the supremum must be at least 0 (if it’s

negative then it will not bound d1.) Second,

D(x, y) = 0 ⇐⇒ sup{d̃i(xi, yi)/i} = 0 (397)

⇐⇒ d̃i(xi, yi)/i = 0 for all i (398)

⇐⇒ d̃i(xi, yi) = 0 for all i (399)
⇐⇒ min{di(xi, yi), 1} = 0 for all i (400)
⇐⇒ di(xi, yi) = 0 for all i (401)
⇐⇒ xi = yi for all i (402)
⇐⇒ x = y (403)

2. Symmetricity.
D(x, y) = sup{d̃i(xi, yi)/i} = sup{d̃i(yi, xi)/i} = D(y, x) (404)

3. Triangle inequality.

D(x, y) +D(y, z) = sup
i
{d̃i(xi, yi)/i}+ sup

j
{d̃j(yj , zj)/j} (405)

≥ sup
i

{
d̃i(xi, yi) + d̃i(yi, zi)

i

}
(406)

= sup
i

{
min{di(xi, yi), 1}+min{di(yi, zi), 1}

i

}
(407)

≥ sup
i

{
min{di(xi, yi) + di(yi, zi), 1}

i

}
(408)

≥ sup
i

{
min{di(xi, zi), 1}

i

}
(409)

= D(x, z) (410)

Exercise 11.84 (Munkres 21.4)

Show that Rℓ and the ordered square satisfy the first countability axiom. (This result does not, of
course, imply that they are metrizable.)
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Exercise 11.85 (Munkres 21.5)

Theorem. Let xn → x and yn → y in the space R. Then

xn + yn → x+ y,

xn − yn → x− y,

xnyn → xy,

and provided that each yn ̸= 0 and y ̸= 0,

xn/yn → x/y.

[Hint: Apply Lemma 21.4; recall from the exercises of §19 that if xn → x and yn → y, then
xn × yn → x× y.]

Exercise 11.86 (Munkres 21.6)

Define fn : [0, 1]→ R by the equation fn(x) = xn. Show that the sequence (fn(x)) converges for each
x ∈ [0, 1], but that the sequence (fn) does not converge uniformly.

Exercise 11.87 (Munkres 21.7)

Let X be a set, and let fn : X → R be a sequence of functions. Let ρ̄ be the uniform metric on the
space RX . Show that the sequence (fn) converges uniformly to the function f : X → R if and only
if the sequence (fn) converges to f as elements of the metric space (RX , ρ̄).

Exercise 11.88 (Munkres 21.8)

Let X be a topological space and let Y be a metric space. Let fn : X → Y be a sequence of
continuous functions. Let xn be a sequence of points of X converging to x. Show that if the sequence
(fn) converges uniformly to f , then (fn(xn)) converges to f(x).

Exercise 11.89 (Munkres 21.9)

Let fn : R→ R be the function

fn(x) =
1

n3[x− (1/n)]2 + 1
.

See Figure 21.1. Let f : R→ R be the zero function.
(a) Show that fn(x)→ f(x) for each x ∈ R.
(b) Show that fn does not converge uniformly to f . (This shows that the converse of Theorem

21.6 does not hold; the limit function f may be continuous even though the convergence is not
uniform.)

Exercise 11.90 (Munkres 21.10)

Using the closed set formulation of continuity (Theorem 18.1), show that the following are closed
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subsets of R2:

A = {x× y | xy = 1},
S1 = {x× y | x2 + y2 = 1},
B2 = {x× y | x2 + y2 ≤ 1}.

Exercise 11.91 (Munkres 21.11)

Prove the following standard facts about infinite series:
(a) Show that if (sn) is a bounded sequence of real numbers and sn ≤ sn+1 for each n, then (sn)

converges.
(b) Let (an) be a sequence of real numbers; define

sn =

n∑
i=1

ai.

If sn → s, we say that the infinite series

∞∑
i=1

ai

converges to s also. Show that if
∑

ai converges to s and
∑

bi converges to t, then
∑

(cai + bi)
converges to cs+ t.

(c) Prove the comparison test for infinite series: If |ai| ≤ bi for each i, and if the series
∑

bi
converges, then the series

∑
ai converges. [Hint: Show that the series

∑
|ai| and

∑
ci converge,

where ci = |ai|+ ai.]
(d) Given a sequence of functions fn : X → R, let

sn(x) =

n∑
i=1

fi(x).

Prove the Weierstrass M-test for uniform convergence: If |fi(x)| ≤ Mi for all x ∈ X and all
i, and if the series

∑
Mi converges, then the sequence (sn) converges uniformly to a function

s. [Hint: Let rn =
∑∞

i=n+1 Mi. Show that if k > n, then |sk(x) − sn(x)| ≤ rn; conclude that
|s(x)− sn(x)| ≤ rn.]

Exercise 11.92 (Munkres 21.12)

Prove continuity of the algebraic operations on R, as follows: Use the metric d(a, b) = |a − b| on R
and the metric on R2 given by the equation

ρ((x, y), (x0, y0)) = max{|x− x0|, |y − y0|}.

(a) Show that addition is continuous. [Hint: Given ϵ, let δ = ϵ/2 and note that

d(x+ y, x0 + y0) ≤ |x− x0|+ |y − y0|.

]
(b) Show that multiplication is continuous. [Hint: Given (x0, y0) and 0 < ϵ < 1, let

3δ = ϵ/(|x0|+ |y0|+ 1)
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and note that

d(xy, x0y0) ≤ |x0||y − y0|+ |y0||x− x0|+ |x− x0||y − y0|.

]
(c) Show that the operation of taking reciprocals is a continuous map from R − {0} to R. [Hint:

Show the inverse image of the interval (a, b) is open. Consider five cases, according as a and b
are positive, negative, or zero.]

(d) Show that the subtraction and quotient operations are continuous.

11.6 Connectedness

11.7 Compactness

Exercise 11.93 (Munkres 27.2)

Let X be a metric space with metric d; let A ⊂ X be nonempty.
(a) Show that d(x,A) = 0 if and only if x ∈ A.
(b) Show that if A is compact, d(x,A) = d(x, a) for some a ∈ A.
(c) Define the ϵ-neighborhood of A in X to be the set

U(A, ϵ) = {x | d(x,A) < ϵ}.

Show that U(A, ϵ) equals the union of the open balls Bd(a, ϵ) for a ∈ A.
(d) Assume that A is compact; let U be an open set containing A. Show that some ϵ-neighborhood

of A is contained in U .
(e) Show the result in (d) need not hold if A is closed but not compact.

Solution 11.59

For (a), we prove bidirectionally.
1. (→). We prove the contrapositive. Let x ̸∈ A =⇒ ∃ B(x, ϵ) satisfying B(x, ϵ) ∩ A ̸= ∅. This

means that d(x,A) ≥ ϵ > 0. Note that x ̸∈ A means that the actual point x can’t intersect A,
while x ̸∈ A′ means that the punctured ball can’t intersect A. If x ̸∈ A′, then d(x,A) = 0 if x
is an isolated point.

2. (←). If x ∈ A, then for every ϵ > 0, B(x, ϵ) ∩A ̸= 0. Therefore, 0 ≤ d(x,A) < ϵ for all positive
ϵ, which implies that d(x,A) = 0.

For (b). Since the metric d is continuous, the function f(y) = d(x, y) is continuous over compact A,
and by EVT, f achieves its minimum in A. Call this point a ∈ A, and so we have d(x, a) ≤ d(x,A).
However, d(x,A) ≤ d(x, a) for all a ∈ A by definition, so d(x, a) = d(x,A).
For (c), we prove bidirectionally.

1. U(A, ϵ) ⊂ ∪a∈AB(a, ϵ). Let x ∈ U(A, ϵ), and so we have d(x,A) < ϵ. We see that d(x,A) =
inf{d(x, a) | a ∈ A}, so ϵ > d(x,A) cannot be a lower bound. Therefore by definition there
exists some a∗ ∈ A satisfying d(x, a∗) < ϵ =⇒ x ∈ B(a∗, ϵ).

2. ∪a∈AB(a, ϵ) ⊂ U(A, ϵ). Let x ∈ ∪a∈AB(a, ϵ). Then we pick a particular a∗ such that x ∈
B(a∗, ϵ), which satisfies d(x, a∗) < ϵ. Since a∗ ∈ A, d(x,A) ≤ d(x, a∗) < ϵ =⇒ x ∈ U(A, ϵ)

For (d), we first construct the open cover B = {B(a, ϵ(a))}a∈A consisting of all neighborhoods of a
with some ϵ = ϵ(a) (that may be dependent on a) such that B(a, 2ϵ(a)) ⊂ U . This is possible since
U is open. B is an open cover of compact A, so take a finite subcover F = {B(ai, ϵ(ai))}ni=1 with
the minimum ϵ = mini{ϵi}. We claim that

A ⊂
⋃
i

B(ai, ϵ) ⊂ U(A, ϵ) ⊂
⋃
i

B(ai, 2ϵ) ⊂ U (411)
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The first inclusion is trivial since F is an open cover. The second follows directly from (c) since
U(A, ϵ) contains the union of all open balls of the form B(a, ϵ), which contains those with center ai.
The fourth subset is by construction. As for the third subset, we claim that if x ∈ U(A, ϵ), then by
(b) there exists some y ∈ A s.t. d(x, y) < ϵ. Also, since y ∈ A ⊂ ∪iB(ai, ϵ), we have d(y, ai) < ϵ for
some ai. Therefore, by the triangle inequality,

d(x, ai) < d(x, y) + d(y, ai) = ϵ+ ϵ = 2ϵ (412)

and so x ∈ B(ai, 2ϵ) for some ai, and so x ∈ ∪iB(ai, 2ϵ) ⊂ U .
For (e), consider the y-axis {0}×R (a product of closed sets) and the open set from Munkres’s Tube
Lemma example

U = {(x, y) ∈ R2 | |x| < 1/(y2 + 1)} (413)

U is open, but given any ϵ > 0, U(A, ϵ) = (−ϵ,+ϵ)×R is not contained in U since by the Archimidean
property, we can set y arbitrarily large so that

1

y2 + 1
< ϵ (414)

and letting δ be a number between them, we have (δ, y) ∈ U(A, ϵ) but not in U since 1/(y2 + 1) < δ.

Exercise 11.94 (Munkres 27.6)

Let A0 be the closed interval [0, 1] in R. Let A1 be the set obtained from A0 by deleting its “middle
third” ( 13 ,

2
3 ). Let A2 be the set obtained from A1 by deleting its “middle thirds” ( 19 ,

2
9 ) and ( 79 ,

8
9 ).

In general, define An by the equation

An = An−1 −
∞⋃
k=0

(
1 + 3k

3n
,
2 + 3k

3n

)
.

The intersection
C =

⋂
n∈Z+

An

is called the Cantor set; it is a subspace of [0, 1].
(a) Show that C is totally disconnected.
(b) Show that C is compact.
(c) Show that each set An is a union of finitely many disjoint closed intervals of length 1/3n; and

show that the end points of these intervals lie in C.
(d) Show that C has no isolated points.
(e) Conclude that C is uncountable.

Solution 11.60

1. For (a), pick distinct x, y ∈ C and WLOG let x < y. Then y−x > 0, and so by the Archimidean
property we can find some n s.t.

y − x >
1

3n−2
(415)

Furthermore, we can multiply both sides of the left equation by 3n to get

3ny − 3nx > 9 (416)

which implies that there exists a natural a ∈ N s.t.

3nx < a < a+ 1 < . . . < a+ 8 < 3ny (417)
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There must be a divisor amongst the a, a+ 1, a+ 2, so call it a′ = 3k. Then we must have

3nx < 3k < 3k + 1 < 3k + 2 < 3ny =⇒ x <
3k

3n
<

1 + 3k

3n
<

2 + 3k

3n
< y (418)

and so we know that the middle interval ( 1+3k
3n , 2+3k

3n ) is not included in C. Pick any point
y ∈ ( 1+3k

3n , 2+3k
3n ) and so [0, y) ∩C and (y, 0] ∩C is a separation. Since x, y were arbitrary, C is

totally disconnected.
2. For (b), C is bounded, so it suffices to show that it is closed. We claim that An is closed for

all n ∈ N. This is because A0 is closed. Now given that An−1 is closed, the intervals that are
taken out are each open since they are open intervals, and their arbitrary union is also open.
Therefore, let’s call this Un−1, and so

An−1 \
∞⋃
k=0

(
1 + 3k

3n
,
2 + 3k

3n

)
= An−1 \ Un−1 = An−1 ∩ (Un−1)

c (419)

where the complement (in [0, 1]) is closed and so the intersection of closed sets is closed. Finally,
C which is the intersection of closed sets An is closed.

3. We prove using induction. Clearly A0 = [0, 1] has a length of 1/30 = 1 with endpoints 0, 1, and
A1 = [0, 1/3] ∪ [2/3, 1] consists of two intervals of length 1/31 with endpoints {0, 1/3, 2/3, 1}
which contains the endpoints of A0 and cover all multiples of 1/31. Now given that An is a
finite disjoint union of intervals of length 1/3n of the form

I =

[
a

3n
,
a+ 1

3n

]
=

[
3a

3n+1
,
3a+ 3

3n+1

]
(420)

with endpoints that have a 1-to-1 correspondence with all multiples of 1/3n, we label the left
and right endpoints as l = lI , u = uI for convenience. Now for An+1 we claim that for each I,

I ∩
( ∞⋃

k=0

(1 + 3k

3n+1
,
2 + 3k

3n+1

))
=

(
1 + 3a

3n+1
,
2 + 3a

3n+1

)
(421)

because

. . . < 3a−1 = 2+3(a−1) < 3a < 1+3a < 2+3a < 3a+3 < 1+3(a+1) = 3a+4 < . . . (422)

and so every interval I would be divided into two disjoint intervals

I =

[
3a

3n+1
,
1 + 3a

3n+1

]
⊔
[
2 + 3a

3n+1
,
3 + 3a

3n+1

]
= I1 ⊔ I2 (423)

each of length 1/3n+1 and endpoints changed from{
3a

3n+1
,
3 + 3a

3n+1

}
7→
{

3a

3n+1
,
1 + 3a

3n+1
,
2 + 3a

3n+1
,
3 + 3a

3n+1

}
(424)

which are also consecutive multiples of 1/3n+1 that will cover all multiples of 1/3n+1 when
taking all intervals I. Therefore, the number of intervals will double, which is still finite. The
two subintervals also still disjoint from each other since 1 + 3a < 2 + 3a, and they are disjoint
from all other intervals since their extensions (before the middle interval was taken out) was
disjoint. Finally, l is the left endpoint of I1 and u is the right endpoint of I2, and so an endpoint
of any An is an endpoint of Am for m ≥ n, which implies that every endpoint lies in C.

4. Given x ∈ C, let us take the ϵ-neighborhood (x− ϵ, x+ ϵ). Then by Archimidean property, we
can choose a large n ∈ N s.t. 1

3n−2 < ϵ, and so

9 < 3nϵ =⇒ 9 < 3n(x+ ϵ)− 3nx (425)
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and so there are naturals a, a+1, . . . , a+8 in between 3nx and 3n(x+ ϵ). One of a, a+1, a+2
must be a multiple of three, and call it a∗ = 3k. Then

3nx < 1 + 3k < 2 + 3k < 3n(x+ ϵ) =⇒ x <
1 + 3k

3n
<

2 + 3k

3n
< 3n(x+ ϵ) (426)

But (1+3k)/3n is an endpoint of an interval in An, particularly
[
1+3k
3n , 2+3k

3n

]
, which is guaran-

teed to exist since we’ve proved that the endpoints of the disjoint intervals cover all multiples
of 1/3n and also are in C.

5. We have proved that C is compact and has no isolated points. C as a subset of Hausdorff [0, 1]
is also Hausdorff. So as a compact Hausdorff space with no isolated points it is uncountable.

Exercise 11.95 (Munkres 28.2)

Show that [0, 1] is not limit point compact as a subspace of Rℓ.

Solution 11.61

Consider the set A = {an} = {1− 1
n}n∈N. a ∈ A is not a limit point since we can see that if a = 1− 1

k ,
we can see that setting ϵ = 1

2k(k+1) gives

a+ ϵ = 1− 2(k + 1)

2k(k + 1)
+

1

2k(k + 1)
= 1− 2k + 1

2k(k + 1)
< 1− 2k

2k(k + 1)
< 1− 1

k + 1
(427)

and the opposite side with a− ϵ also holds since d(ak−1, ak) > d(ak, ak+1).(
1− 1

k − 1

)
−
(
1− 1

k

)
=

1

k(k − 1)
>

1

k(k + 1)
=

(
1− 1

k

)
−
(
1− 1

k + 1

)
(428)

and so [a− ϵ, a+ ϵ) does not intersect A. Now pick x ∈ (0, 1) \ A. Then there exists unique natural
n ∈ N such that

n <
1

x
< n+ 1 =⇒ 1

n+ 1
< x <

1

n
(429)

and so we can set ϵ = min{ 1n ,
1

n+1} to create an open ball around x not intersecting A. Now 0 is not
a limit point since we can choose ϵ = 1/3, and so B(0, 1/3) ∩ [0, 1] = [0, 1/3) does not intersect A
which has all elements at least 1/2. Finally 1 is not a limit point since we can choose the singleton
set {1} = [1, 2) ∩ [0, 1] that does not intersect A. Therefore [0, 1] has an infinite subset that does not
have a limit point, so it is not limit point compact.

11.8 Countability

11.9 Separation

11.10 Homotopies

Exercise 11.96 (Munkres 51.1)

Show that if h, h′ : X → Y are homotopic and k, k′ : Y → Z are homotopic, then k ◦ h and k′ ◦ h′

are homotopic.
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Solution 11.62

From the assumptions there exists homotopies H : X × I → Y and K : Y × I → Z. We define the
composition homotopy as

G : X × I → Z, G(x, t) := K(H(x, t), t) (430)

Note that since (x, t) 7→ H(x, t) is continuous, by the product topology the map (x, t) 7→ (H(x, t), t)
is continuous, and it composed with continuous K makes it also continuous. Finally, we have

G(x, 0) = K(H(x, 0), 0) = K(h(x), 0) = k(h(x)) = (k ◦ h)(x) (431)
G(x, 1) = K(H(x, 1), 1) = K(h′(x), 1) = k′(h′(x), 1) = (k′ ◦ h′)(x) (432)

Exercise 11.97 (Munkres 51.2)

Given spaces X and Y , let [X,Y ] denote the set of homotopy classes of maps of X into Y .
(a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.
(b) Show that if Y is path connected, the set [I, Y ] has a single element.

Solution 11.63

Listed.
1. Take continuous f, g : X → I and define the homotopy F : X × I → I between them as the

convex combination
F (x, t) = (1− t)f(x) + tg(x) (433)

We have F (x, 0) = f(x) and F (x, 1) = g(x), and the products/sums of continuous maps are
continuous. Finally, we can see that F (x, t) ∈ I because given any x,

f(x) ≤ g(x) =⇒ f(x) ≤ F (x, t) = (1− t)f(x) + tg(x) ≤ g(x) (434)
f(x) ≥ g(x) =⇒ g(x) ≤ F (x, t) = (1− t)f(x) + tg(x) ≤ f(x) (435)

for all t ∈ [0, 1], and since [0, 1] ⊂ R is convex, F (x, t) ∈ [0, 1] for all t and x.
2. Given any continuous function f : I → Y , this is by definition a path. We wish to show that

this is homotopic to a constant map, say the value at f(0) ∈ Y . We construct the homotopy

F (x, t) : I × I → Y, F (x, t) = f((1− t)x) (436)

This satisfies F (x, 0) = f(x) and F (x, 1) = f(0). This is also continuous since it is the com-
position of continuous (x, t) 7→ (1 − t)x and continuous f . Therefore, given two functions
f, g : I → Y , we know that f ≃ f(0) and g ≃ g(0). Now since homotopy is an equivalence
relation, it suffices to show that f(0) ≃ g(0), i.e. any two constant functions are homotopic.
Since Y is path connected, there exists a path h : I → Y such that h(0) = f(0), h(1) = g(0).
Now we define the homotopy

H : I × I → Y, H(x, t) = h(t) (437)

which is certainly continuous since path h is continuous by definition, and h(0) = f(0), h(1) =
g(0).
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Exercise 11.98 (Munkres 51.3)

A space X is said to be contractible if the identity map iX : X → X is nullhomotopic.
(a) Show that I and R are contractible.
(b) Show that a contractible space is path connected.
(c) Show that if Y is contractible, then for any X, the set [X,Y ] has a single element.
(d) Show that if X is contractible and Y is path connected, then [X,Y ] has a single element.

Solution 11.64

Listed.
1. For I, we define the homotopy F (x, t) = (1 − t)x, which is continuous (since it is a scalar

multiple of the continuous identity map) and satisfies F (x, 0) = x = iX(x), and F (x, 1) = 0
which is a constant map. For R we can use the same homotopy and the same logic follows.

2. Given that X is nullhomotopic let z ∈ X be the value of the constant map that is homotopic to
the identity i : X → X, with homotopy F : X×I → X where F (x, 0) = x and F (x, 1) = z. Then
we claim that for any x ∈ X, x is path connected to z since by fixing x, the function γ : I → X
defined γ(t) = F (x, t) is a path: it is continuous, γ(0) = F (x, 0) = x, and γ(1) = F (x, 1) = z.
Therefore we have found such a path, and since path connectedness is an equivalence relation,
for any x, y ∈ X, x ∼ z ∼ y, making X path connected.

3. Since Y is contractible, let us construct the homotopy of the constant map to the identity map
F : Y × I → Y satisfying F (y, 0) = z for some z ∈ Y and F (y, 1) = y. Now given continuous
g : X → Y , we wish to show that it is homotopic to the constant map with value z. Consider
the homotopy G : X × I → Y defined

G(x, t) = F (g(x), t) (438)

This is clearly continuous as the composition of continuous maps. Furthermore, G(x, 0) =
F (g(x), 0) = z and G(x, 1) = F (g(x), 1) = g(x), making this indeed a homotopy. Since homo-
topy is an equivalence relation for any continuous f, g : X → Y , f ≃ z ≃ g, and so there is only
one equivalence class.

4. We wish to show that given any two functions f, g : X → Y , f ≃ g. Since X is contractible,
there exists a homotopy F : X × I → X where F (x, 0) = z for some z ∈ X and F (x, 1) = x.
We can take f, g and see that (f ◦ F ), (g ◦ F ) : X × I → Y is a homotopy, as the composition
of continuous maps satisfying

(f ◦ F )(x, 0) = f(F (x, 0)) = f(z) (439)
(f ◦ F )(x, 1) = f(F (x, 1)) = f(x) (440)
(g ◦ F )(x, 0) = g(F (x, 0)) = g(z) (441)
(g ◦ F )(x, 1) = g(F (x, 1)) = g(x) (442)

Therefore, f(z) ∼ f and g(z) ∼ g. We know that since Y is path connected, f(z) ∼ g(z) as
given in my argument in Munkres 51.2.b, and so f ∼ f(z) ∼ g(z) ∼ g, and every continuous
function is a part of the same equivalence class.
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